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COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING
II: SHELL ELEMENT

TEODORO MERLINI AND MARCO MORANDINI

The virtual work of stresses developed in Part I for the helicoidal shell model and then reduced to the
material surface is taken as one term of a variational principle stated on a two-dimensional domain. The
other terms related to the external loads and to the boundary constraints are added here and include a
weak-form treatment of the constraints, which becomes necessary in the context of helicoidal modeling.
All terms are cast in incremental form and yield a linearized variational principle of the virtual work type
for two-dimensional continua, endowed with an internal constraint conjugate to an extra stress field that
is able to control the drilling degree of freedom.

The virtual functional and the virtual tangent functional are approximated by the finite element
method, using helicoidal interpolation for the kinematic field (which ensures objectivity and path in-
dependence) and a uniform representation for the extra stress field. A low-order four-node shell element
is obtained, with 6 degrees of freedom per node and a unique stress-vector discrete unknown per element.
Several test cases demonstrate the performance of the element and its outstanding locking-free behavior.

1. Introduction

This second part of the paper deals with the finite element approximation of the mechanics of the shell
material surface, whose kinematical description was introduced in Part I. The formulation, which is
briefly outlined here, follows a straightforward course. The intrinsic mechanics of the material surface
are stated directly from a variational approach. The virtual work of stresses was developed in Part I for the
helicoidal shell model and then reduced to the material surface; here, the external loads and the boundary
constraints are introduced, and the proposed variational principle is stated on a two-dimensional domain.
This principle is of the virtual work type for nonpolar continua and is endowed with an internal constraint
related to an extra stress field; it also includes a weak-form treatment of the boundary constraints. The
variational principle is given an incremental form from the beginning and exploits the shell linearized
constitutive law obtained in Part I; then, the virtual functional and the virtual tangent functional are
approximated by the finite element method.

Within the formulation outlined above, the two characteristic features of the present contribution,
already introduced in Part I, are still in evidence. As with the three-dimensional mechanics, the material
surface mechanics are based on a micropolar description. Since the shell is essentially nonpolar in its
tangent plane, this description entails a workless stress parameter whose role is to force the definition
of the drilling degree of freedom. Even if this workless stress parameter cannot be identified as the
axial vector of a stress tensor, nevertheless an extra stress exists and is rightly introduced as one of the

Keywords: nonlinear shell elements, helicoidal multiplicative interpolation, micropolar shell mechanics and drilling degrees of
freedom, constraints in weak form, finite rotations and rototranslations, dual tensor algebra.
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parameters that control the Biot-axial distribution within the shell model thickness. This vector parameter
is an irreducible primary unknown of the intrinsic shell mechanics: in the proposed finite element scheme
(4 nodes by 6 DOFs), a unique extra stress vector per element (3 stress components) is sufficient to control
the drilling rotation ensuing from a three-parametric representation of the nodal rotations.

The second characteristic feature is of great importance in Part II as well. As explained in Part I,
Section 3, an integral kinematic field that couples displacements and rotations is adopted for the material
surface. In this paper, helicoidal modeling is fully exploited to define the approximate kinematic field
within the shell element. The local orientoposition and curvatures are computed from the nodal oriento-
positions by means of a new kind of multiplicative interpolation proposed by [Merlini and Morandini
2004b]. This methodology is endowed with the important properties of objectivity and path indepen-
dence and allows us to build curved and curving elements based on nodal frames and capable of large
displacements and rotations. In such elements, the nodal orientations control both the orientation and
the position of the material surface at any internal point. This is clearly evident from Figure 1, where
the striking difference between two interpolation schemes — the classical and the helicoidal — is shown
on a quadrilateral element.

In the last two decades a considerable number of high-performing shell elements have been developed.
Some elements are built on mixed or full three-field variational formulations [Sansour and Bufler 1992;
Wagner and Gruttmann 2005; Klinkel et al. 2008]. Other elements (for example, [Chróścielewski et al.
1992; Arciniega and Reddy 2007]) rely on high-order interpolants in order to avoid, or mitigate, shear and
membrane locking. Others are based on particular techniques, such as reduced integration [Wriggers and
Gruttmann 1993; Hauptmann et al. 2000; Cardoso and Yoon 2005], discrete Kirchhoff–Love constraints
[Areias et al. 2005], or incompatible modes [Ibrahimbegović and Frey 1994]. Most of the elements
proposed in the literature, however, use the assumed natural strain or enhanced assumed strain concepts,
such as those developed by [Büchter et al. 1994; Bischoff and Ramm 1997; Sansour and Kollmann 2000;
Fontes Valente et al. 2003; Chróścielewski and Witkowski 2006; Brank 2008], to mention just a few. Few
are the successful low-order displacement-based elements free of any of the above techniques; see, for
example, [Campello et al. 2003; Pimenta et al. 2004]. The element proposed in the present paper is based
on an alternative modeling of the continuum and does not rely on any of the above-mentioned techniques.
Here, the intrinsic coupling between positions and orientations proves to be the key for the successful
development of a low-order four-node element that is essentially free from membrane and shear locking.

Figure 1. A curved helicoidal shell element over a classical flat element.
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In a sense, the present element can be thought of as a high-order element, because helicoidal modeling
allows us to describe curved and curving surfaces in a natural way despite low-order interpolants. The
locking-free behavior of the element has to be likely ascribed to a fair approximate representation of
the orientoposition field, faithful to the helicoidal modeling of the surface: the proposed coupling of
positions and orientations of the interpolated field strictly reflects the coupling inherent in helicoidal
modeling (Part I, Section 2.2).

This paper also has to tackle another problem that arises when the evolution of the discrete model along
the solution process (that is, the rototranslation of the nodal frames) is described through incremental
helicoidal motions. The problem is that of selective external constraints, that is, when nodes — or, in
general, structure boundaries — are constrained along some degrees while the remaining degrees keep
free. Selective constraints are hardly consistent with helicoidal motion: partial constraints on some
components of incremental helices are unlikely in common practice. In our past computations, we could
fulfill selective constraints by grounding appropriate incremental unknowns along a self-based solution
process [Merlini and Morandini 2005]. This expedient, however, cannot be used with every problem:
the hemispherical shell test case, for instance, when modeled as a quarter of the dome, requires selective
symmetry constraints that cannot be handled by simply grounding appropriate incremental unknowns.
Therefore, a nonlinear constraint element, capable of dealing with external constraints in weak form, has
been developed.

The paper is organized as follows. The formulation of the variational principle, including the treatment
of external loads and selective constraints, is discussed and linearized in Section 2. In Section 3, the
interpolations are introduced and the linearized variational principle is approximated by the finite element
method. In Section 4, several numerical examples are presented to demonstrate the performance of the
proposed element. Section 5 concludes the paper.

2. Material surface variational mechanics

As stated in Part I, the starting point for the present formulation in shell mechanics is the principle of
virtual work. It can be written in the form Πintδ +Πextδ +Πbcδ = 0, where the contributions to the
virtual functional from the stresses, the external loads and the boundary constraints are kept separate.
The term Πintδ was introduced in Part I, Equation (35) and developed and linearized therein assuming
the helicoidal shell model for the reduction from three dimensions. In this section, the terms Πextδ and
Πbcδ are discussed directly for the two-dimensional material surface, and are consistently linearized.

2.1. Virtual functionals. The contributions from the external loads and boundary constraints are taken
from the analogous terms written for the three-dimensional formulation based on helicoidal modeling
[Merlini and Morandini 2004a]. For the shell material surface, they can be cast in the form (see details
in [Merlini 2008b])

Πextδ =−

∫
S
〈ηδ, b〉dS−

∫
L f

〈ηδ, s〉dL f, Πbcδ =−

∫
Lc

δ〈ΛTsc, η− ηc〉dLc. (1)

Here, S is the shell surface in the reference configuration and L = L f ∪ Lc its boundary line, split into
free portion L f and constrained portion Lc. The dual vectors b= X ′( f + Ec)= f + E(c+ x′× f ) and
s = X ′(t + Em) = t + E(m+ x′× t) are the pole-based external load dual densities per unit reference
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surface and boundary line, respectively (X ′ = I + Ex′× is the current position dual tensor and x′ the
current position vector); the relevant self-based densities, X ′Tb = f + Ec and X ′Ts = t + Em, are
composed of the forces f and t and the couples c and m; all such load densities are valued in the current
configuration; the multiplier ηδ is a virtual helix. The boundary constraint equation to fulfill in weak
form is η = ηc, with η the helix of the unknown rototranslation H = A′AT and ηc a known dual vector;
sc = X ′(tc + Emc) = tc + E(mc + x′× tc) is the pole-based unknown reaction dual density on Lc, and
tc+ Emc is the relevant self-based version, with tc the traction and mc the couple.

Equation (1)2 shows that the constraint virtual functional Πbcδ is actually the virtual variation of a
finite functional. Recalling the differential map of the rototranslation, ηδ =Λδη (Part I, Equation (7)),
the constraint virtual functional can be developed as Πbcδ =−

∫
Lc
〈ηδ, sc〉dLc −

∫
Lc
〈δ(ΛTsc), η−ηc〉dLc.

The first term is the virtual work of the constraint reactions, and the second term represents the weak form
of the constraint condition. The account of the virtual multiplier in the second term was given in [Merlini
and Morandini 2004a] for three-dimensional elasticity, and rewritten for material surface mechanics in
[Merlini 2008b].

So far, the constraint condition of a boundary particle is cast in terms of rototranslation. However,
such kinds of constraints (say, helicoidal constraints) are hardly of interest in common practice, since the
single six components of a dual helix η=ϕ+Eρ, and in particular the components of its linear part ρ, lose
in general physical significance in real applications. In fact, it is difficult just to devise the assignment of a
nonnull constraint ηc. Furthermore, difficulties arise in the case of selective constraints, when a boundary
particle has some directions constrained and others free [Merlini and Morandini 2004a]. A convenient
way of tackling the issue of selective constraints is to write them with a variational formulation based
on classical Euclidean-rotational modeling, then to rephrase them in the context of helicoidal modeling.
A constraint variational formulation of this kind was developed, linearized, and applied to helicoidal
modeling by [Merlini 2008a], with reference to three-dimensional elasticity. The same formulation can
be rewritten for the material surface starting from the constraint virtual functional

Πbcδ =−

∫
Lc

δ(〈tc, u− uc〉+ 〈Γ
Tmc,ϕ−ϕc〉)dLc, (2)

where u are displacements and ϕ rotation vectors; Γ is the mapping tensor of the differential map of the
rotation Φ, such that ϕδ = Γ δϕ (Part I, Equation (6)). The uncoupled structure of the linear and angular
constraint conditions in (2) is straightforward. Using this expression of the constraint virtual functional
instead of (1)2 makes the treatment of selective constraints affordable.

A further improvement for the treatment of selective constraints is the introduction of local constraint
frames. A constraint frame is made of three orthonormal vectors n j ≡ n j that compose the orientation
tensor N = N−T

= n j ⊗ i j
= n j
⊗ i j ; this is a given tensor and is used to define the service vectors

ǔc = NTuc, ϕ̌c = NTϕc, (3)

and
ťc = NT tc, m̌c = NTmc. (4)

Vectors ǔc and ϕ̌c are the known constraint displacement and rotation vector back-rotated by NT, whereas
ťc and m̌c are the unknown constraint reaction and reaction couple back-rotated by NT. So, the absolute
components of such service vectors are just the components of the true vectors in the local constraint



COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING, II 697

frame. This fact makes it easy to apply the constraints along a subset of the boundary particle degrees
of freedom, without depriving the formulation of its clean vectorial notation: in practice, it corresponds
to referring the constraint to a local reference frame. Using (3) and (4), (2) is rewritten as

Πbcδ =−

∫
Lc

δ(〈 ťc, NTu− ǔc〉+ 〈NTΓ T Nm̌c, NTϕ− ϕ̌c〉)dLc. (5)

2.2. Linearization. Linearization of functional Πextδ is accomplished under the hypothesis of only two
kinds of external loads: dead-loads fD+ EcD and tD+ EmD and follower-loads Φ( fF+ EcF) and Φ(tF+
EmF), with fD, cD, tD, mD and fF, cF, tF, mF assigned densities. So, the expressions of the pole-based
loads in (1)1 become

b= X ′
(
( fD+Φ fF)+ E(cD+ΦcF)

)
, s = X ′

(
(tD+Φ tF)+ E(mD+ΦmF)

)
.

After realizing that ∂(X ′Tηδ)= X ′Tη∂δ + 1
2 ϕ∂ ×ϕδ +

1
2 ϕ∂ × X ′Tηδ + 1

2 ϕδ × X ′Tη∂ , linearization of
(1)1 involves simple algebraic manipulations (see [Merlini 2008b]) and yields

Πextδ =−

∫
S
{ηδ}

T
· {RS

fη}dS−
∫

L f

{ηδ}
T
· {RL

fη}dL f,

∂Πextδ =−

∫
S
({ηδ}

T
· [DS

fηη] · {η∂}+{η∂δ}
T
· {RS

fη})dS−
∫

L f

({ηδ}
T
· [DL

fηη] · {η∂}+{η∂δ}
T
· {RL

fη})dL f,

(6)

where

{RS
fη} =

{
(cD+ΦcF)+ x′× ( fD+Φ fF)

fD+Φ fF

}
,

[DS
fηη] =

[ 1
2 (cD+ΦcF)×+

1
2

(
x′× ( fD+Φ fF)×+( fD+Φ fF)× x′×

) 1
2( fD+Φ fF)×

T

1
2( fD+Φ fF)× 0

]
−

[
(ΦcF)×+x′× (Φ fF)× 0

(Φ fF)× 0

]
,

and

{RL
fη} =

{
(mD+ΦmF)+ x′× (tD+Φ tF)

tD+Φ tF

}
,

[DL
fηη] =

[ 1
2 (mD+ΦmF)×+

1
2

(
x′× (tD+Φ tF)×+(tD+Φ tF)× x′×

) 1
2 (tD+Φ tF)×T

1
2 (tD+Φ tF)× 0

]
−

[
(ΦmF)×+x′× (Φ tF)× 0

(Φ tF)× 0

]
.

As assumed in Part I, here and in the following the sequence angular–linear is understood while writing
dual vectors and tensors in matrix notation. So, for example, in column {ηδ} vector ϕδ is the first element
and vector ρδ the second.

Linearization of the functional Πbcδ needs more skills about the successive differentiations of the
rotation tensor [Merlini 2002; 2003]. Here, it suffices to recall that ∂ϕδ = ϕ∂δ + 1

2 ϕ∂ ×ϕδ, ϕδ = Γ δϕ,
δΓ = Γ/ : δϕ ⊗ I , ∂Γ/ = Γ 1234

// : ∂ϕ ⊗ I ; the expressions for tensors Γ , Γ/ and Γ 1234
// can be found
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in [Merlini and Morandini 2004b, Appendix A]. After some algebraic manipulation [Merlini 2008b],
linearization of (5) yields

Πbcδ =−

∫
Lc

({
ϕδ
δu

}T

·

{
QIIcm̌c

N ťc

}
+

{
δm̌c

δ ťc

}T

·

{
QIc

QLc

})
dLc,

∂Πbcδ =−

∫
Lc

(
ϕδ ·

[
Γ −T(m̌c · QIIIc)Γ

−1
+

1
2(QIIcm̌c)×

]
·ϕ∂ +

{
ϕδ
δu

}T

·

[
QIIc 0
0 N

]
·

{
∂m̌c

∂ ťc

}

+

{
δm̌c

δ ťc

}T

·

[
QT

IIc 0
0 NT

]
·

{
ϕ∂
∂u

}
+

{
ϕ∂δ
∂δu

}T

·

{
QIIcm̌c

N ťc

}
+

{
∂δm̌c

∂δ ťc

}T

·

{
QIc

QLc

})
dLc,

(7)

where convenient tensors have been introduced as

QLc = NTu− ǔc,

QIc = NTΓ N(NTϕ− ϕ̌c),

QIIc = N +Γ −T(NTΓ/N(NTϕ− ϕ̌c)
)T
,

QIIIc = NTΓ/+ NT(Γ 1234
// − (Γ T132

/ Γ −1Γ T132
/ )T1342)N(NTϕ− ϕ̌c).

In order to use the constraint virtual functionals Πbcδ and ∂Πbcδ in the context of helicoidal modeling,
it remains to pass from Euclidean-rotational kinematics to helicoidal kinematics. The constraint reactions
are conveniently grouped into the dual reaction řc = ťc+ Em̌c and the kinematical variables into the dual
vector e= ϕ+ Eu. Consistently, the dual kinematical variation variables eδ = ϕδ + Eδu, e∂ = ϕ∂ + E∂u,
and e∂δ = ϕ∂δ + E∂δu are introduced. It can be shown that the dual vector e and the helix η are related
by e= Γ T X ′Tη, and the relevant variation variables by

eδ = X ′Tηδ, e∂ = X ′Tη∂ , e∂δ = X ′Tη∂δ + 1
2 (ϕ∂ × X ′Tηδ +ϕδ × X ′Tη∂),

see [Merlini 2008a]. Thus, (7) are finally brought to the form

Πbcδ =−

∫
Lc

{
ηδ
δ řc

}T

·

{
RL

cη

RL
cr

}
dLc,

∂Πbcδ =−

∫
Lc

({
ηδ
δ řc

}T

·

[
DL

cηη DL
cηr

DL T
cηr 0

]
·

{
η∂
∂ řc

}
+

{
η∂δ
∂δ řc

}T

·

{
RL

cη

RL
cr

})
dLc,

(8)

where

{RL
cη} =

{
QIIcm̌c+ x′× N ťc

N ťc

}
,

{RL
cr} =

{
QIc

QLc

}
,

[DL
cηη] =

[
Γ −T(m̌c · QIIIc)Γ

−1
+

1
2 (QIIcm̌c)×+

1
2

(
x′× (N ťc)×+(N ťc)× x′×

) 1
2 (N ťc)×T

1
2 (N ťc)× 0

]
,

[DL
cηr ] =

[
QIIc x′× N
0 N

]
.

(9)



COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING, II 699

Note that the mixed virtual-incremental variation variables are retained in the tangent functionals
∂Πextδ and ∂Πbcδ, in consideration of a possible nonlinear dependence of the local variables on the
ultimate problem unknowns.

3. Finite elements

3.1. Linearized discrete variational principle. The virtual functionals discussed above are assembled
as a sum of contributions from the appropriate elements according to the finite element method. Three
kinds of element contributions are considered.

First, the material surface shell element itself: the integralsΠintδ=
∫

S πintδ dS and ∂Πintδ=
∫

S ∂πintδ dS,
relevant to the internal work as discussed in Part I, and part of the integrals Πextδ and ∂Πextδ from (6),
relevant to the external loads, pertain to this element. So, recalling Part I, Equation (67), the virtual
functional and the virtual tangent functional of the shell element, which spans over the surface Se, are
written

Π Se

δ =

∫
Se

({
δ(HTωα)

δτ̂

}T

·

{
HT Rαω

Rτ

}
−{ηδ}

T
· {RS

fη}

)
dSe,

∂Π Se

δ =

∫
Se

({
δ(HTωα)

δτ̂

}T

·

[
HT Dαβ

ωωH HT Dα
ωτ

DβT
ωτ H Dττ

]
·

{
∂(HTωβ)

∂ τ̂

}
−{ηδ}

T
· [DS

fηη] · {η∂}

+

{
∂δ(HTωα)

∂δτ̂

}T

·

{
HT Rαω

Rτ

}
−{η∂δ}

T
· {RS

fη}

)
dSe,

(10)

where tensors R and D are given in Part I, Equation (66).
Second, the border load element, to which the other terms in (6) relevant to the external loads pertain.

It lies on the line Le
f , and the relevant functionals are written

Π
Le

f
δ =−

∫
Le

f

{ηδ}
T
· {RL

fη}dLe
f , ∂Π

Le
f

δ =−

∫
Le

f

({ηδ}
T
· [DL

fηη] · {η∂}+ {η∂δ}
T
· {RL

fη})dLe
f . (11)

This element is a useful means to introduce external loads distributed along the shell boundary.
Third, an element to implement the boundary constraints as for (8). However, in the present version

of the finite element code, this element is not integrated over a line Le
c, but instead is attached to a single

node N e
c ; hence, it is referred to as the node constraint element. The relevant functionals are written

Π
N e

c
δ =−

{
ηδ J

δ řcJ

}T

·

{
RN

cη

RN
cr

}
,

∂Π
N e

c
δ =−

({
ηδ J

δ řcJ

}T

·

[
DN

cηη DN
cηr

DN T
cηr 0

]
·

{
η∂ J

∂ řcJ

}
+{η∂δ J }

T
· {RN

cη}

)
,

(12)

where ηJ and řcJ refer to the helix and the dual reaction at the constrained node J , and the dual vectors
RN

c and tensors DN
c are evaluated from (9) at that node. Note that the mixed virtual-incremental variation

∂δ řc has been discarded while passing from (8) to (12); in fact řcJ is now an ultimate free unknown of
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the discrete problem. This is not the case for η∂δ . The node constraint element is not specific to the shell
modeling and can be used in any finite element analysis.

The linearized variational principle is therefore cast in the form Πδ + ∂Πδ = 0, where the discrete
virtual functional and virtual tangent functional of the whole problem are built with the contribution from
all the elements:

Πδ =

∑
Se

Π Se

δ +

∑
Le

f

Π
Le

f
δ +

∑
N e

c

Π
N e

c
δ , ∂Πδ =

∑
Se

∂Π Se

δ +

∑
Le

f

∂Π
Le

f
δ +

∑
N e

c

∂Π
N e

c
δ .

Note that the external loads and possibly the reaction constraints will contribute to the tangent stiffness.

3.2. Element kinematic field. As discussed in Part I, Section 3, the formulation of the material surface
kinematics is based on the integral field of the rototranslations. Rototranslations are orthogonal dual
tensors, and as such they compose multiplicatively and do not commute. These distinctive properties of
the kinematic field should be preserved in the approximate, substitute field on which a surface element is
built. The helicoidal interpolation developed in [Merlini and Morandini 2004b] fulfills this requirement
and is adopted here for both the shell and the border load elements.

Given N nodal frames in space, with orientoposition tensors AJ (J = 1, 2, . . . , N ), the interpolated
orientoposition A is determined by the equation

N∑
J=1

WJ log(AAT
J )= 0, (13)

where WJ are N given weights that measure the influence of each frame J on the sought one. Solution
of (13) yields the weighted average orientoposition A, that is, an orientoposition with a null weighted
average of the logarithms of the relative rototranslations H̃J = AAT

J from the nodal frames, hence with a
null weighted average of the relative helices η̃J from AJ to A (see Figure 2). In the present application,
as in the solid elements [Merlini and Morandini 2005], Lagrange polynomial interpolants on rectangular
domains are assumed; so, the proposed corner-node elements (4-node shell element and 2-node border
load element) are built with standard multilinear weight functions WJ . It is worth noting, in Figure 2,
that the nodal orientations control the orientation as well as the position of the interpolated point.

Equation (13) is an implicit nonlinear equation. In general, it cannot give the interpolated oriento-
position A in closed form, however it can be solved numerically by a refined Newton–Raphson procedure
that proves very efficient. Then, the spatial derivatives of the weight functions WJ with respect to the
local curvilinear coordinates ξα allow us to compute the curvature dual vectors in closed form as

kα =−(Λ−II )
−1

N∑
J=1

WJ,αη̃J , (14)

where

Λ−II =

N∑
J=1

WJ Λ̃
−1
J , Λ̃J = dexp(η̃J×).

The helicoidal interpolation, (13) and (14), is first performed in the reference, undeformed configura-
tion (this operation also allows an accurate setting of elements with possibly curved geometry). Then,
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Figure 2. Helicoidal interpolation on a quadrilateral shell element.

the same interpolation scheme is applied to any current, deformed configuration; the comparison of
the interpolated quantities between the current and the reference configurations allows us to recover
(according to a total-Lagrangian approach) the local rototranslation H = A′AT and the kinematical dual
strains ωα = k′α−Hkα at the shell element quadrature points. It is worth stressing that this way of building
the local kinematics is manifestly far from the customary standpoint of interpolating the rototranslations
(or the rotations) of the nodal frames — a concept, in our opinion, devoid of consistency [Merlini and
Morandini 2004b]. Note that operating on the orientopositions instead of the rototranslations makes
this interpolation scheme path independent, as the local orientoposition and curvatures are computed
independently from the past history of the nodal orientopositions. The proposed interpolation scheme
is objective as well: the frame indifference and the invariance against rigid motions has been proved
in [Merlini and Morandini 2004b], and is strictly connected to the concept of averaging the relative
rototranslations from the nodal frames.

Evaluation of the integrals in (10) and (11) requires expressions for the virtual, incremental, and mixed
virtual-incremental local variation variables. These are the outcome of the linearization of the helicoidal
interpolation (13), a complicated process discussed in [Merlini and Morandini 2004b], that yields the
local variation variables as linear functions of the relevant nodal variation variables. In the following,
just the resulting interpolation formulae are written for the specific case of shell elements (see [Merlini
and Morandini 2008]):

{ηδ} =

N∑
J=1

[NAJ ] · {ηδ J },

{η∂} =

N∑
K=1

[NAK ] · {η∂K },

{η∂δ} =

N∑
J=1

[NAJ ] · {η∂δ J }+

N∑
J=1

N∑
K=1

{
{ηδ J } · [N

T213
AaJ K ] · {η∂K }

{ηδ J } · [N
T213
AlJ K ] · {η∂K }

}
,

(15)
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and

{Hδ(HTωα)} =

N∑
J=1

[NKJα] · {ηδ J },

{H∂(HTωβ)} =

N∑
K=1

[NKKβ] · {η∂K },

{H∂δ(HTωα)} =

N∑
J=1

[NKJα] · {η∂δ J }+

N∑
J=1

N∑
K=1

{
{ηδ J } · [N

T213
KaJ Kα] · {η∂K }

{ηδ J } · [N
T213
KlJ Kα] · {η∂K }

}
.

(16)

It is worth noting that the linearization of the helicoidal interpolation supplies interpolation formulae
capable of relating the mixed virtual-incremental local variation variables to the virtual, incremental, and
mixed virtual-incremental nodal variation variables. The tensor matrices in (15) and (16) are defined as

[NAJ ] =

[
primal VJ 0
dual VJ primal VJ

]
,

[NAaJ K ] =

[
primal VJ K 0

0 0

]
,

[NAlJ K ] =

[
dual VJ K primal VJ K

primal VJ K 0

]
,

and

[NKJα] =

[
primal W̆Jα 0
dual W̆Jα primal W̆Jα

]
,

[NKaJ Kα] =

[
primal W̆J Kα 0

0 0

]
,

[NKlJ Kα] =

[
dual W̆J Kα primal W̆J Kα

primal W̆J Kα 0

]
,

where

W̆Jα =WJα +
1
2 k′α × VJ ,

W̆J Kα =WJ Kα+
1
2 k′α ×VJ K+

1
2 (I
×WJα)

T132VK+
1
2 ((I

×WKα)
T132VJ )

T132
+((I ⊗ k′α)

S123VJ )
T132VK ,

and tensors VJ , VJ K , WJα, and WJ Kα are defined in [Merlini and Morandini 2004b].

3.3. Element Biot-axial field. The so-called surface Biot-axial stress parameter τ̂ , which pertains to the
Euclidean vector space, is approximated in a much simpler way: it is assumed uniform over the shell
element domain, say

τ̂ = τ̂E ,

with τ̂E a discrete variable of the global problem, unique for the each single element. Linearization of
τ̂ is straightforward, δτ̂ = δτ̂E and ∂ τ̂ = ∂ τ̂E , whereas of course ∂δτ̂ = 0, since τ̂E is an ultimate free
unknown of the discrete problem.
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The choice of a uniform Biot-axial parameter is consistent with the interpolation of τ̂ discussed in
[Merlini and Morandini 2005] for the solid element, see the particular case of planar elements. Other
interpolation schemes have been investigated [Merlini and Morandini 2008] and tested, however with
less success.

3.4. Element matrices. Using the variation variables obtained in Sections 3.2 and 3.3 within (10)–(12),
the element contributions to the virtual functional and virtual tangent functional are brought to the fol-
lowing form (details in [Merlini and Morandini 2008]).

• Shell element:

Π Se

δ =

4∑
J=1

{ηδ J }
T
· {FS

ηJ }+ δτ̂E · FS
τ E ,

∂Π Se

δ =

4∑
J=1

4∑
K=1

{ηδ J }
T
· [K S

ηηJ K ] · {η∂K }+

4∑
J=1

{ηδ J }
T
· [K S

ητ J E ] · ∂ τ̂E

+δτ̂E ·

4∑
K=1

[K S
ητK E ]

T
· {η∂K }+ δτ̂E · K S

ττ E E · ∂ τ̂E +

4∑
J=1

{η∂δ J }
T
· {FS

ηJ }.

(17)

• Border load element:

Π
Le

f
δ =

2∑
J=1

{ηδ J }
T
· {FL

ηJ },

∂Π
Le

f
δ =

2∑
J=1

2∑
K=1

{ηδ J }
T
· [K L

ηηJ K ] · {η∂K }+

2∑
J=1

{η∂δ J }
T
· {FL

ηJ }.

(18)

• Node constraint element:

Π
N e

c
δ = {ηδ J }

T
· {FN

ηJ }+ {δ řcJ }
T
· {FN

r J },

∂Π
N e

c
δ = {ηδ J }

T
· [K N

ηηJ J ] · {η∂ J }+ {ηδ J }
T
· [K N

ηr J J ] · {∂ řcJ }

+{δ řcJ }
T
· [K N

ηr J J ]
T
· {η∂ J }+ {η∂δ J }

T
· {FN

ηJ }.

(19)

Equations (17)–(19) can be directly assembled within the global variational functionals of the whole
discrete problem. The element contributions to the problem residual and tangent matrix are as follows.

• Shell element:

{FS
ηJ } =

∫
Se
({Rαω}

T
· [NKJα] − {RS

fη}
T
· [NAJ ])dSe,

FS
τ E =

∫
Se

Rτ dSe,

[K S
ηηJ K ] =

∫
Se
([NKJα]

T
· [Dαβ

ωω] · [NKKβ] + [dual Rαω ·NKaJ Kα] + [primal Rαω ·NKlJ Kα]

−[NAJ ]
T
· [DS

fηη] · [NAK ] − [dual RS
fη ·NAaJ K ] − [primal RS

fη ·NAlJ K ])dSe,
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[K S
ητ J E ] =

∫
Se
[NKJα]

T
· [Dα

ωτ ]dSe,

K S
ττ E E =

∫
Se

Dττ dSe.

• Border load element:

{FL
ηJ } =

∫
Le

f

(−{RL
fη}

T
· [NAJ ])dLe

f ,

[K L
ηηJ K ] =

∫
Le

f

(−[NAJ ]
T
· [DL

fηη] · [NAK ] − [dual RL
fη ·NAaJ K ] − [primal RL

fη ·NAlJ K ])dLe
f .

• Node constraint element:

{FN
ηJ } = −{R

N
cη}, {F

N
r J } = −{R

N
cr}, [K

N
ηηJ J ] = −[D

N
cηη], [K

N
ηr J J ] = −[D

N
cηr ].

3.5. Nodal mixed variation variables. It is noted that (17)2, (18)2, and (19)2 contain terms in the mixed
virtual-incremental variation variables η∂δ J relevant to the nodal helices. Before assembling the problem
matrix, these mixed variation variables must be solved for the simple variation variables ηδ J and η∂ J . The
resolution of η∂δ J is now possible at the nodes, since there the nodal helices are actually free variables.
As explained in [Merlini and Morandini 2004b; 2005], using the differential map of the rototranslation
and discarding, of course, the term ∂δηJ , the resolution formula is easily obtained:

η∂δ J =ΛJΛ
−123
IIIJ : ηδ J ⊗ η∂ J . (20)

Here, ΛJ and Λ−123
IIIJ are the first and second differential mapping tensors associated with the exponential

map of the nodal rototranslation HJ ; they are built with the current value of the nodal helix ηJ .
Using (20), terms of the type {η∂δ J }

T
· {FJ } in (17)–(19) are transformed to {ηδ J }

T
· [K J J ] · {η∂ J },

where

[K J J ]

=

[
dual FJ · primal(ΛJΛ

−123
IIIJ )+ primal FJ · dual(ΛJΛ

−123
IIIJ ) primal FJ · primal(ΛJΛ

−123
IIIJ )

primal FJ · primal(ΛJΛ
−123
IIIJ ) 0

]
. (21)

4. Numerical tests

The elements so far described have been implemented in the authors’ own finite-element code, already
used in the past computations with solid elements. The code, written in C++ language, is object-oriented
and is equipped with an original geometrical library to help in manipulating high-order tensors. The
surface elements exploit the Gauss quadrature rule with three integration points per local coordinate.
At each surface quadrature point, the shell model is integrated across the thickness by the Gauss rule
with two integration points along ξ 3 over the domain [−1, +1]. This choice of the through-the-thickness
domain implies that in the present element version, the material surface lies on the mid shell surface. The
characteristic length h is chosen as half the shell thickness, so the third base vector g3 (Part I, Equation
(13)) is the normal segment from the mid surface to the outer surface at ξ 3

= +1 in the reference



COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING, II 705

configuration. The reference director is chosen as a pure dual vector θ = EhαTn, so that k3 = Ehn and
g∗3 = g3

= hn is constant across the thickness. The target loads on the shell element and on the border
load element are assigned by the user as density properties pertaining to each surface quadrature point.

Most test cases concern linear elastic isotropic materials. Since in the present variational formulation
the strain-energy density w∗ is by assumption a function of the Biot strain ε∗S instead of the classical
Green strain (see Part I, Section 5.1), the linear constitutive law analogous to the Saint Venant–Kirchhoff
law descends from the hyperelastic strain-energy function

w∗(ε∗S)= 1
2 λ̂(tr ε

∗S)2+ µ̂ tr(ε∗S)2,

where λ̂ and µ̂ are Lamé moduli proper of the Biot-type parameterization. Using such a linear constitutive
law instead of adapting the original Saint Venant–Kirchhoff law induces an error that is negligible as long
as the strains remain small. This is the case of all the linear-material examples presented below; in the
examples, the material data are given as an elastic modulus E and a Poisson ratio ν, from which the
Lamé moduli are computed as usual as λ̂= Eν/(1+ ν)(1− 2ν) and µ̂= E/2(1+ ν). Besides the linear
constitutive law, a classical neo-Hookean constitutive law is available; it descends, for the Biot-type
parameterization, from the strain-energy function [Merlini and Morandini 2005]

w∗(U∗)= 1
2 λ(ln det U∗)2−µ ln det U∗+ 1

2µ tr(U∗2− I), (22)

with U∗ = I + ε∗S the Cosserat deformation tensor.
The standard nonlinear solution is achieved by subsequent load steps. At each step, an iterative pro-

cedure of the Newton–Raphson kind is started. At each iteration, the nodal orientopositions are updated
multiplicatively, A′J ← exp(η∂ J×)A′J , whereas the Biot-axial and reaction unknowns are updated ad-
ditively. At the time of solving the linearized equations, the kinematical unknowns are transformed to
become self-based, as described in [Merlini and Morandini 2005]. The solution of snapping and buckling
problems is achieved by an arc-length procedure based on a modified Riks algorithm of the spherical
type; implementation details and relevant references are given in [Merlini and Morandini 2008]. Both
the monotone procedure and the arc-length procedure are equipped with an automatic step control, which
makes the load-step size (respectively, the arc-step size) shrink or stretch dynamically.

Different convergence criteria are applied to the different subsets of the residual, work-conjugate
respectively to the angular and linear parts of the kinematical variables, the constraint reactions, and the
Biot-axial parameters. For each subset relevant to a single kind of kinematical variable, the maximum
absolute value is first normalized with respect to the average of all the absolute contributions to that
subset in the assembling process, then is requested to lower below 5× 10−3. For the other subsets, the
maximum absolute value must vanish with a tolerance of 10−5. Finally, the Euclidean norm of the whole
computed solution must be less that 10−3.

In the following examples, the helicoidal shell element is referred to as the HSE. It is worth emphasiz-
ing that in the pictures of the finite element models, the element geometry is built from the corner oriento-
positions by the helicoidal interpolation itself. This means that in the problem analysis, the quadrature
points are located exactly where they can be actually imagined to stay, in local curvilinear coordinates,
on the images (for example, observe Figure 3). No units are explicitly used in the examples, so it is
understood that all measures in each test are associated with a coherent system of units, for example, SI.
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Figure 3. Slit annular plate: meshes of 2× 6 and 10× 70 at the final load (force/length= 1).

4.1. Slit annular plate. The slit annular plate was introduced in [Başar et al. 1992] as a benchmark
problem for finite rotation formulations in geometrically nonlinear shell problems. Since then, most in-
vestigators have used this example to test the performance of shell elements, in [Wriggers and Gruttmann
1993; Ibrahimbegović and Frey 1994; Sansour and Kollmann 2000; Sze et al. 2002; Fontes Valente et al.
2003; Campello et al. 2003; Cardoso and Yoon 2005; Areias et al. 2005; Arciniega and Reddy 2007],
among others. One edge of a slit ring plate is clamped, while the other edge is subjected to a transverse
line load, which induces strong distortions in the originally plane elements. The problem data and the
notable deformation of a coarse mesh of twelve HSE curved elements are shown in Figure 3. The
distributed force is applied by a string of border load elements.

The free edge displacements with increasing load are plotted in Figure 4 for three different meshes
and compared with the best results reported by [Sze et al. 2004]. The results from [Li and Zhan 2000],
obtained with a shell element endowed with the drilling degree of freedom and based on Biot strain, are
included in Figure 4. The convergence of the HSE and a very good agreement with the computations
found in the literature are observed. Displacements every 0.2 force/length are reported in Table 1. Using
such refined meshes, a high number of steps (130–140, with an average of 5–6 iterations per step) is
necessary to reach the final solution (force/length= 1) by the monotone loading procedure.

wA wB

Force/length 6× 30 8× 48 10× 70 6× 30 8× 48 10× 70

0.2 7.576 7.584 7.586 10.258 10.267 10.270
0.4 10.391 10.422 10.433 13.691 13.722 13.733
0.6 12.147 12.224 12.250 15.680 15.756 15.782
0.8 13.653 13.772 13.811 17.290 17.410 17.449
1.0 14.972 15.128 15.175 18.663 18.820 18.867

Table 1. Slit annular plate: displacements of points A and B with three different meshes.
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Figure 4. Slit annular plate: load-displacement curves.

4.2. Twisted beam. The example of a straight twisted strip, clamped at one end and loaded at the other
end by a transverse force, was studied in the nonlinear regime by [Sansour and Kollmann 2000; Chróś-
cielewski and Witkowski 2006]. The problem data are given in Figure 5. The analysis is performed on
two meshes: 2×24 and 4×48 warped HSEs. The load is assigned as a distributed force along the tip edge
in its own plane, by means of border load elements. The total load versus the tip deflections is plotted

Figure 5. Twisted beam: 2× 24 mesh in the reference configuration and at load of 0.007.
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Figure 6. Twisted beam: displacements of tip A.

in Figure 6 and compared with results in the literature. This problem is a good benchmark to test the
performance of elements with nonplanar geometry, and the behavior of the HSE seems satisfactory. Some
representative displacements are listed in Table 2. The computation is very demanding in this case: with
the 2× 24 mesh the final load of 0.04 is reached in 194 load steps with an average of 6 iterations per step.

This example is also used to report the computed values of the Biot-axial variables in a shell analysis.
The symmetric and skew-symmetric parts of the Biot stress within the three-dimensional domain across

2× 24 4× 48

Force × 102 In-plane Out-of-plane Force × 102 In-plane Out-of-plane

0.059 1.754 0.620 0.056 2.675 0.939
0.163 4.264 1.466 0.163 6.010 1.924
0.238 5.568 1.846 0.228 7.121 2.119
0.327 6.665 2.092 0.324 8.131 2.173
0.416 7.447 2.194 0.414 8.717 2.121
0.457 7.730 2.208 0.456 8.922 2.083
0.578 8.386 2.182 0.597 9.421 1.937
0.814 9.169 2.006 0.821 9.888 1.714
0.987 9.523 1.863 1.000 10.123 1.564
2.003 10.430 1.316 2.000 10.721 1.058
2.967 10.761 1.067 3.000 10.963 0.816
4.000 10.960 0.909 4.000 11.102 0.674

Table 2. Twisted beam: displacements of tip A up to load of 0.04 with two different meshes.
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Figure 7. Twisted beam: max(abs(eigenvalue(T̂∗S))) and ‖τ̂ ∗‖ as representative values
of the elastically defined and the workless parts of the Biot stress within the thickness
with a 2× 24 mesh at the final load of 0.04; plot of the highest values among the twelve
Gauss points at each beam abscissa.

the thickness can be compared on a logarithmic scale in Figure 7. The Biot-axial keeps lower than the
elastically defined stress by at least one order of magnitude, and features an alternate course as already
noticed in full three-dimensional analyses [Merlini and Morandini 2005]. Note that the perfect symmetry
of the Biot stress within an isotropic material (see [Bufler 1985]) is lost in the present approximate
analysis where the field equations are satisfied in a weak sense — a fact that confirms the computational
role of the Biot-axial in a discrete model. The material surface Biot-axial parameter τ̂ is modeled as a
vector field uniform over the shell element. In the present computation, it is almost normal to the element
surface and is distributed along the strip as the bar graph of Figure 8. The highest values of the Biot-axial
are observed near the clamped side.

Figure 8. Twisted beam: magnitude of the surface Biot-axial parameter on the elements
of a 2× 24 mesh at the final load of 0.04.
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Figure 9. Cylindrical shell under line load: 8× 4 mesh of a quarter cylinder and de-
formed model of case t = 2.0 and ν = 0.4 at load of 36000 (displacement of vertex
A= 17.388).

4.3. Cylindrical shell under line load. The cylindrical shell pinched by a line load along a generatrix
and simply supported at the opposite generatrix was studied in [Büchter et al. 1994] as a test case for
shell elements with nonlinear hyperelastic material. The same compressible neo-Hookean constitutive
law, derived from the strain-energy function (22), is used here. The cylinder geometry and properties are
given in Figure 9: a thin shell (t = 0.2) and a thick shell (t = 2.0), with both a compressible (ν = 0.4)
and a nearly incompressible (ν = 0.4878) material, are considered. Due to symmetry, one quarter of
the cylinder is modeled; three different meshes of increasing refinement along the circumference are
analyzed, 8×4, 12×4, and 16×4 curved HSEs; the line load is introduced by four border load elements.
A deformed model is also shown in Figure 9.

Portions of the load-displacement plots are shown in Figure 10. For the compressible material (Figures
10a and 10c), a comparison can be made with several shell elements based on 5, 6, and 7-parameter
models and exploiting incompatible modes and EAS concepts, as proposed in [Büchter et al. 1994;
Brank et al. 2002; Brank 2005] (in the last two of these papers, a slightly different constitutive law is
used). The formulation of the HSE does not involve incompatible modes nor assumed strains, and the
behavior of the HSE is apparently stiffer than the elements in the literature, in particular for the thick
shell. It can be noted that the adaptation of the local constitutive law for the helicoidal shell model,
as discussed in Part I, enables us to analyze nearly incompressible thin shells without resorting to any
numerical expedient such as reduced integration. The effectiveness of this feature, however, seems to
weaken as the shell thickness increases. For the nearly incompressible material (Figures 10b and 10d),
no tests with shell elements have been found in the literature and a comparison could only be made with
solid elements; published results with solid elements are not included in Figure 10 but can be found in
[Reese et al. 2000; Merlini and Morandini 2005] and, with a different constitutive law, in [Chavan et al.
2007]. The computational burden of this test case is much less demanding: 25–35 load steps with about
6 iterations per step for the thin models and 8–12 steps with 9–10 iterations per step for the thick models.
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Figure 10. Cylindrical shell under line load: total load versus displacement of point A
and some sparse values from literature.

4.4. Cylindrical shell pullout. The cylinder stretched by two opposite forces is a very popular bench-
mark test in the shell element literature, for example, in [Sansour and Bufler 1992; Sansour and Bed-
narczyk 1995; Sansour and Kollmann 2000; Sze et al. 2002; Campello et al. 2003; Fontes Valente et al.
2003; Pimenta et al. 2004; Areias et al. 2005; Brank 2008], among others. The specimen is a cylindrical
surface with open ends, pinched by two pulling forces along the mid diameter, see Figure 11. Due to
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Node 1 2 3 4 5 6 7 8 9
y 0.00000 0.10506 0.26265 0.49903 0.85361 1.38547 2.18327 3.37996 5.17500

Table 3. Cylindrical shell pullout: node coordinates along the cylinder axis from point
A (regular mesh).

symmetry, one octant of the cylinder is modeled using a mesh of 9×8 curved HSEs, with either a regular
(rectangular) or an irregular pattern. The regular mesh has 9 elements in the circumferential direction
and 8 elements in the axial direction. The coordinates of the first nine nodes from the load-point A in
both directions are set by a geometric progression of common ratio 1.5 (see Table 3); the aspect ratio of
the narrowest element is higher than 24. The irregular mesh is derived from the regular one by moving
randomly the nodes in both directions within the range of half an element size: the quadrilaterals become
very irregular, as evidenced in Figure 11.

Using the arc-length procedure, the target load of 40000 is exceeded in 23 steps with the regular
mesh (6 iterations per step on average), and in 20 steps with the irregular one. In agreement with
published results, a slight snap-through is observed at a load of about 20500. Plots of representative
radial displacements at increasing load are shown in Figure 12: the reasonably similar results obtained
with the two meshes are a clear evidence of the low sensitivity to irregular geometries of the proposed
shell element. In Figure 12, the results from the present coarse regular mesh are successfully compared

Figure 11. Cylindrical shell pullout: regular mesh in the reference configuration and at
the final load of 40000; detail of the undeformed irregular mesh.
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Figure 12. Cylindrical shell pullout: load-displacement curves.

with those obtained with a refined mesh in [Sze et al. 2004]. Loads and displacements at every history
step are listed in Table 4.

4.5. Pinched cylindrical shell with end diaphragms. The cylinder pinched by two opposite point loads
is another popular benchmark test; see for example, [Sansour and Bednarczyk 1995; Sansour and Koll-
mann 2000; Sze et al. 2002; Campello et al. 2003; Pimenta et al. 2004; Brank 2008]. The cylindrical
shell is mounted over rigid end diaphragms that lock the in-plane displacements. Thus, the shell folds

Force wA −uB −uC Force wA −uB −uC

625 0.561 0.551 0.556 10696 2.194 3.122 3.355
781 0.669 0.673 0.680 12806 2.268 3.260 3.490
952 0.776 0.800 0.808 16822 2.376 3.468 3.651

1140 0.881 0.931 0.941 18478 2.414 3.548 3.692
1460 1.036 1.136 1.150 20547 2.462 3.683 3.717
2055 1.262 1.461 1.485 21117 2.502 3.938 3.642
3345 1.583 1.985 2.039 21400 2.520 4.026 3.601
4018 1.696 2.189 2.263 22416 2.555 4.147 3.536
5341 1.861 2.498 2.621 25919 2.617 4.308 3.438
5974 1.921 2.612 2.759 34489 2.697 4.472 3.335
7129 2.011 2.782 2.966 42141 2.743 4.556 3.284
9524 2.144 3.031 3.257 40000 2.731 4.535 3.297

Table 4. Cylindrical shell pullout: radial displacements of points A, B, and C (regular mesh).
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Figure 13. Pinched cylindrical shell with end diaphragms: deformed configuration at
the final load of 12000.

notably under the two pushing forces directed as the mid diameter; see Figure 13. A refined, uniform
mesh is appropriate to solve this problem: exploiting the problem symmetries, one octant of the cylinder
is modeled by 32× 32 curved HSEs. The analysis up to the final load of 12000 is performed by the
arc-length procedure in 74 steps, with an average of 7 iterations per step. The load history exhibits
several slight snap-throughs, as evidenced by the load-displacement plots of Figure 14. However, a
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Figure 14. Pinched cylindrical shell with end diaphragms: load-displacement curves.
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Force −wA uB

1003 18.171 −1.349
2026 50.980 6.683
4174 68.041 20.399
6125 73.842 25.550
7963 77.841 29.570

10017 81.570 33.686
12000 83.102 34.673

Table 5. Pinched cylindrical shell with end diaphragms: radial displacements of points
A and B.

good agreement with the best results reported in [Sze et al. 2004] is observed. Some representative
load-displacement pairs are listed in Table 5.

4.6. Cylindrical roof under point load. The buckling problem of the shallow cylindrical panel hinged
along two generatrices and subjected to a central point load has been considered by several authors; refer
to [Simo et al. 1990; Chróścielewski et al. 1992; Gruttmann et al. 1992; Sansour and Bufler 1992], and
to most of the more recent works cited so far. The problem data and the undeformed configuration with
a 4× 4 mesh are shown in Figure 15 (owing to symmetry, one quarter of the panel is modeled). Two
different thicknesses are examined, with either a coarse mesh of 4× 4 curved HSEs or a refined one of
8× 8.

The snapping behavior is easily captured by the arc-length procedure. The load-displacement curves,
in Figure 16, at the central point A with the 4× 4 mesh are plotted and compared with the best results
reported in [Sze et al. 2004]; the results with the 8× 8 mesh are not included in Figure 16 as they are
indistinguishable from those of [Sze et al. 2004]. The thin panel curve (Figure 16a) is traced in 24 steps
up to exceed the final load of 3000, with an average of 6.3 iterations per step; the thick panel curve
(Figure 16b) is traced in 17 steps, with an average of 5.6 iterations per step. The deformed models

Figure 15. Cylindrical roof under point load: 4× 4 mesh in the reference configuration
and the applied load.
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Figure 16. Cylindrical roof under point load: load-displacement curves.

t = 6.35 t = 12.7
Force −wA Force −wA

188 2.24 750 2.07
375 5.56 1500 4.78
490 8.50 1960 7.22
562 11.02 2191 9.41
586 13.97 2177 12.13
401 16.13 1589 14.91
-65 16.73 566 18.36

-387 16.36 3674 29.97
270 27.15 3000 28.72

3164 38.52
3000 38.09

Table 6. Cylindrical roof under point load: displacement of point A with the 8× 8 mesh.

are not shown for this test case, as the maximum displacement, despite the strong effect of geometrical
nonlinearity, is small and of the order of the panel camber. In Table 6, all the load-displacement pairs
from the computations with the 8× 8 mesh are listed; during these computations, the arc-length step was
allowed to increase, whence the low number of total steps.

4.7. Cylindrical shell pinched by four radial forces. The buckling of a cylindrical shell pinched by four
radial forces was recently studied [Kuznetsov and Levyakov 2007] to successfully test an unconventional
and interesting formulation for a simple curved shell triangle. A short cylindrical shell with free ends
is simply supported at four points A on two right-angled diameters, at half the cylinder length. At the
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Figure 17. Cylindrical shell pinched by four radial forces: deformed configuration at
P/Pref = 19.6 (displacement of point A: w/R = 0.58).
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Figure 18. Cylindrical shell pinched by four radial forces: load-displacement curves at
points A; fundamental path (f) and branch (b) from the bifurcation point B2 (P/Pref =

10.2, w/R = 0.1172).

constraint points, the shell surface is free to move in the radial direction and to rotate; at the points A
themselves, the shell is under the load of four radial forces that push it inward. The problem data and a
deformed configuration are shown in Figure 17; the whole shell is modeled with 8× 64 curved HSEs.

The problem is solved by the arc-length procedure and yields the load-displacement curves plotted in
Figure 18. Along the fundamental path (traced in 17 steps to exceed the target load of P/Pref = 20) the
shell deforms with a doubly symmetric four-lobe configuration. As found in [Kuznetsov and Levyakov
2007], buckling occurs at point B1 on the load-displacement graph, however the deformation keeps the
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Fundamental path
P/Pref 5.705 7.581 10.716 11.301 11.921 13.102 17.941 21.611
w/R 0.0607 0.0893 0.1226 0.1303 0.1488 0.1935 0.3828 0.5422

Bifurcation from B2

P/Pref 10.200 11.000 12.000 13.000 13.899 16.045 17.951 20.257
w/R 0.1174 0.1367 0.1672 0.2024 0.2392 0.3463 0.4654 0.6263

Table 7. Cylindrical shell pinched by four radial forces: radial displacements of points A.

four-lobe doubly symmetric. At point B2, a branch departs from the fundamental path. Along this branch
(traced in 33 steps from B2 to exceed the target load of P/Pref = 20, with 5–6 iterations per step) the
shell deforms with a strongly warped configuration, see Figure 17. A fairly good agreement with the
published results is observed in Figure 18. Some representative load-displacement pairs are listed in
Table 7.

4.8. Channel-section cantilever. The buckling of the channel-section cantilever, with the data intro-
duced by [Chróścielewski et al. 1992], has been considered by several authors to test shell elements
in folded or intersecting structures, with either elastic or elastoplastic materials, for example, [Ibrahim-
begović and Frey 1994; Eberlein and Wriggers 1999; Fontes Valente et al. 2005; Chróścielewski and
Witkowski 2006; Klinkel et al. 2008]. In the present test, only the elastic case is considered; the problem
data and a postbuckling configuration of the model, made of a regular mesh of (4+ 12+ 4)× 36 HSEs,
are shown in Figure 19. Under the transverse force, which is eccentric with respect to the beam elastic
axis, the channel twists and at the limit load (116.77 for the present model) the upper flange buckles into
longitudinal waves.

Figure 19. Channel-section cantilever: beam model in the reference configuration and
in postbuckling at load of 100.97 (lateral displacement of point A= 4.4524).
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Figure 20. Channel-section cantilever: vertical displacement of point A.

The computation is driven by the monotone Newton–Raphson procedure until a load of 100, then
is switched to the arc-length procedure. It takes 36 steps and a total of 190 iterations for the vertical
displacement of point A to reach the value 1.5. In Figure 20, a portion of the load-displacement curve is
plotted and compared with other curves reported in the literature; the graph is restricted to the load range
80–120 to allow us to distinguish between the curves. Representative displacements are given in Table 8.

Force Longitudinal Lateral Vertical

50.00 0.0077 0.1543 0.0680
100.00 0.0170 0.4411 0.1880
110.78 0.0192 0.5442 0.2336
115.53 0.0201 0.6045 0.2600
116.73 0.0201 0.6427 0.2726
116.70 0.0198 0.6923 0.2847
116.23 0.0192 0.7438 0.2962
114.74 0.0173 0.8606 0.3221
110.18 0.0087 1.2085 0.4063
103.76 −0.0209 1.8799 0.6113
100.96 −0.0561 2.3943 0.8129

99.79 −0.0952 2.8289 1.0173
99.39 −0.1582 3.3735 1.3234
99.83 −0.2408 3.9265 1.6999

100.97 −0.3405 4.4524 2.1295

Table 8. Channel-section cantilever: displacements of point A.
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4.9. Hemispherical shell with a hole. The hemispherical shell with a polar hole, pinched by four alter-
nating radial forces at the sphere equator, is a very popular benchmark example to test finite element
models of doubly curved shells and is included in almost all the papers on nonlinear shell elements. The
problem data and a deformed configuration with a rather coarse mesh are shown in Figure 21. Due to
symmetry, one quarter of the dome is modeled; several meshes of increasing refinement, from 2× 2 to
128× 128 doubly curved HSEs, are analyzed.

Figure 21. Hemispherical shell with a hole: 8× 8 mesh at the final load of 400.

4�n�m

)�)B	
�

et�etB	
�

e,�e,B	
�

at�atB	
�

e,�e,B
l�BE
��B��B��R3Btzzl1

�
�
��
�

z

ezz

tzz

azz

lzz

�� !��B !"#����$�%�"

z t l , )

Figure 22. Hemispherical shell with a hole: load-displacement curves.
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vA −uB

Force 8× 8 12× 12 16× 16 32× 32 8× 8 12× 12 16× 16 32× 32

40 1.447 1.483 1.492 1.498 1.766 1.804 1.816 1.825
80 2.223 2.291 2.308 2.319 3.104 3.190 3.213 3.231

120 2.679 2.776 2.799 2.815 4.098 4.239 4.273 4.299
160 2.980 3.104 3.133 3.154 4.867 5.068 5.116 5.150
200 3.195 3.341 3.377 3.402 5.481 5.746 5.809 5.853
240 3.356 3.522 3.565 3.594 5.983 6.311 6.391 6.445
280 3.481 3.664 3.713 3.747 6.400 6.790 6.888 6.954
320 3.582 3.778 3.834 3.872 6.754 7.199 7.318 7.396
360 3.665 3.873 3.934 3.976 7.057 7.554 7.693 7.784
400 3.735 3.951 4.019 4.065 7.320 7.863 8.023 8.128

Table 9. Hemispherical shell with a hole: radial displacements of points A and B with
four different meshes.

The response of the model is measured by the radial displacements of the load-points A and B. The
load-displacement curves for four meshes are plotted in Figure 22 and compared with the results pub-
lished in [Sze et al. 2004]: a good agreement with the reference results is observed. Displacements every
10% of the final force are listed in Table 9. The convergence of the HSE is evident from Figure 23, where
the computation with a refined mesh of 128× 128 S4R elements by the commercial code ABAQUS is
assumed as reference solution.
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Figure 23. Hemispherical shell with a hole: convergence study at load of 250 (reference
values at the dotted lines: vA = 3.6426, −uB = 6.5967).
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Mesh Steps Iterations

8× 8 52 325
12× 12 57 361
16× 16 52 343

Table 10. Hemispherical shell with a hole: number of steps and iterations up to the final load.

The problem is solved by the monotone Newton–Raphson procedure with the automatic step control
enabled. To trace the results, load steps of 5% are set by default. Moreover, some computations are
repeated by setting a single initial step of 100% to record the number of iterations actually needed to
reach the final load (see Table 10); an average of 6–7 iterations per step is observed.

The example of the hemispherical shell is also used to check the significance of the resolution of the
nodal mixed variation variables η∂δ J by (20) and the effectiveness of the contribution to the diagonal
term of the tangent matrix from (21). The computation with the 8× 8 mesh is repeated after disabling
the correction (21). The iterations performed during the loading history are plotted in Figure 24 and
compared with the ones of the original computation. When the geometrical nonlinearity becomes impor-
tant, a remarkable increase in iterations is observed, and a sharp growth is noted when approaching and
exceeding the load of 280. After restarting from 280 with the correction enabled again, the final load
is reached in a few more steps, yielding exactly the original final displacements, as expected. This test
proves the importance of the resolution formulated in (20) in order to provide the correct tangent matrix,
capable of following the nonlinear solution process.
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Figure 24. Hemispherical shell with a hole: loading history with 8×8 mesh; comparison
between (a) computations with the resolution of the nodal mixed variation variables η∂δ J

and (b) computations without such a resolution.
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Figure 25. Spherical shell under external pressure: model of case t = 0.5 at arc-abscissa 10.594.

4.10. Spherical shell under external pressure. The numerical study of the postbuckling behavior of
spherical shells under external pressure is one of the most despair-inducing problems in structural me-
chanics. With no claim made of solving this difficult problem, a sample investigation is presented in this
section. The problem data and a postbuckling deformation of the model are shown in Figure 25. The
geometric and material properties are taken from [Ricci Maccarini et al. 2001], which modeled only one
octant of the sphere, and hence could capture just a limited class of buckling modes. The mesh matches a
net of meridians and parallels 6 degrees apart, and consists of 60×30 doubly curved HSEs over the whole
sphere. At each pole, the last parallel degenerates into a single point and the relevant nodes to which
the quadrilaterals are connected share the same coordinates; the quadrilateral shell elements degenerate
into triangles. The pressure is applied as a follower normal-load uniform density at the shell element
quadrature points.

Despite the strong deviation of the element geometry from a regular quadrilateral at the poles, the
model behaves perfectly. A value of external pressure twice the approximate theoretical critical pressure
pref = 2E(t/R)2/

√
3(1− ν2), predicted by the shallow shell theory, can be reached with the monotone

Newton–Raphson procedure in a single step with 4 iterations. This almost linear computation yields a
final radial displacement, uniform over the whole shell surface, of 0.4237 with t = 0.5 and 0.8473 with
t = 1.0. To force the shell to buckle, a very small initial imperfection has been assigned by moving
randomly the nodes in the radial direction within the range ±0.001 (that is, ±10−5 R or ±(0.1–0.2)% t).

The imperfect spherical shell is analyzed by the arc-length procedure. The solution of case t = 0.5
follows the fundamental path till load fraction 1.082 (arc-abscissa = 3.693). Then a sudden buckling
occurs: the load decreases while a shallow buckle appears. In Figure 26a, the radial displacements of four
nodes at latitude 72° are plotted against the arc-abscissa. When the arc-abscissa exceeds 7, the pressure
stabilizes at a value of about 0.22–0.25 pref and the role of maximum-displacement holder begins to
move from node to node. At the arc-abscissa 10.594 (after 34 steps and 201 total iterations), the node
at longitude 126° reaches 3.6666, the deepest displacement of the whole analysis; the corresponding
buckle is depicted in Figure 25 and its bottom is very close to the observed node. In Figure 26b, the
load-displacement curves of the four nodes are plotted. The analysis was pursued further and another
peak of load fraction 1.082 was reached; then the load was found to decrease till negative values.
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Figure 26. Spherical shell under external pressure (case t = 0.5): (a) pressure and four
radial displacements against the loading history; (b) load-displacement curves.

With the algorithm of process control at hand, the achievement of a wholly buckled surface as obtained
in real experiments is hopeless. In several numerical tests, the occurrence of two or three buckles, either
close to each other or far away from each other, was observed. In any case, the buckles manifest a
pronounced tendency to migrate, in either a slow or fast manner. As an example, Figure 27 collects
five images of the case t = 1.0 recorded every 12 load steps: the two buckles keep close to each other
and move together on the sphere surface. Also, the repeatability of such computations is questionable:
for instance, it is interesting to notice that when assembling the elements concurrently by exploiting the
processor multithreading option, analyses starting from identical data never follow exactly the same path
when in the postbuckling regime.

5. Conclusion

This paper is focused on computational modeling for nonlinear shell mechanics and is restricted to the
simplest case of static boundary value problems involving elastic homogeneous media. Considerations
of dynamic problems and anelastic or composite materials are absent and are left as extensions for future
work. Nevertheless, the examples and comparisons discussed so far evidence a good performance of the
helicoidal shell element (HSE) in several respects. The HSE appears suitable to model in-plane curved
and warped shells, thin/thick simply or doubly curved shells with t/R ratios ranging from 2× 10−3 to
2× 10−1, and folded/intersecting shells. It allows a perfect representation of constant-curvature shells,
as in the case of the sphere. This quadrilateral shell element is practically insensitive to highly irregular
meshes and can easily degenerate into triangles. The HSE has been tested with nonlinear elastic and
nearly incompressible materials. In the postbuckling regime, this curving element performs well at the
occurrence of snap-through and snap-back conditions. A drawback of the present formulation, already
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Figure 27. Spherical shell under external pressure (case t = 1.0): sequence of five
postbuckling deformations.

pointed out with the solid element [Merlini and Morandini 2005], remains the low step size required
to solve certain problems, which is sometimes smaller than the values published in the literature. This
undesirable feature of the proposed formulation is of course worthy of further investigation.

It is stressed that the present version of the HSE is essentially a low-order element. For the reader’s
convenience, a short summary of the element formulation is given here. The integral kinematic field
across the thickness is assumed helicoidal and is controlled by the six-parameter dual director θ ; the local
Biot-axial vector field is assumed linear and is controlled by two stress vectors τ̂ and µ̂ (the constant and
linear parts, respectively). From through-the-thickness integration of the linearized internally constrained
virtual work functional, and after local condensation of the variables θ and µ̂, the shell constitutive
equations are obtained in incremental form. They are written as functions of twelve components of the
material surface dual strains ωα and three components of the Biot-axial parameter τ̂ . The integration
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across the thickness is performed numerically at each surface quadrature point of the shell element
domain. The integral kinematic field on the quadrilateral surface is interpolated helicoidally between the
orientopositions of four corner-nodes, whereas the Biot-axial parameter is assumed uniform. Integration
over the element domain gives the element contributions to the problem residual and tangent matrix.
The contributions from external loads and boundary constraints are added directly to the shell surface
linearized variational principle.

The numerical tests show that this low-order element is essentially free from locking. A clear de-
scription of commonly occurring locking phenomena, such as shear and membrane locking, is given,
for example, in [Belytschko et al. 2000], and a careful analysis can be found in [Koschnick et al. 2005].
According to [Bischoff et al. 2004] such phenomena originate from “the inability of a finite element
formulation to represent certain deformation modes without unwanted, parasitic strains and/or stresses”.
In such phenomena, the locking mechanism develops from an improper energy exchange between the in-
volved deformation modes that are badly represented by a poor kinematical approximation. The problem
becomes more pronounced when the ratio between the stiffnesses of the flexural deformation modes and
the parasitic ones (either transverse shear or membrane modes) decreases — that is, when the thickness
diminishes. It can be argued that with classical Euclidean modeling of the continuum, when positions and
orientations are uncoupled fields, such improper energy exchanges are more likely to happen than with
the proposed helicoidal modeling, where the kinematical representation is consistently built through a
unique integral field. It is also general belief that this improper energy exchange is more pronounced the
lower the order of the representation is. The helicoidal approximation, both on the through-the-thickness
domain with the proposed geometric-invariant model (Part I, Section 4.5) and on the element surface
domain with the adopted frame-invariant interpolation (Section 3.2), yields a discrete representation of
the kinematic field that proves natural and is able to withstand locking even with low-order interpolants.
This is clear from the outstanding representation attainable for thin curved elements with the proposed
material surface kinematics; see Figure 1. (Remember that linear interpolants on helicoidal modeling do
not mean linear displacement fields, due to the interaction with the nodal rotations.)
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