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MODELLING OF ACOUSTODIFFUSIVE SURFACE WAVES IN
PIEZOELECTRIC-SEMICONDUCTOR COMPOSITE STRUCTURES

J. N. SHARMA, K. K. SHARMA AND ASHWANI KUMAR

We investigate the propagation of interfacial surface waves in a composite consisting of homogeneous
isotropic semiconductor halfspace coated with a thin layer of homogeneous, transversely isotropic, piezo-
electric material. The mathematical model of the problem consists of a coupled system of partial differen-
tial equations of motion, diffusion of electrons, and a Gauss equation along with the boundary conditions
to be satisfied at the interface and free surface of the composite structure.

The secular equation that governs the wave propagation at the interface has been obtained in compact
form after solving the mathematical model analytically. The secular equations in the case of stress-
free, isoconcentrated and stress-free, impermeable semiconductor halfspaces have also been deduced as
special cases. The complex secular equation has been solved using the functional iteration method along
with the irreducible Cardano’s method via MATLAB programming for CdSe-Si, CdSe-Ge, PZT-Si and
PZT-Ge composite structures.

The computer-simulated results have been presented graphically in terms of phase velocity, attenua-
tion coefficient, and specific loss factor of energy dissipation versus wave number and lifetime of charge
carrier field in the considered structures. The work may be useful for the construction and design of
surface acoustic wave devices.

1. Introduction

Surface acoustic waves bonded to piezoelectric surfaces have found significant use in various branches of
science and technology, especially in the case of interconnected physical fields. These waves were first
discovered by Rayleigh [1885], who explained their propagation and characteristics. In [White 1967],
the phenomena of surface elastic wave propagation, transduction, and amplification in a piezoelectric
semiconductor with special emphasis in relation to electronic devices were discussed. In [Bleustein
1968] the propagation of surface acoustic waves at the free surface of a piezoelectric halfspace was
predicted. Gulyaev [1969] explained that a pure transverse wave can propagate along the surface of
a homogeneous piezoelectric solid with polarization vector parallel to the surface of the substrate. In
[de Lorenzi and Tiersten 1975; Maugin and Daher 1986] nonlinear theories for deformable semiconduc-
tors were developed.

Maruszewski [1989] analyzed the effect of interactions between elastic, thermal, and charge carrier
fields on Rayleigh waves in addition to electron longitudinal waves in semiconductors. In [Sharma
and Thakur 2006] a detailed account of plane harmonic generalised elastothermodiffusive waves in

The authors are thankful to the reviewer for his useful suggestions for the improvement of this work. The first author thankfully
acknowledges the financial support provided by CSIR, New Delhi, via project grant No. 025(0184) EMR-II..
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semiconductor materials was given, suggesting that there are significant modifications in the phase ve-
locities and attenuation coefficients of these waves due to the interactions of mechanical, thermal, and
charge carrier fields. In [Sharma and Pathania 2006] the thermoelastic waves in coated homogeneous
anisotropic materials were studied to show that anisotropy has significant effect on the phase velocity and
attenuation profiles. In [Sharma et al. 2007] it was found that the age of carrier fields also effects wave
propagation in semiconductor materials. In [Sharma et al. 2009] it was observed that semiconductor
materials exhibit more internal friction with the age of the carrier fields than that of thermal relaxation
time. In [Sharma and Pal 2004] the Lamb wave propagation in a transversely isotropic piezothermoelas-
tic plate was investigated. In [Sharma et al. 2010] the propagation of surface waves in a piezoelectric
halfspace coated with a semiconductor layer was analyzed.

In [Kagan 1997] the surface wave propagation in a piezoelectric crystal underlying a conducting layer
was considered. It was predicted that the electric field excited by the wave in crystal would penetrate
into the conducting layer. In [Wang and Varadan 2002] the dispersion characteristics and mode shapes of
wave propagation in a piezoelectric layer bonded to the metal substrate were studied. In [Wang 2002] an
investigation was conducted into wave propagation in a semiinfinite metallic surface bonded to a layer of
piezoelectric material. It was found that the piezoelectric effects dominated the dispersive characteristics
at higher wave numbers.

Trolier-Mckinstry and Muralt [2004] explained that thin-film piezoelectric materials offer a number
of advantages in microelectromechanical systems and the resulting properties are dominantly dependant
on the characteristics of piezoelectric film. In [Du et al. 2007] the Love waves in a functionally graded
material layer bonded to a semiinfinite, homogeneous solid were investigated. It was observed that the
material properties enable Love waves to propagate along the surface of the layer and may be useful
in reducing the dimension of surface acoustic wave (SAW) devices. Jin et al. [2002] studied the Lamb
wave propagation in a metallic semiinfinite medium covered with a piezoelectric layer. It was found that
the dispersion curves are asymptotic to the transverse velocity of the piezoelectric layer with increasing
wave number. In [Melkumyan and Mai 2009] shear surface waves guided by a gap between dissimilar
piezoelectric halfspaces were studied. It was concluded that the gap waves were mainly concentrated
at the interface of the piezoelectric halfspaces and decayed exponentially away from it. In [Liu et al.
2004] the propagation of surface acoustic waves in a layered halfspace were analyzed, finding that the
maximum change in phase velocity occurs for large values of the product of wave number and film
thickness.

The design and micromachining of PZT/CdSe thin-layered composites for device applications requires
more research in future. Therefore, it is worth investigating the wave propagation parameters in these
materials. Keeping in view the wide range applications of composite structures and the above-referred
work, an attempt has been made here to study the propagation of surface waves at the interface of a
piezoelectric-semiconductor composite structure. The phase velocity, attenuation coefficient, and specific
loss factor of energy dissipation for different modes of wave propagation have been computed numerically
from the analytically developed model in four types of composite structures: CdSe-Si, PZT-Si, CdSe-Ge,
and PZT-Ge. The effect of carrier lifetime has also been taken into account.

The present study shows that PZT-Ge is a good combination for piezoelectric-semiconductor device
applications. According to [Muralt and Baborowski 2004] such composites can find applications in
ultrasonic transducers and acoustic sensors.
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2. Formulation of the problem

Consider a homogeneous isotropic semiconductor halfspace whose surface is coated with a thin layer
of homogeneous, transversely isotropic, piezoelectric material of thickness h as shown in Figure 1. The
origin of the coordinate system O − xyz is taken at any point on the interface plane and the z-axis points
vertically downward into the semiconductor halfspace. Thus, the semiconductor halfspace is represented
by z ≥ 0 and the piezoelectric layer occupies the region −h ≤ z ≤ 0 whose poling direction also aligns
along the z-axis. The x-axis is chosen along the direction of wave propagation in such a way that all
particles on the line parallel to the y-axis are equally displaced. Therefore, all the field quantities are
independent of the y-coordinate and hence we restrict our investigation to the plane strain problem only.

Further, the disturbance is assumed to be confined in the neighborhood of the interface (z = 0), and
hence vanishes as z →∞. The basic governing equations of motion, Gauss equation, and electron
diffusion for the composite structure under study, in the absence of body forces and electric sources, are
given below.

(i) Homogeneous isotropic n-type semiconductor halfspace [Maruszewski 1989; Sharma et al. 2007]:

µ∇2
Eus
+ (λ+µ)∇∇ · Eus

− λn
∇N = ρs

Ëus, (1)

ρs Dn
∇

2 N − ρs
(

1+ tn ∂

∂t

)
Ṅ − an

2 T0λ
T
∇ · Ėus

=−

(
1+ tn ∂

∂t

)(
ρs

t+n

)
N . (2)

(ii) Homogeneous transversely isotropic piezoelectric (6 mm class) layer [Sharma and Pal 2004]:

c11u p
,xx + c44u p

,zz + (c13+ c44)w
p
,xz + (e15+ e31)φ

p
,xz = ρ

pü p, (3)

(c13+ c44)u p
,xz + c44w

p
,xx + c33w

p
,zz + e15φ

p
,xx + e33φ

p
,zz = ρ

pẅ p, (4)

(e15+ e31)u p
,xz + e15w

p
,xx + e33w

p
,zz − ε11φ

p
,xx − ε33φ

p
,zz = 0, (5)

where the notation ∇2
= ∂2/∂x2

+∂2/∂z2, N = n−n0, an
2 =aQp/aQ , and λT

= (3λ+2µ)αT is used. Here
λ and µ are Lamè parameters, ρs is the density, λn are the elastodiffusive constants of electrons, Dn are
the diffusion coefficients of electrons, t+n and tn are the life and relaxation times of the carriers fields, n0

and n are the equilibrium and nonequilibrium values of electron concentration, and αT is the coefficient
of linear thermal expansion of the semiconductor material. The quantities aQp and aQ are flux-like
constants and T0 is the uniform temperature; Eus

= (us, 0, ws) and Eu p
= (u p, 0, w p) are the displacement

vectors for semiconductor and piezoelectric materials, respectively. The quantities φ p, ρ p, ci j , and ei j

are the electric potential, density, elastic parameters, and piezoelectric constants, respectively; ε11 and
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z 
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Piezoelectric Layer 
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O 

Figure 1. Geometry of the problem.
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ε33 are the electric permittivity perpendicular to and along the axis of symmetry of the piezoelectric
material, respectively.

In the above equations the superposed dots on various quantities denote time differentiation and comma
notation is used for spatial derivatives. Throughout this paper the superscripts p and s on the field
quantities and material parameters refer to piezoelectric and semiconductor materials, respectively.

The nonvanishing components of stresses, current density, and electric displacement in both the media
are

τ s
zz = (λ+ 2µ)∂w

s

∂z
+ λ

∂us

∂x
− λn N , τ s

xz = µ
(
∂us

∂z
+
∂ws

∂x

)
, J s

z =−eDn N,z, (6)

for the semiconductor medium and

τ p
zz = c13

∂u p

∂x
+ c33

∂w p

∂z
+ e33

∂φ p

∂z
,

τ p
xz =

c44
2

(
∂u p

∂z
+
∂w p

∂x

)
+ e15

∂φ p

∂x
,

D p
z = e31

∂u p

∂x
+ e33

∂w p

∂z
− ε33

∂φ p

∂z
,

(7)

in the case of the piezoelectric material. Here τ s
i j and τ p

i j are the stress tensors. The quantities J s
z and N,z

respectively denote the current density and carrier density gradient in the semiconductor material; D p
z is

the electric displacement vector of the piezoelectric material and e is the electronic charge.

2.1. Boundary conditions. The requirement of continuity of stresses, displacements, electric field, and
current density at the interface (z = 0) of the two media leads to the following interfacial boundary
conditions:

τ p
zz = τ

s
zz, τ p

xz = τ
s
xz, u p

= us, w p
= ws, φ p

= N , D p
z = J s

z . (8)

Also the surface (z =−h) of the piezoelectric material is assumed to be stress-free and charge-free,
which leads to the conditions

τ p
zz = 0, τ p

xz = 0, D p
z = 0. (9)

In order to simplify the above model, we define the following dimensionless quantities:

x ′ = ω
∗x
vl
, z′ = ω

∗z
vl
, t ′ = ω∗t, tn′

= ω∗tn,

t+
′

n = ω
∗t+n , N ′ = N

n0
, D p′

z =
ρsv2

l

λnn0e33
D p

z , us′
=
ρsω∗vl

λnn0
us,

ws′
=
ρsω∗vl

λnn0
ws, u p′

=
ρsω∗vl

λnn0
u p, w p′

=
ρsω∗vl

λnn0
w p, τ

p′
i j =

τ
p

i j

λnn0
,

τ s′
i j =

τ s
i j

λnn0
, J s′

z =
J s

z
en0vl

, c1 =
c33
c11
, c2 =

c44
c11
,

c3 =
c13+c44

c11
, e1 =

e15+e31
e33

, v2
l =

λ+ 2µ
ρs , e2 =

e15
e33
,

ε̄ =
ε11
ε33
, η3 =

ε33c11

e2
33

, ω′ =
ω

ω∗
, c′ = c

vl
,
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vp =

√
c11

ρ p , ρ̄ =
ρ p

ρs , λ̄n =
λnn0

λT T0
, δ2

1 =
v2

l

v2
p
,

φ p′
= εpφ

p, εp =
e33ω

∗ρsvl

c11λnn0
, εn =

an
2λ

T 2
T0λ̄n

ρs(λ+ 2µ)n0
, ω∗ =

v2
l

Dn ,

δ2
=
v2

t

v2
l
, v2

t =
µ

ρs .

(10)

Here ω∗ is the characteristic frequency and vl and vt are, respectively, the longitudinal and shear wave
velocities.

On substituting quantities (10) in (1)–(7), we obtain

δ2
∇

2
Eus
+ (1− δ2)∇∇ · Eus

−∇N = Ëus, (11)

∇
2 N −

[
−

1
t+n
+

(
1−

tn

t+n

)
∂

∂t
+ tn ∂

2

∂t2

]
N − εn∇ · Ėus

= 0, (12)

u p
,xx + c2u p

,zz + c3w
p
,xz + e1φ

p
,xz = δ

2
1 ü p, (13)

c3u p
,xz + c2w

p
,xx + c1w

p
,zz + e2φ

p
,xx +φ

p
,zz = δ

2
1ẅ

p, (14)

e1u p
,xz + e2w

p
,xx +w

p
,zz − η3ε̄φ

p
,xx − η3φ

p
,zz = 0, (15)

τ s
zz = (1− 2δ2)

∂us

∂x
+
∂ws

∂z
− N , τ s

xz = δ
2
(
∂us

∂z
+
∂ws

∂x

)
, J s

z =−N,z (16)

τ p
zz =

ρ̄

δ2
1

{
(c3− c2)

∂u p

∂x
+ c1

∂w p

∂z
+φ p

,z

}
, τ p

xz =
ρ̄

δ2
1

{c2
2

(
∂u p

∂z
+
∂w p

∂x

)
+ e2φ

p
,x

}
,

D p
z = (e1− e2)

∂u p

∂x
+
∂w p

∂z
− η3φ

p
,z.

(17)

The scalar and vector point potential functions φs and ψ s in the semiconductor medium through the
relations are introduced as

us
=
∂φs

∂x
+
∂ψ s

∂z
, ws

=
∂φs

∂z
−
∂ψ s

∂x
, (18)

to facilitate the solutions in semiconductor material.
Using relations (18) in (11) and (12), we obtain

∇
2φs
− N − φ̈s

= 0, (19)

∇
2ψ s
=
ψ̈ s

δ2 , (20)

∇
2 N −

[
−

1
t+n
+

(
1+

tn

t+n

)
∂

∂t
+ tn ∂

2

∂t2

]
N − εn∇

2φ̇s
= 0. (21)

Equation (20) corresponds to purely transverse waves in the semiconductor which get decoupled from
rest of the motion and are not affected by the charge carrier fields.
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3. Formal solution of the problem

We assume the harmonic wave solution of the form

(ψ s, φs, N , u p, w p, φ p)= (ψ̄ s, φ̄s, N̄ , ū p, w̄ p, φ̄ p) exp{ik(x − ct)}, (22)

where c=ω/k is the phase velocity and k and ω are the wave number and angular frequency, respectively.
Upon imposing solution (22) in (13)–(15) and (19)–(21), straightforward algebraic simplifications

lead to the following formal solution satisfying the radiation conditions in both the media:

(i) Semiconductor (n-type) halfspace (z ≥ 0):

(φs, N )=
2∑

i=1

(1, Si )As
i e−ni z exp{ik(x − ct)}, ψ s

= As
3 exp{−βz+ ik(x − ct)}. (23)

(ii) Piezoelectric (6 mm class) layer 0≤ z ≤−h:

u p
=

3∑
i=1

(Ap
i emi z

+ B p
i e−mi z) exp{ik(x − ct)},

(w p, φ p)=

3∑
i=1

(Mi , Pi )(A
p
i emi z

− B p
i e−mi z) exp{ik(x − ct)},

(24)

where

α2
= k2(1− c2), Si = n2

i −α
2, n2

i = k2(1− c2a2
i ), i = 1, 2,

β2
= k2

(
1−

c2

δ2

)
, ξ = (1− δ2

1c2),
(25)

A = (c1ε̄+ c2− δ
2
1c2)η3+ 2e2, B = (c2− δ

2
1c2)η3ε̄+ e2

2,

a2
1 + a2

2 = 1+ tn
+ iω−1

(
1+ εn −

tn

t+n

)
+

1
ω2t+n

, a2
1a2

2 = tn
+ iω−1

(
1−

tn

t+n

)
+

1
ω2t+n

,
(26)

m2
1m2

2+m2
2m2

3+m2
3m2

1 = k4 c2 B+ ξ A− c3(c2η3ε̄+ 2e1e2)+ e2
1(c2− δ

2
1c2)

c2(1+ η3c1)
,

m2
1+m2

2+m2
3 = k2 c2 A+ ξ(1+ η3c1)− c3(c3η3+ 2e1)+ c1e2

1

c2(1+ η3c1)
, m2

1m2
2m2

3 = k6 ξ B
c2(1+ η3c1)

,

(27)

Mi =
−ikmi {c3η3(m2

i − k2ε̄)+ e1(m2
i − k2e2)}

(c1m2
i − k2c2+ δ

2
1k2c2)(m2

i − k2ε̄)η3+ (m2
i − k2e2)2

, i = 1, 2, 3,

Pi =
ike1mi

η3(m2
i − k2ε̄)

+
(m2

i − k2e2)

η3(m2
i − k2ε̄)

Mi , i = 1, 2, 3.

(28)
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Substituting the solutions (23) in (16) and (18), we obtain the normal stress, shear stress, current
density, and displacements for the semiconductor material as

τ s
zz =

(
p

2∑
i=1

As
i e−ni z

+ q As
3e−βz

)
exp{ik(x − ct)}, (29)

τ s
xz =

(
−

2∑
i=1

fi As
i e−ni z

+ p As
3e−βz

)
exp{ik(x − ct)}, (30)

J s
z =

2∑
i=1

Si ni As
i exp{−ni z+ ik(x − ct)}, (31)

us
=

(
ik

2∑
i=1

As
i e−ni z

−βAs
3e−βz

)
exp{ik(x − ct)}, (32)

ws
=−

( 2∑
i=1

ni As
i e−ni z

+ ik As
3e−βz

)
exp{ik(x − ct)}, (33)

where

p = δ2(k2
+β2), q = 2ikδ2β, fi = 2ikδ2ni (i = 1, 2), As

i (i = 1, 2, 3)

are the unknowns to be determined. Similarly, we obtain expressions for normal stress, shear stress, and
electric displacement for the piezoelectric layer by using (24) in (17) as

(τ p
zz, D p

z )=

3∑
i=1

{
(yi , bi )(A

p
i emi z

+ B p
i e−mi z) exp{ik(x − ct)}

}
,

τ p
xz =

3∑
i=1

di (A
p
i emi z

− B p
i e−mi z) exp{ik(x − ct)},

(34)

where

yi =
ρ̄

δ2
1
{ik(c3− c2)+ c1mi Mi +mi Pi }, di =

ρ̄

δ2
1

{c2
2
(mi + ik Mi )+ ike2 Pi

}
,

bi = ik(e1− e2)+mi (Mi − η3 Pi ),

(35)

and Ap
i and B p

i (i = 1, 2, 3) are the unknowns to be determined.

4. Secular equation

Considering the formal solution for various field quantities obtained in the previous section and employ-
ing the boundary conditions (8) and (9), we obtain a system of nine coupled homogeneous algebraic
equations in nine unknowns As

i , Ap
i , and B p

i (i = 1, 2, 3). This system has a nontrivial solution if
the determinant of the coefficients of As

i , Ap
i , and B p

i (i = 1, 2, 3) vanishes. After lengthy algebraic
reductions and simplifications, the secular equation for the propagation of guided waves in the considered
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composite structure is obtained as

tanh(m1h)=
g12(g21g33− g31g23)− g13(g21g32− g31g22)

g11(g22g33− g32g23)
, (36)

where

g11 = b21b14−
b11b24

sinh(m1h)
, g1i =

b2i b14− b1i b24

cosh(m1h)
, i = 2, 3,

g2i = b3i b14− b1i b34, i = 1, 2, 3, g3i = b4i b14− b1i b44, i = 1, 2, 3.
(37)

Here bi j (i, j = 1, 2, 3, 4) are given by

b1i = a3i (a25a16− a15a26)− a2i (a35a16− a15a36), i = 1, 2,

b1 j = (a3 j a16− a1 j a36)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a35a16− a15a36), j = 3, 4,

b21 = a41(a25a16− a15a26)−
a21(a45a16− a15a46)

sinh(m1h)
,

b22 = a42(a25a16− a15a26)− a22(a45a16− a15a46),

b2 j = (a4 j a16− a1 j a46)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a45a16− a15a46), j = 3, 4,

b3i = a5i (a25a16− a15a26)− a2i (a55a16− a15a56), i = 1, 2,

b3 j = (a5 j a16− a1 j a56)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a55a16− a15a56), j = 3, 4,

b4i = a6i (a25a16− a15a26)− a2i (a65a16− a15a66), i = 1, 2,

b4 j = (a6 j a16− a1 j a66)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a65a16− a15a66), j = 3, 4.

(38)

The quantities ai j (i, j = 1, . . . , 6) are defined in the Appendix.

5. Solution of secular equation

In general, the wave number and hence the phase velocities of the waves are complex quantities, therefore
the waves will be attenuated in space. In order to solve the secular equation (36), we take

c−1
= V−1

+ iω−1 Q, (39)

where k = R + i Q, R = ω/V , and R and Q are real numbers. Here, it may be noted that V and Q
respectively represent the phase velocity and attenuation coefficient of the waves. Using representation
(39) in various relevant relations, the complex roots m2

i (i = 1, 2, 3) can be computed from (27) with the
help of Cardano’s method. The roots m2

i are further used to solve the secular equation (36) to obtain the
phase velocity and attenuation coefficient of the surface waves by using the functional iteration numerical
technique outlined below.

In general the secular equation (36) is of the form c = φ(c) which on using representation (39) leads
to a system of two real equations f (V, Q)= 0 and g(V, Q)= 0. In order to apply the functional iteration
method we write V = f ∗(V, Q) and Q = g∗(V, Q), where the functions f ∗ and g∗ are selected in such
a way that they satisfy the conditions∣∣∣∣∂ f ∗

∂V

∣∣∣∣+ ∣∣∣∣∂ f ∗

∂Q

∣∣∣∣< 1,
∣∣∣∣∂g∗

∂V

∣∣∣∣+ ∣∣∣∣∂g∗

∂Q

∣∣∣∣< 1, (40)
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for all V , Q in the neighborhood of the root. If (V0, Q0) is an initial approximation of the root, then we
can construct the successive approximations according to the formulae

V1 = f ∗(V0, Q0), Q1 = g∗(V1, Q0),

V2 = f ∗(V1, Q1), Q2 = g∗(V2, Q1),

...
...

Vn+1 = f ∗(Vn, Qn), Qn+1 = g∗(Vn+1, Qn).

(41)

The sequence (Vn, Qn) of approximations of the root will converge to the actual root provided (V0, Q0)

lies in the neighborhood of the actual root. For an initial value of c = c0 = (V0, Q0), the roots mi

(i = 1, 2, 3) are computed from (27) by using Cardano’s method for each value of the nondimensional
wave number (R) for the assigned frequency. The values of mi so obtained are then used in the secular
equation (36) to find the current values of V and Q each time, which are further used to generate the
sequence (41). The process is terminated as and when the condition |Vn+1−Vn|<ε, ε being an arbitrarily
small number to be selected at random in order to achieve the desired accuracy level, is satisfied. The
procedure is continuously repeated for different values of nondimensional wave number to obtain the
corresponding values of the phase velocity and attenuation coefficient. Thus, the real phase velocity and
attenuation coefficient during the propagation of Rayleigh-type waves in the composite structure under
study can be computed from the dispersion relation (36).

5.1. Specific loss. The specific loss is the direct method of defining the internal friction for a material.
According to [Kolsky 1963], in the case of a sinusoidal plane wave of small amplitude, the specific loss
1W/W equals 4π times the ratio of the absolute value of the imaginary part of k to the real part of k.
Here

1W
W
= 4π

∣∣∣∣ Im(k)Re(k)

∣∣∣∣= 4π
∣∣∣Q

R

∣∣∣= 4π
∣∣∣V Q
ω

∣∣∣. (42)

6. Special cases of wave solution

In the case where the piezoelectric layer is absent (h = 0), the composite structure reduces to a semi-
conductor halfspace subjected to stress-free, isoconcentrated or stress-free, impermeable boundary con-
ditions. The secular equation (36) in this case reduces to the following two equations:

(k2
+β2)2(n1+ n2)= 4k2β(n1n2+α

2), (43)

(k2
+β2)2(n2

1+ n1n2+ n2
2−α

2)= 4k2βn1n2(n1+ n2). (44)

Equation (43) corresponds to the secular equation which governs the surface wave motion in the case of
stress-free, isoconcentrated boundary conditions prevailing at the surface of the semiconductor halfspace
and (44) refers to the secular equation for the stress-free, impermeable surface of the semiconductor
halfspace.

Equations (43) and (44) have similar forms as that of the thermoelastic Rayleigh frequency equation
[Maruszewski 1989; Sharma et al. 2007] and hence electron concentration produces the same type of
surface effects as the heat flux conduction/heat transfer phenomenon. In the case where electron and
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elastic fields are uncoupled (εn = 0), from (26) we have

a2
1 = 1, a2

2 = tn
+ iω−1

(
1−

tn

t+n

)
+

1
t+n ω2

,

so that n2
1 = α

2. Consequently (43) and (44) collapse to

(k2
+β2)2 = 4k2αβ. (45)

This is the famous Rayleigh frequency equation [Graff 1975] in a stress-free elastic halfspace.

7. Numerical results and discussion

The analytical solutions for various field quantities obtained lead to the transcendental secular equation
(36) which contains complete information about the effect of different interacting fields and lifespan
of the charge carriers on the phase velocity, attenuation coefficient, and specific loss factor of energy
dissipation. In order to illustrate the theoretical results obtained above, we now present some numerical
results for four composite structures, namely, CdSe-Si, CdSe-Ge, PZT-Si, and PZT-Ge. The material
parameters and constants for the semiconductor halfspace and piezoelectric layer used in the numerical
computations are given in Tables 1 and 2, respectively.

The numerical computations were performed by employing the procedure outlined in Section 5 with
the help of MATLAB programming. The computations were performed for the first three modes of
wave propagation in the considered composite structures. In the following discussion, Rh denotes the
nondimensional wave number for surface waves travelling at the interface of the semiconductor halfspace
and piezoelectric layer while R represents the wave number for Rayleigh surface waves at the free surface
of the semiconductor halfspace.

Figures 2 and 3 present the variations of phase velocity of surface waves at the interface of the com-
posites CdSe-Ge and PZT-Ge, respectively, versus wave number Rh for the first three modes of wave
propagation. The waves are noticed to be dispersive in nature in both cases. There is a sharp decrease in
the phase velocity at long wavelengths. It is clear that the maximum fall in the phase velocity occurs for
0≤ Rh ≤ 2. At small wavelengths phase velocity almost attains a constant value for Rh ≥ 2. Initially the
higher modes of wave propagation have large phase velocity as compared to that of lower-order modes.
Moreover, the velocity profiles are observed to be similar for the considered composite structures with

Sample number Quantity Unit Si Ge

1 ρs Kgm−3 2.3× 103 5.3× 103

2 λ Nm−2 0.64× 1011 0.48× 1011

3 µ Nm−2 0.65× 1011 0.53× 1011

4 Dn m2s−1 0.35× 10−2 1× 10−2

5 n0 m−3 1020 1020

6 αT K−1 2.6× 10−6 5.8× 10−6

Table 1. Physical data for n-type Si and Ge semiconductors [Maruszewski 1989;
Sharma and Thakur 2006].
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Sample number Quantity Unit CdSe PZT-4

1 ρ p kg m−3 5.504× 103 7.5× 103

2 c11 Nm−2 7.41× 1010 13.2× 1010

3 c13 Nm−2 3.93× 1010 7.3× 1010

4 c33 Nm−2 8.36× 1010 11.5× 1010

5 c44 Nm−2 1.32× 1010 2.6× 1010

6 e31 Cm−2
−0.160 −4.1

7 e33 Cm−2 0.347 14.1
8 e15 Cm−2

−0.138 10.5
9 ε11 C2 N−1 m−2 8.26× 10−11 7.1× 10−9

10 ε33 C2 N−1 m−2 9.03× 10−11 5.8× 10−9

11 ε0 F/m 8.854× 10−12 8.854× 10−12

Table 2. Physical data for 6 mm class CdSe [Sharma and Pal 2004] and PZT-4 [Jin et al.
2002] piezoelectric materials.

the exception that phase velocity possesses large magnitude in the case of the PZT-Ge composite as
compared to that of the CdSe-Ge one. It is worth noting that all the modes of wave propagation start
with higher phase velocity at long wavelengths, showing the cutoff frequencies for their existence. The
penetration power of the long wavelength surface waves is higher than that of short wavelengths. Thus at
long wavelengths the medium gets disturbed to its maximum and the coupling between various interacting
fields become operative, thereby increasing the phase velocity and hence the speed of the surface waves.
This is in contrast to short-wavelength waves which just follow the surface without much disturbance to
the core material. This agrees with the conclusion drawn in [Lowrie 2007].
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Figure 2. Phase velocity versus Rh for CdSe-Ge composite.
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Figure 3. Phase velocity versus Rh for PZT-Ge composite.

Figure 4 shows the variation of the attenuation coefficient with wave number Rh for the CdSe-Ge
composite. Here the attenuation coefficient increases with Rh for all the modes. The lower-order modes
of wave propagation possess larger attenuation than the higher modes.

Figure 5 presents the variations of the attenuation coefficient with wave number Rh in the PZT-Ge
composite. In this case the attenuation coefficient first increases with Rh to attain maximum value and
decreases afterwards with Rh. The maxima for attenuation coefficients shift towards larger values of
Rh with increasing mode of wave propagation. Moreover, the PZT-Ge composite possesses a smaller
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Figure 4. Attenuation coefficient versus Rh for CdSe-Ge composite.
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Figure 5. Attenuation coefficient versus Rh for PZT-Ge composite.

attenuation coefficient than that of the CdSe-Si composite structure.
Figures 6 and 7 represent the variations of the specific loss factor of energy dissipation with wave

number Rh in the composites CdSe-Ge and PZT-Ge, respectively. The specific loss factor of waves in
these composites follows similar trends as those of their attenuation coefficients. The variations of phase
velocity with age of the charge carrier field for all the considered composites are shown in Figure 8.
The phase velocity profiles possess almost uniform behaviour with the lifetime except in the CdSe-Ge
composite where it has a slightly large value at 0.1 ps in comparison to the neighboring points, which may
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Figure 6. Specific loss versus Rh for CdSe-Ge composite.
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Figure 7. Specific loss versus Rh for PZT-Ge composite.

be attributed to numerical instability at that point. It is also evident from the phase velocity profiles that
the magnitude of phase velocity is highest for PZT-Ge and lowest in the case of the CdSe-Si composite.
Figure 9 shows the variations of the attenuation coefficient with the lifetime of the carrier field in the
considered composites. It is evident that for CdSe-Si and CdSe-Ge the magnitude of attenuation has a uni-
form value up to t+n = 0.1 ps and decreases afterwards. However, in the PZT-Ge and PZT-Si composites,
the variations of the attenuation coefficient remain almost constant with lifetime. This comparative study
reveals that the PZT-Ge composite has the lowest attenuation while the CdSe-Si exhibits the highest
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Figure 8. Phase velocity versus lifetime (in ps) of carrier field.
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Figure 9. Attenuation coefficient versus lifetime (in ps) of carrier field.

attenuation among all the considered structures. The PZT-Ge composite is a combination of higher
density materials in comparison to CdSe-Si, which has low density, and therefore the phase velocity is
large in value in the former composite because acoustic waves travel faster in the denser medium than
in the rarer one.

Figures 10–14 show the variations of various wave characteristics in the silicon semiconductor half-
space. Figure 10 represents the variations of phase velocity with wave number R in the semiconductor
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Figure 10. Phase velocity versus R in semiconductor halfspace.
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Figure 11. Attenuation coefficient versus R in semiconductor halfspace.

halfspace under stress-free and isoconcentrated as well as stress-free and impermeable boundary con-
ditions. The waves are again attenuated and dispersive in character for the same reason as explained
for Figures 2 and 3. However, there is a sharp decay in the phase velocity of these waves in the range
0≤ R ≤ 2 which attains an almost constant value for R ≥ 2. It may be noticed that the phase velocities
have almost equal magnitudes in the case of both the boundary conditions prevailing at the surface
of the semiconductor halfspace. Figure 11 shows the variations of the attenuation coefficient with wave
number R for stress-free and isoconcentrated as well as stress-free and impermeable boundary conditions
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Figure 12. Specific loss versus R in semiconductor halfspace.
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Figure 13. Phase velocity versus lifetime (in ps) of carrier field in semiconductor halfspace.

at the surface of the halfspace. The attenuation coefficient increases in the range 0≤ R ≤ 2, decreases for
2≤ R ≤ 3 and again increases for 3≤ R ≤ 7 before it decreases with R for stress-free and isoconcentrated
boundary conditions. Similar trends of variations are also noticed in the case of stress-free and imper-
meable conditions with the exception that in this case the attenuation has a high magnitude. Figure 12
presents the variations of the specific loss factor of energy dissipation with wave number R. The specific
loss factor decreases for 0≤ R ≤ 3 and increases for 3≤ R ≤ 6, before it starts decreasing with R in the
case of stress-free and isoconcentrated boundary conditions at the surface of the halfspace. In the case of
stress-free and impermeable boundary conditions it also follows a similar trend. The specific loss factor
has a large magnitude in the case of impermeable conditions as compared to that for the isoconcentrated
one. The attenuation and specific loss profiles show some oscillatory behaviour at long wavelengths,
which is attributed to the fact that the acoustic waves penetrate significantly deep into the medium under
such situations forcing the various coupling parameters of the interacting fields to become operative.
Whereas at short wavelengths, both these quantities show smooth behaviour as the waves mainly travel
along the surface, causing the least disturbance to the medium. Figure 13 shows the variations of phase
velocity with lifetime of the charge carriers in the semiconductor halfspace. Phase velocity remains
almost constant up to t+n = 0.01 ps and then increases rapidly in the case of both boundary conditions. The
generation and recombination of the electrons become more frequent with decreasing lifetime. Moreover,
the wave field interaction with the newly generated electron imparts some energy to it, which results in
decreasing the phase velocity of the wave. The magnitude of the phase velocity is slightly higher for the
stress-free and isoconcentrated boundary conditions as compared to other conditions. The variations of
the attenuation coefficient with lifetime for the semiconductor halfspace are shown in Figure 14. The
attenuation coefficient decreases with decreasing lifetime for both boundary conditions. The attenuation
coefficient has a large magnitude in the case of stress-free and impermeable conditions as compared to
that for stress-free and isoconcentrated conditions for t+n ≥ 0.1 ps.
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Figure 14. Attenuation coefficient versus lifetime (in ps) in semiconductor halfspace.

Figures 15 and 16 show the plots of computer-simulated results in respect of phase velocities and
attenuation coefficients of first mode of wave propagation at t+n = 1 ps in all the considered structures.
Close inspection of the phase velocity and attenuation coefficient profiles in Figures 15 and 16 reveals
that for the same choice of patch/core material in the composite structure, these quantities follow similar
trends in their variations. It is clear that the phase velocity decreases from its initial high value at long
wavelengths to become steady at short wavelengths in all the composites. The phase velocity has a large
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Figure 16. Attenuation coefficient versus Rh for PZT-Ge, PZT-Si, CdSe-Ge, and
CdSe-Si composites.

magnitude in the composites with Ge cores as compared to those with Si. Moreover, the phase velocity
attains a higher magnitude for the PZT patch than for the CdSe patch with the same choice of core
material. The profiles of the attenuation coefficient follow similar trends in their variations for the same
patch materials. In the case of the PZT patch, the attenuation initially increases to attain its maximum
value and decreases afterwards with increasing wave number; it increases at all wave numbers for the
CdSe patch. The attenuation coefficient possesses large values for the CdSe patch in comparison to that
of the PZT patch for the same choice of core material. However, the attenuation is higher for the Si core
than the Ge one. This shows that the PZT-Ge composite has low attenuation and high phase velocity,
which indicates that the wave signal can travel longer distances in this structure. This is attributed to the
fact that the characteristics of the composites consisting of thin-layered structures are dominated by the
layer properties [Wang 2002; Trolier-Mckinstry and Muralt 2004]. Moreover, the generalised Rayleigh
surface waves usually follow the interface surface as their guiding surface by causing less disturbance
to the core material than in the patch. Thus the physical properties of the patch material play a more
vital role in their propagation than those of the core. Hence, it is worth mentioning that the piezoelectric
patch improves the functioning of surface wave devices (SAW) made up of semiconductor materials.

Conclusions

A functional iteration numerical technique along with Cardano’s method has been successfully used to
solve the complex secular equation in order to compute the phase velocities, attenuation coefficients,
and specific loss factors of energy dissipation in CdSe-Si, CdSe-Ge, PZT-Si, and PZT-Ge composite
structures. The phase velocity profiles show dispersive character in all the considered composites. Its
magnitude decreases sharply at long wavelengths and becomes steady and uniform at short wavelengths.
Higher-order modes of wave propagation have larger phase velocity compared to lower-order modes. In
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CdSe-Si and CdSe-Ge composites, the attenuation as well as the specific loss factor of energy dissipation
increase with increasing wave number, whereas both these quantities first increase and then decrease with
increasing wave number in PZT-Si and PZT-Ge composites. Higher-order modes possess less attenuation
and specific loss than lower-order ones. Phase velocity remains almost uniform in all the composites with
the lifetime of the charge carriers. The attenuation in CdSe-Si and CdSe-Ge composites remains almost
constant at short lifetimes and decreases with increasing lifetime. However, attenuation is noticed to
be nearly constant in PZT-Si and PZT-Ge structures. In the n-type silicon halfspace, the phase velocity
is noticed to be dispersive in nature. The attenuation profiles show oscillatory behaviour initially, then
decrease after attaining maximum value, and finally become steady at large wave numbers for both types
of considered boundary conditions. The specific loss factor also shows oscillatory behaviour at long
wavelengths but becomes uniform at short wavelengths. Phase velocity remains constant at short lifetimes
and increases at large values of the lifetime of the charge carrier field in the case where considered
conditions prevail at the surface of semiconductor halfspace. The attenuation decreases with decreasing
lifetime of the charge carriers for both types of boundary conditions. This study may be applicable to
the design of piezoelectric thin-film devices.

Appendix

The coefficients ai j used in (38) are given by

a13 =−P3βS2n2nR
− P3(βp+ ikq)pS,

a1i = (b j − b3)nR
+ (y j − y3)pS, i = 4, 5, j = i − 3,

a16 = βb3nR
+ (q +βy3)pS,

a2i = Mi P3− Pi M3, i = 1, 2,

a23 = {M3βS2− P3(k2
−βn2)}nR

− P3(βp+ ikq)pN ,

a2i = (y j − y3)pN , i = 4, 5, j = i − 3,

a26 =−iknR
+ (q +βy3)pN ,

a3i = di P3− Pi d3, i = 1, 2,

a33 = {d3βS2− P3(ikp−β f2)}nR
− P3(βp+ ikq)pF ,

a3i = (y j − y3)pF , i = 4, 5, j = i − 3,

a36 = pnR
+ (q +βy3)pF ,

a41 = P3 y1− P1 y3
sinh(m3h)
sinh(m1h)

,

a42 = P3 y2 sinh(m2h)− P2 y3 sinh(m3h),

a43 = βS2 y3 sinh(m3h)nR,

a4i = {yi cosh(mi h)− y3 cosh(m3h)}nR, i = 4, 5, j = i − 3,

a46 = βy3 cosh(m3h)nR,
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a5i = P3di cosh(mi h)− Pi d3 cosh(m3h), i = 1, 2,

a53 = βS2d3 cosh(m3h)nR,

a5i = {di sinh(mi h)− d3 sinh(m3h)}nR, i = 4, 5, j = i − 3,

a56 = βd3 sinh(m3h)nR,

a6i = P3bi sinh(mi h)− Pi b3 sinh(m3h), i = 1, 2,

a63 = βS2b3 sinh(m3h)nR,

a6i = {bi cosh(mi h)− b3 cosh(m3h)}nR, i = 4, 5, j = i − 3,

a66 = βb3 cosh(m3h)nR,

where
nR
= (n2

1− n2
2)(βp+ ikq),

pS
= βS2(S1n1− S2n2)−βS2n2(n2

1− n2
2),

pN
= βS2(n2− n1)− (n2

1− n2
2)(k

2
−βn2),

pF
= βS2( f2− f1)− (n2

1− n2
2)(ikp−β f2).
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DYNAMIC FRACTURE TESTS OF POLYMETHYLMETHACRYLATE
USING A SEMICIRCULAR BEND TECHNIQUE

SHENG HUANG, SHENG-NIAN LUO, BRYAN S. A. TATONE AND KAIWEN XIA

We adopt a recently developed technique, dynamic semicircular bend testing, to measure the fracture
initiation toughness, fracture propagation toughness, and fracture velocity of polymethylmethacrylate
(PMMA). A modified split Hopkinson pressure bar system is used to apply the dynamic load. In this
method, both the fracture initiation toughness and fracture energy, and thus the average fracture prop-
agation toughness, are determined. The initiation toughness is found to be similar to the propagation
toughness, and both toughnesses are loading rate-dependent. Our initiation toughness values for PMMA
are in accord with those reported in the independent literature. The fracture velocity increases and then
becomes saturated as the propagation toughness increases. We also measure the fracture surface rough-
ness of the recovered fragments. While the surface roughness increases with the fracture energy, the
increase of surface area alone is not sufficient to accommodate the increase in fracture energy, suggesting
other energy dissipation mechanisms in the dynamic fracture process besides free surface creation.

1. Introduction

Polymethylmethacrylate (PMMA) is a homogeneous and isotropic polymer that is widely used in many
applications for its transparency, high yield strength, and low density and cost. However, it is brittle at
room temperature. There is a sustained interest in understanding fracture in such polymers. Many studies
have been conducted on the fracture of PMMA under quasistatic conditions [Kobayashi et al. 1972], while
limited attempts have been made to measure the dynamic fracture properties of brittle solids (including
PMMA), primarily due to the difficulties in experimentation and subsequent data interpretation [Maigre
and Rittel 1995]. For example, a significant inertial effect can exist during high-loading rate loading
as demonstrated by Böhme and Kalthoff [1982]. In their experiments, a three-point bend sample was
loaded dynamically by a drop weight, and they showed that the crack tip stress intensity factor (SIF)
history measured with the shadow optical method of caustics did not synchronize with the load histories
at the supporting points due to the inertial effect. This inertial effect may subsequently complicate the
data reduction and interpretation.

The inertial effect on the fracture toughness can be separated with optical methods [Dally 1979;
Kobayashi and Dally 1977b; Rosakis et al. 1984; Xia et al. 2006], which normally require high-speed
photography. For other testing methods, the inertial problem can be circumvented with the combination
of experimental measurements and numerical simulations [Maigre and Rittel 1995], but this process
is rather tedious to apply. Recently, Owen et al. [1998] observed that the SIFs obtained by directly

This work has been supported by NSERC/Discovery Grant No. 72031326. LANL is under the auspices of the U.S. Department
of Energy under contract No. DE-AC52-06NA25396.
Keywords: dynamic fracture, PMMA, fracture toughness, semicircular bend, fracture velocity, surface roughness.
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measuring the crack tip opening are consistent with those calculated with the quasistatic equation when
the dynamic stress equilibrium of the specimen is roughly achieved in split Hopkinson tension bar testing.
This concept was subsequently adopted in [Weerasooriya et al. 2006] for ceramics in split Hopkinson
pressure bar (SHPB) testing using a dynamic four-point bend method.

For static fracture, there is only one fracture toughness, namely fracture initiation toughness. Fracture
initiation toughness is also relevant in dynamic fracture. There are a few studies on dynamic initiation
toughness for PMMA [Wada 1992; Wada et al. 1993; Rittel and Maigre 1996]. In addition, there is
a fracture propagation toughness that characterizes material resistance to a propagating crack during
dynamic fractures. Because propagation toughness is directly related to energy consumption during
fracture failure processes, it is desirable to measure both toughnesses for dynamic fractures. Fracture
propagation toughness is usually measured using optical methods for transparent polymers or polished
metals [Kobayashi and Dally 1977b; Dally 1979; Rosakis et al. 1984; Xia et al. 2006]. In a recently
developed dynamic semicircular bend (SCB) method [Chen et al. 2009], fracture initiation toughness,
fracture energy (and thus average fracture propagation toughness), and average fracture velocity can be
measured simultaneously. The measurement of fracture energy also allows us to gain insight into the
energy dissipation mechanisms during dynamic fractures.

The fracture propagation toughness is commonly a monotonically increasing function of crack velocity.
This relationship was first proposed in [Kobayashi and Dally 1977a; Dally 1979] for PMMA using
a dynamic photoelasticity method. Rosakis et al. [1984] reached a similar conclusion using wedge
loaded cantilever beam specimens made of AISI 4030 steel. More evidence for this dependence was
subsequently observed by using three-point bend specimens loaded in a drop weight tower in [Zehnder
and Rosakis 1990]. At low fracture speed, the dependence of SIF on fracture velocity is weak, while
at higher crack speeds it becomes quite pronounced. As the fracture velocity is close to its limiting
value, the fracture toughness can be very large as compared to the static value. This leads to the notion
of a limiting fracture velocity beyond which the fracture cannot propagate no matter how hard it is
driven. Similar results were also observed for 2024-T3 aluminum [Owen et al. 1998]. Other researchers,
for instance Évora et al. [2005], clearly observed that the SIF continues to increase under a constant
maximum velocity, supporting the limiting fracture velocity postulation. This limiting fracture velocity
during dynamic loading is also of interest for PMMA.

In this study, we use the semicircular bend (SCB) method (originally proposed in [Chong and Kuruppu
1984] and extended in [Chen et al. 2009] to dynamic testing for brittle materials) to perform fracture
testing on PMMA with split Hopkinson pressure bar (SHPB) and notched SCB specimens. Section 2
addresses the SCB sample preparation and SHPB setup for SCB testing, and Section 3, the measurement
techniques and data reduction methodology. The results and discussion on the initiation and propagation
fracture toughnesses, and fracture velocity under different loading rates, are presented in Section 4. This
section also discusses the correlation between fracture surface toughness and fracture energy as regards
the energy dissipation mechanisms during dynamic fracture. Conclusions are given in Section 5.

2. Experimental setup and sample preparation

A 25 mm diameter SHPB system (Figure 1) is used to apply the dynamic load. The bars are made of
7075 aluminum alloy, which has a yielding strength of 455 MPa and Young’s modulus of 71.8 GPa. The



DYNAMIC FRACTURE TESTS OF POLYMETHYLMETHACRYLATE VIA SEMICIRCULAR BENDING 815

Detector

Gap

Cylindrical lens SCB Sample

Laser

Incident bar Transmitted bar

Collecting lens

1 2P Pa

B

S

Crack gauge

Figure 1. Schematics of the SHPB system, notched SCB sample, and LGG system.

lengths of the striker, incident, and transmitted bars are 300 mm, 2500 mm, and 1500 mm, respectively.
The strain gauge stations on the incident and transmitted bars are 933 mm and 500 mm away from the
respective bar-sample interfaces. When the striker bar impacts the incident bar, a compressive wave is
generated and propagates into the sample (see Figure 1). The interaction of the incident wave with the
sample results in two waves: the reflected wave propagating back into the incident bar and the transmitted
wave propagating into the transmitted bar. The incident wave, reflected wave, and transmitted wave are
denoted with subscripts i , r , and t , respectively. The respective loading forces on the incident and
transmitted ends of the specimen are:

P1 = AE(εi + εr ), P2 = AEεt , (1)

where E is the Young’s modulus of the bar material, A is the cross-sectional area of the bar, and ε are
the strains. The strain gauge signals are relayed to the Wheatstone bridge circuits, amplified, and then
recorded by an eight-channel Sigma digital oscilloscope (Nicolet). The striker velocity is measured by a
laser-detector system.

A PMMA rod (radius R = 19.05 mm) is sliced into discs (thickness B = 16 mm) that are in turn
split into semicircular shapes. A 1.6 mm wide and 6 mm long notch is then introduced into the sample,
with a sharp tip of radius 0.15 mm (Figure 2). This radius is comparable to that used in the dynamic
fracture tests of PMMA of [Maigre and Rittel 1995]. For compression-bend loading, the SCB specimen
is placed in tangential contact with the incident bar and in point contact with two pins on the transmitted
bar separated by a distance S (see Figure 1).

We adopt a laser gap gauge (LGG) system to measure the time-resolved crack surface opening dis-
placement (CSOD; see Figure 1). The details of the LGG system are presented in [Chen et al. 2009]. The
amount of light passing through the notch increases with increasing notch width during opening, and is
recorded by the LGG system as voltage signals. The voltage is linearly proportional to the gap width and
thus the CSOD. Because PMMA is transparent, blue ink is sprayed on the specimen near the notch region
to block the laser light except in the notched area (Figure 2a). To measure the crack propagation velocity,
three 0.5 mm (in diameter) pencil leads and break-wire circuits are attached to the sample with instant
brittle glue as crack gauges. They essentially detect the onset of fracture at three different positions. The
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Figure 2. (a) Photo of a PMMA SCB sample with crack gauges 1–3. A fine division in
the scale denotes 1 mm. (b) Amplified image of the region marked with a rectangle in
(a), showing the crack and tip dimensions.

leads are flattened along the axis in order to improve their bonding strength with the PMMA specimen.
It is critical to achieve dynamic force balance in the specimen during dynamic loading. To this end,

we utilize the pulse shaper technique, which was detailed in [Frew et al. 2005]. In traditional SHPB
tests, the sharp rising front of the incident wave causes a sudden increase of load in the sample at the end
in contact with the incident bar. For brittle materials, this type of load may induce undesired damage
to the sample, leading to significant complications and possibly errors in interpreting the measurements.
We used a black rubber disc of 2.5 mm diameter and 2 mm thickness as the pulse shaper. This method
normally yields an incident pulse with a ramp front of about 100µs in duration, which allows the sample
to achieve force balance throughout the loading stage of the deformation.

Figure 3 shows the forces on both ends of the specimen in a typical test. Equation (1) states that the
dynamic force on the incident-bar side of the specimen (P1) is proportional to the sum of the incident
(In) and reflected (Re) stress waves, and that on the transmission-bar side (P2) to the transmitted (Tr)
stress wave. For SCB tests, P2 is equally distributed to the two supporting pins. As shown in Figure 3,

Figure 3. Dynamic force histories in a typical dynamic SCB test.
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the dynamic forces on both sides of the specimen are almost identical during the entire dynamic loading
period. Inertial effects are thus approximately eliminated because there is no global force difference in the
specimen. Given negligible inertial effects, we can then perform quasistatic analysis [Chen et al. 2009].

3. Measurement techniques and data reduction

3.1. Loading history and fracture velocity. Figure 4 shows the loading history (P2) and corresponding
CSOD history during a dynamic SCB test. We denote the time zero (A) as the arrival time of the incident
pulse at the sample. Because dynamic force balance is achieved, time instant B (102µs), when the load
reaches its peak, corresponds to the fracture initiation in the specimen, as in a quasistatic experiment.
The slope of the CSOD increases with time and approaches a terminal constant beginning at instant C
(136µs). The two vertical lines passing through points B and C divide the entire deformation period into
three stages. In stage I, the crack opens up elastically; in stage II, the crack propagates dynamically; in
stage III, the fracture separates the sample completely into two pieces. The terminal separation velocity
of the two fragments is the linear slope in CSOD after instant C . This velocity v = 12.3 m/s is twice
the individual fragment terminal velocity. At instant D (180µs), the completely separated fragments fly
further away from each other.

We use high-speed photographs to illustrate qualitatively these representative instants (Figure 5).
These photos are taken with a Photron SA-1 high-speed camera at 180 thousand frames per second.
Each frame contains 125× 125 pixels. Figure 5 shows the crack initiation at instant B, complete fracture
at instant C, and pure rotation of the fragments with respect to the contact point of the specimen with
the incident bar at instant D, consistent with the strain gauge measurements (Figure 4). The gauges were
glued on the other side of the specimen for this test.

Crack propagation lasts about 1tBC = 34µs. Given the crack distance Ls = R−a = 12.7 mm for this
test, we estimate the average crack growth velocity as v f = 374 m/s. We also use crack gauges to estimate

Figure 4. Typical loading history and CSOD history of the SCB specimen tested in
SHPB. Top inset: crack gauge signals at three locations.
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Figure 5. High-speed camera snapshots of a dynamic SCB test. A: time zero,
B: ∼ 102µs, C: ∼ 136µs, D: ∼ 180µs.

the fracture propagation velocity. Three crack gauges made of pencil lead are separated by 1l1 = 5.55 mm
and 1l2 = 4.43 mm (see Figure 2). The time separations between the arrivals of the fracture onset signals
are 1t1 = 14µs, and 1t2 = 14µs, respectively (see Figure 4). Thus the corresponding average fracture
velocities are v1 = 396 m/s, and v2 = 309 m/s. The fracture velocity appears to decreases as the crack
propagates during dynamic loading. The first gauge is cemented at about 1.2 mm away from the crack
tip in order to avoid interfering with crack initiation. This explains the 3µs delay between the crack
initiation and the breaking of the first crack gauge. The fracture velocity as measured with LGG is
consistent with the crack gauge results. One advantage of the LGG is that it is a noncontact method.

3.2. Calculation of initiation fracture toughness. The stress intensity factor (SIF) of the mode-I frac-
ture of the SCB specimen can be calculated from (2), in analogy to the rectangular three-point bending
method in the ASTM standard E399-06e2 [ASTM 1997]:

K I (t)=
P(t)S
B R3/2 Y (a/R), (2)

where P(t) is the measured load force history, and Y (a/R) a dimensionless geometry factor which can
be calculated with a standard finite element software package (for example, ANSYS) [Barsoum 1977].
The initiation fracture toughness K d

I C corresponds to the peak load Pmax [Chen et al. 2009].

3.3. Calculation of propagation fracture energy and toughness. The propagation fracture energy and
fracture toughness can be deduced based on energy conservation and the strain gauge and LGG mea-
surements. Similarly, Zhang et al. [2000] used a high-speed camera instead of a LGG to estimate the
fragment residual velocities. The energy carried by a stress wave (incident, reflected, or transmitted) is



DYNAMIC FRACTURE TESTS OF POLYMETHYLMETHACRYLATE VIA SEMICIRCULAR BENDING 819

[Kolsky 1953]:

W =
∫ t

0
Eε2 AC dτ, (3)

where E is the Young’s modulus, A is the cross-sectional area, and C is the wave speed of the bar. The
total energy absorbed by the specimen then is 1W =Wi −Wr −Wt . Part of the total energy absorbed
is used to create new crack surfaces, namely the total fracture energy WG ; the other part remains in the
fragments as the residue kinetic energy (K ). That is, 1W = WG + K . Note that there may be some
residual strain energy in the fragments. However, the fragment releases the strain energy at the speed of
elastic wave velocity; the strain energy release is virtually at the same pace as the release of the far-field
load. We thus assume that this strain energy is negligible.

For the rotating fragments, the moment of inertia is I , and the total rotational kinetic energy is K =
Iω2/2, where the fragment angular velocity ω is estimated from the CSOD data. The average propagation
fracture energy is Gc = WG/Ac, where Ac is the area of the crack surfaces created. Here we use the
projected area for the crack surface area. Assuming the plane strain, the average dynamic propagation
fracture toughness is:

K P
I =

√
Gc E/(1− ν2), (4)

where E = 3.24 GPa and ν = 0.35 are the Young’s modulus and Poisson’s ratio of the specimen respec-
tively, with the values taken from the literature [Needleman and Rosakis 1999].

4. Results and discussion

Fifteen SCB samples of PMMA are tested at various impact velocities, and all of them are split cleanly
into two equal pieces with smooth fracture surfaces, as shown in Figure 6. The results are summarized in
Table 1, including loading rate K̇ I , initiation fracture toughness K d

I C , total fracture energy WG , average
fracture energy GC , average crack growth velocity v f , and propagation fracture toughness K P

I .

(b)

Figure 6. Typical PMMA samples recovered after fracture: side view (left) and fracture
surface (right).
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Sample K̇ I (GPa m1/2/s) v f (m/s) K d
I C (MPa m1/2) WG (J) Gc (J/m2) K P

I (MPa m1/2)

1 19 267 2.46 0.24 5.97× 102 1.50
2 22 285 2.61 0.35 8.56× 102 1.80
3 30 270 2.63 0.23 5.83× 102 1.48
4 49 283 2.70 0.35 8.55× 102 1.79
5 54 328 2.77 0.45 1.11× 103 2.04
6 71 338 3.68 0.93 2.26× 103 2.91
7 74 342 3.61 0.99 2.47× 103 3.05
8 79 356 3.28 0.52 1.29× 103 2.20
9 86 357 3.79 0.80 1.97× 103 2.72

10 117 365 4.91 2.10 5.52× 103 4.69
11 121 358 5.17 2.20 5.68× 103 4.56
12 142 377 9.60 3.51 8.61× 103 5.69
13 145 374 7.57 6.95 1.72× 104 8.06
14 160 375 8.08 6.53 1.62× 104 7.82
15 169 369 8.69 7.54 1.89× 104 8.44

Table 1. Summary of experimental results.

4.1. Loading rate effect. The loading rate may have a considerable effect on the fracture toughness of a
solid under dynamic loading. We characterize the loading rate with K̇ I obtained from the time evolution
of SIF (K I ). Figure 7 shows loading and unloading in terms of SIF in a typical test. During the loading
period, K I increases with time and then reaches a constant (maximum) during 75–100µs, followed by
a drop before unloading; this maximum loading rate is adopted as the loading rate in a specific test, and
also denoted as K̇ I for simplicity. In this work, fifteen different loading rates are explored; for each
loading rate, the initiation and propagation fracture toughnesses of a SCB specimen are determined (see
Table 1 and Figure 8).

Both the initiation and propagation fracture toughnesses increase with loading rate. At a given loading
rate, the initiation fracture toughness is slightly higher than the propagation toughness (except in one case

Figure 7. Typical SIF-time curve for determining loading rate.
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Figure 8. Initiation and propagation toughnesses of PMMA under different loading rates.

at 145 GPa m1/2/s). From the roughness measurement discussed below, the fracture surfaces are smooth.
However, there is a finite radius at the tip of the notch prefabricated for crack initiation, which may lead
to larger initiation toughness.

Figure 9 compares our results for fracture toughness with those reported in the literature [Wada 1992;
Wada et al. 1993; Rittel and Maigre 1996]. It can be seen that at high loading rates (104–105 MPa m1/2/s),
our data agree well with those of this last reference, further confirming the validity of the dynamic SCB
method. The dynamic SCB method has advantages such as simplicity. Our result at low loading rates is
also in accord with previous data.

The fracture toughness (K̇ I ) data can be described with an exponential form:

K d
I /K I 0 = exp(K̇ I /K̇ I 0), (5)

where K I 0 and K̇ I 0 are fitting parameters. Fitting (3) to our data only yields K I 0 = 1.85 MPa m1/2

and K̇ I 0 = 1.0 × 105 MPa m1/2/s in the loading rate range of 10−1–105 MPa m1/2/s (dashed curve,
Figure 9). If both present and previous data are used, we obtain K I 0 = 1.47 MPa m1/2 and K̇ I 0 =

1.2× 105 MPa m1/2/s (solid line, Figure 9) in a wide range of loading rates (10−2–105 MPa m1/2/s).

Figure 9. Comparison of previous and present initiation fracture toughness results.
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Figure 10. The fracture velocity-propagation toughness curve.

Further experiments are desirable to establish whether these results can be extrapolated to even lower or
higher loading rates.

4.2. Fracture velocity. The propagation fracture toughness is believed to be a function of fracture veloc-
ity [Zehnder and Rosakis 1990]. Our experiments show the increase of propagation fracture toughness
K P

I with increasing fracture velocity (Figure 10). For example, K P
I is 7.82 MPa m1/2 at the highest

fracture velocity (386 m/s) achieved, and decreases to 1.5 MPa m1/2 at 267 m/s. At low velocities, the
propagation fracture toughness is relatively insensitive to fracture velocity, but it increases drastically as
the fracture velocity v f approaches a limiting value vl . Thus, the fracture velocity becomes saturated at
high K P

I .
The relationship between fracture velocity and fracture propagation toughness can be described em-

pirically as [Anderson 2005]:

K P
I =

K I A

1− (v f /vl)m
, (6)

where m is a constant, and K I A is the fracture arrest toughness which corresponds to K P
I at zero fracture

velocity. Fitting our data to the equation yields

vl = 385 m/s, m = 5.44, K I A = 1.3 MPa m1/2

(see Figure 10). The value of K I A as predicted from our results at v f > 250 m/s is in excellent agree-
ment with the averaged fracture toughness obtained at low fracture velocities (v f ∼ 0) in [Marshall and
Williams 1973]. This is not surprising, though, because K I A represents the fracture toughness limit at
zero crack velocity. It is noted that the relation presented in the equation is not universal. It applies
to the sample geometry presented in this work, and the sample geometry presented by Rosakis and his
coworkers, but it may not be applicable to other sample geometries.

The observation of the limiting fracture velocity (385 m/s) is also interesting. In [Rittel and Maigre
1996] a fracture velocity of 306 m/s was reported at an initiation toughness of 6.15 MPa m1/2, consistent
with our results (365 m/s at 5.17 MPa m1/2). Our experiment configuration is similar to that of Rittel
and Maigre: the sample boundaries are free except for the loading points and thus the edge release is
pronounced.
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Figure 11. (a) Silicone rubber molds of three SCB fracture surfaces selected for rough-
ness evaluation (samples #3, #7, and #12), and (b) the corresponding fracture surface
replicas cast from the rubber molds.

4.3. Fracture surface roughness and fracture energy. To investigate the relationship between fracture
energy and fracture roughness as a function of strain rate, the fracture surface topography of three PMMA
SCB specimens loaded at different strain rates is measured with a white light 3D stereotopometric system,
the advanced topometric sensor (ATOS) II (GOM mbH).

Digitization of the PMMA fracture surfaces is problematic because of the transparency of PMMA.
We thus create replicas of the fractured SCB surfaces via molding and casting: the negative mold of a
fracture surface is first made with silicone rubber (Figure 11a), and this mold is then used to cast fracture
replicas out of a quick setting flowable anchoring cement (Figure 11b).

Digitization of each replicated fracture surface requires two individual measurements with the ATOS
system. The scanning grid size is about 40µm by 40µm. Transformation of these measurements into
a common coordinate system is achieved by affixing several 0.4 mm (diameter) reference points around
the boundaries of the fracture surfaces (see Figure 11b). The average deviation between redundant data
(that is, overlapping measurements) is termed the mesh deviation, which provides an estimate of the
intensity of the average measurement noise of the system [ATOS 2008]. For the three fracture surfaces
digitized in this study, the mesh deviation is less than 5µm. Following completion of all measurements,
the resulting point clouds for each sample are polygonized into triangulated irregular networks using the
default triangulation algorithm of the ATOS software (Delaunay triangulation with no smoothing). This
process deletes redundant points of the point cloud and discretizes the surfaces into contiguous triangles
with vertices defined by neighboring points of the point cloud.
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For the current study, the surface roughness coefficient, Rs , is adopted to characterize the roughness
of the three replicated SCB fracture surfaces. The value of Rs is given by [Soudani 1978] as follows:

Rs = At/An, (7)

where At is the true area of the surface defined by the summation of the area of each triangular element,
Ai , comprising the 3D surface [Lange et al. 1993], and An is the nominal area defined by the projection
of the actual area onto a best-fit plane through the surface. For a perfectly flat surface, Rs equals a
minimum value of 1, while most fractures in brittle materials have Rs values between 1 and 2 [Belem
et al. 2000].

Considering a digitized SCB fracture surface (Figure 12), a plane parallel to the notch plane is used to
define the nominal area surface rather than a best-fit plane through the fracture surface. For each sample,
the maximum area of the digitized fracture surface, excluding the notch plane and any damaged areas
around the perimeter of the primary fracture, is considered when calculating the true surface area and
corresponding nominal surface area. As the calculated fracture energy corresponds to the propagation
of the primary fracture, inclusion of the damaged areas around the perimeter of the primary fracture
resulting from secondary and tertiary fracturing under high strain rates would lead to increased values
of Rs that do not represent the roughness of the primary fracture. (Secondary microcracks are not found
with optical microscopy, though.) Thus, a potentially misleading relationship between fracture energy
and fracture roughness may result. For the three representative samples (#3, #7, and #12), WG varies
from 0.23 to 6.95 J, but the measured values of Rs vary slightly from 1.002 to 1.01.

If we assume that WG dissipates only in the form of surface energy, WG should scale linearly with
At and thus Gc should scale linearly with Rs . However, considering the two extreme cases (samples #3
and #12), Gc for #12 is about 30 times that for #3, while the corresponding ratio for Rs is only 1.01.
This observation calls for additional energy dissipation mechanisms during dynamic fracture. Indeed,
researchers recently showed the importance of the process zone to the total energy budget in earthquake
ruptures, where dynamic rupture may induce damage around the rupture tip [Poliakov et al. 2002]. In
the case of PMMA dynamic fracture as studied here, the additional dissipation mechanisms may include
the plasticity or viscosity, because no microcracks are observed in the recovered specimen, and remain
to be investigated in the future.

x
y

z

Figure 12. The surface scanning image for sample #12.
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5. Conclusion

We have performed dynamic SPHB bending tests on notched semicircular PMMA specimens as well
as finite element analysis and postmortem fracture surface roughness measurements, and obtained the
initiation fracture toughness, propagation fracture toughness, and fracture velocity at different loading
rates. The initiation and propagation toughnesses are similar and both increase with loading rate, the
fracture velocity increases with the propagation toughness but reaches its limit at about 385 m/s, and
their numerical relations are established. Our results also call for other energy dissipation mechanisms
during dynamic fracture of PMMA besides free surface creation.
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STRESS AND BUCKLING ANALYSES OF LAMINATES
WITH A CUTOUT USING A {3, 0}-PLATE THEORY

ATILA BARUT, ERDOGAN MADENCI AND MICHAEL P. NEMETH

A semianalytical solution method to predict stress field and structural bifurcation in laminates having
a cutout by employing a simple {3, 0}-plate theory is presented. The stress analysis includes both in-
plane and bending stress fields. In this theory, the in-plane and out-of-plane displacement fields are
respectively assumed in the forms of cubic and uniform through-the-thickness expansions. The cubic
expansion ensures the correct behavior of transverse shear deformations while satisfying the condition
of zero transverse shear stresses at the laminate faces. The equations of equilibrium for the stress and
buckling analysis are derived based on the principle of stationary potential energy. Comparison against
the classical laminate and {1, 2}-plate theories proves this semianalytical method credible.

1. Introduction

Understanding the behavior of laminated composite plates is an important part of designing ultralightweight,
high-performance aircraft structures. Typically, these structures are relatively thin and are designed by
using analyses based on the classical laminated plate theory (CLPT) [Jones 1975]. However, there are
instances in which using a higher-order refined theory becomes unavoidable in order to include accurately
the effects of transverse shear flexibility on the structural response to obtain an initial design that is
conservative or to verify margins of safety of a current design. The refined theories can be classified
as equivalent single-layer, layer-wise, zigzag, and variational asymptotic. Although there are many
different refined plate theories, they have not found wide acceptance in standard industry design practices
because of the extensive experience base with CLPT. Thus, the focus of this study is to formulate new,
advanced special-purpose analysis and design tools by using a refined plate theory that contains CLPT
as an explicit, well-defined subset of the governing equations. A refined theory of this type may be
useful in developing nondimensional design parameters that characterize the effects of transverse shear
deformation and in extending the current design practice accepted by industry in a cautious building-
block manner. Moreover, company-validated legacy computer codes can be retained and updated to
include the effects of transverse shear flexibility with only some additional validation costs.

Each of the many refined theories for laminated composite plates has its own merits and range of
validity associated with a given class of problems. Obviously, the choice of which theory to use depends
on the nature of response characteristics. For example, for global response phenomena, such as elastic
buckling and vibration response, that are not characterized by short wavelengths, it is likely that an
equivalent single-layer theory would be sufficiently adequate. Attributes of several of these theories
have been investigated and discussed in works such as [Liu and Li 1996; Reddy 1997; Altenbach 1998;

Keywords: composite, cutout, transverse shear deformation, bending, buckling.

827



828 ATILA BARUT, ERDOGAN MADENCI AND MICHAEL P. NEMETH

Barut et al. 2002; Yu and Hodges 2004; Demasi and Yu 2009]. A recent extensive discussion of the
layer-wise and zigzag theories can be found in [Tessler et al. 2009].

In the development of special-purpose analysis tools that account for the effects of transverse shear
flexibility for use in preliminary designs, rapid navigation of the design-parameter space is desired. As a
result, computational efficiency is a major concern. This desire is driven by the wide range of laminated
composite constructions available and the potential weight savings that can be obtained through laminate
tailoring. Thus, it follows logically that a relatively simple equivalent single-layer refined plate theory is
generally the starting point in the enhancement of legacy analysis tools that are based on CLPT. However,
many of these theories, such as the first-order shear deformation theory (FSDT) first derived by Reissner
[1944; 1945], do not contain the dependent kinematic variables of CLPT as an explicit subset. In the
parlance of functional analysis, when the dependent kinematic variables of CLPT appear explicitly as
a subset, the dependent kinematic variables of the refined theory possess a well-conditioned, linearly
independent basis that also spans the CLPT subspace — analytically and computationally. According
to [Shimpi 1999; Ray 2003], this attribute eliminates the numerical ill-conditioning that causes shear
locking in finite element analyses of thin shear-deformable plates that are based on theories that use the
rotations of the material line element, which is normal to the plate midplane, as dependent variables. The
ill-conditioning arises from the fact that CLPT solutions are not recovered directly, but in an asymptotic
sense, as the plate thickness is reduced and the transverse shear stiffness is increased.

There are laminated-plate theories that account for the effects of transverse shear flexibility and that
do contain the dependent kinematic variables of CLPT as an explicitly defined subset. Reddy [1990]
presented a review of all the existing third-order theories and showed that they are actually special
cases of his third-order plate theory [Reddy 1984], in which the in-plane displacement components are
cubic through-the-thickness expansions, yielding a quadratic variation of transverse shear strains, and the
transverse displacement component is constant through the thickness, excluding the transverse normal
deformations. While this formulation is applicable to plates with simply supported boundary conditions
[Sun and Hsu 1990], it yields physically unacceptable zero transverse shear strains when both in-plane
displacement components are fixed along the plate edges, as pointed out in [Krishna Murty 1987]. The
problem was remedied by decomposing the transverse displacement component into separate parts for
the displacements associated with bending and shear deformations. This has been applied successfully
to stress [Krishna Murty 1987; Iyengar and Chakraborty 2004], buckling [Senthilnathan et al. 1987], and
large deflection analyses [Reddy 1987; 1990; Singh et al. 1994] of isotropic and laminated plates. An
alternative to decomposing the transverse displacement field in order to avoid zero transverse shearing
along fixed-edge boundaries was proposed in [Voyiadjis and Shi 1991] for thick cylindrical shells and
later reduced to plate kinematics in [Shi 2007]. In this alternative approach, average displacement and
slope variables were utilized that produce an equivalent transverse shear strain energy density. The
present study adopts the use of average displacements and slopes around plate boundaries by using
Reissner’s weighted-average displacement and slope definitions [Reissner 1944; 1945].

Other forms of higher-order theories for plates and shells have also been proposed. For example,
[Soldatos and Timarci 1993; Timarci and Aydogdu 2005] employed higher-order theories based on
polynomial, trigonometric, hyperbolic, and exponential expansions of in-plane displacements through
the thickness and compared their relative accuracy in stress and buckling analyses of plates and shells.
Shu and Sun [1994] introduced a third-order shear deformation theory that satisfies continuity of in-plane
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displacements and transverse shear stresses between adjacent layers. However, their representation of the
displacement variables resembles that of FSDT. Recently, Ray [2003] extended the zeroth-order shear de-
formation theory (ZSDT) of Shimpi [1999] to perform vibration analysis of simply supported laminated
composites. It can be shown that the ZSDT of Shimpi and Ray is a special case of the form introduced
in [Timarci and Aydogdu 2005]. The present study employs the kinematics of Shimpi’s ZSDT because
of its accuracy and simplicity in predicting the responses of laminated plates [Ray 2003]. Because of
the cubic and constant through-the-thickness expansions used for the representation of, respectively, the
in-plane and transverse displacement components of ZSDT, we use the term {3, 0}-plate theory. Notation
of this type was originally introduced in [Tessler 1993].

Pertinent to the focus of the present refined single-layer theory, several results have been presented in
the literature that show the relative accuracy of third-order plate theories. For example, Reddy [1997]
presented results for bending, vibration, and buckling of flat rectangular laminated plates using his third-
order plate theory. He presented solutions for simply supported, square, symmetric, and antisymmet-
ric cross-ply laminates under sinusoidal pressure distributions. Transverse deflection of laminates with
thickness-to-length ratios (h/L) as large as 1

4 were compared against the exact elasticity solutions, CLPT
and FSDT. Ramm [2000] presented the historical evolution of the FSDT and introduced a second-order
plate theory whose kinematics account for both uniform and linear expansion modes in the thickness
direction in addition to the transverse shear strains. In particular, in [Noor and Malik 2000] four model-
ing approaches were studied, based on first-order, second-order, third-order, and discrete-layer theories.
Rohwer et al. [2001] presented the existing higher-order theories that are in polynomial form as trun-
cated power series expansions of displacements with constant coefficients. The constant coefficients and
truncation of the power series were determined based on term-by-term matching of the power series with
the corresponding kinematic representation. They also introduced a generic fifth-order plate theory. Al-
though this theory does not generally satisfy shear and normal traction-free boundary conditions at plate
surfaces, it yields more accurate results than the third-order theories for simply supported orthotropic,
symmetric, and nonsymmetric cross-ply laminates. In [Bosia et al. 2002] the validity of CLPT and FSDT
were investigated by comparing numerical predictions of laminates under bending against experimental
measurements. The results indicate that both CLPT and FSDT fail to capture the correct response for
plates whose span-to-thickness ratio is lower than 25.

In [Tessler and Saether 1991; Tessler 1993] a second-order shear-deformation theory was introduced
that includes quadratic expansions of transverse shear deformations and a linear expansion of transverse
normal deformations through the thickness. Similarly, in [Reddy 1990; Barut et al. 2002] third-order
plate theories were formulated for thick laminates, taking into account both transverse normal and shear
deformations, as well as cubic variation of in-plane deformations. Also, the survey of the existing higher-
order plate theories [Ghugal and Shimpi 2002] focuses on first-order, second-order, and various forms
of higher-order shear deformation theories that have been developed for isotropic and laminated plates.

None of the previous studies considered laminates with cutouts, which can cause local gradients in
the stress and strain fields that may lead to premature structural failure, especially due to structural
buckling. Thus, it is important to understand how cutouts affect the transverse shear flexibility of lami-
nates. Therefore, the objective of the present study is to derive the governing equations of a {3, 0}-plate
theory for stress and buckling analysis of laminated composite plates under general loading and boundary
conditions. This plate theory contains the dependent variables of CLPT as a proper subspace, provides
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the quadratic variation of transverse shear stresses through the thickness of the laminate, satisfies the
condition of zero transverse shear stresses on the top and bottom surfaces of the laminate, and does not
require a transverse shear correction factor.

This study presents a semianalytical solution method for predicting the bending and buckling behav-
ior of a moderately thick laminate with a cutout. While employing the {3, 0}-plate theory, the present
approach utilizes the principle of stationary potential energy to derive the governing equations for bend-
ing deformation and structural bifurcation. The solutions of these governing equations are obtained by
employing global and local function sets that mathematically take into account the presence of cutouts
and general boundary conditions. Two sets of results are presented for selected structural configurations
with a cutout. These sets are linear-bending analysis results, which address the accurate representation of
local through-the-thickness effects, and buckling analysis results, which address global stiffness-critical
effects. For both sets of results, all deformations are presumed to be elastic.

2. Overview of the {3, 0}-plate theory

The nonlinear plate theory used in the present study is based on the kinematic equations presented in
[Sun and Hsu 1990] and is a special case of the formulation presented in [Soldatos and Timarci 1993;
Timarci and Aydogdu 2005]. In particular, the in-plane and transverse displacement fields of a material
point (x, y, z) are expressed in Cartesian coordinates (see Figure 1 on page 832) as

Ux(x, y, z)= ux(x, y)− zuz,x(x, y)+3(z)8xz(x, y), (1a)

Uy(x, y, z)= u y(x, y)− zuz,y(x, y)+3(z)8yz(x, y), (1b)

Uz(x, y, z)= uz(x, y), (1c)

where the displacements Ux , Uy , and Uz are associated with the x , y, and z-directions, respectively. The
functions ux and u y represent the in-plane displacements, and uz represents the out-of-plane displacement
of the point (x, y, 0) on the laminate midplane; a subscript after a comma denotes partial differentiation.
Inspection of these equations reveals that the kinematic equations of CLPT appear explicitly. The function
3(z) is selected to satisfy the traction-free boundary conditions on shear stresses at the outer, bounding
surfaces of a laminate and to satisfy the conditions Ux(x, y, 0) = ux(x, y) and Uy(x, y, 0) = u y(x, y).
As noted in [Timarci and Aydogdu 2005], the choice of 3(z) is not unique. In the present study, 3(z)
is specified as a cubic through-the-thickness distribution, which is one of the special cases examined
by Timarci and Aydogdu. Because the corresponding functional representations of the displacement
fields consist of cubic polynomial expansions in the through-the-thickness coordinate z for the in-plane
displacements and no expansion for the out-of-plane displacement, the theory is denoted herein as a
{3, 0}-plate theory based on the notation of [Tessler 1993].

The kinematic assumptions given by (1) are modified forms of those given in [Ray 2003]. In particular,
the unknown functions 8xz(x, y) and 8yz(x, y) are, generally, not the stiffness-weighted transverse shear
stress resultants of CLPT, used by Ray and initially suggested in [Shimpi 1999]. This representation
permits the application of the plate theory to the entire class of laminated plates and is consistent with
full coupling of the transverse shearing stress and transverse shearing strains, through the constitutive
equations.
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Reddy [1990] showed that the {3, 0} theory presented herein can be obtained from his {3, 0} theory by
a simple transformation of the dependent kinematic variables. As a result, the inherent physical accuracy
of the two {3, 0} theories are expected to be identical. However, the computational attributes are likely
to be quite different, particularly for large relative values of the transverse shear stiffnesses.

The boundary conditions associated with the {3, 0}-plate theory include terms arising from the pres-
ence of higher-order in-plane deformation modes. It is difficult to interpret and associate the higher-
order terms, 8xz and 8yz , with commonly used boundary displacements and slopes. In this study, this
difficulty is avoided by introducing independent boundary displacements, Ũα, with α = x, y, z. Based
on the kinematics of the Mindlin plate theory, these boundary displacements are defined as

Ũx(x, y, z)= ũx(x, y)− zϑ̃x(x, y), (2a)

Ũy(x, y, z)= ũ y(x, y)− zϑ̃y(x, y), (2b)

Ũz(x, y, z)= ũz(x, y), (2c)

in which ũx(x, y), ũ y(x, y), and ũz(x, y) represent the weighted-average displacements and ϑ̃x(x, y)
and ϑ̃y(x, y) rotations. Their representation in terms of the kinematics of the {3, 0} theory presented
herein is achieved by minimizing the error between Uα and Ũα (α = x, y, z), that is,

min
[∫ h/2

−h/2
{(Ũx −Ux)

2
+ (Ũy −Uy)

2
+ (Ũz −Uz)

2
} dz

]
. (3)

The minimization of (3) with respect to the independent quantities, ũα(x, y) with α = x, y, z and
ϑ̃β(x, y) with β = x, y, leads to the following weighted averages:

(ũx , ũ y, ũz)=
1
h

∫ h/2

−h/2
(Ux ,Uy,Uz) dz, (ϑ̃x , ϑ̃y)=

12
h3

∫ h/2

−h/2
z(Ux ,Uy) dz. (4)

Substituting Ux , Uy , and Uz from (1) into these equations results in the following explicit forms given
in terms of the kinematics of the {3, 0} theory:

ũα(x, y)= uα(x, y) with α = x, y, z, (5a)

ϑ̃β(x, y)= uz,β(x, y)− 6
5h
8βz(x, y) with β = x, y. (5b)

Hence, this representation of the boundary displacements and slopes is the least-squares equivalent of
the {3, 0} theory kinematics along the boundary.

The nonlinear strain-displacement relations used in the present study are based on the Green–Lagrange
strains of elasticity theory, simplified for a flexible plate-like solid exhibiting small strains and moderately
small rotations by using the von Kármán assumptions [Fung and Tong 2001].

The corresponding nonlinear plate strains are obtained by substituting (1) into the simplified Green–
Lagrange strains. Work-conjugate stress resultants are identified by substituting the plate strains into the
strain energy and then reducing it to a two-dimensional quantity by through-the-thickness integration.
The laminate constitutive equations are obtained by substituting the expressions for the laminate strains
into the stress-strain relations for a generally orthotropic material, in a state of plane stress, and by then
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substituting the resulting equations for the stresses into the definitions of the stress resultants and perform-
ing the through-the-thickness integrations. The nonlinear equilibrium equations and the corresponding
boundary conditions are obtained by taking the variation of the total potential energy of the laminate and
using Green’s integral theorem to enforce the fundamental theorem of the calculus of variations.

3. Problem description

The general boundary-value problem considered in the present study consists of a rectangular laminate
with an elliptical cutout that is located arbitrarily (Figure 1). The cutout has a semimajor axis and
a semiminor axis with lengths 2a and 2b, respectively. As shown in Figure 1, the local Cartesian
coordinate system (x ′, y′, z′), whose origin is located at the center of the cutout, coincides with the
principal coordinates of the elliptical cutout. The global structural coordinates are denoted by (x, y, z),
and the orientation of the cutout with respect to the global horizontal axis is defined by the angle ψ . The
laminate is made of K specially orthotropic layers, and each layer has an orientation angle, θk , that is
defined with respect to the x-axis (see Figure 1). The total laminate thickness is denoted by h. Each layer
has a thickness of hk ; elastic moduli E11, E22, and E33; shear moduli G12, G23, and G31; and Poisson’s
ratios ν12, ν23, and ν31; the subscripts 1, 2, and 3 represent the fiber, transverse, and thickness directions,
respectively.

A special, practical set of loading conditions are considered in the present study. As shown in Figure 1,
0σ represents the laminate edges that are traction free, and 0u denotes the part of the laminate boundary

Figure 1. Description of geometry and loading of composite plate with an elliptical cutout.
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that is kinematically restrained. The laminate boundary on which the kinematics of the boundary is
constrained by uniform edge displacements is represented by 01. This boundary can be clamped or
simply supported against bending while allowing for uniform in-plane edge displacements. As depicted
in Figure 1, uniform edge displacement is achieved in the present study through use of a rigid load
fixture (rigid bar) that is subjected to concentrated edge forces. This approach is used to represent the
most commonly employed experimental loading conditions. Throughout this paper, a variable with the
superscript “∗” is treated as a known quantity, arising from the externally applied loads or from prescribed
displacements and rotations.

The laminate can be subjected to an arbitrary lateral distributed load of p∗(x, y) pointing in the neg-
ative z-direction, as shown in Figure 1. The positive-valued stress and moment resultants of applied
boundary tractions, (N ∗x , N ∗y , N ∗z ) and (M∗x ,M∗y ), are applied along the edges as shown in Figure 1. The
concentrated forces, P∗x and P∗y , applied to the ends of the laminate through a rigid end-bar, as shown in
Figure 2, lead to uniform edge displacements with unknown magnitudes 1x and 1y .

The prescribed edge displacements on the midplane (ũ∗x , ũ∗y, ũ∗z ) and edge slopes (ϑ̃∗x , ϑ̃
∗
y ) on the x-z

and y-z planes, respectively, are imposed as

ũi (x, y)= ũ∗i (i = x, y, z),

ϑ̃i = ϑ̃
∗

i (i = x, y),
(6)

where ũx , ũ y , and ũz denote the weighted-average boundary displacements and ϑ̃x and ϑ̃y are the
weighted-average slope quantities.

As shown in Figure 2, the kinematic boundary conditions are imposed by employing elastic spring
supports. Zero-valued displacement and rotation kinematic boundary conditions are enforced in an indi-
rect manner by specifying values for the spring stiffnesses that are large compared to the corresponding
laminate stiffnesses. This approach effectively yields a prescribed kinematic boundary condition in the
limit as the relative stiffness of the spring becomes much greater than that of the corresponding laminate
stiffness. Similarly, values for the spring stiffnesses can be selected corresponding to a given uniform

Figure 2. Distributed elastic spring supports along the edges of a laminate.
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elastic restraint along an edge, similar to that provided by a rigid end-bar. This capability is important
and useful because in some test fixtures, or actual structures, the edge supports may not be stiff enough to
simulate a fully clamped boundary condition or flexible enough to simulate a simply supported boundary
condition. The extensional and rotational springs have constants Sx , Sy , and Sz associated with the edge
displacements and Jϑx and Jϑy with the slopes. In addition, a rigid end-bar is linked to the plate edge
through extensional springs in the directions normal and tangent to the boundary with stiffness values of
sx and sy . The specification of a sufficiently large value of spring stiffness for sx and sy causes the plate
edge to behave as a rigid end-bar with uniform displacements, 1x and 1y . Conversely, a sufficiently
small spring stiffness between the plate edge and the rigid end-bar eliminates the presence of a rigid end-
bar. In the case of buckling analysis, this type of edge support, commonly used in buckling experiments,
permits the determination of the end shortening of the plate.

4. Nonlinear equations of the {3, 0}-plate theory

The nonlinear equations of the plate theory are derived by considering the variation of the total potential
energy of the laminate. In the present study, the total potential energy consists of the potential energy of
the elastic spring supports in addition to the internal strain energy of deformation and the work of the
applied loads.

Strain field and potential energy. The internal strain energy of deformation is generated by the presence
of a strain field within a laminate. For the plate kinematics defined by (1), the corresponding nonlinear
strain-displacement relations that correspond to small strains and moderate rotations are given by

ε = ε0
+ zκ0

+3(z)00, (7a)

γ =3′(z)8, (7b)

where the vectors ε, γ , ε0, κ0, 00, and 8 are defined as

εT
= {εxx , εyy, γxy}, γ T

= {γxz, γyz}, (7c)

ε0T
=
{[

ux,x +
1
2 (uz,x)

2], [u y,y +
1
2 (uz,y)

2], (ux,y + u y,x + uz,x uz,y)
}
, (7d)

κ0T
=−{uz,xx , uz,yy, 2uz,xy}, 00T

= {8xz,x ,8yz,y, (8xz,y +8yz,x)}, 8T
= {8xz,8yz}. (7e)

The prime mark in (7b) denotes differentiation with respect to the through-the-thickness coordinate z.
The transverse normal strain, εzz , is zero-valued, consistent with assumption of a uniform through-the-
thickness out-of-plane displacement specified by (1c). In addition, defining average transverse shearing
strains γ 0

xz and γ 0
yz by

γ 0
=

{
γ 0

xz
γ 0

yz

}
=

1
h

∫
+h/2

−h/2

{
γxz

γyz

}
dz, (8)

where h denotes the uniform thickness of the plate, gives

γ 0
=

1
h

(
3
(h

2

)
−3

(
−

h
2

)){
8xz

8yz

}
. (9)
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Inspection of (7b) reveals that the transverse shearing strains vanish at the bounding surfaces of the plate
given by z =±h/2 provided that

3′(h/2)=3′(−h/2)= 0. (10)

The strain energy of a laminate is obtained by substituting the expressions for the strains in Equa-
tions (7) into the strain energy expression for a three-dimensional elastic solid and performing through-
the-thickness integration of the resulting equations. This process yields the strain energy of a laminate
as

U = 1
2

∫
A
(NT ε0

+MT κ0
+ FT00

+ f T8) dx dy, (11)

with

NT
= {Nxx , Nyy, Nxy}, MT

= {Mxx ,Myy,Mxy}, FT
= {Fxx , Fyy, Fxy}, f T

= { fxz, fyz}, (12)

where the definitions of the stress resultants appearing in this expression, Ni j , Mi j , and Fi j with i, j = x, y
and fi z with i = x, y, are given in Appendix A. It is convenient to express (11) in the following compact
form:

U = 1
2

∫
A

sT e d A, (13)

where s and e are vectors of the stress and strain resultants given by

sT
= {NT , MT , FT , f T

}, (14a)

eT
= {ε0T

, κ0T
,00T

,8T
}. (14b)

For the elastic materials considered herein, the stress resultant vector s is related to the strain resultant
vector e through the constitutive matrix C as

s = Ce, (15)

in which

C =


A B E 0

D F 0
H 0

G

 . (16)

The submatrices A, B, D, E, F, G, and H are explicitly defined in Appendix A. Substituting (15) into
(13) yields the desired form of the laminate strain energy given by

U = 1
2

∫
A

eT Ce d A. (17)

As described in the preceding section, elastic extensional and rotational springs are employed to ac-
commodate the enforcement of prescribed edge displacements (ũ∗x , ũ∗y , and ũ∗z ) and slopes (ϑ̃∗x and ϑ̃∗y )
defined in (6), along the boundary of the laminate, 0u . Associated with these displacements ũ∗x , ũ∗y , ũ∗z
and with the slopes ϑ̃∗x , ϑ̃∗y are the extensional and rotational spring stiffnesses Sx , Sy , Sz and Jϑx , Jϑy ,
respectively. As the concentrated loads P∗x and P∗y are applied to the rigid bar shown in Figure 1, the
laminate undergoes the uniform edge displacements 1x and 1y . Associated with these uniform edge
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displacements are the extensional spring stiffnesses, sx and sy . The potential energy that results from the
elastic deformation of the springs, consistent with the {3, 0}-theory used herein, is given by

�=
1
2

∫
0u

(ũ− ũ∗)T ku(ũ− ũ∗) d0+ 1
2

∫
01

(ũ−1)T ku(ũ−1) d0, (18)

where the vectors ũ, ũ∗, and 1, and the matrices ku and k1, are defined as

ũT
= {ũx , ũ y, ũz, ϑ̃x , ϑ̃y}, (19a)

ũ∗
T
= {ũ∗x , ũ∗y, ũ∗z , ϑ̃

∗

x , ϑ̃
∗

y }, (19b)

1T
= {1x ,1y, 0, 0, 0}, (19c)

and

ku =


Sx

Sy

Sz

Jϑx

Jϑy

 , k1 =


Sx

Sy

0
0

0

 . (19d)

The potential energy of the lateral pressure p∗, the external edge tractions (t∗x , t∗y , t∗z ), and the concen-
trated forces P∗x and P∗y acting on the rigid end-bar is given by

V =
∫
0σ

∫ h/2

−h/2
(t∗x Ũx + t∗y Ũy + t∗z Ũz) dz d0+

∫
A

p∗Uz d A+ P∗x 1x + P∗y1y . (20)

Substituting (1), (2), and (5) into this expression and integrating through the thickness yields

V =
∫
0σ

(
N ∗x ux + N ∗y u y + N ∗z uz −M∗x

(
uz,x −

6
5h
8xz

)
−M∗y

(
uz,y −

6
5h
8yz

))
d0

+

∫
A

p∗uz d A+ P∗x 1x + P∗y1y, (21a)

or

V =
∫
0σ

T∗T ũ d0+
∫

A
p∗uz d A+ P∗T

1, (21b)

in which the vector containing the resultant forces and moments acting along the boundary is given by

T∗T
= {N ∗x , N ∗y , N ∗z ,−M∗x ,−M∗y }, (22a)

and the prescribed point forces acting on the rigid end-bar are defined as

P∗T
= {P∗x , P∗y , 0, 0, 0}. (22b)

The explicit definitions of the stress and moment resultants (N ∗x , N ∗y , N ∗z ) and (M∗x ,M∗y ) in (22) are given
in Appendix A.
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Equilibrium equations and boundary conditions. The nonlinear equilibrium equations and the corre-
sponding boundary conditions are obtained by requiring the variation of the total potential energy of the
laminate to vanish, that is,

δπ = δU + δ�− δV = 0, (23)

in which δU and δ� represent the variation of strain energies of the laminate and the elastic edge supports
(springs) due to the internal forces, and δV represents the variation of potential energy due to external
boundary loads acting on the surface and around the boundary of the laminate. Their first variations
are readily obtained from (17), (18), and (21) and are given explicitly in Appendix B. The resulting
nonlinear partial differential equations and boundary conditions constitute a boundary-value problem
that defines the stresses and displacements associated with stable and unstable deformation states in
the realm of small strains and moderate rotations. The equations are applicable to laminates subjected
to general loading conditions that exhibit anisotropy that couples all modes of deformation present in
laminates with a general asymmetric lamination scheme. The equations needed to perform linear stress
analysis can be obtained by direct linearization of the nonlinear plate equations. The specific form of
these linearized equations is also given in Appendix B.

When a laminate is subjected to only in-plane loads, with monotonically increasing magnitudes, it
may exhibit a flat stable equilibrium configuration for relatively small magnitudes of the loads. Then, a
load level is reached at which a bent or buckled equilibrium configuration exists. This particular load
level is obtained herein by linearizing the nonlinear plate equation with respect to the flat equilibrium con-
figuration incipient to buckling [Brush and Almroth 1975]. The explicit forms of the resulting equations
for buckling analyses are also given in Appendix B.

5. Solution method

Exact solutions for linear stress and buckling analyses of a composite laminate with a cutout are not
mathematically tractable, especially when transverse shear deformations are included in the analyses.
Therefore, a semianalytical approximate solution was constructed based on the principle of stationary
potential energy.

In this approximate solution method, the midplane displacements ux(x, y), u y(x, y), and uz(x, y)
and the higher-order in-plane deformation modes 8xz(x, y) and 8yz(x, y) are partitioned into global
and local contributions. In particular,

ui = ūi + ¯̄ui with i = x, y, z, (24a)

and
8i z = 8̄i z +

¯̄8i z with i = x, y, (24b)

where single and double overbars represent the global and local quantities, respectively. In the present
formulation, no kinematic admissibility requirements on the local or global functions exist because of
the presence of the elastic springs in the formulation. Robust, uniformly convergent Laurent series
(used for doubly connected regions) are used for the local functions to enhance capturing steep stress
gradients and deformations near a cutout, and complete sets of Chebyshev polynomials are used in
series expansions primarily to capture the overall global response of the laminate. The global functions
are defined to include all of the possible rigid-body modes associated with global translation and rotation
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of the laminate. These rigid-body modes are eliminated in the analysis by enforcing the appropriate
displacement boundary conditions. The Laurent series for the local quantities generally yield multival-
ued displacements. Therefore, single-valuedness of the local quantities must be enforced. This task
is achieved by using Lagrange multipliers to enforce the required constraint conditions. The Lagrange
multipliers can be viewed as the forces that are needed to enforce the corresponding constraints. The
explicit form of the local and global quantities appearing in (24) and the constraint conditions are given
in Appendix C.

In the solution method of the present study, the series expansions for the global and local quantities
appearing in (24) are expressed in matrix form to yield

ui = V T
i q with i = x, y, z, (25a)

8i z = V T
i z q with i = x, y. (25b)

In these expressions, the unknown coefficients of the local and global functions are arranged in the vector
q, which is referred to herein as the vector of generalized coordinates. The explicit form for the vector
of unknowns, q, and the known vector functions, Vi , are given in detail in Appendix C. Using (25), the
total potential energy, π , of the laminate is expressed as

π(q,1,λ)=U (q)+�(q,1)− V (q,1)+W (q,λ), (26)

in which U and � represent the strain energies of the laminate and the elastic edge supports (springs), and
V represents the potential energy due to external boundary loads acting inside and around the boundary
of the laminate. The vector 1 includes the unknown uniform edge-displacements that arise from the
prescribed concentrated loads that are applied through the rigid end-bar. Because elastic edge supports
are used as a means to relax the kinematic admissibility requirements on the assumed displacement
functions, the potential energy of the constraint forces arising from the constraint equations must van-
ish. Therefore, the constraint equations are included in the total potential energy formulation by using
Lagrange multipliers that produce zero potential energy; that is,

W(q,λ)= λT Gcq ≡ 0, (27)

where W is the potential energy of constraint forces, Gc is the coefficient matrix of the constraint
equations, and λ is a vector of Lagrange multipliers. The vector λ contains the unknown Lagrange
multipliers of the constraint equations, and they represent the constraint forces. A detailed derivation is
given in Appendix C.

Stress analysis. Under the presumption of infinitesimal displacement gradients, the potential energy is
linearized by disregarding products of the displacement gradients. Thus, the vector of unknown gener-
alized coordinates of the laminate, q, is associated only with the linear terms in the expression for total
potential energy. The requirement that the first variation of the total potential vanish, δπ = 0, yields the
following equations for linear stress analysis:[

Kqq + Sqq GT
c

Gc 0

]{
q
λ

}
=

{
p∗z + N∗− S∗q

0

}
, (28)
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in which the matrices Kqq and Sqq represent the stiffness of the laminate with a general stacking sequence
and the stiffness of the springs associated with the deformation of the laminate, respectively. The vector
S∗q represents the loading that arises from displacements prescribed along the edges. The load vectors
N∗ and p∗z are associated with the external tractions acting on the unrestrained edges of the laminate and
the distributed loads acting over the surface of the laminate, respectively. The explicit forms of these
matrices and vectors are given in Appendix D. Solving for the unknown vectors, q and λ, in (28) permits
the calculation of the displacements, strains, and stresses at any point of the laminate under general
loading conditions.

Buckling analysis. As mentioned previously, the equations needed to perform buckling analyses are ob-
tained by linearizing the nonlinear field equations about the known flat, stable, equilibrium configuration
incipient to buckling. To simplify the linearization process, the vector of generalized coordinates q, the
uniform edge-displacement vector 1, and the constraint force vector λ are combined into a single vector
of unknowns, Q, given by

QT
= {qT ,1T ,λT

}. (29)

As part of the linearization procedure, the vector Q is expressed as

Q = Q(0)
+ e Q(1), (30)

where Q(0) and Q(1) correspond to the incipient prebuckling and adjacent equilibrium states, respectively,
and e is a real number that can be made as small as required. The vector Q(0) is obtained from a linear
stress analysis and is presumed known in the buckling equations. Next, (30) is used to express the total
potential energy in the form

π(Q)= π (0)(Q(0))+ eπ (1)(Q(0), Q(1))+ e2π (2)(Q(0), Q(1))+ O(e3), (31)

where π (0), π (1), and π (2) are functionals that are defined explicitly in Appendix E. The equations gov-
erning the prebuckling state incipient to buckling are obtained by enforcing

δπ (0) = 0, (32a)

and the equations that define the load level for which an adjacent equilibrium state exists are obtained
from

δπ (2) = 0, (32b)

which is referred to as Treftz’s criterion [Brush and Almroth 1975]. The boundary conditions associated
with (32b) are homogeneous. Hence, the extensional and rotational springs are utilized only to apply
fixed kinematic boundary conditions in the buckling analysis.

Enforcing the variational statement given by (32a) yields the matrix equation

K Q(0)
= F (33a)

for the prebuckling equilibrium states. The boundary conditions associated with (33a) are nonhomo-
geneous, so (33a) constitutes a well-posed linear boundary-value problem. In the solution of buckling
problems, the applied loads are scaled proportionally by a loading parameter λc and, as a result, the
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solution vector Q(0) depends on the loading parameter. Thus, every prebuckling equilibrium state corre-
sponds to a different value of λc. The relationship between the loading parameter, the relative proportions
of the applied loads acting on a plate, and the solution vector Q(0) can be expressed conveniently as

Q(0)
= λc Q(0), (33b)

where Q(0) represents a known prebuckling reference state. Similarly, enforcing the variational statement
given by (32b) and using (33b) yields the matrix equation[

K + λc H(Q(0))
]

Q(1)
= 0, (33c)

which constitutes a linear generalized eigenvalue problem in which the loading parameter λc is the eigen-
value. The smallest positive value of λc represents the smallest load level at which the laminate has a
nonflat adjacent equilibrium state in the shape of the corresponding eigenvector.

The matrices appearing in (33a) and (33c) are given by

K =

 Kqq −sq1 GT
c

−sT
q1 s11 0

Gc 0 0

 , H(Q(0))=

Hs(Q(0)) 0 0
0 0 0
0 0 0

 , (34)

with

Kqq = KC + Sqq , F =


N∗

P∗

0

 . (35)

The matrix KC represents the stiffness of a symmetric laminate, as defined by (D7), and the matrix Sqq

represents the stiffness of the springs associated with the deformation of the laminate, as defined in (D9a).
The matrix HS , whose explicit form is given in Appendix E, is the stress-induced geometric stiffness of
the laminate. The matrices Sqq , s11, and sq1 represent the stiffness of the springs associated with the
deformation of the laminate, the end-displacements, and their coupling, respectively. The derivation of
these matrices is given in Appendix E. The load vectors N∗ and P∗ that appear in (35) are associated
with the external tractions acting on the unrestrained edges of the laminate and the concentrated in-plane
loads acting on the rigid end-bar, respectively. These vectors are defined as

N∗
T
= {N ∗x , N ∗y , 0, 0, 0, 0, 0}, P∗T = {P∗x , P∗y , 0, 0, 0}. (36)

6. Numerical results

Results for two problems are presented in order to demonstrate the accuracy of the {3, 0}-plate theory
for stress and buckling analyses. The first problem considered is the stress analysis of an angle-ply
laminate with a centrally located circular cutout, subjected to a uniform lateral pressure load, as depicted
in Figure 3 for a general rectangular laminate. The second problem considered is the buckling analysis of
a square laminate that is subjected to uniform end-shortening and has a centrally located circular cutout.
For both of these problems, the dimensions of the square laminate are given by W = L = 10 in and the
cutout diameter is denoted by the symbol d . In addition, each ply is made of graphite-epoxy material with
elastic lamina properties E11 = 18.5× 106 psi, E22 = E33 = 1.6× 106 psi, G12 = G13= 1.0× 106 psi,
G23 = 0.64× 106 psi, ν12 = ν13 = 0.35, and ν23 = 0.25. Results are presented for several laminate
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thickness-to-width ratios, h/W . As the value of this ratio changes, the ply thicknesses, tk , are given by
tk = h/20.

Stress-analysis problem. For this problem, a square [±θ ]5s angle-ply laminate with a centrally located
circular cutout is subjected to a uniform transverse pressure with a unit-magnitude intensity of p0 = 1 psi,
as depicted in Figure 3. The laminate is simply supported along the edges x = 0 and x =W , such that

ũz(x, y)= 0, ϑ̃y(x, y)= 0, (37a)

and is clamped along the edges y = 0 and y =W , such that

ũx(x, y)= 0, ũ y(x, y)= 0, ũz(x, y)= 0, ϑ̃x(x, y)= 0, ϑ̃y(x, y)= 0. (37b)

Several results were obtained for this problem by using the analysis process of the present study.
Corresponding results were also obtained from finite element analysis (FEA) based on the {1, 2}-plate
theory of [Tessler and Saether 1991]. The finite element implementation of this theory was developed
in [Tessler 1993] for linear analysis and extended to geometrically nonlinear analysis in [Barut et al.
1998]. The nonlinear element has three nodes with six degrees of freedom per node, and two additional
element-dependent C−1 continuous fields that represent higher-order transverse displacement modes. As
a result of a convergence study, the finite element model used consists of 6400 elements and 3360 nodes.
In contrast, converged results were obtained with the present {3, 0}-plate theory by using Chebyshev
polynomial series with 12 terms for the global displacement quantities and Laurent series with 6 terms
for the local displacement quantities. The total number of unknowns in the solution vector, without the
additional three constraint equations arising from the removal of the redundancy of the local kinematic
field, is 575.

Critical in-plane stresses are expected to exist at the intersections of the cutout boundary with the
cutout diameter that is parallel to the clamped edges. One of these points is labeled as A and located at
the coordinates (x, y, z)= (5+ d/2, 5, 0), where d is the cutout diameter. Similarly, critical transverse
shear stresses are expected to occur at the midpoint of the straight laminate edges. These points are
labeled B and C , and are located, respectively, at the coordinates (10, 5, 0) and (5, 10, 0). Therefore,

Tk

Simply supported

Simply supported

Clamped

y z

x

Clamped

C

A B

W

h

L

a

p*

Figure 3. Square laminate with a central circular cutout, subjected to a uniform trans-
verse pressure.
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three points on the laminate midplane were selected for comparisons of selected stress variations obtained
from the present analysis and the FEA.

Results are presented in Table 1 for [±45]5s laminates with a fixed thickness-to-width ratio given by
h/W = 0.1. In particular, values of the out-of-plane displacement at the point (x, y, z)= (5+ d/2, 5, 0)
are given for select cutout sizes in the range 0.2≤ d/W ≤ 0.6. These results indicate small differences
between the displacements predicted by the two analyses that range from 0.47% to 1.65% as the cutout
size increases from d/W = 0.2 to 0.6. Additional results are presented in Table 2 for the [±45]5s

laminates with a fixed cutout size given by d/W = 0.3 and for select values of 0.05 ≤ h/W ≤ 0.2.
These results correspond to the point (x, y, z)= (6.5, 5, 0) and also indicate small differences between
the displacements predicted by the two analyses that range from 0.81% to 1.12% as the thickness-to-
width ratio increases from h/W = 0.05 to 0.2. Similar results are presented in Table 3 for [±θ ]5s

uz (in) ×105

d/W Present: {3, 0} FEA: {1, 2} % Difference

0.2 4.25 4.23 0.47
0.3 3.86 3.84 0.52
0.4 3.23 3.21 0.62
0.5 2.52 2.49 1.19
0.6 1.82 1.79 1.65

Table 1. Out-of-plane displacement at (x, y, z)= (5+d/2, 5, 0) for [±45◦]5s laminates
with h/W = 0.1 as a function of cutout size d/W .

uz (in) ×105)
h/W Present: {3, 0} FEA: {1, 2} % Difference

0.05 19.79 19.63 0.81
0.10 3.234 3.208 0.80
0.15 1.285 1.274 0.86
0.20 0.717 0.709 1.12

Table 2. Out-of-plane displacement at (x, y, z)= (6.5, 5, 0) for [±45◦]5s laminates with
d/W = 0.3 as a function the thickness-to-width ratio h/W .

uz (in) ×105)
θ Present: {3, 0} FEA: {1, 2} % Difference

0 8.243 8.200 0.52
30 4.144 4.099 1.09
60 2.905 2.879 0.90
90 3.085 3.070 0.49

Table 3. Out-of-plane displacement at (x, y, z) = (6.5, 5, 0) for [θ/−θ ]5s laminates
with d/W = 0.3 and h/W = 0.1 as a function of the fiber angle θ .
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Figure 4. Effect of cutout size on the through-the-thickness variation of σyy at point A
for a square [±45]5s graphite-epoxy laminate with a central circular cutout, subjected to
uniform pressure (h/W = 0.1).

laminates with a fixed thickness-to-width ratio given by h/W = 0.1 and a fixed cutout size given by
d/W = 0.3. Specifically, results are given for select values of the ply orientation angle in the range
0≤ θ ≤ 90 degrees. These results also correspond to the point (x, y, z)= (6.5, 5, 0) and indicate a very
small effect of variations in the fiber angle.

Variations of through-the-thickness normal stress σyy at point A on the cutout edge, normalized by the
magnitude of the applied pressure, are shown in Figure 4 for a [±45]5s laminate with a thickness-to-width
ratio of h/W = 0.1. Similarly, distributions of the normalized transverse shearing stresses σxz at point B
on the simply supported edge and σyz at point C on the clamped edge are shown for this laminate in
Figure 5. Several curves are shown in each figure for values of cutout diameter-to-width ratios given by
d/W = 0.2, 0.3, 0.4, 0.5, and 0.6. The black solid lines correspond to results from the present analysis

Figure 5. Effect of cutout size for a square [±45]5s graphite-epoxy laminate with a
central circular cutout, subjected to uniform pressure (h/W = 0.1). Left: through-
the-thickness variation of σxz at point B (simply supported edge). Right: through-the-
thickness variation of σyz at point C (clamped edge).
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Figure 6. Effect of the plate thickness-to-width ratio on the through-the-thickness vari-
ation of σyy at point A for a square [±45]5s graphite-epoxy laminate with a central
circular cutout, subjected to uniform pressure (d/W = 0.3).

and the red dashed lines with triangular symbols correspond to results from the FEA. Discontinuities in
the point-wise slope of the curves are associated with the piecewise constant lamina properties that are
used to calculate stresses based on continuous through-the-thickness strain distributions.

The results in Figure 4 indicate that the present analysis yields a nonlinear variation σyy/p0 at point A
whereas the finite-element solution based on the {1, 2}-plate theory yields a linear variation. Although
results from the two analyses are only shown for d/W = 0.2, similar results were obtained for the other
values of d/W that show the same trend. The maximum difference in the stresses predicted by the two
theories is 26%, in contrast to the maximum difference in the corresponding out-of-plane displacements,
which is less than 2%.

The results in Figure 5 indicate that the present analysis and the FEA yield identical through-the-
thickness transverse shear stress distributions at points B and C , with slightly different amplitudes. The
largest difference in the transverse shear stresses for the two plate theories is 2%. In these figures, the
red dashed lines with triangular symbols (FEA) are shown only for the two extreme cases of d/W = 0.2
and 0.6, for clarity. Altogether, the results in Figures 4 and 5 indicate that the variation of the in-plane
and transverse shear stresses diminishes with increasing cutout size. This trend is expected because
increasing the hole size decreases the extent of loading surface and, as a result, reduces the net force
applied to the laminate. Reducing the net applied force reduces the magnitude and through-the-thickness
variation of all the stresses.

Variations of through-the-thickness normal stress σyy at point A on the cutout edge, normalized by the
magnitude of the applied pressure, are shown in Figure 6 for a [±45]5s laminate with a cutout diameter-
to-width ratio d/W = 0.3. Similarly, distributions of the normalized transverse shearing stresses σxz

at point B on the simply supported edge and σyz at point C on the clamped edge are shown for this
laminate in Figure 7. Several curves are shown in each figure for values of thickness-to-width ratios of
h/W = 0.05, 0.10, 0.15, and 0.20. The black solid lines correspond to results from the present analysis
and the red dashed lines with triangular symbols correspond to results from the FEA. Discontinuities in
the point-wise slope of these curves are also associated with the piecewise constant lamina properties
that are used to calculate stresses based on continuous through-the-thickness strain distributions.
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Figure 7. Effect of the plate thickness-to-width ratio for a square [±45]5s graphite-
epoxy laminate with a central circular cutout, subjected to uniform pressure (d/W = 0.3).
Left: through-the-thickness variation of σxz at point B (simply supported edge). Right:
through-the-thickness variation of σyz at point C (clamped edge).

As expected, the results in Figure 6 also indicate that the present analysis yields a nonlinear variation
σyy/p0 at point A whereas the finite-element solution based on the {1, 2}-plate theory yields a linear
variation. Although results from the two analyses are only shown for h/W = 0.05, similar results were
obtained for the other values of h/W that show the same trend. Altogether, the maximum differences
in the in-plane and transverse shear stresses predicted by the two theories for h/W = 0.05 and 0.1 are
29% and 4.8%, respectively. The results in Figures 6 and 7 also show an increase in stresses as h/W
decreases. This increase in stresses is due to the reduction in bending stiffness with decreasing h/W and
the fact that the laminate must carry the same applied load.

The effect of fiber angle, θ , on through-the-thickness variation σyy at point A located on the cutout
edge is shown for [±θ ]5s laminates with d/W = 0.3 and h/W = 0.1 in Figure 8. The corresponding

Figure 8. Effect of fiber angle on the through-the-thickness variation of σyy at point A
for a square [±θ ]5s graphite-epoxy laminate with a central circular cutout, subjected to
uniform pressure (d/W = 0.3, h/W = 0.1).
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Figure 9. Effect of fiber angle for a [±θ ]5s graphite-epoxy laminate with a central cir-
cular cutout, subjected to uniform pressure (d/W = 0.3, h/W = 0.1). Left: through-
the-thickness variation of σxz at point B (simply supported edge). Right: through-the-
thickness variation of σyz at point C (clamped edge).

distributions of the normalized transverse shearing stresses σxz at point B (on the simply supported edge)
and σyz at point C (on the clamped edge) are shown for this laminate in Figure 9. Several curves are
shown in each figure for values of θ = 0, 30, 60, and 90 degrees. The black solid lines correspond
to results from the present analysis and the red dashed lines with triangular symbols for θ = 0 and
90 degrees correspond to results from the FEA. Discontinuities in the point-wise slope of these curves
are also associated with the piecewise constant lamina properties that are used to calculate stresses based
on continuous through-the-thickness strain distributions.

The results in Figure 8 show that the largest variation in the in-plane stress σyy occurs for θ = 0 degrees.
Similarly, the results in Figure 9 show the largest variations in σxz and σyz for θ = 30 and 60 degrees,
respectively. The results in Figure 8 also show better agreement in predicted values of σyy at point A
obtained from the two theories for θ = 90 degrees than for θ = 0 degrees. Likewise, the results in
Figure 9, right, show better agreement in predicted values of σyz at point C for θ = 90 degrees than for
θ = 0 degrees. In contrast, the results in Figure 9, left, show better agreement in predicted values of σxz

at point B for θ = 0 degrees than for θ = 90 degrees.

Buckling-analysis problem. The second problem considered is buckling of a square [+θ5/−θ5]s lami-
nate with a central circular cutout, subjected to uniform end-shortening, as shown in Figure 10. This
pathological family of laminates was chosen because of the high degree of anisotropy that exists in
the form of coupling between pure-bending and twisting deformations. The dimensions of this square
laminate are also given by W = L= 10 in and the diameter of the cutout is specified as d= 6 in. The values
of the thickness-to-width ratios considered for this problem are h/W ≤ 0.05, and were chosen such that
elastic buckling is likely to occur prior to a first-ply failure. This range of h/W values was determined
by using the point-stress failure criteria of [Whitney and Nuismer 1974] with a critical strength value
of X = 320 ksi. Two sets of boundary conditions are also considered. Specifically, the edges at x = 0
and x =W are simply supported, and those at y = 0 and y = L are either simply supported or clamped.
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Figure 10. Square laminate with a circular cutout, subjected to uniform end-shortening.

The load is introduced into the laminate as a uniform end-shortening, 1y , that results from applying the
concentrated force −P∗y to a rigid end-bar. In addition, the unloaded lateral edges are free to expand and
contract. In particular, the two sets of boundary are specified and designated as follows.

• Two simply supported and two clamped opposite edges (SS-CL):

ũz = ϑ̃y = 0 at x = 0 and x =W, (38a)

ũ y = ũz = ϑ̃x = ϑ̃y = 0 at y = 0, (38b)

ũz = ϑ̃x = ϑ̃y = 0 and ũ y =1y through − P∗y at y = L . (38c)

• All edges simply supported (SS-SS):

ũz = ϑ̃y = 0 at x = 0 and x =W, (39a)

ũ y = ũz = ϑ̃x = 0 at y = 0, (39b)

ũz = ϑ̃x = 0 and ũ y =1y through − P∗y at y = L . (39c)

Several buckling predictions obtained by using the present analysis were compared with corresponding
results obtained from the FEA based on a {1, 2}-order plate theory developed in [Barut et al. 1998]. In
these analyses, converged solutions were obtained by using the finite element model with 6400 elements
and 3360 nodes that was used in the stress analyses. Likewise, 12-term Chebyshev polynomial series
and 6-term Laurent series were used in the present analysis. In addition, corresponding results were also
obtained by using the semianalytical method developed in [Barut and Madenci 2001], which is based on
classical laminated plate theory (CLPT) and formulated in a manner similar to the present analysis.

The buckling loads obtained by using the three analysis methods are presented in Tables 4 and 5 for
[+θ5/−θ5]s laminates with h/W = 0.035 and d/W = 0.6. The results in Tables 4 and 5 are for laminates
with SS-CL and SS-SS boundary conditions, respectively, and are given for select values of the fiber angle
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Figure 11. Effects of boundary conditions and transverse shear flexibility on the buck-
ling resistance of [+θ5/−θ5]s angle-ply laminates with a central circular cutout, sub-
jected to uniform end-shortening (h/W = 0.035, d/W = 0.6).

θ . These results are also shown in Figure 11, where the buckling load is given in nondimensional form as
PcrW/(π2 D), and where D denotes the bending stiffness defined as D = ET h3/[12(1− ν2

LT)] and Pcr is
the value of the applied load at buckling. The results obtained from the present analysis are represented
by the solid lines in the figures, FEA results are represented by the thick-dashed lines, and results based
on CLPT are represented by the dash-dotted lines. Also, the red and black lines correspond to results for
the SS-CL and SS-SS boundary conditions, respectively.

The results in these tables and in Figure 11 show very good agreement between the present analysis and
the FEA. For all values of θ the differences in the buckling loads predicted by the two shear-deformation-
based theories are less than 3%. The results also indicate maximum differences between the buckling
loads obtained by using the present analysis and the CLPT analysis of approximately 6% and 9% for the

Buckling load (kips)
Fiber angle, θ (deg) Present: {3, 0} FEA: {1, 2} CLPT

0 55.646 57.463 56.504
15 73.762 75.043 75.892
30 114.532 114.000 121.201
45 156.650 156.490 167.471
60 198.143 199.574 213.171
75 228.638 230.546 246.813
90 235.416 236.930 256.077

Table 4. Buckling loads of [+θ5/−θ5]s angle-ply laminates with a central circular
cutout, subjected to uniform end-shortening, with SS-CL boundary conditions (h/W =
0.035, d/W = 0.6).



STRESS AND BUCKLING ANALYSES OF LAMINATES WITH A CUTOUT USING A {3, 0}-PLATE THEORY 849

Figure 12. Effect of thickness-to-width ratio and transverse shear flexibility on the
buckling resistance of angle-ply laminates with a central circular cutout, subjected to
uniform end-shortening (d/W = 0.6). Left: [+45◦5/−45◦5]s laminate. Right: [90◦]20

unidirectional laminate.

laminates with SS-SS and SS-CL boundary conditions, respectively. Moreover, the maximum difference
occurred for θ = 30 and 90 degrees for the laminates with SS-SS and SS-CL boundary conditions,
respectively. The results in Figure 11 also indicate that the boundary conditions influence the importance
of transverse shear flexibility in addition to how fiber angle affects buckling resistance.

The effects of the thickness-to-width ratio h/W on the buckling predictions for [+θ5/−θ5]s angle-
ply laminates with d/W = 0.6 are shown in Figure 12 for θ = 45 and 90 degrees. Laminates with
θ = 45 degrees have a very high degree of anisotropy in the form of coupling between pure-bending and
twisting deformations. In contrast, laminates with θ = 90 degrees are unidirectional, aligned with the
loading direction, and have a very high degree of orthotropy. Two groups of curves, one red and one

Buckling load (kips)
Fiber angle, θ (deg) Present: {3, 0} FEA: {1, 2} CLPT

0 55.012 56.270 55.523
15 63.399 64.226 65.254
30 82.521 82.667 86.091
45 92.826 93.636 96.268
60 88.736 89.926 92.261
75 77.121 77.438 78.997
90 71.160 70.701 72.464

Table 5. Buckling loads of [+θ5/−θ5]s angle-ply laminates with a central circular
cutout, subjected to uniform end-shortening, with SS-SS boundary conditions (h/W =
0.035, d/W = 0.6).
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black, are shown in each figure, corresponding to laminates with SS-SS and SS-CL boundary conditions,
respectively. In each group of curves, the solid lines correspond to results obtained with the present
analysis, while thick dashed and dash-dotted lines correspond to results obtained from the CLPT-based
analysis and the FEA, respectively.

The results in Figure 12, left, for θ = 45 degrees, generally show discrepancies between the results
obtained by using all three analysis methods that are more pronounced for the SS-CL than for the SS-
SS boundary condition. For the thinner laminates, the results obtained from the present analysis and the
CLPT-based analysis are in very good agreement, but neither set of results agrees with the corresponding
results obtained by using the FEA. For the thinner laminates, the FEA overpredicts the buckling loads.
As the laminate thickness increases, the agreement between the results obtained from the present analysis
and the FEA becomes very good, but neither set of results agrees with the corresponding results obtained
by using the CLPT-based analysis. In addition, the CLPT results significantly overpredict the buckling
loads for the larger values of h/W . In particular, the largest difference in the results obtained from the
CLPT-based analysis and the two shear-deformation-based analyses is 11% for the SS-SS laminates and
5% in the case of SS-CL laminates, for the upper limit of h/W = 0.05 shown in the figure. The results in
Figure 12, right, for θ = 90 degrees, show the same trends for the SS-CL laminates; however, the results
for the SS-SS laminates obtained from the three analysis methods are in very good agreement. The largest
differences in the results obtained from the CLPT-based analysis and the two shear-deformation-based
analyses are 15% for the SS-SS laminates and less than 2% in the case of SS-CL laminates, for the upper
limit of h/W = 0.05 shown in Figure 12, left.

Typical buckling modes are shown in Figures 13 and 14 for the laminates with θ = 45 and 90 degrees,
respectively, and with h/W = 0.035 and d/W = 0.6. Two modes are shown in each figure that correspond
to the SS-CL and SS-SS boundary conditions. The mode shapes shown in Figure 13 for the laminates with

Figure 13. Buckling modes for a [45◦5/−45◦5]s laminate with h/W = 0.035 and
d/W = 0.6: (a) SS-CL and (b) SS-SS boundary conditions.
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Figure 14. Buckling modes for a [90◦]20 laminate with h/W = 0.035 and d/W = 0.6:
(a) SC and (b) SS-type boundary conditions.

θ = 45 degrees are skewed for both boundary-condition cases, as a result of the high degree of bending-
twisting anisotropy. In addition, the buckle pattern for the SS-CL boundary condition (Figure 13a) is
flatter than that for the SS-SS boundary condition (Figure 13b), as expected. The buckle patterns shown
in Figure 14 for the laminates with θ = 90 degrees exhibit bilateral symmetry for both sets of boundary
conditions. However, the buckle pattern for the unidirectional laminate with the clamped loaded edges
exhibits three half waves in the horizontal x-direction (weak direction), as shown in Figure 14a, as
compared to one half wave for the SS-SS laminate shown in Figure 14b. The buckling mode shown in
Figure 14a for the SS-CL boundary conditions has the same features as the experimentally determined
buckle pattern of a similar specially orthotropic plate that was presented in [Nemeth 1990].

7. Conclusions

A semianalytical solution method for predicting the bending and buckling behavior of a moderately
thick laminate with a cutout has been presented. The analysis method has been validated for linear stress
analyses of laminates with a cutout and subjected to uniform lateral pressure against corresponding
results obtained from finite element analyses (FEA) based on a {1, 2} shear deformation plate theory
appearing in the literature. The agreement between the present method and the FEA was found to be
excellent. In all cases considered, the maximum difference in the out-of-plane displacements predicted
by the two methods is less than 2%. Comparisons of the through-the-thickness stress variations also
showed favorable agreement between the two approaches, despite the fact that the FEA are based on a
plate theory that cannot capture nonuniform through-the-thickness variations of the in-plane stresses for
thick plates.
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The present method has also been validated for the buckling analyses of pathological highly orthotropic
and highly anisotropic laminates with relatively large cutouts, subjected to uniform end-shortening. Com-
parisons of results obtained by the present method with the corresponding results obtained from the FEA
and from a similar semianalytical solution method based on CLPT have been presented for two sets
of boundary conditions. The comparisons with the FEA show close agreement between the two shear-
deformation-based analyses, for the most part. Differences were found for relatively small values of the
thickness-to-width ratio, h/W . In contrast, very good agreement between the present analysis and the
FEA was found for the larger values of h/W . Results have also been presented that show the effects of
laminate orthotropy and anisotropy, and boundary conditions, on the importance of including transverse
shear flexibility in the analysis. Overall, the analysis method presented herein successfully captures the
effects of transverse shear flexibility and represents boundary conditions adequately, which is problematic
for some analyses based on a transverse shear deformation theory.

Appendix A: Stress resultants and constitutive equations

The stress resultants appearing in (12) are defined as
Nxx

Nyy

Nxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 dz,


Mxx

Myy

Mxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 z dz, (A1a)


Fxx

Fyy

Fxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

3(z) dz,
{

qxz

qyz

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
3′(z) dz, (A1b)

where h is the plate thickness. In terms of the notation used in [Ray 2003],
Fxx

Fyy

Fxy

= 3
2h


Mxx

Myy

Mxy

− 4
3h2


Pxx

Pyy

Pxy


, {

fxz

fyz

}
=

3
2h

({
Qx

Q y

}
−

4
h2

{
Rx

Ry

})
, (A1c)

where Qx and Q y are the transverse shear stress resultants of CLPT given by{
Qxz

Q yz

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
dz, (A2a)

and 
Pxx

Pyy

Pxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 z3 dz,
{

Rx

Ry

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
z2 dz. (A2b)

The constitutive equations used in the present theory are those for a plate made of one or more layers of
linear elastic, specially orthotropic materials. As a result, the plate is generally inhomogeneous through
the thickness. These equations, referred to the corresponding (x, y, z) plate coordinate system, are given
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by 
σxx

σyy

σxy

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


εxx

εyy

γxy

 ,
{
σyz

σxz

}
=

[
C44 C45

C45 C55

]{
γyz

γxz

}
, (A3)

where the subscripted σi j with i, j = x, y, z are the stress components, Qi j = Qi j (z) are the transformed,
reduced stiffness matrix coefficients of CLPT, and C i j = C i j (z) are the transformed transverse shearing
stiffnesses of the FSDT [Jones 1975]. These equations reveal that, if the transverse shearing strains
vanish on the bounding surfaces of a plate, the transverse shearing stresses also vanish on the bounding
surfaces of the plate.

The submatrices in (16) are defined as

A=

A11 A12 A16

A12 A22 A26

A16 A26 A66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 dz, (A4a)

B =

B11 B12 B16

B12 B22 B26

B16 B26 B66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 z dz, (A4b)

D =

D11 D12 D16

D12 D22 D26

D16 D26 D66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 z2 dz, (A4c)

E =

E11 E12 E16

E12 E22 E26

E16 E26 E66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

3(z) dz, (A4d)

F =

F11 F12 F16

F12 F22 F26

F16 F26 F66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

3(z)z dz, (A4e)

H =

H11 H12 H16

H12 H22 H26

H16 H26 H66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 (3(z))2 dz, (A4f)

G =
[

G55 G45

G45 G44

]
=

∫
+h/2

−h/2

[
C55 C45

C45 C44

]
(3′(z))2 dz. (A4g)

Substituting the strain expressions given by (7a) and (7b) into the stresses given by (A3) and perform-
ing the through-the-thickness integrations in (A1) yields the laminate constitutive equations as

N = Aε0
+ Bκ0

+ E00, M = Bε0
+ Dκ0

+ F00, F = Eε0
+ Fκ0

+ H00, (A5a)

f = G8. (A5b)

For the laminated plates investigated in [Ray 2003], the expression

3(z)= 3
2(z/h)− 2(z/h)3 (A6)
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was used to obtain the laminate constitutive equations given by (A5a). In particular, using (A6) with
(A5a) the constitutive equations reduce to

N = Aε0, M = Dκ0
+ F00, F = Fκ0

+ H00, (A7)

for symmetrically laminated plates. The first of these equations indicates that there is no coupling be-
tween membrane action and bending or transverse shearing actions. In contrast, the last two parts of
(A7) indicate strong coupling between bending and/or transverse shearing actions.

The resultant forces and moments appearing in (22) that are associated with the applied edge tractions
are defined as

N ∗x =
∫ h/2

−h/2
t∗x dz, N ∗y =

∫ h/2

−h/2
t∗y dz, N ∗z =

∫ h/2

−h/2
t∗z dz, (A8a)

M∗x =
∫ h/2

−h/2
zt∗x dz, M∗y =

∫ h/2

−h/2
zt∗y dz. (A8b)

Appendix B: Nonlinear and linearized forms of equations for stress and buckling analyses

The first variations of the strain energies of the laminate, the elastic edge supports (springs) due to the
internal forces, and the potential energy due to external boundary loads acting on the surface and around
the boundary of the laminate, δU , δ�, and δV , respectively, are derived in the form

δU =−
∫

A

{
(Nxx,x + Nxy,y)δux + (Nyy,y + Nxy,x)δu y

+
(
Mxx,xx + 2Mxy,xy +Myy,yy + [Nxx uz,x + Nxyuz,y],x + [Nyyuz,y + Nxyuz,x ],y

)
δuz

+ (Fxx,x + Fxy,y − qxz)δ8xz + (Fyy,y + Fxy,y − qyz)δ8yz
}

d A

+

∫
0

{
(Nxx nx+Nxyny)δux + (Nyyny+Nxynx)δu y

+
(
Mxx,x nx+Myy,yny+Mxy,ynx+Mxy,x ny+Nxx uz,x nx+Nyyuz,yny+Nxyuz,x ny+Nxyuz,x ny

)
δuz

− (Mxx nx+Mxyny)δuz,x − (Myyny+Mxynx)δuz,y+ (Fxx nx+Fxyny)δ8xz+ (Fyyny+Fxynx)δ8yz
}

d0,
(B1a)

δ�=

∫
0u

{
Sx(ux − ũ∗x)δux + Sy(u y − ũ∗x)δu y + Sz(uz − ũ∗x)δuz

+ Jϑx

(
uz,x −

6
5h
8xz − ϑ̃

∗

x

)(
δuz,x −

6
5h
δ8xz

)
+ Jϑy

(
uz,y −

6
5h
8yz − ϑ̃

∗

y

)(
δuz,y −

6
5h
δ8yz

)}
d0

+

∫
01

{
sx(ux −1x)δ(ux −1x)+ sy(u y −1y)δ(u y −1y)

}
d0, (B1b)

and

δV =
∫
0σ

N ∗x δux + N ∗y δu y + N ∗z δuz −M∗x uz,x −M∗y δuz,y +
5

6h
M∗x δ8xz +

5
6h

M∗y δ8yz d0

+

∫
A

p∗δuz d A+ P∗x 1x + P∗y1y . (B1c)
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Substituting these expressions for δU , δ�, and δV into (23) and enforcing the fundamental theorem of
the calculus of variations leads to the equilibrium equations

Nxx,x + Nxy,y

Nxy,x + Nyy,y

Mxx,xx + 2Mxy,xy +Myy,yy + Nxx uz,xx + 2Nxyuz,xy + Nyyuz,yy − p∗

Fxx,x + Fxy,y − fxz

Fxy,x + Fyy,y − fyz

= 0. (B2)

For external forces and moments applied along the boundary 0σ , the boundary conditions are obtained
as

(bx + b1x)nx + (by + b1y)ny = f ∗, (B3)

where
bT

x = {Nxx , Nxy, (Mxx,x+Mxy,y),Mxx ,Mxy, Fxx , Fxy},

bT
1x = {0, 0, (Nxx uz,x+Nxyuz,y), 0, 0, 0, 0},

bT
y = {Nxy, Nyy, (Mxy,x+Myy,y),Mxy,Myy, Fxy, Fyy},

bT
1y = {0, 0, 0, (Nxyuz,x+Nyyuz,y), 0, 0, 0},

f ∗T =
{

N ∗x , N ∗y , N ∗z ,M∗x ,M∗y ,
6

5h
M∗x ,

6
5h

M∗y
}
.

(B4)

For prescribed displacements and rotations applied through the elastic springs along the boundary 0u ,
with unit normal n, the boundary conditions are obtained as

(cx + c1x)nx + (cy + c1y)ny + cu + c1 = g∗u + g∗1, (B5)

where

cT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),−Mxx ,−Mxy, Fxx , Fxy, 0, 0},

cT
1x = {0, 0, (Nxx uz,x + Nxyuz,y), 0, 0, 0, 0, 0, 0},

cT
y = {Nxy, Nyy, (Mxy,x +Myy,y),−Mxy,−Myy, Fxy, Fyy, 0, 0},

cT
1y = {0, 0, 0, (Nxyuz,x + Nyyuz,y), 0, 0, 0, 0, 0},

cT
u =

{
Sx ux , Syu y, Szuz, Jϑx

(
uz,x −

6
5h
8xz

)
, Jϑy

(
uz,y −

6
5h
8yz

)
,

−
6

5h
Jϑx

(
uz,x −

6
5h
8xz

)
,−

6
5h

Jϑy

(
uz,y −

6
5h
8yz

)
, 0, 0

}
,

cT
1 = {sx(ux −1x), sy(u y −1y), 0, 0, 0, 0, 0, sx(1x − ux), sy(1y − u y)},

g∗
T

u =

{
Sx ũ∗x , Sy ũ∗y, Sx ũ∗z , Jϑxϑ

∗

x , Jϑyϑ
∗

y ,−
6

5h
Jϑxϑ

∗

x ,−
6

5h
Jϑyϑ

∗

y , 0, 0
}
,

g∗
T

1 =

{
0, 0, 0, 0, 0, 0, 0,

P∗x
L
,

P∗y
L

}
.

(B6)
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Equations for stress analysis. The equations needed to perform a linear stress analysis are obtained by
direct linearization of the nonlinear plate equations. Under the presumption of infinitesimal displacement
gradients, the product terms appearing in the in-plane strains given by (7d) and the equilibrium equations
given by (B2) are neglected. The resulting equilibrium equations are

Nxx,x + Nxy,y

Nxy,x + Nyy,y

Mxx,xx + 2Mxy,xy +Myy,yy − p∗

Fxx,x + Fxy,y − fxz

Fxy,x + Fyy,y − fyz

= 0. (B7)

Similarly, the boundary conditions on 0σ that are given by (B3) reduce to

bx nx + byny = f ∗, (B8)

where the vectors are defined as

bT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),Mxx ,Mxy, Fxx , Fxy},

bT
y = {Nxy, Nyy, (Mxy,x +Myy,y),Mxy,Myy, Fxy, Fyy},

f ∗
T
=

{
N ∗x , N ∗y , N ∗z ,M∗x ,M∗y ,

6
5h

M∗x ,
6

5h
M∗y
}
.

(B9)

For the boundary 0u , the boundary conditions given by (B5) reduce to

cx nx + cyny + cu + c1 = g∗u + g∗1, (B10)

where the vectors are defined as

cT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),−Mxx ,−Mxy, Fxx , Fxy, 0, 0},

cT
y = {Nxy, Nyy, (Mxy,x +Myy,y),−Mxy,−Myy, Fxy, Fyy, 0, 0},

cT
u =

{
Sx ux , Syu y, Szuz, Jϑx

(
uz,x −

6
5h
8xz

)
, Jϑy

(
uz,y −

6
5h
8yz

)
,

−
6

5h
Jϑx

(
uz,x −

6
5h
8xz

)
,−

6
5h

Jϑy

(
uz,y −

6
5h
8yz

)
, 0, 0

}
,

cT
1 = {sx(ux −1x), sy(u y −1y), 0, 0, 0, 0, 0, sx(1x − ux), sy(1y − u y)},

g∗
T

u =

{
Sx ũ∗x , Sy ũ∗y, Sx ũ∗z , Jϑxϑ

∗

x , Jϑyϑ
∗

y ,−
6

5h
Jϑxϑ

∗

x ,−
6

5h
Jϑyϑ

∗

y , 0, 0
}
,

g∗
T

1 =

{
0, 0, 0, 0, 0, 0, 0,

P∗x
L
,

P∗y
L

}
.

(B11)

These equations constitute a linear boundary-value problem that defines the stresses and displacements
associated with stable deformations. Typically, this boundary-value problem has nonhomogeneous partial
differential equations and nonhomogeneous boundary conditions.

Equations for buckling analysis. In a classical linear bifurcation analysis, the displacement field is lin-
earized about a stable, initially flat prebuckling state. In particular, each dependent kinematic variable is
partitioned into a linear prebuckling part plus an infinitesimal increment. The displacement expansions
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are then substituted into the nonlinear strain-displacement relations, the linear constitutive equations, the
nonlinear equilibrium equations, the boundary conditions, and the potential energy. By collecting like
terms and retaining only terms that are linear in the infinitesimal increments of the dependent kinematic
variables, the field equations are separated into two groups. The first group is a set of linear equations
that are a subset of the equations used for the linear stress analysis in which only in-plane loads are
considered and out-of-plane displacements are negligible. This linear boundary-value problem defines
the in-plane stresses and displacements associated with the initial, stable prebuckling state and is referred
to as the prebuckling problem.

The second group of equations, associated with infinitesimal increments in the kinematic variables,
consists of homogeneous linear differential equations and homogeneous boundary conditions. Thus,
these equations constitute a linear boundary-eigenvalue problem, which is referred to as the buckling
problem. This type of analysis presumes that the initial prebuckling configuration of the laminate is
flat, which places requirements on the nature of the applied loads. For a general in-plane loading state
and multiply connected domain, the prebuckling stress state is nonuniform, with respect to the in-plane
coordinates. This nonuniformity manifests itself as variable coefficients in the differential equations that
define the buckling kinematic variables (incremental kinematic variables). Moreover, it is these variable
coefficients that relate the buckling displacement to the magnitude of the in-plane loads.

The stable prebuckling equilibrium state of the plate is denoted by the superscript (0) while the incre-
mental state, just after buckling occurs, is denoted by the superscript (1). It is assumed that the plate is
symmetrically laminated (B = 0) and remains flat prior to buckling. During the linearization procedure,
no out-of-plane displacement and transverse shear deformations occur during the prebuckling state; thus,
u(0)z = 0 and 8(0)xz =8

(0)
yz = 0. Also, the out-of-plane displacement component in the incremental state

is moderately large as compared to the incremental in-plane displacements (von Kármán assumptions
are applied), that is, u(1)z � u(1)x , u(1)y , 8x z(1), 8yz(1). During transition to an adjacent equilibrium state,
the external loads do not change and the prebuckling in-plane stresses are much higher than those in the
incremental state, that is, N (0)

αβ � N (1)
αβ .

Prebuckling equations. In the linearization process, the terms with only superscript (0) are associated
with flat stable equilibrium states and are isolated to obtain the equilibrium equations{

N (0)
xx,x + N (0)

xy,y

N (0)
yy,y + N (0)

xy,x

}
= 0, (B12)

and the boundary conditions

b0x nx + b0yny = f ∗0 , (B13)

on the boundary, 0σ , in which

bT
0x =

{
N (0)

xx , N (0)
xy
}
, bT

0y =
{

N (0)
xy , N (0)

yy
}
, f ∗

T

0 = {N
∗

x , N ∗y }. (B14)

Likewise, linearization gives the boundary conditions

c0x nx + c0yny + c0u + c01 = g∗0u + g∗01 (B15)
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on the boundary, 0u , in which

cT
0x =

{
N (0)

xx , N (0)
xy , 0, 0

}
, cT

0y =
{

N (0)
xy , N (0)

yy , 0, 0
}
, cT

0s =
{

Sx u(0)x , Syu(0)y , 0, 0
}
, (B16a)

cT
01 =

{
sx
(
u(0)x −1

(0)
x
)
, sy
(
u(0)y −1

(0)
y
)
, sx
(
1(0)x − u(0)x

)
, sy
(
1(0)y − u(0)y

)}
, (B16b)

g∗0u
T
=
{

Sx ũ∗(0)x , Sy ũ∗(0)y , 0, 0
}
, g∗01

T
=

{
0, 0,

P∗x
L
,

P∗y
L

}
, (B16c)

where L represents the length of the edge mounted to the rigid bar.

Buckling equations. In the linearization process, the terms involving only superscript (1) correspond to
the adjacent equilibrium state, and products of these small terms are neglected. The equilibrium equations
obtained are 

N (1)
xx,x + N (1)

xy,y

N (1)
yy,y + N (1)

xy,x

M (1)
xx,xx + 2M (1)

xy,xy +M (1)
yy,yy + N (0)

xx u(1)z,xx + 2N (0)
xy u(1)z,xy + N (0)

yy u(1)z,yy

F (1)xx,x + F (1)xy,y − f (1)xz

F (1)yy,y + F (1)xy,x − f (1)yz


= 0, (B17)

and the boundary conditions on the edge 0σ are

(bx + b1x)nx + (by + b1y)ny = 0, (B18)

where
bT

x =
{

N (1)
xx , N (1)

xy ,
(
M (1)

xx,x +M (1)
xy,y

)
,M (1)

xx ,M (1)
xy , F (1)xx , F (1)xy

}
,

bT
y =

{
N (1)

xy , N (1)
yy ,

(
M (1)

xy,x +M (1)
yy,y

)
,M (1)

xy ,M (1)
yy , F (1)xy , F (1)yy

}
,

bT
1x =

{
0, 0,

(
N (0)

xx u(1)z,x + N (0)
xy u(1)z,y

)
, 0, 0, 0, 0

}
,

bT
1y =

{
0, 0, 0,

(
N (1)

xy u(1)z,x + N (1)
yy u(1)z,y

)
, 0, 0, 0

}
.

(B19)

Similarly, the boundary conditions on the edges 0u and 01 obtained from linearization are

(cx + c1x)nx + (cy + c1y)ny + cu + c1 = 0, (B20)

where

cT
x =

{
N (1)

xx , N (1)
xy ,

(
M (1)

xx,x +M (1)
xy,y

)
,−M (1)

xx ,−M (1)
xy , F (1)xx , F (1)xy , 0, 0

}
,

cT
1x =

{
0, 0,

(
N (0)

xx u(1)z,x + N (0)
xy u(1)z,y

)
, 0, 0, 0, 0, 0, 0

}
,

cT
y =

{
N (1)

xy , N (1)
yy ,

(
M (1)

xy,x +M (1)
yy,y

)
,−M (1)

xy ,−M (1)
yy , F (1)xy , F (1)yy , 0, 0

}
,

cT
1y =

{
0, 0, 0,

(
N (0)

xy u(1)z,x + N (0)
yy u(1)z,y

)
, 0, 0, 0, 0, 0

}
,

cT
u =

{
Sx u(1)x , Syu(1)y , Szu(1)z , Jϑx

(
u(1)z,x −

6
5h
8(1)xz

)
, Jϑy

(
u(1)z,y −

6
5h
8(1)yz

)
,

−
6

5h
Jϑx

(
u(1)z,x −

6
5h
8(1)xz

)
,−

6
5h

Jϑy

(
u(1)z,y −

6
5h
8(1)yz

)
, 0, 0

}
,

cT
1 =

{
Sx
(
u(1)x −1

(1)
x
)
, Sy

(
u(1)y −1

(1)
y
)
, 0, 0, 0, 0, 0, Sx

(
1(1)x − u(1)x

)
, Sy

(
1(1)y − u(1)y

)}
.

(B21)
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Appendix C: Representation of the displacement quantities

The local displacement quantities ūi and 8̄i z that appear in (24) are specified in the form of Laurent
series

ūα = 2h(ρ)Re
N∑

n=−N
n 6=0

a(α)n ξ n, ūz = 2h(ρ)Re
N∑

n=−N
n 6=0

a(z)n

∫
ξ n dz̄, 8̄αz = 2h(ρ)Re

N∑
n=−N

n 6=0

a(αz)
n ξ n

(α = x, y), (C1)

where ā(α)n and ā(αz)
n are complex-valued unknown coefficients and the complex variable z̄ is defined as

z̄ = x ′+ iy′ with respect to the local x ′-y′ coordinate system shown in Figure 1. In (C1), all the series
expansions are defined in terms of a complex variable ξ that is analytic outside of a unit circle and related
to the complex variable z̄ through a mapping function ω(z̄) as

z̄ = ω−1(z̄)= rξ − s
ξ
. (C2)

In this mapping, r and s are real-valued constants defined in terms of the cutout geometry as

r = 1
2 (a+ b), (C3a)

and
s = 1

2 (a− b). (C3b)

The mapping function, ω(z̄), transforms the complex plane, z̄, with an elliptic cutout to another complex
plane, ξ , with an internal boundary as a unit-radius circle while the external boundaries preserve their
90 degree angles [Bowie 1956], thus enabling use of Laurent series. Furthermore, a domain-of-influence
function h(ρ) is defined as the fifth-order polynomial

h(ρ)=

1− 10
(
ρ

ρ0

)3
+ 15

(
ρ

ρ0

)4
− 6

(
ρ

ρ0

)5
if 0≤ ρ ≤ ρ0,

0 if ρ ≥ ρ0,

(C4)

in which ρ =
√

x ′ 2+ y′ 2 and ρ0 is the radius of influence of h(ρ) outside the cutout (that is, ρ0 >

max[a, b]). Note that the function h(ρ) and its derivatives vanish for ρ ≥ ρ0.
The global displacement quantities ¯̄ui and ¯̄8αz are specified as Chebyshev series in the form

¯̄uα =
M∑

m=0

m∑
n=0

c(α)mn Tm(s1)Tn(s2),
¯̄8αz =

M∑
m=0

m∑
n=0

c(αz)
mn Tm(s1)Tn(s2) (α = x, y), (C5)

where Tk is the kth term of the Chebyshev series with Tk+1(x)= 2xTk(x)− Tk−1(x) while T0(x)= 1 and
T1(x)= x . The nondimensional coordinates s1 and s2 are defined as s1 = 2x/W and s2 = 2y/L , where
W and L are the characteristic width and length of the plate, respectively.

The vector of unknown generalized coordinates q that appears in (25) contains all the unknown real
and complex-valued constants that appear in (C1) and (C5). Specifically,

qT
= {q̄T

x , q̄T
y , q̄T

z , q̄T
xz,
¯̄qT

yz,
¯̄qT

x ,
¯̄qT

y ,
¯̄qT

z ,
¯̄qT

xz,
¯̄qT

yz}, (C6)
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where

q̄T
α =

{
a(α)
−N

T
, a(α)
−N+1

T
, . . . , a(α)

−1
T
, a(α)1

T
, . . . , a(α)N−1

T
, a(α)N

T }
,

q̄T
αz =

{
a(αz)
−N

T
, a(αz)
−N+1

T
, . . . , a(αz)

−1
T
, a(αz)

1
T
, . . . , a(αz)

N−1
T
, a(αz)

N
T }
,

¯̄qT
α =

{
c(α)00

T
, c(α)10

T
, c(α)01

T
, . . . , c(α)M0

T
, c(α)(M−1)1

T
, c(α)(M−2)2

T
, . . . , c(α)1(M−1)

T
, c(α)0M

T }
,

¯̄qT
αz =

{
c(αz)

00
T
, c(αz)

10
T
, c(αz)

01
T
, . . . , c(αz)

M0
T
, c(αz)
(M−1)1

T
, c(αz)
(M−2)2

T
, . . . , c(αz)

1(M−1)
T
, c(αz)

0M
T }
,

(α = x, y, z).

(C7)
The corresponding vectors of known functions, Vi and Vαz (i = x, y, z;α = x, y) in (25) for all displace-
ment quantities are defined as

V T
x = {V̄

T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T , 0T , 0T
},

V T
y = {0

T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T , 0T
},

V T
y = {0

T , 0T , V̄ T
z , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T
},

V T
xz = {0

T , 0T , 0T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T
},

V T
yz = {0

T , 0T , 0T , 0T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 },

(C8)

where the vectors V̄0, V̄ z, and ¯̄V0 are defined in the form

V̄ T
β =

{
V̄ T
β(−N ), V̄ T

β(−N+1), . . . , V̄ T
β(−1), V̄ T

β(1), . . . , V̄ T
β(N−1), V̄ T

β(N )
}

(β = 0, z), (C9)

with

V̄ T
0(n) = {2 Re[ξ nh(ρ)],−2 Im[ξ nh(ρ)]}, (C10a)

V̄ T
z(n) =

{
2 Re

[(∫
ξ n dz̄

)
h(ρ)

]
,−2 Im

[(∫
ξ n dz̄

)
h(ρ)

]}
, (C10b)

and

¯̄V T
0 = {T0(s1)T0(s2), T1(s1)T0(s2), T0(s1)T1(s2), . . . , TM(s1)T0(s2),

TM−1(s1)T1(s2), . . . , T1(s1)TM−1(s2), T0(s1)TM(s2)}. (C11)

The integral term,
∫
ξ n dz̄, in (C10b) is expressed as

∫
ξ n dz̄ =


r ξ

n+1

n+1
− s ξ

n−1

n−1
if |n|> 1,

r ln ξ + s ξ
−2

2
if n =−1,

r ξ
2

2
− s ln ξ if n = 1.

(C12)

The functions chosen for representing the local displacement quantities produce multivalued modes,
because of the presence of the logarithmic terms in (C12), and must be made single-valued to obtain
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unique representations. In matrix form, the single-valuedness conditions are expressed as

Gcq = 0, (C13)

in which Gc is the coefficient matrix of the constraint equations and is defined as

Gc =

[
Gr

Gs

]
, (C14)

where

GT
r =

{
0T , 0T , . . . , 0T , g(−1), 0T , 0T , . . . , 0T , 0T }, (C15a)

GT
s =

{
0T , 0T , . . . , 0T , 0T , g(1), 0T , . . . , 0T , 0T }, (C15b)

with

gT
(−1) = {0, r}, (C16a)

and

gT
(1) = {0, s}. (C16b)

Note that the subscripts (−1) and (1) denote the locations of the terms in the local series. Finally,
the matrix constraint equations in (C13) are integrated into the total potential energy formulation via
Lagrange multipliers, producing zero potential energy, in the form

W = λT Gcq ≡ 0, (C17)

where W is the potential energy of constraint forces, and λ denotes the vector of unknown Lagrange
multipliers given by

λT
= {λr , λs}, (C18)

where λr and λs denote the unknown constraint forces (Lagrange multipliers) that enforce the conditions
in (C13).

Appendix D: Details of the solution method

Using the representations of the displacement fields in (25), the linearized form of the vector of strain
quantities, e, given by (14b), is expressed in terms of the unknown generalized coordinates as

e= Bq, (D1)

where the matrix B is defined as

B =


Bε

Bκ

B0

B8

 , (D2)
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and the coefficient matrices Bε , Bκ , B0, and B8 are defined as

Bε
=

 V T
x,x

V T
y,y

V T
x,y + V T

y,x

 , Bκ
=

 −V T
z,xx

−V T
z,yy

−2V T
z,xy

 , B0
=

 V T
xz,x

V T
yz,y

V T
xz,y + V T

yz,x

 , B8
=

[
V T

xz

V T
yz

]
. (D3)

The weighted-average boundary displacement vector (19a) is also expressed in terms of the unknown
generalized coordinates as

ũ = ṼB q, (D4)

where the matrix ṼB is defined as

ṼB =


V T

x

V T
y

V T
z

V T
z,x −

6
5 V T

xz

V T
z,y −

6
5 V T

yz

 . (D5)

Substituting the matrix representation of e given by (D1) into the strain energy expression for the laminate
defined by (17) and rearranging the terms, the linearized form of the strain energy is expressed in terms
of the unknown generalized coordinates as

U = 1
2

qT KC q, (D6)

where the matrix KC is defined as

KC =

∫
A

BT C B d A. (D7)

Substituting (D4) for the boundary displacement vector ũ into the strain energy of the elastic spring
supports, given by (18) and rearranging the terms, the linearized form of the strain energy � is expressed
in terms of the unknown generalized coordinates as

�= 1
2 qT Sqq q− qT S∗q +�

∗, (D8)

where the matrix Sqq and the vector S∗q are defined as

Sqq =

∫
0u

Ṽ T
B ku ṼB d0 (D9a)

and

S∗q =
∫
0u

Ṽ T
B ku ũ∗ d0. (D9b)

The strain energy of the elastic spring arising from the applied displacement constraints �∗ is written as

�∗ =
1
2

∫
0u

ũ∗T ku ũ∗ d0. (D10)

Substituting (D4) and the transverse displacement uz given by (25a) into the potential energy of external
loads given by (21) and rearranging the terms, the linearized form of the potential energy V is expressed
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in terms of the unknown generalized coordinates as

V =−qT N∗− qT p∗z , (D11)

where the vectors N∗ and p∗z are defined as

N∗ =
∫
0(σ )

Ṽ T
B T∗ d0, p∗z =

∫
A

p∗Vz d A. (D12)

Appendix E: Details of the bifurcation analysis

In the bifurcation analysis, the displacement vector u, weighted-average boundary displacement vector
ũ, vector of generalized coordinates q, uniform-edge-displacement vector 1, and constraint force vector
λ are expressed as

u = u(0)+ eu(1), (E1a)

ũ = ũ(0)+ eũ(1), (E1b)

q = q(0)+ eq(1), (E1c)

1=1(0)+ e1(1), (E1d)

λ= λ(0)+ eλ(1). (E1e)

By using these expressions, the terms appearing in the potential energy expansion given by (31) are
obtained as

π (0)
(

Q(0))
=U (0)(q(0))+�(0)(q(0),1(0))+ V (0)(q(0),1(0))+W (0)(q(0),λ(0)), (E2a)

π (1)
(

Q(0), Q(1))
=U (1)(q(0), q(1)

)
+�(1)

(
q(0),1(0), q(1),1(1)

)
+ V (1)(q(0),1(0), q(1),1(1)

)
+W (1)(q(0),λ(0), q(1),λ(1)

)
, (E2b)

π (2)
(

Q(0), Q(1))
=U (1)(q(0), q(1)

)
+�(1)

(
q(1),1(1)

)
+W (1)(q(1),λ(1)). (E2c)

The corresponding displacement vectors for the prebuckling and adjacent equilibrium states, u(0) and
u(1), are given by

u(0)T =
{
u(0)x , u(0)y , 0, 0, 0, 0, 0

}
, (E3)

u(1)T =
{
u(1)x , u(1)y , u(1)z ,8(1)xz ,8

(1)
yz , u(1)z,x , u(1)z,y

}
. (E4)

The zero values in (E3) indicate an absence of bending deformations in the prebuckling equilibrium state.
The strain vector e, defined by (14b), becomes

e(x, y)= e(0)(x, y)+ ee(1)(x, y)+ e2e(2)(x, y)+ O(e3), (E5)
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where third-order terms in the parameter e are disregarded. The first three terms in (E5) are given by

e(0)T =
{
u(0)x,x , u(0)y,y, u(0)x,y+u(0)y,x , 0, 0, 0, 0, 0, 0, 0, 0

}
, (E6a)

e(1)T =
{
u(1)x,x ,u

(1)
y,y,u

(1)
x,y+u(1)y,x ,−u(1)z,xx ,−u(1)z,yy,−2u(1)z,xy,8

(1)
xz,x ,8

(1)
yz,y,8

(1)
xz,y+8

(1)
yz,x ,8

(1)
xz ,8

(1)
yz
}
, (E6b)

e(2)T = 1
2

{(
u(1)z,x

)2
,
(
u(1)z,y

)2
, 2u(1)z,x u(1)z,y, 0, 0, 0, 0, 0, 0, 0, 0

}
. (E6c)

Applying the bifurcation procedure to (25), the displacement quantities ui (i = x, y, z) and 8i z (i = x, y)
for each state are found to be

u(k)i = V T
i q(k) with i = x, y, z, 8

(k)
i z = V T

i z q(k) with i = x, y, (E7)

in which k = 0, 1. Using these representations, the strain vectors e(0), e(1), and e(2) are rewritten in matrix
form in terms of the unknown generalized coordinates as

e(0) = BL q(0), e(1) = Bq(1), e(1)N = BN q(1), (E8)

where the matrices BL and BN are defined as

BL =


Bε

0
0
0

 , BN =


Bε

N
0
0
0

 , (E9)

and the coefficient matrix Bε
N is defined as

Bε
N =

[
V T

z,x

V T
z,y

]
. (E10)

Substituting (E5) into the constitutive equations given by (15) yields

s(x, y)= s(0)(x, y)+ es(1)(x, y)+ e2s(2)(x, y)+ O(e3), (E11)

where
s(0) = Ce(0), s(1) = Ce(1), s(2) = Ce(2), (E12)

and C is for symmetrically laminated plates, that is,

C =


A 0 0 0
0 D F 0
0 F H 0
0 0 0 G

 . (E13)

Thus, the stress resultant vector for each state becomes

s(0)T =
{

N (0)
xx , N (0)

yy , N (0)
xy , 0, 0, 0, 0, 0, 0, 0, 0

}
, (E14a)

s(1)T =
{

N (1)
xx , N (1)

yy , N (1)
xy ,M (1)

xx ,M (1)
yy ,M (1)

xy , F (1)xx , F (1)yy , F (1)xy , q(1)xz , q(1)yz
}
, (E14b)

and s(2) involves only the contribution of the matrix A and the nonlinear components of the in-plane
strains appearing in (E6c).
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Next, substituting (E5) and (E11) into (13) and noting that s(k)T e( j)
= s( j)T e(k) gives the strain energy

expansion

U =U (0)
+ eU (1)

+ e2U (2)
+ O(e3), (E15)

where

U (0)
=

1
2

∫ ∫
A

e(0)T Ce(0) dx dy,

U (1)
=

∫ ∫
A

s(1)T e(0) dx dy,

U (2)
=

∫ ∫
A

(1
2

e(1)T Ce(1)+ s(0)T e(2)
)

dx dy.

(E16)

The terms U (1) and U (2) represent the first and second variations of the strain energy, respectively. It is
convenient to represent the second term of U (2) as the quadratic form

s(0)T e(2) = e(1)TN N (0)e(1)N , (E17)

where

e(1)TN =
{
u(1)z,x , u(1)z,y

}
, N (0)

=

[
N (0)

xx N (0)
xy

N (0)
xy N (0)

yy

]
, (E18)

leading to

U (2)
=

∫ ∫
A

(1
2

e(1)T Ce(1)+ e(1)TN N (0)e(1)N

)
dx dy. (E19)

Substituting for the matrix representation of the strain resultant vectors e(k) (k = 0, 1, 2) given by (E8)
into the strain energy expression given by (E16) and rearranging the terms, the expressions for U (k)

(k = 0, 1, 2) are expressed in terms of the unknown generalized coordinates as

U (0)
=

1
2 q(0)T KL0q(0), U (1)

=−
1
2 q(0)T KL01q(1)− 1

2 q(0)T K T
L01q(1),

U (2)
=

1
2 q(1)T KL1q(1)+ 1

2 q(1)T Hq(1),
(E20)

where the matrices KL0, KL1, KL01, and H are defined as

KL0 =

∫
A

BT
L0C BL0 d A, KL1 =

∫
A

BT
L1C BL1 d A,

KL01 =

∫
A

BT
L0C BL1 d A, H =

∫
A

BT
N N (0)BN d A.

(E21)

Similarly, substituting (E1b) into the expression for the strain energy of the elastic spring supports
given by (18) results in

�=�(0)+ e�(1)+ e2�(2), (E22)
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where

�(0) =
1
2

∫
0u

(
ũ(0)− ũ∗

)T ku
(
ũ(0)− ũ∗

)
d0+ 1

2

∫
01

(
ũ(0)−1(0)

)T ku
(
ũ(0)−1(0)

)
d0, (E23a)

�(1) =

∫
0u

(
ũ(0)− ũ∗

)T ku ũ(1) d0+
∫
01

(
ũ(1)−1(1)

)T ku
(
ũ(0)−1(0)

)
d0, (E23b)

�(2) =
1
2

∫
0u

ũ(1)T ku ũ(1) d0+ 1
2

∫
01

(
ũ(1)−1(1)

)T ku
(
ũ(1)−1(1)

)
d0. (E23c)

Substituting for the vector representation of the weighted-average boundary displacement field ũ, given
by (D4), the expressions for �(k) are rewritten as

�(0)= 1
2 q(0)T Sqq q(0)−q(0)T S∗q+�

∗
+

1
21

(0)T s111(0) (E24a)

−
1
21

(0)T sT
q1q(0)− 1

2 q(0)T sq11
(0)
+

1
2 q(0)T S11q(0), (E24b)

�(1)= q(0)T Sqq q(1)−q(1)T S∗q+1
(1)T s111(0)−1(1)

T sT
q1q(0)−q(1)T sq11

(0)
+q(1)T S11q(0), (E24c)

�(2)= 1
2 q(1)T Sqq q(1)+ 1

21
(1)T s111(1)−1

21
(1)T sT

q1q(1)− 1
2 q(1)T sq11

(1)
+

1
2 q(1)T S11q(1), (E24d)

where the matrices S11, s11, and sq1 are defined as

S11 =
∫
01

Ṽ T
B k1ṼB d0, s11 =

∫
01

k1 d0, sq1 =

∫
01

Ṽ T
B k1 d0. (E25)

In these integrals, 01 represents the boundary segment having extensional springs that remain between
the laminate boundary and the rigid bar.

Substituting (E1a) into the potential energy given by (21) with only the in-plane external forces acting
along the edges of the laminate included gives

V =
(
V (0)
σ + eV (1)

σ

)
+
(
V (0)
1 + eV (1)

1

)
, (E26)

where

V (0)
σ =

∫
0σ

T∗T ũ(0) d0, V (1)
σ =

∫
0σ

T∗T ũ(1) d0, (E27)

and
V (k)
1 = P∗T

1(k) on 01 with k = 0, 1. (E28)

In these integrals, T∗T = {N ∗x , N ∗y , 0, 0, 0}. Note that only the in-plane loads, N ∗x and N ∗y , are included
in vector T∗ in order to avoid bending deformations in the prebuckling state. Substituting the vector
representation of the weighted-average boundary displacement field ũ into (E27), the linearized forms
of the potential energy of elastic restraints, V (k)

σ , are rewritten as

V (k)
σ = q(k)T N∗ with k = 0, 1. (E29)

The vector N∗ is defined as

N∗T
=

∫
0σ

Ṽ T
B T∗ d0. (E30)
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The zeroth, first, and second variations of the constraint forces are obtained by substituting the vector
of unknown generalized coordinates given by (E1c) and (E1e) into (C17) and rearranging the terms. This
process yields

W (0)
= λ(0)

T Gcq(0), W (1)
= λ(0)

T Gcq(1)+λ(1)T Gcq(0), W (2)
= λ(1)

T Gcq(1). (E31)

References

[Altenbach 1998] H. Altenbach, “Theories for laminated and sandwich plates: a review”, Mech. Compos. Mater. 34:3 (1998),
243–252.

[Barut and Madenci 2001] A. Barut and E. Madenci, “A complex potential-variational formulation for buckling analysis of
flat laminates with multiple cutouts”, in 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference (Seattle, WA, 2001), AIAA, Reston, VA, 2001. AIAA Paper 2001-1547.

[Barut et al. 1998] A. Barut, E. Madenci, and A. Tessler, “Analysis of composite sandwich panels via a triangular shell element
based on higher-order theory”, pp. 263–278 in Sandwich construction 4: proceedings of the Fourth International Conference
on Sandwich Construction (Stockholm, 1998), edited by K.-A. Olsson, Engineering Materials Advisory Services, Cradley
Heath, 1998.

[Barut et al. 2002] A. Barut, E. Madenci, T. Anderson, and A. Tessler, “Equivalent single-layer theory for a complete stress
field in sandwich panels under arbitrarily distributed loading”, Compos. Struct. 58:4 (2002), 483–495.

[Bosia et al. 2002] F. Bosia, T. Gmür, and J. Botsis, “Deformation characteristics of composite laminates, II: An experimen-
tal/numerical study on equivalent single-layer theories”, Compos. Sci. Technol. 62:1 (2002), 55–66.

[Bowie 1956] O. L. Bowie, “Analysis of an infinite plate containing radial cracks originating at the boundary of an internal
circular hole”, J. Math. Phys. (MIT) 35 (1956), 60–71.

[Brush and Almroth 1975] D. O. Brush and B. O. Almroth, Buckling of bars, plates and shells, McGraw-Hill, New York, 1975.
[Demasi and Yu 2009] L. Demasi and W. Yu, “Assess the accuracy of the variational asymptotic plate and shell analysis
(VAPAS) using the generalized unified formulation (GUF)”, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference (Palm Springs, CA, 2009), AIAA, Reston, VA, 2009. AIAA Paper 2009-2417.

[Fung and Tong 2001] F. C. Fung and P. Tong, Classical and computational solid mechanics, World Scientific, River Edge, NJ,
2001.

[Ghugal and Shimpi 2002] Y. M. Ghugal and R. P. Shimpi, “A review of refined shear deformation theories of isotropic and
anisotropic laminated plates”, J. Reinf. Plast. Compos. 21:9 (2002), 775–813.

[Iyengar and Chakraborty 2004] N. G. R. Iyengar and A. Chakraborty, “Study of interaction curves for composite laminate
subjected to in-plane uniaxial and shear loadings”, Compos. Struct. 64:3–4 (2004), 307–315.

[Jones 1975] R. M. Jones, Mechanics of composite materials, McGraw-Hill, Washington, DC, 1975.
[Krishna Murty 1987] A. V. Krishna Murty, “Flexure of composite plates”, Compos. Struct. 7:3 (1987), 161–177.
[Liu and Li 1996] D. Liu and X. Li, “An overall view of laminate theories based on displacement hypothesis”, J. Compos.
Mater. 30:14 (1996), 1539–1561.

[Nemeth 1990] M. P. Nemeth, “Buckling and postbuckling behavior of square compression-loaded graphite-epoxy plates
with circular cutouts”, NASA Technical Paper 3007, Langley Research Center, Hampton, VA, 1990, Available at http://
ntrs.nasa.gov/search.jsp?R=19900016761.

[Noor and Malik 2000] A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermo-mechanical stress
analysis of laminated composite panels”, Comput. Mech. 25:1 (2000), 43–58.

[Ramm 2000] E. Ramm, “From Reissner plate theory to three dimensions in large deformation shell analysis”, Z. Angew. Math.
Mech. 80:1 (2000), 61–68.

[Ray 2003] M. C. Ray, “Zeroth-order shear deformation theory for laminated composite plates”, J. Appl. Mech. (ASME) 70:3
(2003), 374–380.

[Reddy 1984] J. N. Reddy, “A simple higher-order theory for laminated composite plates”, J. Appl. Mech. (ASME) 51:4 (1984),
745–752.



868 ATILA BARUT, ERDOGAN MADENCI AND MICHAEL P. NEMETH

[Reddy 1987] J. N. Reddy, “A small strain and moderate rotation theory of elastic anisotropic plates”, J. Appl. Mech. (ASME)
54:3 (1987), 623–626.

[Reddy 1990] J. N. Reddy, “A general non-linear third-order theory of plates with moderate thickness”, Int. J. Non-Linear
Mech. 25:6 (1990), 677–686.

[Reddy 1997] J. N. Reddy, Mechanics of laminated composite plates, CRC Press, Boca Raton, FL, 1997.

[Reissner 1944] E. Reissner, “On the theory of bending of elastic plates”, J. Math. Phys. (MIT) 23 (1944), 184–191.

[Reissner 1945] E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, J. Appl. Mech.
(ASME) 12 (1945), A69–A77.

[Rohwer et al. 2001] K. Rohwer, R. Rolfes, and H. Sparr, “Higher-order theories for thermal stresses in layered plates”, Int. J.
Solids Struct. 38:21 (2001), 3673–3687.

[Senthilnathan et al. 1987] N. R. Senthilnathan, S. P. Lim, K. H. Lee, and S. T. Chow, “Buckling of shear-deformable plates”,
AIAA J. 25:9 (1987), 1268–1271.

[Shi 2007] G. Shi, “A new simple third-order shear deformation theory of plates”, Int. J. Solids Struct. 44:13 (2007), 4399–
4417.

[Shimpi 1999] R. C. Shimpi, “Zeroth-order shear deformation theory for plates”, AIAA J. 37:4 (1999), 524–526.

[Shu and Sun 1994] X. Shu and L. Sun, “Thermomechanical buckling of laminated composite plates with higher-order trans-
verse shear deformation”, Comput. Struct. 53:1 (1994), 1–7.

[Singh et al. 1994] G. Singh, G. Venkateswara Rao, and N. G. R. Iyengar, “Geometrically nonlinear flexural response charac-
teristics of shear deformable unsymmetrically laminated plates”, Comput. Struct. 53:1 (1994), 69–81.

[Soldatos and Timarci 1993] K. P. Soldatos and T. Timarci, “A unified formulation of laminated composite, shear deformable,
five-degrees-of-freedom cylindrical shell theories”, Compos. Struct. 25:1–4 (1993), 165–171.

[Sun and Hsu 1990] L. X. Sun and T. R. Hsu, “Thermal buckling of laminated composite plates with transverse shear deforma-
tion”, Comput. Struct. 36:5 (1990), 883–889.

[Tessler 1993] A. Tessler, “An improved plate theory of {1, 2}-order for thick composite laminates”, Int. J. Solids Struct. 30:7
(1993), 981–1000.

[Tessler and Saether 1991] A. Tessler and E. Saether, “A computationally viable higher-order theory for laminated composit
plates”, Int. J. Numer. Methods Eng. 31:6 (1991), 1069–1086.

[Tessler et al. 2009] A. Tessler, M. Di Sciuva, and M. Gherlone, “A refined zigzag beam theory for composite and sandwich
beams”, J. Compos. Mater. 43:9 (2009), 1051–1081.

[Timarci and Aydogdu 2005] T. Timarci and M. Aydogdu, “Buckling of symmetric cross-ply square plates with various bound-
ary conditions”, Compos. Struct. 68:4 (2005), 381–389.

[Voyiadjis and Shi 1991] G. Z. Voyiadjis and G. Shi, “A refined two-dimensional theory for thick cylindrical shells”, Int. J.
Solids Struct. 27:3 (1991), 261–282.

[Whitney and Nuismer 1974] J. M. Whitney and R. J. Nuismer, “Stress fracture criteria for laminated composites containing
stress concentrations”, J. Compos. Mater. 8:3 (1974), 253–265.

[Yu and Hodges 2004] W. Yu and D. H. Hodges, “Asymptotic approach for thermoelastic analysis of laminated composite
plates”, J. Eng. Mech. (ASCE) 130:5 (2004), 531–540.

Received 24 May 2010. Accepted 22 Nov 2010.

ATILA BARUT: atila@email.arizona.edu
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, United States

ERDOGAN MADENCI: madenci@email.arizona.edu
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, United States

MICHAEL P. NEMETH: michael.p.nemeth@nasa.gov
Structural Mechanics and Concepts Branch, NASA Langley Research Center, Hampton, VA 23681-2199, United States

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 6, 2011

msp

ELECTROTHERMOMECHANICAL BEHAVIOR OF A RADIALLY POLARIZED
ROTATING FUNCTIONALLY GRADED PIEZOELECTRIC CYLINDER

ALI GHORBANPOUR ARANI, ABBAS LOGHMAN,
ALI ABDOLLAHITAHERI AND VAHID ATABAKHSHIAN

A hollow circular cylinder made of exponentially graded piezoelectric material, such as PZT_4, is con-
sidered. Loading is composed of internal and external pressures, a distributed temperature field due to
steady state heat conduction with convective boundary condition, an inertia body force due to rotation
with constant angular velocity and a constant electric potential difference between its inner and outer
surfaces. The material properties except Poisson’s ratio and thermal conduction coefficient are assumed
to be exponentially distributed along radius. The governing equation in polarized form is shown to reduce
to a second-order ordinary differential equation with variable coefficients for the radial displacement. In
this article, a closed form solution is presented for this ODE by employing hypergeometric functions such
as Whittaker’s M and W functions. Also we have considered four different sets of boundary conditions.
The electrothermomechanical induced stresses and the electric potential distributions are investigated for
the piezoceramic PZT_4 cylinder. It is concluded that the inhomogeneity exponent µ plays a substantial
role in radial and circumferential stress distributions. Therefore, the results of this investigation can
contribute to the design of EGPM rotating thick-walled circular cylinders.

A list of symbols can be found on page 881.

1. Introduction

In recent years there has been a resurgence of interest in piezoelectricity, due to advances in the intelligent
structures technology. It is well known that piezoelectric materials experience mechanical deformations
when placed in an electric field, and become electrically polarized under mechanical loads and in fact
they exhibit electromechanical coupling. Piezoelectric materials have been used for a long time to make
many electromechanical devices. One of the first applications of the piezoelectric effect was an ultrasonic
submarine detector developed during the First World War. Other applications include transducers for
converting electrical energy to mechanical energy or vice versa, resonators and filters for frequency
control and selection for telecommunication and precise timing and synchronization, and acoustic wave
sensors. To amend the structure of piezoelectric material and the application of these materials in various
environments, functionally graded piezoelectric materials (FGPM) have been created. The mechanical
and thermal properties of FGPM are similar to FGM, varying continuously in terms of the spatial coor-
dinate system.

For homogeneous piezoelectric media, Ghorbanpour et al. [2006] investigated the stress distribution of
dielectric potential fields in piezoelectric hollow spheres. Their results showed that an existing mechan-
ical hoop stress distribution can be neutralized by a suitably applied electric field. Saadatfar and Razavi

Keywords: EGPM, rotating cylinder, hypergeometric function, electrothermomechanical stress, electric potential.

869



870 ALI GHORBANPOUR ARANI, ABBAS LOGHMAN, ALI ABDOLLAHITAHERI AND VAHID ATABAKHSHIAN

[2009] analyzed the stress in piezoelectric hollow cylinder with thermal gradient. An analytic solution
to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric
hollow circular cylinder was developed in [Galic and Horgan 2002].

For a special inhomogeneous case, Lu et al. [2005] derived the exact three-dimensional analytical
solutions for a rectangular laminate with piezoelectric layers of exponentially graded material properties
along thickness, and under simply supported boundary conditions along two opposite edges. They dis-
cussed some properties of the mechanical and electric responses of the FGPM plates under mechanical
and/or electrical forces, and they also showed the influence of material gradients by numerical examples
based on the exact solutions.

Zhong and Shang [2003] presented an exact solution of a simply supported functionally gradient
piezoelectric rectangular plate based on three-dimensional electroelasticity theory. The obtained exact
solution was valid for arbitrary mechanical and electric loads applied on the upper and lower surfaces of
the plate and could serve as a benchmark result to assess other approximate methodologies or as a basis
for establishing simplified FGPM plate theories.

The three-dimensional exact solutions of a simply supported FGPM plate/laminate were obtained
based on an alternative approach in [Lu et al. 2006], which compared the exact solutions with the solutions
obtained in [Zhong and Shang 2003], and concluded that their exact solutions may be more convenient
for further treatments of both analytical and numerical studies.

Pan and Han [2005] also presented an exact solution for a multilayered rectangular plate made of
anisotropic and functionally graded magneto-electroelastic materials. The plate is simply supported along
its edges, and both mechanical and electric loads are applied on the top surface. Their numerical results
showed the influence of the exponential factor, magneto-electroelastic properties, stacking sequence and
loading types on the induced magneto-electroelastic fields, which should be of interest to the design of
smart structures.

The static analysis of a single-layered functionally graded piezoelectric plate, in both sensor and ac-
tuator configuration was investigated in [Brischetto and Carrera 2009], which compared refined theories
with classical ones, to demonstrate the effectiveness of these theories in the case of FGPMs.

Recently, Li et al. [2010] analyzed an axisymmetric electroelastic problem of hollow radially polarized
piezoceramic cylinders made of FGMs as sensors and actuators. For two typical cases of sensors and
actuators, the response of the radial and circumferential stresses as well as the electric potential was
shown graphically by them. Their derived results for the distribution of hoop and radial stresses as well
as the electric response are useful in designing hollow cylindrical FG piezoelectric sensors/ actuators.

The elastic and piezoelectric properties vary as a power-function along radius, Khoshgoftar et al.
[2009] studied thermopiezoelectric behavior of a thick-walled cylinder made of FGMs subjected to a
temperature gradient and inner and outer pressures.

Babaei and Chen [2008] presented the analytical solution for a radially piezoelectric functionally
graded rotating hollow shaft. The analytical solution of a functionally graded piezothermoelastic hollow
cylinder was presented in [Chen and Shi 2005]. This article assumed that only the piezoelectric coefficient
was varying quadratically in the radial direction while the other material parameters were assumed to
be constants. They neglected other inhomogeneity parameters such as thermal conduction coefficient
and modulus of elasticity. Because of this incompleteness and more accordance of exponential form of
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V 

Figure 1. Configuration of an EGPM rotating hollow circular cylinder.

properties with new practical model, the effect of the entire material inhomogeneity on the piezothermo-
electroelastic behavior of an EGPM hollow rotating cylinder is studied in the present paper.

In this study a thick-walled rotating cylinder of radially polarized anisotropic piezoelectric material,
such as PZT_4, is assumed. The cylinder is subjected to mechanical and thermal loads, together with
a potential difference induced by electrodes attached to the inner and outer surfaces (Figure 1). All the
mechanical, thermal and piezoelectric properties of the EGPM rotating hollow cylinder, except Poisson’s
ratio, are assumed to be radial dependent and they are expressed as exponential functions of r . The govern-
ing equations of exponentially graded piezoelectric cylindrically structure in radially polarized form are
reduced to a second-order inhomogeneous differential equation in terms of displacement with variable
coefficients and is solved using hypergeometric functions and Simpson’s integrating method. Finally,
numerical results and the associated data are presented for four different sets of boundary conditions
to illustrate electroelastic stresses, electric potential, radial displacement and thermal distributions for
piezoceramic, PZT_4.

2. Heat conduction problem

In this section, the axisymmetric, steady state, heat conduction equation in the cylindrical coordinate
system with the thermal boundary condition is given as (see [Hosseini et al. 2007])

1
r
∂

∂r

[
rk(r)

∂T (r)
∂r

]
= 0, (a ≤ r ≤ b),

T (r)|r=a = T0,[
∂T (r)
∂r
+ hT (r)

] ∣∣∣∣
r=b
= 0,

(1)
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Figure 2. Temperature distribution versus normalized radius for β = 1.

where h is the ratio of convective heat transfer coefficient and k(r) is the thermal conduction coefficient,
which is assumed to be a power function of r as

k(r)= k0rβ, (2)

Substituting (2) into the heat conduction equation (1) one can obtain

1
r
∂

∂r

[
rβ+1 ∂T (r)

∂r

]
= 0, (3)

the general solution for the temperature distribution is obtained by integrating (3), as

T (r)= D1r−β + D2, (4)

where D1 and D2 are obtained from the thermal boundary conditions as follows:

D1 =
hT0

βb−(β+1)+ h(a−β − b−β)
, D2 =

T0[βb−(β+1)
− hb−β]

βb−(β+1)+ h(a−β − b−β)
. (5)

The temperature distribution thus obtained is illustrated in Figure 2.

3. Basic formulation

In this section, the general differential equation of a rotating hollow cylinder with inhomogeneous mate-
rial properties is obtained. The material properties are exponentially variable along the radial direction
as follows:

ci j (r)= ci j0 exp
(
µ

r−a
b−a

)
, e1i (r)= e1i0 exp

(
µ

r−a
b−a

)
, g11(r)= g110 exp

(
µ

r−a
b−a

)
,

p11(r)= p110 exp
(
µ

r−a
b−a

)
, ρ(r)= ρ0 exp

(
µ

r−a
b−a

)
,

(6)
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where ci j (i, j = 1, 2), e1i (i = 1, 2), g11, p11 and ρ(r) are elastic constants, piezoelectric constants,
dielectric constant, pyroelectric coefficient and mass density, respectively. The constants ci j0, e1i0, g110,
p110 and ρ0 are the material properties of the inner surface, while µ is the material inhomogeneity
parameter.

In this study, we can assume the cylinder is long enough to guarantee a plane strain condition.
Thus, for this case all the field variables are the function of radial coordinate r and circumferential

displacement uθ is zero as

ur = ur (r), uz = 0, uθ = 0, φ = φ(r), (7a)

where φ is the electric potential.
The radial and circumferential strains and the relation between electric field and electric potential are

written as

εr =
∂u
∂r
, εθ =

u
r
, Er =−

∂φ(r)
∂r

. (7b)

The constitutive relations of stresses and displacement in radially polarized piezoelectric cylinder and
the component of radial electric displacement vector are written as (see [Dai et al. 2010])

σr = c11
∂u
∂r
+ c12

u
r
+ e11

∂φ(r)
∂r
− λ1T (r), (8a)

σθ = c12
∂u
∂r
+ c22

u
r
+ e12

∂φ(r)
∂r
− λ2T (r), (8b)

Dr = e11
∂u
∂r
+ e12

u
r
+ g11

∂φ(r)
∂r
+ p11T (r), (8c)

where σr , σθ are radial and circumferential stresses, Dr is the radial electric displacement and the thermal
modulus λ1, λ2 are given by

λ1 = c11α1+ c12α2, λ2 = c12α1+ c22α2. (9)

The equation of equilibrium and the charge equation of rotating cylinder are expressed as (see [Tiersten
1969; Fung 1965])

∂σr

∂r
+
σr − σθ

r
+ ρrω2

= 0, (10a)

∂Dr

∂r
+

Dr

r
= 0. (10b)

4. Solution procedure

By solving the differential equation (10b) the electrical displacement is obtained as

Dr (r)=
A1

r
, (11)

Substituting (11) into (8c) the following equation is obtained for potential gradient as

∂φ(r)
∂r
=

1
g110

[
e110

∂u
∂r
+ e120

u
r
+ p110T (r)−

A1

r
exp

(
−µ

r−a
b−a

)]
, (12)
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where A1 is a constant.
Substituting (12) into (8a) and (8b), the radial and hoop stresses can be rewritten as

σr = eξ(r−a)
[
w1
∂u
∂r
+w2

u
r
+w3T (r)

]
−
w4 A1

r
,

σθ = eξ(r−a)
[
w2
∂u
∂r
+w5

u
r
+w6T (r)

]
−
w7 A1

r
.

(13)

Substituting (13) into (10a) the governing differential equation for the problem in terms of radial dis-
placement u and temperature distribution T (r) is derived as

r2 ∂
2u
∂r2 + (1+ ξr)r

∂u
∂r
+
ξw2r −w5

w1
u

=−
ξw3r2

+ r(w3−w6)

w1
T (r)−

w3

w1
r2 ∂T (r)

∂r
−
ρ0ω

2

w1
r3
−
w7 A1

w1
e−ξ(r−a), (14)

where

w1 = c110+
e2

110

g110
, w2 = c120+

e110e120

g110
, w3 =

e110

g110
− c110α10− c120α20,

w4 =
e110

g110
, w5 = c220+

e2
120

g110
, w6 =

e120 p110

g110
− c120α10− c220α20,

w7 =
e120

g110
, ξ =

µ

b− a
.

(15)

Substituting the temperature distribution (4) into (14) yields

r2 ∂
2u
∂r2 + (1+ ξr)r

∂u
∂r
+
ξw2r −w5

w1
u = F(r). (16)

The inhomogeneous term on the right-hand-side of (16) is denoted by F(r) as follows

F(r)=−D2
ξw3r2

+r(w3−w6)

w1
−D1

ξw3r+w3−w6−w3β

w1
r1−β
−
σ0ω

2

w1
r3
−
w7 A1

w1
e−ξ(r−a). (17)

The general solution of (16) is assumed to be in the form

u(r)= C1 P(r)+C2 Q(r)+ R(r), (18)

where C1 and C2 are arbitrary integration constants, P(r) and Q(r) are homogenous solutions, and R(r)
is the particular solution.

A particular solution can be developed by employing the variation of parameter method:

R(r)=−P(r)
∫ r

a

Q(r)F(r)
W (r)

dr + Q(r)
∫ r

a

P(r)F(r)
W (r)

dr. (19)

where W (r) is the Wronskian of P(r), Q(r), defined by

W (r)= P(r)
d Q
dr
+ Q(r)

d P
dr
. (20)
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The homogeneous solution of the corresponding differential equation (16) is obtained using Maple as

P(r)=
e−ξr/2WW

(
2w2−w1

2w1
,

√
w5
w1
, ξr

)
√

r
, Q(r)=

e−ξr/2WM
(

2w2−w1
2w1

,

√
w5
w1
, ξr

)
√

r
, (21)

where the Whittaker functions WM and WW are defined in the sidebar below (for details see [Abramowitz
and Stegun 1965] or [Brischetto and Carrera 2009], for instance). A particular solution is obtained by
the method of variation of parameters; defining

1=−
(
D1r1−βξw3− ((β − 1)w3+w6)D1r−β + D2(1+ ξr)w3−w6 D2+ ρ0r2ω2)eξr/2,

we can write

R(r)= e−ξr/2
√

r

[
WM

(2w2−w1
2w1

,

√
w5

w1
, ξr

) ∫ r

a

WW
(2w2−w1

2w1
,

√
w5

w1
, ξr

)√
r 1

dr
W (r)

−
WW

(2w2−w1
2w1

,

√
w5

w1
, ξr

) ∫ r

a

WM
(2w2−w1

2w1
,

√
w5

w1
, ξr

)√
r 1

dr
W (r)

+w7 A1
WM

(2w2−w1
2w1

,

√
w5

w1
, ξr

) ∫ r

a

WW
(2w2−w1

2w1
,

√
w5

w1
, ξr

) eξ(a−r/2)
√

r W (r)
dr

−w7 A1
WW

(2w2−w1
2w1

,

√
w5

w1
, ξr

) ∫ r

a

WM
(2w2−w1

2w1
,

√
w5

w1
, ξr

) eξ(a−r/2)
√

r W (r)
dr

]
.

Substituting (18) into (12) and integrating, the electric potential φ(r)is obtained:

φ(r)=
1

g110

[
e110u(r)+ e120

∫ r

a

u(r)
r
+ p110T (r)−

∫ r

a

A1

r
exp

(
−µ

r−a
b−a

)]
+ A2. (22)

The Whittaker functions WM and WW are defined by

WM(k, u, z)= e−z/2zu+ 1
2 KM

(
u−k+ 1

2 , 1+2y; z
)
,

WW (k, u, z)= e−z/2zu+ 1
2 KU

(
u−k+ 1

2 , 1+2y; z
)
,

(23)

where KM and KU , known as Kummer functions, are certain generalized hypergeometric series. With
the notation (α)n = α(α+1)(α+2) · · · (α+n−1), we have

KM(α, β, z)=
∞∑

n=0

(α)nzn

(β)nn!
,

KU (α, β, z)=
0(1−β)

0(α−β+1)
KM(α, β, z)+

0(β−1)
0(α)

z1−βKM(α−β+1, 2−β, z),

(24)

where 0 denotes the usual gamma function.
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Substituting the general solution (18) into (13), the radial and circumferential stresses are obtained as

σr (r)= eξ(r−a)
[
w1
∂u(r)
∂r
+w2

u(r)
r
+w3T (r)

]
−
w4 A1

r
, (25)

σθ (r)= eξ(r−a)
[
w2
∂u(r)
∂r
+w5

u(r)
r
+w6T (r)

]
−
w7 A1

r
, (26)

where σr , σθ and φ are radial stress, hoop stress and electric potential, respectively.
Four unknown constants A1, C1, C2 and A2 are determined by the boundary conditions as

σr (a)=−Pa, σr (b)=−Pb, φ(a)= φa, φ(b)= φb. (27)

5. Numerical results and discussion

In this section, numerical results are presented graphically for Electric displacement, electrothermoelastic
stresses and electric potential of the EGPM rotating hollow cylinder in four cases of boundary conditions
as follows:

Case 1: σr (a)=−Pa, σr (b)= 0, φ(a)= 0, φ(b)= 0. (28)

Case 2: σr (a)= 0, σr (b)= 0, φ(a)= φa, φ(b)= 0. (29)

Case 3: σr (a)= 0, σr (b)=−Pb, φ(a)= 0, φ(b)= 0. (30)

Case 4: σr (a)=−Pa, σr (b)=−Pb, φ(a)= φa, φ(b)= 0. (31)

The cylinders are assumed to be made of PZT_4, whose properties are listed in the Table 1.
For all cases, the following data for geometry, material properties, boundary and loading conditions

are considered: a = 0.1 m, b = 0.2 m, ω = 400 rad/s, Pa = 3 · 107 (Pa), φa = 1000 (W/A), T0 = 20◦C,
β = 1, µ=−2,−1, 0, 1, 2.

The results are reported based on the normalized variables

ζ =
r − a
b− a

, σ ∗i =
σi

Pa
(i = r, θ), U∗ =

u(r)
a
, 8∗ =

φ

φa
, T ∗ =

T (r)
T0

. (32)

Case 1. In Figure 3 results are shown for case 1, where internal pressure is applied. Figure 3, top left,
depicts the distribution of radial stress along the radius for different values of µ. It is seen from the
figure that the radial stresses satisfy the mechanical boundary conditions. The distributions of the hoop
stresses for different values of µ are displayed in Figure 3, top right. In this figures we can easily observe
a reference stress point at ζ = 0.2 in which the hoop stress is identical for all material properties except

c110 139 GPa g110 6.46·10−9 C2/Nm2

c120 74 GPa p110 −2.5 · 10−5 C/m2K
c220 115 GPa α10 7.41·10−6 1/K
e110 15.1 C/m2 α20 2.11·10−6 1/K
e120 −5.2 C/m2 ρ0 7500 kg/m3

Table 1. Mechanical and electrical properties for PZT_4.



ELECTROTHERMOMECHANICS OF A RADIALLY POLARIZED ROTATING FG PIEZOELECTRIC CYLINDER 877

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

rí

rìXô

rìXò

rìXð

rìXî

ì

ìXî

ì ìXî ìXð ìXò ìXô í

1
U


1RUPDOL]HG�UDGLXV�� �U�D���E�D�

�Arî

�Arí

�Aì

�Aí

�Aî

�

�

�

�

�

�

�

�

�

�

� ��� ��� ��� ��� �

1
�



1RUPDOL]HG�UDGLXV�� �U�D���E�D�

� ��

� ��

� �

� �

� �

ròì

rñì

rðì

rïì

rîì

ríì

ì

íì

îì

ì ìXî ìXð ìXò ìXô í

-



1RUPDOL]HG�UDGLXV�� �U�D���E�D�

�Arî

�Arí

�Aì

�Aí

�Aî

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

� ��� ��� ��� ��� �

8


1RUPDOL]HG�UDGLXV�� �U�D���E�D�

� ��

� ��

� �

� �

� �

Figure 3. Case 1: Distribution of (normalized) radial stress σ ∗r , circumferential stress
σ ∗θ , electric potential 8∗, and radial displacement U∗ for different values of µ.

for µ= 1. Furthermore, this figure shows that the hoop stresses are increasing at the outer surface and
decreasing at the inner surface with increasing the material inhomogeneity exponent µ.

Although for the first case no electric potential is imposed however an induced electric potential
distribution satisfying the zero potential boundary condition is obtained in which the minimum potential
distribution belongs to the material identified by µ=−2 and the maximum distribution belongs to µ= 2.
It is concluded from Figure 3, bottom left, that the material inhomogeneity exponent µ significantly
affects the induced electric potential.

The radial displacement distributions for different values of the inhomogeneity material µ are demon-
strated in Figure 3, bottom right. It is seen from this figure that the radial displacement decreases with
increasing µ and its maximum value is located at the inner radius of the cylinder.

Case 2. Figures 4 show the results of case 2, in which purely electric potential is imposed. The tensile
radial and hoop stresses are induced in the thickness of the cylinder. The top two graphs of Figure 4
show that the material inhomogeneity exponent significantly affect the induced stresses throughout the
thickness. Radial induced stresses satisfy the free-free boundary conditions of the cylinder. Radial and
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Figure 4. Case 2: Distribution of (normalized) radial stress σ ∗r , circumferential stress
σ ∗θ , electric potential 8∗, and radial displacement U∗ for different values of µ.

hoop induced stresses increase when the exponent µ rises. It is clear from Figure 4, top right, that for
nonpositive values of the index µ, the hoop stresses are decreased and for positive values of the index µ,
the hoop stresses are increased throughout the thickness.

The electric potential distributions satisfy the boundary conditions of this case is shown in Figure 4,
bottom left. The electric potential distribution is significantly affected by the material exponent µ so
that for positive values of µ is positive throughout the thickness and for negative values of µ is almost
negative throughout the thickness. The minimum electric potential belongs to material identified by
µ=−2 and the maximum electric potential belongs to µ= 2.

Variation of displacement along radius is shown in Figure 4, bottom right. It is almost a uniform
distribution throughout the thickness however its value is affected by the material exponent µ so that as
µ increases displacement also increases.

Case 3. In case 3 (Figure 5), the EGPM rotating hollow cylinder is subjected to an external uniform
pressure, zero electric potential difference between the inner and outer surfaces and free mechanical
boundary condition at the inner surface. The compressive radial stresses for different values of µ are
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Figure 5. Case 3: Distribution of (normalized) radial stress σ ∗r , circumferential stress
σ ∗θ , electric potential 8∗, and radial displacement U∗ for different values of µ.

shown in Figure 5, top left. It is clear that the radial stresses satisfy the boundary conditions. The
material inhomogeneity exponent µ significantly affects the radial stresses throughout the thickness. It
is also obvious from this figure that the radial stress increases with increasing exponent µ. The hoop
stresses are illustrated in Figure 5, top right. Hoop stresses are increasing by increasing the exponent µ.
However except for the exponent µ= 2 the hoop stresses approaches almost the same value at the outer
surface of the cylinder.

Although for this case no electric potential is imposed however an electric potential distribution sat-
isfying the zero potential boundary condition is induced in which the minimum potential distribution
belongs to the material identified by µ = 2 and the maximum distribution belongs to µ = −2. It is
concluded from Figure 5, bottom left, that the material inhomogeneity exponent µ significantly affects
the induced electric potential. Comparing the induced electric potential in this case with the case in which
the cylinder is subjected to an internal pressure a fully reverse potential distribution can be identified.

Variation of displacement along radius is shown in Figure 5, bottom right. It is almost a uniform
distribution throughout the thickness however its absolute value is affected by the material exponent µ
so that as µ increases the absolute value of displacement decreases.
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Figure 6. Case 4: Distribution of (normalized) radial stress σ ∗r , circumferential stress
σ ∗θ , electric potential 8∗, and radial displacement U∗ for different values of µ.

Case 4. In case 4 (Figure 6) superposition of cases 1, 2 and 3 is investigated. Distribution of radial and
hoop stresses along the radius for different values of exponent µ are shown in the top two graphs fo
Figure 6. It is obvious from these figures that the inhomogeneity parameter µ has a major effect on the
electrothermoelastic stresses. Electric potential and radial displacement distributions in the bottom two
graphs of Figure 6 are indeed superposition of previous cases 1, 2 and 3.

6. Conclusions

Using the hypergeometric function, closed form solution for EGPM rotating hollow cylinder, is presented
with four different sets of boundary conditions. The analytical solution of homogeneous piezoelectric
rotating hollow cylinder is fully covered by setting the material inhomogeneity µ = 0, our results for
the homogeneous PZT_4 hollow cylinder are almost the same as those in [Galic and Horgan 2003]. The
correctness of the present solution is then verified in this respect.

It is concluded from the present result that the inhomogeneity exponent µ significantly affects the radial
and hoop stress distributions. This implies that the electrothermomechanical fields in EGP cylindrical
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structures can be optimized for specific applications by selecting a suitable inhomogeneity parameter.
Moreover, the inhomogeneous constants presented in the present study are useful parameters from a
design point of view in that they can be tailored for special applications to control the distributions of
electrothermoelastic stresses.

The technological implications of this study are significant, e.g., the amount of hoop stress resulting
from thermomechanical loads in an EGPM rotating hollow cylinder can be reduced or neutralized by a
suitably applied electric potential field and material inhomogeneity. Henceforward, our results can help
engineers to design a rotating piezoelectric pressure vessel made of EGPM with an optimum distribution
of stresses.

List of symbols

a, b Inner and outer radius [m] Ci j (i, j = 1,2) Elastic constant [N/m2]
r Radial variable [m] e1i (i = 1,2) Piezoelectric coefficient [C/m2]
ur Radial displacement [m] g11 Dielectric constant [C2/Nm2]
β,µ Inhomogeneity parameters p11 Pyroelectric coefficient [C/m2K]
σθ , σr Components of stresses [N/m2] ϕ Electric potential [W/A]
α1, α2 Thermal expansion coefficients [1/K] Dr Radial electric displacement [C/m2]
λ1, λ2 Thermal modulus [N/m2K] ω Angular velocity [rad/s]
T (r) Temperature distribution [K] ρ Mass density [kg/m3]
h Ratio of the convective heat-transfer coefficient [W/K]
k Thermal conduction coefficient [W/mK]

Nondimensional quantities:

T ∗ =
T (r)
T0

, ζ =
r − a
b− a

, σ ∗i =
σi

Pa
(i = r, θ), U∗ =

u(r)
a
, 8∗ =

φ

φa
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LARGE-AMPLITUDE DYNAMIC ANALYSIS OF STIFFENED PLATES
WITH FREE EDGES

ANIRBAN MITRA, PRASANTA SAHOO AND KASHINATH SAHA

Large-amplitude free-vibration analysis of stiffened plates subjected to uniformly distributed transverse
loading with free flexural boundary conditions is presented. The free edge is taken with different com-
binations of clamped and simply supported end conditions for three types of stiffened plates classified
according to number and orientation of stiffeners. The computational domain is divided into an ade-
quate number of subdomains based on the number, orientation, and location of stiffeners to generate
the appropriate grid of computation points. Nonlinear strain displacement relations are considered in
the formulation but the effects of shear deformation have been neglected. The analysis involves two
steps. First the static displacement field of the system is solved for. The second step takes up the free-
vibration analysis on the basis of the known static displacement field. The mathematical formulation of
the static problem is based on the principle of minimum potential energy, whereas Hamilton’s principle
has been applied for the dynamic analysis. The results are validated with the published results of other
researchers. The dynamic behavior is presented in the form of backbone curves in a dimensionless
frequency-amplitude plane. Three-dimensional mode shape plots are also presented along with contour
plots in a few specific cases.

A list of symbols can be found on page 911.

1. Introduction

In marine construction and aerospace structures stiffened plates are extensively used due to their enhanced
stiffness and stability characteristics. They also have widespread application in many branches of modern
civil, mechanical, and structural engineering. Hence, investigation of the dynamic behavior of stiffened
plates has always been an area of immense interest to researchers. Research work on the dynamic
characteristics of stiffened plates has a long history as different researchers have employed different
methodologies to perform dynamic analysis of such structures. The comprehensive review [Mukherjee
and Mukhopadhyay 1986] documents different numerical and analytical tools used in earlier years to
study the dynamic behavior of stiffened plates.

Aksu and Ali [1976] developed a variational technique in conjunction with finite difference formula-
tion to obtain natural frequencies and mode shapes of eccentrically stiffened rectangular plates having a
single stiffener. Their formulation considered in-plane displacements and inertia in the direction of the
stiffener and the total energy of the system was minimized with respect to discretized displacement com-
ponents. This free-vibration analysis was later extended to cross-stiffened plates thus taking into account

The first author acknowledges the research support received from AICTE, India, vide File No.: 1-10/RID/NDF/PG/(17)2008-09
Dated: 13.03.2009.
Keywords: stiffened plate, geometric nonlinearity, large-amplitude vibration, variational methods, backbone curves.
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in-plane inertia effects for two directions in [Aksu 1982]. In [Prathap and Varadan 1978] large-amplitude,
free flexural vibrations of simply supported and clamped thin elastic orthotropic stiffened plates with
immovable and movable in-plane edges were studied. The governing dynamic equations were derived
in terms of nondimensional parameters and solved on the basis of a single-term vibration mode shape by
making use of Galerkin’s method. Varadan and Pandalai [1979] obtained modal equations for nonlinear
free vibration of eccentrically stiffened elastic rectangular plates through Lagrange’s equation and an ap-
proximate analytical solution based on one-term transverse displacement was determined. They analyzed
plates having clamped boundary conditions with movable in-plane edges and observed hardening-type
nonlinearity.

Mukherjee and Mukhopadhyay [1988] performed free-vibration analysis of eccentrically stiffened
plates using an isoparametric quadratic stiffened plate bending element. They included the effect of
shear deformation in the formulation and studied the effects of eccentricity, shape, and torsional stiffness
on the natural frequencies and mode shapes of the system. In [Koko and Olson 1992] free-vibration
analysis of rectangular plates with discrete stiffeners was carried out utilizing the superelements and
including the effects of bending and in-plane effects as well as beam torsion and lateral bending motion.
In [Rao et al. 1993b] a large-amplitude free flexural vibration study of eccentrically stiffened plates
incorporating in-plane and shear deformation effects was presented. Harik and Guo [1993] introduced a
compound finite element model based on small deflection and thin plate theory to examine eccentrically
stiffened plates in free vibration. Their formulation considered membrane forces for the plate and axial
forces in the stiffener. In [Chen et al. 1994] a spline compound strip method was proposed, where the
plate was discretized in only one direction, for analyzing the free-vibration problem of stiffened plates.
Bedair and Troitsky [1997] analyzed eccentrically and concentrically stiffened simply supported plates
on the basis of energy formulation and mathematical programming techniques and studied the effect of
variation in plate and stiffener geometric parameters on the fundamental frequency of the system.

Although substantial research has been carried out in the field of vibrations of stiffened plates, interest
in this field has not diminished. Vibration analysis of stiffened plates using hierarchical finite elements
with a set of local trigonometric interpolation functions was presented in [Barrette et al. 2000]. In [Zeng
and Bert 2001] a differential quadrature analysis of the free vibration of eccentrically stiffened plates
having simply supported or clamped boundaries at all edges was implemented. In [Peng et al. 2006]
free vibration and stability analysis of stiffened plates via the first-order shear deformable theory and
mesh-free Galerkin method was performed. Sapountzakis and Mokos [2008] developed an improved
model and obtained eigenfrequencies as a general solution for dynamic analysis of plates stiffened by
arbitrarily positioned parallel beams. In [Dozio and Ricciardi 2009] a computationally efficient combined
analytical-numerical method was presented for low-frequency free-vibration analysis of thin rectangular
plates stiffened by a small number of light stiffeners.

A general method taking into account the nonuniform torsional response of the stiffener for free
vibration of plates and shells stiffened by beams of arbitrary cross-section was introduced in [Vörös
2009]. In [Xu et al. 2010] an analytical method was put forward for the vibration analysis of plates
stiffened by any number of beams of arbitrary lengths and placement angles considering coupling at
an interface of plate and beam. In [Deb Nath et al. 2010] an analytical solution of elastic fields for a
stiffened plate subjected to axial tension and pure bending was obtained using an alternative displacement
potential approach.
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The majority of the dynamic studies are confined to stiffened plates with simply supported or clamped
boundaries; only in few cases are a combination of simply supported and clamped-end conditions con-
sidered. Works on stiffened plates having free boundaries are also limited. In [Bapu Rao et al. 1978]
an experimental study was carried out to determine the resonant frequencies and mode shapes of rib-
stiffened skew cantilever plates by holographic interferometry. In [Irie et al. 1982] a stiffened trapezoidal
cantilever plate with a clamped end and three free boundaries was analyzed and the natural frequencies
and mode shapes were numerically calculated. However, some works considering unstiffened plates
with free edges are available in literature. In [Rossi et al. 1998] small-amplitude transverse vibration of a
rectangular orthotropic plate with a free edge and a concentrated mass was considered. In [Shuyu 2001]
an analytical method was presented to predict the natural frequency of flexural vibration of rectangular
thin plates with free boundary conditions. In [Wang and Xu 2010] discrete singular convolution was
utilized to determine nondimensional frequency parameters for clamped (CCCC), clamped with one free
edge (CFCC), and free (FFFF) rectangular plates.

A review of the existing literature reveals that studies are primarily focused on free-vibration analysis
of stiffened plates with simply supported, clamped, and a combination of both boundary conditions,
whereas studies on stiffened plates with free edges are limited. It is also noted that the emphasis is
mainly on developing different methodologies to obtain the natural frequencies compared to studying
the variations in the dynamic behavior corresponding to changes in system geometry and boundary
conditions. Works on large-amplitude dynamic behavior, specifically the effect of loaded vibration
amplitude on the natural frequency of stiffened plates, are also rare. We investigate large-amplitude
dynamic behavior of stiffened plates for various boundary conditions including a single free edge. It also
looks into the effect of vibration amplitude on loaded natural frequency. The results for large-amplitude
behavior are presented in terms of backbone curves in the dimensionless amplitude-frequency plane.
These results have been documented for the first six vibration modes of stiffened plates under uniformly
distributed transverse loading. Vibration mode shapes are also provided corresponding to the minimum
and maximum amplitudes of vibration. Unlike in finite element analysis (FEA), where the physical
domain is discretized into smaller finite elements, the present semianalytical formulation is associated
with the whole domain, that is, the assumed displacement field is a function of the whole physical domain.
As a result, the number of algebraic equations to be solved is substantially reduced compared to FEA.

2. Mathematical formulation

A thin rectangular plate (a× b× tp) orthogonally stiffened by eccentric stiffeners parallel to the edges
of the plate is shown in Figure 1, which also depicts the significant dimensions of the system and the
coordinate system for the present analysis. It is assumed that the stiffeners are rigidly attached to the plate
such that no relative motion can take place and no field discontinuity can occur between the two. Although
the figure shows only one stiffener along each of the coordinate directions, the mathematical formulation
is carried out for multiple stiffeners having generalized location in both directions. The number of
stiffeners in the x and y-directions are represented by nsx and nsy , respectively, and the location of the
q-th stiffener along the y-direction and the p-th stiffener along the x-direction are denoted by xq

stf and
y p

stf. The eccentricity (ep
x , eq

y) of the stiffeners is quantified by the perpendicular distance between the
centroid (CG) of the stiffener cross-section and the midplane of the plate. Only rectangular stiffener



886 ANIRBAN MITRA, PRASANTA SAHOO AND KASHINATH SAHA

y

x

z
x x’

z’

y

a

O

O
CG

1
stf

x1
stf

b
b

1
sx

tp
t 1

sy

b1
sy

e1
y t 1

sx

Figure 1. Stiffened plate with significant dimensions and coordinate system.

cross-sections are considered: (bp
sx × t p

sx) for the p-th stiffener parallel to the x-axis and (bq
sy × tq

sy) for
the q-th stiffener along the y-axis. The mathematical formulation is further based on the assumptions that
the plate and stiffener materials are isotropic, homogeneous, and linearly elastic and the plate thickness
(tp) is small enough compared to its lateral dimensions (a and b) so that the effects of shear deformation
and rotary inertia can be ignored.

The physical domain in the x-y coordinate system as shown in Figure 1 is converted to the com-
putational domain by normalizing the midplane coordinates as ξ = x/a and η = y/b. In this ξ -η
computational plane, Gauss points are generated along the two orthogonal coordinate directions and
constant ξ and constant η lines are drawn through the generated Gauss points. Intersections of these
constant ξ and constant η lines provide a grid of reference points for computations. However, a stiffener
can be placed at any location inside the domain and as the locations of the Gauss points are fixed, there
may not be a sufficient number of computation points around a stiffener. Hence, depending on the
number, orientation, and location of the stiffeners the domain is decomposed into subdomains, which
have their own Gauss points spaced in the same ratio as the original domain. This technique helps to
have an adequate number of computation points around the location of stiffeners and boundaries of the
plate so that the displacement field can be captured accurately. Such decomposed domains with modified
grids corresponding to different types of plates having different stiffener orientations and positions are
shown in Figure 2.
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Figure 2. Decomposed computational domain along with schematic representations for
(a) uniaxially single stiffened (UASS), (b) uniaxially double stiffened (UADS), and (c) bi-
axially cross stiffened (BACS) plates.

In nonlinear vibration, frequency is a function of the vibration amplitude and the nature of the deflected
profile [Bikri et al. 2003; Das et al. 2009]; moreover, the amplitude of vibration at a point within a
vibrating continuous system depends on the location. In studying the effect of vibration amplitude on
the dynamic behavior of stiffened plates, the maximum amplitude of vibration is taken as representative
of the amplitude. The deflection profile of a system is dependent on the boundary conditions of the
system and the nature of loading to which it is subjected. Different boundary conditions may arise from
the different combinations of clamped, simply supported, and free end conditions of a plate. However,
the present paper only deals with combinations of simply supported and clamped boundary conditions
with a single free edge, under transverse uniformly distributed loading (UDL).

Large-amplitude free-vibration analysis of a nonlinear system is essentially the same as free-vibration
analysis of the system subjected to a static load producing such large-amplitude deflection [Crandall
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1956]. Here, the system is assumed to execute small-amplitude vibration about the statically deflected
equilibrium configuration as opposed to large-amplitude vibration about its undeformed equilibrium
position. Hence, the present large-amplitude free-vibration analysis of stiffened plates is performed in
two steps. First, large displacement is statically imposed by applying uniform transverse loading on the
stiffened plate and then the free-vibration analysis is performed as an eigenvalue problem to identify the
loaded natural frequency. The static analysis yields the initial deflection profile, which is used in the
subsequent free-vibration analysis. As the dynamic problem is solved on the basis of the solution of the
static displacement field, the effect of a statically imposed large amplitude of vibration is incorporated
into the dynamic system. The mathematical formulation for both the static and dynamic problems is based
on the variational form of the energy principle. Nonlinear strain displacement relations are considered
in order to incorporate geometric nonlinearity in the system.

2.1. Static analysis. The principle of minimum potential energy [Reddy 2002] can be mathematically
expressed as

δ(U + V )= 0. (1)

Here, V is the work function or potential of the external forces and U is the total strain energy stored
in the system. For a stiffened plate under an externally applied uniformly distributed load of intensity p,
the total potential energy is given by

V =−(ab)
∫ 1

0

∫ 1

0
(pw)dξdη. (2)

The total strain energy (U ) of the system consists of two components, namely the strain energy of the
plate (Up) and the total strain energy stored in all the stiffeners (Us). In the case of large-displacement
analysis of plates, both bending and stretching effects are taken into consideration. So, the strain energy
of the plate (Up) also consists of two parts: strain energy due to pure bending (Ub) and strain energy due
to stretching (Um) of its midplane. The expressions of Ub and Um are well-known for rectangular plates
[Saha et al. 2004] and are indicated here for ready reference:

Ub =
D
2
(ab)

∫ 1

0

∫ 1

0

[{
1
a2 (w,ξξ )+

1
b2 (w,ηη )

}2

+2(1−ν)
1

a2b2 {(w,ξη )
2
− (w,ξξ )(w,ηη )}

]
dξdη,

Um =
E ptp

2(1− ν2)
(ab)

∫ 1

0

∫ 1

0

[
1
a2 (u,ξ )

2
+

1
a3 (u,ξ )(w,ξ )

2
+

1
b2 (v,η )

2
+

1
b3 (v,η )(w,η )

2

+
1
4

{ 1
a2 (w,ξ )

2
+

1
b2 (w,η )

2
}2
+2ν

{ 1
ab
(u,ξ )(v,η )+

1
2a2b

(v,η )(w,ξ )
2
+

1
2ab2 (u,ξ )(w,η )

2
}

+
1−ν

2

{ 1
b2 (u,η)

2
+

2
ab
(u,η)(v,ξ )+

1
a2 (v,ξ )

2
+

2
ab2 (u,η)(w,ξ )(w,η)+

2
a2b

(v,ξ )(w,ξ )(w,η)
}]

dξdη,

(3)

where E p, ν, and D (= E pt3
p/12(1 − ν2)) are the elastic modulus, Poisson’s ratio, and the flexural

rigidity of the plate, respectively. The displacement fields of the plate along the x , y, and z-directions
are represented by u, v, and w, respectively. The expression for strain energy stored in the stiffeners (Us)
can be written as Us =

∑nsx
p=1 U p

sx +
∑nsy

q=1 U q
sy , where U p

sx and U q
sy are strain energies stored in the p-th

stiffener along the x-direction and the q-th stiffener along the y-direction, respectively. In order to derive
the expressions for strain energies of the individual stiffeners a compatible strain distribution at the line
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joining the plate and the stiffener is assumed. Hence, the axial strain of a stiffener along the x-direction is
derived from the expression ε p

sx = εpx |z=tp/2− (z− tp/2)w,xx −ysv,xx , where the plate strain at z = tp/2
is denoted by εpx |z=tp/2 and ys denotes the distance from the local minor axis. Substituting for the plate
strain, εpx |z=tp/2 = u,x +0.5(w,x )2 − (tp/2)w,xx , the expression for the total strain of an x-direction
stiffener is obtained as ε p

sx = u,x +0.5(w,x )2−zw,xx −ysv,xx . So, the axial strain of a stiffener along the
x-direction includes axial strain due to bending action about the major axis, stretching of the neutral axis,
and bending action about the minor axis. It should be pointed out that the effect of shear deformation due
to direct shear and torsion has not been taken into consideration while calculating the total axial strain.
Substituting the total strain in the generalized expression of strain energy, U p

sx = (Es/2)
∫

vol(ε
p
sx)

2 dV ,
the final expression of the strain energy stored in a x-direction stiffener is obtained. Similarly, the strain
energy expression of a y-direction stiffener can be obtained and the final expression of total stiffener
strain energy (Us) is given by

Us =

nsx∑
p=1

Esa
2

∫ 1

0

[
(I p

y + Ap
y ep

x
2
)

a4 (w,ξξ )
2
+
(I p
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y (bη

p
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− Q p
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{
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nsy∑
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Esb
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(I q
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x eq
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(I q
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x (aξ

q
stf)
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2
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+ Aq

x

{
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b2 (v,η )

2
+

1
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2
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dη. (4)

Here, Es is the elastic modulus of the stiffener material. I q
x (= bq

sy tq
sy

3
/12), I p

y (= bp
sx t p

sx
3
/12) and I q

xz

(= bq
sy

3tq
sy/12), I p

yz (= bp
sx

3t p
sx/12) are moments of inertia about the major and minor axes of the stiffener

cross-section. Q p
y (= Aq

x eq
y ), Qq

x (= Ap
y ep

x ) are the first moment of area about the plate midplane and
Ap

y , Aq
x are the cross-sectional areas of the p-th x and q-th y-direction stiffeners, respectively. In the

expressions of the energy functionals ξ and η are the dimensionless forms of the midplane coordinates
which are associated with the computational domain.

2.1.1. Approximate displacement fields. The plate displacement fields (w, u, and v) can be approxi-
mately expressed as linear combinations of unknown coefficients di as:

w(ξ, η)=

nw∑
i=1

diφi (ξ, η), u(ξ, η)=
nw+nu∑

i=nw+1

diαi−nw(ξ, η), v(ξ, η)=

nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu(ξ, η), (5)

where φ(ξ, η), α(ξ, η), and β(ξ, η) are sets of orthogonal functions for w, u, and v, respectively. The
functions φi (ξ, η) are associated with displacements due to bending, whereas αi (ξ, η) and βi (ξ, η) de-
scribe stretching of the midplane of the plate. Appropriate start functions for these orthogonal sets are
selected in such a way that they satisfy the flexural and membrane boundary conditions of the plate. The
two-dimensional (2D) start functions are generated from one-dimensional (1D) functions corresponding
to the two coordinate directions. The 1D starting functions for transverse displacement are taken to be the
beam deflection functions, derived from the static deflection shape of the beam under uniform loading,
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Figure 3. Plots of 1D beam functions.

corresponding to the boundary condition of the plate along the particular coordinate axis. A complete
set with 21 different boundary conditions may arise from the different combinations of clamped (C),
simply supported (S), and free (F) end conditions of a plate. But it is found that six basic beam functions,
represented as CC, CS, CF, SS, SF, and FF, are sufficient to generate 2D start functions corresponding to
all the classical boundary conditions possible for a plate. Both transcendental and polynomial functions
are used to describe these 1D beam functions [Blevins 1981] and they are graphed in Figure 3.

As per the requirements of the numerical scheme, all the functions are described numerically within the
computational domain at the selected Gauss points. The higher-order 1D functions are generated through
a numerical implementation of the Gram–Schmidt orthogonalization procedure. However, the necessary
rigid body modes for SF and FF beams are incorporated by inserting appropriate functions into the
corresponding sets of orthogonal functions. The 2D functions are obtained through ordered multiplication
of the 1D functions for two orthogonal directions and are specified for various boundary conditions
involving a single free edge in Table 1. The notation for the boundary conditions of the plate has been
specified through its edge conditions, starting from the edge x = 0 and proceeding counterclockwise.

Boundary condition Start function for w(φ1(ξ, η))

CCCF ξ 2(1− ξ)2
(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
CCSF ξ 2(3− 5ξ + 2ξ 2)

(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
CSCF ξ 2(1−ξ)2

(
cosh(C(1−η))− cos(C(1−η))+ D{sinh(C(1−η))− sin(C(1−η))}

)
CSSF ξ 2(3− 5ξ + 2ξ 2)

(
cosh(C(1− η))− cos(C(1− η))

+ D{sinh(C(1− η))− sin(C(1− η))}
)

SCSF sin(πξ)
(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
SSSF sin(πξ)

(
cosh(C(1− η))− cos(C(1− η))+ D{sinh(C(1− η))− sin(C(1− η))}

)
Table 1. Start functions for assumed displacement fields w.
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The start functions for stretching displacement of the plate (u and v) come from in-plane or membrane
boundary conditions and zero displacement is assumed at the edges (u= 0 at ξ = 0, 1 and v= 0 at η= 0, 1)
to obtain the 1D starting polynomial functions. It should be pointed out that at the free end of the plate
the transverse displacements are unrestricted, but the in-plane boundary condition is immovable, that is,
displacements are restricted at all the ends including the free edge. Similar to the previous case, the 2D
base functions are generated by multiplying the 1D start functions for the two orthogonal directions; these
functions are given by α1(ξ, η)= {ξ(1−ξ)}.{η(1−η)} and β1(ξ, η)= {ξ(1−ξ)}.{η(1−η)}. However, in
this case the higher-order functions are generated from the start functions following a two-dimensional
implementation of the Gram–Schmidt orthogonalization scheme. The Gram–Schmidt orthogonalization
principle and its two-dimensional implementation have been discussed in detail in [Saha et al. 2004; Das
et al. 2009]. It should be noted that the generated functions are for the total domain and they need to
be broken down in terms of the subdomains. These sets of functions for the subdomains are derived by
carrying out interpolation operations on the total functions and are represented by φmn

i , αmn
i , βmn

i , where
m = 1, . . . , nsy + 1 and n = 1, . . . , nsx + 1.

2.1.2. Governing system of equations. Substituting the complete energy expressions and the approxi-
mate displacement fields into (1), the set of system governing equations in matrix form is obtained as

[K ({d})]{d} = { f }. (6)

Here, [K ], {d}, and { f } are stiffness matrix, vector of unknown coefficients, and load vector, respectively.
The total stiffness matrix [K ] of the system is given by [K ] = [Kb]+[Km]+

∑nsx
p=1[Ksx ]

p
+
∑nsy

q=1[Ksy]
q ,

where [Kb] and [Km] are contributions from the bending and stretching action of the plate, and [Ksx ]
p

and [Ksy]
q represent the stiffness matrices of the p-th stiffener along the x-direction and the q-th stiffener

along the y-direction, respectively. The details of the elements of the stiffness matrices and load vector
are furnished in the Appendix.

2.1.3. Solution methodology for static displacement field. As large displacement induced by geometric
nonlinearity is taken into consideration, the stiffness matrix [K ] includes elements that contain the un-
known coefficients {d}, to be determined subsequently. The stiffness matrices for the stiffeners also
include some terms containing the unknown coefficients. As a result the system of governing equations
presented in (6) becomes nonlinear in nature and cannot be solved directly. Hence, the solution method-
ology specially adopted to solve the set of nonlinear equations employs an iterative procedure utilizing a
direct substitution technique with a successive relaxation scheme [Cook et al. 1989]. At the start of the
solution procedure necessary parameters that cater to the iterative scheme, for example, the relaxation
parameter (λ), error limit (ε), etc., are chosen along with a starting load value. The linear component
of the stiffness matrix [Kb] is computed and an initial guess (generally taken as 0) for the unknown
coefficients is assumed. The total stiffness matrix [K ] is calculated on the basis of the assumed values
and a new set of unknown coefficients is determined from the expression {d}(n+1)

= [K ({d}(n))]−1
{ f },

where n denotes the iteration counter. A comparison between the calculated values and the corresponding
values in the previous iteration is carried out to determine the error. If the error comes out to be within
the predefined limit of tolerance, convergence is achieved. Otherwise, if the error is outside the specified
value the next iteration is performed with modified values of the unknown coefficients, computed by
the relation {d} = {d}old+ λ({d}− {d}old). Once convergence is achieved for a particular load step, an
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increment is provided to the load and the present solution is taken as the initial guess for the next load
step.

2.2. Dynamic analysis. The governing set of equations for the dynamic analysis is derived following
Hamilton’s principle, which is expressed as

δ

(∫ τ2

τ1

(T −U )dτ
)
= 0. (7)

According to Hamilton’s principle a dynamic system can be characterized by two energy functionals,
kinetic energy and potential energy. In the case of a free vibration analysis the potential energy is made
up of only the strain energy of the system, as the potential of the external forces is reduced to zero. So,
in the mathematical expression T and U represent the total kinetic energy of the system and the total
strain energy stored in the system. The variational operator and time coordinate are denoted by δ and τ ,
respectively. The total kinetic energy (T ) is a summation of the plate kinetic energy (Tp) and stiffener
kinetic energy (Ts), that is,

T = Tp + Ts, where Ts =

nsx∑
p=1

T p
sx +

nsy∑
q=1

T q
sy . (8)

T p
sx and T q

sy are kinetic energies of the p-th stiffener along the x-direction and the q-th stiffener along
the y-direction, respectively. The expressions for the kinetic energies of plate and individual stiffeners
are, in terms of dynamic displacement fields,

Tp =
1
2ρptp(ab)

∫ 1

0

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dξdη,

T p
sx =

1
2ρs t p

sx(abp
sx)

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dξ,

T q
sy =

1
2ρs tq

sy(bbq
sy)

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dη,

(9)

where ρp and ρs are the densities of the plate and stiffener materials. The expressions of strain energies
for the plate (Ub and Um) and stiffeners (Us) are identical to those given by (3) and (4). These energy func-
tionals are determined from the assumed transverse (w(ξ, η, τ )) and in-plane (u(ξ, η, τ ) and v(ξ, η, τ ))
dynamic displacement fields, which are associated with the midplane of the plate. The assumed dynamic
displacements are separable in space and time and can be approximately represented by finite linear
combinations of orthogonal admissible functions and a new set of unknown coefficients, denoted by {c}:

w(ξ, η, τ )=

nw∑
i=1

ciφi eiωτ ,

u(ξ, η, τ )=
nw+nu∑

i=nw+1

ciαi−nwe(i−nw)ωτ ,

v(ξ, η, τ )=

nw+nu+nv∑
i=nw+nu+1

ciβi−nw−nue(i−nw−nu)ωτ .

(10)



LARGE-AMPLITUDE DYNAMIC ANALYSIS OF STIFFENED PLATES WITH FREE EDGES 893

In these expressions ω is the natural frequency of the system and {c} denotes the eigenvectors in ma-
trix form which represent the contribution of the individual space functions in a particular vibration
frequency mode. The spatial functions φi (ξ, η), αi (ξ, η), and βi (ξ, η) are identical to those for the static
analysis in (5). Substitution of the kinetic (T ) and strain energy (U ) expressions along with the dynamic
displacement fields gives the governing equation of the dynamic system in the following form:

−ω2
[M]{c}+ [K ]{c} = 0, (11)

where [K ] is the stiffness matrix of the system at the deflected configuration. This implies that the un-
known parameters obtained from the converged static solution are used to compute the starting values for
solving the dynamic problem. In the above expression, [M] is the mass matrix that includes contributions
from the plate ([Mp]) and the x and y-direction stiffeners ([Msx ] and [Msy]). So, the final expression for
the total mass matrix is obtained as [M] = [Mp] + [Msx ] + [Msy]. The form of [M] is given by

[M] =

M11 0 0
0 M22 0
0 0 M33

 ,
where

[M11] = ρptp(ab)
nw∑
j=1

nw∑
i=0

∫ 1

0

∫ 1

0
φiφ j dξdη+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw∑
j=1

nw∑
i=1

∫ 1

0
φiφ j dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw∑
j=1

nw∑
i=1

∫ 1

0
φiφ j dη

]
,

[M22] = ρptp(ab)
nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0
αi−nwα j−nw dξdη

+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0
αi−nwα j−nw dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0
αi−nwα j−nw dη

]
,

[M33] = ρptp(ab)
nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0
βi−nw−nuβ j−nw−nu dξdη

+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0
βi−nw−nuβ j−nw−nu dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0
βi−nw−nuβ j−nw−nu dη

]
.

The governing equation of the dynamical system (11) can be alternatively written as

[[M]−1
[K ]]{c} = ω2

{c}.
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This is a standard eigenvalue problem which is solved numerically through IMSL routines. The square
roots of the computed eigenvalues give the free vibration frequencies at the statically deflected configura-
tion of the stiffened plate and are called the loaded natural frequencies. The amplitude of free vibration
is obtained from the transverse displacement fields associated with the eigenvalues. The plot of the
loaded natural frequencies against the corresponding amplitudes in a nondimensional plane represents
the backbone curve of the system. The eigenvectors corresponding to the eigenvalues are utilized to
determine the mode shapes of the vibrating system.

3. Results and discussion

Our analysis is carried out for three different types of stiffened plates — uniaxially single stiffened, uni-
axially double stiffened, and biaxially cross stiffened — under a uniformly distributed load. The classi-
fication is according to the number and orientation of the stiffeners, as shown schematically in Figure 2,
which also presents the decomposed computational domains that provide an improved grid corresponding
to the three different types of stiffened plates. As stated earlier, for each of the three types of plates, six
classical flexural boundary conditions are considered: CCCF, CCSF, CSCF, CSSF, SCSF, and SSSF, each
letter indicating an edge condition, moving counterclockwise beginning with the edge x = 0. Thus there
is a single free edge, always at y = b, and the other edges are variously clamped or simply supported.
These flexural boundary conditions dictate the choice of start functions for the definition of transverse
deflection (w). The base functions for the in-plane displacement (u and v) of the plate are derived from
the membrane boundary conditions, which are modeled as immovable edges in all cases.

The process of generation of start functions for both transverse and deformation displacement has
been discussed in Section 2.1.1, and Table 1 presents base functions for individual cases of flexural
end conditions. The Gram–Schmidt orthogonalization principle is utilized to generate a complete set of
higher-order functions and adequate measures are taken to insert rigid body modes wherever necessary.
The number of functions for each of the plate displacements (u, v, and w) is taken as 25 (5× 5), where
the numbers in the parentheses indicate the number of functions corresponding to the two orthogonal
directions. Due to the general nature of the formulation any other classical flexural boundary conditions
can be handled through this method. It should also be mentioned that the present methodology can be
applied for any other transverse loading pattern, mathematically expressible in terms of the coordinates.

The analysis is based on determining the static displacement field first and subsequently computing
the eigenvalues of the corresponding dynamic problem based on the known static displacement field.
The solution methodology of the static problem involves an iterative numerical scheme using successive
relaxation due to presence of nonlinearity in the stiffness matrix. The tolerance value of the error limit
(ε) for the numerical iterative scheme is fixed at 0.50% and the relaxation parameter (λ) is taken as 0.50.
The solution of the dynamic problem is obtained using IMSL routines.

To determine the number of Gauss points to be used for generation of results a convergence study
is carried out on a uniaxially single stiffened plate under uniformly distributed transverse loading. The
details of the plate and stiffener geometry, material properties, and boundary conditions are provided
in the figure’s legend. For a transverse load of 100 kPa intensity, the normalized maximum deflection
(wmax/tp) of the system is plotted against a number of Gauss points (ng) in Figure 4. A choice of 24 Gauss
points for the present work is made from the convergence study. The initial choice of number of Gauss
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Figure 4. Convergence study for selection of a number of Gauss points.

points dictates the grid density of the computational domain after applying the domain decomposition
technique. However, with increase in the stiffener number, the number of subdomains increases and as
each subdomain has a grid of ng× ng reference points, the computations become extensive.
3.1. Validation study. The formulation and solution methodology used in the present work are validated
through comparison with results available in the existing literature. The load-deflection curve obtained
from the static analysis incorporating geometric nonlinearity is compared with the results of [Koko and
Olson 1992; Rao et al. 1993a; Sheikh and Mukhopadhyay 2000]. A clamped (CCCC) stiffened plate,
whose geometry and dimensions (in mm) are provided in Figure 5, left, under uniformly distributed
transverse pressure is analyzed and the comparison plots at two different locations on the plate, A and B,
are presented in Figure 5, right. Fairly good agreement with the results of other researchers is observed.
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Figure 5. Left: detailed geometry and dimensions of clamped (CCCC) stiffened plate
used for validation purpose. Right: comparison of load deflection behavior of clamped
stiffened plate at selected points.
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Figure 6. Deflected profile of simply supported square stiffened plate under UDL.

A comparison of the deflected shape of a simply supported (SSSS) square plate with one stiffener
under UDL generated through the present method is carried out with results furnished by [Bedair 1997a].
The details of the plate geometry and the material properties are furnished in Figure 6, left, and the results
are generated for a uniformly distributed load of 1.0 psi. The comparative plot in Figure 6, right, shows
that deflected profiles have identical natures and agreement between the two sets of results is excellent.

The dynamic problem is validated by comparing the linear free vibration frequencies of different
modes for a system with reduced complexity. Table 2 shows the free vibration frequency parameters
ωa2√ρtp/D for the first six modes of an unstiffened square plate with various boundary conditions,

Boundary condition Mode= 1 2 3 4 5 6

CCCC
[Leissa 1973] 24.012 40.029 63.471 76.745 80.704 116.799

Present 23.939 40.029 63.280 78.031 80.668 118.035

CCSF
[Leissa 1973] 17.621 36.044 52.060 71.182 74.339 106.294

Present 17.546 36.045 51.851 71.167 75.668 106.324

CSCF
[Leissa 1973] 23.469 35.604 63.135 66.809 77.495 108.985

Present 23.401 35.606 62.964 67.303 77.496 109.981

CSSF
[Leissa 1973] 16.870 31.128 51.620 64.040 67.637 101.197

Present 16.806 31.138 51.465 64.563 67.656 102.248

SCSF
[Leissa 1973] 12.679 33.068 41.685 63.005 72.398 90.614

Present 12.687 33.079 41.715 63.079 73.756 91.115

SSSF
[Leissa 1973] 11.669 27.764 41.193 59.072 61.867 90.278

Present 11.687 27.772 41.235 59.162 62.391 90.886

Table 2. Comparison of linear dimensionless frequency parameter for an unstiffened plate.
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Figure 7. Variation of dimensionless free vibration frequency parameter for the first
mode with change in plate-to-stiffener thickness ratio.

comparing them with the results of [Leissa 1973]. For this particular vibration study the stiffener dimen-
sions are taken as zero and good agreement is observed for all the cases. Figure 7 depicts the variation
of frequency parameter for the fundamental mode with change in stiffener-to-plate thickness ratio for
a square CCCF plate having a single centrally placed eccentric stiffener along the y-direction. The
material properties used in this case are as follows: E p = Es = 210 GPa, ρp = ρs = 7850 kg/m3, and
ν = 0.30. It is seen that the frequency parameter decreases with decrease in stiffener thickness and as
the thickness becomes negligibly small the parameter value converges towards that of an unstiffened
plate. The dimensionless frequency parameter of the unstiffened square plate with CCCF boundary is
obtained through the present method as 23.939 and, as shown in Table 2, it is in close agreement with
the value presented by [Leissa 1973]. The convergence of the frequency parameter towards the value
corresponding to an unstiffened plate with decreasing stiffener dimension provides an indirect validation
of the present method. Figure 7 also indicates that the dimensionless frequency parameter attains a
constant value beyond a particular thickness ratio. At this critical thickness ratio the stiffener divides the
plate into two panels of equal width that vibrate with the same natural frequency as the plate. In [Bedair
1997b] a similar trend is observed for simply supported stiffened plates.

3.2. Large-amplitude dynamic behavior. The present study is undertaken with an objective of inves-
tigating the effect of large displacement on the dynamic behavior of stiffened plates and to study the
influence of different flexural boundary conditions on the system behavior. The results are presented
for a rectangular stiffened plate with a = 0.60 m, b = 0.41 m, and tp = 0.00633 m, having stiffeners of
rectangular cross-section (0.0127 m× 0.02222 m). The following material properties are used to generate
the results: E p = Es = 211 GPa, ρp = ρs = 7830 kg/m3, and ν = 0.30. The nonlinear frequency ampli-
tude relationships of the three different types of stiffened plates (as shown in Figure 2) having typical
combinations of boundary conditions are shown graphically as backbone curves in Figures 8–10. These
backbone curves have been presented for the first six vibration modes in a nondimensional plane. The
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Figure 8. Backbone curves for uniaxially single stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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Boundary condition
Type of stiffened plate CCCF CCSF CSCF CSSF SCSF SSSF

Uniaxially single stiffened 148.682 127.015 101.197 72.486 114.094 52.549
Uniaxially double stiffened 154.653 139.136 99.929 84.069 129.423 58.083
Biaxially cross stiffened 199.061 160.732 190.063 144.228 138.142 103.736

Table 3. Fundamental linear frequency (ω1) in Hz for the three types of stiffened plates
with different boundary conditions.

ratio of the maximum transverse deflection to plate thickness is taken as the dimensionless amplitude
(wmax/tp) while the nonlinear frequency (ωnl) is normalized by the corresponding fundamental linear
frequency (ω1) to obtain the dimensionless frequency. The results are generated up to a maximum value
of dimensionless amplitude (wmax/tp), which is taken as 2.0. The backbone curves for uniaxially single
stiffened, uniaxially double stiffened, and biaxially cross stiffened rectangular plates under uniformly
distributed transverse load are shown for different boundary conditions, namely CCCF, CCSF, CSCF,
CSSF, SCSF, and SSSF, in Figures 8, 9, and 10, respectively. These figures indicate that for a given plate
and stiffener geometry the natural frequencies increase as the deflection of the stiffened plate increases for
all the cases. In other words, the system exhibits hardening-type nonlinearity. The increase in nonlinear
frequency is caused by stiffening of the plate with increasing deflection due to geometric nonlinearity.
It is also observed from Figures 8 and 9 that a decrease in rigidity of the boundary conditions, due to
introduction of simply supported ends in place of clamped ends, causes the backbone curves for different
modes to spread apart in the nondimensional plane. Thus it can be stated that systems with different
boundary conditions possess different degrees of nonlinearity.

Mode switching has been observed in a few boundary condition cases for the three types of stiffened
plates. Figure 8 shows that for uniaxially single stiffened plates with CCCF, CSCF, SCSF, and SSSF
boundary conditions switching occurs between the third (ω3) and fourth (ω4) modes. However, a closer
inspection reveals that there is also mode switching between the sixth (ω6) and seventh (ω7) backbone
curves for the cases mentioned above, evident from the slight change in direction of the sixth curve. The
absence of the seventh mode gives the sixth curve a broken appearance. In the case of uniaxially double
stiffened plates mode switching is absent for all the boundary conditions except SCSF boundaries as
shown by Figure 9. From Figure 9e it is clear that first a switch between the fifth (ω5) and sixth (ω6)
modes takes place and then the fourth (ω4) and fifth (ω5) backbone curves intersect each other indicating
a further switch. Finally, from the different sets of backbone curves of biaxially cross stiffened plates
shown in Figure 10 it is evident that mode switching occurs between fourth (ω4) and fifth (ω5) backbone
curves for CSCF and SSSF boundaries, whereas no mode switching is observed for the case of CCCF,
CCSF, and CSSF conditions. At first glance it seems that this phenomenon is absent in the case of the
SCSF boundary condition also. But the discontinuous appearance of the sixth mode indicates that there
is indeed a switch between the sixth and seventh backbone curves. The occurrence of mode switching
and the modes between which switching occurs depend on parameters such as plate aspect ratio, plate-to-
stiffener thickness ratio, stiffener position, stiffener orientation, type of loading, and boundary conditions.

For all the backbone curves, the fundamental linear frequency (ω1) is used as the normalizing param-
eter, so its values are provided separately for the three types of stiffened plates with different boundary
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Figure 9. Backbone curves for uniaxially double stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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Figure 10. Backbone curves for biaxially cross stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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ωnl/ωl

Type of plate wmax/tp Mode= 1 2 3 4 5 6

0.0 1.000 1.943 3.092 3.329 3.584 5.548
UASS 1.0 1.126 2.176 3.355 3.474 3.867 5.862

2.0 1.460 2.776 3.958 4.032 4.550 6.581

0.0 1.000 1.859 3.522 4.230 4.992 5.015
UADS 1.0 1.101 2.020 3.764 4.385 5.098 5.158

2.0 1.443 2.515 4.396 4.804 5.494 5.691

0.0 1.000 1.708 2.725 3.588 4.045 4.430
BACS 1.0 1.684 1.954 2.951 3.658 4.141 4.621

2.0 1.293 2.489 3.379 4.011 4.323 5.037

Table 4. Normalized nonlinear frequency (ωnl/ωl) for the six modes at wmax/tp = 0.0,
1.0, and 2.0 points on the backbone curve of uniaxially single stiffened (UASS), uni-
axially double stiffened (UADS), and biaxially cross stiffened (BACS) plates with the
CCCF boundary condition.

conditions in Table 3. It is observed from Table 3 that for a particular type of plate the fundamental linear
frequency is highest for the CCCF boundary condition, whereas it is lowest for the SSSF condition. This
clearly indicates that clamped-end conditions provide greater rigidity compared to simply supported ends.
As a result of the increased stiffness of the system due to end rigidity a higher fundamental frequency is
obtained. In the case of uniaxially stiffened plates having a single simply supported end along with the
free edge, adjacent clamped ends correspond to a higher fundamental frequency, but for biaxially stiffened
plates an opposite trend manifests. Similarly for uniaxially stiffened plates having a single clamped end
in addition to the free edge, adjacent simply supported ends correspond to a lower fundamental frequency,
but for biaxially stiffened plates the situation is reversed. The table also reveals that the highest stiffness
and thus highest fundamental frequency corresponds to cross stiffened plates. Table 4 presents numerical
values of normalized nonlinear frequency (ωnl/ω1) at specific points (wmax/tp = 0.0, 1.0, and 2.0) on the
backbone curves for the six modes of three different types of plates having the CCCF boundary condition
(shown in Figures 8a, 9a, and 10a).

3.3. Mode shape plots. To highlight the effect of vibration amplitude on the dynamic behavior in greater
detail the mode shape plots for all six vibration modes are presented for the three types of plates in
Figures 11–13. For each mode of vibration, two mode shape plots corresponding to linear (wmax/tp = 0)
and nonlinear (wmax/tp = 2.00) frequencies are given. In each of these figures, the surface plot and its
corresponding contour plot for the vibrating stiffened plate have been presented. The amplitude of vibra-
tion is normalized by the absolute difference between the two extremities of the displacement amplitudes.
The first six mode shapes for a CCCF uniaxially single stiffened plate under uniform transverse loading
are given in Figure 11. Interchange of the linear and nonlinear mode shapes described in Figures 11c
and 11d appropriately supports the case of switching between the third and fourth mode. It is also
observed from Figure 11f that the linear and nonlinear mode shape plots are totally different, which
corroborates that switching occurs between the sixth and seventh modes. The mode shape plots along
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Figure 11. Mode shape plots for uniaxially single stiffened rectangular plate with CCCF
boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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Figure 12. Mode shape plots for uniaxially double stiffened rectangular plate with
SCSF boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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Figure 13. Mode shape plots for biaxially cross stiffened rectangular plate with CSCF
boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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with contour plots for all six vibration modes for a uniaxially double stiffened plate are presented in
Figure 12, corresponding to SCSF boundary condition (Figure 9e). As expected the mode shape plots
in Figure 12d–f support the case of double mode switching. It is clearly seen that the linear mode shape
plot in Figure 12d corresponds to the nonlinear mode shape in Figure 12e, the linear mode shape plot
in Figure 12e corresponds to the nonlinear mode shape in Figure 12f, and the linear mode shape of
Figure 12f is similar to the nonlinear mode shape in Figure 12d. Figure 13 gives the linear and nonlinear
mode shape plots for biaxially cross stiffened plates with CSCF boundary conditions. Here interchange
of mode shapes between the fourth and fifth modes is observed.

3.4. Effect of stiffener position on dynamic behavior. The backbone curves of a uniaxially single stiff-
ened plate with CCCF boundary conditions are presented in Figure 14 corresponding to two different
stiffener positions, η1

stf = 1.0 and η1
stf = 0.5, that is, the stiffener is placed parallel to the free edge. In one

case the stiffener is positioned at the free edge spanning the length of the plate, whereas for the other the
stiffener is at the center of the plate along the x-direction. The figure shows that the general trends of the
backbone curves remain identical to those discussed in the preceding section. The effect of shifting the
stiffener position on the dynamic behavior of the system is apparent from the changes in the backbone
curves of the two cases. For example, switching between the second and third modes of vibration takes
place for the central stiffener position as shown in Figure 14b, but the phenomenon is absent for the
stiffener placed at the free edge (η1

stf = 1.0). The fundamental linear frequencies for the η1
stf = 1.0 and

η1
stf = 0.5 positions of the stiffeners are found as 200.493 and 155.704 Hz, respectively. This indicates

that a higher stiffness of the system corresponds to plates with stiffeners at the free edge.
Mode shape plots for the first six vibration modes for a CCCF plate with the stiffener positioned at

the free edge are presented in Figure 15. Two mode shape plots corresponding to linear and nonlinear
frequencies are provided along with the corresponding contour plots for the vibrating system. Similar to

Figure 14. Backbone curves of uniaxially single stiffened rectangular plate with CCCF
boundaries for different stiffener positions: (a) η1

stf = 1.0 and (b) η1
stf = 0.5.
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Figure 15. Mode shape plots for uniaxially single stiffened rectangular plate with the
stiffener along the free edge, that is, η1

stf = 1.0, having CCCF boundary condition:
(a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, and (f) mode 6.
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Figures 11–13, here also the amplitude of vibration for the surface plots is normalized by the difference
between the extremities of the displacement amplitude. It is found that the mode shape plots for linear
and nonlinear frequencies are similar in nature. However, minor variations in these mode shape plots are
apparent from the contour plots and point to the fact that the amplitude of vibration influences the mode
shapes of the system.

4. Conclusion

The present work deals with large-amplitude free-vibration analysis of stiffened plates with various flex-
ural boundary conditions that include a single free edge. The stiffened plates are classified into three
categories, by number and orientation of the stiffeners: uniaxially single stiffened, uniaxially double
stiffened, and biaxially cross stiffened. A domain decomposition technique is applied to generate the
appropriate grid of computation points for the various types of plates. The analysis involves two steps, the
first being solution of the static displacement field of the system produced due to a uniformly distributed
transverse loading. The second step takes up the free-vibration analysis as an eigenvalue problem on
the basis of known static displacement field. The square roots of the computed eigenvalues provide
the loaded natural frequencies of the system. The mathematical formulation of the static problem is
based on the principle of minimum potential energy, whereas Hamilton’s principle has been applied for
the dynamic analysis. The results of both static and dynamic analyses are validated with the published
results of other researchers and good agreement is observed in almost all the cases. The large-amplitude
dynamic behavior has been presented as backbone curves in a dimensionless frequency-amplitude plane.
The general trend of the backbone curves indicates hardening-type nonlinearity. Mode switching has
been observed for some specific boundary conditions and geometries of the system and the results are
adequately backed up by three-dimensional mode shape plots presented along with contour plots in a
few specific cases.

Appendix: Details of stiffness matrices and load vector

The form of [Kb] is

[Kb] =

kb
11 0 0
0 0 0
0 0 0

 ,
where

[kb
11] = D(ab)

nw∑
j=1

nw∑
i=1

∫ 1

0

∫ 1

0

[{
1
4
(φi ,ξξ )(φ j ,ξξ )+

1
b4 (φi ,ηη )(φ j ,ηη )+

1
a2b2 (φi ,ξξ )(φ j ,ηη )

+
1

a2b2 (φi ,ηη )(φ j ,ξξ )

}
−
(1− ν)
a2b2 {(φi ,ξξ )(φ j ,ηη )+ (φi ,ηη )(φ j ,ξξ )− 2(φi ,ξη )(φ j ,ξη )}

]
dξdη.

The form of [Km] is

[Km] =

km
11 0 0

km
21 km

22 km
23

km
31 km

32 km
33

 ,
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where

[km
11] =

E ptp

2(1− ν2)
(ab)

nw∑
j=1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξ )(φ j ,ξ )+

1
b4

( nw∑
i=1

diφi ,η

)2
(φi ,η )(φ j ,η )

+
1

a2b2

( nw∑
i=1

diφi ,ξ

)2
(φi ,η )(φ j ,η )+

1
a2b2

( nw∑
i=1

diφi ,η

)2
(φ j ,ξ )(φ j ,ξ )

+
2
a3

( nw+nu∑
i=nw+1

diαi−nw,ξ

)
(φi ,ξ )(φ j ,ξ )+

2
b3

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,η

)
(φi ,η )(φ j ,η )

+
2ν
a2b

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,η

)
(φi ,ξ )(φ j ,ξ )+

2ν
ab2

( nw+nu∑
i=nw+1

diαi−nw,ξ

)
(φi ,η )(φ j ,η )

+
(1− ν)

ab2

{( nw+nu∑
i=nw+1

diαi−nw,η

)
(φi ,ξ )(φ j ,η )+

( nw+nu∑
i=nw+1

diαi−nw,η

)
(φi ,η )(φ j ,ξ )

}
+
(1− ν)

a2b

{( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,ξ

)
(φi ,ξ )(φ j ,η )+

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,ξ

)
(φi ,η )(φ j ,ξ )

}]
dξdη,

[km
21] =

E ptp

2(1− ν2)
(ab)

nw+nu∑
j=nw+1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
a3

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(α j−nw,ξ )

+
ν

ab2

( nw∑
i=1

diφi ,η

)
(φi ,η )(α j−nw,ξ )+

(1− ν)
ab2

( nw∑
i=1

diφi ,ξ

)
(φi ,η )(α j−nw,η )

]
dξdη,

[km
22] =

E ptp

2(1− ν2)
(ab)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0

[
2
a2 (αi−nw,ξ )(α j−nw,ξ )

+
(1− ν)

b2 (αi−nw,η )(α j−nw,η )

]
dξdη,

[km
23] =

E ptp

2(1− ν2)

nw+nu∑
j=nw+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0

[
2ν(βi−nw−nu,η )(α j−nw,ξ )

+(1− ν)(βi−nw−nu,ξ )(α j−nw,η )
]
dξdη,

[km
31] =

E ptp

2(1− ν2)
(ab)

nw+nu+nv∑
j=nw+nu+1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
b3

( nw∑
i=1

diφi ,η

)
(φi ,η )(β j−nw−nu,η )

+
ν

a2b

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(β j−nw−nu,η )+

(1− ν)
a2b

( nw∑
i=1

diφi ,ξ

)
(φi ,η )(β j−nw−nu,ξ )

]
dξdη,

[km
32] =

E ptp

2(1− ν2)

nw+nu+nv∑
j=nw+nu+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0
[2ν(αi−nw,ξ )(β j−nw−nu,η )

+(1− ν)(αi−nw,η )(β j−nw−nu,ξ )]dξdη,



910 ANIRBAN MITRA, PRASANTA SAHOO AND KASHINATH SAHA

[km
33] =

E ptp

2(1− ν2)
(ab)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0

[
2
b2 (βi−nw−nu,η )(β j−nw−nu,η )

+
(1− ν)

a2 (βi−nw−nu,ξ )(β j−nw−nu,ξ )

]
dξdη.

The form of [Ksx ] is

[Ksx ] =

ksx
11 ksx

12 0
ksx

21 ksx
22 0

0 0 ksx
33

 ,
where

[ksx
11] =

nsx∑
p=1

[
Esa

2

nw∑
j=1

nw∑
i=1

∫ 1

0

{
2(I p

y + Ap
y ep

x
2
)

a4 (φi ,ξξ )(φ j ,ξξ )− Q p
y

2
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξξ )(φ j ,ξ )

−Q p
y

1
a4

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(φ j ,ξξ )+ Ap

y
1
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξ )(φ j ,ξ )

+Ap
y

2
a3

( nw+nu∑
i=nw+1

diαi−nw,ξ

)2
(φi ,ξ )(φ j ,ξ )

}
dξ
]
,

[ksx
12] =

nsx∑
p=1

[
Esa

2

nw∑
j=1

nw+nu∑
i=nw+1

∫ 1

0

{
−Q p

y
2
a3 (αi−nw,ξ )(φ j ,ξξ )

}
dξ
]
,

[ksx
21]=

nsx∑
p=1

[
Esa

2

nw+nu∑
j=nw+1

nw∑
i=1

∫ 1

0

{
−Q p

y
2
a3 (φi ,ξξ )(α j−nw,ξ )+Ap

y
1
a3

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(α j−nw,ξ )

}
dξ
]
,

[ksx
22] =

nsx∑
p=1

[
Esa

2

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

{
Ap

y
2
a2 (αi−nw,ξ )(α j−nw,ξ )

}
dξ
]
,

[ksx
33] =

nsx∑
p=1

[
Esa

2

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
2(I p

yz + Ap
y (bη

p
stf)

2)

a4 (βi−nw−nu,ξ )(β j−nw−nu,ξ )

}
dξ
]
.

The form of [Ksy] is

[Ksy] =

ksy
11 0 ksy

13

0 ksy
22 0

ksy
31 0 ksy

33

 ,
where

[ksy
11] =

nsy∑
q=1

[
Esb
2

nw∑
j=1

nw∑
i=1

∫ 1

0

{
2(I q

x + Aq
x eq

y
2
)

b4 (φi ,ηη )(φ j ,ηη )− Qq
x

2
b4

( nw∑
i=1

diφi ,η

)2
(φi ,ηη )(φ j ,η )

−Qq
x

1
b4

( nw∑
i=1

diφi ,η

)
(φi ,η )(φ j ,ηη )+ Aq

x
1
b4

( nw∑
i=1

diφi ,η

)2
(φi ,η )(φ j ,η )

+Aq
x

2
b3

( nw+nu∑
i=nw+1

diβi−nw,η

)2
(φi ,η )(φ j ,η )

}
dη
]
,
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[ksy
22] =

nsy∑
q=1

[
Esb
2

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

{
2(I q

xz + Aq
x (aξ

q
stf)

2)

b4 (αi−nw,ηη )(α j−nw,ηη )

}
dη
]
,

[ksy
33] =

nsy∑
q=1

[
Esb
2

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
Aq

x
2
b2 (βi−nw−nu,η )(β j−nw−nu,η )

}
dη
]
,

[ksy
31] =

nsy∑
q=1

[
Esb
2

nw+nu+nv∑
j=nw+nu+1

nw∑
i=1

∫ 1

0

{
−Qq

x
2
b3 (φi ,ηη )(β j−nw−nu,η )

+Aq
x

1
b3

( nw∑
i=1

diφi ,η

)
(φi ,η )(β j−nw−nu,η )

}
dη
]
,

[ksy
13] =

nsy∑
q=1

[
Esb
2

nw∑
j=1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
−Qq

x
2
b3 (βi−nw−nu,η )(φ j ,ηη )

}
dη
]
.

The load vector { f } is of the form { f } =
{

f11 f12 f13
}T

, where { f11} = p(ab)
∑nw

j=1
∫ 1

0

∫ 1
0 φ j dξdη,

{ f12} = { f13} = 0. In the present analysis, results are individually generated for uniformly distributed
load

(
{ f11} = p(ab)

∑nw
j=1

∫ 1
0

∫ 1
0 φ j dξdη

)
.

List of symbols

a, b length and width of the plate
bp

sx , bp
sy width of p-th stiffener along the x- and y-directions

{d} vector of unknown coefficients
ep

x , ep
y eccentricity of p-th stiffener along the x- direction and y-directions

E p elastic modulus of the plate material
Es elastic modulus of the stiffener material
{ f } load vector
[K ] stiffness matrix
[Kb] stiffness matrix due to bending
[Km] stiffness matrix due to stretching
[Ksx ]

p, [Ksy]
p stiffness matrices of the p-th stiffener along the x- and y-directions

[M] mass matrix
[Mp] mass matrix for plate
[Msx ], [Msy] mass matrix for the x and y-direction stiffeners
nsx , nsy number of stiffeners in the x and y-directions
nw, nu, nv number of constituent functions for w, u, and v
p uniformly distributed transverse load
P concentrated transverse load
tp thickness of the plate
t p
sx , t p

sy thickness of p-th stiffener along the x- and y-directions
T total kinetic energy of the system



912 ANIRBAN MITRA, PRASANTA SAHOO AND KASHINATH SAHA

Tp kinetic energy of the plate
Ts total kinetic energy of the stiffeners
T p

sx , T p
sy kinetic energy of the p-th stiffener along the x- and y-directions

u, v, w displacement along the x , y, and z-directions
U total strain energy of the system
Ub strain energy due to bending of the plate
Um strain energy due to stretching of the plate
Up strain energy of the plate
Us strain energy of the stiffeners
U p

sx , U p
sy strain energy of the p-th stiffener along the x- and y-directions

V work potential
x p

stf, y p
stf position of p-th stiffener along the x- and y-directions

αi set of functions defining approximate displacement field u
βi set of functions defining approximate displacement field v
δ variational operator
ε predefined value of error limit for the iteration scheme
φi set of functions defining approximate displacement field w
η normalized coordinates in the y-direction
λ relaxation parameter
ρp, ρs density of the plate and stiffener material
τ time coordinate
ν Poisson’s ratio
ω natural frequency of the system
ω1 first linear natural frequency
ωnl nonlinear frequency
ξ normalized coordinates in the x-direction
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DYNAMIC BEHAVIOR OF MAGNETOSTRICTIVE/PIEZOELECTRIC LAMINATE
CYLINDRICAL SHELLS DUE TO ELECTROMAGNETIC FORCE

B. BIJU, N. GANESAN AND K. SHANKAR

The effect of electromagnetic force on the dynamic response of magnetostrictive/piezoelectric laminate
cylindrical shells is addressed using a semianalytical finite element method. The electric field is repre-
sented using electric scalar potential and the magnetic field by magnetic vector potentials. The electric
field acting on the charged particles of a moving conductor is derived from the Lorentz force. The
mechanical force generated by the interaction of the derived current density with the magnetic field is
accounted for in the successive load steps using an iterative solution technique. The Terfenol-D/PZT
configuration of the laminate is analyzed for the first circumferential harmonics of the shell structure
with a clamped-free boundary condition. The effect of electromagnetic force on the dynamic response is
marginal at normal operating conditions but numerical studies suggest that the magnetoelectric effect is
significantly influenced by a small increase in magnetic potential at increased velocities of the shell.

1. Introduction

Magnetostrictive/piezoelectric laminates have attracted attention for their magnetoelectric effects, orig-
inating from the electroelastic and magnetoelastic couplings inherent in the material. The composite
consists of a piezoelectric phase, showing a coupling between the mechanical and electric fields, and a
piezomagnetic phase, showing a coupling between the mechanical and magnetic fields. In addition, a
magnetoelectric coupling effect, which is absent in the constituent phases, is exhibited by this class of
materials. This unique feature allows magnetic control of electric polarization, electric control of mag-
netization, and control of electric and magnetic fields with mechanical stress, which make the material
suitable for a wide range of applications such as magnetic field probes, medical ultrasound imaging,
sensors, actuators, and so on.

The magnetoelectric properties of laminate composites of magnetostrictive/piezoelectric materials
were investigated in [Ryu et al. 2001]. In [Sunar et al. 2002] the finite element modeling of a fully
coupled thermopiezomagnetic medium using a thermodynamic potential was presented. A magnetic
vector potential is needed to derive the elemental matrices using the above formulation. An analytical
solution for the transient response of a magnetoelectroelastic hollow cylinder was presented in [Hou
and Leung 2004], where a plain strain condition with axisymmetric loading was used so that radial
displacement only was considered to derive the solution. In [Dai and Wang 2006] an analytical solution
was presented for the transient response of a magnetoelectroelastic hollow cylinder placed in an axial
magnetic field subjected to thermal shock, mechanical load, and transient electric excitation. The finite
element formulation of MEE cylindrical shells using the magnetic vector potential in cylindrical coor-
dinates was done in [Biju et al. 2010]. In [Shindo et al. 2010] the nonlinear electromagnetomechanical

Keywords: magnetostrictive/piezoelectric, magnetoelectric, electromagnetic force, finite element.
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behavior of a magnetostrictive/piezoelectric laminate under a magnetic field was studied both numerically
and experimentally.

The effect of electromagnetic force on the dynamic response of magnetostrictive/piezoelectric laminate
cylindrical shells is addressed using a semianalytical finite element method in this paper. Dynamic
loading will generate time-changing electric and magnetic fields in multifunctional smart materials. The
electric field is represented using the electric scalar potential and modeling of the magnetic field is done
using the magnetic vector potential in cylindrical coordinates. The current density acting on the charged
particles of a moving conductor is evaluated using Ohm’s law. The mechanical force generated by the
interaction of the derived current density with the magnetic field is calculated using the Lorentz force
equation and accounted for in the successive load steps using an iterative solution technique. Magneto-
strictive Terfenol-D (Tb0.3Dy0.7Fe2) and piezoelectric PZT (Pb(Zr,Ti)O3) layers are used for modeling
the axisymmetric cylindrical shell.

2. Theoretical formulation

2.1. Constitutive equations. The constitutive equations for the magnetostrictive/piezoelectric laminate
in a cylindrical coordinate system (r, θ, z) relating stress σ j , electric displacement Dl , and magnetic
field intensity Hl to strain Sk , electric field Em , and magnetic flux density Bm , exhibiting linear coupling
between magnetic, electric, and elastic fields, can be written as (see [Shindo et al. 2010])

σ j = C jk Sk − e jm Em, Dl = el j Sk − εlm Em, (1)

for piezoelectric behavior and

σ j = C jk Sk − d jm Bm, Hl =−dl j Sk −µ
−1
lm Bm, (2)

for magnetostrictive behavior. C jk , εlm , and µlm are elastic, dielectric, and magnetic permeability co-
efficients, respectively, and e jl and d jl are the piezoelectric and piezomagnetic material coefficients
(d jl = q jlµ

−1
lm ). Here j, k = 1, . . . , 6 and l,m = 1, . . . , 3.

2.2. Finite element modeling of electric and magnetic fields. The mechanical displacements, electric
scalar potential, and magnetic vector potentials are expressed using Fourier series in the circumferential
direction:

ur =
∑

un
r cos nθ, uθ =

∑
un
θ sin nθ, uz =

∑
un

z cos nθ, φ =
∑

φn cos nθ, (3a)

Ar =
∑

An
r cos nθ, Aθ =

∑
An
θ sin nθ, Az =

∑
An

z cos nθ, (3b)

where ur , uθ , and uz are the radial, circumferential, and axial displacements, φ is the electric scalar
potential, and Ar , Aθ , and Az are the radial, circumferential, and axial components of the magnetic
vector potential as nodal variables, respectively. Superscript n denotes the symmetric components of the
primary variables: thus un

r , un
θ , un

z , φn , An
r , An

θ , and An
z .

The displacements {u}={ur , uθ , uz}
T, electric potential (φ), and magnetic potential {A}={Ar , Aθ , Az}

T

within the element can be expressed in terms of suitable shape functions:

{u} = [Nu]{ue
}, φ = [Nφ]{φe

}, {A} = [NA]{Ae
}. (4)
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The strains can be related to the nodal degree of freedom by the following expression:

{S} = [Bu]{ue
}, (5)

where [Bu], the strain displacement matrix, can be written as

[Bu] =



∂N1
∂r

0 0 · · ·

N1
r

nN1
r

0 · · ·

0 0 ∂N1
∂z
· · ·

0 ∂N1
∂z

−
nN1

r
· · ·

∂N1
∂z

0 ∂N1
∂r
· · ·

−
nN1

r
∂N1
∂r
−

N1
r

0 · · ·


. (6)

Using the Maxwell’s relation, the electric field vector can be expressed as


Er

Eθ
Ez

=

−
∂φ

∂r

−
1
r
∂φ

∂θ

−
∂φ

∂z


−


Ȧr

Ȧθ
Ȧz

 , {E} = −[∇Nφ]{φe}− [NA]{ Ȧe} = [Bφ]{φe
}− [NA]{ Ȧe}. (7)

The derivative of the shape function matrix [Bφ] matrix is written as

[Bφ] =


−
∂N1
∂r
−
∂N2
∂r
−
∂N3
∂r
−
∂N4
∂r

nN1
r

nN2
r

nN3
r

nN4
r

−
∂N1
∂z
−
∂N2
∂z
−
∂N3
∂z
−
∂N4
∂z

 . (8)

Recalling Maxwell’s relations,

B =∇ × A, ∇ × H = J0+
∂D
∂t
, (9)

where J0 is the current supplied by an external source and ∂D/∂t is the displacement current. When
dynamic mechanical loading is present, including the effect of the motion of the conductor, Ohm’s law
can be written as

J = σ
{

E + ∂u
∂t
× B

}
+ J0, (10)

where J is the total current density and σ is the electrical conductivity of the material.
In cylindrical coordinates

∇ × A = r̂
(

1
r
∂Az

∂θ
−
∂Aθ
∂z

)
+ θ̂

(
1
r
∂Ar

∂z
−
∂Az

∂r

)
+ ẑ 1

r

(
∂r Aθ
∂r
−
∂Ar

∂θ

)
. (11)
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The magnetic flux density vector can be expressed as


Br

Bθ
Bz

=


1
r
∂Az
∂θ
−
∂Aθ
∂z

1
r
∂Ar
∂z
−
∂Az
∂r

1
r

(
∂r Aθ
∂r
−
∂Ar
∂θ

)


, {B} = [BA]{Ae}, (12)

where the derivative of shape function matrix [BA] is written as

BA =


0 ∂N1

∂z
nN1

r
· · ·

∂N1
∂z

0 −
∂N1
∂r
· · ·

nN1
r

1
r
∂(r N1)

∂r
0 · · ·

 . (13)

3. Evaluation of elemental matrices

The finite element equations for magnetostrictive/piezoelectric laminate cylindrical shell can be written
as

[Me
uu]{ü

e
}+ [Ce

uu]{u̇
e
}+ [Ce

u A]{ Ȧ
e
}+ [K e

uu]{u
e
}+ [K e

uφ]{φ
e
}− [K e

u A]{A
e
} = {Fe

},

[K e
φu]{u

e
}− [K e

φφ]{φ
e
} = {Ge

}, −[K e
Au]{u

e
}− [Ce

φA]{ Ȧ
e
}+ [K e

AA]{A
e
} = {Me

},
(14)

where {Fe
}, {Ge

}, and {Me
} correspond to elemental load vectors of applied mechanical force, electric

charge, and magnetic current, respectively. Different elemental matrices in (14) for the n-th harmonic
are defined as

[Me
uu] = P

∫
A
[Nu]

T
[ρ][Nu]r dr dz, [Ce

u A] = P
∫

A
[Bu]

T
[e][NA]r dr dz,

[Ce
φA] = P

∫
A
[Bφ]T [ε][NA]r dr dz, [K e

uu] = P
∫

A
[Bu]

T
[c][Bu]r dr dz,

[K e
uφ] = P

∫
A
[Bu]

T
[e][Bφ]r dr dz, [K e

u A] = P
∫

A
[Bu]

T
[d][BA]r dr dz,

[K e
φφ] = P

∫
A
[Bφ]T [ε][Bφ]r dr dz, [K e

AA] = P
∫

A
[BA]

T
[µ]−1

[BA]r dr dz,

(15)

where P = 2π for n = 0 and P = π for n > 0, and n is the circumferential harmonic number. When
electric and magnetic loading are absent, (14) can be written in coupled form asMuu 0 0

0 0 0
0 0 0




ü
φ̈

Ä

+
Cuu 0 Cu A

0 0 −CφA

0 0 0




u̇
φ̇

Ȧ

+
 Kuu Kuφ −Ku A

Kφu −Kφφ 0
−K Au 0 K AA


u
φ

A

=


F(t)
0
0

 . (16)

The magnetic field generated due to mechanical loading will generate current density within the electri-
cally conductive magnetostrictive layer. The finite element equation for current density can be written
as

{J e
} = P

∫
A
[N ]T

{
σ
(
∂u
∂t
× B

)
+ J0

}
r dr dz. (17)
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The vector of nodal Lorentz force can be written as

{Fe
} = P

∫
A
[N ]T {J × B}r dr dz. (18)

This Lorentz force will generate an additional force vector in the equation of motion for the mechanical
field. Simultaneous solution of (16) and (18) will account for the effect of the electromagnetic force on
the dynamic response of the shell structure.

4. Results and discussions

4.1. Validation. Computer code has been developed to study the effect of electromagnetic force on elec-
tric and magnetic response of the structure. The dimensions of the cylinder used for the analysis are
L = 4.0 m, Ri = 0.5 m, and the Terfenol-D and PZT-5A layers are 0.005 m each in thickness. A perfect
bonding is assumed between layers and potential noise effects are neglected. The system of equations
is solved using the Newmark-beta solution technique. The damping is assumed to be proportional and
the damping matrix is derived as [Cuu] = α[Muu] +β[Kuu] where α and β are the proportional damping
coefficients depending on natural frequencies of the structure. Damping ratios of 1% and 2% are assumed
for first and second modes, respectively, and the values of the proportional damping constants α and β
are calculated accordingly.

A rectangular wave made up of a fundamental frequency and its combined odd and even harmonics
is used as the load cycle. Each load step, the time increment is applied at 10 equal time intervals. The
cylinder is subjected to a uniform internal pressure of 1 N/m2 with a clamped-free boundary condition.
The electric and magnetic potentials are assumed to be zero at the clamped end. The load vectors corre-
sponding to applied electric charge and magnetic current are also assumed to be zero. The absolute values
of nodal velocity and magnetic flux density at the end of first load step are used for calculating the load
vector for successive iterations. The results presented below are for the first circumferential harmonics of
the shell structure (n = 1). A node near the clamped end of the shell giving maximum response is chosen
for showing the results. The study is carried out for the Terfenol-D/PZT configuration of the laminate.

The commercial finite element package ANSYS 12.0 is used for the validation studies. The material
properties of PZT-5A and Terfenol-D used for the analysis are shown in Tables 1 and 2. ANSYS cannot
model fully coupled piezomagnetic material behavior and hence the present code is validated neglecting
the piezomagnetic coupling. The response for the validation studies is calculated for the axisymmetric

Elastic constants (×109 N/m2) Density (kg/m3)
C11 C12 C23 C22 = C33 C44 = C66 ρ

94.23 40.38 40.38 94.23 26.92 9250

Magnetic permeability Piezomagnetic constants Electric conductivity
(×10−6 Ns2/C2) (N/Am) (×1010S/m)
µ11 µ22 = µ33 q11 q12 q35 σ

6.29 6.29 400 −200 167.67 1.67

Table 1. Material properties of Terfenol-D [Olabi and Grunwald 2008] for radial plane
of symmetry.
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Figure 1. Validation of code for (a) radial displacement ur , (b) axial displacement uz ,
and (c) electric potential φ using code and ANSYS.

mode (n = 0) of the shell structure. The time harmonic response of the Terfenol-D/PZT laminate shell
using our code and ANSYS is shown in Figure 1. It is seen that the result is in good agreement and
hence the code is extended to study the dynamic response of fully coupled Terfenol-D/PZT laminate.

Elastic constants (×109 N/m2) Density (kg/m3)
C11 C12 C23 C22 = C33 C44 = C66 ρ

86.85 54.01 50.77 99.2 21.1 7750

Dielectric constants Piezoelectric constants
(×10−9C/Vm) (C/m2)

ε11 ε22 = ε33 e11 e12 e35

1.5 1.53 15.0 −7.2 12.32

Table 2. Material properties of PZT-5A [Chen et al. 2007] for radial plane of symmetry.
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Figure 2. Variation of electric potential φ without and with consideration of the velocity effect.

4.2. Dynamic response of clamped-free Terfenol-D/PZT shell. The time harmonic response is calcu-
lated without considering the velocity effect and with the velocity effect after the first duty cycle of
mechanical loading. Figure 2 represents the variation of electric potential (φ) of a node near the clamped
end of the shell with and without considering the effect of velocity and the derived electromagnetic force.
It is seen that there is no significant variation in the response when the dynamic electromagnetic force is
accounted for. This is because the magnetic field generated due to piezomagnetic coupling of Terfenol-D
is too small to influence the dynamic response.

Figure 3 shows the variation of the magnetic vector potential in the radial (Ar ), circumferential (Aθ ),
and axial (Az) directions without and with considering the effect of velocity in the dynamic response.
It is seen that the axial component of the magnetic vector potential is the dominant component, so its
influence on the electric field will be more in the axial direction.

The magnetic flux density generated in the radial (Br ), circumferential (Bθ ), and axial (Bz) directions
is shown in Figure 4a. The absolute value of the magnetic flux density in all directions is very small and
among the three components, the circumferential component is the significant one. The nodal velocity
variation in three directions is shown in Figure 4b.

Numerical studies are carried out by varying the nodal velocities and magnetic vector potentials, in
order to understand the influence of velocity on generated electric potential. The nodal velocity and
magnetic vector potential are increased independently and as a combination to study the influence of
electromagnetic force on dynamic response. Figure 5a shows the variation of electric potential (φ) when
the nodal velocity is increased from the initial value obtained in a transient analysis. A significant
increase in electric potential is noticed when the nodal velocity reaches approximately 3.0 times the
initial value. Similarly Figure 5b shows the variation of electric potential (φ) when the magnetic vector
potential is increased; when the potential reaches 1.74 times the initial value, there is a marked increase.
A combination of increase in velocity and magnetic potential is done on a trial and error basis and the
variation of electric potential (φ) which is relevant in the present study is shown in Figure 5c. It is seen
that when the nodal velocity is increased to 2.5 times the initial velocity, a 10% increase in magnetic
vector potential will significantly increase the generated electric potential.
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Figure 3. Variation of magnetic vector potential in (a) radial Ar , (b) circumferential Aθ ,
and (c) axial Az directions without and with considering velocity effect.
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ferential, and axial directions.
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Figure 5. Variation of electric potential φ with (a) increased nodal velocity, (b) in-
creased magnetic vector potential, and (c) a combination of both.

5. Conclusions

The dynamic response of magnetostrictive/piezoelectric laminate cylindrical shells subjected to uniform
internal pressure is studied using a semianalytical finite element method. The Terfenol-D/PZT config-
uration of the laminate is analyzed for the first circumferential harmonics of the shell structure with a
clamped-free boundary condition. Numerical studies are also carried out by varying the nodal velocities
and magnetic vector potentials for understanding the influence of velocity on the generated electric poten-
tial. The effect of the electromagnetic Lorentz force on dynamic response is marginal at normal operating
conditions, but numerical studies suggest that the magnetoelectric effect is significantly influenced by a
small increase in magnetic potential at an increased velocity of the shell.
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GEOMETRICALLY NONLINEAR THERMOMECHANICAL RESPONSE OF
CIRCULAR SANDWICH PLATES WITH A COMPLIANT CORE

YEOSHUA FROSTIG AND OLE THOMSEN

The geometrically nonlinear response of a circular sandwich plate that consists of two face sheets and
a compliant (“soft”) core with mechanical properties that may be either independent or dependent of
temperature and subjected to both mechanical loads and thermal induced deformations, but remain elastic
linear throughout the loading process, is presented. The mathematical formulation follows the principles
of the high-order sandwich panel theory (HSAPT) and includes the vertical flexibility of the core in addi-
tion to the temperature dependency of the mechanical properties of the core material. The mathematical
formulation outlines the set of governing partial differential equations as well the appropriate boundary
conditions for a general sandwich layout. The particular case of an axisymmetric circular sandwich
plate subjected to axisymmetric mechanical and thermal loads, and with axisymmetric boundary condi-
tions is studied analytically and numerically. The numerical study includes an interaction of mechanical
and thermal loads which is presented through results within the plate for various load levels of various
structural quantities as well as equilibrium curves of temperatures versus these structural quantities. The
results reveal that the combination of mechanical and thermal loads along with a compliant core material
with mechanical properties that degrade with increasing temperatures shifts the behavior from a linear
and stable (strength controlled) response into a strongly nonlinear response with limit point behavior and
associated loss of stability, when large displacements and large rotations (geometrical nonlinearity) are
included in the modeling.

1. Introduction

Lightweight sandwich structures are being used increasingly in the aerospace, naval and transportation
industries due to their excellent stiffness-to-weight and strength-to-weight ratios. Typical sandwich
structures are often composed of a low stiffness/strength (compliant or “soft”) core material made of
a polymeric foam or a Nomex® honeycomb that is flexible in the thickness direction, and laminated
composite or metallic face sheets. The core usually provides the shear resistance/stiffness to the sandwich
structure, as well as vertical (through-thickness) support to the face sheets that is associated with core
vertical normal stresses. The use of compliant foam or Nomex core materials is often associated with
localized effects such as indentation in case of localized, concentrated or line loads, abrupt geometrical
changes or changes of mechanical properties as well as in the vicinity of stiff points such as inserts or
supports. Thus, the low core through-thickness stiffness may be detrimental to the safety of a sandwich
structure, either because of strength constraints such as stress allowables or due to loss of stability.

Sandwich structures are typically exposed to mechanical load as well as to aggressive environment

Keywords: circular sandwich plate, high-order, geometrically nonlinear analysis, large displacements, thermal loads,
compliant core, radial axisymmetry, thermomechanical response, temperature-dependent properties.
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that may be associated with elevated temperature conditions. Traditionally, a typical design process of
such structures examines separately the responses due to the mechanical and thermal loads, i.e., the
deformations induced by thermal sources. However, the interaction between the mechanical and thermal
loads may lead to an unsafe response with loss of stability and structural integrity, especially when the
deformations are large and the mechanical properties such as stiffness and strength degrade as the tem-
perature level is raised. This thermal degradation of the mechanical properties is especially pronounced
for polymer foam core materials, where significant degradation of the mechanical properties may occur
well within the operational temperature range. For example, PVC foams such as Divinycell® (see [DIAB
2003]) lose all stiffness and strength at about 80–100◦C, while PMI (polymethacrylimide) foams such
as Rohacell® (see [Rohacell 2004]) lose heat distortion resistance at about 200◦C.

The effects of this degradation on the load-thermal interaction response are not well understood by
researchers and industry. At the same time there is growing concern within the wind turbine blade, marine
and aeronautical sectors that the simultaneous action of mechanical loads and elevated temperatures may
compromise the structural integrity under certain circumstances. Hence, reliable computational models
are needed for the accurate prediction of the load response of sandwich structures subjected to combine
mechanical and thermal loads, including the thermal degradation of material properties as well as the
nonlinear interactions between the mechanical and thermal loads. In the present paper such a model
based on the principles of the high-order sandwich panel theory (HSAPT) is proposed for the case of
circular sandwich plates.

Generally, two main categories are presented in the literature to describe the load response of sandwich
structures. The first category assumes the sandwich structures to be compressible in the through-thickness
direction, and the other category of models is based on the assumption of through-thickness incompress-
ibility, i.e., infinite stiffness in the through-thickness direction, which is also known as antiplane core
conditions; see [Allen 1969]. The majority of structural models assume that the core is incompressible;
see for example the textbooks and review articles [Allen 1969; Plantema 1966; Zenkert 1995; Vinson
1999; Noor et al. 1996; Librescu and Hause 2000; Hohe and Librescu 2004]. However, in reality a
sandwich structure is a layered structure with two face sheets and a core that compressible (has finite
stiffness). The effect of the through-thickness core compressibility has been considered in through the use
of the HSAPT models, and by others as well; see for example [Petras and Sutcliffe 2000]. A large number
of computational models have been proposed based on the assumption of incompressible sandwich panels,
and in most of these the layered sandwich assembly is replaced with an equivalent single layer (ESL);
see for example [Mindlin 1951; Reddy 1984].

The same two categories of models — with compressible or incompressible core — have been pro-
posed for circular sandwich plates. Computational models for sandwich plates with an incompressible
core using the ESL approach have been considered for both static and dynamic applications by many re-
searchers, including Selke [1971], who used the Reissner approach to analyze a mirror made of an annular
sandwich plate resting on a ring; Montrey [1973], who used the split rigidities approach of [Allen 1969]
to investigate the linear static response of a load introduced through an insert to a circular sandwich plate;
Gupta and Sharma [1982], who used the zigzag approach of [Allen 1969]; and Wang [1995a; 1995b],
who used Reissner–Mindlin first-order shear deformable theory for the analysis of radially symmetric
circular plates. In all the references mentioned the core is assumed to be incompressible, and in most
cases the problem considered is radially symmetric. Thermal effects have been considered by Kao [1970]
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assuming that the core is incompressible, the face sheets are membranes, and the through-thickness shear
is being carried by the core only.

Vibration analyses of circular sandwich plates been considered by many researchers, including Gupta
and Jain [1982], who used first-order shear deformable plate theory (FOSDPT) to determine the dy-
namic response of a circular sandwich plate with a variable thickness assuming polynomial type of
modes; Sherif [1992], who used a similar approach for the nonlinear dynamic problem where the core is
viscoelastic and the modes are of polynomial type; and Du [1994] and Du and Li [2000] who discussed
the radially symmetric large amplitude free vibration of circular sandwich plates assuming that the face
sheets are membranes. Notice that the quoted models are limited to axisymmetric or isotropic plate
behavior, to membrane action with no bending effects in the face sheets, and to incompressible cores.
Zhou and Stronge [2006] used the FOSDPT approach assuming some special modes to deal with the
vibration of a circular sandwich plate of a general layout.

The effect of the out of plane flexibility of the compressible core for circular plates has been con-
sidered in [Thomsen 1995; 1997; Thomsen and Rits 1998] using an elastic foundation and the HSAPT
approaches, respectively. Rabinovitch and Frostig [2002a] used the HSAPT approach to investigate the
response of a circular sandwich plates that are either fully bonded or debonded, and they used a similar
approach to study the response of an reinforced concrete (RC) circular plate strengthened with a circular
patch with an axisymmetric layup [2002b], with a general non-axisymmetric layout [2004a], and a with
a delaminated patch [2004b]. In all these cases the computational models are limited to linear, small
deformations. Recently, Santiuste et al. [2011] investigated the thermal-mechanical response of circular
sandwich plates including thermal degradation of the core properties, large displacements and rotations
and assuming axially symmetric loads and boundary condition. The paper emphasizes on the nonlinear
finite element analysis of such structures with some comparison with the axisymmetric HSAPT model
results.

The literature survey reveals that most references address computational models that are usually lim-
ited to an incompressible core, while ignoring all the localized effects involved as a result of the out of
plane flexibility of the core. For all the static cases discussed geometrically linear analyses are considered,
while for the dynamic cases nonlinear vibration analyses have been considered but still assuming an
incompressible core and specific vibration modes.

In this paper, the principles of the HSAPT approach are used to determine the geometrically nonlin-
ear response of a circular sandwich plate when subjected to a combination of mechanical and thermal
loads, where the mechanical properties of the core material change with temperature. The computational
model is based on the assumption of large displacements and moderate rotations with negligible shear
deformations and linear constitutive relations for the face sheets. The core is modeled as a 3D small
deformation linear elastic continuum with shear and vertical normal rigidities that are assumed to be of
finite value, while the in-plane radial, circumferential and shear rigidities are neglected; see [Frostig et al.
1992] and the study in [Santiuste et al. 2011]. In addition, the loads are applied to the face sheets only,
while the thermal loads is applied to all constituents. Finally, the face sheets and core are assumed to
be fully bonded, and the face-core interfaces are able to transfer both shear and vertical normal stresses
accordingly.

The mathematical formulation presents first the field and governing equations along with the appro-
priate boundary conditions and the closed-form solutions for the core displacement and stress fields of
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a circular sandwich plate with a general construction layout. This is followed by the formulation for
the special case of a radially symmetric sandwich plate. Finally, a numerical study of the response of
circular sandwich plates subjected to axisymmetric combined mechanical and thermal loads is presented.
This includes response curves within the sandwich plate and equilibrium curves of temperature versus
selected structural variables/quantities.

2. Mathematical formulation

The field equations and the boundary conditions are derived following the steps of the HSAPT approach.
They are derived using the variational principle of extremum of the total potential energy as follows:

δ(U + V )= 0 (1)

where U is in the internal potential strain energy, V is is the potential energy of the external loads, and
δ is the variational operator.

The internal potential energy of the circular sandwich plate expressed in polar coordinates reads:

δU =
∑
j=t,b

(∫ 2π

0

∫ Ro

Ri

∫ 1
2 d j

−
1
2 d j

(
σrr j (r, θ, z j )δεrr j (r, θ, z j )+ σθθ j (r, θ, z j )δεθθ j (r, θ, z j )

+ τrθ j (r, θ, z j )δγrθ j (r, θ, z j )
)
r dz j dr dθ

)
+

∫ 2π

0

∫ Ro

Ri

∫ c

0

(
τr zc(r, θ, zc)δγr zc(r, θ, zc)+ τθ zc(r, θ, zc)δγθ zc(r, θ, zc)

+ σzzc(r, θ, zc)δεzzc(r, θ, zc)
)
r dzc dr dθ, (2)

where σrr j (r, θ, z j ) and σθθ j (r, θ, z j ) ( j = t, b) are the normal stresses in the radial and circumferential di-
rections of the upper and the lower face sheets, respectively; εrr j (r, z j ) and εθθ j (r, θ, z j ) ( j = t, b) are the
normal strains in the radial and circumferential directions of the face sheets, respectively; τ j zc(r, θ, zc),
and γ j zc(r, θ, zc) ( j = r, θ) are the vertical shear stresses and the shear angle on the radial and circum-
ferential faces of the core, respectively; σzzc(r, θ, zc), and εzzc(r, θ, zc) are the vertical normal stresses
and strains in the core, respectively; R j ( j = i, o) are the inner and outer radii of the plate; c is the
height of the core; zk(k = t, b, c) are the vertical coordinates of the face sheets measured from their
centroid planes, and of the core measured from upper the face-core interface, respectively; r is the
radial coordinate measured from center of plate, and finally θ is the circumferential coordinate measured
positive in the counterclockwise direction. For geometry, sign conventions, coordinates, deformations
and internal resultants, see Figure 1.

The variation of the potential energy of the external loads reads:

δV =−
∫ 2π

0

( ∑
j=t,b

(∫ Ro

Ri

(
nrr j (r,θ)δu0 j (r,θ)+ nθθ j (r,θ)δv0 j (r.θ)+ q j (r,θ)δw j (r,θ)

)
r dr

)

+

Ro∑
Re=Ri

(
Nrre j (Re,θ)δu0 j (Re,θ)+ Nrθe j (Re,θ)δv0 j (Ri ,θ)+ Pe j (Re,θ)δw j (Re,θ)

+Mrre j (Re,θ)δw j,r (Re,θ)+Mrθe j (Re,θ)δw j,θ (Re,θ)
)
Re

)
dθ, (3)
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where nkk j and q j (k= r, θ; j = t, b) are the external distributed loads in-plane and the vertical distributed
load, respectively, at the upper and the lower face sheets; u0 j , v0 j and w j ( j = t, b) are the in-plane
displacements in the radial and circumferential directions, and the vertical displacements, respectively of
the upper and lower face sheets, respectively; Dm f (r, θ) (m = r, θ) denotes a derivative of the function
f (r, θ) with respect to the m-th variable or a derivative at a specified location; Nne j , Pne j and Mne j

(n = rr, rθ and j = t, b) are the external concentrated loads in the radial and circumferential directions,
in the vertical direction and the external bending moments in the radial and circumferential directions at
the upper and lower face sheets. For sign conventions and definitions of loads see Figure 1.

The displacement distributions through the face sheet thicknesses there are assumed to follow the
Euler–Bernoulli assumption of negligible through-thickness shear deformations and they read ( j = t, b):

u j (r, θ, z j )= u0 j (r, θ)− z j
∂

∂r
w j (r, θ),

v j (r, θ, z j )= v0 j (r, θ)− z j
∂

∂θ
w j (r, θ),

(4)

A
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Figure 1. A typical circular sandwich plate: (a) plate layout, geometry and sign con-
vention; (b) loads; (c) stress resultants in face sheets and core.
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where u0 j and v0 j are the radial and circumferential displacements, respectively, of the mid-plane of
the face sheets. Adopting the kinematic relations corresponding to moderately large deformations (von
Kármán class of deformations), the radial and circumferential normal strains and the in-plane shear angle
read ( j = t, b):

εrr j (r, θ)= εrroj (r, θ)+ z jχrr j (r, θ)−αj T j (r, θ, z j ),

εrroj (r, θ)=
∂

∂r
u0 j (r, θ)+

1
2

(
∂

∂r
w j (r, θ)

)2
,

χr j (r, θ)=−
∂2

∂r2w j (r, θ),

εθθ j (r, θ)= εθθoj (r, θ)+ z jχθθ j (r, θ)−αj T j (r, θ, z j ),

εθθoj (r, θ)=
1
r

u0 j (r, θ)+
1
r
∂

∂θ
v0 j (r, θ)+

1
2r2

(
∂

∂θ
w j (r, θ)

)2
,

χθθ j (r, θ)=−
1
r
∂

∂r
w j (r, θ)−

1
r2
∂2

∂θ2w j (r, θ),

γrθ j (r, θ)= γrθo j (r, θ)+ z jχrθ j (r, θ),

γrθo j (r, θ)=
1
r
∂

∂θ
u0 j (r, θ)−

1
r
v0 j (r, θ)+

∂

∂r
v0 j (r, θ)+

1
r
∂

∂r
w j (r, θ)

∂

∂θ
w j (r, θ),

χrθ j (r, θ)=−
2
r
∂2

∂θ ∂r
w j (r, θ)+

2
r2
∂

∂θ
w j (r, θ),

(5)

where εkko j (k = r, θ) denotes the mid-plane strains in the radial and circumferential directions, γrθo j

( j = t, b) the in-plane shear angles of the top and bottom face sheets, χkl j (k, l = r, θ) the radial,
circumferential and twist curvatures, the temperature distribution through the depth of the (top or bottom)
face sheet reads,

T j (r, θ, z j )=
1
2
(
T jb(r, θ)+ T j t(r, θ)

)
+

z j

h

(
T jb(r, θ)− T j t(r, θ)

)
( j = t, b), (6)

and αj ( j = t, b) the coefficient of thermal expansion of the face sheet.
The kinematic relations of the core material are derived assuming small displacements and rotations,

and they read

γr zc(r, θ, zc)=
∂

∂zc
uc(r, θ, zc)+

∂

∂r
wc(r, θ, zc),

γθ zc(r, θ, zc)=
∂

∂zc
vc(r, θ, zc)+

∂

∂θ
wc(r, θ, zc),

εzzc(r, θ, zc)=
∂

∂zc
wc(r, θ, zc)−αcT (r, θ, zc),

(7)

where uc(r, θ, zc), vc(r, θ, zc) and wc(r, θ, zc) are the radial, circumferential and vertical core displace-
ments, respectively.
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The compatibility conditions corresponding to perfect bonding between the face sheets and the core
require that the following conditions are fulfilled:

uc(r, θ, zcj )= u0 j (r, θ)+ 1
2(−1)kd j

∂

∂r
w j (r, θ),

vc(r, θ, zcj )= v0 j (r, θ)+ 1
2(−1)kd j

∂

∂θ
w j (r, θ),

wc(r, θ, zcj )= w j (r, θ),

(8)

where k = 1 when j = t , k = 0 when j = b, and zcj ( j = t, b) are the vertical coordinates at the upper
and the lower face-core interfaces, respectively; thus zct = 0 and zcb = c. See Figure 1 for coordinate
definitions for the core.

The field equations and the boundary conditions are derived using the variational principle (1), the
variational energies (2) and (3), the kinematic relations (5)–(7) of the face sheets and the core, the
compatibility requirements (8), and the stress resultants (see Figure 1).

Hence, after integration by parts and some algebraic manipulations, the field equations for the face
sheets ( j = t, b) read:

−
∂

∂θ
Nrθ j (r, θ)+ Nθθ j (r, θ)− Nrr j (r, θ)− r ∂

∂r
Nrr j (r, θ)− rnrr j (r, θ)+ (−1)krτr z j (r, θ)= 0,

−2Nrθ j (r, θ)−
∂

∂θ
Nθθ j (r, θ)− rnθθ j (r, θ)− r ∂

∂r
Nrθ j (r, θ)+ (−1)krτθ z j (r, θ)= 0,

r ∂
∂θ

mθθ j (r, θ)+
∂

∂r
Mθθ j (r, θ)−

2
r
∂

∂θ
Mrθ j (r, θ)−

d j

2

(
r ∂
∂θ
τθ zc j (r, θ)+r ∂

∂r
τr zc j (r, θ)+τr zc j (r, θ)

)
+

(
(−1)k−1rτr zc j (r, θ)+ rnrr j (r, θ)− Nθθ j (r, θ)

)
∂

∂r
w j (r, θ)

+

(
(−1)k−1τθ zc j (r, θ)+ nθθ j (r, θ)+

2
r

Nrθ j (r, θ)
)
∂

∂θ
w j (r, θ)

−2Nrθ j (r, θ)
∂2

∂θ ∂r
w j (r, θ)− rq j (r, θ)+ (−1)krσzz j (r, θ)−

1
r
∂2

∂θ2 Mθθ j (r, θ)− r ∂
2

∂r2 Mrr j (r, θ)

− r Nrr j (r, θ)
∂2

∂r2w j (r, θ)−
1
r

Nθθ j (r, θ)
∂2

∂θ2w j (r, θ)− 2 ∂2

∂θ ∂r
Mrθ j (r, θ)− 2 ∂

∂r
Mrr j (r, θ)= 0, (9)

where k = 1, 2 indicate the upper and the lower face-core interfaces, respectively; Nrr j , Nθθ j and Nrθ j

( j = t, b) are respectively the in-plane stress resultants in the radial and circumferential directions and
the in-plane shear stress resultants of the face sheets; Mrr j , Mθθ j and Mrθ j ( j = t, b) are the bending
moment resultants in the radial and circumferential directions and the torsion moment resultants of the
face sheets; τr zc j and τθ zc j ( j = t, b) are the radial and circumferential core shear stresses at the upper and
the interfaces of the core, respectively, and σzzcj are the vertical normal stresses at the upper and the lower
face core interfaces, respectively. It should be noticed that the core shear stresses in the circumferential
direction are null when no in-plane distributed loads are applied; see second equation in (9).
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The field equations for the core read:

∂

∂zc
τr zc(r, θ, zc)= 0,

∂

∂zc
τθ zc(r, θ, zc)= 0,

r
∂

∂zc
σzzc(r, θ, zc)+ r

∂

∂r
τr zc(r, θ, zc)+ τr zc(r, θ, zc)− r

∂

∂θ
τθ zc(r, θ, zc)= 0.

(10)

It should be noticed that due to the geometrical nonlinearities of the face sheets, the equilibrium con-
ditions on each differential segment of the face sheets and the core, which equal to the field equations,
should be conducted on the deformed shape of the face sheets, and the undeformed shape of the core;
see Figure 1.

The boundary conditions at the inner and outer edges of the face sheets and the core (i.e., at r = Ri

and Ro) of the circular sandwich plate are given below.
The boundary conditions for the face sheets ( j = t, b) read:

λNrr j (Rk,θ)−Nre j (Rk,θ)= 0 or u0 j (Rk,θ)−u0e j (Rk,θ)= 0,

λNrθ j (Re,θ)−Nrθe j (Re,θ)= 0 or v0 j (Rk,θ)−v0e j (Rk,θ)= 0,

−Mre j (Rk,θ)−λMrr j (Rk,θ)= 0 or Dw j (Rk,θ)−Dwej (Rk,θ)= 0,

λ
(
Re Nrr j (Re,θ)Drw j (Re,θ)+Dr Mrr j (Re,θ)Re

+
1
2 d jτr (Re,θ)Re+Nrθ j (Re,θ)Dθ (w j )(Re,θ)

+2Dθ (Mrθ j )(Re,θ)−Mθθ j (Re,θ)+Mrr j (Re,θ)
)

+Dθ (Mrθe j )(Re,θ)Re− Pe j (Re,θ)Re = 0 or w j (Rk,θ)−we j (Rk,θ)= 0, (11)

where λ = 1 when r = Ro and λ = −1 when r = Ri ; k = o or i ; u0e j , v0e j , Dwe j and we j ( j = t, b)
are the prescribed radial, circumferential, radial rotations and vertical displacements at the edges of the
upper and the lower face sheet, respectively; Nre j , Nrθe j ( j = t, b)are the external imposed radial and
circumferential loads (stress resultants); Mre j and Mrθe j ( j = t, b) are the bending and twist moment
resultants in the radial and circumferential directions, respectively, imposed at the edges of the face
sheets; and

Dk( f )(Rl, θ)=
∂

∂k
f (r, θ)|r=Rl (k = r, θ; l = i, o)

is the derivative of the function f at the edge of the panel.
The boundary conditions for the core read:

τr zc(Rk, θ)= 0 or wc(Rk, θ, zc)−wec(Rk, θ, zc)= 0, (12)

where wec(Rk, θ, zc) are the prescribed vertical core displacements at the edge of the sandwich plate
with a specified distribution through the depth of the core.

In order to express the governing equations in explicit form, the core stress and displacement fields
must be defined first. This will be derived next for a core with uniform mechanical properties that are
temperature-independent (TI).
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3. Core fields — uniform mechanical properties (TI)

The explicit formulation of the isotropic core stress and displacement fields is achieved by using the
kinematic relations (7), the compatibility conditions (8) and the constitutive relations

εzzc(r, θ, zc)=
σzzc(r, θ, zc)

Ezc
+αcTc(r, θ, zc),

γr zc(r, θ, zc)=
τr zc(r, θ)

Gr zc
, γθ zc(r, θ, zc)=

τθ zc(r, θ)
Gθ zc

,

(13)

where Ezc, Gr zc and Gθ zc are the vertical modulus of elasticity and the shear moduli of the core in the
radial and circumferential directions, respectively; and Tc(r, θ, zc) is the temperature field within the core
imposed throughout the sandwich plate.

The stress field within the core is derived through the solution of the field equations (10) of the core.
Hence they read:

τr zc(r, θ, zc)= τr (r, θ), τθ zc(r, θ, zc)= τθ (r, θ),

σzzc(r, θ, zc)=−zc
∂

∂r
τr (r, θ)− zc

1
r
τr (r, θ)− zc

∂

∂θ
τθ (r, θ)+Cw1(r, θ),

(14)

where Cw1(r, θ) is a coefficient of integration to be determined through the compatibility conditions at
the face-core interfaces; see third equation in (8).

The displacements fields of the core in the radial and circumferential directions are determined through
the constitutive relations (13), and by enforcing four compatibility conditions (8); in the radial and
circumferential directions at the upper face-core interface, respectively, and in the vertical direction at
the upper and the lower interfaces, respectively. The temperature field is assumed to be radially symmetric
for simplicity and linear through the depth of the core.

After some algebraic manipulations the explicit description of the radial stress and displacements
fields in the core read:

σzzc(r,θ)=− 1
2 Ezc

(
Tcb(r)+Tct(r)

)
αc+

1
c

Ezc
(
wb(r,θ)−wt(r,θ)

)
+

1
2(−2zcj+c)

(
∂

∂r
τr (r,θ)+

∂

∂θ
τθ (r,θ)+

1
r
τr (r,θ)

)
,

wc(r,θ, zc)=−
zc
2c
(−zc+c)

(
Tcb(r)−Tct(r)

)
αc+

zc
c
wb(r,θ)+

(
1− zc

c

)
wt(r,θ)

+
1

2Ezc
zc(−zc+c)

(
∂

∂r
τr (r,θ)+

∂

∂θ
τθ (r,θ)+

1
r
τr (r,θ)

)
,

uc(r,θ, zc)=−
z2

c(3c−2zc)

12c
d
dr
(
Tct(r)−Tcb(r)

)
αc−

z2
c

2c
∂

∂r
wb(r,θ)+

( z2
c

2c
− zc−

dt
2

)
∂

∂r
wt(r,θ)

−
z2

c(3c−2zc)

12Ezcr2

(
r2 ∂

2

∂r2 τr (r,θ)+r2 ∂2

∂θ ∂r
τθ (r,θ)+r ∂

∂r
τr (r,θ)−τr (r,θ)

)
+

zc
Gr zc

τr (r,θ)+u0t(r,θ),

vc(r,θ, zc)=−
z2

c
2c

∂

∂θ
wb(r,θ)+

( z2
c

2c
− zc−

dt
2

)
∂

∂θ
wt(r,θ)

−
z2

c(3c−2zc)

12Ezcr

(
r ∂

2

∂θ2 τθ (r,θ)+
∂

∂θ
τr (r,θ)+r ∂2

∂θ ∂r
τr (r,θ)

)
+

zc
Gθ zc

τθ (r,θ)+v0t(r,θ), (15)
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Notice that the distribution, through the depth of the core, of the vertical normal stresses is linear, that
of the vertical displacement is quadratic and those of the radial and circumferential displacements are
cubic. In addition, the circumferential displacements are shown to be independent of the temperature
due to the assumption of a radially symmetric thermal field.

4. Nonlinear governing equations

The governing equations are derived assuming that the face sheets are linear elastic and isotropic, and
that the core is linear, elastic and orthotropic. Hence, the nonlinear stress resultant-displacement relations
for the face sheets ( j = t, b) can be expressed in the form:

Nrr j (r,θ)= A j

(
∂

∂r
u0 j (r,θ)+

1
2

(
∂

∂r
w j (r,θ)

)2
−

1
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)
+µj

(
1
r

u0 j (r,θ)+
1
r
∂

∂θ
v0 j (r,θ)+

1
2r2

(
∂

∂θ
w j (r,θ)

)2
))
,

Nθθ j (r,θ)= A j

(
1
r

u0 j (r,θ)+
1
r
∂

∂θ
v0 j (r,θ)+

1
2r2

(
∂

∂θ
w j (r,θ)

)2

−
1
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)
+µj

(
∂

∂r
u0 j (r,θ)+

1
2

(
∂

∂r
w j (r,θ)

)2
))
,

Nrθ j (r,θ)=
1
2

A j (1−µj )

(
1
r
∂

∂θ
u0 j (r,θ)−

1
r
v0 j (r,θ)+

∂

∂r
v0 j (r,θ)+

1
r
∂

∂r
w j (r,θ)

∂

∂θ
w j (r,θ)

)
,

Mrr j (r,θ)=D j

(
−
∂2

∂r2w j (r,θ)−
αj

d j

(
T j t(r)−T jb(r)

)
(1+µj )−

µj

r
∂

∂r
w j (r,θ)−

µj

r2
∂2

∂θ2w j (r,θ)
)
,

Mθθ j (r,θ)=D j

(
−

1
r
∂

∂r
w j (r,θ)−

1
r2
∂2

∂θ2w j (r,θ)−
αj

d j

(
T j t(r)−T jb(r)

)
(1+µj )−µj

∂2

∂r2w j (r,θ)
)
,

Mrθ j (r,θ)= D j (1−µj )

(
−

2
r

(
∂2

∂θ ∂r
w j (r,θ)

)
+

2
r2

(
∂

∂θ
w j (r,θ)

))
. (16)

Here µj ( j = t, b) is the Poisson’s ratio for the face sheets and A j ,D j ( j = t, b) are the in-plane and
flexural rigidities, respectively, which are given by

A j =
E j d j

1−µ2
j
,

D j =
E j d3

j

12(1−µ2
j )
.

The governing equations are derived through substitution of the stress resultant-displacements relations
(16) of the face sheets into the field equations (9), and the compatibility conditions — given in the first
and second equations in (8) — between the core and the lower face sheet in the radial and circumferential
directions, which combined with the core displacement field (15) yield two compatibility equations.
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Hence, the governing equations for the face sheets after some algebraic manipulations read ( j = t, b):

A j

(
1
2

r(1+µj )αj
d
dr

(
T j t (r)+ T jb(r)

)
+

1
2
(µj − 1)

((
∂

∂r
w j (r,θ)

)2
+

1
r
∂2

∂θ2
u0 j (r,θ)+

1
r
∂2

∂θ2
w j (r,θ)

∂

∂r
w j (r,θ)

)
−

1
2
(1+µj )

(
−

1
r2

(
∂

∂θ
w j (r,θ)

)2
+

∂2

∂θ ∂r
v0 j (r,θ)+

1
r
∂2

∂θ ∂r
w j (r,θ)

∂

∂θ
w j (r,θ)

)

− r ∂
2

∂r2
u0 j (r,θ)− r ∂

∂r
w j (r,θ)

∂2

∂r2
w j (r,θ)−

1
2r
(−3+µj )

∂

∂θ
v0 j (r,θ)+

1
r

u0 j (r,θ)−
∂

∂r
u0 j (r,θ)

)
+ (−1)krτr (r,θ)− rnrr j (r,θ)= 0,

A j

(
−

1
2
(1+µj )

(
∂2

∂θ ∂r
u0 j (r,θ)+

∂2

∂θ ∂r
w j (r,θ)

∂

∂r
w j (r,θ)

)

+
1
2
(µj − 1)

(
∂

∂θ
w j (r,θ)

(
∂2

∂r2
w j (r,θ)+

1
r
∂

∂r
w j (r,θ)

)
+ r ∂

2

∂r2
v0 j (r,θ)−

1
r2
v0 j (r,θ)+

1
r
∂

∂r
v0 j (r,θ)

)

−
1
r
∂2

∂θ2
v0 j (r,θ) −

1
r2

∂

∂θ
w j (r,θ)

∂2

∂θ2
w j (r,θ) +

1
2r
(−3 + µj )

∂

∂θ
u0 j (r,θ)

)
+ (−1)krτθ (r,θ) − rnθθ j (r,θ) = 0,

−
αj

d j
D j (µj +1)

(
r d2

dr2

(
T jb(r)−T j t (r)

)
+

d
dr

(
T jb(r)−T jb(r)

))
+D j r

∂4

∂r4
w j (r,θ)+

D j

r3
∂4

∂θ4
w j (r,θ)+2D j

∂3

∂r3
w j (r,θ)

+
(
nθθ j (r,θ)+ τt (r,θ)

) ∂
∂θ
w j (r,θ)+ (−1)krσzz j (r,θ)− rq j (r,θ)+ r ∂

∂θ
mθθ j (r,θ)+ r ∂

∂r
mrr j (r,θ)

+
1

2r3

((
−2r

(
µj r

∂

∂r
u0 j (r,θ)+

∂

∂θ
v0 j (r,θ)+u0 j (r,θ)

)
+r2αj (µj+1)

(
T j t (r)+T jb(r)

))
A j−4D j (µj−3)

)
∂2

∂θ2
w j (r,θ)

−
1
2

A j

(
r
(
∂

∂r
w j (r,θ)

)2 ∂2

∂r2
w j (r,θ)+

1
r3

(
∂

∂θ
w j (r,θ)

)2 ∂2

∂θ2
w j (r,θ)

)

−
1
2

A jµj

((
∂

∂r
w j (r,θ)

)3
+

1
r

(
∂

∂r
w j (r,θ)

)2 ∂2

∂θ2
w j (r,θ)+

1
r

(
∂

∂θ
w j (r,θ)

)2 ∂2

∂r2
w j (r,θ)

)

+

(
A j

(
µj+1

2

(
T j t (r)+ T jb(r)

)
αj −

2µj−1

2r2

(
∂

∂θ
w j (r,θ)

)2
−

1
r
∂

∂θ
v0 j (r,θ)

−
1
r

u0 j (r,θ)+
µj−1

r
∂2

∂θ ∂r
w j (r,θ)

∂

∂θ
w j (r,θ)−µj

∂

∂r
u0 j (r,θ)

)
+ rτr (r,θ)+ rnrr j (r,θ)+

D j

r2

)
∂

∂r
w j (r,θ)

+
1
r2

(
A j (µj − 1)

(
r ∂
∂r
v0 j (r,θ)− v0 j (r,θ)+

∂

∂θ
u0 j (r,θ)

)(
r ∂2

∂θ ∂r
w j (r,θ)−

∂

∂θ
w j (r,θ)

))
+

2
r2

D j (µj − 2)
(

∂3

∂θ2 ∂r
w j (r,θ)− r ∂4

∂θ2 ∂r2
w j (r,θ)

)
−

(
A j

(
r ∂
∂r

u0 j (r,θ)+µj
∂

∂θ
v0 j (r,θ)+µj u0 j (r,θ)−

µj+1

2
rαj

(
T j t (r)+ T jb(r)

))
+

D j

r

)
∂2

∂r2
w j (r,θ)

+mrr j (r,θ)−
1
2

d j

(
τr (r,θ)+ r ∂

∂r
τr (r,θ)+ r ∂

∂θ
τθ (r,θ)

)
= 0. (17)

The two corresponding resulting compatibility equations read:
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−
1

12
c2 d

dr

(
Tct(r)−Tcb(r)

)
αc−

1
2
(c+db)

∂

∂r
wb(r, θ)−

1
2
(c+dt)

∂

∂r
wt(r, θ)+u0t(r, θ)−u0b(r, θ)

+

(
c

Gr zc
+

1
12

c3

Ezcr2

)
τr (r, θ)−

c3

12Ezc

(
1
r
∂

∂r
τr (r, θ)+

∂2

∂r2 τr (r, θ)+
∂2

∂θ ∂r
τθ (r, θ)

)
= 0,

−
1
2
(c+ db)

∂

∂θ
wb(r, θ)−

1
2
(c+ dt)

∂

∂θ
wt(r, θ)+

τθ (r, θ)c
Gθ zc

+ v0t(r, θ)− v0b(r, θ)

−
c3

12Ezc

(
1
r
∂

∂θ
τr (r, θ)+

∂2

∂θ2 τt(r, θ)+
∂2

∂θ ∂r
τr (r, θ)

)
= 0, (18)

where k = 1, 2 correspond to the upper and the lower face-core interfaces, respectively.
The unknowns in the set of the governing equations (or the fundamental variables of the problem) con-

sist of the in-plane radial and circumferential displacements (u0 j and v0 j ) and the vertical displacement
(w j ) of the two face sheets ( j = t, b), and the two core shear stresses in the radial and circumferential
directions (τr , τθ ), respectively. Thus the order of the set of partial differential equations (PDEs) includes
two for the in-plane displacements of each face sheets and shear stresses in the core, and four for the
vertical displacements of each face sheet. Hence, the total order of the complete set of PDEs is 18, which
corresponds exactly to the number of boundary conditions to be imposed at the edges of sandwich plate
including both the face sheets and the core; see Equations (11) for the face sheets and Equations (12) for
the core.

The general solution to the set of nonlinear PDEs and the corresponding boundary conditions may be
reduced to a set of nonlinear ordinary differential equations (ODEs) through the use of methods such
as Kantorovich, Galerkin or similar approaches with the aid of periodic functions in the circumferential
direction; see for example [Rabinovitch and Frostig 2002a]. In order to understand the effects of the
main parameters on the nonlinear thermomechanical response including degradation of the mechanical
core properties with increasing temperature, the special case of a radially symmetric (or axisymmetric)
circular sandwich plate is studied next.

5. Radially symmetric sandwich plates — nonlinear governing equations

The case of radially symmetric sandwich plates requires that the mechanical properties of all constituents
are dependent on the radial coordinate only, that the loads (mechanical and thermal) scheme is radially
symmetric, and that the imposed boundary conditions do not depend on the circumferential coordinate.
Accordingly, all the dependent variables of the problem must be functions of the radial coordinate only.
For completeness, the field equations, constitutive relations and the explicit description of the governing
equations for the case of radially symmetric panel is presented in the following.

The field equations for the face sheets ( j = t, b) are:

−rnrr j (r)− r d
dr

Nrr j (r)+ (−1)krτr zc j (r)+ Nθθ j (r)− Nrr j (r)= 0, (−1)kτθ zc j (r)− nθθ j (r)= 0,(
(−1)k−1r d

dr
w j (r)−

d j

2

)
τr zc j (r)−

d j

2
r d

dr
τr zc j (r)+

(
rnrr j (r)−Nθθ j (r)

) d
dr
w j (r)+

d
dr

Mθθ j (r)

+(−1)krσzzcj (r)− r Nrr j (r)
d2

dr2w j (r)− rq j (r)− 2 d
dr

Mrr j (r)− r d2

dr2 Mrr j (r)= 0, (19)
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where k = 1, 2 for the upper and the lower face-core interfaces respectively. Please notice that if no
radial in-plane external loads is imposed, then the circumferential shear stresses within the core are zero.
Hence the number of equations reduces to two for each face sheet.

The number of boundary conditions at the inner and outer plate radii, Ri , and Ro, changes to three for
each face sheet as follows ( j = t, b):

λNrr j (Rk)− Nre j (Rk)= 0 or u0 j (Rk)− u0ej (Rk)= 0

λMrr j (Rk)+Mre j (Rk)= 0 or Dw j (Rk)− Dwej (Rk)= 0

λ
(

R j Nrr j (Rk)D(w j )(Rk)− Rkmrr j (Rk)

+ R j DMrr j (Rk)+
1
2 d j R jτr zc j (Rk)

+Mrr j (Rk)−Mθθ j (Rk)
)
− R j Pe j (Rk)= 0 or w j (Rk)−we j (Rk)= 0 (20)

where λ = 1 for r = Ro and λ = −1 for r = Ri ; k = o or i . Notice that due to the radially symmetric
constraints there are no boundary conditions imposed with respect to loads and displacements in the
circumferential direction.

The stress resultant-displacement relations read:

Nrr j (r)= A j

(
−

1
2
(1+µj )

(
T j t(r)+ T jb(r)

)
αj +

d
dr

u0 j (r)+
1
2

( d
dr
w j (r)

)2
+

1
r
µj u0 j (r) j

)
,

Mrr j (r)= D j

(
−

1
d j
(1+µj )

(
T j t(r)− T jb(r)

)
αj +

d2

dr2w j (r)+
1
r
µj

d
dr
w j (r)

)
,

Nθθ j (r)= A j

(
1
2
αj (µ

2
j − 1)

(
T j t(r)+ T jb(r)

)
+

1
r
(1−µ2

j )u0 j (r)
)
+µj Nrr j (r),

Mθθ j (r)= D j

(
αj

d j

(
T j t(r)− T jb(r)

)
(µ2

j − 1)+ 1
r
(µ2

j − 1) d
dr
w j (r)

)
+µj Mrr j (r).

(21)

Here it should be noticed that the stress resultants in the circumferential direction are expressed in terms
of displacements, temperatures and stress resultants in the radial direction for brevity. In addition, it is
seen that the stress resultants do not depend on the circumferential displacement.

Hence, through substitution of (21) into the field equations (19), and using the r dependent variables
in the compatibility equations (18), the governing equations for face sheets ( j = t, b) in the axisymmetric
sandwich plate case read:

A j

(
1
2
(µj + 1)r d

dr
(
T j t(r)+ T jb(r)

)
αj +

µj−1
2

( d
dr
w j (r)

)2

− r d2

dr2 u0 j (r)− r d
dr
w j (r)

d2

dr2w j (r)+
1
r

u0 j (r)−
d
dr

u0 j (r)
)
+ (−1)krτr (r)− rnrr j (r)= 0,

1
2

A j (µj − 1) 1
r2

(
r3 d2

dr2 v0 j (r)− v0 j (r)+ r d
dr
v0 j (r)

)
+ (−1)krτθ (r)− rnθθ j (r)= 0,
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−
αj

d j
D j (1 + µj )

(
r d2

dr2

(
T jb(r) − T j t(r)

)
+

d
dr
(
T jb(r) − T j t(r)

))
−

1
2

A jµj

( d
dr
w j (r)

)3

+ D j

(
r d4

dr4w j (r) + 2 d3

dr3w j (r) −
1
r

d2

dr2w j (r) +
1
r2

d
dr
w j (r)

)
+ (−1)krσzz j (r) − rq j (r)

+

((
µj+1

2
(
T j t(r)+ T jb(r)

)
αj −

u0 j (r)
r
−µj

d
dr

u0 j (r)
)

A j + rτr (r)+ rnrr j (r)
)

d
dr
w j (r)

−A j

(
r
2

( d
dr
w j (r)

)2
+ r d

dr
u0 j (r)+ u0 j (r)µj −

r
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)) d2

dr2w j (r)

+ r d
dr

mrr j (r)+mrr j (r)−
d j

2

(
τr (r)+ r d

dr
τr (r)

)
= 0. (22)

And the compatibility equations equal:

−
1

12
c2 d

dr
(
Tct(r)− Tcb(r)

)
αc−

1
2
(c+ db)

d
dr
wb(r)−

1
2
(c+ dt)

d
dr
wt(r)− u0b(r)+ u0t(r)

+

(
c

Gr zc
+

1
12

c3

Ezcr2

)
τr z(r)−

c3

12Ezcr

(
d
dr
τr z(r)+ r d2

dr2 τr z(r)
)
= 0,

τθ (r)c
Gθ zc

+ v0t(r)− v0b(r)= 0. (23)

The interfacial vertical normal stresses read ( j = t, b):

σzz j (r)=−
Ezc
2
(
Tcb(r)+ Tct(r)

)
αc+

Ezc
c
(
wb(r)−wt(r)

)
+

1
2r
(c− 2zcj )

(
r d

dr
τr z(r)+ τr z(r)

)
, (24)

where zcj = 0, c at the upper and the lower interfaces, respectively. The stress and displacements fields of
the radially symmetric case can be determined by imposing the constraints that all dependent quantities
are only dependent of the radial coordinate r ; see (14) and (15).

In addition, when no in-plane external circumferential loads are imposed — see the second equation
in (19) — and substituting this result into the second compatibility in (23), the following conditions are
obtained:

τθ (r)= 0, v0t(r)− v0b(r)= 0. (25)

The physical interpretation of (25) is that the circumferential displacements in the upper and the lower
face sheets must be identical and equal to zero, since no external displacements are imposed in this
direction.

It should be noticed that for the case when the mechanical core properties are temperature-dependent,
the solution procedure to determine the stress and displacements field of the core follows the approach
outlined in [Frostig and Thomsen 2007; 2009], to which reference is made for brevity.

The nonlinear governing equations for the radially symmetric circular sandwich plate case can be
expressed by a set of fourteen order ordinary differential equations (ODEs). The boundary value problem
constituted by the set of ODEs together with the associated boundary condition can be solved using
numerical schemes such as the multiple-point shooting method [Stoer and Bulirsch 1980], or the finite-
difference (FD) approach using trapezoid or mid-point methods with Richardson extrapolation or deferred
corrections [Ascher and Petzold 1998], as implemented in Maple, along with parametric or arc-length
continuation methods [Keller 1992]. Here, the FD approach implemented in Maple has been used. In
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the next section the results of a numerical study that discusses the thermomechanical nonlinear response
of a radially symmetric sandwich plate are presented.

6. Numerical study

The nonlinear thermomechanical response of a radially symmetric circular sandwich plate with a foam
core that has temperature-dependent mechanical properties loaded by a partially uniformly distributed
load at mid-span is studied. First, the combined response of a uniformly heated plate with the partially
distributed load is discussed with results along the plate and equilibrium curves. The equilibrium curves
of temperature versus extreme values of displacements are compared with results of nonlinear finite
element analyses (FEA) conducted using ABAQUS/Standard. This is followed by a study that includes
the equilibrium curves where a temperature gradient is imposed across the sandwich plate thickness such
that the temperature of the lower face sheets is higher than the temperature of the upper face sheet.

The specific sandwich plate configuration (see Figure 2a) consists of a circular sandwich plate with
a diameter of 300 mm; two face sheets of 0.5 mm thickness with a coefficient of thermal expansion
αj = 0.00001 ( j = t, b) and made as glass/epoxy composite laminates, and a Divinycell HD-60 foam
core with Ec0= 52.5 MPa and Gc0= 20.2 MPa (at 20◦C) with a thickness of 19.05 mm with αc= 0.00035
made by DIAB [2003]. The supporting system imposed at the edge of the sandwich plate consists of a

Figure 2. Circular sandwich plate geometry and deformed shapes: (a) plate layout, me-
chanical and thermal loads and supporting scheme; (b) deformed shape due to mechan-
ical and uniformly distributed load.
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horizontally moveable simple supports of the lower face sheet, while the upper face sheet and the core
are free of any displacement constrains or stress tractions. In addition, the center of the sandwich plate
is assumed to be horizontally immoveable. The loads system includes mechanical loads and an imposed
thermal field; see Figure 2a. The mechanical load consists of a patch load of uniform distribution of
2.0 MPa imposed at a circular area around center of plate with a diameter 40 mm at the upper face sheet,
and a temperature field with a linear through-thickness distribution in the core and uniform temperatures
through the thickness of the face sheets. The thermal gradient, 1T , raises the temperature imposed on
the lower face sheet; see Figure 2a.

The temperature-dependent (TD) core properties are specified according to the Divinycell HD grade
PVC foam core data sheet [DIAB 2003], which includes measured material properties in a working range
of temperatures between 20 to 80◦C. The mechanical properties of Divinycell PVC foam degrades as the
temperatures are raised and they are defined here through curve-fitting of the data that appears in [DIAB
2003] (see Figure 3a) as follows:

Ezc(r, zc)= Ec0 f (T ),

Gr zc(r, zc)= Gc0 f (T ),

f (T )=−2.821963496 10−13 T 8
+ 9.528319971 10−11 T 7

+ 0.03070734934 T

− 1.325134998 10−8 T 6
− 0.009541812399 T 2

+ 9.703157671 10−7 T 5

+ 0.0008705288588 T 3
− 0.00003952259514 T 4

+ 1.1903,

(26)

where Ec0 and Gc0 refer to the elasticity and shear moduli of the core at T = 20◦C. Notice that when
a thermal gradient is applied to the sandwich plate the mechanical properties of the core are dependent

Figure 3. Elastic core moduli: (a) moduli magnitude versus temperatures; (b) moduli
distribution through depth of core.
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on the vertical coordinate (Figure 3b). In addition, it is assumed here that the temperature dependence is
identical for the modulus of elasticity and the shear modulus of the core. For further details see [Frostig
and Thomsen 2007; 2009].

The solution procedure uses a parametric continuation method with the temperature T as the parameter.
The procedure halts when the solution does not converge or when it violates the assumption of large
displacements and moderate rotations (displacements exceeding D/10). The results are also limited to a
temperature of 79.7◦C, which is closed to the upper limit of the range of operating temperatures for the
HD-60 foam considered; see DIAB [2003].

The first case presents the thermomechanical response of a circular sandwich plate with a uniformly
distributed temperature through the plate thickness that changes from 20◦C to 79.6◦C, and a mechanical
distributed load of 2.0 MPa partially distributed at center of plate; see Figure 2 for details. The deformed
shapes at different temperature levels appear in Figure 2b from which it is observed that the deformation
patterns display a significant indentation zone at the upper face sheet and a much smaller at the lower one.
Or in other words the indentation deformation decays through the core thickness. It should be noticed
that although the mechanical load has not been changed the indentation deepens and narrows as the
temperature is raised as a result of the degradation of the temperature-dependent mechanical properties
of the core. Moreover, localized in-plane displacements are observed in the core above the lower supports;
see Detail A in Figure 2b. In addition, the radial in-plane displacements of the upper and the lower face
sheets at the edges of the sandwich plate are very small as a result of the 2D in-plane action of the plate
in the radial and circumferential directions although both edges are free to slide horizontally.

The predicted variations of selected structural quantities along the radius of the sandwich plate appear
in Figure 4 for different temperatures. The vertical displacements of the face sheets (see Figure 4a)
display an indentation at mid-span (r = 0) that deepens and narrows as the temperature is raised. It
should be noticed that the displacements increase monotonically up to 78◦C, after which disproportional
increases of the displacements are observed as a result of the development of a limit point; see Figure 5a.
In addition, the vertical displacements at the edge of the upper face sheet are not zero, due to the vertical
flexibility of the core. The radial variation of the radial and the circumferential bending moment resultants
for each face sheet (see Figure 4b) are associated with large values at the edges of the loaded area, around
center of plate at the upper face sheet, and even larger in the vicinity of the edge of the lower face sheet
due to the presence of the supports at this location. The in-plane face sheet stress resultants in the radial
and circumferential directions are associated with tensile values around center, compressive values in
the circumferential direction, and zero radial stress resultants at the edge of the sandwich plate; see
Figure 4c. Please notice that at low temperatures, both stress resultants are in compression but the radial
stress resultants change into tensile values as the temperature is raised, while the circumferential stress
resultants change from tensile at center to compression at the plate edge. The radial in-plane mid-height
displacements of the face sheets (see Figure 4d) are quite small in comparison with the vertical ones
(see Figure 4a) but they reach large values at the face sheet edges at high temperatures. The radial
interfacial shear stresses at the face-core interfaces are associated with large values in the vicinity of the
edge of the loaded area and much smaller values toward the sandwich plate edge; see Figure 4e. Large
interfacial vertical normal stresses are observed within the radial distance of the loaded area, at lower
temperatures, as well as at the edge of the plate at high temperatures; see Figure 4f. At lower temperature
levels the shear stresses in the core and the interfacial vertical normal stresses at the upper face sheet
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Figure 4. Thermomechanical radial response for a partially distributed load and a uni-
form temperature distribution. Face sheets: (a) vertical displacements; (b) radial and
circumferential bending moments; (c) radial and circumferential in-plane stress resul-
tants; (d) radial in-plane mid-height displacements. Core: (e) shear stresses; (f) face-
core interfaces vertical normal stresses. Thicker black lines represent the upper face and
thinner ones the lower face; red lines in (b) and (c) represent circumferential magnitudes.
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Figure 5. Equilibrium curves of temperature vs. extremum values of selected structural
quantities for a partially distributed load and a uniform temperature distribution. Face
sheets: (a) vertical displacements; (b) radial and circumferential bending moments; (c)
radial and circumferential in-plane stress resultants; (d) radial in-plane mid-height dis-
placements. Core: (e) shear stresses; (f) face-core interface vertical normal stresses.
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are almost equal in magnitude to the applied pressure load, and they reduce as the temperature level
increases. Actually, what happens is that as the mechanical properties of the degrade it stops carrying
any more stresses and each face sheets behave as an independent plate rather than a part of the sandwich
panel with a composite action that forms the couple in the face sheets. At the edge of the sandwich plate
the interfacial vertical normal stresses change to tension at the upper interface and to compression at the
lower interface due to the presence of the edge support system at the lower face sheet and the vertical
displacements at the upper face, but without significant effects of the degradation of the mechanical core
properties.

The equilibrium curves corresponding to the thermomechanical response are described by temperature
versus extremum values of selected structural quantities; see Figure 5. The predicted curves of the
extremum vertical displacements of the upper and the lower face sheets predicted by the nonlinear HSAPT
model and the nonlinear FEA predictions using ABAQUS/Standard appear in Figure 5a. For details on
the FEA modeling such as element types, material properties of the face sheets and material model for the
core see [Santiuste et al. 2011]. Figure 5a reveals that loss of stability in the form of a limit point occurs
as the temperatures are raised and the mechanical properties degrade. The FEA results compare very well
with the HSAPT model, although the FEA results predict a slightly stiffer structure at almost all values of
temperatures as expected. Similar trends are observed for the radial and circumferential bending moment
resultant curves; see Figure 5b. Here it should be noticed that the largest bending moment resultants occur
at the lower face sheet in the vicinity of the support (see also Figure 4b). The in-plane stress resultants
in the radial and circumferential directions reveal a loss of stability at high temperatures. In addition, the
circumferential stress resultants reach larger values in compression and tension as the temperatures are
raised. The radial in-plane mid-height displacements of the face sheets (see Figure 5d) are associated
with large values as the temperature is increased and approach the upper temperature range. The shear
stresses in the core follow a different trend; see Figure 5e. At low temperatures the interfacial shear
stresses are quite large and they decrease as the temperature is raised. The implication of this is that
the contribution of the couple that forms in the sandwich plate (known also as the composite action)
as a result of the overall bending is significantly reduced as the temperature is raised. The interfacial
vertical normal stresses follow a similar trend as the interfacial shear stresses; see Figure 5f. Notice that
at low temperatures the extremum compressive stresses at the upper interface are quite large and that
they reduce as the temperature increases. The extremum tensile interfacial stresses are almost constant
through the entire range of temperatures at the upper and the lower face sheets, and they almost disappear
at high levels of temperature.

The effect of a temperature gradient between the upper and the lower face sheets, where the upper
face sheet is at a temperature of T , whereas the lower face sheet is at a temperature of T +1T . The
maximum core temperature is increased to 79◦C at the lower face sheet or to a temperature level where
solution convergence is not achievable. Notice that under such conditions the moduli of the core are
coordinate-dependent (varies in both radial and though-thickness directions) which require a special
solution procedure that yields a closed-form solution for the core fields. For details see [Frostig and
Thomsen 2007; 2009].

The equilibrium curves of temperature at the upper face-sheet versus extremum values of selected
structural quantities for different temperature gradients appear in Figure 6. They consist of the results
obtained for the temperature-dependent core (TD) using the moduli of the core that appear in Figure 3
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Figure 6. Equilibrium curves of temperature vs. extremum values of selected structural
quantities for a partially distributed load and different thermal through-thickness gradi-
ents. Face sheets: (a) vertical displacements (HSAPT and FE); (b) radial and circum-
ferential bending moments. Core: (c) shear stresses; (d) face-core interfaces vertical
normal stresses.

and the case of a core with temperature-independent (TI) with moduli values that correspond to T = 20◦C
and a zero thermal gradient. The plots of temperature versus the extreme vertical displacements appear
in Figure 6a, and it is seen that at all thermal gradient levels a loss of stability is observed. It occurs
when the temperature at the lower face sheet approaches the higher levels of the operating temperature
of the core. Please notice that the degradation of core properties at the higher temperature is significant
only within a small fraction of the core height near the lower face-core interface. The TI case exhibit
linear behavior and is unaffected by the temperature level.

Similar trends are observed for the radial bending moment resultants (see Figure 6b) while the cir-
cumferential bending moment resultants are almost independent of the temperature.
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The core shear stresses (see Figure 6c) follow an opposite trend; as the temperature is raised the
core shear stresses decreases independent of the thermal gradient values. The vertical normal interfacial
stresses follow the trends of the shear stresses; see Figure 6d. Notice that as the temperature is raised the
vertical normal interfacial stress values decrease. In all cases the TI core exhibit linear results that are
independent of the temperature levels and they are completely different than the results obtained when
the thermal degradation of the foam core is taken into account.

7. Summary and conclusions

A general and rigorous systematic geometrically nonlinear high-order computational model of circular
sandwich plates with general layout and a compliant core material is presented. The mathematical
formulations outlines the derivation of the nonlinear field equations; the appropriate boundary condi-
tions; as well as the stress and deformations fields of the core, when the sandwich plate is subjected
to mechanical loads in parallel with thermally induced deformations and when the core properties are
temperature-independent. The case of a sandwich core with temperature-dependent properties is also
treated following the procedure outlined in [Frostig and Thomsen 2007; 2009]. In succession of this the
special case of radially symmetric sandwich plates are considered and it yields the nonlinear governing
equations for such plates when subjected to combined mechanical and thermal loads.

The results of a numerical study are presented. This includes the nonlinear load response characteris-
tics of radially symmetric circular plates subjected to combined thermal and mechanical loads, as well
as the effects of different thermal gradient values through the depth of the core.

The response is also associated with stress concentration regions due to localized effects such as at the
edge of the loaded region as well as the support region. The shear and interfacial vertical normal stresses
results reveal that as the temperatures are raised the collaboration between the face sheets diminishes and
the load transfer mechanism is associated with independent significant bending in each face sheet rather
than as part of a composite action that form a couple in an ordinary sandwich panels. Loss of stability is
observed as the temperatures approach the upper limit of the range of working temperature. In general,
it is associated with very large displacements, bending moments and in-plane stress resultants.

The conducted numerical study reveals that the response becomes unstable as the temperature is
increased and the mechanical core properties degrade. Hence, in such cases the design of sandwich
structures should be controlled by stability criteria rather than stress constraints.

The effects of imposing different thermal gradients across the core thickness have also been examined.
Notice that when the temperature distribution through the core depth is not uniform the core stiffness
parameters will vary through the core thickness. This requires a special solution procedure. It has been
found that for temperature gradient levels a loss of stability occurs when the temperature at the tensile
face sheet approaches the upper limit of the temperature range.

In general, the nonlinear response of a circular sandwich plate is much stiffer than the case of a
unidirectional sandwich panel or beam. When comparing with the sandwich panel or beam cases, the
presence of circumferential rigidity in addition to the longitudinal rigidity improves the stiffness of the
sandwich circular plate. Thus, the presence of a 2D in-plane stress field stabilizes the load response of
sandwich plates when compared to the unidirectional panel/beam response characteristics. However, the
use of core materials with temperature-dependent mechanical properties that degrade with increasing
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temperature yields an unstable response independent of the structural configuration (1D beam/panel or
2D plate). Hence, a reliable design of any type of sandwich structure must take into account the loss
of stability that may occur within the working range of temperatures due to thermal degradation when
compliant sandwich core materials are used.
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