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PREFACE

The Eleventh Pan-American Congress of Applied Mechanics (PACAM XI) was held in Foz do Iguaçu,
Paraná, Brazil, from January 4 to 8, 2010. The aim of the congress series, set forth by the American Acad-
emy of Mechanics (AAM), is to promote progress in the broad field of mechanics by exposing engineers,
scientists, and advanced graduate students to new research developments, methods, and problems in
mechanics, and by providing broad opportunities for personal interactions through formal presentations
and informal conversations.

The PACAM series is held every two years, always in a Latin American venue, at a time when few
other conferences are scheduled. Previous congresses had been held in Rio de Janeiro, Brazil (1989),
Valparaiso, Chile (1991), São Paulo, Brazil (1993), Buenos Aires, Argentina (1995), San Juan, Puerto
Rico (1997), Rio de Janeiro, Brazil (1999), Temuco, Chile (2002), Havana, Cuba (2004), Mérida, Mexico
(2006), and Cancún, Mexico (2008).

PACAM XI was a cross-disciplinary congress that attracted 230 researchers from thirty countries of
the three Americas, Europe, Africa, and Asia. They have presented 202 regular papers and 14 invited
lectures in the areas of solid mechanics, fluid mechanics, dynamics, controls, computational mechanics,
composite materials, biomechanics, structural reliability and stochastic mechanics, nonlinear phenomena
in mechanics, non-Newtonian fluid mechanics, fatigue and fracture mechanics, and other areas of general
interest. Also, the Society for Natural Philosophy (SNP) held its 48th meeting during the event. The
online version of the Proceedings of PACAM XI can be downloaded from the congress web site at
http://www.set.eesc.usp.br/pacam2010.

PACAM XI was promoted by AAM, SNP, the Brazilian Society of Mechanical Sciences and Engi-
neering (ABCM), and the Brazilian Society for Applied and Computational Mathematics (SBMAC). A
sincere acknowledgment is extended to all the sponsors, which include the Itaipu Technological Park,
Itaipu Binacional, ENGEMASA, Brazilian Ministry of Science and Technology, Coordination for the
Improvement of Higher Education Personnel (CAPES), The National Council for Scientific and Techno-
logical Development (CNPq), and several sectors from the University of São Paulo (USP).

Following a PACAM tradition, authors of selected talks were invited to submit full-length papers
related to their presentation at the conference. The selected papers were then subjected to the normal,
peer-review process, and the best papers were included in this special issue of the Journal of Mechanics
of Materials and Structures. I thank the Editors-in-Chief for the opportunity to organize the special
issue; the individual authors for their excellent contributions; and the reviewers who not only helped in
the selection of the best papers but also used skillful judgment to find merit and to make corrections for
the betterment of the selected papers.

A total of 14 papers were selected from a wide range of topics in theoretical, computational, and
experimental mechanics, and represent well the areas and mini-symposia of PACAM XI:
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950 ADAIR R. AGUIAR

In solid mechanics, Nogueira de Codes and Benallal present experimental results about the effects of
specimen geometry in the characteristics of Portevin–le Châtelier effect due to dynamic strain aging of
an aluminum alloy. Otero and coauthors present analytical results about the dispersion relations for SH
waves on a magnetoelectroelastic heterostructure with imperfect interfaces.

In fluid mechanics, Huang and Houchens present a numerical linear stability analysis of a thermocap-
illary driven liquid bridge with magnetic stabilization. In particular, they present numerical issues that
commonly arise when using spectral collocation methods and linear stability analyses in the solution of
the associated partial differential equations. Cruz and coauthors conduct a numerical investigation of
director orientation and flow of nematic liquid crystals.

In dynamics, Lenci and Marcheggiani investigate the problem of lateral vibrations of footbridges due
to the synchronization of the pedestrian’s motion with that of the supporting structure by means of a three-
dimensional discrete time model. Zhang and Yu use a finite element method combined with the floating
frame formulation to investigate vibration of a simulation nuclear fuel bundle structure confined in a
circular tube. Orlando and coauthors analyze the influence of geometric imperfections on the nonlinear
behavior and stability of Augusti’s model under static and dynamic loads. Finally, Mazzilli and Sanches
use a nonlinear normal mode approach for the active control of vortex-induced vibrations in offshore
catenary risers, which are used in deepwater oil and gas exploitation.

In composites, Shindo and coauthors examine theoretically and experimentally the nonlinear elec-
tromechanical response of piezoelectric macrofiber composite. In computational mechanics, Larrosa
and coauthors present a three-dimensional implementation of the energy domain integral (EDI) for the
analysis of interface cracks in transversely isotropic bimaterials.

In biomechanics, Ehret and coauthors present a technique to prepare thin samples of planar or bulky
soft tissue with very accurate geometry and apply it to porcine dermal tissues. They obtain experimental
results that are well represented by a constitutive model that accounts for the elastic and dissipative
behavior of soft tissues.

In stochastic mechanics, Sampaio and Bellizzi explore the main properties of the smooth Karhunen–
Loève decomposition for nonstationary random processes. At the interface of computational and sto-
chastic mechanics, Lepage and coauthors study the influence on the macroscopic (homogenized) elastic
properties of polycrystalline materials induced by uncertainties on the material texture and microstructure
geometry. To perform this analysis, the perturbation stochastic finite element method is coupled to the
mathematical theory of homogenization that leads to a second-order perturbation-based homogeniza-
tion method. Also, Evangelatos and Spanos present a collocation approach for spatial discretization of
stochastic peridynamics modeling of fracture.

Finally, I would like to express my deep gratitude to all colleagues and staff at USP who helped me
in the several stages of the PACAM XI organization. I am also indebted to my wife Rogéria, my son
Tiago, and my daughter Helena, who not only helped in the organization, but also were very patient and
understanding. To them, all my love and appreciation.

April 2011

ADAIR R. AGUIAR: aguiarar@sc.usp.br
Department of Structural Engineering, São Carlos School of Engineering, University of São Paulo,
Av. Trabalhador são-carlense, 400, Caixa Postal 359, 13566-590 São Carlos, SP, Brazil
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INFLUENCE OF SPECIMEN GEOMETRY ON THE
PORTEVIN–LE CHÂTELIER EFFECT DUE TO DYNAMIC STRAIN AGING

FOR THE AA5083-H116 ALUMINUM ALLOY

RODRIGO NOGUEIRA DE CODES AND AHMED BENALLAL

Digital image correlation and digital infrared thermography are employed to capture and characterize
the spatiotemporal aspects of the Portevin–Le Châtelier phenomenon due to dynamic strain aging in
various types of specimens. Deformation bands are visualized and the effects of the specimen shape on
the morphology of the bands are underlined. Further, while the deformation bands are usually seen to
propagate along the whole gauge length of smooth specimens, they are observed here to be generally
trapped around stress concentrators.

1. Introduction

The mechanical behavior of AA5083-H116 aluminum alloy exhibits irregular plastic flow in a given
range of strain rates and temperatures [Clausen et al. 2004; Benallal et al. 2008a; 2008b]. In a uniaxial
tension test for instance, this irregular flow results in inhomogeneous deformation with different types of
localization bands. These bands can be static, hopping, or even propagating along the specimen when the
strain rate is increased or the temperature decreased. It is also observed in the presence of this irregular
flow that the material often fails by a shear localization mode prior to any significant diffuse necking.

It is widely accepted that this irregular flow is the consequence of negative strain-rate sensitivity due to
dynamic strain aging, that is, the solute-dislocation interaction at the microscopic level, although a firm
mechanism for the diffusion process is not established for aluminum alloys. Indeed, while Cottrell’s
theory on immobilization of dislocations by solute atmospheres is agreed to be involved in a way or
another, various mechanisms for the diffusion and segregation of solute atoms to dislocations have been
proposed and criticized [Nabarro 1948; Cottrell 1953a; 1953b; Sleeswyk 1958; Mulford and Kocks 1979;
van den Beukel 1980; McCormick 1988]. The debate over the mechanisms is still going on in recent
proposals [Picu 2004; Curtin et al. 2006].

The results of dynamic strain aging are higher flow stress and greater strain hardening rates at lower
strain rates than at higher ones. The phenomenon also referred to as the Portevin–Le Châtelier (PLC)
effect is observed in a number of dilute solid solutions (with BCC and FCC, but also HCP, crystal
structures). A number of reviews on the phenomenon are available in the literature; see [Kubin and
Estrin 1985; Robinson and Shaw 1994; Neuhäuser et al. 2004; Rizzi and Hähner 2004].

The PLC effect is a technologically important problem because it adversely affects the formability
of the material. Inhomogeneous plastic straining increases geometrical perturbations in a component
and thus reduces the strain to necking. Further, the propagating deformation bands give rise to unde-
sired markings on the surface of the shaped material. Hopperstad et al. [2007] showed in a numerical

Keywords: Portevin–Le Châtelier effect, AA5083-H116 aluminum alloy, specimen geometry, dynamic strain aging.
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study, taking into account dynamic strain aging and negative strain-rate sensitivity through the model of
[McCormick 1988], that PLC effects can lead to significant reduction in the strain to necking both under
uniaxial and biaxial tension, rendering this type of information vital in metal forming, for instance.

An extensive experimental program has been designed by the authors and their coworkers to under-
stand the features of the PLC effect on AA5083-H116 aluminum alloy, where this effect is pronounced
and almost unstudied in the literature. Thus the effects of strain rate and temperature on the appearance
of this phenomenon were studied in [Clausen et al. 2004; Benallal et al. 2008a; 2008b]. Various tension
tests were carried out on smooth specimens in order to exhibit the PLC domain and further characterize
the various observed deformation bands. Strain rates ranging from 10−7 s−1 to 103 s−1 and temperatures
going from −75◦ C to 500◦ C were considered on flat and round smooth specimens.

The objective of this paper is to extend the former observations by analyzing the effects of specimen
geometry and specimen dimensions on the features of the PLC effect. Various types of specimens are
thus considered and subjected to tension loadings. Digital image correlation (DIC) and digital infrared
thermography (DIT) are used to capture and characterize the spatiotemporal aspects of the PLC effect. In-
homogeneous deformation with different localization bands is observed on the different specimens. Also,
deformation bands are visualized showing their formation, evolution, and propagation. This visualization
also allows the morphology of the bands to be studied and their characteristics to be measured.

2. Material and experimental program

The material studied in this investigation is the aluminum alloy AA5083-H116. The main alloying
elements are magnesium with 4.4 weight percent, manganese with 0.7 weight percent, and chromium with
0.15 weight percent. AA5083 may also contain minor quantities of elements such as iron, copper, and
zinc. It is important to notice that the amount of magnesium is higher than 3 weight percent, which is the
maximum to be retained in solid solution at room temperature. This gives a potential instability leading
to precipitation along grain boundaries or slip planes. Stress corrosion is thus a likely consequence in
corrosive media. Special precautions have to be made during rolling in order to avoid this problem, and
the temper H116 was therefore developed.

The AA5xxx series is well suited for rolling, and plates are thus an important product. The traditional
use of such plates is in naval structures such as ship hulls and offshore topsides, and the good corrosion
resistance of the AA5xxx series gives further reason for these marine applications.

Smooth flat, prismatic, and round specimens are used in this investigation. The smooth round speci-
mens all have a 6 mm diameter, and the prismatic specimens have cross sections 5×5 mm2 and 5×6 mm2.
Finally, the flat smooth specimens have a width of 15 mm; their thickness were varied with the following
values considered: e = 1, 2, 3, 4, 5, 7, and 9 mm. The study is completed with U-notched and V-notched
flat specimens. The U-notches have radii of 0.4, 0.8, and 2 mm while the V-notches have angles of 0, 30,
45, and 60◦. Note that only one notch was used for the 0◦ V-notch (cracked specimen). However, the
crack was not initiated prior to the loading process.

All the specimens were cut from 5 mm and 10 mm thick rolled plates and their axial directions were
aligned with the rolling direction. All the tests considered in the paper were carried out at room temper-
ature in a servohydraulic material-testing machine (MTS model 810) with a 10 kN capacity load cell.
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Two different techniques were used to observe and eventually characterize the PLC bands spatially
and temporally, namely, DIC and DIT. Zones on the gauge length of all the flat specimens were imaged
with a fast CCD camera (model Ultima APX-RS) on one side and with an infrared camera (model JADE
570M) on the other side. Prior to the tests, one side of the specimen was decorated with finely sprayed
black and white paints to enhance the image contrast and the other was painted with a fully black paint
in order to enhance its emissivity. Only DIT was used for round specimens.

For DIC the recorded digital images had a 256× 336 pixel size. Images were recorded at a shutter
speed of 125 frames per second.

The principle of DIC is based on the fact that the distribution of grayscale values of a rectangular area
in the initial image corresponds to the distribution of grayscale values of the same area in the destination
image. A cumulative strain map can be obtained by comparing each current deformation image with the
initial image while an incremental strain map can be computed by comparing the image at the current
load step with the image recorded just before the current load increment. These maps are computed from
the recorded data by the software Correli Hild and Roux [2006].

The image size and acquisition speed for the DIT were 31× 65 pixels and 150 frames per second,
respectively. The imaged zones for the DIT are sketched in Figure 1 for all the specimens. The imaged
zone for the U-notched specimen (R = 2 mm) is shown in detail in Figure 1a and zoomed in Figures 1b
and 1c, where one can respectively see the locations of different points and three vertical lines (x = 0.65,
x = 4.84, and x = 9.68) where some of the experimental results are presented in the next sections.

The tests were carried out at room temperature in a servohydraulic material-testing system (MTS
model 810) with a 10 kN load cell (uniaxial tension test).

) b) c)) b) c)

(a) (b) (c)

Figure 1. (a) Flat U-notched specimen with a 2 mm radius notch (T3) used in the
investigation showing the imaged zone area for digital infrared thermography (DIT);
(b, c) zooms of the imaged area indicating the locations used for presenting some of the
experimental results in Section 3.2.
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The acquired thermal information was processed in the following manner: at each acquisition time
t , the acquired data was a matrix T (x, y, t) representing the chart of temperatures as measured by the
infrared camera, with x representing lines (in the transverse direction) and y columns (in the longitudinal
direction corresponding to the tension axis), and (x, y) a pixel from the imaged zone in the specimen. To
minimize noise in the visualization of the bands, the average temperature change over a time increment
δt was considered and expressed mathematically as

1T (x, y, t)= 1
m

j=m−1∑
j=0

[T (x, y, t +m δt)− T (x, y, t + j δt)], (1)

with δt the acquisition shutter speed (in frames per second). The choice of the parameter m depended
on the cross-head velocity and acquisition speed during the test. For the tests carried out in this work,
m = 1 and m = 10 were used.

3. Results

3.1. Portevin–Le Châtelier effect in uniaxial tension. We give in this section, for completeness, some
results on experimental observations made during uniaxial tension on smooth specimens. More results
and details can be found in [Benallal et al. 2008a; 2008b].

Figure 2 shows the load-displacement curves obtained for different uniaxial tests on different smooth
specimens. These curves all show the serrated behavior and it is important to emphasize here the different
nature of the serrations observed for each type of specimen.

Figure 3 is a sequence of six images taken at different instants displaying the propagation of a PLC
deformation band during a tension test on a round specimen, for a nominal strain-rate of 10−1 s−1. The
pictures represent the change 1T (x, y, t) given by relation (1) over the imaged zone of the specimen.
The temperature change is about 0.5◦ C. These pictures show the band all over the specimen and depicts
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Figure 2. Load-displacement curves for different smooth specimens (left) and zoom of
the curves displaying the serrations (right).
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Figure 3. Sequence of six DIT images showing the propagation of a PLC deformation
band during a tension test in a round specimen (φ = 6 mm) with nominal strain rate
10−1 s−1. The figure displays only the imaged zone of the specimen. The temperature
increment 1T given by (1) is displayed here.

therefore its morphology. The band is inclined at an angle of 52◦ C with respect to the loading access
and has a thickness of about 5 mm.

Figure 4 shows again the PLC deformation bands observed during tension tests on round specimens,
during almost the whole tests, for different strain rates ranging from 10−5 s−1 to 10−1 s−1. For clarity,
the final phase of the tests, namely rupture of the specimens, has been removed, since the significant
temperature rise due to fracture would have masked the deformation bands. Figures 4b–4e display
spatiotemporal representations of the temperature change 1T (0, y, t) along the vertical centerline of
the imaged zone (shown in Figure 4a) as a function of time. For a better interpretation, the load-time
curve is also superposed on the figures showing the serrations and associated deformation bands. It
is interesting to notice here that at the beginnings of all the tests, the different deformation bands are
traveling along the gauge length of the specimens in the same direction, while after a given time or strain,
they start traveling back and forth until fracture.

Figure 5 depicts the same spatiotemporal representations for tension tests carried out on different
smooth specimen geometries, at the same strain rate of 2.8× 10−3 s−1. The deformation band patterns
look at a first sight different, but they all consist of type A bands. (A type A band is usually defined as
a PLC band that nucleates somewhere in the gauge length of the specimen and continuously propagates
along this gauge length.)

Figure 6 shows again the same spatiotemporal representations for tension tests carried out at the same
strain-rate of 10−2 s−1 on different smooth flat specimens having the same width but different thicknesses
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(a)

(b) (c)

��� ���

���

���

(d) (e)

Figure 4. Temperature change 1T given by (1) versus time as measured by thermog-
raphy along the vertical center line of the specimens. For completeness, the stress-time
curve is superposed. (a) Round specimen (φ = 6 mm) with the imaged zone indicated;
(b) ε̇ = 10−1 s1; (c) ε̇ = 10−2 s1; (d) ε̇ = 2.8× 10−3 s1; (e) ε̇ = 3.33× 10−4 s−1.

ranging from 1 mm to 9 mm. For the same tests, Figure 7 displays the orientations of the observed bands
as a function of the nominal strain. This orientation is measured by the inclination of the band with respect
to the tension axis. While this orientation seems to be well defined around 60◦ for small thicknesses, it
varies somewhat between 60◦ and 90◦ when this thickness is increased.

3.2. Portevin–Le Châtelier effect on notched specimens. Seven tests, called T1, T2, T3,T4, T5, T6, and
T7 in the sequel, were carried out on the flat U-notched and V-notched specimen geometries described in
Section 2 (see Table 1) in order to determine the effects of the specimen geometry on the characteristics
of the deformation bands and their propagation. All tests were carried out in displacement control with
a fixed clamp velocity. Table 1 presents a brief summary of the tests.

Before moving to a detailed analysis of the PLC deformation bands on notched specimens, let us first
compare the morphology of these bands for all types of specimens used in this investigation. Figure 8
shows the imaged zones in thermography for all the studied specimens, as well as the associated mor-
phology of the observed deformation bands at given instants of the loading process.
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(a) (b)

(c) (d)

Figure 5. Temperature change 1T given by (1) versus time as measured by thermog-
raphy along the vertical center line for tension tests on different specimens at the same
strain-rate of 2.8× 10−3 s−1. For completeness, the stress-time curve is also superposed.
(a) Smooth flat specimen (15× 2 mm2); (b) round specimen (φ = 6 mm); (c) smooth flat
specimen (4× 4 mm2); (d) smooth flat specimen (6× 5 mm2).

Figures 9a and 9b show the force-displacement response for tests T1, T2, T3, and T4 up to failure.
Figures 9c and 9d are zooms of the ends of these tests, showing more clearly the serrations observed

Test Cross head velocity (mm s−1) Notch

T1 0.955 U-notched specimen – R = 0.4
T2 0.955 U-notched specimen – R = 0.8
T3 0.955 U-notched specimen – R = 2.0
T4 0.955 Cracked specimen – (One 0◦ V-notch)
T5 0.0975 V-notched specimen – 30◦

T6 0.0975 V-notched specimen – 45◦

T7 0.0975 V-notched specimen – 60◦

Table 1. Summary of all the tests carried out in the present study.
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�

                                               (a) 

                                     (b)                                                                                        (c) 

 
                                       (d)                                                                                        (e) 

 
                                       (f)                                                                                        (g) 

Figure 6. Temperature change versus time as measured by thermography along verti-
cal center line of specimens, with stress-time curve superposed. Nominal strain rate is
10−2 s−1 and geometry is a smooth flat specimen with 15 mm width. The thickness e is
(a) 1 mm, (b) 2 mm, (c) 3 mm, (d) 4 mm, (e) 5 mm, (f) 7 mm, and (g) 9 mm.
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Figure 7. Band orientation versus nominal strain obtained during tension tests on dif-
ferent smooth flat specimens with the same 15 mm width but different thicknesses (1, 2,
3, 4, 5, 7, and 9 mm), at a nominal strain-rate of 10−2 s−1.

��
�

            (a)                         (b)                      (c)                     (d)                    (e)                  (f) 

Figure 8. Two-dimensional view of PLC bands for different specimen geometries mea-
sured by thermography during tensile tests: (a) flat specimen, (b) prismatic specimen,
(c) U-notched specimen, (d) V-notched specimen, (e) cracked specimen, and (f) round
specimen. The temperature change 1T given by (1) is displayed here.
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                                         (c)                                                                                 (d)        

Figure 9. Force versus displacement for all tests: (a) T1, T2, and T3; (b) T4; (c) zoom
of (a); (d) zoom of (b).

during the tests, signaling the presence of the deformation bands. These serrations only occur after a
certain time of plastic strain. The observed final failure mode is a shear failure through the thickness of
the specimen. As an illustration, the broken specimen from T3 is shown in Figure 10.

 

Figure 10. Broken specimen from all tests illustrating the observed shear modes for T3.
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                                  (a)                                                                                   (b) 

Elasticity Plasticity without 

PLC bands

Plasticity with 

PLC bands

Elasticity Plasticity without 

PLC bands

Plasticity with 

PLC bands
 

(c) 

Figure 11. Temperature change 1T (4.84, y, t) measured along the vertical line
x = 4.84, in comparison with the response force-time of the test. Note clearly the elas-
ticity, the plasticity without PLC bands, and the plasticity with PLC bands for the three
tests: (a) T1, (b) T2, and (c) T3.

Figure 11 shows a summary of tests T1, T2, and T3 carried out at average strain rates of 7.16×10−1 s−1,
7.16× 10−2 s−1, and 7.16× 10−3 s−1, respectively, and displays the load-time response (thin white line)
superposed on the time evolution of the temperature change observed in the specimen along the vertical
line (and longitudinal axis of the specimen) x = 4.84 mm.

The thermal information of Figure 11 clearly shows three regions separated by thick vertical lines and
representing respectively the elastic response of the specimen (the rather dark area), the plastic response
prior to the development of the PLC (where the temperature slightly increases due to plastic dissipation),
and finally the plastic response with the PLC and associated deformations bands. In this last area, one
can observe, through the spatiotemporal distribution of temperature changes along the vertical axis of
the specimen, the nucleation and propagation of the deformation bands. Similar responses are observed
in the three tests T1, T2, and T3.
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                         (a)                                                                                    (b) 

                              (c)                                                                                 (d) 

Figure 12. (a) Cracked specimen with the imaged area indicating the three vertical
lines used for presenting the experimental results; (b) temperature change 1T (x, y, t)
measured along the vertical line x = 3.18; (c) temperature change 1T (x, y, t) measured
along the vertical line x = 9.55; (d) temperature change 1T (x, y, t) measured along the
vertical line x = 15.91.

In the case of the cracked specimen (T4), we present in Figure 12 the history of the temperature
change 1T (x, y, t) versus time at three different locations on the specimen, namely x = 3.18, x = 9.55,
and x = 15.91 (close to the initial crack tip), as depicted in Figure 12a. One observes that there are
PLC bands and these bands are stuck in the crack tip. In Figure 12b (x = 3.18), to where the crack
has propagated, it is only at the end of the test that we could see the traces of deformation bands on the
spatiotemporal analysis, when the crack tip has approached this position. In Figures 12c and 12d we
observe the progress of the crack, and one can see a similar situation as in Figure 12b. One can also
observe that bands do not propagate along the specimen, but are trapped at the crack tip.
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Figure 13. Temperature change 1T (x, y, t) measured along the vertical line x = 4.84
for the V-notched specimens: (a) T5 (30◦), (b) T6 (45◦), (c) T7 (60◦), and (d) T6 (V45◦),
showing its comparison with the response force-time at the end of the test.

Similar representations are provided in Figure 13 for the V-notched specimens.
Figures 14a, 14b, and 14c compare, for the three tests T1, T2, and T3 on U-notched specimens, the

incremental strain maps (on the left sides) obtained by DIC and the temperature change 1T (x, y, t) (on
the right sides) at different time locations. As seen, the agreement is very good.

At these time locations, a deformation band is seen above or below the minimal section of the specimen.
The movement of the band is actually a bowing around and above this minimal section followed by a
bowing around and below the minimal section. This is better seen in Figure 11, where in the beginning
of the PLC phenomenon a deformation band nucleates in the minimal section of the specimen and bows
down until it disappears, after which another band develops, still in the minimal section, and bows up
this time until it disappears again. The whole process is repeated again until failure of the specimens in
Figure 11 for the three tests.
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Figure 14. Longitudinal strain and temperature change 1T maps as obtained from DIC
and DIT on the two opposite sides of each specimen for tests on notched specimens:
(a) T1, (b) T2, and (c) T3.

To give more emphasis to the behavior of the bands, we choose T3 and give more details on the
movements of the deformation bands. Figure 15 compares the temperature changes observed in the width
of the specimen. To that purpose, it displays for the whole test (except for the final part, which includes
the fracture of the specimen) the temperature changes 1T (x, y, t) along the vertical lines x = 0.65,
x = 4.84, and x = 9.68 of the specimen for the imaged area, shown in Figure 1c. Different levels of
temperature are reached from the left to the right of the specimen (with the smallest on the left).

Figures 16 and 17 show the temperature and axial strain (εyy) histories during the whole test at the
same locations mentioned above, the middle and the bottom of the imaged zone shown in Figure 1b.
Both strain and temperature histories display the classical staircase behavior characteristic of the PLC

Band 1

Band 2

Band 1

Band 2

Band 1

Band 2

Band 1

Band 2

Band 1

Band 2

Band 1

Band 2

Figure 15. Temperature change measured along the vertical lines x = 0.65 (left),
x = 4.84 (center), and x = 9.68 (right) for T3.
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a) b) c)

X = 0,65 X = 4,84 X = 9,68

a) b) c)

X = 0,65 X = 4,84 X = 9,68

Figure 16. Temperature histories for T3 at the different locations indicated in Figure 1b.
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Figure 17. Longitudinal strain histories for T3 at the different locations indicated in Figure 1b.

effect, where each stair is the manifestation of a band passing at these locations. Figure 16 shows clearly
a higher temperature increase in the minimal section of the specimen (y = 10.6 mm), where the stress
concentration is higher. Figure 17 shows that the strain is higher near the notch at the minimal section.

Figures 18 and 19 show the temperature along the three vertical lines (x = 0.65, x = 4.84, and x = 9.68)
at different time instants. Beside the global rise in temperature due to plasticity, one can also see the
propagation of the deformation bands (see the location of the maximum temperature that moves to the
left in Figure 18 and to the right in Figure 19). Figure 18 shows a band that propagates from the minimal
section (the dashed line) to the top side of the specimen. Figure 19 show another one that propagates

1,61 1,611,94

X = 0,65 X = 4,84 X = 9,68

a) b) c)

1,61 1,611,94

X = 0,65 X = 4,84 X = 9,68

1,61 1,611,941,61 1,611,94

X = 0,65 X = 4,84 X = 9,68

a) b) c)

Figure 18. Propagation of band 1 shown in Figure 15. The traveling distance of the band
is higher in the minimal section (x = 4.84) than at the roots of the notches (x = 0.65
and x = 9.68) leading to the slightly curved morphology of the band.
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1,29 1,292,25X = 0,65 X = 4,84 X = 9,68

a) b) c)

1,29 1,292,25X = 0,65 X = 4,84 X = 9,681,29 1,292,251,29 1,292,25X = 0,65 X = 4,84 X = 9,68

a) b) c)

Figure 19. Propagation of band 2 shown in Figure 15. The travel distance of the band
is higher in the minimal section (x = 4.84) than at the roots of the notches (x = 0.65
and x = 9.68) leading to the slightly curved morphology of the band.

from the minimal section to the bottom side, as one can also see in Figures 11 and 15. One can also
observe the differences in the band propagation, between the centerline of the specimen (x = 10.6) and
near the roots (x = 0.65 and x = 9.68) leading to the bowing of the band around the minimal section.

Figures 20 and 21 give the same results as Figures 18 and 19 but display rather the temperature changes
1T (x, y, t) of relation (1) instead of the temperature. This is more representative of the PLC effect and

a) b) c)

X = 0,65 X = 4,84 X = 9,68

a) b) c)

X = 0,65 X = 4,84 X = 9,68

 
(a) (b) (c)

Figure 20. Temperature increments 1T profile showing the propagation of band 1 of Figure 15.

a) b) c)

X = 0,65 X = 4,84 X = 9,68

a) b) c)

X = 0,65 X = 4,84 X = 9,68

(a) (b) (c)
Figure 21. Profiles of temperature increments 1T associated with the propagation of
band 2 shown in Figure 15.
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Band 1 Band 2

Figure 22. Temperature variation as a function of y, showing the same bands, 1 and 2:
average of temperature variations of Figures 20a, 20b, and 20c (left); and average of
temperature variations of Figures 21a, 21b, and 21c (right).

is plotted at different times along the lines x = 0.65, x = 4.84, and x = 9.68. While visible in these
figures, the growth (temperature increase), propagation, and decay (temperature decrease) of the bands
are better seen in Figure 22, obtained by a filtering of Figures 20 and 21. This filtering is simply carried
out by taking the average of the temperature distributions at x = 0.65, x = 4.84, and x = 9.68. Indeed,
on the left of Figure 22, one can clearly distinguish the growth of a band between times t = 0.707 s and
t = 0.720 s, and then its decay from t = 0.720 s to t = 0.740 s. During this period, the band moved to
the left, then slightly returned at the end. Just after this, another band is seen growing (t = 0.747 s) and
continues its growth and decay on the right side of Figure 22 (from t = 0.767 s to t = 0.800 s), but now
to the right.

4. Conclusions

Digital infrared thermography and digital image correlation are important tools for observing and evaluat-
ing the nucleation, growth, decay, and morphology of Portevin–Le Châtelier deformation bands (as well
as other localized and propagating instabilities) under general loading conditions. Application of these
tools to various specimens indeed allows exhibiting the main features of the development and propagation
of these bands, which, for the cross-head velocity considered here, are seen to be trapped in the vicinity
of the minimal cross section and bow up and down around this section for U-notched specimens. In the
case of the cracked specimen, bands are stuck at the crack tip. This information is important in modeling
dynamic strain aging phenomena and in discriminating between the various proposals existing in the
literature. This is currently under investigation.
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DISPERSION RELATIONS FOR SH WAVES ON A MAGNETOELECTROELASTIC
HETEROSTRUCTURE WITH IMPERFECT INTERFACES

JOSÉ A. OTERO, HÉCTOR CALAS, REINALDO RODRÍGUEZ-RAMOS,
JULIÁN BRAVO-CASTILLERO, ADAIR R. AGUIAR AND GUILLERMO MONSIVAIS

The dispersion relations of surface SH waves in an A/B/A heterostructure with magnetoelectroelastic
properties and imperfect (electromagnetically permeable or absorbent, mechanically spring-type) bond-
ing at the interfaces are obtained taking the geometric symmetry of the system into account. Conse-
quently, the results for the symmetric and antisymmetric modes are presented. Different limit cases are
considered. Numerical calculations for relevant realizations of the heterostructure are investigated for
different values of the material parameter describing the assumed mechanically imperfect bonding. In
all the studied cases, the propagation velocities of the SH waves increase for increasing values of this
parameter and are limited by the velocities on the homogeneous phases A and B.

1. Introduction

The development of smart structures is currently receiving widespread attention owing to potential ap-
plications in several branches of engineering, such as in integrated control architecture with highly dis-
tributed sensors and actuators. More recently, applications can be found in the design of smart materials,
where piezoelectric and piezomagnetic properties are involved. The problem of wave propagation in
this type of material has been studied by different authors using different geometries. For instance, in
[Alshits et al. 1994] the existence of localized acoustic waves was studied on the interface between two
piezocrystals of arbitrary anisotropy. In [Pan 2001] an exact closed-form solution was derived for the
static deformation of multilayered piezoelectric and piezomagnetic plates based on quasi-Stroh formalism
and using the propagator matrix method. In [Pan and Heyliger 2002] the analytical method of [Pan 2001]
was extended to the free vibration of three-dimensional, anisotropic linearly magnetoelectroelastic (MEE)
simply supported, and multilayered rectangular plates. In [Wang et al. 2003] the state vector equations for
three-dimensional, orthotropic, and linearly MEE media were derived. The solution of these equations
is based on a mixed formulation, where the basic unknowns are not only the displacements, electrical
potential, and magnetic potential, but also the stresses, electric displacements, and magnetic induction.
Recently, [Chen et al. 2007] presented an analytical treatment for the propagation of harmonic waves in
infinitely extended MEE multilayered plates based on the state vector approach.

The authors wish to acknowledge the National Council for Scientific and Technological Development (CNPq), Proc. No.
450462/2009-9, the National Program of Basic Sciences, CITMA, Cuba, PNCIT IBMFQC 0709-0000, CoNaCyT/México
project No. 82474 and DGAPA UNAM/México project IN119509, for their support of this research. JBC is also grateful for
the support provided by CGCI/CAPES/Brazil project No. 0452-11/2010.
Keywords: piezoelectricity, piezomagnetism, magnetoelectroelasticity, dispersion curve, wave propagation, imperfect contact.
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The existence of interfaces is a usual feature of both composite materials and structures. Depending
on the materials involved and how they are put together (for example, by different glues), a thin layer
with its own material properties, which are noticeably different from those of the participating materials,
may manifest itself at the interface. The simplest description of the mechanical behavior of an interface
is modeled as a layer that geometrically has a zero thickness but still possesses elasticity and interface
elastic strain energy, for example, the shear-lag model of [Cheng et al. 1996; Handge 2002], in which
the tangential displacement at an interface is allowed to be different from both sides of the interface
to account for the deformation of the interface layer. At the same time, the inertia of the interface is
neglected so that the traction across the interface is continuous and is proportional to the displacement
jump across the interface. In this description, an interface is essentially considered as having many
massless springs. A similar description can also be applied in the normal direction of an interface.

In practice, due to various causes such as microdefects, diffusion impurity, damage, weak bonding, et
cetera, two dissimilar materials cannot be perfectly bonded, and an interface or transition with thickness
in the range of 30–240 nm exists across the contact surfaces [Termonia 1990]. These transition zones
weaken the interfacial continuity, and further affect the performance of the heterogeneous structure; in par-
ticular, the interfacial characteristics [Margetan et al. 1992; Wu et al. 2002]. An adequate description of
such an interface is quite complex. A simplified model consists of considering an imperfect interface with
vanishing thickness, at which the stresses can transfer continuously, but the displacements have a jump.
In general, linear spring relations are assumed between the normal stress and the displacement jump in the
normal direction and between the tangential stress and the displacement jump in the tangential direction
[Hashin 1991; Klarbring and Movchan 1998; Zhong et al. 2009]. Using this modeling, the effects of
interfacial imperfection on waves propagating in an isotropic elastic bimaterial have been analyzed in
[Rokhlin and Wang 1991; Huang and Rokhlin 1992; Deng 2006]. For a class of smart materials, when the
bonding interface is fully debonded, a small gap appears; the gap wave propagation has been investigated
in [Li and Yang 2006]. The effects of an imperfectly bonded interface of piezoelectric waves near such
interface have been studied in [Fan et al. 2006b] and [Yang et al. 2006], respectively, for two bonded
piezoelectric materials. For an imperfect interface of a two-phase piezoelectric/piezomagnetic structure,
interfacial shear horizontal waves propagating along an imperfect interface have been formulated in
[Huang et al. 2009].

Shear-lag type interface models have been mainly used in static analysis. Recently, theoretical analysis
was given on vibrations and waves propagating in structures with interfaces described by the shear-lag
model [Chen et al. 2004; Yang et al. 2006].

The present work is motivated by recent contributions dealing with the effects of the elastic interface
on vibration and wave propagation in composites. For instance, in [Fan et al. 2006a; 2006b; Chen et al.
2008; Melkumyan and Mai 2008] waves propagating in composite structures with imperfectly bonded
interfaces were studied. Here, we propose a generalization of [Calas et al. 2008] to the case of imperfect
contact conditions. In that study, the authors considered the case of perfect bonding at the interfaces
of dissimilar media. In the present contribution, the interface is modeled by the shear-lag model for
imperfect bonding. Here, the behavior of stationary SH waves in a heterostructure with MEE materials
with imperfect bonding on the interface is studied. In particular, the case of permeable and absorbent
interfaces is discussed in detail. The governing system of partial differential equations is solved using
the geometric symmetry of the heterostructure and considering the superficial acoustic wave. Solutions
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can be separated into symmetric and antisymmetric parts. The dispersion curves and the influence of the
imperfection at the interface are shown for some cases.

The work is organized as follows: in Section 2 the governing equations of SH waves propagating in
a MEE homogeneous medium with 6 mm hexagonal symmetry are presented. Section 3 is devoted to
the formulation of the mean problem of an A/B/A heterostructure considering two types of imperfect
interfacial conditions, and to the derivation of the symmetric and antisymmetric solutions of a related
auxiliary problem. In Section 4, the dispersion relations are obtained, and different limit cases are
described and shown to be in agreement with others reported in the literature. In Section 5 numerical
examples are presented and discussed. Finally, some concluding remarks are given in Section 6.

2. Wave equation for the SH mode

Consider a MEE material with 6 mm hexagonal symmetry exhibiting magnetization and polarization in
the z-axis direction of an xyz Cartesian coordinate system. The xy-plane is the isotropy plane. In this
type of material, the SH wave is described by a system of three coupled partial differential equations
with three unknowns: the z-component of the elastic displacement uz , the in-plane electric potential ϕ,
and the in-plane magnetic potential ψ (see, for instance, [Melkumyan 2007; Wang et al. 2007; Calas
et al. 2008; Huang and Li 2010]), that is,

c∇2u+ e∇2ϕ+ f∇2ψ = ρ
∂2u
∂t2 , (2-1)

e∇2u− ε∇2ϕ− g∇2ψ = 0, (2-2)

f∇2u− g∇2ϕ−µ∇2ψ = 0, (2-3)

with ∇2
≡ ∂2/∂x2

+ ∂2/∂y2, u ≡ uz , and where c ≡ c44, e ≡ e15, f ≡ f15, ε ≡ ε11, µ ≡ µ11, and
g ≡ g11 are the elastic, piezoelectric, piezomagnetic, dielectric permittivity, magnetic permeability, and
magnetoelectric coefficients, respectively. In this study, the in-plane elastic displacements are ux = u y = 0.
Equations (2-1)–(2-3) describe the motion of a SH wave in a homogeneous material and, therefore,
depend only on (x, y, t).

The stress component T ≡ Tzy , the electric displacement D ≡ Dy , and the magnetic induction B ≡ By

are related to u, ϕ, and ψ by

T = c∂u
∂y
+ e∂ϕ

∂y
+ f ∂ψ

∂y
, D = e∂u

∂y
− ε

∂ϕ

∂y
− g ∂ψ

∂y
, B = f ∂u

∂y
− g ∂ϕ

∂y
−µ

∂ψ

∂y
. (2-4)

Due to the linearity of the Laplacian operator ∇2, it is possible to write (2-2) and (2-3) in the form

∇
2ϕ̃ = 0, ∇2ψ̃ = 0, (2-5)

where ϕ̃ and ψ̃ are auxiliary potential functions defined by

ϕ̃ = ϕ−
e
ε

u+ g
ε
ψ, ψ̃ = ψ −

f
µ

u+ g
µ
ϕ. (2-6)

Solving (2-6) for the functions ϕ and ψ , we find

ϕ = χϕ̃+
ē
ε

u− ḡ
ε
ψ̃, ψ = χψ̃ +

f̄
µ

u− ḡ
µ
ϕ̃, (2-7)
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where
χ =

εµ

εµ− g2 , ḡ = gχ, ē = eχ − f
µ

ḡ, f̄ = f χ − e
ε

ḡ. (2-8)

Replacing the expressions given by (2-7) into (2-1), the typical wave motion equation for the mechan-
ical displacement u is given by (

∇
2
−

1
v̄2

∂2

∂t2

)
u = 0, (2-9)

where
v̄ =

√
c̄/ρ (2-10)

is the bulk shear wave speed of the MEE homogeneous medium and

c̄ = c+ eē/ε+ f f̄ /µ (2-11)

is the magnetoelectroelastically stiffened elastic constant.
In the next section, a heterogeneous medium will be studied (see Figure 1), and (2-5) and (2-9) must

be solved in three different homogeneous zones of the xy-plane. In order to determine u, ϕ̃, and ψ̃ ,
suitable conditions should be employed. Moreover, it is convenient to express the constitutive relations
(2-4) in the form

T = c̄
∂u
∂y
+ ē

∂ϕ̃

∂y
+ f̄

∂ψ̃

∂y
, D =−ε

∂ϕ̃

∂y
, B =−µ

∂ψ̃

∂y
. (2-12)

3. SH waves in MEE heterostructure

In the xy-plane, we consider an infinite heterostructure A/B/A formed by two half-spaces (y ≤−d/2
and y ≥ d/2) and an intermediate layer (|y| ≤ d/2), as illustrated in Figure 1. Two different homogeneous
transversely isotropic MEE materials, with 6 mm symmetry, occupy regions A and B. The magnetization

d/20-d/2

x

y

ABA

Figure 1. Scheme of a heterostructure A/B/A made of two magnetoelectroelastic materials.
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and polarization directions are supposed perpendicular to the xy-plane. Consequently, the equations
presented in Section 2 must be satisfied in each one of the phases. We investigate the dispersion relations
of SH-wave solutions u, ϕ, and ψ of (2-1)–(2-3) for two types of imperfect conditions on y = ±d/2
following a procedure presented in [Calas et al. 2008]. We also investigate classical radiation conditions
at infinity through the study of an auxiliary problem involving (2-5) and (2-9).

3A. Statement of the main problem. We want to find u, ϕ, and ψ describing an SH wave propagating
in the positive x direction that satisfy (2-1)–(2-3) in each phase of the heterogeneous structure A/B/A.
Since we are interested in the study of confined modes, the functions u, ϕ, and ψ in media A vanish
when y→±∞ (evanescent waves in the y direction). In [Calas et al. 2008] the dispersion relation for
the case of perfect contact conditions at the interfaces was studied. Here, two types of imperfect contact
conditions will be considered:

(a) Case of electromagnetically permeable bonding at y =±d/2, for which

TA = TB = K (u A− u B), ϕA = ϕB, DA = DB, ψA = ψB, BA = BB . (3-1)

(b) Case of electromagnetically absorbent bonding at y =±d/2, for which

TA = TB = K (u A− u B), ϕA = 0, ϕB = 0, ψA = 0, ψB = 0. (3-2)

The variables u, ϕ, and ψ were introduced before (2-1)–(2-3) and T , D, and B were introduced before
(2-4). Also, the subscripts A and B identify the MEE media A and B, respectively. The first conditions
in (3-1) and (3-2) describe an elastic interface with spring constant material parameter K > 0, which
has dimensions of stress divided by length; in particular, [K ] =GPa/m. We shall call this constant the
interface parameter. With this model, the interface is allowed to deform and the displacement at the
interface can be discontinuous. The case K →∞ corresponds to a perfectly bonded interface and the
case K → 0 corresponds to a mechanically free interface.

3B. The auxiliary problem. We now consider harmonic SH waves propagating in the positive x direc-
tion and want to find solutions u, ϕ̃, and ψ̃ of (2-5) and (2-9) in regions A and B that satisfy the radiation
conditions in regions A, that is, functions u, ϕ̃, and ψ̃ vanish for y =±∞. Using the symmetry properties
of the heterostructure, as in [Calas et al. 2008], the MEE fields can be decoupled into symmetric and
antisymmetric modes in y. Indeed, the linear equations (2-5) and (2-9) are invariant under reflections
with respect to the x-axis in both regions A and B. Consequently, the symmetric and antisymmetric
parts with respect to y of the solutions are also solutions of (2-5) and (2-9). In addition, it follows from
the linear relations (2-7) and (2-12) that the fields ϕ, ψ , T , D, and B are sums of the symmetric and
antisymmetric parts of u, ϕ̃, and ψ̃ . Consequently, conditions (3-1) and (3-2) at y =±d/2 are valid for
the symmetric and antisymmetric parts of the solutions.

From (2-5) and (2-9), and taking into account the above considerations, the following solutions are
obtained:

u = ei(ξ x−ωt)


UAeηA y, y ≤−d/2,
UB cos(ηB y), |y| ≤ d/2,
UAe−ηA y, y ≥ d/2,

(3-3)
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ϕ̃ = ei(ξ x−ωt)


8Aeξ y, y ≤−d/2,
8B cosh(ξ y), |y| ≤ d/2,
8Ae−ξ y, y ≥ d/2,

(3-4)

ψ̃ = ei(ξ x−ωt)


9Aeξ y, y ≤−d/2,
9B cosh(ξ y), |y| ≤ d/2,
9Ae−ξ y, y ≥ d/2,

(3-5)

for the symmetric modes in y, and

u = ei(ξ x−ωt)


U ′AeηA y, y ≤−d/2,
U ′B sin(ηB y), |y| ≤ d/2,
−U ′Ae−ηA y, y ≥ d/2,

(3-6)

ϕ̃ = ei(ξ x−ωt)


8′Aeξ y, y ≤−d/2,
8′B sinh(ξ y), |y| ≤ d/2,
−8′Ae−ξ y, y ≥ d/2,

(3-7)

ψ̃ = ei(ξ x−ωt)


9 ′Aeξ y, y ≤−d/2,
9 ′B sinh(ξ y), |y| ≤ d/2,
−9 ′Ae−ξ y, y ≥ d/2,

(3-8)

for the antisymmetric modes in y. Here, ω, ξ , and η are, respectively, the frequency, the x-component
of the wave vector, and the y-component of the wave vector, whereas UA, UB , 8A, 8B , 9A, and 9B are
the amplitudes of the fields in the medium A and B. The parameters ηA > 0, ηB , ξ > 0, and ω appearing
in (3-3)–(3-8) are related to each other through the expressions

(ηA)
2
= (ξ)2− (ω/v̄A)

2
= ξ 2(1− v2/v̄2

A) > 0, |y| ≥ d/2,

(ηB)
2
= (ω/v̄B)

2
− (ξ)2 = ξ 2(v2/v̄2

B − 1), |y| ≤ d/2,
(3-9)

where v = ω/ξ is the phase velocity.
Substituting (3-3)–(3-5) into (2-7), the symmetric parts of the electric and magnetic potentials are

given by, respectively,

ϕ = ei(ξ x−ωt)



ēA
εA

UAeηA y
+χA8Aeξ y

−
ḡA
εA
9Aeξ y, y ≤−d/2,

ēB
εB

UB cos(ηB y)+χB8B cosh(ξ y)− ḡB
εB
9B cosh(ξ y), |y| ≤ d/2,

ēA
εA

UAe−ηA y
+χA8Ae−ξ y

−
ḡA
εA
9Ae−ξ y, y ≥ d/2,

(3-10)

ψ = ei(ξ x−ωt)



f̄ A
µA

UAeηA y
−

ḡA
µA
8Aeξ y

+χA9Aeξ y, y ≤−d/2,

f̄B
µB

UB cos(ηB y)− ḡB
µB
8B cosh(ξ y)+χB9B cosh(ξ y), |y| ≤ d/2,

f̄ A
µA

UAe−ηA y
−

ḡA
µA
8Ae−ξ y

+χA9Ae−ξ y, y ≥ d/2.

(3-11)
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Substituting (3-3)–(3-5) into (2-12), we obtain the following expressions for the symmetric parts of
the mechanical stress, electric displacement, and magnetic flux:

T = ei(ξ x−ωt)


UAc̄AηAeηA y

+ (ēA8A+ f̄ A9A)ξeξ y, y ≤−d/2,

−UB c̄BηB sin(ηB y)+ (ēB8B + f̄B9B)ξ sinh(ξ y), |y| ≤ d/2,

−UAc̄AηAe−ηA y
− (ēA8A+ f̄ A9A)ξe−ξ y, y ≥ d/2,

(3-12)

D = ei(ξ x−ωt)


−εAξ8Aeξ y, y ≤−d/2,

−εBξ8B sinh(ξ y), |y| ≤ d/2,

εAξ8Ae−ξ y, y ≥ d/2,

(3-13)

B = ei(ξ x−ωt)


−µAξ9Aeξ y, y ≤−d/2,

−µBξ9B sinh(ξ y), |y| ≤ d/2,

µAξ9Ae−ξ y, y ≥ d/2.

(3-14)

Analogously, substituting (3-6)–(3-8) into (2-7) and (2-12), the antisymmetric parts of the electric and
magnetic potentials, mechanical stress, electric displacement, and magnetic flux are given by

ϕ = ei(ξ x−ωt)



ēA

εA
U ′AeηA y

+χA8
′

Aeξ y
−

ḡA

εA
9 ′Aeξ y, y ≤−d/2,

ēB

εB
U ′B sin(ηB y)+χB8

′

B sinh(ξ y)−
ḡB

εB
9 ′B sinh(ξ y), |y| ≤ d/2,

−
ēA

εA
U ′Ae−ηA y

−χA8
′

Ae−ξ y
+

ḡA

εA
9 ′Ae−ξ y, y ≥ d/2,

(3-15)

ψ = ei(ξ x−ωt)



f̄ A

µA
U ′AeηA y

−
ḡA

µA
8′Aeξ y

+χA9
′

Aeξ y, y ≤−d/2,

f̄B

µB
U ′B sin(ηB y)−

ḡB

µB
8′B sinh(ξ y)+χB9

′

B sinh(ξ y), |y| ≤ d/2,

−
f̄ A

µA
U ′Ae−ηA y

+
ḡA

µA
8′Ae−ξ y

−χA9
′

Ae−ξ y, y ≥ d/2,

(3-16)

T = ei(ξ x−ωt)


U ′Ac̄AηAeηA y

+ (ēA8
′

A+ f̄ A9
′

A)ξeξ y, y ≤−d/2,

U ′B c̄BηB cos(ηB y)+ (ēB8
′

B + f̄B9
′

B)ξ cosh(ξ y), |y| ≤ d/2,

U ′Ac̄AηAe−ηA y
+ (ēA8

′

A+ f̄ A9
′

A)ξe−ξ y, y ≥ d/2,

(3-17)

D = ei(ξ x−ωt)


−εAξ8

′

Aeξ y, y ≤−d/2,

−εBξ8
′

B cosh(ξ y), |y| ≤ d/2,

−εAξ8
′

Ae−ξ y, y ≥ d/2,

(3-18)

B = ei(ξ x−ωt)


−µAξ9

′

Aeξ y, y ≤−d/2,

−µBξ9
′

B cosh(ξ y), |y| ≤ d/2,

−µAξ9
′

Ae−ξ y, y ≥ d/2.

(3-19)
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4. Dispersion relations for imperfect contacts

Now, we refer to the conditions at the interface between the layers, which is located at y =±d/2, and
the semiinfinite media. Due to the symmetry of the problem, such conditions are restricted to only one
interface, and we study the dispersion relation for the imperfect bonding effects defined by (3-1) and
(3-2) for the symmetric and antisymmetric solutions.

4A. Dispersion relation for electromagnetically permeable bonding.

Symmetric modes. Substituting (3-3) and (3-10)–(3-14) into the interface conditions given by (3-1) for
y =−d/2, an homogeneous system of linear algebraic equations for UA, UB , 8A, 8B , 9A, and 9B is
obtained. For nontrivial solutions, the determinant of the principal matrix has to be zero, which leads to
the following dispersion relation for the symmetric modes:

PA PB − Q2
+ K (PA+ PB + 2Q)= 0, (4-1)

where

PA =−c̄A
(
ηA− ξ̄

2
AAξ sinh(ξd/2)

)
, (4-2)

PB = c̄B
(
ηB tan(ηBd/2)+ ξ̄ 2

B Bξ sinh(ξd/2)
)
, (4-3)

Q =−
√

c̄Ac̄B ξ̄
2
ABξ sinh(ξd/2), (4-4)

ξ̄ 2
αβ =

1√
c̄α c̄β

ēα ēβ
εαεβ

ϒ
(1)
AB +

f̄α f̄β
µαµβ

ϒ
(2)
AB +

( ēα f̄β
εαµβ

+
ēβ f̄α
εβµα

)
ϒ
(3)
AB

ϒ
(1)
ABϒ

(2)
AB −

(
ϒ
(3)
AB

)2 , (4-5)

ϒ
(1)
AB =

χA
µA

sinh(ξd/2)+ χB
µB

cosh(ξd/2), ϒ
(2)
AB =

χA
εA

sinh(ξd/2)+ χB
εB

cosh(ξd/2), (4-6)

ϒ
(3)
AB =

ḡA

εAµA
sinh(ξd/2)+

ḡB

εBµB
cosh(ξd/2). (4-7)

Here, ξ̄αβ , with αβ = AA, B B, AB, is a coupling constant, which depends on the MEE properties of the
phases and the thickness d of the layer.

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expressions (4-2)–(4-4) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ ε̄

c̄e
AεA

(
ε̄+ coth(ξd/2)

)), (4-8)

PB = c̄e
B

(
ηB tan(ηBd/2)+

e2
Bξ

c̄e
BεB

(
ε̄+ coth(ξd/2)

)), (4-9)

Q =−
eAeBξ

εA
(
ε̄+ coth(ξd/2)

) , (4-10)

where c̄e
α = cα + e2

α/εα is the piezoelectrically stiffened elastic constant and ε̄ = εB/εA.
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(ii) Materials A and B are piezomagnetic. Expressions (4-2)–(4-4) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξµ̄

c̄ f
AµA

(
µ̄+ coth(ξd/2)

)), (4-11)

PB = c̄ f
B

(
ηB tan(ηBd/2)+

f 2
Bξ

c̄ f
BµB

(
µ̄+ coth(ξd/2)

)), (4-12)

Q =−
f A fBξ

µA
(
µ̄+ coth(ξd/2)

) , (4-13)

where c̄ f
α = cα + f 2

α /µα is the piezomagnetically stiffened elastic constant and µ̄= µB/µA.

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-2)–(4-4) reduce to (4-8),
(4-12), and Q = 0, respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-2)–(4-4) reduce to
(4-11), (4-9), and Q = 0, respectively.

(v) The interface is perfectly bonded. Expression (4-1) reduces to

PA+ PB + 2Q = 0. (4-14)

Substituting (4-2)–(4-7) into (4-14), we obtain the dispersion relation [Calas et al. 2008, Equation
(59)].

(vi) The interface has no mechanical interaction, K = 0, and the media can interact magnetoelectrically.
In this case, (4-1) can be written as

PA PB − Q2
= 0. (4-15)

Substituting (4-2)–(4-7) into (4-15), we obtain(
ηA− ξ̄

2
AAξ sinh(ξd/2)

)(
ηB tan(ηBd/2)+ ξ̄ 2

B Bξ sinh(ξd/2)
)
=−

(
ξ̄ 2

ABξ sinh(ξd/2)
)2
, (4-16)

which, together with both (3-9) and v = ω/ξ , yields

−

(
ξ̄2

AB sinh
(1
v

ωd
2

))2

=

((
1− v

2

v̄2
A

)1
2
− ξ̄ 2

AA sinh
(1
v

ωd
2

))
×

((
v2

v̄2
B
− 1

)1
2

tan
((
v2

v̄2
B
− 1

)1
2 1
v

ωd
2

)
+ ξ̄ 2

B B sinh
(1
v

ωd
2

))
. (4-17)

Note from (4-17) that if ωd = 0, then v is given by

v = v̄A, (4-18)

which is the bulk shear wave of medium A.
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Antisymmetric modes. Following a procedure similar to the one used for symmetric modes, we substitute
(3-6) and (3-15)–(3-19) into the interface conditions of Case (a) (page (3-1)) at y =−d/2, and obtain
the wave speed equation for the antisymmetric modes in the form of Equation (4-1), where

PA =−c̄A
(
ηA− ξ̄

2
AAξ cosh(ξd/2)

)
, (4-19)

PB =−c̄B
(
ηB cot(ηBd/2)− ξ̄ 2

B Bξ cosh(ξd/2)
)
, (4-20)

Q =−
√

c̄Ac̄B ξ̄
2
ABξ cosh(ξd/2), (4-21)

and ξ̄αβ can be calculated using (4-5), but with ϒ (i)
AB (i = 1, 2, 3) given by

ϒ
(1)
AB =

χA
µA

cosh(ξd/2)+ χB
µB

sinh(ξd/2), ϒ
(2)
AB =

χA
εA

cosh(ξd/2)+ χB
εB

sinh(ξd/2), (4-22)

ϒ
(3)
AB =

ḡA
εAµA

cosh(ξd/2)+ ḡB
εBµB

sinh(ξd/2). (4-23)

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expressions (4-19)–(4-21) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ ε̄

c̄e
AεA

(
ε̄+ tanh(ξd/2)

)), (4-24)

PB =−c̄e
B

(
ηB cot(ηBd/2)−

e2
Bξ

c̄e
BεB

(
ε̄+ tanh(ξd/2)

)), (4-25)

Q =−
eAeBξ

εA
(
ε̄+ tanh(ξd/2)

) . (4-26)

(ii) Materials A and B are piezomagnetic. Expressions (4-19)–(4-21) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξµ̄

c̄ f
AµA

(
µ̄+ tanh(ξd/2)

)), (4-27)

PB =−c̄ f
B

(
ηB cot(ηBd/2)−

f 2
Bξ

c̄ f
BµB

(
µ̄+ tanh(ξd/2)

)), (4-28)

Q =−
f A fBξ

µA
(
µ̄+ tanh(ξd/2)

) . (4-29)

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-19)–(4-21) reduce to
(4-24), (4-28), and Q = 0, respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-19)–(4-21) reduce to
(4-27), (4-25), and Q = 0, respectively.

(v) The interface is perfectly bonded. Expression (4-1) reduces to (4-14).

(vi) The interface has no mechanical interaction, K = 0, and the media can interact magnetoelectrically.
Equation (4-1) can be written as (4-15). Substituting (4-19)–(4-23) into (4-15), we obtain(
ηA− ξ̄

2
AAξ cosh(ξd/2)

)(
ηB cot(ηBd/2)− ξ̄ 2

B Bξ cosh(ξd/2)
)
=
(
ξ̄ 2

ABξ cosh(ξd/2)
)2
, (4-30)
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which, together with both (3-9) and v = ω/ξ , yields(
ξ̄ 2

AB cosh
(1
v

ωd
2

))2

=

((
1− v

2

v2
A

)1
2
− ξ̄ 2

AA cosh
(1
v

ωd
2

))
×

((
v2

v2
B
− 1

)1
2

cot
((
v2

v2
B
− 1

)1
2 1
v

ωd
2

)
− ξ̄ 2

B B cosh
(1
v

ωd
2

))
. (4-31)

Equation (4-31) governs the magnetoelectrical interaction between the three phases. Note from (4-31)
that if ωd = 0, (4-31) yields the following velocity on the half-spaces (|y|> d/2):

v2
= v̄2

A(1− ξ̄
4
A), (4-32)

where
ξ̄ 2

A = 1−
cA

c̄A
(4-33)

is the limit of ξ̄AA when ωd → 0. The magnitude v defined by (4-32) is the speed of the Bleustein–
Gulyaev wave for medium A (see, [Bleustein 1968; Gulyaev 1969]). These results are in agreement with
other similar studies, for instance, [Fan et al. 2006a, (15) and (16)] or [Melkumyan and Mai 2008, (27)].

4B. Dispersion relation for electromagnetically absorbent bonding.

Symmetric modes. Substituting (3-3) and (3-10)–(3-12) into the interface conditions given by (3-2) for
y =−d/2, we obtain the dispersion relation for the symmetric modes, which is given by

PA PB + K (PA+ PB)= 0, (4-34)

where
PA =−c̄A(ηA− ξ̄

2
Aξ), (4-35)

PB = c̄B
(
ηB tan(ηBd/2)+ ξ̄ 2

Bξ tanh(ξd/2)
)
, (4-36)

ξ̄ 2
α = 1−

cα
c̄α
, (4-37)

with ξ̄α , for α = A, B, being a coupling constant of the MEE homogeneous medium α. From (4-37) and
using (2-11) on each phase, one can obtain [Huang and Li 2010, (18)].

Let us consider the following special cases:

(i) Materials A and B are piezoelectric. Expressions (4-35) and (4-36) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ

c̄e
AεA

)
, (4-38)

PB = c̄e
B

(
ηB tan(ηBd/2)+

e2
Bξ

c̄e
BεB

tanh(ξd/2)
)
. (4-39)

(ii) Materials A and B are piezomagnetic. Expressions (4-35) and (4-36) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξ

c̄ f
AµA

)
, (4-40)

PB = c̄ f
B

(
ηB tan(ηBd/2)+

f 2
Bξ

c̄ f
BµB

tanh(ξd/2)
)
. (4-41)
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(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-35) and (4-36) reduce
to (4-38) and (4-41), respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-35) and (4-36) reduce
to (4-40) and (4-39), respectively.

(v) The interface is perfectly bonded. Expression (4-34) reduces to

−c̄A(ηA− ξ̄
2
Aξ)+ c̄B

(
ηB tan(ηBd/2)+ ξ̄ 2

Bξ tanh(ξd/2)
)
= 0. (4-42)

Equation (4-42) can be written as a function of the normalized velocity Vα = v/v̄α, α = A, B, and
the dimensionless frequency �= ωd/(πv̄B) as

c̄B

(
(V 2

B − 1)1/2 tan
(
π

2
�

VB
(V 2

B − 1)1/2
)
+ ξ̄ 2

B tanh
(
π

2
�

VB

))
− c̄A

(
(1− V 2

A)
1/2
− ξ̄ 2

A
)
= 0. (4-43)

Setting �→ 0, (4-43) reduces to the velocity of the Bleustein–Gulyaev wave given by (4-32) in
the two half-spaces y > d/2 and y <−d/2. These results are in agreement with [Fan et al. 2006b,
Equations (10) and (11)] and also [Huang et al. 2009, Equations (19) and (20)].

(vi) The interface has no mechanical-magnetoelectrical interaction. Equation (4-34) can be written as

PA PB = 0. (4-44)

For PA = 0, the phase velocity is identical to (4-32), the velocity of the Bleustein–Gulyaev wave.
On the other hand, if PB = 0, the velocity in the layer |y|< d/2 satisfies the equation

ηB tan(ηBd/2)+ ξ̄ 2
Bξ tanh(ξd/2)= 0. (4-45)

The roots of (4-45) determine the dispersion curves for a plate with grounded electrodes. It can be written,
in a way similar to [Bleustein 1969, Equation (27)], as

tan
( 1

2 π(�
2
− Z2)1/2

)
tanh

( 1
2 π Z

) =−
ξ̄ 2

B Z
(�2− Z2)1/2

, (4-46)

where the dimensionless wave number (Z ) in the x direction is defined by

Z = ξd
π
. (4-47)

In the limit when Z→ 0, (4-46) reduces to

tan
(
π

2
�
)
= 0, ωd = nπv̄B, n = 0, 2, 4, 6, . . . , (4-48)

which is the frequency equation for the symmetric modes of a MEE plate. Equation (4-45) can also be
written as a function of the normalized velocity VB and the dimensionless wave number Z as

tan
( 1

2 π Z(V 2
B − 1)1/2

)
tanh

( 1
2 π Z

) =−
ξ̄ 2

B

(V 2
B − 1)1/2

. (4-49)

Taking Z→ 0, (4-49) reduces to

V 2
B = (1− ξ̄

2
B), or v2

= v̄2
B(1− ξ̄

2
B). (4-50)
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Equation (4-45) can also be written as a function of the normalized velocity VB and the dimensionless
frequency � as

tan
(1

2 π(�/VB)(V 2
B − 1)1/2

)
tanh

(1
2 π(�/VB)

) =−
ξ̄ 2

B

(V 2
B − 1)1/2

. (4-51)

Note that (4-51) reduces to (4-50) for �→ 0.

Antisymmetric modes. Substituting (3-6) and (3-15)–(3-17) into the conditions given by (3-2) for y =
−d/2, the dispersion relation for the antisymmetric modes can be written as (4-34), with

PB =−c̄B
(
ηB cot(ηBd/2)− ξ̄ 2

Bξ coth(ξd/2)
)
, (4-52)

where PA and ξ̄ 2
α are given by (4-35) and (4-37), respectively.

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expression (4-35) becomes (4-38) and (4-52) takes the form

PB =−c̄e
B

(
ηB cot(ηBd/2)−

e2
Bξ

c̄e
BεB

coth(ξd/2)
)
. (4-53)

(ii) Materials A and B are piezomagnetic. Expression (4-35) reduces to (4-40) and (4-52) becomes

PB =−c̄ f
B

(
ηB cot(ηBd/2)−

f 2
Bξ

c̄ f
BµB

coth(ξd/2)
)
. (4-54)

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-35) and (4-52) reduce
to (4-38) and (4-54), respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-35) and (4-52) reduce
to (4-40) and (4-53), respectively.

(v) The interface is perfectly bonded. Expression (4-34) reduces to

−c̄A
(
(1− V 2

A)
1/2
− ξ̄ 2

A
)
= c̄B ξ̄

2
B coth

(
π

2
�

VB

)
+ c̄B

(
(V 2

B − 1)1/2 cot
(
π

2
�

VB
(V 2

B − 1)1/2
))
. (4-55)

Setting �→ 0, (4-55) does not have a solution. In fact, dividing by coth
(1

2 π(�/VB)
)

and taking
the limit for �→ 0 results in ξ̄ 2

B = 1, which is not possible.

(vi) The interface has no mechanical-magnetoelectrical interaction. From (4-34), the expression PA PB =

0 is obtained. If PA = 0, the phase velocity is identical to (4-32), and if PB = 0, the phase velocity for
the layer is given by an expression that is similar to [Bleustein 1969, Equation (23)] and is obtained
from the dispersion equation

tan
( 1

2 π(�
2
− Z2)1/2

)
tanh

( 1
2 π Z

) =
(�2
− Z2)1/2

ξ̄ 2
B Z

. (4-56)

In the limit, as Z→ 0, (4-56) reduces to

tan
(
π

2
�
)
=
π�

2ξ̄ 2
B
, (4-57)
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which is the frequency equation for the antisymmetric modes of a MEE plate. Equation (4-56) can
be written as a function of the normalized velocity VB and the dimensionless frequency � as

tan
( 1

2 π(�/VB)(V 2
B − 1)1/2

)
tanh

( 1
2 π(�/VB)

) =
(V 2

B − 1)1/2

ξ̄ 2
B

. (4-58)

When �→ 0, (4-58) reduces to v = v̄B .

5. Numerical examples

We now show dispersion curves for different heterostructures of type A/B/A with MEE properties and
discuss quantitative and qualitative aspects of bonding on the dynamic properties of MEE heterostructures.
An important aspect is that the behavior of the dispersion curves is strongly dependent on the spring
constant material parameter K .

To perform numerical calculations, we use the piezomagnetic material CoFe2O4, the piezoelectric
materials BaTiO3 and PZT4, and the composite BaTiO3/CoFe2O4 with 30 percent BaTiO3 [Bravo-
Castillero et al. 2008]. This composite material exhibits MEE properties. We then analyze the disper-
sion of waves considering the first mode of vibration in the heterostructures BaTiO3/CoFe2O4/BaTiO3,
CoFe2O4/PZT4/CoFe2O4, and Composite/CoFe2O4/Composite with the bonding conditions (3-1), mod-
eling a permeable interface, and (3-2), modeling an absorbent interface. The MEE properties used in the
calculations are given in Table 1. The dimensions of the interface parameter K , which we recall from
Section 3A are GPa/m, are omitted in Figures 2–8.

In Figure 2 we show dispersion curves for the symmetric parts of SH waves propagating in the het-
erostructure of BaTiO3/CoFe2O4/BaTiO3 with either a permeable (Figure 2a) or absorbent (Figure 2b)
interface for increasing values of the spring constant K . Observe from Figure 2a that these curves are
nonintersecting, nonmonotonic for small values of K , and both strictly decreasing and convex for large
values of K . These last features can also be observed in [Calas et al. 2008, Figure 2]. In particular, all
wave velocities tend to the wave velocity in phase B, v̄CoFe2O4 , as ωd →∞. We conclude from this
observation, which is also valid for Figure 2b, that the presence of imperfections at the interfaces does

Properties BaTiO3 CoFe2O4 PZT4 Composite

c (GPa) 43 45.3 26 44.58
e (C/m2) 11.6 0 10.5 3.61
f (N/Am) 0 550 0 378.92
g (10−9Ns/Vm) 0 0 0 −30.67
ε (10−9C2/Nm2) 11.2 0.08 7.124 4.06
µ (10−6Ns2/C2) 5 590 5 415.95
ρ (103Kg/m3) 5.8 5.3 7.5 5.45
v̄ (103m/s) 3.07981 2.94005 2.35162 2.97348
v̄B−G (103m/s) 3.00547 2.93987 2.18178 2.96514

Table 1. Material properties.
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Figure 2. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 3. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 4. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a CoFe2O4/PZT4/CoFe2O4 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 5. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a Composite/CoFe2O4/Composite heterostructure: (a) permeable and (b) ab-
sorbent bonding.



DISPERSION RELATIONS FOR SH WAVES ON A MAGNETOELECTROELASTIC HETEROSTRUCTURE 987

0 50 100 150 200 250 300

2.94

2.96

2.98

3.00

3.02

3.04

3.06

3.08
 K=0
 K=5
 K=20
 K=35
 K=50
 K=100
 K=150
 K=250
 K=500
 K=1000
 K=Infty

v 
(1

03  m
/s

)

 d (KHz m)
(a)

v
BaTiO

3

v
CoFe

2
O

4

(K=0, P
A
=0)

(K=0, P
B =0)

0 50 100 150 200 250 300

2.94

2.96

2.98

3.00

3.02

3.04

3.06

3.08
 K=0
 K=5
 K=20
 K=35
 K=50
 K=100
 K=150
 K=250
 K=500
 K=1000
 K=Infty

v 
(1

03  m
/s

)

 d (KHz m)
(b)

(K=0, P
A
=0)v

B-G-BaTiO
3

(K=0, P
B
=0)

v
CoFe

2
O

4

v
BaTiO

3

Figure 6. Influence of imperfect bonding on the dispersion curves for the antisymmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 7. Influence of imperfect bonding on the dispersion curves for the antisymmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 8. Influence of imperfect bonding on the dispersion curves for the antisymmetric
modes in a CoFe2O4/PZT4/CoFe2O4 heterostructure: (a) permeable and (b) absorbent
bonding.
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not affect the wave propagation at high frequency for a given width d . Observe also from Figure 2a that
the velocity v tends to the velocity in phase A, v̄BaTiO3 , as K tends to zero for ωd less than 62.016 KHz m.

To analyze Figure 2b, observe from conditions (3-2)b–(3-2)e that there are neither electrical nor mag-
netic interactions between phases A, BaTiO3, and B, CoFe2O4, across an interface. If K = 0, recall
from (3-2)a that these phases are not bonded at an interface and, therefore, there is no mechanical
interaction between them either. In this case, the dispersion relation (4-34) reduces to (4-44), that
is, PA PB = 0. The solution PA = 0 corresponds to the constant phase velocity of the piezoelectric
Bleustein–Gulyaev wave for phase A, BaTiO3, which is obtained from (4-32), (4-33), and (2-10), and
is given by vB−G = v̄A

√

1− e4
A/(εAc̄e

A)
2. The dashed straight line in Figure 2b corresponds to this case.

On the other hand, the solution PB = 0 corresponds to a dispersive wave for the CoFe2O4 medium with
velocity determined from (4-45). The dashed line at the bottom of Figure 2b corresponds to this case.
Observe from this figure that all other dispersion curves are in between the curve for the Bleustein–
Gulyaev wave velocity of the BaTiO3 medium and the curve for the wave velocity of phase B, that is,
v̄B−G−BaTiO3 < v < v̄CoFe2O4 .

We now consider that ωd belongs to the interval (0, 50) in Figure 2 and show dispersion curves in
Figure 3 for small values of K belonging to the set {0, 0.001, 0.005, 0.05, 3, 5}. In the permeable case
(Figure 3a) the wave velocity v tends to the velocity in phase A, v̄BaTiO3 , as ωd tends to zero, which
is an expected result from (4-18). Note from the graph in the lower right-hand corner, for which ωd
belongs to the interval (0, 10), that the wave velocity for K = 0 is both an upper bound and a limit point
to which the wave velocity v tends to as K tends to zero. In the absorbent case (Figure 3b) v tends to the
Bleustein–Gulyaev velocity of medium A, v̄B−G−BaTiO3 , which is obtained from the condition PA = 0 in
(4-44) and is given by (4-32) together with (4-33). Note from both graphs in Figure 3 that v̄B−G−BaTiO3

is also an upper bound and a limit point for v as K tends to zero.
We now show in Figure 4 dispersion curves for the symmetric modes of SH waves propagating in the

heterostructure CoFe2O4/PZT4/CoFe2O4 with either a permeable (Figure 4a) or absorbent (Figure 4b)
interface for increasing values of K . These curves are qualitatively similar to the curves shown in Figure 2.
Thus, all wave velocities tend to the wave velocity in phase B, v̄PZT4, as ωd→∞. As ωd tends to zero,
these velocities tend to the wave velocity in phase A, v̄CoFe2O4 , in Figure 4a and tend to the Bleustein–
Gulyaev velocity of medium A, v̄B−G−CoFe2O4 , which is given by v̄A

√

1− f 4
A/(µAc̄ f

A)
2. In Figure 4 all

the dispersion curves are in a region bounded by curves corresponding to the cases (K = 0, PA = 0),
(K = 0, PB = 0), and v̄PZT4.

Next, we show in Figure 5 dispersion curves for the symmetric modes of SH waves propagating in
the heterostructure Composite/CoFe2O4/Composite with either a permeable (Figure 5a) or absorbent
(Figure 5b) interface for increasing values of K . We recall from the beginning of this section that com-
posite stands for the composite BaTiO3/CoFe2O4 with 30 percent BaTiO3. These curves are qualitatively
similar to the corresponding curves in both Figure 2 and Figure 3.

Results for the antisymmetric parts of SH waves propagating in the heterostructures BaTiO3/CoFe2O4/

BaTiO3 and CoFe2O4/PZT4/CoFe2O4 are shown in Figures 6 and 8, respectively, for both types of
interface: (a) permeable and (b) absorbent. Observe from Figure 6a that, for the whole range of values
of ωd shown in the figure and for v̄B ≤ v ≤ v̄A, the curve corresponding to both K = 0 and PB = 0
is below the curve corresponding to K =∞, there are no other dispersion curves between these two
curves, all the curves corresponding to K ≥ 100 are above the curve corresponding to K = ∞, and
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all the curves corresponding to K ≤ 50 are below the curve corresponding to both K = 0 and PB = 0.
Similar observations can also be drawn from Figure 8a.

Next, observe from Figure 6b that the curves corresponding to, respectively, (K = 0, PB = 0) and
K =∞ intersect each other at (v̄B−G−BaTiO3,W d) = (3.00547, 43.02). To the left of ωd = 43.02 and
for K ≥ 50, the dispersion curves are in between the two curves above. To the right of ωd = 43.02
and for K ≥ 50, these curves are above the curve corresponding to K =∞. In both cases, the curves
corresponding to K ≤ 35 are below all the other curves mentioned above.

In Figure 8b observe that all curves intersect at (v̄B−G−CoFe2 O3, ωd)= (2.93987, 8.32). For ωd > 8.32,
observe also that, contrary to the previous figures, the curve corresponding to K =∞ is below the curve
corresponding to (K = 0, PB = 0), and that all the other dispersion curves lie in a region bounded by
these two curves.

The behavior of the dispersion curves for small values of K in the set {0, 0.001, 0.005, 0.05, 3, 5} and
for 0≤ ωd ≤ 50 is shown in Figure 7 for the heterostructure BaTiO3/CoFe2O4/BaTiO3. Observe from
this figure that the curve corresponding to K = 0 is above all the other curves and that the wave velocity
for K = 0 tends to the velocity of the Bleustein–Gulyaev wave in phase A as ωd→ 0.

6. Conclusions

The effect of imperfect bonding at the interface of a heterostructure A/B/A with magnetoelectroelastic
properties on stationary shear (SH) waves has been investigated. Analytical dispersion relations for
absorbent and permeable interfaces are obtained. Several numerical examples for the first branches of
the dispersion curves are shown in the range of v̄B < v < v̄A. Different limit cases are considered and
show a good agreement with corresponding cases reported in recent studies.

Based on numerical examples, the dispersion curves for different values of the material parameter K
are shown. The decreasing of the imperfect bonding parameter K decreases the propagation velocity.
The dispersion curves for the symmetric modes are bounded between the limit cases K = 0 and K =∞
for both types of interfaces, permeable and absorbent interfaces. The dispersion curves are confined
and not intersecting between the velocity of the outer (A) and the inner (B) media. The symmetric and
antisymmetric modes for the limit case ωd →∞ approach asymptotically to v̄B for all values of K .
These results were obtained numerically for different combinations of materials.
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NUMERICAL LINEAR STABILITY ANALYSIS
OF A THERMOCAPILLARY-DRIVEN LIQUID BRIDGE

WITH MAGNETIC STABILIZATION

YUE HUANG AND BRENT C. HOUCHENS

A full-zone model of a thermocapillary-driven liquid bridge exposed to a steady, axial magnetic field is
investigated using a global spectral collocation method for low-Prandtl number (Pr) fluids. Flow insta-
bilities are identified using normal-mode linear stability analyses. This work presents several numerical
issues that commonly arise when using spectral collocation methods and linear stability analyses in the
solution of a wide range of partial differential equations. In particular, effects such as discontinuous
boundary condition regularization, identification of spurious eigenvalues, and the use of pseudospectra
to investigate the robustness of the stability analysis are addressed. Physically, this work provides sim-
ulations in the practical range of experimentally utilized magnetic field stabilization in optically heated
float-zone crystal growth. A second-order vorticity transport formulation enables modeling of the liquid
bridge up to these intermediate magnetic field strength ranges, measured by the Hartmann number (Ha).
The thermocapillary driving and magnetic stabilization effects are observed up to Ha= 500 for Pr= 0.001
and up to Ha= 300 for Pr= 0.02. Prandtl number effects on temperature and flow fields are investigated
within Pr ∈ (10−12, 0.0667) and indicate that Pr= 0.001 is a good representation of the base state in the
Pr→ 0 limit, at least up to Ha= 300.

1. Introduction

Float-zone growth processes are methods to grow crystals with the highest purity. A cross-sectional
region of a polycrystalline ingot is melted by lateral heating, for example, in an optical heating furnace
[Eyer et al. 1979]. This molten region holds itself from spilling by surface tension, forming a liquid
bridge between the feed rod and the grown crystal. As the liquid bridge moves through the furnace, the
melt resolidifies as a single crystal if properly controlled. Throughout the process the melt never contacts
a crucible, and therefore the grown crystal has very low oxygen contamination. Sufficient heat input is
required to avoid the onset of morphological instability at the solidification front [Davis 1993]. The
thermocapillary effect at the free surface drives a flow within the liquid bridge. This flow is susceptible
to instabilities, which result in structural imperfections in grown crystals and uneven dopant distribution
for doped crystals [Eyer et al. 1985; Cröll et al. 1994]. Therefore stabilization techniques are typically
used in crystal growth practice. For example, two silicon crystal rods were grown in a double ellipsoidal
mirror furnace with rod rotation in Spacelab-1 [Martinez and Eyer 1986]. A review of liquid bridge
stabilization strategies can be found in [Lappa 2005b]. One strategy for molten semiconductors, which
have properties similar to liquid metals, is to apply external magnetic fields to control flow motion.

This work was supported by the U.S. Air Force Office of Scientific Research.
Keywords: magnetic stabilization, thermocapillary, liquid bridge, linear stability, regularization, pseudospectra.

995



996 YUE HUANG AND BRENT C. HOUCHENS

The optically heated liquid bridge has been studied by the crystal growth community using simpler
models such as the half-zone model, resembling one half of a liquid bridge, and the full-zone model. The
liquid bridge has a barrel shape in microgravity and a sagged shape under terrestrial conditions. These
free-surface shapes have been simulated in both half-zone [Morthland and Walker 1996] and full-zone
[Lappa 2004] models, respectively. In [Nakamura et al. 1998], m = 1 and 2 oscillating instability modes
were observed in molten silicon in an optically heated half-zone configuration on the TR-IA rocket. The
hydrodynamic and hydrothermal instability mechanisms of low and high-Pr liquid bridges, respectively,
have been confirmed in [Chen et al. 1997; Lappa 2005a; Bouizi et al. 2007] and elsewhere. Lan and
Yeh [2004; 2005] performed quite complete full-zone modeling involving three-dimensional radiation,
a deformable free surface and melting interfaces, dopant distribution, and axial and transverse magnetic
damping. Prange et al. [1999] studied the half-zone instability with axial magnetic field stabilization up
to Ha= 25.

This work presents a full-zone liquid bridge model with magnetic stabilization, with a focus on the
numerical methods and analyses utilized. The goals of this paper are twofold: first, to provide insight
into magnetohydrodynamic control in the liquid bridge problem which will aid in the design of float-
zone crystal growth experiments and, second, to demonstrate through example the treatment of several
common numerical issues, such as regularization, identification of spurious eigenvalues, and sensitivity
of linear stability analyses as quantified by pseudospectral analysis, techniques relevant to a wide array
of numerical analysis studies.

2. Problem description

2A. Full-zone model of a liquid bridge. A liquid bridge of a molten semiconductor is bounded by top
and bottom solid boundaries (Figure 1). Both boundaries are assumed flat, electrically insulating, and
at the melting temperature T ∗0 of the semiconductor. The lateral cylindrical free surface is assumed
nondeformable due to high surface tension and the microgravity environment. The diameter and height
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z*	  

R*	  

θ	  

To*	  

r*	  

To*	  
Bo*	  

	  

	  

Figure 1. Full-zone model of a liquid bridge with a parabolic heat flux at the free surface
and an axially applied magnetic field.
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of the liquid bridge are 2R∗ and 2bR∗, respectively. The aspect ratio b is held at 1 in this paper. An
axisymmetric heat flux is applied at the lateral free surface. This heat flux is approximated with a
maximum intensity q∗ at the equatorial plane and parabolic reduction to zero at the top and bottom
boundaries. The thermal conductivity of the melt is k∗. A constant, uniform external magnetic field is
applied in the axial direction with a magnetic flux density of B∗ = B∗o êz . Variables with an asterisk
superscript are dimensional quantities.

The characteristic length, temperature, and magnetic flux density are R∗, 1T ∗ = q∗R∗/k∗, and B∗o ,
respectively. Temperature is scaled as T = (T ∗− T ∗0 )/1T ∗. The nondimensional governing equations
are incompressible continuity, the Navier–Stokes equations including the electromagnetic body force,
the energy equation neglecting viscous dissipation, conservation of charge, and Ohm’s law:

∇ · v = 0, (2-1)

∂v

∂t
+ (v ·∇)v =−∇P +∇2v+Ha2( j × êz), (2-2)

Pr
[
∂T
∂t
+ (v ·∇)T

]
=∇

2T, (2-3)

∇ · j = 0, (2-4)

j =−∇φ+ v× êz, (2-5)

where

Ha=
(
σ ∗

µ∗

)1
2 B∗o R∗, Pr=

µ∗c∗p
k∗

. (2-6)

The Hartmann number Ha is proportional to the magnetic flux density B∗o and measures the ratio
of the electromagnetic body forces to the viscous forces. The Prandtl number Pr indicates the relative
effectiveness of thermal convection to heat conduction in the melt. Pr is a material property, where c∗p
is the specific heat of the melt. For fluids with small Prandtl number (for example, Prsilicon ≈ 0.02), heat
conduction is dominant over convection.

Nondimensional boundary conditions include a nondeformable and electrically insulating free surface
(vr = 0 and jr = 0 at r = 1) with flow induced by the thermocapillary boundary conditions, (2-9), and
no-slip, no-penetration and electrically insulating top and bottom boundaries (v = 0 and jz = 0 at z =±b)
which are maintained at the melting temperature (T = 0 at z =±b).

The full-zone is a more realistic liquid bridge model for optically heated float-zone crystal growth as
compared to the half-zone, though both capture much of the primary physics of the flow field. In the
full-zone model the heat flux is input on the free surface, rather than from a hot bottom wall, as in the
half-zone. Also, no constraint is enforced at the midplane in the full-zone. Thus the temperature varies
at the midplane (see Figures 4a and 4b) and flow is allowed to be nonzero and even cross the midplane
(see Figure 6). Note that in this work axial symmetry is assumed in the base flow for computational
efficiency, but no boundary condition is imposed at the midplane. Therefore the full-zone character is
maintained.

In contrast, the half-zone intends to model one half of the liquid bridge. A no-slip, no-penetration solid
boundary at fixed temperature is enforced in the half-zone, at the location of the midplane. A thermally
insulating free surface is commonly assumed. The half-zone is driven by the temperature difference
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between two bounding disks. Despite these simplifications, the half-zone is an effective liquid bridge
model for both experimental and computational studies. However, the onset of flow instabilities tend
to be delayed in the half-zone by the presence of the no-slip boundary that replaces the midplane and
removes momentum from the flow through viscous effects. An extensive comparison of the half-zone
and full-zone models can be found in [Houchens and Walker 2005].

2B. Thermocapillary-driven flow. The temperature gradient at the free surface produces surface tension
differences, called the thermocapillary or Marangoni effect. The surface tension γ ∗ drives a flow within
the liquid bridge, and is approximated as a linearly decreasing function of temperature:

γ ∗(T ∗)= γ ∗0 +
dγ ∗

dT ∗
(T ∗− T ∗0 ), (2-7)

where dγ ∗/dT ∗ is a negative quantity. With the Newtonian constitutive relations

τ ∗r z = µ
∗

(
∂v∗z

∂r∗
+
∂v∗r

∂z∗

)
, τ ∗rθ = µ

∗

[
r∗ ∂
∂r∗

(
v∗θ

r∗

)
+

1
r∗
∂v∗r

∂θ

]
, (2-8)

the nondimensional thermocapillary boundary conditions become

∂vz

∂r
=−ReFZ

∂T
∂z

at r = 1,
∂vθ

∂r
−
vθ

r
=−ReFZ

1
r
∂T
∂θ

at r = 1, (2-9)

where

ReFZ =

∣∣∣dγ ∗dT ∗

∣∣∣1T ∗

µ∗V ∗c
=

ρ∗R∗
∣∣∣dγ ∗dT ∗

∣∣∣1T ∗

µ∗2
. (2-10)

The thermocapillary Reynolds number ReFZ measures the thermocapillary effect. The subscript FZ
refers to the full-zone model temperature scaling. The related Marangoni number Ma = ReFZ× Pr is
also commonly used in thermocapillary flow studies. The viscous Reynolds number is

Reviscous =
ρ∗v∗max R∗

µ∗
=
ρ∗vmaxV ∗c R∗

µ∗
= vmax, (2-11)

where V ∗c = µ
∗/(ρ∗R∗) is the characteristic flow velocity. Thus the maximum dimensionless velocity

vmax is equivalent to the viscous Reynolds number in this scaling.
Figure 2 shows the thermocapillary-driven flow in r ∈ (0, 1), z ∈ (0, b) at some θ plane. From

z = 0→ 1 the temperature decreases along the free surface (r = 1), and therefore the surface tension
increases. The thermocapillary effect pulls fluid from the equatorial plane toward the top boundary along
the free surface. This flow then hits the top boundary, turns inwards and circulates back to the equatorial
plane in the interior of the liquid bridge.

3. Steady axisymmetric base flow

3A. Base flow assumptions. Periodic and/or three-dimensional flow in the liquid bridge results in imper-
fections in grown crystals such as striations and nonuniform dopant distribution. With sufficient magnetic
stabilization, the base flow is steady (∂/∂t = 0), axisymmetric (∂/∂θ = 0) with zero azimuthal velocity
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Figure 2. Stream function contours of the thermocapillary-driven flow (Pr = 0.02,
Ha= 0, at the critical ReFZ = 1546.58, flow grid r × z = 35× 45, temperature grid
r × z = 30× 30, α = 300).

(vθ0 = 0), and exhibits axial symmetry about the equatorial plane. For this base flow state the governing
equations simplify to

∂vr0

∂r
+
vr0

r
+
∂vz0

∂z
= 0, (3-1)

vr0
∂vr0

∂r
+ vz0

∂vr0

∂z
=−

∂P0

∂r
+
∂2vr0

∂r2 +
1
r
∂vr0

∂r
−
vr0

r2 +
∂2vr0

∂z2 −Ha2vr0, (3-2)

vr0
∂vz0

∂r
+ vz0

∂vz0

∂z
=−

∂P0

∂z
+
∂2vz0

∂r2 +
1
r
∂vz0

∂r
+
∂2vz0

∂z2 , (3-3)

Pr
(
vr0
∂T0

∂r
+ vz0

∂T0

∂z

)
=
∂2T0

∂r2 +
1
r
∂T0

∂r
+
∂2T0

∂z2 , (3-4)

with boundary conditions

vr0 = 0, jr0 = 0,
∂vz0

∂r
=−ReFZ

∂T0

∂z
F(z),

∂T0

∂r
= 1−

( z
b

)2
at r = 1, (3-5)

vr0 = 0, vz0 = 0, T0 = 0, jz0 = 0 at z =±b, (3-6)

where
F(z)= 1− exp

{
−α

[
1−

( z
b

)2 ]2}
(3-7)

is a regularization function to remove the ∂vz0/∂r singularity at (r, z)= (1,±b) between the thermocapil-
lary driving force on the free surface and the no-penetration conditions at the top and bottom boundaries.

Base flow variables are denoted with subscript 0 to differentiate them from perturbation variables
(which have subscript 1).

3B. Second-order vorticity transport formulation. In [Houchens and Walker 2005], a fourth-order stream
function formulation was introduced for the base flow problem, with the stream function ψ defined as

vr0 =
1
r
∂ψ

∂z
, vz0 =−

1
r
∂ψ

∂r
. (3-8)
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The resulting equations were discretized using a global spectral collocation method with Chebyshev
basis functions. In this formulation, the momentum equations can be combined into a single fourth-order
partial differential equation governing ψ . Unfortunately, the coefficients on the derivatives of the Cheby-
shev functions increase dramatically as the derivative order increases. From a numerical standpoint,
the combination of order-one coefficients on the first and second derivatives and huge third and fourth
derivatives in one equation causes numerical difficulties. This imbalance in fact imposes a constraint
on the maximum viable grid resolution in obtaining converged solutions. This consequently limited the
maximum magnetic stabilization intensity (Ha) that could be studied [Houchens and Walker 2001].

Reducing the maximum Chebyshev derivative order improves the numerical performance, at the ex-
pense of more dependent variables. In this work, this is achieved by introducing the azimuthal vorticity
ωθ into the formulation as

ωθ =
∂vr0

∂z
−
∂vz0

∂r
. (3-9)

The nondimensional governing equations of the second-order vorticity transport formulation are

ωθ =
1
r
∂2ψ

∂r2 −
1
r2
∂ψ

∂r
+

1
r
∂2ψ

∂z2 , (3-10)

1
r
∂ψ

∂z

[
∂ωθ

∂r
−
ωθ

r

]
−

1
r
∂ψ

∂r

[
∂ωθ

∂z

]
=
∂2ωθ

∂r2 +
1
r
∂ωθ

∂r
+
∂2ωθ

∂z2 −
ωθ

r2 −
Ha2

r
∂2ψ

∂z2 , (3-11)

Pr
(

1
r
∂ψ

∂z
∂T0

∂r
−

1
r
∂ψ

∂r
∂T0

∂z

)
=
∂2T0

∂r2 +
1
r
∂T0

∂r
+
∂2T0

∂z2 , (3-12)

with boundary conditions

ψ = 0,
∂2ψ

∂r2 −
∂ψ

∂r
= ReFZ

∂T0

∂z
F(z),

∂T0

∂r
= 1−

( z
b

)2
, at r = 1, (3-13)

∂ψ

∂z
= 0, ψ = 0, T0 = 0, at z = b. (3-14)

The base flow variables are represented with Chebyshev polynomials:

ψ
(

r, z
b

)
= r2

NRF+1∑
L=0

NZ F+1∑
M=0

AL M T2L(r)T2M+1

( z
b

)
, (3-15)

ωθ

(
r, z

b

)
= r

NRF∑
L=0

NZ F∑
M=0

BL M T2L(r)T2M+1

( z
b

)
, (3-16)

T0

(
r, z

b

)
=

NRT∑
L=0

NZ T∑
M=0

CL M T2L(r)T2M

( z
b

)
, (3-17)

where Tn(r)= cos(n arccos r) are the Chebyshev basis functions. As a result of radial symmetry (axisym-
metry), only even Chebyshev terms are utilized in r , with the overall radial symmetry set by the multiple
of r in front of the representation. This corresponds to the behaviors as r→ 0, which were investigated
for ψ , ωθ , and T using the Frobenius method. Moreover, due to the axial symmetry, only even or odd
Chebyshev terms are nonzero in z. Taking advantage of axisymmetry and the axial symmetry, the unique
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computational domain for the base flow is reduced to r ∈ (0, 1), z ∈ (0, b) at θ = 0 and is discretized
using Gauss–Lobatto collocation grids (NRF×NZ F for the flow field and NRT ×NZ T for the temperature
field) given, for example, by

rI F = cos IFπ

2NRF
for IF = 0, 1, 2, . . . , NRF , (3-18)

zK F = cos KFπ

2NZ F
for KF = 0, 1, 2, . . . , NZ F . (3-19)

These grids weight the finest resolution toward the free surface and the solid boundary where it is most
needed.

At r = 0 or z = 0, the governing equations (3-10) and (3-11) and the first two boundary conditions
in (3-13) (at z = 0) reduce to 0= 0. To impose constraints at r = 0 and z = 0, the first nonzero leading
order of these equations are applied. For example, after substituting the representations for ψ and ωθ
from (3-15) and (3-16), respectively, (3-10) becomes

NRF∑
L=0

NZ F∑
M=0

BL MrT2L T2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M
r
b2 T2L T ′′2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M(rT ′′2L + 3T ′2L)T2M+1

= 0. (3-20)

Equation (3-20) simplifies to 0= 0 at r = 0. Instead, if the Chebyshev basis functions are expanded in
their Taylor series

T2L(r)= (−1)L[1− 2L2r2
+

2
3 L2(L2

− 1)r4
+ O(r6)

]
, (3-21)

the coefficients of the nonzero leading order (r1) can be used as a constraint at r = 0:

NRF∑
L=0

NZ F∑
M=0

BL M�r(−1)L T2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M
�r
b2 (−1)L T ′′2M+1

−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M [�r(−1)L(−4L2)+ 3(−1)L(−4L2
�r)]T2M+1 = 0. (3-22)

It was found that the constraints above at r = 0 and z= 0 enhance the accuracy of the solution greatly with
minimal additional computational cost. Therefore these constraints were applied in all cases presented
here. At the top boundary z = b, boundary conditions were applied using orthogonality, hence special
treatment was not required at (r, z)= (0, b)

The ReFZ is ramped up starting from ReFZ < 1, where the flow field is almost stagnant, until the
desired value is obtained. Solutions for lower ReFZ cases become initial guesses for larger ReFZ cases.
The governing equations and boundary conditions are solved using the Newton–Raphson iterative method.
LU decomposition and back substitution is performed using the DGESV routine [Intel 2008] in LAPACK
[Anderson et al. 1999]. The base flow code is written in Fortran 90.

3C. Magnetic damping. When exposed to an axial static magnetic field, radial and azimuthal flow mo-
tions are damped by the electromagnetic body force. Figure 3 demonstrates this magnetic damping effect
by varying the Hartmann number Ha while keeping the material properties (Pr) and the heat input (ReFZ)
fixed.
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Figure 3. Magnetic damping effect on the stream function contours (Pr= 0.02, ReFZ =21,914.8).

Without magnetic damping (Ha= 0), a primary circulation “cell” forms due to the thermocapillary
effect. Flow circulates counterclockwise throughout r ∈ (0, 1) in the upper half of the liquid bridge.
Small secondary recirculation cells also emerge in the interior due to strong convection. At Ha= 25, the
electromagnetic effect weakens the primary circulation cell and confines it within r ∈ (0.5, 1). When
exposed to a magnetic field in the +z direction, radial inflow (in the −r direction) near the (r, z)= (1, 1)
corner induces electric current in the +θ direction (into the page). This electric current leads to the
Lorentz force exerted in the +r direction, which opposes the inflow moving in the −r direction. By
continuity, the flow is turned downward and then circulates back as a loop.

As the magnetic field further intensifies, the primary circulation cell is confined more dramatically
near the free surface, and more circulation cells develop in the interior. The most significant flow is
always within the primary circulation cell. Extremum stream function values within each cell show that
the interior of the liquid bridge is effectively stagnant, which is ideal for crystal growth from a melt.

Note that in this example ReFZ is chosen at 21,914.8, which is near the critical value for Pr= 0.02 at
Ha= 50. This ReFZ value is well above the critical instability values for Ha= 0 and Ha= 25; therefore
the actual flow would be perturbed from the base flow states shown here.
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Figure 4. Prandtl number effect on the temperature field and the flow field (Ha= 50, ReFZ =21,914.8).

3D. Prandtl number effect. The crystal growth community has frequently studied the effect of Prandtl
number Pr, representing different physical materials, in various liquid bridges, typically without magnetic
stabilization. For example, Kasperski et al. [2000] first investigated the different characteristics of low
and high-Pr full-zone instabilities. Levenstam et al. [2001] performed a fairly continuous Pr study using
the half-zone with a focus on the intermediate Pr range which bridges the gap between the low and high-Pr
regimes. Bouizi et al. [2007] presented full-zone instabilities over a wide range of Pr ∈ (0.001, 100) by
three-dimensional nonlinear spectral computations.

For a liquid bridge with small Pr, conduction is dominant over convective heat transfer. In the limit of
Pr→ 0, the temperature field is decoupled from the flow field. For example, the isotherms for Pr= 10−6

(Figure 4a) indicate pure conduction. In this case Tmax = 1.0633 remains constant as the magnetic field is
varied over Ha ∈ (0, 300) (not shown). Tmax is always located at (r, z)= (1, 0), the location of maximum
heat flux.
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As Pr increases, Tmax is reduced due to convective heat transfer (at a fixed Ha) assisting conduction
in distributing the thermal energy throughout the domain. At Pr = 0.0667, isotherms are bent by con-
vection (Figure 4b). Notice that the T = 0.5 curve shifts by a large amount compared to the case of
Pr= 10−6.

Compared to the temperature distribution, the Prandtl number has a less significant impact on the flow
field with magnetic stabilization. In moving from Pr= 10−6 to Pr= 0.0667, the flow is weakened (see
Figures 4c and 4d) due to the weaker thermocapillary driving force resulting from the smaller temperature
gradient at the free surface. Otherwise, the cell thicknesses and locations of local extrema change little,
primarily because the electromagnetic damping, proportional to the radial flow velocity, increases as the
flow intensifies.

The primary flow instabilities for small-Pr liquid bridges with magnetic stabilization are hydrodynamic
in nature. The first instability for Pr < 0.4 is characterized by stationary disturbances [Bouizi et al.
2007]. Within this range, [Houchens and Walker 2005] further suggested three subregimes with different
axial symmetries of the perturbations, which were confirmed in [Bouizi et al. 2007], both in full-zone
geometries. In [Levenstam and Amberg 1995; Leypoldt et al. 2000] the secondary instability was found
to be three-dimensional and oscillatory in the half-zone.

For high-Pr liquid bridges, convective heat transfer is dominant over conduction and the instability
mechanism is hydrothermal. The base flow first transitions to oscillatory perturbations (see [Leypoldt
et al. 2000], for example). Due to strong thermal convection at high Pr, isotherms are dramatically
distorted such that a large temperature gradient exists at the free surface near the top and bottom bound-
aries. In reality, the melt-solid interfaces may deform significantly from the assumed rigid plane due
to this strong thermal convection. To accurately resolve high-Pr liquid bridges, more realistic boundary
conditions are needed, hence this work is limited to low-Pr cases.

For a fixed Pr > 0 (with ReFZ fixed as in Figure 5), increasing Ha continuously confines the flow
into a narrower region near the free surface and reduces the effectiveness of convective heat transfer into
the interior. Thus Tmax increases, which enhances the thermocapillary driving effect. Therefore the flow
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Figure 5. Effects of Prandtl number and magnetic damping on viscous Reynolds num-
ber and nondimensional kinetic energy (ReFZ =21,914.8 fixed in all cases).
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velocity increases at the free surface, but this is limited to a narrow cell due to magnetic damping. Reviscous

also increases proportionally to the maximum nondimensional velocity vmax which always occurs near
(r, z)= (1, b). This explains the initial increase of Reviscous with Ha for Pr≥ 0.02 in Figure 5a. Eventually
magnetic damping is sufficiently large that vmax is reduced, even though Tmax continues to increase and
approach 1.0633 (the value in the limit of no convective heat transfer). Also observe that Reviscous

decreases monotonically with increasing Ha for Pr ≤ 0.001. For Pr ≤ 0.001 the temperature field is
effectively decoupled from the flow field and Tmax remains constant as Ha increases. Therefore increasing
Ha does not enhance the thermocapillary effect. Pr= 0.01 marks the division between these two trends.

The nondimensional kinetic energy, computed as the integral of velocity squared over the domain,
drops quickly as Ha increases (see Figure 5b), which demonstrates the magnetic damping effect. For
a fixed ReFZ (∝ q∗R∗/k∗), the fact that kinetic energy also drops as Pr (= µ∗c∗p/k∗) increases can be
explained as follows. Assume that the dynamic viscosity µ∗, specific heat c∗p, and radius R∗ remain
unchanged. Increasing Pr then corresponds to decreasing the thermal conductivity k∗ and consequently
a reduction in maximum heat flux q∗ (to maintain a constant ReFZ). Therefore with less thermocapillary
driving force, kinetic energy within the melt is reduced as Pr increases. Also note that the Pr= 0.001,
Pr = 10−6 and Pr = 10−12 curves are virtually indistinguishable, which indicates that Pr = 0.001 is a
good approximation for the limit of Pr→ 0, at least over the range 0≤ Ha≤ 300.

4. Normal-mode linear stability analysis

4A. Disturbances. Normal-mode linear stability analysis, which compares well with nonlinear simula-
tions in the half-zone [Levenstam et al. 2001], was used to study the stability of the base flow in the
full-zone liquid bridge. The base flow was subjected to infinitesimal three-dimensional normal-mode
disturbances of the form

ξ(r, θ, z, t)= ξ0(r, z)+ εReal{exp(λt + i m θ)ξ1(r, z)} for ξ = vr , vz, P, T, jθ , (4-1)

ζ(r, θ, z, t)= εReal{exp(λt + i m θ)iζ1(r, z)} for ζ = vθ , φ, jr , jz, (4-2)

where ε is an infinitesimal magnitude and m denotes the azimuthal wave number of the disturbance. For
uniqueness, disturbance waves must complete themselves as they travel through θ = 0→ 2π , therefore
m is integer valued. Axisymmetric m = 0 cases were not investigated as they have been shown to be very
stable in similar systems [Kasperski et al. 2000]. The extra factor of i in (4-2) accounts for the phase
shift in the variables which are zero in the base state, yielding a purely real linear stability problem.

Disturbances adhere to one of two axial symmetries. When perturbation variables have the same
axial symmetry as their corresponding base flow variables, the mode is denoted as “symmetric”. When
perturbation variables have the opposite axial symmetry as their corresponding base flow variables, the
mode is denoted as “antisymmetric”. Any combination of these disturbance types will result in a critical
ReFZ that larger than the smaller ReFZ,cr of these two.

Figure 6 shows an example of streamlines in the base flow along with the disturbed flow. In the ax-
isymmetric base flow state, a weightless fluid particle released at the starting point circulates on the black
closed path (the stream function contour) within a fixed θ plane. This specific example first transitions
to stationary antisymmetric disturbances with m = 2. At the critical ReFZ, a particle released at the same
starting point changes its “orbiting radius” as it circulates, while oscillating within a θ = π/m wedge.
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Figure 6. Streamlines in the base flow (black closed path) and disturbed flow (gray
spiral path), and disturbed flow (vectors) at the midplane (Pr= 0.02, Ha= 0 at ReFZ,cr =

1546.58, stationary antisymmetric disturbances with m= 2, base flow grid r×z= 35×45,
temperature grid r×z=30×30, linear stability grid r×z=28×28, α=300, perturbation
versus base flow maximum magnitude ratio 5%).

Note that the path is cut off intentionally at the “end” point to better show its spiral structure. Flow in
other wedges and in the lower half of the liquid bridge can be inferred from the symmetry and mode
number of the disturbance.

Arrows in the z = 0 plane of Figure 6 show the disturbed flow motion at the liquid bridge midplane.
Flow circulates from the liquid bridge interior back to the free surface due to the viscous effect. The
flow at z = 0 has no azimuthal component due to the antisymmetric disturbance mode. Perturbed flow
crosses the midplane into the upper or lower half of the liquid bridge. In contrast, the half-zone assumes
a no-slip, no-penetration midplane.

4B. Critical thermocapillary Reynolds number. The critical ReFZ,cr measures the critical point at which
the base flow transitions to the first instability. Beyond ReFZ,cr, one or more infinitesimal disturbances
grow in time, breaking either the axisymmetry or the axial symmetry or both, and potentially evolving
the motion to a periodic flow. The goal is to find the first transition to instability among all possible
disturbance modes.

By substituting the disturbance variables of (4-1) and (4-2) into the governing equations and boundary
conditions and linearizing (neglecting ε2 terms) and discretizing, a generalized eigenvalue problem is
obtained:

AM x = λBM x, (4-3)

The entire generalized system was solved using either the routine RGG in EISPACK or the routine
DGGEV in LAPACK [Anderson et al. 1999], with refinement of the critical eigenvectors performed via
the inverse iteration method [Saad 1992]. The real part of the leading eigenvalue (or pair) λR determines
the stability of this system. If the imaginary part of the leading eigenvalue pair λI 6= 0, the base flow tran-
sitions to a periodic disturbance. Otherwise λI = 0 and the transition is stationary. For each disturbance
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mode (Pr, Ha, m, antisymmetric or symmetric mode), a neutrally stable mode is found if the leading
eigenvalue (or pair) has λR = 0. A slight increase in ReFZ causes this mode to become unstable and
grow in time.

Finding the ReFZ associated with a neutrally stable mode is an iterative process. Starting from a stable
ReFZ,s (with λR < 0) and an unstable ReFZ,u (with λR > 0), a better approximation ReFZ,3 is predicted
using the regula falsi method. The new λR corresponding to ReFZ,3 is computed using the shifted inverse
iteration method. The ReFZ,3 then replaces either ReFZ,s or ReFZ,u . In this way the bounds on the
neutrally stable ReFZ are narrowed through iterations until convergence. The linear stability analysis
code is written in Fortran 90.

Variables in the linear stability analysis are the velocity perturbations vr1 and vz1, temperature per-
turbation T1, and electric potential perturbation φ1. Reduction from the 9 primitive stability variables
to these four is accomplished using incompressible continuity and θ momentum to solve for vθ1 and
P1, respectively. The electric current density perturbations ( jr1, jθ1, and jz1) are solved using Ohm’s
law and then substituted into conservation of charge. The resulting set of partial differential equations
can be found in [Houchens and Walker 2001] for the half-zone. Similarly to the base flow analysis,
these variables are represented as Chebyshev polynomials. Only even or odd terms in both r and z
are nonzero due to the symmetries. In addition, by modeling antisymmetric and symmetric disturbance
modes separately, the full-zone liquid bridge domain can be halved at the midplane. The price is that
two codes have to be developed. An NR × NZ Gauss–Lobatto collocation grid is adopted for r ∈ (0, 1)
and z ∈ (0, b), which is equivalent to a grid resolution of r × z = (2× NR)× (4× NZ ) in the full-
domain liquid bridge simulation if no symmetries are observed. The finest stability analysis grid used
was NR × NZ = 50× 70 for high-Ha cases.

Disturbances with a wide range of azimuthal wave numbers m, for both the antisymmetric and sym-
metric modes, are investigated. Axisymmetric disturbances (m = 0) are not studied in this work because
they are unlikely to be the critical disturbance mode. For example [Bouizi et al. 2007] reported that
ReFZ,cr for the m = 0 mode ranges from seven times to thousands of times larger than ReFZ,cr for the
critical m = 2 mode for Pr ∈ (0.001, 0.04).

For a fixed Pr, a neutrally stable ReFZ versus Ha branch can be obtained for each disturbance mode.
The critical ReFZ,cr is the lowest among all neutrally stable ReFZ’s. For example, the neutral stability
branches for Pr = 0.02 (Figure 7a) show how the critical disturbance mode changes from m = 2 to
3 and then 4 for Ha ∈ (0, 50). The m = 2 symmetric branch (dashed line) deviates from the critical
antisymmetric modes as Ha increases. Although other stability branches above the critical branch are
not valid for predicting a second and third bifurcation, they provide insight into flow stability when
subject to these perturbation modes.

Table 1 lists ReFZ values on the Pr = 0.02 neutral stability branches. For both antisymmetric and
symmetric disturbance modes, m is tracked from 1 to 8 for Pr= 0.02, and to at least the critical m+ 4
for Pr= 0.001. ReFZ values not shown in Table 1 are higher than these listed ReFZ’s for the same Ha.
The m = 5 antisymmetric branch never becomes critical up to Ha= 300 for Pr= 0.02.

The ReFZ,cr versus Ha curves for Pr = 0.02 and Pr = 0.001 (see Figure 7b) summarize the first
instabilities over a wide Ha range. The ReFZ,cr increases quickly with increasing Ha, which demonstrates
the magnetic stabilization effect. Stronger magnetic fields damp the flow, so that more driving energy
must be fed in before the flow trips to an instability. The critical curves determine the minimum magnetic
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Figure 7. Example of neutral stability branches for Pr = 0.02 and the first instability
critical curves for Pr= 0.02 and for Pr= 0.001.

Antisymmetric Symmetric
Ha m = 2 m = 3 m = 4 m = 5 m = 2

0 1,546.58 1,618.42
5 1,842.97 2,041.81

10 2,629.52 3,098.39
15 4,291.10 4,187.74 4,978.35
20 6,946.57 5,671.88 8,337.20

25 10,653.30 7,800.11 8,964.73 14,980.91
30 10,501.11 10,642.13
40 15,575.20
50 25,513.47 21,914.83 24,545.29
60 29,168.06 30,544.57

70 36,961.68 37,672.75
80 44,999.40 45,250.00
90 53,316.88 53,583.48

100 61,747.38 62,263.88
110 70,289.58 71,229.01

120 79,037.36 80,562.15
150 105,776.82 109,765.83
200 162,032.06 153,945.51
250 204,740.95 225,107.28
300 263,317.80 259,068.47 293,492.96

Table 1. Neutrally stable ReFZ’s for Pr= 0.02 branches (ReFZ,cr’s are underlined).
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field strength required to avoid instabilities in the optically heated float-zone crystal growth process. Note
that Pr= 0.001 is chosen because its critical curve very likely marks the lower limit of critical curves for
Pr→ 0. According to [Houchens and Walker 2005], at Ha = 0 the ReFZ,cr for Pr = 10−10 is less than
1% smaller than ReFZ,cr for Pr = 0.001. Details of the perturbation flow field and the energy analysis
between the base state and perturbed field are presented and validated with other liquid bridge studies in
[Huang and Houchens 2011]. Here the focus is instead on the numerical issues that arise in the spectral
collocation technique and linear stability analyses. The following sections are widely applicable to a
range of partial differential equations. First, identification of spurious eigenvalues is discussed. Then,
regularization and grid dependence issues are covered. Finally, the use of pseudospectra to investigate
the robustness of stability analyses are addressed.

4C. Identifying spurious eigenvalues. In the linear stability analysis, unstable systems are identified by
positive leading eigenvalues. However, some spurious eigenvalues (usually with very large magnitudes)
emerge in the generalized eigenvalue problem, (4-3), bearing no physical meaning regarding system
stability. It is crucial to identify and separate them from the remaining legitimate eigenvalues to correctly
predict the stability of the system.

Legitimate eigenvalues are independent of linear stability grid resolution. In Table 2, to test if the
leading eigenvalue pair 350.47± 7542.09i on a 30× 40 grid is legitimate or spurious, the linear stability
code was run on two other grid sizes, 28×28 and 40×50. The fact that 350.47±7542.09i is not present
on these two grids indicates that it is a spurious eigenmode. All other leading eigenvalues agree well,
independent of the grid.

As a direct proof, perturbation variable contours are plotted (Figure 8a) using eigenvectors corre-
sponding to the spurious eigenvalue pair 350.47± 7542.09i . The checkerboard pattern has no physical
justification, but is rather an oscillation of a high-order mode(s) in each direction between Gauss–Lobatto
collocation points. This is clearly shown in the Chebyshev polynomial coefficient plot (Figure 8b) for
vr1, where

vr1

(
r, z

b

)
= rm−1

NR+1∑
L=0

NZ∑
M=0

AL M T2L(r)T2M

( z
b

)
. (4-4)

Grid size r × z = 28× 28 r × z = 30× 40 r × z = 40× 50

Leading
eigenvalues

350.47± 7542.09i
−34.61± 9.25i −34.61± 9.26i −34.61± 9.25i
−94.58± 110.75i −94.58± 110.75i −94.58± 110.75i
−113.45± 56.60i −113.46± 56.59i −113.46± 56.60i
−129.35± 175.31i −129.35± 175.31i −129.35± 175.31i
−140.05± 72.15i −140.04± 72.15i −140.04± 72.15i
−197.10± 320.75i −197.10± 320.75i −197.10± 320.75i

...
...

...

Table 2. Identification of a spurious eigenvalue (underlined) through grid refinement of
the linear stability analysis (Pr= 0.001, Ha= 0, ReFZ= 1000, m= 1, α= 400, symmetric
mode).
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Figure 8. Perturbation contours and Chebyshev polynomial coefficients associated with
the spurious eigenmode 350.47±7542.09i in Table 2 (Pr= 0.001, Ha= 0, ReFZ = 1000,
m = 1, α = 400, linear stability grid r × z = 30× 40).

The coefficients of the highest-order Chebyshev terms have the largest magnitudes, which are responsi-
ble for the high-frequency, oscillating contours. Note that for a legitimate eigenmode, the Chebyshev
polynomial coefficients decay exponentially when the representation is sufficient. Therefore, for this
case the legitimate leading eigenvalue is a complex pair with negative real part −34.61± 9.26i as shown
in Table 2. The base flow is stable at ReFZ = 1000 for this branch (Pr = 0.001, Ha = 0, and m = 1
symmetric disturbance mode).

5. Numerical aspects

5A. Regularization of the vorticity singularity. A regularization function F(z) (from (3-7)) is intro-
duced in the thermocapillary boundary condition to remove the singularity of the velocity gradient at
the corner (r, z) = (1, b). While ∂vz0/∂r = 0 at (r, z) = (1, b) due to the boundary condition vz0 = 0
at z = b, the thermocapillary boundary condition, without regularization, gives a nonzero ∂vz0/∂r at
(r, z) = (1, b) due to the nonzero temperature gradient ∂T0/∂z at the free surface. This singularity is
removed by multiplying the thermocapillary boundary condition by a function that decays quickly to 0
as z→ b but remains equal or close to 1 for the rest of z.

An optimum value of the regularization parameter α is achieved when increasing α further has no
measurable impact on the flow and the singularity is effectively removed. Figure 9 shows a test over a
wide range of α. With a sufficiently large value the physics becomes independent of α, as indicated by the
“desired range”. But too large an α may provide insufficient regularization. In Figure 9, the vr0 contours
bear wiggles and circles, indicating α=50,000 is too large for this case. With even less smoothing (higher
α), the vorticity singularity may cause the numerical solver to predict the wrong physics, suggested by
the sudden drop of the critical ReFZ beyond α =100,000. On the other hand, if the value of α is too
small, the regularization effectively reduces the heat input at the free surface which reduces the driving
force and explains the increase of the critical ReFZ (“too much regularization”) for α in range 10–100 in
Figure 9.



STABILITY OF A MAGNETICALLY STABILIZIED THERMOCAPILLARY LIQUID BRIDGE 1011

	  
Figure 9. Searching for the desired range of regularization parameter α (semilog plot,
Pr= 0.02, Ha= 50, flow grid r× z = 40×40, temperature grid r× z = 30×30, stability
grid r × z = 40× 40).

A fast-decaying regularization function is especially important for high-Pr liquid bridge simulation.
Due to strong heat convection, the temperature at the free surface varies slowly along r = 1 until very
close to (r, z) = (1, b). This feature is best preserved by a regularization function that decays quickly
near (r, z) = (1, b). The choice of regularization function is arbitrary as long as the singularity is re-
moved with minimum modification of the physics. For example, in [Bouizi et al. 2007] a power function
regularization function F(z)= (1− z2n)2 was adopted, where n is a regularization parameter.

5B. Grid resolution and independence. A solution which does not vary with significant further grid
refinement indicates that the grid resolution is sufficient and the results are reliable. Table 3 shows such
a test based on the critical ReFZ. Significant resolution increases are introduced for the base flow grids
and the stability analysis grid, but the ReFZ,cr barely changes, demonstrating grid independence was
achieved.

More subtle inferences can be made from this test. ReFZ,cr increased slightly on finer grids in Table 3.
This is expected because a fixed regularization parameter (α = 400) affects more grid points on a finer
axial grid than on a coarser axial grid. The thermocapillary effect is weakened at more collocation

the critical ReFZ for
stability grid (r × z)

% difference
34× 60 50× 70

flow grid, temperature grid 30× 75, 25× 25 61,775.37 61,840.74 0.11%
(r × z) 70× 100, 40× 40 61,789.51 61,841.79 0.08%

% difference 0.02% 0.002%

Table 3. Grid dependence study based on ReFZ,cr for Pr= 0.02,Ha= 100, α = 400.
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points on finer grids, therefore a higher ReFZ,cr is expected. However if this regularization effect were
eliminated, ReFZ,cr would be lower on finer grids, because coarser grids tend to smear out the largest
gradients, which contribute energy to the instability mechanism. On coarser grids, ReFZ,cr increases
to compensate for this smearing effect until the energy is sufficient to trip the instability. Thus, in
practice, it is necessary to carry out both grid and regularization dependence studies simultaneously. The
regularization parameter must be increased as the grid is refined.

5C. Model robustness investigated by pseudospectra. As discussed above, the flow stability in the
liquid bridge is determined by its eigenvalues. For the generalized eigenvalue problem, (4-3), each
eigenvalue (each black dot in Figure 10) is associated with one flow perturbation eigenmode. Purely real
eigenvalues correspond to perturbations in which the base flow transitions to steady, three-dimensional
(not axisymmetric) perturbed flow. Complex eigenvalue pairs correspond to perturbations in which the
base flow transitions to three-dimensional time-dependent flow, with the imaginary components repre-
senting the frequency.

Compared to the simplified numerical full-zone model, real world experiments include many imper-
fections that are difficult to represent. For example, in experiments the heat flux will not be strictly
parabolic or axisymmetric and the free surface will not be exactly cylindrical. It is therefore desirable to
predict what impact these imperfections might have, to verify the robustness of the model as compared
to the experiment it is intended to represent.

Furthermore, numerical errors in the model may also play a significant but unpredictable role. For
example, round-off errors in the eigenvalue problem may accumulate during computation and affect the
results. Simulation results are more meaningful provided they are valid even when the model is subject

(a) Pseudospectra overview (b) Zoom in to the leading eigenvalues

Figure 10. Eigenvalues (black dots) and their pseudospectra σε (contours) of the gen-
eralized eigenvalue problem (4-3) (Pr = 0.02, Ha = 50, ReFZ =21,879.5, flow grid
r × z = 70× 100, temperature grid r × z = 40× 40, stability grid r × z = 35× 50,
α = 1000).



STABILITY OF A MAGNETICALLY STABILIZIED THERMOCAPILLARY LIQUID BRIDGE 1013

to these minor changes, whether these are purely numerical or result from the inability of the model to
represent small imperfections in the experiment.

Pseudospectral analysis provides a quantitative measure to test model robustness. Small numerical
errors ε are purposefully introduced into either or both AM and BM matrices in the eigenvalue problem
AM x = λBM x (see (4-3)). Note that ε is different from the ε used in the linear stability analysis. In
fact, ε acts like a random perturbation on ε. The small errors introduced through ε can represent physical
perturbations on the boundary conditions, geometry, and flow field of the model. They can also be purely
numerical perturbations. In this problem such perturbations could be relatively minor (introducing slight
curvature in the free surface) or more egregious (violations of conservation of charge).

After introducing these ε scale errors, the modified generalized eigenvalue problem is solved again to
investigate any physically meaningful changes. For example, a possible scenario of significant interest
would result if a previously more-stable branch became the critical mode in the modified system. This
has tremendous relevance in this problem, as only one known experimental study in a low-Pr fluid in
the half-zone configuration has indicated possible observation of the steady, three-dimensional transition
before onset of periodicity [Takagia et al. 2001]. In other experiments, the instability has appeared to
jump directly to the higher branch associated with the periodic transition, suggesting that the distinction
between the preferred modes may be very subtle. Results will show, fortunately or unfortunately, that
such sensitivity is not found in the full-zone model.

Introduced in [Reddy and Trefethen 1990], pseudospectra present a systematic method for carrying out
such analyses. For an introduction and a simulation method (EigTool) for problems of small or moderate
size, the reader is referred to [Embree and Trefethen 2011]. An extensive discussion on pseudospectra,
including fluid mechanics applications, can be found in [Trefethen and Embree 2005].

For the large generalized eigenvalue problem in this work the matrix AM is perturbed with the random
matrix E in the way described in [van Dorsselaer 1997] using

σε(AM,BM)= {z ∈ C : ‖(z BM−AM)−1
‖> 1/ε}

= {z is an eigenvalue of (AM+ E,BM) for some E with ‖E‖< ε}. (5-1)

This analysis must be repeated until representative pseudospectra are obtained. Resulting pseudospectra
σε contours indicate the sensitivity of the original eigenvalues to the random noise introduced via ε.
The results of this analysis are given by the color contours in Figure 10. The color gradient indicates
the magnitude of the ε perturbation. The smallest ε = 10−8 perturbations do not affect the leading
eigenvalues at a measurable level, hence the blue contours are not visible around these eigenvalues in
the complex plane. The first blue envelope that can be observed at this order occurs for eigenvalues with
real parts near −1500. As the order of ε increases, more eigenvalues are influenced. For example, a
perturbation of size ε = 10−5 may move enclosed eigenvalues anywhere within the medium-red regions
in Figure 10.

The leading real eigenvalue and complex eigenvalue pair are the most likely to become critical. The
linear stability analysis predicts that the real eigenvalue will dominate. This is confirmed by the pseu-
dospectra in Figure 10. Namely, at the largest pseudospectral perturbation of ε = 10−4.5, the leading real
eigenvalue maintains its leading position and explores only a very small region near its origin. In fact, no
dark red contours of any eigenvalue extend into the positive half of the real plane. Since the pseudospectra
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contours of all the eigenvalues remain behind the leading eigenvalue, the branches associated with these
modes will not become critical, even in the modified system. Therefore the critical eigenmode (stationary,
antisymmetric disturbances with m = 4 in this example) predicted by the original generalized eigenvalue
problem remains valid under such perturbations. Therefore, in careful experiments it would be expected
that the stationary mode would be observed first.

To quantitatively or qualitatively relate ε = 10−4.5 numerical perturbations to specific physical changes
in the fluid model is appealing, but intractable without imposing further structure on the perturbation.
Random changes in matrix elements are often nonphysical, resulting in violations of the conservation
of mass, energy, and momentum, and breaking the orthogonality of boundary conditions. Thus even a
small ε may have significant impacts on the physical system. In fact, the entire domain in Figure 10
is contained in the contour σε(AM,BM) for ε ≥ 10−4.35. Nevertheless, the pseudospectra suggests the
results of the linear stability analysis are quite robust, particularly for the leading eigenvalues which are
of most interest.

6. Conclusions

A thermocapillary-driven full-zone liquid bridge with magnetic stabilization is modeled numerically.
A wide range of three-dimensional flow disturbances are tracked using a normal-mode linear stability
analysis. The first instability curve for Prandtl number Pr= 0.02 (for example, molten silicon) is obtained
up to an intermediate Hartmann number of Ha ∈ (0, 300). Within this range, the steady axisymmetric
base flow first transitions to stationary three-dimensional disturbances with axial symmetries opposite
to their base flow components (the antisymmetric disturbance mode). Moreover, first instabilities for
Pr= 0.001, representing the Pr→ 0 limit, are presented up to Ha= 500. For Pr= 0.001, the base flow
also first transitions to stationary three-dimensional disturbances. Axial critical disturbance symmetries
are antisymmetric below Ha= 40 and symmetric for Ha ∈ (40, 500). The critical azimuthal wave number
m increases with Ha for both Pr= 0.02 and Pr= 0.001.

Magnetic stabilization effects are observed and quantitatively measured for a steady external magnetic
field in the axial direction. The induced Lorentz force acts proportionally against radial flow motion,
thus multiple cell-like circulation patterns form within the liquid bridge. The most significant flow is
confined to an increasingly narrow region near the free surface as Ha increases. At the interior the flow
is damped until it is almost stagnant, which provides steady crystal growth conditions at the interface.
This damping effect is also confirmed by quantitative studies of the viscous Reynolds number and kinetic
energy versus Ha. Because the flow disturbances are greatly suppressed by magnetic stabilization, a more
intense thermocapillary driving force is needed to trip instabilities within the liquid bridge. For example,
the critical thermocapillary Reynolds number ReFZ,cr at Ha= 300 is two orders of magnitude larger than
when no magnetic field (Ha= 0) is applied.

Small-Prandtl number liquid bridges, dominated by heat conduction, are studied over the range Pr ∈
(10−12, 0.0667). For Pr≤ 0.001, the temperature field is effectively decoupled from the flow field, mim-
icking a pure conduction state such that the temperature distribution is almost unchanged over the range
Ha= 0→ 300. Thermal convection becomes important as Pr increases. It helps unify the temperature
distribution throughout the domain as suggested by the isotherms. At higher Pr, the temperature gradient
on the free surface concentrates near the liquid-solid boundaries (r, z)= (1,±b), which intensifies the
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thermocapillary effect in these regions. Interestingly, the flow “circulation cell” thicknesses and locations
are almost unaffected by increases in Pr over the range studied, mainly because the electromagnetic force,
proportional to the radial flow velocity, also increases as convection intensifies.

Numerical techniques and analyses are also highlighted extensively in this work. For example, the
vorticity singularity in the spectral scheme is removed by applying an exponential regularization func-
tion. The desired range of the regularization parameter α is determined by balancing the removal of
the singularity and the invariance of the physics. The generalized eigenvalue problem AM x = λBM x
in the linear stability analysis is investigated from a numerical perspective. Spurious eigenvalue modes
with no physical meaning are identified by a combination of grid dependence studies and plotting of the
eigenmodes. The pseudospectra indicate that results predicted by this full-zone model are valid even if
the model is subject to minor changes, be they numerical or physical.

Acknowledgements. The authors would like to thank Professor Mark Embree at Rice University for
providing the pseudospectra plots and insights on the eigenvalue problem and pseudospectra analysis.
All tests were run on the Shared University Grid at Rice (SUG@R) cluster. This work was partially
supported by the United States Air Force Office of Scientific Research.

References

[Anderson et al. 1999] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, and D. Sorensen, “Linear Algebra PACKage”, 1999, available at http://www.netlib.org/lapack/
lug/index.html.

[Bouizi et al. 2007] O. Bouizi, C. Delcarte, and G. Kasperski, “Stability study of the floating zone with respect to the Prandtl
number value”, Phys. Fluids 19:11 (2007), 114102.

[Chen et al. 1997] G. Chen, A. Lizée, and B. Roux, “Bifurcation analysis of the thermocapillary convection in cylindrical liquid
bridges”, J. Cryst. Growth 180:3-4 (1997), 638–647.

[Cröll et al. 1994] A. Cröll, P. Dold, and K. W. Benz, “Segregation in Si floating-zone crystals grown under microgravity and
in a magnetic field”, J. Cryst. Growth 137:1-2 (1994), 95–101.

[Davis 1993] S. H. Davis, “Effects of flow on morphological stability”, pp. 859–897 in Handbook of crystal growth, vol. 1B,
edited by D. T. J. Hurle, Elsevier, New York, 1993.

[van Dorsselaer 1997] J. L. M. van Dorsselaer, “Pseudospectra for matrix pencils and stability of equilibria”, BIT 37:4 (1997),
833–845.

[Embree and Trefethen 2011] M. Embree and L. N. Trefethen, “Pseudospectra gateway”, 2011, available at http://www.comlab.
ox.ac.uk/pseudospectra.

[Eyer et al. 1979] A. Eyer, R. Nitsche, and H. Zimmermann, “A double-ellipsoid mirror furnace for zone crystallization exper-
iments in spacelab”, J. Cryst. Growth 47:2 (1979), 219–229.

[Eyer et al. 1985] A. Eyer, H. Leiste, and R. Nitsche, “Floating zone growth of silicon under microgravity in a sounding rocket”,
J. Cryst. Growth 71:1 (1985), 173–182.

[Houchens and Walker 2001] B. C. Houchens and J. S. Walker, “Magnetic damping of the thermocapillary instability during
floating-zone crystal growth in space”, in Conference and exhibit on international space station utilization (Cape Canaveral,
FL, 2001), AIAA, Reston, VA, 2001. Paper #2001-5053.

[Houchens and Walker 2005] B. C. Houchens and J. S. Walker, “Modeling the floating zone: instabilities in the half zone and
full zone”, J. Thermophys. Heat Transf. 19:2 (2005), 186–198.

[Huang and Houchens 2011] Y. Huang and B. C. Houchens, “Magnetic stabilization, transition and energy analysis in the
Marangoni driven full-zone at low Prandtl numbers”, Eur. Phys. J. Spec. Top. 192:1 (2011), 47–62.

[Intel 2008] Intel, “Intel math kernel library”, 2008, available at http://software.intel.com/en-us/intel-mkl.



1016 YUE HUANG AND BRENT C. HOUCHENS

[Kasperski et al. 2000] G. Kasperski, A. Batoul, and G. Labrosse, “Up to the unsteadiness of axisymmetric thermocapillary
flows in a laterally heated liquid bridge”, Phys. Fluids 12:1 (2000), 103–119.

[Lan and Yeh 2004] C. W. Lan and B. C. Yeh, “Three-dimensional simulation of heat flow, segregation, and zone shape in
floating-zone silicon growth under axial and transversal magnetic fields”, J. Cryst. Growth 262:1-4 (2004), 59–71.

[Lan and Yeh 2005] C. W. Lan and B. C. Yeh, “Effects of rotation on heat flow, segregation, and zone shape in a small-scale
floating-zone silicon growth under axial and transversal magnetic fields”, Fluid Dyn. Mater. Process. 1:1 (2005), 33–44.

[Lappa 2004] M. Lappa, “Combined effect of volume and gravity on the three-dimensional flow instability in noncylindrical
floating zones heated by an equatorial ring”, Phys. Fluids 16:2 (2004), 331–443.

[Lappa 2005a] M. Lappa, “Analysis of flow instabilities in convex and concave floating zones heated by an equatorial ring
under microgravity conditions”, Comput. Fluids 34:6 (2005), 743–770.

[Lappa 2005b] M. Lappa, “Review: possible strategies for the control and stabilization of Marangoni flow in laterally heated
floating zones”, Fluid Dyn. Mater. Process. 1:2 (2005), 171–188.

[Levenstam and Amberg 1995] M. Levenstam and G. Amberg, “Hydrodynamical instabilities of thermocapillary flow in a
half-zone”, J. Fluid Mech. 297 (1995), 357–372.

[Levenstam et al. 2001] M. Levenstam, G. Amberg, and C. Winkler, “Instabilities of thermocapillary convection in a half-zone
at intermediate Prandtl numbers”, Phys. Fluids 13:4 (2001), 807–816.

[Leypoldt et al. 2000] J. Leypoldt, H. C. Kuhlmann, and H. J. Rath, “Three-dimensional numerical simulation of thermocapil-
lary flows in cylindrical liquid bridges”, J. Fluid Mech. 414 (2000), 285–314.

[Martinez and Eyer 1986] I. Martinez and A. Eyer, “Liquid bridge analysis of silicon crystal growth experiments under micro-
gravity”, J. Cryst. Growth 75:3 (1986), 535–544.

[Morthland and Walker 1996] T. E. Morthland and J. S. Walker, “Thermocapillary convection during floating-zone silicon
growth with a uniform or non-uniform magnetic field”, J. Cryst. Growth 158:4 (1996), 471–479.

[Nakamura et al. 1998] S. Nakamura, T. Hibiya, K. Kakimoto, N. Imaishi, S. Nishizawa, A. Hirata, K. Mukai, S. Yoda, and
T. S. Morita, “Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board
the TR-IA-4 rocket”, J. Cryst. Growth 186:1-2 (1998), 85–94.

[Prange et al. 1999] M. Prange, M. Wanschura, H. C. Kuhlmann, and H. J. Rath, “Linear stability of thermocapillary convection
in cylindrical liquid bridges under axial magnetic fields”, J. Fluid Mech. 394:1 (1999), 281–302.

[Reddy and Trefethen 1990] S. C. Reddy and L. N. Trefethen, “Lax-stability of fully discrete spectral methods via stability
regions and pseudo-eigenvalues”, Comput. Methods Appl. Mech. Eng. 80:1-3 (1990), 147–164.

[Saad 1992] Y. Saad, Numerical methods for large eigenvalue problems, Manchester University Press, Manchester, 1992.

[Takagia et al. 2001] K. Takagia, M. Otaka, H. Natsui, T. Arai, S. Yoda, Z. Yuan, K. Mukai, S. Yasuhiro, and N. Imaishi,
“Experimental study on transition to oscillatory thermocapillary flow in a low Prandtl number liquid bridge”, J. Cryst. Growth
233:1-2 (2001), 399–407.

[Trefethen and Embree 2005] L. N. Trefethen and M. Embree, Spectra and pseudospectra: the behavior of nonnormal matrices
and operators, Princeton University Press, Princeton, NJ, 2005.

Received 30 Jun 2010. Revised 1 Mar 2011. Accepted 10 Apr 2011.

YUE HUANG: yue.huang@rice.edu
Department of Mechanical Engineering and Materials Science, Rice University, 6100 Main Street, Houston, TX 77005-1827,
United States

BRENT C. HOUCHENS: houchens@rice.edu
Department of Mechanical Engineering and Materials Science, Rice University, 6100 Main Street, Houston, TX 77005-1827,
United States

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 7-8, 2011

msp

NUMERICAL INVESTIGATION OF DIRECTOR ORIENTATION AND FLOW
OF NEMATIC LIQUID CRYSTALS IN A PLANAR 1:4 EXPANSION

PEDRO A. CRUZ, MURILO F. TOMÉ, IAIN W. STEWART AND SEAN MCKEE

Numerical solutions to the equations describing Ericksen–Leslie dynamic theory for 2D nematic liq-
uid crystal flows subject to a magnetic field are obtained. The governing equations are solved by a
finite difference technique based on the GENSMAC methodology. The resulting numerical technique
was verified by comparing numerical solutions for 2D-channel flow by means of mesh refinement. To
demonstrate the capabilities of this method, the flow of a nematic liquid crystal in a planar 1:4 expansion
was simulated. Calculations were performed for various Ericksen and Reynolds numbers. The results
showed that an increase in the Ericksen number caused the appearance of lip and corner vortices.

1. Introduction

Although the discovery of liquid crystals is generally attributed to Reinitzer [1888], the term “liquid
crystal” was established by Lehmann in 1900, after he originally suggested the term “flowing crystals”
[Lehmann 1889]. In [Friedel 1922] different liquid crystal phases were described and three broad cat-
egories were proposed: nematic, cholesteric, and smectic. Nematic liquid crystals are characterized by
long-range orientational order of the molecules; in other words, the molecular orientation in a nematic
liquid crystal exhibits a preferred direction which can be represented by a unit vector n, called the director.
Gray et al. [1973; 1974] synthesized a nematic liquid crystal that was stable at room temperature and so
could be used in display monitors, known as liquid crystal displays; since then, nematic liquid crystals
have been rather attractive owing to their applications in high-performance optoelectronic products and
their striking rheological properties.

The basic theory that describes the dynamics of nematic liquid crystals is the Ericksen–Leslie dynamic
theory, proposed by [Ericksen 1961; Leslie 1966; 1968]. This theory has consistently been applied to
many flow problems of nematic liquid crystals, but the equations are complex so that analytic solutions
of nematic liquid crystals flows are extremely rare. Consequently, numerical methods are becoming an
important tool for solving these highly nonlinear equations.

Many articles treating the flow of nematic liquid crystals can be found (see, for example, [Pieranski
and Guyon 1974; Baleo et al. 1992; Chono and Suji 1998; Chono et al. 1998; Carou et al. 2006]). For
instance, in [Baleo et al. 1992] elasticity was neglected, in which case the equations reduce to the Ericksen
transversely isotropic fluids. In [Chono et al. 1998] the spatial development of the director orientation
was studied in tumbling nematic liquid crystals in channel flow. In [Chono and Suji 1998] the flow

This work was supported by FAPESP grant number 07/07038-2, CNPq grants numbers 304422/2007-0 and 470764/2007-4,
and CAPES grants numbers 4897/09-9 and 2844/10-9. This work was carried out in the framework of the INCT-MACC (CNPq,
Brazil).
Keywords: nematic liquid crystal, Ericksen–Leslie equations, two-dimensional flow, finite difference.
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around a circular cylinder was analyzed. In other studies, such as [Pieranski and Guyon 1974], the
investigation was through experimentation. However, to our knowledge, studies using the full Ericksen–
Leslie equations for 2D flows are extremely rare.

This paper presents a finite difference technique for solving the full Ericksen–Leslie dynamic equations
in two dimensions under the influence of a finite magnetic field.

2. Governing equations

We consider the 2D flow of nematic liquid crystals. A magnetic field is applied and we assume the one-
constant approximation for the elastic constants. The unitary director n and velocity v can be written as

n= (cosφ, sinφ, 0), φ = φ(x, y, t), (2-1)

v =
(
u(x, y, t), v(x, y, t), 0

)
, (2-2)

where φ is the orientation angle of the director. The magnetic field potential (equal to the negative of the
magnetic energy) is

9 = 1
2µ01χ(n · H)2, H = H(cosφ0, sinφ0, 0), |H| = H <∞, (2-3)

where 1χ > 0 is the magnetic anisotropy, H is the magnitude of the field, and φ0 is a constant. The
related external generalized body force Gi is given by

Gi =
∂9

∂ni
= µ01χ(n · H)Hi , (2-4)

where µ0 > 0 is the permeability of free space.
We shall use the usual Einstein summation convention where appropriate. A comma indicates partial

differentiation with respect to the variable it precedes; for example ni, j denotes the partial derivative of
the i-th component of ni with respect to the j-th variable.

The basic equations for simulating 2D flows of a nematic liquid crystal are the conservation of mass,
elastic energy, linear momentum, and angular momentum, which can be written, respectively, in dimen-
sionless form as follows (for details see [Cruz et al. 2010]):

u,x + v,y = 0, (2-5)

(wF ),x =
1

ReEr
[φ,xx + (φ,y),x ], (wF ),y =

1
ReEr

[(φ,x),y +φ,yy], (2-6)

u,t =−(uu),x − (vu),y − p,x −wF,x + R j n j,x +
1

Re
[ 1

2α4(u,xx + u,yy)+8xx,x +8xy,y
]

+
1
2µ01χH 2 sin(2(φ0−φ))φ,x , (2-7)

v,t =−(uv),x − (vv),y − p,y −wF,y + R j n j,y +
1

Re
[1

2α4(v,xx + v,yy)+8yx,x +8yy,y
]

+
1
2µ01χH 2 sin(2(φ0−φ))φ,y, (2-8)

φ,t =−(uφ),x − (vφ),y +
1

Erγ1
[φ,xx +φ,yy] −

γ2

2γ1

[
(u,y + v,x) cos(2φ)+ (v,y − u,x) sin(2φ)

]
−

1
2(u,y − v,x)−

Re
2γ1

µ01χH 2 sin(2(φ0−φ)), (2-9)
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where Re = ρU L/η and Er = U L(η/K ) are the Reynolds and Ericksen numbers, respectively. The
coefficient γ1 = α3− α2 ≥ 0 is often referred to as the twist or rotational viscosity and the coefficient
γ2 = α2 + α3 = α6 − α5 is called the torsion coefficient. The viscosities α1, α2, . . . , α6 are the Leslie
viscosities.

The functions 8xx , . . . , 8yy are given by

8xx = α1 cos2 φ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

− (α2+α3) sinφ cosφ
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+ (α5+α6)
(
u,x cos2 φ+ 1

2 sinφ cosφ(u,y + v,x)
)
, (2-10)

8xy = α1 sinφ cosφ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α3 cos2 φ−α2 sin2 φ)
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+
1
2(α5 sin2 φ+α6 cos2 φ)(u,y + v,x)+ (α5u,x +α6v,y) sinφ cosφ, (2-11)

8yx = α1 sinφ cosφ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α2 cos2 φ−α3 sin2 φ)
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+
1
2(α5 cos2 φ+α6 sin2 φ)(u,y + v,x)+ (α5v,y +α6u,x) sinφ cosφ, (2-12)

8yy = α1 sin2 φ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α2+α3) sinφ cosφ
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+ (α5+α6)
(
v,y sin2 φ+ 1

2 sinφ cosφ(u,y + v,x)
)
. (2-13)

The terms R j n j,x and R j n j,y are given by

R j n j,x =
1

Re
{
−γ1φ,x

(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

−
1
2

(
γ2φ,x cos(2φ)(u,y + v,x)+ γ2φ,x sin(2φ)(u,x − v,y)

)}
, (2-14)

R j n j,y =
1

Re
{
−γ1φ,y

(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

−
1
2

(
γ2φ,y cos(2φ)(u,y + v,x)+ γ2φ,y sin(2φ)(u,x − v,y)

)}
. (2-15)

In these equations, the viscosities α1, . . . , α6 have been scaled by the factor η = α3−α2.
Equations (2-5) and (2-7)–(2-9) form the complete set of dynamic equations and must be solved

subject to suitable boundary conditions in order to find solutions for φ, p, u, and v.

2A. Boundary conditions. To solve (2-5) and (2-7)–(2-9) we impose the following boundary conditions
for the velocity field. On rigid boundaries we set vi = 0 while at fluid entrances (inflows) the normal
velocity is specified by vN = Vinf and the tangential velocity by vT = 0. Here N denotes normal direction
to the boundary and T denotes the tangential direction. At fluid exits (outflows) the Neumann condition
vi,N = 0 is adopted.

The director is strongly anchored on rigid walls. This means that the anchoring angle is set according
to the orientation of the rigid wall. Details of this anchoring angle will be given in the section dealing
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with numerical results. The choice of the angle of the director at fluid entrances (inflows) is φ = 0, and
at fluid exits (outflows) we set φ,N = 0.

2B. Numerical procedure. The numerical method is a standard and robust approach using Chorin’s
projection method. An interesting but different method was employed in [Svenšek and Žumer 2002]. The
momentum equations (2-7) and (2-8), the mass conservation equation (2-5), and the angular momentum
equation (2-9) will be solved by a methodology based on the algorithm introduced in [Tomé et al. 2002]
as follows.

Assume that, at time tn , the velocity field vi (xk, tn) and the orientation angle of the director φ(xk, tn)
are known and that suitable boundary conditions are provided. To calculate the velocity field vi (xk, tn+1),
the pressure p(xk, tn+1), the functions 8i j (xk, tn+1), and the orientation angle of the director φ(xk, tn+1),
we proceed in the following manner:

Step 1. Using the values of vi (xk, tn) and φ(xk, tn), solve (2-6) for wF (xk, tn) and calculate wF,i (xk, tn),
8i j (xk, tn), and R j n j,i (xk, tn) from (2-10)–(2-13), (2-14) and (2-15), respectively.

Step 2. Calculate an intermediate velocity field ṽi (xk, tn+1) from

∂ṽi
∂t
=−(v jvi ), j −wF,i + R j n j,i +

1
2µ01χH 2 sin(2(φ0−φ))φ,i +

1
Re
[ 1

2α4(vi, j ), j +8i j, j
]
, (2-16)

with ṽi (xk, tn)= vi (xk, tn) using the same boundary conditions for the velocity vi (xk, tn). This equation
is solved by an explicit finite difference method. In [Tomé et al. 1996] it was shown that ṽi possesses
the correct vorticity at time tn+1.

Step 3. Solve the Poisson equation

ψ,i i (xk, tn+1)= ṽi,i (xk, tn+1), (2-17)

subject to the boundary conditions that ψ,N = 0 on rigid boundaries and inflows and ψ = 0 on outflows
[Tomé and McKee 1994].

Step 4. Calculate the final velocity field:

vi (xk, tn+1)= ṽi (xk, tn+1)−ψ,i (xk, tn+1). (2-18)

Step 5. Determine the pressure field p(xk, tn+1) [Tomé et al. 1996]:

p(xk, tn+1)=
ψ(xk, tn+1)

δt
. (2-19)

Step 6. Calculate the angle of the director φ(xk, tn+1) from (2-9). This equation is solved by an explicit
finite difference method.

Step 7. Calculate the functions 8i j (xk, tn+1) from (2-10).

3. Approximation of the equations by finite differences

The equations contained in the numerical procedure outlined in the previous section are solved by the
finite difference method as follows. A staggered grid is employed. This was first introduced in [Harlow
and Welch 1965]; it has been used by many investigators because it locally guarantees conservation of
mass and momentum while remaining computationally simple.
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Figure 1. 2D staggered cell.

The velocities u and v are located at the middle of cell faces while the other quantities (φ, 8, p, wF )
are positioned at cell centers. Figure 1 illustrates a typical 2D cell of dimensions δx × δy.

The momentum conservation equations (2-7) and (2-8) and the angular momentum equation (2-9) are
solved by the explicit Euler method. The spatial derivatives in the momentum conservation equations are
discretized at points

((
i + 1

2

)
δx, jδy

)
and

(
iδx,

(
j + 1

2

)
δy
)

while the angular momentum equation (2-9),
the density of elastic energy (2-6), and the functions 8i j are approximated at cell centers (iδx, jδy).
The divergence of 8i j , the gradient of the density of elastic energy wF,i , and the terms R j n j,i are
approximated by central differences.

For reasons of space, the details of the finite differences equations involved are not presented here;
they can be found in [Cruz et al. 2010].

4. Validation results

The numerical method described in the previous sections was applied to simulate the flow of the nematic
liquid crystal MBBA at 25◦ C. We considered a 2D-channel (see Figure 2) with width L and length
C = 10L . The boundary conditions for the velocity field were those specified in Section 2A. At the fluid
entrance, a fully developed flow was applied:

u(y)=−4U
L

(
y− L

2

)2
+U, (4-1)

where U is a prescribed value for velocity.

L

C

y

x 

n

φ 

Figure 2. Definition of the domain for the simulation of the flow in a 2D channel. The
red arrows indicate the boundary conditions used for the calculation of the angle φ by
means of (2-9).
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Leslie viscosities α1 α2 α3 α4 α5 α6

MBBA near 25◦ C −0.0181 −0.1104 −0.001104 0.0826 0.0779 −0.0336
MBBA near 42◦ C −0.0036 −0.0310 −0.00218 0.0394 0.0224 −0.01086

Table 1. Leslie viscosities for the nematic liquid crystal MBBA, in SI units [Stewart 2004].

Physical parameter 1χ ρ µ0 K
Values 1.219× 10−6 1088 kg m−3 12.566× 10−7 H m−1 7.5× 10−12 N

Table 2. Physical parameters for the nematic phases of MBBA, in SI units: magnetic
anisotropy (1χ , unitless) [Stephen and Straley 1974], density (ρ) [Stephen and Straley
1974; Stewart 2004], permeability of free space (µ0), and elastic constant (K). The
viscosities at 42◦ C were taken from [Kneppe et al. 1982].

To simulate this problem, the following input data (specifying the flow) were employed:

• Width of the entry plane L = 0.001 m and velocity scale U = 0.00038 m s−1.

A magnetic field H = 1/(4π)103 A m−1 was applied. The physical parameters, specifying the nematic
liquid crystal MBBA at 25◦, are given in Tables 1 and 2. With these data we obtain Re = 0.0038
and Er = 55.38. To demonstrate the convergence of the numerical method presented in this paper,
we simulated channel flow using four embedded meshes until steady state was achieved. The meshes
employed were:

• M0: δx = δy = 0.000125 m (80× 8 cells),

• M1: δx = δy = 0.0000625 m (160× 16 cells),

• M2: δx = δy = 0.00003125 m (320× 32 cells), and

• M3: δx = δy = 0.000015625 m (640× 64 cells).

An analytic solution for this problem is not known, so we compared the solutions obtained on meshes
M0, M1, and M2 to the solution obtained on the finest mesh, M3, which we refer to here to as “exact”.

Figure 3 displays the numerical and the “exact” values of u(y) at the end of the channel (x = 10L).
We can see that there is good agreement between the solutions. Moreover, Figure 3 shows that as the
mesh is refined the numerical solutions tend to the “exact” solution. Similar results were obtained for
the functions 8xx , 8xy , 8yx , and 8yy . These results suggest that the numerical method presented in this
work is convergent.

5. Numerical investigation of nematic liquid crystal flow in a planar 1:4 expansion

In this section we present numerical results from the simulation of the flow of a nematic liquid crystal
through a planar 1:4 expansion as illustrated in Figure 4. In this problem, the fluid flows from a channel
with width 2L into another channel having width 8L .

This problem is one of the classic benchmarks employed in the study of the development of numerical
methods for simulating non-Newtonian fluids. The interest in simulations of this kind of flow comes
from the fact that non-Newtonian fluids exhibit a variety of phenomena. A particular point of interest is
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Figure 3. Numerical simulation of channel flow: Re = 0.0038 and Er = 55.38. Com-
parison between the “exact” and the numerical solutions of u(y) at x = 10L .

the study of the behavior of vortices in the corners, and vortices that are generated near the expansion
entrance (known as lip vortices). The length and intensity of these vortices can be affected by both the
Ericksen and Reynolds numbers and the type of expansion as well as by rheological properties of the
material such as viscosity and elastic constants.

The boundary conditions for the velocity field were those specified in Section 2A while at the channel
entrance the velocity was specified by the fully developed profile given by (4-1).

Boundary conditions for the angle φ. The boundary conditions for the angle φ were specified as follows
(for details see Figure 4):

(1) Along the horizontal walls, the anchoring angle was set to zero, implying parallel alignment to the
walls.

8L

C C

 x

 y

2L 

Figure 4. Definition of the domain for the simulation of the flow in a 1:4 expansion.
The red arrows indicate the boundary conditions used for the calculation of the angle φ
by (2-9).
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(2) At the expansion entrance, we used:

(a) φ = 45◦ (upper lip corner in Figure 4);
(b) φ =−45◦ (lower lip corner in Figure 4).

(3) On the vertical walls (or the expansion walls), we employed:

(a) φ =−90◦ at x = C and 0≤ y ≤ 3L;
(b) φ = 90◦ at x = C and 5L ≤ y ≤ 8L .

(4) At the channel entry defined by x = 0 and 3L ≤ y ≤ 5L , we set φ = 0 and at the exit plane, x = 2C
and 0≤ y ≤ 8L , we assumed φ,x = 0.

The relevant physical parameters specific to the nematic liquid crystal MBBA at 25◦ and 42◦ are
presented in Tables 1 and 2, respectively. The remaining parameters specifying the flow were:

• viscosity scales: η25◦ = α3−α2 = 0.109296 Pa·s and η42◦ = α3−α2 = 0.02882 Pa·s;

• mesh (M): 200× 40 cells (δx = δy = 0.0001 m);

• width of the entry plane: 2L = 0.001 m;

(a)

(b)

(c)

Figure 5. Numerical simulation of the flow in a planar 1:4 expansion with Re= 0.005
and Er= 7.2 at t = 40 s. Isolines: (a) pressure, (b) velocity u, and (c) velocity v.
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(a) (b)

(c) (d)

Figure 6. Plots of director with Re= 0.019 for different Ericksen numbers: (a) Er= 1.9,
(b) Er= 19.2, (c) Er= 192, and (d) Er= 1920.

• length of the channels: C = 0.01 m;

• width of the exit plane: 8L = 0.004 m;

• velocity at the entry channel: Vinf = 0.00025 m s−1;

• velocity scale: U = 0.001 m s−1;

• length scale: L = 0.0005 m.

The Reynolds number was calculated using the half-width L of the channel entrance, the velocity scale
U = 0.001 m s−1, and the viscosity scales η25◦ and η42◦ were selected so that Re= 0.005 and Re= 0.019,
respectively. In the results that follow the following Ericksen numbers (Er=U Lη/K ) were employed:

Re= 0.005


K = 7.5× 10−9

H⇒ Er= 7.2,

K = 7.5× 10−10
H⇒ Er= 72.8,

K = 7.5× 10−11
H⇒ Er= 728,

K = 7.5× 10−12
H⇒ Er= 7286,
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Re= 0.019


K = 7.5× 10−9

H⇒ Er= 1.9,

K = 7.5× 10−10
H⇒ Er= 19.2,

K = 7.5× 10−11
H⇒ Er= 192,

K = 7.5× 10−12
H⇒ Er= 1920.

To observe elastic and viscous effects in the flow, such as the appearance of corner and lip vortices,
we simulated this problem for the values of the Reynolds and Ericksen numbers given above until a
steady state was reached. Each simulation was performed until t = 40 s. Figure 5 displays the isolines
of pressure and velocity at time t = 40 s for Re= 0.005 and Er= 7.2. From Figure 5 one can see that
the pressure only varies in the x-direction and the velocity is parabolic within the entrance channel so
we can conclude that the steady state has been reached.

A zoom-in on the solutions obtained for the director and the streamlines near the expansion entrance
for the case Re= 0.019 is displayed in Figures 6 and 7 while Figures 8 and 9 show the results obtained
with Re= 0.005.

For Er= 1.9, 19.2 (see Figures 6a and 6b) the director profile did not display a great deal of variation:
at the centerline the vectors are parallel while away from it, the vectors are diverging pointing to the
expansion walls. For Er= 192 we can observe significant disturbances in the director profile where one

(a) (b)

(c) (d)

Figure 7. Plots of streamlines with Re= 0.019 for different Ericksen numbers: (a) Er=
1.9, (b) Er= 19.2, (c) Er= 192, and (d) Er= 1920.
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(a) (b)

(c) (d)

Figure 8. Plots of director with Re= 0.005 for different Ericksen numbers: (a) Er= 7.2,
(b) Er= 72.8, (c) Er= 728, and (d) Er= 7286.

can see the appearance of a small lip vortex (see Figure 6c). Near the symmetry axis, we can see that the
director is converging to the centerline. For Er= 1920 (see Figure 6d), the director, at the symmetry axis,
is perpendicular to the centerline. We now observe a larger lip vortex concentrated near the entrance of
the expansion walls.

The corresponding streamlines displayed in Figure 7 are interesting since they display a lip vortex
for Er= 192, 1920 (see Figures 7c and 7d). As the Ericksen number is increased to Er= 1920 a large
corner vortex is generated. These results show that the appearance of the lip and corner vortices were
caused by an increase in the Ericksen number. This phenomenon is similar to that observed by many
authors in certain viscous anisotropic fluids through a 4:1 contraction (for example, [Yoo and Na 1991;
Nigen and Walters 2002; Alves et al. 2003]) where the corner vortex decreases with increasing elasticity.
The results obtained with Re= 0.005 were similar to those obtained with Re= 0.019 except that the lip
vortex appears first at the smaller Ericksen number of Er= 72.8. The occurrence of the corner vortex
is also anticipated (see Figure 9b). Tables 3 and 4 display the size of vortices obtained for each value
of the Ericksen number employed in the simulations. We see in these tables that the size of the corner
vortices encountered for Re = 0.005 are larger than those obtained with Re = 0.019. We believe that
the appearance of larger corner vortices in the case Re = 0.005 was due to viscous and elastic forces
associated with a smaller Re and higher Er.
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Er 1.9 19.2 192 1920

length 0.0000 0.0000 0.1000 1.441506

Table 3. Length of the corner vortices as a function of the Ericksen number for Re= 0.019.

Er 7.2 72.8 728 7280

length 0.0000 0.0500 0.618543 1.738053

Table 4. Length of the corner vortices as a function of the Ericksen number for Re= 0.005.

(a) (b)

(c) (d)

Figure 9. Plots of streamlines with Re= 0.005 for different Ericksen numbers: (a) Er=
7.2, (b) Er= 72.8, (c) Er= 728, and (d) Er= 7286.

6. Conclusions

This paper has dealt with the development of a numerical method for simulating 2D flows of nematic
liquid crystals described by the Ericksen–Leslie equations. The numerical technique was based on the
method developed in [Tomé et al. 2002] and used the finite difference method. The validation of the
technique was performed through the simulation of the flow in a channel using four refined meshes: M0,
M1, M2, and M3. An analytic solution for this problem is not yet available, so we compared the solutions
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obtained on meshes M0, M1, and M2 to the solution obtained on the finest mesh M3, which we called
“exact”. Good agreement was obtained between the numerical solutions on the coarser meshes and the
solution on mesh M3. We then applied the numerical technique to simulate the flow through a planar 1:4
expansion for various values of the Ericksen number. The results showed that as the Ericksen number is
increased interesting effects were observed: the orientation of the director displayed the appearance of a
lip vortex while increasing the Ericksen number had the effect of producing a lip vortex at the entrance of
the expansion. Increasing the Ericksen number further resulted in the appearance of a corner vortex that
increased in size with increasing Ericksen number. The results showed that both elasticity and viscosity
had a considerable effect on the formation of corner and lip vortices.
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CRITICAL THRESHOLD AND UNDERLYING DYNAMICAL PHENOMENA IN
PEDESTRIAN-INDUCED LATERAL VIBRATIONS OF FOOTBRIDGES

STEFANO LENCI AND LAURA MARCHEGGIANI

The problem of lateral vibrations of footbridges due to the synchronization of the pedestrians’ motion
with that of the supporting structure is analyzed by means of a 3D discrete time model. The map is linear
in the mechanical part, and nonlinear in the synchronization part. A very simple and predictive formula
is obtained for the critical number of pedestrians, which also takes into account the imperfect resonance
between the pedestrians’ natural frequencies and the bridge frequency. It is shown that the underlying
mechanism triggering the sudden appearance of swaying bridge motion is a perturbation of a pitchfork
bifurcation. The results presented in this paper are not related to a specific real case and are based on a
quite reasonable hypothesis, and therefore it is expected that they have general validity.

1. Introduction

As a consequence of the technological development of new materials and of the architectural trend toward
lightness and slenderness, modern footbridges have small natural frequencies, which can resonate with
those of the pedestrian-induced load [Živanović et al. 2005; Venuti and Bruno 2009], which are in the
range 1.4–2.4 Hz for vertical forcing and in the range 0.7–1.2 Hz for horizontal (lateral) forcing. In this
situation unwanted large bridge motions may occur.

Various footbridges have experienced excessive lateral vibrations due to pedestrian-induced loads; the
most famous is the London Millennium Bridge, which underwent, on its opening day, large horizontal
vibrations due to the synchronization of the pedestrians’ motion with the natural modes of the structure
[Dallard et al. 2001a; 2001b]. Other bridges which have suffered similar problems are the Toda Park
Bridge [Fujino et al. 1993; Nakamura and Kawasaki 2006] and the Maple Valley Bridge [Nakamura
and Kawasaki 2006] in Japan, the Solferino Footbridge in Paris [Danbon and Grillaud 2005], and the
Alexandra Bridge in Ottawa [Dallard et al. 2001a].

The pedestrian-induced lateral vibrations occurred in bridges of different structural types (suspension,
cable-stayed, and steel girder bridges) as well as on footbridges made of different materials (steel, com-
posite steel-concrete, and reinforced and prestressed concrete) [Živanović et al. 2005]. It is therefore
confirmed that a large-enough crowd of pedestrians can induce strong lateral vibrations on footbridges
of any type, although this requires the lateral mode to have a low-enough natural frequency [Dallard et al.
2001a], approximately below 1.2 Hz, as stated.

The phenomenon behind pedestrian-induced lateral vibrations on footbridges is that of synchronous
lateral excitation [Dallard et al. 2001a; Strogatz et al. 2005; Živanović et al. 2005; Eckhardt et al. 2007].
People walking in a crowd exhibit a random level of synchrony, and in general produce a lateral force
on the bridge. In fact, even if the bridge is still and the pedestrians are not synchronized at all, due to the

Keywords: synchronization, discrete time model, Millennium Bridge, lateral induced vibrations, bridge-pedestrian coupling.
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stochasticity of the process the net force, which is the sum of all the lateral forces applied to the bridge
by the footsteps of pedestrians, is not null, although it is possibly small. This small force produces small
oscillations of the bridge.

As soon as the small bridge vibrations become perceptible to the unconscious human cognition pro-
cesses, pedestrians tend spontaneously to walk in synchrony with the bridge, by slightly changing their
walking frequency and phase. Of course, this tendency is somehow proportional to the vibration am-
plitude, and so it is very small, and possibly negligible, for very small displacements. However, it is
believed that this phenomenon starts for very low levels of amplitude of the motion, well below the
amplitude threshold perceived by conscious feeling.

This instinctive behavior, which is the mechanism through which the pedestrians interact with the
bridge, produces an increase of the synchronization level, and the associated net force grows. This estab-
lishes an unwanted positive feedback loop, where the increase in oscillation amplitude causes pedestrians
to increase their lateral footfall forcing and their level of synchrony, by following the movements of the
deck in order to balance themselves [Dallard et al. 2001a; 2001b]: the more the bridge moves, the more
the crowd pushes it to move further.

It has been observed that for potentially susceptible spans there is a critical number of pedestrians Ncr

that will cause the vibrations to increase suddenly to unacceptable levels. The oscillations are small below
Ncr and, due to the synchronization, they increase rapidly above Ncr. This critical threshold is of great
practical interest, and its prediction is the goal of almost all studies. This paper aims to provide a simple
and reliable analytical prediction of Ncr, as well as to further understanding of the overall phenomenon.

The nature of the problem is nonlinear, as has been confirmed, for example, by tests performed on the
London Millennium Bridge [Dallard et al. 2001a]; in spite of this, however, it can be detected within a
mechanically linear framework, since even the “large” oscillations are orders of magnitude smaller than
the span length. The nonlinearity is only in the interaction between the structure and pedestrians.

Several papers have recently addressed this topic, even if a standard and generally accepted model of
pedestrian-induced lateral dynamic loading and of dynamical interaction with the bridge is still missing.
Živanović et al. [2005] have performed a comprehensive review of the existing literature on the topic
until 2003, while an updated review can be found in [Venuti and Bruno 2009].

Early studies on pedestrian-induced vibrations of footbridges [Blanchard et al. 1977; Matsumoto et al.
1978; Wheeler 1980] concerned only the measurement and modeling of the vertical component of pedes-
trian load on a motionless surface.

Dallard et al. [2001a; 2001b] have conducted a series of controlled crowd tests on the Millennium
Bridge and have proposed a load model based on empirical observations. Also a formula has been ob-
tained for the critical number of pedestrians; it actually depends only on the modal damping of the bridge
through a proportionality constant which is strictly related to the specific real case-study (the Millennium
Bridge). The findings of the present paper extend somewhat these works, by better highlighting the nature
of this constant (for example, that it depends on the bridge natural frequency).

Nakamura [2004] has proposed an interactive forcing model analogous to the previous one, but which
allows the schematization of the self-limiting nature of the synchronization phenomenon and the predic-
tion of the steady-state amplitude. Also this model is based on coefficients which have been estimated
from experimental tests [Fujino et al. 1993; Nakamura and Kawasaki 2006] and cannot easily be gener-
alized to other footbridges.
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In [Newland 2003] the problem is approached by referring to the interaction phenomenon between
fluid flow and structures which is widely studied in wind engineering and commonly known as lock-in.
His model includes the empirical assumption that 40% of the pedestrians are synchronized with the
bridge lateral frequency, independent of the amplitude of the oscillations.

Fujino et al. [1993] have adopted a model of harmonic forcing by empirically tuning a synchronization
parameter for the lateral vibrations of the Toda Park Bridge (according to their experimental data). This
model does not predict any sudden transition to a vibrating state of the bridge but assumes a continuous
increase in the vibration amplitude as the number of pedestrians increases.

Roberts [2005] has schematized the interaction between the pedestrians and the footbridge assuming
that synchronization occurs when the pedestrians’ motion is larger than the bridge motion; from this
critical condition, he has obtained a limit number of pedestrians.

In [Ricciardelli and Pizzimenti 2007] a systematic experimental campaign has been performed aimed
at characterizing dynamically the lateral force exerted by pedestrians on footbridges, both in the case
of a still deck and in the case of a laterally moving deck; deterministic and stochastic lateral loading
models for the static case have been provided and the bases have been put in place for more sophisticated
dynamic models including crowd-structure interaction. The mechanism of crowd synchronization has
been investigated only from the qualitative point of view, deferring quantitative study and modeling until
after further measurements.

The excessive lateral vibrations of the Solferino Bridge in Paris have been explained in [Blekherman
2007] on the basis of autoparametric resonance by using a double pendulum model; the process of
possible synchronization of pedestrian loading with the relevant vibrational modes, which are nonlinearly
coupled in a ratio of 2:1 between their frequencies, depends on the achievement of parametric resonance.

Piccardo and Tubino [2008] have performed an interesting extensive critical analysis of the excitation
mechanisms identified in the literature and they have proposed a new forcing model based on experi-
mental tests carried out on harmonically moving platforms [Dallard et al. 2001a]. The force exerted by
pedestrians is modeled as harmonic with an amplitude depending on the deck lateral displacement, and
a simple criterion defining the limit pedestrian mass is introduced. They mainly ascribe to a mechanism
of parametric excitation the lateral sway motion induced by crowds in very flexible, lowly damped
footbridges, with a first lateral natural frequency around 0.5 Hz corresponding to half of the first lateral
walking frequency.

In Venuti et al. [2007] a first-order model has been developed based on the mass conservation equation,
in order to macroscopically describe the dynamics of the crowd in the framework of hydrodynamic mod-
eling. The crowd, considered as a pedestrian flow, is assumed to behave like a continuous compressible
fluid; the structural system is modeled by means of a generalized single degree of freedom (SDOF) model.
The two-way interaction between the crowd and the structure is studied. This model permits taking into
account the triggering of the lock-in and its self-limited nature, previously explained only in [Strogatz
et al. 2005]. The effects of the two different kinds of synchronization, that is, between the pedestrians and
the structure and among the pedestrians, are introduced; the presence of different frequency components
in the overall force exerted by the pedestrians is considered. Some parameters, used in the formulation of
the model, come from reasonable qualitative considerations about pedestrian behavior and would require
specific experimental tests to be confirmed.
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In [Bodgi et al. 2007] a similar approach has been adopted to simulate the mechanics of synchronous
lateral excitation induced by pedestrians on footbridges.

Strogatz et al. [2005] have been the first, to the best of our knowledge, to mathematically describe
and predict the simultaneous growth of bridge movement and crowd synchronization, an observation
that was unexplained in previous models but that is confirmed by analyses of video footage [Arup 2000]
recorded during overcrowding conditions on real footbridges [Fujino et al. 1993; Dallard et al. 2001a].
They proposed a model (called SAMEO in [Marcheggiani and Lenci 2010] from the initials of the
authors) which is particularly interesting for its contribution to the physical-mathematical explanation of
the underlying mechanical event, as well as for the reasonable description of the phenomenon itself.

The SAMEO model is quite simple in its formulation and general enough to be possibly applied to
any bridge at risk of synchronous lateral excitation. It models the bridge as a SDOF oscillator that
interacts nonlinearly with each pedestrian. The pedestrians are modeled as limit-cycle phase oscillators
(this choice comes from a similitude with biological systems, for example, fireflies). The key parameter
of the model, C , measures the pedestrians sensitivity to bridge lateral vibrations; it can be determined
only experimentally.

The SAMEO model has been investigated in depth in [Marcheggiani and Lenci 2010], where extensive
numerical simulations have been performed in order to detect the effects of the main parameters on the
system’s response, in particular on the critical threshold. Various extensions have been proposed to model
some important aspects not considered in [Strogatz et al. 2005], such as, for example, the self-interaction
between pedestrians.

Although the original model and its extensions are simple in their formulation and meaning, they are
quite involved in terms of the associated equations of motion, which is a set of N + 2 (N being the
number of pedestrians) nonlinear ordinary differential equations. This system can be fully solved only
numerically, although some approximated analytical techniques have been obtained in [Abrams 2006]
to get some partial information. This is a limitation of the model, together with the fact that it does not
provide immediate information.

In order to overcome the previous drawbacks, in [Lenci and Marcheggiani 2008] a simplified model
is proposed and applied with some success to the case of the Millennium Bridge. The main idea is
that of passing from ordinary differential equations to maps, that is, from a continuous time system
to a discrete time one. In particular, a peak-to-peak map [Candaten and Rinaldi 2000], similar to that
introduced by Lorenz in discovering chaotic attractors, has been considered and analyzed in depth. The
discrete time permits simple computations (which can be performed by hand), and provides a simple but
very predictive formula for Ncr and a better understanding of the dynamical phenomena lurking in the
background.

The work [Lenci and Marcheggiani 2008] is continued in this paper; another discrete time model is
proposed, now based on the stroboscopic Poincaré map (instead of the peak-to-peak map). The mechani-
cal part is described by the position x and velocity y, while the bridge-pedestrian interaction is described
by a new state variable σ measuring the degree of synchronization of the pedestrians. We thus get a 3D
map, linear in the mechanical part and nonlinear only in the interaction part, whose behavior is analyzed
without exact knowledge of the evolution law for σ . Just its overall properties and local behavior are
used, thus providing a very general analysis, which in particular extends that of [Lenci and Marcheggiani
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2008]. The main results are obtained by a bifurcation analysis of the fixed points of the map, which of
course is specific to the considered simplified model.

This paper is organized as follows. In Section 2 the mechanical model is illustrated leading to the me-
chanical part of the discrete time model. Then, the pedestrian-bridge interaction is analyzed in Section 3,
where the main properties of the third evolution law are discussed. The fixed points of the map, which
are the dynamical behaviors of interest for the computation of the critical threshold, are considered in
Section 4, where a simple formula for Ncr is obtained, and where the effect of imperfections is discussed.
Some properties of the map in the resonant case are discussed in Section 5, and conclusions are presented
in Section 6.

2. Mechanical model

Based on experience in real cases, in particular on that of the London Millennium Bridge mentioned in
Section 1, we assume that the phenomenon of lateral synchronization involves only one lateral mode
ϕ(Z) of the structure, so that the mechanical equation of motion is

M Ẍ(T )+ B Ẋ(T )+ K X (T )= F(T ), (1)

where M , B, and K are the modal mass, damping, and stiffness, respectively, and X (T ) is the modal
amplitude. Note that M includes also the mass of the pedestrians, and in general is not a fixed number.
However, in real cases the mass of pedestrians is about 10–15% of the total mass, and so it is expected
that it does not play a key role. F(T ) is the modal force, that is, the projection on the considered mode
ϕ(Z) of the force F(Z , T ) exerted by pedestrians along the span, F(T )=

∫ L
0 F(Z , T )ϕ(Z)d Z . In fact,

the load of each pedestrian depends not only on the force he applies on the bridge, but also on his position
Z ∈ [0, L] along the span.

The definitions

�=

√
K
M
, t =�T, ξ =

B

2
√

M K
=

B�
2K

, x(t)= X (T ), f (t)=
F(T )

K
, (2)

where � is the natural frequency of the considered mode, permit us to rewrite (1) in the form

ẍ(t)+ 2ξ ẋ(t)+ x(t)= f (t), (3)

which will be used in the following. Note that the time t is dimensionless, while x has the dimension of
length.

2.1. A single pedestrian and the stroboscopic Poincaré map. We initially consider the effect of a single
pedestrian by assuming

f (t)= g sin(ωpt −φ), (4)

where:

• g> 0 is the dimensionless amplitude, such that G = gK ∼= 30N is the maximum lateral force exerted
by a pedestrian [Belli et al. 2001; Marcheggiani and Lenci 2010];

• ωp is the dimensionless (circular) frequency, such that f p =�p/(2π)=�ωp/(2π)= 0.7–1.2 Hz
is the pedestrian footstep native frequency [Živanović et al. 2005]; and



1036 STEFANO LENCI AND LAURA MARCHEGGIANI

• φ ∈ [0, 2π ] is the pedestrian phase, which depends on the time the pedestrian enters the bridge.

Equation (4) is an approximation of the real force, since experimental data concerning lateral walking
forces on a still surface [Bodgi et al. 2007; Ricciardelli and Pizzimenti 2007] have shown that it is much
closer to a square wave than to a harmonic force [Belli et al. 2001]. However, expression (4) can be
considered as the first term in the Fourier series of the real excitation, thus capturing the most important
energy content and maintaining the simple expression needed for analytical computations.

The solution of (3) and (4) starting from x(0)= xn and ẋ(0)= yn is

x(t)= e−ξ t[c1 sin
(
t
√

1− ξ 2
)
+ c2 cos

(
t
√

1− ξ 2
)]
+ g[d1 sin(ωpt)+ d2 cos(ωpt)], (5)

where

d1 =
(1−ω2

p) cos(φ)− 2ξωp sin(φ)

(1−ω2
p)

2+ (2ξωp)2
, d2 =

−(1−ω2
p) sin(φ)− 2ξωp cos(φ)

(1−ω2
p)

2+ (2ξωp)2
,

c1 =
ξ xn + yn −ωpgd1− ξgd2√

1− ξ 2
, c2 =−gd2+ xn.

(6)

Note that the initial conditions do not modify d1 and d2, only c1 and c2.
After one period Tp = 2π/ωp of the excitation we have from (5)

x(Tp)= e−ξTp
[
c1 sin

(
Tp

√
1− ξ 2

)
+ c2 cos

(
Tp

√
1− ξ 2

)]
+ gd2 (7)

and

ẋ(Tp)=e−ξTp
[(
−c1ξ−c2

√
1−ξ 2

)
sin
(
Tp

√
1−ξ 2

)
+
(
−c2ξ+c1

√
1−ξ 2

)
cos
(
Tp

√
1−ξ 2

)]
+gωpd1. (8)

The main idea of this paper consists in moving from a continuous time system, (3), to a discrete
one. This can be obtained by introducing an appropriate Poincaré section of the continuous flow, and by
considering the associated Poincaré return map [Wiggins 1997].

We use the stroboscopic Poincaré map obtained by sampling the system position and velocity at each
excitation period Tp = 2π/ωp, which is mathematically well defined. It is given by{

xn+1

yn+1

}
=

{
fx(xn, yn)

fy(xn, yn)

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ g

{
βx

βy

}
, (9)

where use is made of (7) and (8), and where xn+1 = x(Tp) and yn+1 = ẋ(Tp) (see [Wiggins 1997]), the
functions fx(xn, yn) and fy(xn, yn) are defined by the last equality, and

αx = ξ
sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
+ cos

(
Tp

√
1− ξ 2

)
, αy =−ξ

sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
+ cos

(
Tp

√
1− ξ 2

)
,

αxy =
sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
,

βx = e−ξTp(−ωpd1αxy − d2αx)+ d2, βy = e−ξTp(−ωpd1αy + d2αxy)+ωpd1.

(10)

Note that in the resonant case Tp = 2π/
√

1− ξ 2 we have αx = αy = 1, αxy = 0, βx = d2(1− e−ξTp), and
βy = ωpd1(1− e−ξTp).
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2.2. Crowd of pedestrians. When a crowd of N uniformly distributed pedestrians is walking on the
bridge the net force is

f (t)=
N∑

i=1

gi sin(ωp,i t −φi ). (11)

In principle, the parameters gi and ωp,i are stochastic variables which depend on the age, health
condition, height, etc., of the population of pedestrians. However, φi , which is also a stochastic variable,
depends only on the instant of time the pedestrian enters the bridge, and not on his human characteristics.

Single pedestrian action is modeled by (4) and the action of the crowd by (11); we neglect the in-
teractions between pedestrians, and focus only on the interaction of each pedestrian with the bridge,
which is the main mechanism responsible for the considered phenomenon. For the pedestrian-pedestrian
interactions, an interesting topic involving complex living systems, but which is out of the scope of this
paper, we refer to, for example, [Johansson et al. 2008].

In the following we make the assumption that each pedestrian of the crowd has the same natural
frequency, ωp,i = ωp. This is motivated by the fact that only pedestrians with a natural frequency close
to that of the bridge can undergo the synchronization phenomenon we are dealing with, since it involves
resonance. This fact is confirmed by the movie of the opening of the Millennium Bridge [Arup 2000],
where it is clearly seen that only some pedestrians synchronize (it was estimated at about 40% [Newland
2003]). The others are not influenced by the bridge motion and maintain their natural walking, and so,
by stochastic arguments, we can assume that they provide a zero net force on the bridge and thus are not
of interest. We conclude that only a narrow band of native frequencies is of real interest, and we consider
just one, ωp, in order to fulfill the objective of having a simple, but predictive, model.

By the previous basic hypothesis, which guarantees that the stroboscopic Poincaré map is still well
defined, we have that (11) becomes

f (t)= sin(ωpt)
N∑

i=1

gi cos(φi )− cos(ωpt)
N∑

i=1

gi sin(φi ). (12)

The summations appearing in (12) depend on the degree of synchronization of the pedestrians, that is,
on the degree of correlation of their phases φi .

In the case of perfectly asynchronous pedestrians we have that φi is a stochastic variable uniformly
distributed in [0, 2π ], which implies that

N∑
i=1

gi cos(φi )=

N∑
i=1

gi sin(φi )= 0 ⇒ f (t)= 0. (13)

This can be seen by a standard Monte Carlo analysis. In practice in this case for each pedestrian there
exists, on average, a pedestrian with opposite phase.

In the perfectly synchronous case pedestrians have exactly the same phase, φi = φ± 2nπ , so that

N∑
i=1

gi cos(φi )= cos(φ)
N∑

i=1

gi = cos(φ)Ngav,

N∑
i=1

gi sin(φi )= sin(φ)
N∑

i=1

gi = sin(φ)Ngav, (14)
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and
f (t)= Ngav sin(ωpt −φ). (15)

In the previous expressions N is the number of (synchronized) pedestrians whose frequency is close
to ωp, that is, a subset of the total number of pedestrians walking on the bridge (see previous comments);
only in calibrated experiments with controlled people is N the total number of pedestrians. The average
force of each pedestrian is gav, such that Gav = gavK ∼= 30N (see Section 2.1), and φ is the average
phase; its value is inessential, and it will be used in due course to simplify the computations.

From the previous expressions we see that f (t) ranges from f (t) = 0 (the perfectly asynchronous
case) to f (t)= Ngav sin(ωpt −φ) (the perfectly synchronous case). In real cases the actual force is in
between these two bounds, and depends on the degree of synchronization. Thus we assume

f (t)= Ngavσ sin(ωpt −φ), (16)

where σ is a dimensionless measure of the degree of synchronization, which ranges from 0 (the perfectly
asynchronous case) to 1 (the perfectly synchronous case).

Equation (16) is formally identical to (4), so that mathematically we bring back the crowd case to that
of an equivalent (single) pedestrian, and we can take advantage of the formulas of Section 2.1. In doing
this, we use the “free” overall phase to simplify the expressions. In particular, by assuming (without loss
of generality)

sin(φ)=
−2ξωp√

(1−ω2
p)

2+ (2ξωp)2
, cos(φ)=

1−ω2
p√

(1−ω2
p)

2+ (2ξωp)2
, (17)

we have

d1 =
1√

(1−ω2
p)

2+ (2ξωp)2
, d2 = 0, (18)

so that
βx =−ωpd1e−ξTpαxy, βy = ωpd1(−e−ξTpαy + 1). (19)

The map (9) becomes{
xn+1

yn+1

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ σN

{
−e−ξTpαxy

1− e−ξTpαy

}
, (20)

where

N =
Ngavωp√

(1−ω2
p)

2+ (2ξωp)2
. (21)

3. Pedestrian-bridge interaction

In the previous section only the mechanical part has been considered. In order to model the dynamical
bridge-pedestrian interaction and to describe the natural tendency of the systems to synchronize, we must
consider also the human part, starting from the basic observation that the two parts influence each other.
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The first step in this direction is to assume that not only xn and yn vary in (discrete) time, but also the
synchronization parameter σ , which is now considered as a state variable, σn , and no longer as a (fixed)
parameter. Thus, (20) becomes{

xn+1

yn+1

}
=

{
fx(xn, yn, σn)

fy(xn, yn, σn)

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ σn N

{
−e−ξTpαxy

1− e−ξTpαy

}
. (22)

Note that the passage from (20) to (22) is not a simple substitution of σ with σn , but a conceptual change
which, for example, increases the dimension of the dynamical system.

The next step consists in proposing a (discrete time) evolution law for the new state variable σn:

σn+1 = fσ (xn, yn, σn), (23)

so that (22) and (23) become a well-defined dynamical system. The choice of the function fσ (xn, yn, σn)

entails modeling the bridge-pedestrian interaction, and so it is the key point. In fact, while for the mechan-
ical part (22) there are physical (Newtonian) laws, for the human part (23) there are no corresponding
axiomatic laws, and any choice is by definition subjective.

Common sense suggests that the degree of synchronization strongly depends on the amplitude,

An =

√
x2

n +
y2

n

ω2
p
, (24)

of the bridge motion, and weakly on the current synchronization σn . Thus, in this work we assume

σn+1 = fσ (An). (25)

The following properties help in the characterization of the nonlinear function fσ (An):

(1) fσ (0)= 0. In fact, in a (mathematically) perfect case, in the absence of motion there is no synchro-
nization at all and the force on the bridge is zero. Actually, since the synchronization is a stochastic
process, in real (or imperfect) cases even if the bridge is still, the lack of synchronization is not
perfect, and there is a net force, although very small. This is achieved by assuming fσ (0) = ε,
|ε| � 1. In the sequel we will consider both the perfect and the imperfect cases.

(2) fσ (An) is a monotonic increasing function, since there is experimental evidence that the degree of
synchronization increases with the amplitude of the motion.

(3) fσ (An) is as simple as possible, since there is no experimental evidence for strange behaviors for
certain values of A0. Mathematically this property can be formulated by assuming that fσ (An) is
smooth, that is, continuously differentiable, in ]0,∞[ and that it has at maximum one inflection
point.

(4) limAn→∞ fσ (An) = 1, as, for large excitation amplitudes, all the pedestrians synchronize (that is,
there is no asymptotic limit less than 1). This property mathematically describes the saturation
condition; in practice the rate of convergence toward 1 is important, since it is practically expected
that for large but finite values of An we have achieved a practically complete synchronization.

Any function satisfying the previous four points is acceptable in principle.
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For the forthcoming developments the most important characteristic of the function fσ (An) is its
behavior around the origin An = 0. Without loss of generality we can assume the following local behavior:

fσ (An)= ε+ γk(An)
k
+ . . . , (26)

where ε is the imperfections parameter (see point (1)), k is a positive real number determining the local
rate of convergence toward An = 0, and γk is a parameter measuring the “slope” of the local behavior,
that is, the sensitivity of the pedestrians to the movement of the bridge. Both k and γk are parameters of
the model to be determined theoretically or experimentally.

4. Fixed points

Now that we have the map ((22) and (25)) describing the evolution law for the coupled bridge-pedestrian
system we can study its dynamic behavior. We start by considering the fixed points

x0 = fx(x0, y0, σ0), y0 = fy(x0, y0, σ0), σ0 = fσ (A0), A0 =

√
x2

0 +
y2

0

ω2
p
, (27)

which correspond to periodic oscillations of the original continuous time system.
Solving the first two equations of (27) yields

x0 = 0, y0 = σ0 N ⇒ A0 =
σ0 N
ωp

. (28)

Substituting this expression in (27)3 gives the nonlinear algebraic equations permitting determination of
the fixed points:

σ0 = fσ
(
σ0 N
ωp

)
⇒

ωp

N
A0 = fσ (A0). (29)

Equation (29) can be graphically solved by drawing the graph of fσ (A0) and of the straight line
(ωp/N )A0, as schematically shown in Figure 1. This permits the inference of the main qualitative
properties of the solution without exact knowledge of the function fσ (A0).

f A
s
( )0

0

1

A0

wp

N
A0

increasing N

Ncr

solution

Figure 1. A schematic representation of the graphical solution of (29).
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The solutions of (29) are now discussed by considering separately the perfect (ε = 0, Figure 1) and
imperfect (ε 6= 0) cases, and by using N as a varying (driving) parameter for parametric analysis and for
bifurcation diagrams.

4.1. Perfect case. In the perfect case fσ (0) = 0, so that we have the trivial (or rest) solution A0 = 0
corresponding to the still bridge (see (29) and Figure 1). This is the main path of solutions.

To determine if there are secondary solutions bifurcating from the trivial one, we consider the local
behavior (26) of fσ (A0), so that (29) becomes

ωp

N
A0 = γk Ak

0+ . . . . (30)

From the previous equation we conclude that if k 6= 1 there are no solutions in the neighborhood of
A0 = 0 for finite values of N , that is, there are no bifurcation points.

If, on the other hand, k = 1, then there is a branching at (we write γ instead of γ1 for simplicity)

N cr =
ωp

γ
, (31)

which, as shown in Figure 1, corresponds to the N providing the same slope at the origin for fσ (A0) and
(ωp/N )A0.

Combining (21) and (31) we get

Ncr =

√
(1−ω2

p)
2+ (2ξωp)2

γ gav
. (32)

This expression is the most important result from a practical point of view, since it gives the critical
number of pedestrians triggering the phenomenon of lateral synchronization, that is, the maximum num-
ber of (synchronizable) pedestrians allowed on the bridge deck. In fact, below this threshold there is
only the rest solution, so nothing happens. It is just at this Ncr that a different solution becomes possible,
and the swaying of the bridge appears. This is enough from a designer point of view, and it is valuable
because (32) is a very simple formula obtained with reasonable hypotheses. In particular, it does not
require knowledge of the whole function fσ (A0), but only of its local behavior.

The model parameter γ , which has dimensions of inverse length, measures the sensitivity of the
pedestrians to the bridge motion. Its meaning can be understood by considering the following piecewise
linear expression, which is the simplest choice for fσ (A0):

fσ (A0)=


γ A0, for 0< A0 ≤

1
γ
,

1, for A0 ≥
1
γ
.

(33)

This expression shows that 1/γ can be approximately considered as the amplitude such that all the
synchronizable pedestrians are actually synchronized. In fact, the limit for An →∞ in point (4) is
just a mathematical issue, since in practice the phenomenon occurs for small (or moderately small)
displacements, justifying the mechanically linear framework used in (1).

Expression (32) provides the critical number as a function of the pedestrians’ native frequency ωp. The
worst situation corresponds to the resonant case, because in this case each pedestrian has the maximum
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effect on the bridge. In fact, by minimizing (32) with respect to ωp we get

ωp,min =
√

1− 2ξ 2 = ωres, (34)

confirming, as expected, that the resonance is the worst situation. By inserting (34) into (32) we obtain

Ncr,min =
2ξ
γ gav

=
B
√

M K
1
γ

K
Gav
=

B�
γGav

, (35)

where we have assumed 4ξ 2
− 4ξ 4 ∼= 4ξ 2 due to the smallness of ξ , and where we remember that

Gav ∼= 30N [Belli et al. 2001; Marcheggiani and Lenci 2010].
Expression (35) is the same one obtained in [Lenci and Marcheggiani 2008] with a different model, and

agrees with the predictions of the more sophisticated SAMEO model studied in [Marcheggiani and Lenci
2010]. The fact that it is a result of two different models supports its reliability. In fact, in [Lenci and
Marcheggiani 2008] it has been shown that it predicts very well experimental results from the literature.
Furthermore, based on the results of the London Millennium Bridge, it has been shown that a reasonable
value for γ , likely valid in any circumstance, is γ = 0.14–0.17 cm−1

= 14–17 m−1. This means that
there is a complete synchronization for δ= 1/γ = 6–7 cm (δ refers to the [Lenci and Marcheggiani 2008]
notation), a fact that agrees well with experimental observations [Arup 2000; Dallard et al. 2001a; 2001b].
This value also agrees well with the 4.5 cm identified as the limit lateral displacement in [Nakamura and
Kawasaki 2006].

Expression (32) is the generalization of (35) to the case of nonperfect resonance, since, contrarily to
(35), it permits the detection, still in a simple way, of the effects of ωp.

Formula (35) is now extremely simple, since it requires only the knowledge of the real damping and
circular frequency of the involved (lateral) mode

Ncr,min = 0.0022B [kgsec−1
]� [sec−1

]. (36)

In spite of its straightforwardness, it is very predictive. In fact, we remember that the critical number of
pedestrians which destabilized the north span of the London Millennium Bridge was about 155 [Dallard
et al. 2001a; 2001b]. Since for the north span we have [Strogatz et al. 2005] M = 113000 kg, K =
4730000 kgsec−2

→�= 6.47 sec−1 (that is, the natural frequency is 1.03 Hz), and B = 11000 kgsec−1,
we obtain from (36) Ncr,min = 156. Note that the mass of the critical number of pedestrians is about
m = 155× 80= 12480 kg, that is, 11% of the modal mass.

To further show its reliability, we apply (36) to the Toda Park Bridge, best known as the T-Bridge, a
cable-stayed footbridge in Japan. According to [Nakamura and Kawasaki 2006] we have M = 237000 kg,
K =8092000 kgsec−2

→�=5.84 sec−1 (that is, the natural frequency is 0.93 Hz), and B=22200 kgsec−1.
Therefore the critical number of synchronizable pedestrians is Ncr,min = 285. In this case we do not have
the experimental value of Ncr, as in the case of the Millennium Bridge, but we know from [Fujino et al.
1993] that with N ∼= 2000 pedestrians (an extremely congested situation) the bridge experienced syn-
chronized oscillations. Considering that about 20% of pedestrians synchronized, as explicitly remarked
in [Fujino et al. 1993], we have N ∼= 400, which is in good agreement with Ncr,min = 285 (we cannot
expect equality, since we have data only for a synchronized situation).

In the case of the Maple Valley cable-stay bridge, also known as the M-Bridge, in Japan, we have
that the third asymmetric and, to a minor extent, the fourth symmetric modes are involved in the lateral
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synchronization [Nakamura and Kawasaki 2006; Nakamura and Kawasaki 2009]. For the third mode
we have synchronization, for example, when there are about 41 pedestrians on the deck (see [Nakamura
and Kawasaki 2009, case M-6, Figure 11]). In this case we have [Nakamura and Kawasaki 2009] M =
97200 kg, K = 29648570 kgsec−2

→ � = 5.52 sec−1 (that is, the natural frequency is 0.88 Hz), and
B = 2905 kgsec−1. Therefore the critical number of synchronizable pedestrians is Ncr,min = 35.

From the previous work we have seen that the main solution curve has a bifurcation point at Ncr. The
type of bifurcation depends on the higher-order terms of the Taylor expansion (26):

fσ (A0)= γ A0+ γ2(A0)
2
+ γ3(A0)

3
+ . . . , (37)

so that from (29) the local behavior of the branching solution is

N (A0)=
ωp

γ
−
ωpγ2

γ 2 A0−
ωp(γ3γ − γ

2
2 )

γ 3 (A0)
2
+ . . . . (38)

From (38) we see that if γ2 6= 0 we have a transcritical bifurcation. Otherwise, we have a supercritical
pitchfork bifurcation if γ3 < 0 or a subcritical pitchfork bifurcation if γ3 > 0 (in this case fσ (A0) has
an inflection point, which implies that the pitchfork is preceded by a saddle-node bifurcation for a lower
value of N , see Figure 2); this is a consequence of the fact that the trivial solution is stable for N < Ncr.
This is obvious by common sense, and can be proved mathematically by noticing that the Jacobian matrix
of the map at the rest position is

αx e−ξTp αxye−ξTp −Nαxye−ξTp

−αxye−ξTp αye−ξTp N (1−αye−ξTp)

0 γ

ωp
0

 , (39)

and the associated characteristic equation is (use is made of the property αxαy +α
2
xy = 1)

s3
− e−ξTp(αx +αy)s2

+

(
γ N
ωp

(−1+αye−ξTp)+ e−2ξTp
)

s+ γ Ne−ξTp

ωp
(−e−ξTp +αx)= 0. (40)

In fact, (40) has one solution satisfying s = 1 for N = ωp/γ = N cr, while below this threshold we have
|s|< 1.

The whole bifurcation scenario for different values of γ2 and γ3 is qualitatively depicted in Figure 3.
It is worth remarking that, again, the most interesting properties are determined only by the local

behavior of fσ (A0).
Up to now we have considered only the case k = 1, which is the most interesting from a practical point

of view because it is the unique case in which the model has a bifurcation point, which describes well,
both qualitatively and quantitatively, the real behavior. For the sake of completeness we consider now
also the cases k < 1 and k > 1. Functions with these characteristics are schematically shown in Figure 2.

By referring to Figure 2 the solution scenarios can be easily understood. For k < 1, and supposing that
fσ (A0) has regular behavior with an always negative curvature (as the function in Figure 2, see point
(3)), we see that, in addition to A0 = 0, for every value of N there is always one and only one solution
A0. Furthermore, the function A0 = A0(N ) is monotonically increasing and goes to infinity for N →∞.
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k>1

0

1

A0

f A
s
( )0

k=1

k<1

(a)

(b)

Figure 2. A schematic representation of fσ (A0) for different values of exponent k of (26).

The case k > 1 is slightly more involved. In fact we have that for small values of N (that is, very steep
straight lines), there are no solutions. When N increases, at a certain threshold the line becomes tangent
to the curve fσ (A0) (as line (a) in Figure 2), at a point ahead of the unique inflection point. Above this
threshold there are always two solutions (see line (b) in Figure 2), one of which approaches zero and the
other infinity as N →∞. This is a saddle-node bifurcation, where a solution suddenly appears, far from
the main path. This does not seem to capture the behavior observed in real cases, although we cannot
exclude in principle that it could happen in different (unobserved up to now) situations. We only note
that to detect the saddle-node threshold a local analysis around A0 = 0 is no longer sufficient.

4.2. Imperfect case. In the imperfect case fσ (0)= ε > 0, so that A0 = 0 is no longer a trivial solution.
Considering the most interesting case k = 1 we have that

ωp

N
A0 = ε+ γ A0+ γ2(A0)

2
+ γ3(A0)

3
+ . . . , (41)

so that locally the solution is

N
ωp
=

A0
ε
− γ

( A0
ε

)2
+ (−γ2ε+ γ

2)
( A0
ε

)3
− (γ 2

3 − 2γ γ2ε+ γ
3)
( A0
ε

)4
+ . . . . (42)

The main branch emanating from (A0, N ) = (0, 0) is no longer at rest, although not so far from it,
since ε is small — otherwise it cannot be considered as an imperfection and must be carefully considered
in an appropriate way. There are no longer branching points and branching paths ensuing from the main
one, a fact that constitutes the main distinction with respect to the perfect case (Section 4.1).

All possible situations are qualitatively depicted in Figure 3, together with the corresponding perfect
scenario. Each case of Figure 3 is clearly an unfolding of a local branching bifurcation, according to the
fact that transcritical and pitchfork bifurcations are not structurally stable [Wiggins 1997].

Comparing the pictures of Figure 3 with the numerical simulations of the SAMEO model [Marcheg-
giani and Lenci 2010] and with the experimental outcomes (the results of the Arup tests can be looked
up, for example, in [Newland 2001; Abrams 2006]) we see that the situation actually occurring is that of
Figure 3c; in fact, for low values of N there are small (but not null) oscillations, which suddenly but not
instantaneously (as it would be in the perfect case of a pitchfork bifurcation) increase around a critical
threshold.
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Figure 3. Qualitative bifurcation paths for perfect and imperfect cases; stable (solid
lines) and unstable (dashed lines).

From the previous considerations we can draw the following conclusions:

• The theoretical critical value Ncr computed in the previous section is a reference value, of course of
great engineering interest, and not the mathematically exact value of the critical threshold, which
actually does not exist.

• The dynamical phenomenon underlying the problem of pedestrian-induced lateral vibrations of
footbridges is a perturbation of a pitchfork bifurcation. This result was also obtained in [Lenci
and Marcheggiani 2008] and is herein confirmed with a different model.

5. The resonant case

We have seen in the previous sections that the resonant case is the worst situation, and thus in this section
it is studied in detail.

We start by noticing that the minimum of Ncr for varying ωp is obtained for ωp =
√

1− 2ξ 2 (see
(34)). This is the mathematical resonance, corresponding to the maximum of the amplification factor
[Clough and Penzien 1975]. The engineering resonance is given by ωp =

√
1− ξ 2 and corresponds to

the coincidence between the external (excitation) and internal (natural) frequencies. When ξ is small, as
occurs in practical cases, the difference is negligible.

In the engineering resonance case we have αx = αy = 1, αxy = 0, and the map given by (22) and (25)
becomes (Tp = 2π/

√
1− ξ 2):

xn+1 = e−ξTp xn, yn+1 = e−ξTp yn + σn N (1− e−ξTp), σn+1 = fσ (An). (43)
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From (43)1 we conclude that, for any trajectory, xn → 0 for n→∞. This means that the (planar)
invariant manifold x = 0 is globally attractive, so that the most interesting dynamics live on it. Note that
due to (28)1 the fixed points obtained in the previous section belong to the manifold.

On the invariant manifold system (43) reduces to the 2D map

yn+1 = (1− a)yn + aNσn, σn+1 = fσ

(
|yn|

ωp

)
= fσ

(
|yn|√
1− ξ 2

)
= f̄σ (|yn|), (44)

where a = 1− e−ξTp = 1− e−2πξ/
√

1−ξ2 is a positive number less than 1. In real structures it is possibly
small, a ∼= 2πξ (and in this case fσ coincides with f̄σ ), but this hypothesis is not required here.

Given an initial point Pn= (yn, σn) in the phase space (R, [0, 1]) of (44), its image Pn+1= (yn+1, σn+1)

can be obtained by the following graphical procedure, which is a noticeable property of map (44) and
which is illustrated in Figure 4:

(1) From Pn draw a vertical line and individuate points A and B where it intersects line r of equation
σn = yn/N and the function f̄σ (|yn|), respectively.

(2) From A draw the line s of slope 1/(aN ) (which is more steep than line r since a < 1).

(3) From Pn draw a horizontal line and individuate the point C of intersection with s.

(4) From C draw a vertical line and from B a horizontal line. The intersection point is Pn+1.

0 yn

1
f
s
(| )y |n

r

s

1
N

1

Pn

1
aN

1

A

B

sn

C

Pn+1

yn

yn

N

sn

yn

N
-sn

ay -an nNs(1-  )a y -an nNs

Figure 4. Sketch of the graphical construction of the 2D map (44). In gray is attracting
region R = (yn, σn) ∈ ([0, N ], [0, 1]).
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Figure 5. Some properties of the map (44).

From the previous graphical construction it is immediately seen that the unique nontrivial fixed point
(when it exists, that is, above N cr) corresponds to y0 such that points A and B coincide, that is, when
line r intersects f̄σ (|yn|). This corresponds exactly to the point found by the graphical construction of
Figure 1.

By using the graphical construction of Figure 4 it is possible to note the following properties, which
are illustrated in Figure 5 and which further help in understanding the behavior of the 2D map:

• segment F-G is the diagram of the horizontal displacements of the points belonging to segment
D-E , that is, the points having a fixed yn and varying σn and

• the image of segment D-E is segment H -I .

It is useful to rewrite (44)1 in the alternative form

1yn = yn+1− yn = a(Nσn − yn). (45)

Since 0≤ σn ≤ 1, we have that

−ayn ≤1yn ≤ a(N − yn). (46)

From the left-hand side inequality we see that for all negative yn the difference 1yn is positive, so that
every point in the region yn < 0 tends to move toward yn = 0. From the right-hand side inequality, on
the other hand, we see that for all yn > N the difference 1yn is negative, so that every point in the region
yn > N tends to move toward yn = N (see an example in Figure 5). The conclusion is that the region
R = (yn, σn) ∈ ([0, N ], [0, 1]), which is shown in gray in Figures 4 and 5, is globally attracting, and
the steady-state behavior lies therein. In fact, points belonging to R do not escape from it, since from
0≤ yn ≤ N and 0≤ σn ≤ 1 it follows (see (44)1) that 0≤ yn+1 ≤ N .

On the attracting region R the map (44) is invertible, because f̄σ (yn) is invertible on R+ by the
assumptions made in Section 3.
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Figure 6. The six subregions of the attracting region of the map (44).

In the case N > N cr the region R can be divided into six subregions, as shown in Figure 6. From the
graphical constructions introduced above we see that:

• R1→ R3 ∪ R4 ∪ R5 ∪ R6;

• R2→ R4 ∪ R5 ∪ R6;

• R3→ R3;

• R4→ R2 ∪ R3;

• R5→ R6;

• R6→ R5 ∪ R6.

An example is reported in Figure 7 where f̄σ (y)= tanh(y), N = 1.5 (> N cr = 1), and a = 0.3.
From the previous scheme we conclude that periodic or chaotic solutions (not necessarily stable) are

possible only in R3, alternating in R2 and R4, and alternating in R5 and R6. These considerations are
the starting point for the detailed study of the dynamical behavior of the map (44), which is out of the

Figure 7. The six subregions of the attracting region and their images after one iteration
of the map, where f̄σ (y)= tanh(y), N = 1.5 (> N cr = 1), and a = 0.3.
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scope of the present paper and is left for future work. We only note that in some isolated numerical
simulations based on the example of Figure 7 we have seen that the bifurcated equilibrium point P0 is
globally attractive for the whole phase space.

6. Conclusions

A 3D discrete-time dynamical system has been proposed for studying the pedestrian-induced lateral
vibrations of footbridges. For the mechanical part, the model is based on the stroboscopic Poincaré
map of the flow of the associated continuous time, one mode system, while the coupling between the
pedestrians and the bridge motion has been modeled by assuming that the degree of synchronization of
the pedestrians is a function fσ of the amplitude of the bridge oscillations.

The fixed points of the map have been studied in detail, without exact knowledge of fσ . Only the
local behavior of fσ around the rest position and some qualitative properties have been used. Both the
perfect and the imperfect cases have been considered.

In the perfect case it has been shown that in the unique case of interest in practice (corresponding to
f ′σ (0)= γ ∈ ]0,∞[) there is a main path of rest solutions. When the number of pedestrians N increases,
at a certain threshold Ncr a secondary path bifurcates from the previous one, thus allowing for “large”
oscillations of the bridge. This is the threshold of activation of the unwanted lateral oscillations, and it
is of primary importance in practice. With the proposed model a very simple, predictive, and general
formula is obtained for Ncr, a fact that constitutes the main result of this paper.

The imperfect case has been considered, by including the effect of small imperfections. It has been
shown how the four possible fixed-points scenarios are modified by the imperfections. The one corre-
sponding to a perturbation of a pitchfork bifurcation is noted to agree with experimental observations on
real cases (the Arup experiments on the Millennium Bridge) and with numerical simulations of a more so-
phisticated model. Thus, it is concluded that the dynamical phenomenon underlying the synchronization
problem is a perturbation of the pitchfork bifurcation.

The present paper is devoted to the construction of the model and to the study of the fixed points,
which is sufficient to obtain the desired formula for the critical number of pedestrians and to understand
the main dynamical aspects. The detailed study of the whole dynamics of the system, including more
complex phenomena such as chaos, is worthwhile but out of the scope of this work, and is left for future
work.
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FREE VIBRATION OF A SIMULATION CANDU NUCLEAR
FUEL BUNDLE STRUCTURE INSIDE A TUBE

XUAN ZHANG AND SHUDONG YU

This paper presents a numerical rigid-elasto model for vibration of a simulation nuclear fuel bundle
structure confined in a circular tube. The model is developed using the finite element method combined
with the floating frame formulation. The nonlinear dynamic equations are derived using the Lagrange
equations. Small-amplitude vibration about the static equilibrium position is obtained through lineariza-
tion. Numerical results show that the fundamental mode is a rocking-like mode, in which rigid body
translation and rotation are coupled with elastic deformations. Gravity is found to reduce the frequency
of the fundamental mode without affecting the higher modes. Experiments are conducted for a single
fuel bundle structure to validate the numerical results.

1. Introduction

Horizontally placed CANDU1 fuel bundles in a circular tube are used in the Canadian nuclear industry.
During operation, the fuel bundles experience small-amplitude flow-induced vibration, which can result
in significant wear to the supporting structures over a period of time.

Static deformations of fuel bundle structures have been investigated in [Cho et al. 2000; Horhoianu
and Ionescu 2006]. Dynamic models of a horizontally placed rod bundle sitting on the inner surface of
a tube have not been seen before in the literature.

A 43-element simulation fuel bundle is shown in Figure 1 on the next page. The bundle has 43 rods
distributed in 3 rings and at the center. The rods are interconnected by two endplates. Each endplate
consists of 3 circular rings and 16 ribs/webs. The weight of the bundle
is supported by the bearing pads on the bottom rods in the outer ring,
as shown on the right. Ideally there are four bearing pads in contact
with the tube surface and supporting the bundle weight. The radial
gaps between the tube surface and the bearing pads on the rods next to
the bottom rods are about 30–50µm, which permits small-amplitude
bundle vibration without impacting the supporting structure. This small-
amplitude vibration results in a relatively large motion in the top parts of
the bundle due to the large bundle diameter. When disturbed or excited,
the bundle vibrates about its equilibrium position.

Fuel channel inspections at the Darlington nuclear station indicated that bundle vibrations, for exam-
ple, rocking, induced by the coolant flow were responsible for the fretting between the pressure tube
spacer sleeve and the inlet bundle bearing pads [Judah 1992]. Modeling the bundle vibration requires

Keywords: multibody dynamics, floating frame, fuel bundle structure, vibration.
1CANadian Deuterium and Uranium, a registered trademark of Atomic Energy of Canada Ltd.
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formulation of the rigid-elastic motions of a 3D bundle structure. The superimposition method [Schwab
and Meijaard 2002] and the floating frame formulation [Shabana 2005] have been used to deal with rigid
and elastic motions of a 3D body.

Extending from [Zhang and Yu 2010a], this paper presents a numerical procedure for modeling the rod
bundles using the floating frame formulation. A rigid-elastodynamic model is established and applied to
the study of the fundamental mode of a single bundle. The influence of gravity is discussed based on the
simulation results. The simulation results are compared to experimental results.

2. Finite element model in the floating frame formulation

The floating frame formulation used in multibody dynamics is employed to couple the rigid body motion
and the elastic deformation of the bundle. Nonlinear equations of motion are obtained for the bundle
vibration, and then simplified to a set of linear equations for the small-amplitude vibrations about the
equilibrium.

As shown in Figure 1, left, a global inertia frame is chosen in such a way that the X -axis is horizontal
and the Y -axis is vertical. The origin of the global frame is chosen to be the center of the upstream
endplate. To describe the rigid body motion, a reference frame x-y-z is also defined in the figure. The
frame is rigidly attached to the mass center of the bundle so that it moves and rotates with the bundle.
This frame is regarded as the body frame of the bundle.

The bundle is discretized using two types of finite elements. The rods are modeled using a three-node
higher-order beam element in conjunction with Euler–Bernoulli theory [Meirovitch 2001]. The endplates
are modeled using a special nine-node isoparametric plate element [Yu and Wen 2007] in conjunction
with the third-order thick plate theory of [Reddy 1984]. The finite element model is shown in Figure 1,
right. The endplate is regarded as massless because its mass is significantly smaller than the mass of the
rods. Therefore the stiffness of the endplate can be condensed using static substructuring. A superelement
can then be achieved for each endplate using the procedures described in [Zhang and Yu 2010b].

Figure 1. Rod bundle: isoparametric view (left) and finite-element mesh (right).
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Two sets of degrees of freedom (DOFs) are considered in this model. The first set is the rigid body
(body frame) displacement including translations uc and rotations φ measured in the global frame X -Y -Z .
The second set is the deformation-induced displacement u f measured in the body frame. In the floating
frame formulation [Shabana 2005], the displacement of an arbitrary material point on the bundle can be
expressed as

u = uc+ [A(φ)− A0]x+ A(φ)u f ,

where A(φ)= A3 A2 A1 is the Euler rotation matrix,

A3 =

cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1

 , A2 =

 cosϕ2 0 sinϕ2

0 1 0
− sinϕ2 0 cosϕ2

 , A1 =

1 0 0
0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1

 .
ϕ1, ϕ2, and ϕ3 are three Euler angles. A0 is the initial value of A and is equal to the identity matrix I ;
u f can be further expressed in terms of the finite element nodal displacement ū f as

u f = tT N(x)T ū f ,

where N(x) is the shape function of the beam element, while t and T are the transformation matrices
between the element local frame and the body frame coordinates for the material point and the nodal
DOFs, respectively. Vector x is the distance vector from the body frame origin to the material point
measured in the body frame. Vector x can be expressed as x = x(b)E + tT x(e), where x(b)E is the distance
vector from the body frame origin to the element local frame origin measured in the body frame and x(e)

is the distance vector from the element local frame origin to the material point measured in the element
local frame.

The velocity of the arbitrary material point is

u̇ = u̇c+ Ȧ(x+ u f )+ Au̇ f =
[
Lr L̃ f

] { u̇r
˙̄u f

}
= Lq̇,

where

q =
{
uT

r ūT
f
}T
, ur =

{
uT

c φT }T
, Lr =

[
I B

]
, L̃ f = [ Ã] = [AtT N(x)T ū f ],

B =
[

A3 A2
∂A1
∂ϕ1

u∗ A3
∂A2
∂ϕ2

A1u∗ ∂A3
∂ϕ3

A2 A1u∗
]
= B(ϕ, u∗),

u∗ = x+ u f = x+ tT N(x)T ū f .

The kinetic energy of the system can then be expressed as

T =
∫

V

1
2
ρ u̇T u̇dV = 1

2

{
u̇r
˙̄u f

}T [Mrr Mr f

M f r M f f

]{
u̇r
˙̄u f

}
=

1
2

q̇T Mq̇, (1)

where

Mrr =

∫
V
ρLT

r Lr dV, Mr f =

∫
V
ρLT

r L̃ f dV, M f r =

∫
V
ρ L̃

T
f Lr dV, M f f =

∫
V
ρ L̃

T
f L̃ f dV .
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The potential energy of the system is simply the summation of the elastic potential energy Ve and the
gravity potential energy Vg:

V = Ve+ Vg, Ve =
1
2

{
ur

ū f

}T [0 0
0 K f f

]{
ur

ū f

}
=

1
2

qT K q, Vg =

∫
V
ρg
[
0 1 0

]
r dV, (2)

where K f f is the stiffness matrix obtained using the finite element method for the bundle and r is the
distance vector from the global origin to the arbitrary material point.

The bundle is assumed to be constrained at the four bearing pad locations. The bundle cannot move
due to the large weight and the frictional force between the bundle and the hosting tube. It is justified to
consider the nodes as simply supported at the four bearing pad locations when small oscillatory motion
is studied. Therefore, the following constraint conditions apply:

u(i) = uc+ [A(φ)− A0
]x(i)+ A(φ)ū(i)f = 0, (3)

where superscript (i) represents the i-th constrained node (i = 1, . . . , 4).
According to the free and constrained DOFs, (1) and (2) can be partitioned

T = 1
2


u̇r
˙̄u f c
˙̄u f i


T M11 M12 M13

M21 M22 M23

M31 M32 M33


u̇r
˙̄u f c
˙̄u f i

 , Ve =
1
2


ur

ū f c

ū f i


T K 11 K 12 K 13

K 21 K 22 K 23

K 31 K 32 K 33


ur

ū f c

ū f i

 , (4)

where ū f c =
{
ū(1)f

T
ū(2)f

T
ū(3)f

T
ū(4)f

T }T represents the DOFs corresponding to the constrained nodes
and ū f i represents the unconstrained DOFs.

From (3), ū f c can be expressed in terms of ur . The independent DOFs become q̃ = {uT
r ūT

f i }
T .

Substituting into (4), the kinetic energy and elastic potential energy become

T = 1
2
˙̃qT
[

M11 M13

M31 M33

]
˙̃q+ T̄ ( ˙̃q, q̃)= 1

2
˙̃qT Ms ˙̃q+ T̄ ( ˙̃q, q̃),

Ve =
1
2

q̃T
[

K 11 K 13

K 31 K 33

]
q̃+ V̄e(q̃)=

1
2

q̃T K s q̃+ V̄e(q̃),
(5)

where

T̄ ( ˙̃q, q̃)= 1
2(u̇

T
r M12 ˙̄u f c+ ˙̄uT

f c M21u̇r + ˙̄uT
f i M32 ˙̄u f c+ ˙̄uT

f c M23u̇r + ˙̄uT
f c M22 ˙̄u f c),

V̄e(q̃)= 1
2(u

T
r K 12ū f c+ ūT

f c K 21ur + ūT
f i K 32ū f c+ ūT

f c K 23ur + ūT
f c K 22ū f c).

Gravity potential can also be expressed as a composite function of q̃:

Vg = Vg[ur , ū f c(ur ), ū f i ] = Vg(q̃).

Assuming no nonconservative load, the equations of motion of the system can be obtained using the
Lagrange equations [Meirovitch 2001]:

d
dt

(
∂T

∂ ˙̃q

)T

−

(
∂T
∂ q̃

)T

+

(
∂Ve

∂ q̃

)T

+

(
∂Vg

∂ q̃

)T

= 0. (6)
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Substituting (2)–(4) into (6), notice that Ms depends on q̃ while K s is a constant. The equations of
motion become

Ms ¨̃q+ Ṁs ˙̃q+
d
dt

(
∂ T̄

∂ ˙̃q

)
−
∂

∂ q̃
( 1

2
˙̃q Ms ˙̃q)T −

∂ T̄
∂ q̃ + K s q̃+ R(q̃)+ H(q̃)= 0,

where R represents the nonlinear term from the derivative of the elastic potential energy and H represents
the force and moment induced by gravity:

R(q̃)=
∂ V̄e

∂ q̃
=

K 12ū f c+

(
∂ ū f c

∂ur

)T
K 21ur +

(
∂ ū f c

∂ur

)T
K 23ū f i +

(
∂ ū f c

∂ur

)T
K 22ū f c

K 32ū f c

= [ Rr

R f i

]
,

H(q̃)=
∂Vg

∂ q̃
=

{(
∂Vg

∂ur
+
∂Vg

∂ ū f c

∂ ū f c

∂ur

)T

,

(
∂Vg

∂ ū f i

)T}T

,

where
∂Vg

∂ur
=

∫
V
ρg
[
0 1 0

] [
I B

]
dV,

∂Vg

∂ ū f c
=

∫
V
ρg
[
0 1 0

] [
˜̃A
]

dV,

and ˜̃A is a fraction of Ã which corresponds to the constraint DOFs u f c. From (3), it can be obtained that

∂ ū f c

∂ur
=−A−1 [I B(u∗c)

]
,

where u∗c = x+ ū f c(q̃).
The damping effect caused by the velocity terms is not within the scope of this paper. Ignoring the

velocity terms Ṁs ˙̃q, (∂/∂ q̃)
( 1

2
˙̃q Ms ˙̃q

)
, ∂ T̄ /∂ q̃, and those in (d/dt)(∂ T̄ /∂ ˙̃q), the governing equations

become
Ms ¨̃q+ K s q̃+ S( ¨̃q, q̃)+ R(q̃)+ H(q̃)= 0, (7)

where

S( ¨̃q, q̃)=

M12 ¨̄u f c+

(
∂ ū f c

∂ur

)T
M21ür +

(
∂u f c

∂ur

)T
M23 ¨̄u f i +

(
∂ ū f c

∂ur

)T
M22 ¨̄u f c

M32 ¨̄u f c

= [ Sr

S f i

]
.

If the dynamic terms in (7) are dropped, a static equilibrium solution of the system q̃0 can be ob-
tained through iteration. A Fortran90 code is implemented to solve for the equilibrium solution. For a
convergence criterion of 0.001 for the L2 norm of the displacement vector, it takes two steps to reach
the converged equilibrium solution. Figure 2 shows the scaled global deformation of the bundle at three
different locations for the equilibrium solution.

Denoting δ as the deviation from the equilibrium position, the generalized coordinates can be expressed
as q̃= q̃0

+δ. Substituting this equation into (7), dropping the constant terms and linearizing the nonlinear
terms with a Taylor expansion at q̃0, the governing equation for oscillation about the equilibrium can be
obtained as

Ms δ̈+ S(δ̈, q̃0)+
(

K s +
∂R
∂ q̃ (q̃

0)+
∂H
∂ q̃ (q̃

0)
)
δ = 0. (8)
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The term S(δ̈, q̃0) can be further linearized using the Taylor expansion at δ̈ = 0, and (8) becomes(
Ms +

∂S
∂ δ̈
(0, q̃0)

)
δ̈+

(
K s +

∂R
∂ q̃ (q̃

0)+
∂H
∂ q̃ (q̃

0)
)
δ = 0, (9)

where

∂S
∂ δ̈
(0, q̃0)=


∂Sr
∂ ür

(
∂ ¨̄u f c

∂ ür

)T
M23

M32

(
∂ ¨̄u f c

∂ ür

)
0


δ̈=0

q̃=q̃0

,
∂R
∂ q̃ (q̃

0)=


∂Rr
∂ur

(
∂ ū f c

∂ur

)T
K 23

K 32

(
∂ ū f c

∂ur

)
0


q̃=q̃0

,

∂ ü f c

∂ ür
=̇

−A−1
− A−1 B(ϕ, u(1))

...

−A−1
− A−1 B(ϕ, u(4))

 , ∂u f c

∂ur
=̇

−A−1
− A−1 B(ϕ, u∗(1))

...

−A−1
− A−1 B(ϕ, u∗(4))

 ,

∂H
∂ q̃ =

Ne∑
i=1

∫
Vi


0 0 0

0 ∂B2,:
∂φ

∂B2,:
∂u f

0 ∂ Ã2,:
∂φ

0


q̃=q̃0

dV,

and where the subscript (2, :) represents the second row of the matrix. ∂Sr
∂ ür

and ∂Rr
∂ur

are 6× 6 matrices.

3. Numerical solutions and discussion

A numerical solution to the governing equations of motion, (9), is sought. The geometry and material
properties of the bundle are listed in Table 1. The numerical solution shows that the fundamental natural
frequency is 6.1 Hz. After normalizing the eigenvector, it is found that the Z -direction rigid body rotation
is the primary dominant component and the X -direction rigid body translation is the secondary. The

   

Figure 2. Scaled deformation in equilibrium at different locations: bundle ends (left),
bearing pads (middle), and midspan (right).
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Parameter Symbol Value

Bundle length (mm) L 500.0
Outer ring mean radius (mm) R1 42.5
Intermediate ring mean radius (mm) R2 30.0
Inner ring mean radius (mm) R3 16.5
Ring and rib width (mm) b 3.4
Endplate thickness (mm) t 3.0
Young’s modulus (GPa) E 200.0
Poisson’s ratio ν 0.3
Shear modulus (GPa) G 76.9

Table 1. Geometric dimensions and material properties.

   

Figure 3. Scaled deviation of the rocking mode at different locations: bundle ends (left),
bearing pads (middle), and midspan (right).

elastic DOFs are negligibly small except those on the two supporting rods at the bottom. To visualize the
solution, the mode shape of the small deviation is shown in Figure 3. The total displacement, which is
the static deformation superposed with the scaled deviation eigenvector, is shown in Figure 4. The mode
exhibits a rocking motion in terms of the total displacement.

It is necessary to validate the accuracy of the meshing scheme and the numerical methods used in this
paper against independent finite element code. Most general finite element codes do not incorporate the
floating frame formulation; therefore comparison can be made on a conventional finite element model
of the bundle structure. The above rigid-elasto model is degraded to a conventional finite element model
by removing the floating frame formulation. The modal solution from this model is compared to that of
an independent finite element model developed in ANSYS®ED 8.0 using straight beam elements. The
comparison of the natural frequencies is shown in Table 2.

From the above solutions, it can be seen that the rigid body motion and gravity have a significant
influence on the rocking frequency. The structural solution, which does not include the rigid body DOFs
and the gravity terms, shows a frequency of 7.7 Hz, while the rigid-elasto solution shows a frequency of
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Figure 4. Scaled total displacement of the rocking mode at different locations: bundle
ends (left), bearing pads (middle), and midspan (right).

Mode Natural frequencies (Hz)

This paper ANSYS ED 8.0

1 7.7 7.5
2 50.8 50.0
3 93.0 87.7
4 93.8 93.2
5 94.3 93.6
6 94.8 94.0

Table 2. Validation on the current finite element model (without floating frame formu-
lation) against ANSYS ED 8.0.

Mode Frequencies (Hz) Difference (%)

With Without

1 6.1 7.7 20.8
2 50.4 50.8 0.8
3 91.9 93.0 1.2
4 93.8 93.8 0.0
5 94.2 94.3 0.1
6 94.4 94.8 0.4

Table 3. Influence of gravity. Frequencies are shown for with and without floating frame
formulation and gravity.

6.1 Hz. The difference is 20.8%. It can be seen in Table 3 that the influence of gravity is only significant
on the fundamental mode. This is because the fundamental mode is related to rigid body rotations and
gravity does positive work when the bundle rocks from the equilibrium position to either side. The
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Figure 5. Scaled deformation of the rocking mode at different locations without floating
frame formulation and nonlinear terms: bundle ends (left), bearing pads (middle), and
midspan (right).

second mode is a pure vertical motion and the gravity work cancels itself in the motion. Higher modes
are characterized by the bending deformation of the rods, and thus receive little influence from gravity.
The fundamental mode of the structural solution is also shown in Figure 5 for comparison.

Although the influence of gravity is important, it needs to be clarified that the impact is delivered
“indirectly”. The major influence of gravity is enforced through the equilibrium solution hidden in the
nonlinear terms ∂S/∂ δ̈ and ∂R/∂ q̃, especially the latter. The ∂Rr/∂ur term in ∂R/∂ q̃ can be further
expressed as

∂Rr

∂ur
=

[
K 12

∂u f c

∂ur
+

(
∂u f c

∂ur

)T

K 21+ 2
(
∂u f c

∂ur

)T

K 22
∂u f c

∂ur

]
q̃0

+

[
uT

r
∂hA

i

∂ur
+

∂

∂ur
(hB

i u f i )+ uT
r
∂hC

i

∂ur

]
q̃0
, (10)

where hA
i , hB

i , and hC
i are the i-th rows of (∂u f c/∂ur )

T K 21, (∂u f c/∂ur )
T K 23, and (∂u f c/∂ur )

T K 22,
respectively. The terms in the second set of brackets in (10) contain the equilibrium solution which is
a consequence of gravity. If this term is dropped, the rocking frequency will increase to a value which
is almost identical to the structural solution. It should be noticed that the coupling term between the
constraint DOF and the rigid body DOF terms K 12 and K 21 is actually zero; therefore, the corresponding
terms in the second set of brackets are dominant. Even a small quantity in the second set of brackets
may have a strong influence on the result. Dissimilarly to this, the contributions from the nonlinear terms
in ∂S/∂ δ̈ are very small compared to those from M12 and M21, and hence have little influence on the
result.

Influences from the nonlinearity in the Euler rotation matrix A, the derivative matrix B, and the
constraint equations are relatively small compared to the indirect influence of gravity. However, if the
constraint equations are linearized so that ∂u f c/∂ur becomes a constant, then the derivatives of hA

i , hB
i ,

and hC
i in (10) will become zero and hence the influence from gravity will be lost.



1062 XUAN ZHANG AND SHUDONG YU

There is also a “direct” influence of gravity, the ∂H/∂ q̃ term. This represents the rate of change in
the gravity-induced moment with respect to the displacement. Although this term is derived from the
gravity potential, its impact is negligible in this application, because the rods in the bundle are almost
evenly distributed. Numerical solution shows that the values of the elements in the ∂H/∂ q̃ term are a
few orders lower in magnitude then those in the K s and ∂R/∂ q̃ terms.

4. Experiment

An experiment was carried out to determine the rocking frequency of the bundle. Lateral oscillation in the
horizontal direction of the bundle may be related to the rocking motion of the bundle. Its frequency can
be obtained by monitoring the oscillatory motion of a point on the outer ring of the bundle near the end.
Instead of using accelerometers, a noncontact displacement sensor is used for vibration measurement.
This type of sensor is more sensitive to low frequency, relatively large displacement vibrations.

To measure the bundle vibration, a 43-rod bundle is placed inside a 4-inch PVC tube supported by
strong steel columns, as shown in Figure 6. A noncontact differential variable reluctance transducer
(MicroStrain NC-DVRT-1.5) is used to recode the lateral displacement of the bundle. The sensor detects
the distance between a target object and the face of the transducer head. The reluctance of the coils
within the sensor is changed when the face of the transducer is in close proximity to a ferrous or highly
conductive material. The transducer outputs a voltage signal that is a nonlinear function of the distance.
The typical repeatability of this transducer is ±2µm and the frequency range is 0 to 800 Hz. The trans-
ducer is mounted at one side of the tube near the end of the bundle. The transducer head penetrates
the tube wall and approaches the rod around the 4 o’clock position. The initial gap from the head of
the transducer is around 200µm for the best gain factor in the output. The time-domain voltage signal
is sampled with a sampling rate of 5 kHz and recorded using a data acquisition system. The voltage
signal is then converted to gap distance and analyzed using code written in Matlab to obtain the spectral
information.

Figure 6. Experimental setup.
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Figure 7. The response of the bundle to an impulse.

The response of the bundle to an impulse is recorded and analyzed. The time-domain displacement
of the monitored point and its power spectral density are shown in Figure 7. The response of the rocking
mode is found to be clear and free of noise from higher modes, such as the 90–100 Hz mode group
corresponding to the first bending mode of the rods. The rocking mode frequency is 6.0 Hz. The damping
ratio calculated from the difference between the peaks in the time-domain signal is about 0.05. For such
a low damping ratio, the effect of damping on natural frequencies is negligible.

The tube is built from PVC, a material softer than steel. When the steel bearing pads contact the
tube inner surface, the soft material will deform. This deformation leads to a contact stiffness and may
have an influence on the fundamental frequency. It is necessary to examine the contact stiffness and
compare it to the overall equivalent stiffness that relates to the bundle deformation with the current
boundary conditions. The Boussinesq point contact solution [Johnson 1985] is used to estimate the order
of magnitude of the normal contact stiffness kC . Based on the solution, the normal elastic deformation w
at the contact location when a point object indents on a semiinfinite elastic space in the normal direction
can be expressed as

w =
2P(1− ν)

4πGr
, (11)

where P is the normal contact force, r is the contact point radius, G is the shear modulus of the elastic
space (G = 1 GPa for PVC), and ν is the Poisson’s ratio of the elastic space (ν = 0.41 for PVC). The
order of magnitude of the contact stiffness on one bearing pad can then be estimated as kC,1 ∼ P/w =
πGr/(1− ν) ≈ 107. The overall contact stiffness provided by the contact of the four bearing pads
is kC = 4kC,1 ∼ 4 × 107. Because the most potential energy in the rocking mode comes from the
deformation of the two rods that contact the tube through bearing pads, it is reasonable to compare kC

with the equivalent stiffness of these rods. The equivalent stiffness can be conveniently estimated by
dividing the weight of the bundle and the vertical displacement of its mass center from a static analysis.
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The order of magnitude of the equivalent stiffness is obtained as kE ∼ 1× 106, which is far smaller than
kC . This indicates that the contact stiffness can be considered infinite and the tube can be regarded as
rigid with regards to the lower bundle vibration modes.

5. Conclusions

The vibration of a 43-rod simulation CANDU fuel bundle horizontally placed in a supporting tube
is studied through numerical models and experiments. The floating frame formulation and nonlinear
constraint conditions are employed in a finite element model to predict the natural frequencies of the
small-amplitude oscillations about the equilibrium position. The fundamental mode is found to be a
low frequency rocking mode, which is a combination of rigid body motion and elastic deformation, but
is dominated by the rigid body rotation about a bundle axis. Gravity is found to influence the rocking
motion, and to reduce the frequency. The simulation results are in good agreement with experimental
results.
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NONLINEAR DYNAMICS AND SENSITIVITY
TO IMPERFECTIONS IN AUGUSTI’S MODEL

DIEGO ORLANDO, PAULO BATISTA GONÇALVES, GIUSEPPE REGA AND STEFANO LENCI

The influence of geometric imperfections on the nonlinear behavior and stability of Augusti’s model un-
der static and dynamic loads is analyzed. This 2-DOF lumped-parameter system is an archetypal model
of modal interaction in stability theory representing a large class of structural problems. When the system
displays coincident buckling loads, several postbuckling paths emerge from the bifurcation point (critical
load) along the fundamental path, in particular coupled unstable postbuckling paths that control the non-
linear dynamics of the system for load levels lower than the critical load. Systems displaying unstable
postbuckling behavior are particularly sensitive to initial imperfections. They decrease the static buckling
load and distort the topology of the safe potential well. Herein, coupled/uncoupled dynamic responses,
bifurcations, escape from the prebuckling potential well, stability, space-time-varying displacements,
and attractor-manifold-basin phase portraits are numerically evaluated with the aim of enlightening the
effect of system imperfection sensitivity. In particular, the investigation of the reduction of escape load
for several varying system parameters highlights the remarkable loss of safety and dynamic integrity of
the structure due to penetration of eroding fractal tongues into the safe basin.

1. Introduction

The influence of imperfections on bifurcations can be traced back at least to [Koiter 1945] in problems of
elastic stability and [Zocher 1933] in problems involving liquid crystals. A mathematical treatment of the
problem can be found, for example, in [Iooss and Joseph 1980]. Analysis of the imperfection sensitivity
of simplified models exhibiting different types of bifurcation under static loads can be found in [Croll and
Walker 1972; Thompson and Hunt 1973; 1984; Naschie 1990], among others. These models have been
used to demonstrate the nonlinear behavior and stability of several classes of structures. The influence
of imperfection is particularly important in systems liable to postbuckling behavior. One area where the
study of imperfection sensitivity is essential is the analysis of systems where the interaction of different
buckling modes with equal or nearly equal bifurcation loads may conspire to increase or even generate
unstable postbuckling paths.

Augusti’s model constitutes an archetypal model for this class of problems [Augusti 1964]. Static
analysis of this model can be found in, for example, [Croll and Walker 1972; Baz̆ant and Cedolin 1991;
Pignataro et al. 1991; Raftoyiannis and Kounadis 2000]. Augusti’s model represents a large class of
structures where the postbuckling behavior is controlled by modal coupling. This model may present
two equal or nearly equal critical loads associated with two different critical modes. When the modes

The authors acknowledge the financial support of the Brazilian research agencies CAPES, CNPq and FAPERJ-CNE..
Keywords: Augusti’s model, modal coupling, nonlinear oscillations, imperfection sensitivity, dynamic instability,

load-carrying capacity.
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are analyzed separately, the structure exhibits a stable symmetric postbuckling behavior. However, when
the modal coupling is taken into account, apart from the uncoupled solutions, which become unstable,
new coupled unstable paths emerge from the bifurcation points. These unstable coupled paths delimit
the safe prebuckling well and the magnitude of the perturbations that the structure can withstand without
escaping from the safe well. Continuous structures displaying coincident or nearly coincident buckling
loads, are, among others, plates, shells, cold-formed struts, and some frame structures [Tvergaard 1973;
Baz̆ant and Cedolin 1991; Kiymaz 2005; Chen and Yu 2006; Brubak and Hellesland 2007; Dinis et al.
2007; Kołakowski 2007; Quinn et al. 2007]. A particularly notorious case is the cylindrical shell under
axial compression, which, as shown in [Koiter 1945], may display for certain geometries an infinite
number of coincident buckling loads [Heijden 2008]. Another interesting model in the static context
proposed by Augusti was thoroughly investigated in [Elishakoff et al. 1996].

The influence of modal coupling on the nonlinear dynamics of Augusti’s model has been addressed
in [Gonçalves et al. 2009]. Here, upon formulating the mechanical problem for the system with imper-
fections (Section 2), a detailed parametric analysis shows the influence of geometric imperfections on
the buckling and postbuckling behavior of Augusti’s model and how the unstable solutions control the
global behavior of the system (Section 3.1). The analysis of the system under harmonic base excitation
and different forcing directions clarifies the importance of the imperfections on the dynamics through
the analysis of bifurcation diagrams and the evolution of basins of attraction, focusing on the evaluation
of system load-carrying capacity (Section 3.2). Although this constitutes an important issue in nonlinear
structural dynamics, little is known on the influence of imperfections on the nonlinear dynamics of
structures liable to unstable postbuckling behavior.

2. Formulation of the problem

Figure 1a illustrates Augusti’s model. It is an inverted spatial pendulum composed of a slender, rigid
(but massless) bar of length l, with a tip-mass m, pinned at the base, where two rotational springs with
constant stiffnesses k1 and k2 initially act in perpendicular planes and rotate with the bar. The angles
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Figure 1. Augusti’s 2-DOF model. Perfect system: undeformed (a) and deformed (d);
imperfect system: undeformed (b) and deformed (c, d).
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θ1 and θ2 (Figure 1d) are chosen as the two DOFs. Figure 1a shows the system under a harmonic base
excitation Db(t), acting at an angle ϕ with respect to the x axis. The force Db(t) is decomposed into
two components, ub(t) in the x direction and vb(t) in the y direction. These components are given
by ub = Fb cosϕ sin(ωet) and vb = Fb sinϕ sin(ωet), where Fb is the forcing magnitude and ωe is the
forcing frequency. Figure 1 shows the auxiliary variables necessary for the derivation of the equations
of motion of the imperfect system. The initial configuration of the geometrically imperfect column is
defined by the angles φ and ψ shown in Figure 1b, where the two angles ϕ10 and ϕ20 are also reported.
The angles φ1 and φ2 are the geometric imperfections of the two torsional springs and γ1 and γ2 are their
deformations in the θ1 and θ2 directions (see Figure 1c). The following expressions hold:

ϕ3 = φ+ γ, θ1 = φ1+ γ1, θ2 = φ2+ γ2, (1)

ϕ1, ϕ2, and ϕ3 being the angles of the imperfect pendulum with the three axes in the deformed configu-
ration (Figure 1d).

The dimensionless total potential energy of the system is given by [Orlando 2010]

V̄ =
V

ml2 =
1
2
ω2

p

λ
(θ1−φ1)

2
+

1
2
ω2

p

λ
(θ2−φ2)

2
−ω2

p

(√
1− sin2 φ1− sin2 φ2−

√
1− sin2 θ1− sin2 θ2

)
, (2)

where P =mg, ω2
p = g/ l, λ= P/Pcr, k/ml2

=ω2
p/λ, k1 = k2 = k, and Pcr1 = Pcr2 = Pcr = k/ l, with ωp

and Pcr being the pendulum natural frequency and buckling load, respectively, while the dimensionless
kinetic energy is written as

T̄ =
T

ml2 =
1

2l2

(
(l θ̇1 cos θ1+ u̇b)

2
+ (l θ̇2 cos θ2+ ν̇b)

2
+

l2(θ̇1 cos θ1 sin θ1+ θ̇2 cos θ2 sin θ2)
2

cos2 θ1+ cos2 θ2− 1

)
, (3)

where the dot indicates differentiation with respect to time t .
Using Hamilton’s principle of least action, the equations of motion of the system are obtained as the

extremals of the functional 8=
∫ t2

t1
L dt , L being the Lagrangian. Then the evolution of θi with time is

subjected to the Euler–Lagrange equations of motion:

d
dt
∂(T̄ )
∂θ̇ i
−
∂(T̄ )
∂θi
+
∂(V̄ )
∂θi
= 0. (4)

Considering also a viscous damping for the geometrically imperfect Augusti’s model, the equations of
motion in terms of the generalized coordinates θ1 and θ2 are given explicitly by [Orlando 2010](
θ̈1(− cos2 θ1 cos2 θ2+ cos4 θ1 cos2 θ2+ cos2 θ1 cos4 θ2)+ θ̈2(− cos θ1 sin θ1 cos θ2 sin θ2

+cos3 θ1 sin θ1 cos θ2 sin θ2+cos θ1 sin θ1 cos3 θ2 sin θ2)+θ̇
2
1 (− cos θ1 sin θ1 cos4 θ2+cos θ1 sin θ1 cos2 θ2)

+ θ̇2
2 (cos θ1 sin θ1− 2 cos θ1 sin θ1 cos2 θ2− cos3 θ1 sin θ1+ 2 cos3 θ1 cos2 θ2 sin θ1+ cos θ1 cos4 θ2 sin θ1)

+ θ̇1θ̇2(2 cos2 θ1 cos θ2 sin θ2− 2 cos4 θ1 cos θ2 sin θ2)
)
+

(
2ξ1
�
θ̇1+

θ1−φ1

λ�2 −
1
�2

cos θ1 sin θ1√
1− sin2 θ1− sin2 θ2

)
× (1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2)

= F cosϕ sin τ cos θ1(1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2), (5)
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θ̈2(− cos2 θ1 cos2 θ2+ cos4 θ1 cos2 θ2+ cos2 θ1 cos4 θ2)+ θ̈1(− cos θ1 sin θ1 cos θ2 sin θ2

+cos3 θ1 sin θ1 cos θ2 sin θ2+cos θ1 sin θ1 cos3 θ2 sin θ2)+θ̇
2
2 (− cos4 θ1 cos θ2 sin θ2+cos2 θ1 cos θ2 sin θ2)

+ θ̇2
1 (cos θ2 sin θ2− 2 cos2 θ1 cos θ2 sin θ2− cos3 θ2 sin θ2+ 2 cos2 θ1 cos3 θ2 sin θ2+ cos4 θ1 cos θ2 sin θ2)

+ θ̇1θ̇2(2 cos θ1 sin θ1 cos2 θ2−2 cos θ1 sin θ1 cos4 θ2)
)
+

(
2ξ2
�
θ̇2+

θ2−φ2

λ�2 −
1
�2

cos θ2 sin θ2√
1− sin2 θ1− sin2 θ2

)
× (1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2)

= F sinϕ sin τ cos θ1(1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2), (6)

where the dot now denotes d/dτ , with τ = ωet , �= ωe/ωp, F = Fb/ l, and Ci/ml2
= 2ξi/� (ξi are the

damping factors). Geometrical and inertial nonlinearities are seen to occur in (5) and (6).

3. Nonlinear behavior and imperfection sensitivity analysis

3.1. Static analysis. The nonlinear behavior of the imperfect system in the absence of dynamic excita-
tion can be described by the following set of two coupled nonlinear equations obtained from (2)

(θ1−φ1)− λ
cos θ1 sin θ1√

1− sin2 θ1− sin2 θ2

= 0, (θ2−φ2)− λ
cos θ2 sin θ2√

1− sin2 θ1− sin2 θ2

= 0. (7)

When k1 = k2 = k, the perfect model (φ = ψ = 0) displays two coincident buckling loads, Pcr1 = Pcr2 =

Pcr = k/ l, and orthogonal buckling modes θ1, {1, 0}T , and θ2, {0, 1}T . Figure 2a shows the fundamental
path (θ1 = θ2 = 0) for the perfect system, which is stable up to the static critical load (λ= 1), and the four
possible postbuckling paths: the two ascending unstable paths, which correspond to the two uncoupled
solutions (either θ1 or θ2 is zero), and the two descending unstable orthogonal paths at 45◦, which are the
solutions of the coupled system (7). The important fact to note is that interaction of the buckling modes
θ1 and θ2 conspires to produce the descending unstable paths and imperfection sensitivity, although each
mode taking place alone exhibits no imperfection sensitivity [Baz̆ant and Cedolin 1991]. Figure 2b shows
the nonlinear behavior of the imperfect system considering φ = 1◦ and ψ = 0◦. The multiple bifurcation
in Figure 2a is destroyed by the imperfection. In this case, the imperfect column under increasing static
loading displays a stable nonlinear equilibrium path contained in the x × z plane since ψ = 0◦ (see
Figure 1), which becomes unstable due to a subcritical pitchfork bifurcation. The critical load is lower
than that of the perfect system. Several unstable complementary paths corresponding to the perturbed
unstable postbuckling paths of Figure 1a are observed. These unstable paths control the global dynamics
of the system. Figure 2c shows the response of the imperfect system with φ= 1◦ and ψ = 45◦. In this case,
the nonlinear stable path loses stability at a limit point and the maximum load is even lower than in the
previous case. Again, several unstable complementary paths are observed. The load-carrying capacity
of the system decreases as φ and ψ increase, as illustrated by the imperfection sensitivity curves shown
in Figure 3, where the critical load of the imperfect system is plotted as a function of the imperfection
magnitude φ for selected values of ψ . The lowest critical loads are obtained for ψ = 45◦ when the
maximum modal coupling occurs.

Much of the global behavior and dynamics of a structural system can be understood from the topo-
logical structure of its potential energy function. For a static load level λ = 0.9, Figure 4 shows the



NONLINEAR DYNAMICS AND SENSITIVITY TO IMPERFECTIONS IN AUGUSTI’S MODEL 1069

  
(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 0◦

 (c) Imperfect system, φ = 1◦ and ψ = 45◦

Figure 2. Equilibrium paths of the perfect and imperfect systems.

equipotential curves for the three cases analyzed in Figure 2. The perfect system, Figure 4a, displays
the four symmetric saddles corresponding to the four unstable postbuckling descending branches shown
in Figure 2a and a minimum corresponding to the stable prebuckling solution. The saddles and their
invariant manifolds separate the initial conditions that lead to bounded solutions surrounding the pre-
buckling configuration — which identify the so-called safe region [Soliman and Thompson 1989; Rega
and Lenci 2005] — from the unbounded escape solutions. For φ = 1◦ and ψ = 0◦, Figure 4b shows that
the safe region is bounded by the two saddles corresponding to the blue equilibrium path in Figure 2b.
There is a significant decrease in the area of the safe region due to the imperfection. For φ = 1◦ and
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Figure 3. Imperfection sensitivity of Augusti’s model.

ψ = 45◦, as shown in Figure 4c, the safe region is bounded by the saddle with the lowest potential
energy among the four saddles and is much smaller than in the previous case. The saddle corresponds
to the unstable black equilibrium path in Figure 2c. As illustrated by these results, the imperfections not
only decrease the load-carrying capacity of the structure, but also the set of initial conditions that lead
to safe bounded motions around the equilibrium configuration. The knowledge of these frontiers helps
the designer to separate the phase space into safe and unsafe domains and evaluate the degree of safety
of the system. The frontiers are associated with the stable and unstable manifolds of the saddles in the
conservative system, whose two-dimensional projections are shown in Figure 5. For the perfect system
there are two pairs of heteroclinic orbits, each pair connecting two opposite saddles at ±45◦ (Figure 5a).
For the imperfect system with φ = 1◦ and ψ = 0◦, Figure 5b shows that the safe region is bounded by
two homoclinic orbits, while for φ = 1◦ and ψ = 45◦, Figure 5c shows that there is only one homoclinic
orbit. In each case, the relevant manifolds lie on a four-dimensional hypersurface that bounds the initial
conditions leading to bounded solutions around the trivial prebuckling solution, that is, the interior of
this region is filled with a continuous family of stable trajectories. The equation of this surface can be
obtained by the principle of conservation of total energy, equating the sum of expressions (2) and (3) to
the value of the total energy at one of the relevant saddles, that is

T (θi , θ̇i )+ V (θi )= Vsaddle. (8)

Three-dimensional sections (θ1× θ2× θ̇1) of this four-dimensional region are shown in Figure 6, con-
sidering λ = 0.9 and ωp = 1.0 s−1. These sections show clearly the sharp decrease in the safe region
with the imperfection. This safe hypervolume decreases swiftly as the static load increases and vanishes
at the critical point. So, near a bifurcation point, even very small perturbations may lead to escape
from the prebuckling well. Since all structures work in a dynamical environment, an appropriate safety
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(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 0◦

  
(c) Imperfect system, φ = 1◦ and ψ = 45◦

Figure 4. Curves of equal potential energy for λ = 0.9. PS: Saddles. PMi: Stable
position corresponding to a local minimum.

factor based on the geometry and size of the safe region and its variation with load and imperfections
must be used in design. Moreover, as structural systems are usually lightly damped, the response of the
real structure will only depart lightly from the conservative case. An analysis of the safe region gives
information on the maximum allowable displacements and velocities. These quantities must also be
referred to in vibration control to specify the upper bound of allowable disturbances.

3.2. Nonlinear dynamic analysis. Figure 7 shows the stability boundaries in force frequency-amplitude
control space for the perfect system and a forcing direction ϕ = 0◦. The escape load, Fesc, corresponds
to escape of the response from the prebuckling potential well in a slowly evolving system (dynamic
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(a) Perfect system

   
(a.1) Plane θ1× θ2 (a.2) Plane θ1× θ̇1 (a.3) Plane θ2× θ̇2

(b) Imperfect system, φ = 1◦ and ψ = 0◦

   
(b.1) Plane θ1× θ2 (b.2) Plane θ1× θ̇1 (b.3) Plane θ2× θ̇2

(c) Imperfect system, φ = 1◦ and ψ = 45◦

   
(c.1) Plane θ1× θ2 (c.2) Plane θ1× θ̇1 (c.3) Plane θ2× θ̇2

Figure 5. Two-dimensional projections of the stable and unstable manifold of the sad-
dles that limit the safe region for λ= 0.9 and ωp = 1.0 /s.
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(a) Perfect system (b) Imperfect system (c) Imperfect system
φ = 1◦ and ψ = 0◦ φ = 1◦ and ψ = 45◦

Figure 6. Three-dimensional sections of safe prebuckling region. λ= 0.9 and ωp = 1.0 /s.

�

Figure 7. Stability boundaries in force control space (load versus forcing frequency) for
the forcing direction ϕ = 0◦, considering the coupled and uncoupled cases. Fesc: escape
load.

buckling). These curves ensue from several bifurcation diagrams obtained by increasing slowly the
forcing amplitude while holding the frequency constant [Gonçalves et al. 2009; Orlando 2010]. Denoting
with ωi , i = 1, 2, the natural frequencies of the two linear vibration modes of the system, a large range
of forcing frequencies is considered, which includes the fundamental parametric resonances (ωe = ωi )
of the two modes and their principal subharmonic parametric resonances, of order 1

2 (that is, ωe = 2ωi )
and 1

3 (ωe = 3ωi ). For the perfect system ω1 = ω2, the fundamental and principal resonances correspond
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to the nondimensional forcing frequency values �= 1
3 , �= 2

3 , and �= 1, respectively, whereas for the
imperfect system the two natural frequencies differ from each other [Orlando 2010] and the same occurs
for the relevant resonant conditions.

Two cases are considered in Figure 7: the uncoupled case, when perturbations only in θ1 and θ̇1 are
considered and only these coordinates are excited, and the coupled case, when very small perturbations
in θ2 and θ̇2 are also considered after each load step (θ2 = θ̇2 = 0.001), causing the coupling of the
two modes. For the uncoupled case, the lowest values of the escape load occur in the neighborhood of
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(a) ωe = ω1 (b) ωe = ω2

Figure 9. Variation of the escape load with the forcing direction ϕ for the resonance regions.

the principal resonances (�= 2
3 and �= 1) of the two coinciding modes, as expected in a condition of

parametric excitation. In contrast, quite high Fesc values do occur in the region of fundamental resonance
(�= 1

3 ). But for even very small values of θ2 and θ̇2, which entail coupling of the two modes, a drastic
reduction in the escape load is observed in the latter region along with an overall reduction in the whole
excitation frequency range here analyzed. Indeed, there is a marked difference between the relevant
stability boundaries in the two cases, corroborating the importance of modal coupling in Augusti’s model.

Figure 8 shows the stability boundaries for different values of the forcing direction ϕ, respectively for
the perfect system (Figure 8a) and for the imperfect system considering φ = 1◦ and ψ = 45◦ (Figure 8b).
Figure 8a shows that, as soon as coupling comes into play due to the excitation (ϕ 6= 0◦), the escape load
decreases mostly in the larger frequency range, where it is higher for ϕ 6= 0◦, with the major reduction
occurring for ϕ = 45◦, namely, when the coupling effect is the highest. When imperfection is added
(Figure 8b), a significant decrease of the dynamic buckling load is observed with respect to the perfect
system (Figure 8a) for any value of the forcing frequency �, with the maximum reduction still occurring
for ϕ = 45◦, as expected, owing to the considered ψ = 45◦ imperfection value.

Overall, as in the static case, the dynamic buckling load displays high imperfection sensitivity with
drastic effects on the safety of the system. Figure 9 shows the variation of the escape load, Fesc, for the
perfect and imperfect columns with the forcing direction ϕ, by distinguishing between the regions of
fundamental resonance of the two DOFs, which do coincide in the perfect system (see Figure 8a) but
are slightly different in the imperfect one (Figure 8b). For the imperfect case, different values of the
imperfection direction ψ are considered and an initial column inclination φ = 10 is adopted. The results
show a high imperfection sensitivity for all values of ϕ. It is observed that the results are also sensitive to
the imperfection direction ψ , with the ensuing coupling effect entailing the strongest reduction of escape
load with respect to the perfect system when the latter exhibits no coupling, that is, for ϕ = 0◦.

Figure 10 shows the variation of the basin of attraction of the bounded solution between perfect and
imperfect systems, when considering a forcing direction ϕ = 0◦, a forcing magnitude F = 0.1, and a
forcing frequency �= 1

3 . The cross section of the basin of attraction of the perfect system (Figure 10a)
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(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 45◦

  
Figure 10. Variation of the basin of attraction with the geometric imperfection (�= 1

3 ,
F = 0.1, ϕ = 0◦).

is still relatively integer (nonfractal) since the considered F = 0.1 value is below the escape threshold
(see Figure 8a). In contrast, for the imperfect system with φ = 1◦ and ψ = 45◦ (Figure 10b), a drastic
reduction of the safe basin area is observed, since the forcing magnitude is now slightly smaller than the
corresponding escape load (see Figure 8b; Fesc = 0.11).

 
Figure 11. Variation of the escape load with the column initial inclination φ for �= 1
and ψ = 45◦.
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Finally, Figure 11 shows the variation of the escape load with the column initial inclination φ. The
escape load reduction already occurring for the perfect system owing to the ϕ 6= 0◦ excitation direction is
clearly visible for φ = 0◦. As the initial inclination φ increases the escape load smoothly decreases, but
at φ = 1.2◦ it suddenly falls down to zero, which corresponds to the complete annihilation of the basin
of attraction for any excitation direction (also for the uncoupled case, ϕ = 0◦). This shows that even
very small imperfections may have a remarkable influence on the stability and safety of the structure and,
in particular, that the residual dynamic integrity of the system [Rega and Lenci 2005] associated with
the nonvanishing value of the escape load for φ = 1◦ actually corresponds to a very dangerous system
configuration from a nonlinear dynamics viewpoint.

4. Conclusions

In this paper the influence of geometric imperfections on the static and dynamic behavior of Augusti’s
model is studied through a detailed parametric analysis. The inherent strong modal coupling of the
model leads to various unstable postbuckling solutions that control the geometry of the safe prebuckling
potential well and, consequently, the global behavior of the system under dynamic loads. The initial
imperfections not only decrease the load-carrying capacity of the structure, but also decrease substantially
the safe region where initial conditions lead to bounded solutions within the prebuckling well. This region
is swiftly reduced as the static load approaches the critical value.

The results also highlight the influence of the imperfections on the forced response of the system
under harmonic base excitation with varying the horizontal direction. For any excitation frequency and
for all nonvanishing forcing directions, the imperfection considerably reduces the escape load and the
safe basin area, decreasing the safety of the system.

The analysis of Augusti’s model, as an archetypal model of a large class of structures liable to buckling
that display a strong modal coupling and imperfection sensitivity, illustrates the tools and steps necessary
for a rational evaluation of system safety and dynamic integrity.
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ACTIVE CONTROL OF VORTEX-INDUCED VIBRATIONS IN OFFSHORE
CATENARY RISERS: A NONLINEAR NORMAL MODE APPROACH

CARLOS E. N. MAZZILLI AND CÉSAR T. SANCHES

Offshore catenary risers are used in the exploitation of deep-water oil and gas fields. They are subjected
to severe dynamical loads, such as high-pressure inside-flow of fluids, sea-current external flow, and sea-
wave motion of the floating production platform. This paper addresses the dynamic instability caused by
vortex-induced vibrations (VIV). For simplicity, the touchdown-point motion and the mooring compli-
ance are neglected in this introductory study. The nonlinear normal modes of a finite element model of
the riser are determined, following the invariant manifold procedure, and a mode that is particularly prone
to be excited by VIV is selected. A reduced mathematical model that couples the structural response and
the fluid dynamics is used to foresee the vibration amplitudes when the instability caused by VIV takes
over. Active control is introduced and the linear quadratic regulator is employed to determine gain
matrices for the system and the observer. Results are compared with those from a linear analysis.

1. Introduction

The oil and gas industry has faced new challenges since several onshore and offshore fields have matured,
aggravated by the growing global demand for energy and the volatility in oil prices. This scenario has led
the operating companies to focus on deep and ultradeep water exploitation, bringing forth new concerns
on reducing costs via advanced technological developments. Consequently, the offshore industry has
increased its attention to new realms of research such as nonlinear dynamics of structures and computa-
tional fluid dynamics.

If subsea exploration has always been a complex and demanding activity, from now on, in view of
the upcoming developments in deep and ultradeep water, it will be even more challenging. In fact, the
offshore industry has already begun to explore in water depths at the limits of current technology and has
plans to access depths over 2,500 m. It is already developing subsea production systems in preparation
for ultradeep water production that include more flexible and lighter risers that operate under harsher
environmental conditions. From this standpoint, nonlinear effects are expected to play a major role in
riser global dynamics.

The objective of this paper is to present a numerical study on the fluid-structure interaction and struc-
tural nonlinear dynamic behavior of a deep-water catenary riser subjected to in-plane vortex-induced
vibration (VIV), employing the van der Pol oscillator proposed in [Blevins 1990] to represent the fluid
dynamics and to the nonlinear modal analysis technique, respectively. A computational model is initially
proposed using the finite element method. Geometrically nonlinear finite elements are employed so that
the equations of motion take into consideration quadratic and cubic nonlinearities, expressed in terms

The first author acknowledges the support of CNPq under Grant 301942/2009-9.
Keywords: catenary risers, VIV, nonlinear modes, finite element method, active control.
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of third and fourth-order tensors, respectively. These nonlinear equations allow for the assessment of
both cable and beam behavior. In this work, the motion of the floating production unit (FPU) and the
unilateral contact at the touchdown zone (TDZ) have been neglected. Hence, the catenary riser has been
modeled with fixed pinned ends, just allowing for rotation. Further advances, regarding a numerical
approach for the TDZ, are under development, since considerable programming effort is required to
take into consideration contact at the TDZ. It is worth mentioning that an analytical study of the local
dynamics of steel catenary risers (SCR), considering unilateral contact at the TDZ, led to an approximate
evaluation of the associated nonlinear normal modes of vibration [Mazzilli and Lenci 2008]. Nonlinear
modes seem to play an important role in the structural representation of deep-water risers by models with
small numbers of degrees of freedom. A free-hanging catenary is addressed in a case study, considering
a certain nonlinear normal mode of vibration, which is seen to be relevant for the analysis of the VIV
motion. The ultimate goal is to develop a coupled fluid-riser low-dimensional model, to which active
control can be added in a simple way.

2. Nonlinear modes

This paper should be regarded as an initial effort to assess the nonlinearly coupled fluid-riser interaction.
The riser will be modeled as a plane frame with geometric nonlinearities due to the coupling of tangential
and transversal displacements. Material linearity will be assumed. Torsion and 3D effects, as well as
FPU motion and unilateral contact at the TDZ, will be neglected.

Although internal resonance may come into play, which would require the consideration of the so-
called nonlinear multimodes, the paper will concentrate on the nonlinear normal modes.

It is believed that the nonlinear normal modes and multimodes may play an important role in generating
reliable models with few degrees of freedom, still keeping the essential behavior of risers under different
sea-loading conditions, such as in cases of high-frequency VIV and low-frequency drifting.

2.1. FEM formulation. Typically, the equations of motion of a general n-degree of freedom finite ele-
ment model of an elastic plane frame with geometric nonlinearities under free vibrations read [Soares
and Mazzilli 2000]:

Mrs p̈s + Drs ṗs + Krs ps = 0, r, s = 1, . . . , n, (1)

where Einstein’s convention for summation is employed; ps are the generalized coordinates. The matrices
of mass Mrs , equivalent damping Drs , and stiffness Krs depend on the generalized coordinates and
velocities as follows:

Mrs =
0Mrs +

1M i
rs pi +

2M i j
rs pi p j ,

Drs =
0Drs +

1Di
rs ṗi +

2Di j
rs ṗi p j ,

Krs =
0Krs +

1K i
rs pi +

2K i j
rs pi p j ,

(2)

where 0Mrs , 1M i
rs , 2M i j

rs , 0Drs , 1Di
rs , 2Di j

rs , 0Krs , 1K i
rs , and 2K i j

rs (r, s, i, j = 1, . . . , n) are constants.

2.2. Linear and nonlinear modes. During a modal motion, the phase trajectories of a discretized linear
system remain confined to a 2D eigenplane, in much the same way as the phase trajectory of a one-
degree-of-freedom system with generalized coordinate x remains confined to the plane x × ẋ . Due to
this invariance property, such an eigenplane is an invariant manifold of the dynamical system.
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In nonlinear systems the invariant manifolds are no longer planes, and the motions whose trajectories
are confined to them are called nonlinear normal modes. Normally, there are n invariant manifolds, each
one corresponding to a different mode; these manifolds contain the equilibrium point at which they are
tangent to the eigenplanes of the linearized system.

Such a geometric characterization of a modal motion suggests the so-called invariant-manifold proce-
dure to determine normal modes, which was proposed in [Shaw and Pierre 1993] and applied to systems
of few degrees of freedom. In [Soares and Mazzilli 2000] the procedure was extended to full finite
element models of plane frames.

An alternative technique to evaluate nonlinear normal modes of finite element models was proposed
in [Mazzilli and Baracho Neto 2002], based on the method of multiple scales.

To handle cases of coupled modal motions of nonlinear systems subjected to internal resonance, the
multiple-scales procedure has also been successfully extended in [Baracho Neto and Mazzilli 2005].
Here, the ensuing vibration takes place in an invariant manifold embedded in the phase space, whose
dimension is twice the number of the normal modes that interact. This manifold contains a stable equi-
librium point at which it is tangent to the subeigenspace of the linearized system, which characterizes the
corresponding coupled linear modes. On this manifold, the system behaves like an M-degree of freedom
oscillator, where M is the number of coupled normal modes.

2.3. Invariant manifold procedure. Here, the fundamental steps of the invariant-manifold procedure
are followed [Shaw and Pierre 1993], keeping in mind its application to finite element models of risers.

Introducing the notation xi = pi and yi = ṗi = ẋi , the system (1) can be written in first-order form as

ẋi = yi , ẏi = fi (x1, . . . , xn, y1, . . . , yn), i = 1, . . . , n. (3)

Series expansions for the functions fi (x1, . . . , xn, y1, . . . , yn) in the neighborhood of the equilibrium
point are introduced in (4):

fi (x1, . . . , xn, y1, . . . , yn)= Bi j x j +Ci j y j + Ei jm x j xm + Fi jm x j ym +Gi jm y j ym

+Hi jmpx j xm x p + L i jmpx j xm yp + Ni jmpx j ym yp + Ri jmp y j ym yp, (4)

where Bi j , Ci j , Ei jm , Fi jm , Gi jm , Hi jmp, L i jmp, Ni jmp, and Ri jmp (i, j,m, p = 1, . . . , n) are known
constants that depend on the previously introduced 0Mrs , 1M i

rs , 2M i j
rs , 0Drs , 1Di

rs , 2Di j
rs , 0Krs , 1K i

rs , and
2K i j

rs (r, s, i, j = 1, . . . , n), as detailed in [Soares and Mazzilli 2000].
If, during a modal motion, the trajectory of the solution in the phase-space is restricted to a 2D surface,

then it must be possible to express each generalized displacement or velocity as a function of two of them,
for instance u = xk and v = yk , for a certain degree of freedom k, at least in the neighborhood of the
equilibrium point.

By substituting the expressions

xi (t)= X i (u(t), v(t)), yi (t)= Yi (u(t), v(t)), i = 1, . . . , n, (5)

in (3), one arrives at

∂X i
∂u

v+
∂X i
∂v

fk(X1, . . . , Xn, Y1, . . . , Yn)= Yi ,

∂Yi
∂u
v +

∂Yi
∂v

fk(X1, . . . , Xn, Y1, . . . , Yn)= fi (X1, . . . , Xn, Y1, . . . , Yn), i = 1, . . . , n,
(6)
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which is a nonlinear system of partial differential equations having the functions X i and Yi as unknowns,
which may be as difficult to solve as the original equations. However, if we look for an approximate
solution, these functions can be written as polynomials up to cubic terms:

X i (u, v)= a1i u+ a2iv+ a3i u2
+ a4i uv+ a5iv

2
+ a6i u3

+ a7i u2v+ a8i uv2
+ a9iv

3,

Yi (u, v)= b1i u+ b2iv+ b3i u2
+ b4i uv+ b5iv

2
+ b6i u3

+ b7i u2v+ b8i uv2
+ b9iv

3,
(7)

where a j i and b j i ( j = 1, . . . , 9 and i = 1, . . . , n) are constants to be determined.
Now, if we substitute (7) and (4) in (6), a system of nonlinear polynomial equations having the a’s

and b’s as unknowns is formed. In general, there are n solutions to this system, each one corresponding
to a different set of modal relations (5), that is, a different invariant manifold. Moreover, substituting any
one of these solutions in (7) and the resulting expressions in (5), the k-th equation in (3)–(4) — called
the modal oscillator equation — characterizes the dynamics of the corresponding mode.

Details of the procedure just outlined are avoided here for brevity, but can be found in [Soares and
Mazzilli 2000], where it is also shown that the solution of the system of nonlinear polynomial equations
mentioned above can be avoided, provided the eigenvalues and eigenvectors of the linearized system are
known.

3. Fluid-structure interaction

Among the possible scenarios for the fluid-structure interaction, the case of vortex-induced vibrations
(VIV) is here addressed [Williamson and Govardhan 2004]. In the subcritical regime, the flow with free-
stream velocity U =U∞ around a circular cylinder of diameter D forms a von Kármán vortex street as
the one shown in Figure 1 [Assi 2009]. The Strouhal number, St, is the predominant frequency of vortex
shedding fs multiplied by the cylinder diameter D and divided by the free-stream velocity:

St=
fs D
U

. (8)

   

Figure 1. Visualization of von Kármán vortex street [Assi 2009].
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In the subcritical regime, the Reynolds number, Re, based on the cylinder diameter is in the range
200≤ Re≤ 5× 105. In this range, experimental results found in the literature indicate that the Strouhal
number is almost constant St= 0.20 and the drag coefficient is Cd = 1.2.

A classical approach to characterizing the dynamics of the coupled fluid-structure system [Facchinetti
et al. 2004] is to employ phenomenological models, a thorough review of which can be found in [Gabbai
and Benaroya 2005]. In this paper a very simple phenomenological model based in [Blevins 1990] has
been considered, leading to the following system of differential equations, the first of which refers to the
nonlinear dynamics of the reduced-order model of the structural system and the second of which to the
fluid dynamics:

d2u
dt2 + 2ωn(ζs + ζF )

du
dt
+ω2

nu+ nonlinear terms=
(
ρD2

m

)U
D

a4
dw
dt
, (9)

d2w

dt2 +ω
2
sw =

(
a1− a4

a0

)
U
D

dw
dt
−

a2

a0

1
U D

(dw
dt

)3
+

a4

a0

U
D

du
dt
, (10)

where u, as before, is the modal generalized coordinate, ωn is the linear natural frequency of the chosen
vibration mode, ζs is the structural damping ratio, ζF is the fluid damping ratio, ρ is the seawater specific
mass, m is the modal mass including both the structure and the fluid added mass, w is the fluid hidden
variable [Blevins 1990], ωs = 2π fs is the vortex shedding frequency, and a0, a1, a2, and a4 are known
constants.

In this paper, (9) is sought by using the invariant manifold approach. Therefore, second and third-order
nonlinear terms will arise as a consequence of the nonlinear structural formulation.

4. Case study: Part A

Table 1 presents the riser data used to model the structural system. Figure 2 shows the riser finite ele-
ment model with 77 degrees of freedom and 26 nonlinear Bernoulli–Euler-based elements. The reduced
number of elements used is due to the considerable computational effort required to work out third and
fourth-order tensors that led this FEM model to allocate approximately 2 GB of RAM. It took 17 hours
of processing time using a 1.6 GHz processor to obtain the nonlinear normal modes of the system.

Young’s modulus E = 2.1× 1011 N/m2

Riser length l =1,800 m
Cross-section area A = 1.1021× 10−2 m2

Cross-section moment of inertia I = 4.72143× 10−5 m4

Riser external diameter D = 2.032× 10−1 m
Riser thickness e = 19.05 mm
Initial tension (at the top) T0t = 2× 106 N
Initial tension (at the bottom) T0b = 6.914× 105 N
Riser mass per unit length (water inside and added mass) m = 108 kg/m
Riser weight per unit length p = 727 N/m

Table 1. Typical steel riser data.
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Figure 2. Riser finite element model and the chosen modal variable u = p50.

VIV calculations were performed assuming the Strouhal number to be St= 0.20 and the free-stream
velocity U = 0.5 m/s (normal to the motion plane). Taking this into account, the vortex-shedding fre-
quency approaches the natural frequency of the 26th vibration mode. Therefore, it is assumed that the
lock-in occurs for this mode. As a result, the following system of equations is sought to represent the
dynamics of the coupled fluid-structure system herein addressed:

ü+ 8.1921u+ 39v+ 22.16u2
− 3.0673v2

− 70.823u3
+ 533.54uv2

= 38.95ẇ, (11)

ẅ+ 9.8696w = 4.17ẇ3
+ 0.3125ẇ+ 1.98v, (12)

where u and v are respectively the modal displacement and the modal velocity, so u̇ = v. The chosen
modal displacement is u = p50, as shown in Figure 2.

In Figure 3, a phase portrait, for both “linear” and nonlinear responses, can be observed. The “lin-
ear” response is the response of the coupled fluid-structure system when only the structural system is
linearized. Thus, the dynamics of the fluid remain nonlinear even when the linear structural system is
considered. The total nonlinear amplitude amounts to 0.565 m whilst the “linear” response leads to a total
amplitude of 0.567 m. Although there is no noteworthy difference in the total amplitudes, it’s interesting
to stress that the nonlinear amplitude extremes are different with the maximum of 0.3057 m and the
minimum of −0.2596 m. On the other hand, the “linear” system gives the same absolute values for the
extremes (0.2834 m and −0.2834 m). Hence, the nonlinear system is able to capture the asymmetric
stiffness, due to the riser static curvature.

5. Active control

The Luenberger observer [Luenberger 1979] is employed in what follows. Here, only one specific non-
linear normal mode will be considered when modeling the controlled system. Therefore, this should
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Figure 4. The control system.

be regarded as an initial investigation of the behavior of a SCR riser under VIV. Emphasis is placed
on the system design, namely the system and the observer gain matrices. Considerations regarding
actuators, sensors, or physical installations are not within the scope of this work. A simple example
regarding controlled VIV will be addressed in Section 6. Although the structural system will be modeled
as nonlinear, the employed observer will still be assumed to be linear. A nonlinear observer would lead to
a much more complex model, but the control system would present a larger stability window. However,
it will be seen that the linear observer already leads to stable responses, even when large amplitudes and
considerable nonlinear effects are taken into consideration. Optimal control is employed via the linear
quadratic regulator [Ogata 1995; Preumont 2002]. Figure 4 represents the control system.

The matrix equation of the structural system with the actuator term can be written as

ż = Az+ B f, (13)

where z = {{x̃}T { ˙̃x}T }T is the 2n× 1 phase-space vector for a n-degree of freedom system, x̃ is the n× 1
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vector of principal generalized coordinates in the configuration space, f = G(zref− ẑ) is the input control
force, G is the 1× 2n system gain matrix, and A= A(z) is the 2n× 2n nonlinear system matrix. Let T
be the n× n linear eigenvector matrix of the structural system and b= T T n an n× 1 vector, where n is
the n× 1 actuator position vector. Hence, the 2n× 1 vector B = {{b}T {0}T }T is defined.

The system of differential equations presented in Figure 4 can be rewritten as follows:{
ż
˙̂z

}
=

[
A −BG

LC Ac− BG

]{
z
ẑ

}
+

{
B
B

}
fref, (14)

where Ac = A− LC , fref is an arbitrary force related to an arbitrary state vector zref, and L is the 2n× 1
observer gain matrix. Defining the 1× 2n matrix C = {c 0}, where c= hTT is a 1× n matrix and h is
the n× 1 sensor position vector, then y = C z. For further details see [Ogata 1995]. The solution of (14)
is pursued via the Runge–Kutta method.

5.1. Linear quadratic regulator. A linear state feedback with constant system gain G is sought, such
that the following quadratic cost functional is minimized:

min J =
∫
∞

0

( 1
2 zT Qz+ 1

2 f T R f
)
dt, such that ż = Az+ B f, (15)

where Q is semipositive definite and R is strictly positive definite. The matrices Q and R are, at first,
unknown and should be calibrated according to experimental results [Preumont 2002]. It is possible to
show that the system gain matrix ends up being

G = R−1 BTP, (16)

where P is a symmetric positive definite matrix that can be obtained from Riccati’s equation:

Q+ ATP + P A− P B R−1BTP = 0. (17)

6. Case study: Part B

To provide an introductory example of a forced controlled system, the coupled structural and fluid equa-
tions (accordingly to Section 3) for a SCR are written as follows:

ü+ 8.1921u+ 39v+ 22.216u2
− 3.0673v2

− 70.823u3
+ 533.54uv2

= 38.95ẇ+ fu,

ẅ+ 9.8696w = 0.3125ẇ+ 4.17ẇ3
+ 1.98v,

(18)

where u is the chosen modal displacement, v = u̇ the respective modal velocity, fu the actuator modal
force, and w the fluid hidden variable. As before, the data for the SCR are from Table 1 and Figure 2
depicts the finite element model. The nonlinear modal oscillator, (18), was obtained via the invariant
manifold technique. It corresponds to the 26th nonlinear vibration mode. The control influence is intro-
duced in the system as, mainly, a variation in the riser tension. As seen in Section 4, the simulation of the
uncontrolled system, considering the nonlinear structural behavior, leads to a maximum displacement of
0.3057 m and a minimum displacement of −0.2596 m. The time response and the phase diagram for
the controlled system are presented in Figure 5, from which it is seen that the maximum displacement
for the controlled system, considering the nonlinear structural behavior, is 0.2571 m and the minimum is
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Figure 5. SCR time response and phase portrait (blue for linear and red for nonlinear).

−0.2277 m. Therefore, the amplitude of the controlled system is 14.16% smaller than the uncontrolled,
but in order to reach such an amplitude reduction, an increase of approximately 50% in the riser tension
is seen to be necessary. Consequently, it is questionable if the adoption of the riser tension as a control
parameter is suitable for SCRs. It could be further argued that the tension variation for control purposes
would affect the riser natural frequencies, so that the vortex shedding frequency might be detuned with
respect to the previously locked-in mode, but could be tuned to another nearby mode. Of course, this
behavior cannot be detected by the single-degree of freedom reduced-order model considered here and
would require a more realistic analysis [Silveira et al. 2007; Josefsson and Dalton 2010].

7. Conclusion

We introduce tools of nonlinear dynamics, such as nonlinear normal modes and reduced-order modeling,
based on which the analysis of offshore risers, considering geometrical nonlinearities, vortex-induced
vibrations, and active control, may be pursued in a simple way. The case study addresses the response of
a SCR, revealing not only remarkable quantitative differences in the estimates of maximum amplitudes
between linear and nonlinear, uncontrolled and controlled models, but also qualitatively distinct behavior,
due to the nonlinear effect of the riser statical curvature.
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NONLINEAR ELECTROMECHANICAL FIELDS
AND LOCALIZED POLARIZATION SWITCHING

OF PIEZOELECTRIC MACROFIBER COMPOSITES

YASUHIDE SHINDO, FUMIO NARITA, KOJI SATO AND TOMO TAKEDA

This paper examines theoretically and experimentally the nonlinear electromechanical response of piezo-
electric macrofiber composites. 3D finite element analysis was carried out to study the strain versus elec-
tric field curve and the internal electromechanical fields near interdigitated electrodes in the macrofiber
composites by introducing a model for polarization switching. The piezoelectric fibers in the macrofiber
composite are partially or fully poled. Results on the strain versus electric field curves from micro-
electromechanical models and simple experiments were also presented, and comparison was made with
the finite element solutions.

1. Introduction

Piezoelectric macrofiber composite (MFC) elements, developed at NASA Langley Research Center for
aerospace applications, are gaining increasing interest for applications in structural health monitoring
[Brunner et al. 2009] and energy harvesting [Song et al. 2009] systems. The development of the MFC
helps to overcome some of the limitations of conventional lead zirconate titanate (PZT) ceramics, espe-
cially brittleness, lack of reliability, and conformability. In [Williams et al. 2006] the actuation behav-
ior of MFC under electromechanical loading was investigated analytically and experimentally, and the
piezoelectric and electrostrictive coefficients were discussed. Also, in [Bilgen et al. 2010] the structural
response of MFC actuated clamped-free thin cantilever beams was studied.

In some MFC applications, high values of stress and electric fields arise in the neighborhood of
electrode tips in PZT fibers, and the field concentrations can result in electromechanical degradation
[Shindo et al. 2004; Narita et al. 2007]. There is also another problem related to the manufacturing
process. A PZT wafer is first diced into rectangular fibers. This fiber arrangement is infiltrated with resin
and cured together with interdigitated Kapton electrode sheets in a high-precision lamination pressing
machine. After this, in a final step, the MFC is polarized with high voltages for about 10 minutes at room
temperature. With these fabrication techniques, the resulting polarization of the PZT fibers will inevitably
be partial. Due to the presence of interdigitated electrode (IDE) edges and the resulting inhomogeneity
of the constituents, piezoelectric MFCs can suffer damage prematurely during service. It is therefore
important to understand electromechanical field concentrations near IDEs in piezoelectric MFCs.

In this paper, we investigate the electromechanical response of piezoelectric MFCs. Recent works
[Dano and Jullière 2007; Deraemaeker et al. 2009] used the linear constitutive relations for coupling

The authors thank Smart Material Corp. for providing useful information regarding piezoelectric MFCs.
Keywords: piezomechanics, finite element method, material testing, piezoelectric composites, electromechanical field

concentrations, smart materials and structures.
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response in MFCs; hence the novelty of this work consists of exploration of the nonlinear behavior during
the polarization switching process and comparison of the numerical values with the experimental data.
In Section 2, the basic equations for piezoelectric materials are described. A nonlinear 3D finite element
model incorporating the polarization switching mechanism is also presented to predict the strain versus
electric field curve and internal electromechanical fields near IDEs in piezoelectric MFCs. The piezo-
electric fibers in the MFC are partially or fully poled. In addition, the effective longitudinal piezoelectric
constant of the MFC with fully poled PZT fibers is derived analytically using microelectromechanical
models. In Section 3, the electric field-induced strain is measured. Test results on the strain versus
electric field curve are compared to predictions in Section 4. The finite element results on the internal
electromechanical fields are then discussed. Our conclusions are summarized in Section 5.

2. Analysis

2.1. Basic equations. Consider a piezoelectric material with no body force and free charge. The gov-
erning equations in the Cartesian coordinates xi (i = 1, 2, 3) are

σ j i, j = 0, Di,i = 0, (1)

where σi j is the stress tensor, Di is the electric displacement vector, a comma denotes partial differentia-
tion with respect to the coordinate xi , and Einstein summation convention over repeated indices is used.
The relation between the strain tensor εi j and the displacement vector ui is given by

εi j =
1
2 (u j,i + ui, j ), (2)

and the electric field intensity vector is Ei = −φ,i , where φ is the electric potential. In a ferroelectric
material, domain switching leads to changes in the remanent strain εr

i j and remanent polarization P r
i .

The constitutive relations can be written as

σi j = ci jkl(εkl − ε
r
kl)− eki j Ek, Di = eikl(εkl − ε

r
kl)+ εik Ek + P r

i . (3)

In (3), ci jkl and eikl are the elastic and piezoelectric tensors, and εik is the dielectric permittivity tensor.
Valid symmetry conditions for the material constants are

ci jkl = c j ikl = ci jlk = ckli j , eki j = ek ji , εik = εki . (4)

The constitutive equations (3) for piezoelectric material poled in the x3-direction are found in Appendix A.
Although there are many criteria that can be used to predict polarization switching in piezoelectric

materials, we choose the switching criterion proposed in [Hwang et al. 1995]. This is due to the fact that
the model is simple and quite successful at predicting the homogeneous average response of PZT material
systems [Steinkopff 1999; Hayashi et al. 2003]. In this model, the direction of a spontaneous polarization
Ps of each grain can change by 90◦ or 180◦ for ferroelectric switching induced by a sufficiently large
electric field. 90◦ ferroelastic switching is induced by a sufficiently large stress field. This criterion
requires that a polarization switches when the combined electrical and mechanical work exceeds a critical
value; that is,

σi j1εi j + Ei1Pi ≥ 2Ps Ec, (5)
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where Ec is a coercive electric field, and1εi j and1Pi are the changes in the spontaneous strain and spon-
taneous polarization during switching, respectively. The values of 1εi j and 1Pi are given in Appendix
B. The constitutive equations (3) after polarization switching are given by

σi j = ci jkl(εkl − ε
r
kl)− e′ki j Ek, Di = e′ikl(εkl − ε

r
kl)+ εik Ek + P r

i . (6)

The new piezoelectric constant e′ikl is given in Appendix C.

2.2. Model. Consider a M-4010-P1 MFC (Smart Material Corp., Sarasota, FL) with overall dimensions
of about 50 mm× 22 mm× 0.3 mm. The MFC is comprised of very thin PZT-5A fibers (width 2wp,
thickness 2hp) that are unidirectionally aligned in an epoxy matrix and sandwiched between two sets of
copper IDE (width 2we, thickness he) patterns as shown in Figure 1a. The IDE patterns are printed on
a Kapton film (thickness hk). The MFC has an IDE spacing of about 0.5 mm and has an active area of
about 40 mm× 10 mm. The material characteristics of PZT-5A are listed in Table 1, and the coercive
electric field is approximately Ec = 1.5 MV/m. The Young’s modulus E and Poisson’s ratio ν of the
epoxy, copper, and Kapton are listed in Table 2 [Deraemaeker et al. 2009].

Figure 1b illustrates the repeating unit of the MFC. A rectangular Cartesian coordinate system O-xyz
is used with the z-axis coinciding with the PZT fiber direction. The repeating unit of the MFC occupies
the region (0≤ x ≤W , 0≤ y ≤ H , 0≤ z ≤ L). The model consists of rectangular PZT fiber (width wp,
length L) embedded in an epoxy matrix and Kapton film (width W , length L). Electrodes 1 and 3 of
area W ×we and electrode 2 of area W × 2we are also incorporated into the model. The total thickness
of the model is H = hp+ he+ hk.

With the IDEs, the electric field E0 is applied along the PZT fibers (the z-direction) which produces
much higher in-plain actuation strain ε0 than traditional monolithic PZT poled through-the-thickness (see
Figure 2) [Bent and Hagood 1997; Williams et al. 2004; Paradies and Melnykowycz 2007]. We consider
the following electrical boundary conditions: the electric potentials on the interface between the PZT
fiber and electrode 1 (that is, 0≤ x ≤ wp, y = hp, 0≤ z ≤ we) and the interface between the PZT fiber
and electrode 3 (that is, 0≤ x ≤ wp, y = hp, L −we ≤ z ≤ L) equal the applied voltage, φ = V0, and the
interface between the PZT fiber and electrode 2 (that is, 0≤ x ≤wp, y = hp, L/2−we ≤ z ≤ L/2+we) is
connected to the ground, so that φ = 0. The applied electric field E0 can be estimated to be the voltage V0

Elastic stiffnesses Piezoelectric Dielectric constants
(×1010N/m2) coefficients (C/m2) (×10−10C/Vm)

c11 c33 c44 c12 c13 e31 e33 e15 ε11 ε33

PZT-5A 12.0 11.1 2.1 7.51 7.51 −3.05 21.1 11.8 81.1 73.5

Table 1. Material properties of PZT-5A fiber.

Young’s modulus E (×1010N/m2) Poisson’s ratio ν
Epoxy 0.29 0.30
Copper 11.7 0.31
Kapton 0.28 0.30

Table 2. Material properties of nonpiezoelectric constituents.
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Figure 1. Schematic drawing of MFC: (a) lay-up and geometry and (b) repeating unit.

divided by the IDE spacing L/2. The mechanical boundary conditions include the traction-free condition
on the top surface at y = H and the zero-displacement conditions on the x = 0, y = 0, and z = 0 faces.
Also included are the symmetry conditions on the side surfaces at x =W and z = L .

Consider two types of poling. The first is partially poled. For partially poled PZT fibers, a matrix of
crystalline grains with an idealized microstructure [Dent et al. 2007] is first considered, where each grain
has a random polarization obtained using statistical procedures [Swain and Swain 1980]. The resulting
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Figure 2. Strain and electric field of MFC with IDE.

material is equivalent to an unpoled piezoelectric [Shindo et al. 2009]. Figure 3a shows a typical model
(x = 0 plane) with a fine microstructure. The grain polarizations are quantized to just six orientations,
corresponding to the two directions along the three principal axes. Other directions are not considered
here for simplicity. High voltage is next applied through finite element analysis (FEA), and the PZT fiber
model is partially polarized. The second has fully poled PZT fibers (see Figure 3b).

Each element consists of many grains, and each grain is modeled as a uniformly polarized cell that
contains a single domain. The model neglects domain wall effects and interaction among different
domains. In reality, this is not true, but the assumption does not affect the macroscopic behavior of
the MFC. The polarization switching is defined for each element. The voltage V0 is applied, and the

y

z

Poling

x = 0 mm plane

O

(a)
(a)

(b)

Figure 3. Models of (a) unpoled and (b) fully poled PZT fibers.
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electromechanical fields of each element are computed from the FEA. The switching criterion of (5) is
checked for every element to see if switching will occur. After all possible polarization switches have
occurred, the piezoelectricity tensor of each element is rotated to the new polarization direction. The
electromechanical fields are recalculated, and the process is repeated until the solution converges. The
macroscopic response of the MFC is determined by the finite element model.

The finite element computations by ANSYS were provided by modifying the program with routines
developed in our previous work (for example, [Shindo et al. 2004]). The spontaneous polarization Ps

and strain γ s were assigned representative values of 0.3 C/m2 and 0.004, respectively, based on the
experimental data [Hwang et al. 1995]. Simulations were also run with the spontaneous polarization and
strain values varying, though the results are not shown here since changing these values did not impact
the results. Each element was defined by an eight-node 3D coupled field solid for the PZT fiber and an
eight-node 3D structural solid for the epoxy matrix, Kapton film, and copper electrodes.

The strain εe
0 of the repeating unit for the fully poled PZT fiber under stress-free conditions is related

to the electric field E0 by the expression [Deraemaeker et al. 2009]:

εe
0 = de

33 E0. (7)

Here, the effective longitudinal piezoelectric coefficient de
33 is obtained, using microelectromechanics

models based on the uniform field assumptions [Tan and Tong 2001]. Assuming that 90◦ switching does
not occur, the effective coefficient for the repeating unit without Kapton film or copper/epoxy layer is
given by

de
33 =

{
ee

31se
13+ ee

32se
23+ ee

33se
33 if E0 >−Ec,

−(ee
31se

13+ ee
32se

23+ ee
33se

33) if E0 ≤−Ec,
(8)

where ee
31, ee

32, ee
33, se

13, se
23, and se

33 are given in Appendix D.

3. Experimental procedure

The free strain (ε) response of the M-4010-P1 MFC (see Figure 1a) was measured. Strain gages were
bonded symmetrically at the center of the active area on both sides of the piezoelectric MFC. Voltage
was applied using a power supply for voltages up to 1.25 kV/DC in order to generate the strain versus
electric field curve. A plot of applied voltage versus time during the test is shown in Figure 4. The MFC

0 100 200 300 400
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A
p
p
li
ed
 v
o
lt
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e 
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V
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Figure 4. Applied voltage versus time.
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was then cut and observed using a digital microscope. The measured entities were statistically analyzed
to obtain realistic geometrical parameters. The main values are represented in Figure 1b.

4. Results and discussion

Figure 5 shows the FEA results for the distribution of poled areas at the x = 0 mm plane for the PZT
fiber under the electric field for E0 = Ec = 1.5 MV/m and for E0 = 2Ec = 3 MV/m. The unpoled areas
are observed under the coercive electric field. Moreover, at an electric field of 2Ec, there are some areas
where the pole is not aligned. Figure 6 provides the strain versus electric field for the piezoelectric MFCs.
The solid and dot-dashed lines represent the strain εzz at x = 0, y = H , and z = 0 for MFCs with partially
and fully poled PZT fibers from the FEA while the open circle represents the test data ε. The partially
poled PZT fiber is obtained under E0= 2Ec (see Figure 5b). Also shown is the analytical data εe

0 obtained
from the microelectromechanics models (dashed line). The FEA results show that as the electric field E0

y

z

x = 0 mm plane

O

E0 = 1.5 MV/m

(a)
(a)

E0 = 3 MV/mPoling

(b)

Figure 5. Images of poling for PZT fiber at (a) E0 = Ec = 1.5 MV/m and (b) E0 = 2Ec = 3 MV/m.
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Figure 6. Strain versus electric field for piezoelectric MFCs.
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(a)(a)
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(b)
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(c)

Figure 7. Polarization switching zone induced by electric field of (a) E0 =−1.0 MV/m,
(b) E0 =−1.5 MV/m, and (c) E0 =−2.0 MV/m at the x = 0 mm plane for MFC with
partially poled PZT fibers.

is increased from zero initially, the tensile strain increases linearly due to the piezoelectric effect. On the
other hand, the compressive strain increases nonlinearly as the electric field is lowered from zero; then,
the compressive strain reaches maximum at about E0 =−1.25 MV/m as localized depolarization occurs.
The compressive strain then decreases, and the tensile strain rises as the negative remanent polarization
develops. As polarization reversal takes place, the piezoelectric coefficients of the PZT fiber change
their signs. This leads to a reversal of the macroscopic piezoelectric effect. The tensile strain decreases
as the negative electric field is gradually decreased. As the electric field is cycled, the butterfly loop is
repeated. Note that there is a good agreement between the FEA and the test. Also, little difference in the
strain versus electric field curve is observed between the MFCs with partially and fully poled PZT fibers.
Although the strain obtained from the microelectromechanics models is larger than that from the FEA
due to neglecting the Kapton film and copper/epoxy layer, the microelectromechanics models may serve
to predict roughly the strain response of the MFCs. Figure 7 shows the polarization switching zones at
the x = 0 mm plane of the MFC with partially poled PZT fibers. The original poled state is shown in
Figure 5b. Under the electric field, E0 =−1.0 MV/m, below the coercive field strength Ec = 1.5 MV/m,
polarization switching occurs near the IDE tip. It seems that the switching expands along the region near
the interface between the PZT fiber and epoxy layer. The size of the 180◦ switching zone increases with
increasing electric field opposite to the original poling direction. The above numerical and experimental
results show that if MFCs are operated under negative electric fields, the polarization switching effect is
by no means negligible, and designers need to be aware of the nonlinear behavior.
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Figure 8. Variation of normal stress σzz as a function of z for MFCs with (a) partially
and (b) fully poled PZT fibers; x = 0 mm and y = hp.

The normal stress σzz as a function of z at the x = 0 mm plane of the MFC with partially poled PZT
fibers is shown in Figure 8a for y = hp under an electric field E0 = ±1.0 MV/m. When a positive E0

of 1.0 MV/m is applied, the normal stress in the neighborhood of the IDE tip changes from tensile to
compressive and the maximum value of the compressive stress occurs at about z = 70µm. It is interesting
to note that under E0 =−1.0 MV/m, the highest compressive stress occurs at about z = 75µm. Figure 8b
shows similar results for the MFC with fully poled PZT fibers. The maximum values of the compressive
and tensile stresses occur under E0 = 1.0 and −1.0 MV/m, respectively, at about z = 70µm. Figure 9
shows the shear stress σyz as a function of z at the x = 0 mm plane of the MFCs with partially and
fully poled PZT fibers for y = hp under an electric field E0 = 1.0 MV/m. The peak values of σyz for
the MFCs with partially and fully poled PZT fibers occur at different locations, and the maximum shear
stress for the MFC with partially poled PZT fibers is larger than that for the MFC with fully poled PZT
fibers. Figure 10 shows the normal stress σyy as a function of z at the x = 0 mm plane of the MFCs with
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Figure 9. Variation of shear stress σyz as a function of z for MFCs with partially and
fully poled PZT fibers; x = 0 mm and y = hp.
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Figure 10. Variation of normal stress σyy as a function of z for MFCs with partially and
fully poled PZT fibers; x = 0 mm and y = hp.

partially and fully poled PZT fibers for y = hp under an electric field E0 = 1.0 MV/m. The maximum
value of the tensile stress for the MFC with partially poled PZT fibers is about twice that for the MFC
with fully poled PZT fibers. A comparison between the results for MFCs with partially and fully poled
PZT fibers indicates that the inhomogeneity near the IDE of the MFC has little effect on the strain versus
electric field curve but affects the internal stresses.

5. Conclusions

This paper presents the results of numerical and experimental study in piezoelectric macrofiber compos-
ites (MFCs). The developed finite element model quantitatively predicted the strain versus electric field
curve and captured the nonlinear electromechanical phenomena. We showed that the inhomogeneity near
the interdigitated electrode (IDE) tip in the MFCs leads to dramatic differences in the internal stresses.
By knowing how the partially poled lead zirconate titanate (PZT) fiber, IDE, and matrix constituents
interact, we can design a MFC to achieve particular overall properties. The results of this study will help
to offer a basis for optimizing piezoelectric MFC performance by selecting the optimal microstructure
and properties of composite constituents.

Appendix A

For piezoelectric ceramics which exhibit hexagonal crystal symmetry of class 6 mm with respect to the
principal x1, x2, and x3 axes, the constitutive relations can be written in the form

σ1

σ2

σ3

σ4

σ5

σ6


=



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66





ε1− ε
r
1

ε2− ε
r
2

ε3− ε
r
3

ε4− ε
r
4

ε5− ε
r
5

ε6− ε
r
6


−



0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0




E1

E2

E3

 , (A.1)
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D1

D2

D3

=
 0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0




ε1− ε
r
1

ε2− ε
r
2

ε3− ε
r
3

ε4− ε
r
4

ε5− ε
r
5

ε6− ε
r
6


+

ε11 0 0
0 ε11 0
0 0 ε33


E1

E2

E3

+


Pr
1

Pr
2

Pr
3

 , (A.2)

where

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23 = σ32, σ5 = σ31 = σ13, σ6 = σ12 = σ21, (A.3)

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23 = 2ε32, ε5 = 2ε31 = 2ε13, ε6 = 2ε12 = 2ε21, (A.4)

εr
1 = ε

r
11, ε

r
2 = ε

r
22, εr

3 = ε
r
33, ε

r
4 = 2εr

23 = 2εr
32, εr

5 = 2εr
31 = 2εr

13, εr
6 = 2εr

12 = 2εr
21, (A.5)

c11 = c1111 = c2222, c12 = c1122, c13 = c1133 = c2233, c33 = c3333,

c44 = c2323 = c3131, c66 = c1212 =
1
2 (c11− c12),

(A.6)

e15 = e131 = e223, e31 = e311 = e322, e33 = e333. (A.7)

The remanent strain and polarization are present in the piezoelectric material poled in the positive
x3-direction but because the remanent state is the reference for the measurement of strain and polarization,
εr

i j and P r
i are numerically equal to zero for the polarized state.

Appendix B

The values of 1εi j = ε
r
i j and 1Pi = P r

i for 180◦ switching can be expressed as

1ε11 = 0, 1ε22 = 0, 1ε33 = 0, 1ε12 = 0, 1ε23 = 0, 1ε31 = 0, (B.1)

1P1 = 0, 1P2 = 0, 1P3 =−2Ps. (B.2)

For 90◦ switching in the x3x1 plane, the changes are

1ε11 = γ
s, 1ε22 = 0, 1ε33 =−γ

s, 1ε12 = 0, 1ε23 = 0, 1ε31 = 0, (B.3)

1P1 =±Ps, 1P2 = 0, 1P3 =−Ps, (B.4)

where γ s is a spontaneous strain. For 90◦ switching in the x2x3 plane, we have

1ε11 = 0, 1ε22 = γ
s, 1ε33 =−γ

s, 1ε12 = 0, 1ε23 = 0, 1ε31 = 0, (B.5)

1P1 = 0, 1P2 =±Ps, 1P3 =−Ps. (B.6)
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Appendix C

The new piezoelectric constant e′ikl is related to the elastic and direct piezoelectric constants by

e′111 = d ′111c11+ d ′122c12+ d ′133c13, e′122 = d ′111c12+ d ′122c11+ d ′133c13,

e′133 = d ′111c13+ d ′122c13+ d ′133c33, e′123 = 2d ′123c44, e′131 = 2d ′131c44, e′112 = 2d ′112c66,

e′211 = d ′211c11+ d ′222c12+ d ′233c13, e′222 = d ′211c12+ d ′222c11+ d ′233c13,

e′233 = d ′211c13+ d ′222c13+ d ′233c33, e′223 = 2d ′223c44, e′231 = 2d ′231c44, e′212 = 2d ′212c66,

e′311 = d ′311c11+ d ′322c12+ d ′333c13, e′322 = d ′311c12+ d ′322c11+ d ′333c13,

e′333 = d ′311c13+ d ′322c13+ d ′333c33, e′323 = 2d ′323c44, e′331 = 2d ′331c44, e′312 = 2d ′312c66.

(C.1)

The components of the piezoelectricity tensor d ′ikl are

d
′

ikl = {d333ni nknl + d311(niδkl − ni nknl)+ d131(δiknl − 2ni nknl + δilnk)}, (C.2)

where ni is the unit vector in the poling direction, δi j is the Kronecker delta, d333 = d33, d311 = d31, and
d131 = d15/2 are the direct piezoelectric constants, and

d33 =
(c11+ c12)e33− 2c13e31

{(c11+ c12)c33− 2c2
13}

, d31 =
c33e31− c13e33

{(c11+ c12)c33− 2c2
13}
, d15 =

e15

c44
. (C.3)

Appendix D

In (8), ee
31, ee

32, ee
33, se

13, se
23, and se

33 are

ee
31 = e31

c11mwp/W
c11mwp/W + c11(1−wp/W )

, (D.1)

ee
32 = ee

31
c11mwp/W + (c11− c12+ c12m)(1−wp/W )

c11m
, (D.2)

ee
33 = e33wp/W + ee

31
(c12m− c13)(1−wp/W )

c11m
, (D.3)

se
13 =

C12C23−C13C22

(C11C22−C2
12)C33−C11C2

23+ 2C12C13C23−C2
13C22

, (D.4)

se
23 =

C12C13−C11C23

(C11C22−C2
12)C33−C11C2

23+ 2C12C13C23−C2
13C22

, (D.5)

se
33 =

C11C22−C2
22

(C11C22−C2
12)C33−C11C2

23+ 2C12C13C23−C2
13C22

, (D.6)
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where

C11 =
c11c11m

c11mwp/W + c11(1−wp/W )
, (D.7)

C12 =
c12c11mwp/W + c11c12m(1−wp/W )

c11mwp/W + c11(1−wp/W )
, (D.8)

C13 =
c13c11mwp/W + c11c12m(1−wp/W )

c11mwp/W + c11(1−wp/W )
, (D.9)

C22 = c11wp/W + c11m(1−wp/W )+
C2

12

C11
−

{
c2

12wp/W
c11

+
c2

12m(1−wp/W )

c11m

}
, (D.10)

C23 = c13wp/W + c12m(1−wp/W )+
C12C13

C11
−

{
c12c13wp/W

c11
+

c2
12m(1−wp/W )

c11m

}
, (D.11)

C33 = c33wp/W + c11m(1−wp/W )+
C2

13

C11
−

{
c2

13wp/W
c11

+
c2

12m(1−wp/W )

c11m

}
, (D.12)

and

c11m =
Em(1− νm)

(1+ νm)(1− 2νm)
, c12m =

Emνm

(1+ νm)(1− 2νm)
. (D.13)

Em and νm in (D.13) are the Young’s modulus and Poisson’s ratio of the epoxy matrix.
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THREE-DIMENSIONAL BEM ANALYSIS TO ASSESS DELAMINATION CRACKS
BETWEEN TWO TRANSVERSELY ISOTROPIC MATERIALS

NICOLÁS O. LARROSA, JHONNY E. ORTIZ AND ADRIÁN P. CISILINO

Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the bound-
ary element method (BEM) for dealing with fracture mechanic problems is its accuracy in solving strong
geometrical discontinuities. Within this context, a three-dimensional implementation of the energy do-
main integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials is presented
in this paper. The EDI allows extending the two-dimensional J -integral to three dimensions by means of
a domain representation naturally compatible with the BEM, in which the required stresses, strains, and
derivatives of displacements are evaluated using their appropriate boundary integral equations. To this
end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely
isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of
the implementation for solving straight and curved crack-front problems.

1. Introduction

High-performance composite materials possess excellent mechanical properties such as strength, tough-
ness, and fatigue resistance. Composite materials are ideal for components which require high strength
per weight and stiffness per weight ratios. By choosing an appropriate combination of reinforcement and
matrix material, manufacturers can produce materials with mechanical properties that fit the requirements
for a particular purpose. Commonly, high strength and stiffness are required in various directions within
a plane. A solution is to stack and weld together a number of plies, each having with the fibers oriented
in a different direction. Such a stack is termed a laminate. The individual plies present a macroscopic
transversely isotropic behavior with the symmetry axis in the direction of the fibers [Gibson 2007].

However, the application of composite materials in critical components has lagged due to the lack of
sufficient knowledge about composite damage tolerance properties. Delamination, for example, is one
of the areas that still demand a lot of work. Delamination consists in the nucleation of interface cracks
between the plies of the laminate as a consequence of thermomechanical fatigue, impact, or material
degradation [Gibson 2007]. Progress in the mechanics of interface fracture has been generally focused
on the two-dimensional idealization of an interface crack, and not until recently has major effort been
conducted on the three-dimensional aspect of interface fracture. That is in part due to the complexity of
such problems and the very large computational effort required for their numerical analysis. However,

This work has been partially supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina
through grant PICT 2007 No. 1154. J. E. Ortiz has been supported by the Programa Ramón y Cajal of the Spanish Ministry of
Science and Innovation.
Keywords: three-dimensional interface cracks, transversely isotropic bimaterials, energy domain integral, boundary element

method.
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given the material mismatch at the interface boundary, it is expected that the three-dimensional effects
play a more significant role in laminate structures than in homogeneous structures.

The numerical analysis of interface cracks in transversally isotropic materials has been traditionally
addressed using finite element analysis; see, for example, [Boniface and Banks-Sills 2002; Freed and
Banks-Sills 2005]. There is also the alternative of using the boundary element method (BEM). The
attraction of the BEM can be largely attributed to the reduction in the dimensionality of the problem;
this means that, compared to finite-element domain-type analysis, BEM analysis results in a substantial
reduction in data preparation. At the same time, due to the inherent characteristics of its formulation,
BEM provides very accurate results for problems containing strong geometrical discontinuities. Fracture
mechanical analysis of three-dimensional transversely isotropic materials using BEM has been reported
in [Sáez et al. 1997; Ariza and Dominguez 2004a; 2004b], which modeled static and dynamic crack
problems, [Zhao et al. 2007], which derived the displacement discontinuity boundary integral equation,
and more recently in [Chen et al. 2009], which studied the stress intensity factors of a central square crack
in a transversely isotropic cuboid with arbitrary material orientations. To our knowledge, there is no
published material about three-dimensional BEM modeling of interface cracks in dissimilar transversely
isotropic bimaterials.

A number of techniques have been proposed for the evaluation of fracture parameters of interface
cracks using FEM and BEM. They are, among others, the virtual crack extension approach [So et al.
2004], contour and domain path-independent integrals [Chow and Atluri 1998; Freed and Banks-Sills
2005; Ortiz and Cisilino 2005; Shah et al. 2006], displacement extrapolation techniques [Tan and Gao
1990; Mao and Sun 1995; Freed and Banks-Sills 2005], and special crack-tip elements [He et al. 1994].
In particular, path-independent integral techniques are derived from the J -integral proposed in [Rice
1968]. Being an energy approach, path-independent integrals eliminate the need to solve local crack tip
fields accurately. If the integration domain is defined over a relatively large portion of the mesh, accurate
modeling of the crack tip is unnecessary because the crack tip field contribution to the overall energy
is not significant. At the same time, the J -integral approach developed in [Rice 1968] characterizes
the crack driving force for two-dimensional problems. Therefore, for general three-dimensional cases
involving cracks of arbitrary shape an alternative form for the J -integral is needed.

Three basic schemes have evolved for the numerical computation of the J -integral in three dimensions:
virtual crack extension methods, generalization of Rice’s contour integral, and domain integral methods
[Anderson 2005]. Domain integrals are equivalent to the virtual crack extension technique and are better
suited for numerical analysis than contour integral methods. Among the available domain integral meth-
ods (see for example, [Nikishkov and Atluri 1987; Feijoó et al. 2000]), the energy domain integral (EDI)
of [Moran and Shih 1987] was chosen for this work.

The EDI can be formulated by applying the divergence theorem to Rice’s J -integral. It produces
a domain-independent integral defined over finite volumes enclosing some portion of the crack front
[Moran and Shih 1987]. Previous works by the authors of this paper have demonstrated the versatility
and efficiency of the BEM implementation of the EDI for assessing three-dimensional cracks in elastic
[Cisilino et al. 1998], elastoplastic [Cisilino and Aliabadi 1999], and thermoelastic bodies [Balderrama
et al. 2006; 2008] and for interface cracks in dissimilar isotropic bimaterials [Ortiz and Cisilino 2005].

This work introduces the BEM implementation of the EDI for the computation of the J -integral in
three-dimensional interface cracks in transversely isotropic bimaterials. The BEM implementation uses
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the fundamental solutions recently introduced in [Távara et al. 2008]. The BEM solution strategy for
the fracture problem and the EDI implementation is an extension of that proposed in [Ortiz and Cisilino
2005] for interface cracks in dissimilar isotropic bimaterials. Several examples are solved and the results
compared to those available in the literature.

2. Transversely isotropic materials

The basic constitutive expressions governing the elastic behavior of transversely isotropic materials are
reviewed, following [Ting 1996]. The general constitutive law of the anisotropic material is

σi j (x)= Ci jkl(x)εkl(x)= Ci jkl(x)uk,l(x), (1)

where, relative to a fixed rectangular Cartesian coordinate system, σi j (x) are the components of the
stress tensor, εi j (x) are the components of the infinitesimal strain tensor, and uk(x) are the components
of the displacement vector. Partial derivatives are indicated using comma notation. The Ci jkl(x) are
the components of the fourth-order constitutive tensor C , defined in terms of 21 independent elasticity
constants.

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendic-
ular to that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of
only 5 independent elasticity constants. Using the Voigt reduced notation, the fourth-order constitutive
tensor Ci j (i, j = 1, . . . , 6) for a transversely isotropic material with the axis of symmetry coincident
with the Cartesian axis x3 can be expressed in terms of the following five elastic constants:

C1111 = C11, C3333 = C33, C1122 = C12, C1133 = C13, C2323 = C44. (2)

Due to symmetry with respect to x3, C66 = (C11−C12)/2.
The coefficients of the constitutive tensor Ci j can be written in terms of the elastic engineering con-

stants as follows:

C11 =
E(n− ν ′2)
λ(1+ ν)

, C12 =
E(n+ ν ′2)
λ(1+ ν)

, C13 =
Eν ′

λ
, C33 =

E(1+ ν)
λ

, C44 = µ
′, (3)

where
λ= n(1− ν)− 2ν ′2, n = E/E ′, (4)

and

• E and E ′ are the Young’s moduli in the plane of isotropy and in the direction normal to it, respec-
tively,

• ν is the Poisson’s ratio that represents the strain response in the plane of isotropy due to an action
parallel to it and ν ′ is the lateral strain response for the planes normal to the plane of isotropy, and

• µ′ is the shear modulus for the planes normal to the planes of transverse isotropy.

3. The energy domain integral

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Figure 1a
with a local coordinate system x∗ at position η, given by x∗1 normal to the crack front, x∗2 normal to
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(a) (b)

Figure 1. (a) Definition of the local orthogonal Cartesian coordinates at point η on the
crack front and integration volume, and (b) virtual crack front advance.

the crack plane, and x∗3 tangent to the crack front. In addition, a tubular domain V surrounds the crack
segment Lc which contains the position η.

Following [Nahta and Moran 1993], the J -integral at the position η can be computed using the EDI:

J (η)=
Ḡ(η)∫

Lc
1a(η) dl

, (5)

where Ḡ(η) gives the total energy released when the finite segment Lc undergoes the virtual displacement,
1a(η), in the plane of the crack (see Figure 1b).

The expression of the energy release rate is

Ḡ(η)=
∫

V
(σ ∗i j u

∗

j,k −w · δki )qk,i dV, (6)

where w is the strain energy density, σ ∗i j and u∗j,k are Cartesian components of stress and displacement
derivatives expressed in the system x∗, the integration domain V is the volume of the tubular domain
that surrounds the crack segment Lc, and q is an auxiliary vector function used to represent the virtual
crack advance as follows (see Figure 1b):

qk =

{
1a(η) · ξk(η) on Lc,

0 on S.
(7)

The function q must be smooth in V , possess a maximum at the position η, and vanishes on the surfaces
of V . The symbol ξk(η) in (7) stands for the k-th component of the unit outward normal to the crack
front in the crack plane x∗1 -x∗3 .

Analogously to the path-independence of its classical two-dimensional counterpart, the EDI formula-
tion of the J -integral is independent of the integration volume V [Nahta and Moran 1993].
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4. Boundary element formulation and implementation

In order to account for the nonhomogeneous material properties, a multidomain BEM formulation is used
for the problem solution. The modeling strategy is illustrated in the schematic representation in Figure 2
for a model consisting of two subdomains, �I(x) and �II(x), with external boundaries 0I(x) and 0II(x),
respectively. Both subdomains share a common interface 0I-II(x), a portion of which is debonded, and
thus an interface crack is introduced. The subdomains possess linear transversely isotropic material
behaviors as described in Section 2. The orientation of the material is specified using a local Cartesian
system (x0

1 , x0
2 , x0

3) for each subdomain. In every case the direction of the symmetry axis of the material
is chosen coincident with the direction x0

3 (see Figure 2). In this way, it is possible to model interface
cracks lying between laminates with arbitrary relative orientations.

The standard BEM uses the displacement boundary integral equation to relate the displacement and
traction fields, u(x) and t (x), over the model boundary in the global coordinate system (see [Aliabadi
2002]):

cik(x ′)ui (x ′)+
∫
0

Tik(x, x ′)ui (x) d0(x)=
∫
0

Uik(x, x ′)ti (x) d0(x), (8)

where Uik(x, x ′) and Tik(x, x ′) are the displacement and traction fundamental solutions for transversely
isotropic materials, respectively. The fundamental solutions account for the solution of the i-th compo-
nent of the displacement and traction fields, ui (x) and ti (x), at the field point, x , due to the action of a
unit load acting in the direction j at the source point, x ′ (see the next section for the details about the
fundamental solutions used in this work). The symbol cik is the so-called jump term which depends on
the local geometry at the source point, x ′, only.

BEM models are discretized using 9-node quadrilateral elements. Continuous elements are used ev-
erywhere in the model, except at the intersections of the interface and the crack faces with the model

x2 

x3 

x1 

:II(x) 

*II(x) 

t(x) 

:I(x) 

*I-II(x) 

 
Interface 

 crack 

*I(x) 

*

1
x

*

2
x

*

3
x

0

3
x

0

1
x

0

2
x

Figure 2. Schematic two-dimensional representation of the multidomain BEM model
with an interface crack.
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Figure 3. Model discretization strategy using continuous and one and two-side discon-
tinuous elements.

outer surface. In such cases one and two-side discontinuous elements are used in order to avoid common
nodes at the intersections (see Figure 3). It is worth noting that, although discontinuous elements are not
strictly necessary to solve most of the practical bimaterial crack problems, they have been implemented
in this work in order to develop a versatile and robust discretization strategy capable of dealing with
general multiple subdomain problems (including the case of more than two subdomains sharing a single
edge). At the same time, the implementation remains open to introduce further extensions to account for
crack propagation which could require automatic model remeshing.

The regular BEM integrals over continuous and discontinuous elements are evaluated using standard
Gaussian quadrature. In the case of nearly singular integrals an adaptive element subdivision technique is
also employed. On the other hand, the Cauchy principal-value integrals and the free terms are evaluated
using the rigid-body motion approach (see [Aliabadi 2002]). Singular integrals are computed using the
variable transformation technique of [Lachat and Watson 1976].

The equilibrium and continuity conditions are enforced at the nodes lying on the interface 0I-II shared
by the two regions. In the case that no external forces are applied on the interface, the equilibrium
condition is tI =−tII. The continuity condition is uI = uII. For further details on the multidomain BEM
formulation and implementation the reader is referred to [Aliabadi 2002].

Comninou [1977] showed that the solution of the stress fields for a crack between dissimilar materials
always predicts a contact zone between the crack surfaces at the crack tip. However, according to [Rice
1988] elastic fracture mechanics procedures are still valid when the inevitable nonlinear contact-zone size
is small compared with the crack size. It is assumed in this work that this condition is always satisfied,
and so the BEM implementation does not account for contact between the crack surfaces.

The computation of the J -integral is included in the BEM code as a postprocessing procedure, and so
it could be applied to the results from a particular model at a later stage. The required stresses, strains,
and derivatives of displacements at internal points are directly obtained from their boundary integral
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representations [Aliabadi 2002]:

ui,m(X ′)=
∫
0

Ui j,m(x, X ′)t j (x) d0(x)−
∫
0

Ti j,m(x, X ′)u j (x) d0(x), (9)

where X ′ is the coordinate of the internal point, and Ui j,m(x, X ′) and Ti j,m(x, X ′) are the derivatives of
the fundamental displacement and traction fundamental solutions. The boundary 0 corresponds to the
boundary of the subdomain which the internal point X ′ lies on. Strains and stresses at internal points can
then be easily computed using the definition of the infinitesimal strain tensor εi j = (ui, j + u j,i )/2 and
the constitutive relations in (1).

On the other hand, the derivatives of the displacements, strains, and displacements for boundary points
are evaluated from the boundary displacements and tractions by means of a procedure similar to that
usually used for finite elements. For further details the reader is referred to [Ortiz and Cisilino 2005].

Finally, in order to proceed with the J -integral computation, the resultant displacement derivatives,
strains, and stresses for both internal and boundary points are transformed to the local crack-front coordi-
nate system (x∗1 , x∗2 , x∗3 ) introduced in Section 3 using the standard transformation rule for second-order
tensors; see [Ting 1996].

5. The fundamental solutions for transversely isotropic materials

There are several expressions for the fundamental solutions for transversely isotropic materials; see, for
example, [Pan and Chou 1976; Loloi 2000]. However, these solutions could be cumbersome to implement
in a BEM code because of the multiple cases to consider due to all the possible material orientations and
the relative positions of the source and field points.

Távara et al. [2008] have recently derived completely general and unique expressions valid for all
possible configurations given in terms of real functions only. These fundamental solutions are presented
in what follows.

The Green’s function for a linearly elastic anisotropic medium using the Barnett–Lothe tensor is
[Lifshitz and Rozentsveig 1947]

U 0(x)= 1
4πr

H(x), (10)

where x is the position vector and the matrix H(x) defined by

H(x)= 1
π

∫
+∞

−∞

0−1(p) dp. (11)

The integrand 0(p) is the 3× 3 matrix

0(p)= Q+ p(R+ RT )+ p2T, (12)

where superscript T means transpose, and the matrices Q, R, and T are defined by

Qi j = Ci jksn j ns, Rik = Ci jksn j ms, Tik = Ci jksm j ms, (13)

for n and m orthogonal unit vectors in the plane normal to the position vector x . The matrices Q and
T are symmetric and positive definite if the deformation energy of the material is positive. Considering
(12) and (13), the matrix H(x) is also symmetric and depends on the direction of the position vector x ,
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but not on its magnitude. Using residues theory, H(x) in (11) can be expressed in the same form as (10)
and (12):

H(x)= 2i
3∑
v=1

0̂(pv)
|0(p)|′

, (14)

where 0̂(pv) is the adjunct of the matrix of 0(p) defined in (12) and |0(p)| is its determinant. The
values pv are the so-called Stroh eigenvalues of the sextic equation:

|0(p)| = 0. (15)

The eigenvalues of (15) can be represented as pv = αv + iβv where both αv and βv are real with βv > 0
(v = 1, 2, 3). Although there are explicit solutions for (14) in terms of the eigenvalues, pv, and for the
Green’s function in (10), they are not of practical use here because they are not general and they do not
hold for the degenerate cases p1 = p2 and p1 = p2 = p3. Alternatively, a simplified solution for (14) can
be obtained when (15) is a cubic equation in p2 of the form

|0(p)| = |T |(p2
− p2

1)(p
2
− p2

2)(p
2
− p2

3). (16)

In this case, (15) can be expressed as

[p4
+ (g2

− 2h)p2
+ h2)][p2

+β2
3 ] = 0, (17)

where g, h, and β3 are defined in the Appendix.
A new expression for H(x) is obtained for any anisotropic linear elastic material

H(x)= 1
|T |

4∑
n=0

pn0̂(n). (18)

Using (16) and (18) with (14), the following expression results:

H(x)= 1
|T |ξ

{ ζ

hβ3
0̂(0)+ 0̂(2)+ δ0̂(4)

}
, (19)

where

ζ =−i(p1+ p2+ p3)= g+β3, (20)

δ =−(p1 p2+ p2 p3+ p3 p1)= h+ gβ3, (21)

ξ = i(p1+ p2)(p2+ p3)(p1+ p3)= g(h+ gβ3+β
2
3 ). (22)

The terms ζ , δ, and ξ depend only on p1+ p2, p1 p2, and p3; therefore, it is not necessary to calculate
all the eigenvalues. The solution to (19) is valid for degenerate and nondegenerate cases. The terms β3,
h, and g can be computed using (17).

A relatively simple and general expression for H(x) for transversely isotropic materials can be ob-
tained using the auxiliary vector x̂= (r12, 0, x2

3), where r12=[(x0
1)

2
+(x0

2)
2
]
1/2, (x0

1 , x0
2 , x0

3) is the local co-
ordinate system, and the triad [n,m, x̂/r ], with n= (c, 0,−s) and m = (0, 1, 0), where c= cosφ = x0

3/r ,
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Figure 4. Points x and x̂ associated with a transversely isotropic material.

s= sinφ= r12/r , and 0≤φ≤π , is illustrated in Figure 4. For such a coordinate system, the only nonzero
coefficients are given by

H11 =
1

C66β3
+

C44c2
+C33s2

C11C44gh
−

f
ξ
, H22 =

1
C11g

+
f
ξ
,

H33 =
1

gh

{h+c2

C44
+

s2

C11

}
, H13 =

(C13+C44)sc
C11C44gh

.

(23)

The additional terms in (23) are given in the Appendix. The general expression of the tensor H(x) for
any x can be obtained by transformation of the components:

Hi j (x)=�ik� js Hks(x̂), (24)

where the rotation matrix �i j is

�i j =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 . (25)

The derivatives of the fundamental solution for the displacement can be expressed using the modulation
function Ûi j,k(x):

U 0
i j,k(x)=

Ûi j,k(x)
4πr2 . (26)

Ûi j,k(x) is an odd function, which depends on the direction of x but not on its magnitude, that is,
Ûi j,k(x) = −Ûi j,k(−x/r). Using the transformation in (24), the derivatives of the displacement fun-
damental solution are:

Ûi j,k(x)=�ia� jb�kcÛab,c(x̂). (27)

The closed-form expressions of Ûi j,k(x̂) can be found in [Távara et al. 2008].
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The fundamental solution for the stresses, 6i j,k(x), can be obtained by applying Hooke’s law for
transversely isotropic material, yielding

60
i jk(x)=

6̂i jk(x)
4πr2 , (28)

where 6̂i j,k(x) is an odd symmetric function. So, the stress fundamental solution can be expressed in a
similar form to (27):

6̂i jk(x)=�ia� jb�kc6̂abc(x̂). (29)

The closed-form expressions of 6̂i jk(x̂) can be found in [Távara et al. 2008]. The traction fundamental
solution associated with the normal vector n j (x) can be obtained directly using

T o
ik(x)=6

0
i jk(x)n j (x). (30)

Finally, the fundamental solutions Uik(x) and Tik(x) have to be transformed from the local coordinate
system, (x0

1 , x0
2 , x0

3), to the global in order to assemble the boundary integral (8). The fundamental
solutions are transformed from the local coordinate system to the global via the standard transformations
for second order tensors (see [Ting 1996]):

Ui j (x)= aika jlU o
kl(x), Ti j (x)= aika jl T o

kl(x), (31)

where aik are the coefficients of the transformation matrix.

6. J-integral computation

The computation of the EDI was included in the BEM code as a postprocessing procedure, and so it
could be applied to the results from a particular model at a later stage. As stated in Section 3, (5) allows
the computation of the J -integral at any position η on the crack front. In each case, this requires the
evaluation of a volume integral over a domain that encloses a segment of the crack front, Lc. A natural
choice here is to make η coincident with the element nodes on the crack front, while Lc is taken as
the element or element sides where the point η lies. As depicted in Figure 5, three different cases are
considered depending on whether the node M at the location of the crack front position η is a midside
node, is shared by two elements, or is located coincident with the external surface (a surface node). If the

corner node 
mid-side 

surface node 

Virtual crack extension q 

M M-2 

LC 

crack front 

M+2 

 

M-1 M 
M+1 

M-2 
M 

 

LC 

LC 

Figure 5. Schematic of the crack front region illustrating the q-function assimilated to
the virtual crack extensions for a corner node, a midnode, and a surface node.
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(a) (b) (c)

Figure 6. (a) Problem geometry, (b) boundary element discretization, and (c) integration
domains. Note in (c) the detail illustrating the 27-node isoparametric (brick) cells. The
dotted region indicates the volume cells defining the integration volumes used for the
computation of the J -integral for the crack-front node on the specimen surface (see
surface node in Figure 5).

node M is a midside node or surface node, Lc (the width of the integration domain) spans one element,
connecting nodes M − 1, M , and M + 1 and nodes M − 2, M − 1, and M , respectively. On the other
hand, if node M is shared by two elements, Lc spans both elements, connecting nodes from M − 2 to
M + 2.

The boundary mesh is designed to have a web pattern around the crack front in order to build the
integration domains for the evaluation of the EDI in the shape of cylinders. The integration volumes
are discretized using 27-node isoparametric (brick) cells. This is illustrated in Figure 6, where a portion
of the model surface has been removed to show the discretizations of the crack and of the integration
domains.

Stresses, strains, and derivatives of displacements at cell nodes are computed using the procedures
introduced in Section 4, and then transformed to the local crack-front coordinate system, (x∗1 , x∗2 , x∗3 ),
using the standard transformation rule for second-order tensors. The stresses, strains, and displacements
derivatives are approximated within cell domains by products of the cell interpolation functions, ψi , and
the nodal values of σ ∗i j , ε

∗

i j , and u∗i,m .
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A central point in the implementation of the EDI is the specification of the values for the function
q. Following the definition introduced in (7), the value of qk is specified equal to one for the cell node
coincident with the position η on the crack front where the EDI is evaluated, and equal to zero for all the
cell nodes located on the surface of the integration volume. For the implementation used in this work, the
function q is chosen to vary quadratically in the directions tangential and normal to the crack front: this
is schematically illustrated in Figure 5 for the tangential direction on the x∗1 x∗3 -plane. This biquadratic
definition of q has been employed with excellent results in the computation of EDI for a variety of
problems in previous works [Cisilino et al. 1998; Cisilino and Aliabadi 1999; Ortiz and Cisilino 2005;
Balderrama et al. 2006; 2008]. Thus, considering that the evaluation point η is at the middle of the crack
front segment, Lc, and that r0 is the radius of the integration domain, the function q is written as

q(x∗)=
∣∣∣∣1−( x∗3

Lc/2

)2∣∣∣∣ · [1− ( r
r0

)2]
, (32)

where r is the distance from the crack front in the x∗1 x∗3 -plane (see Figure 1).
Equation (32) is used to specify the value of q for all the cell nodes within the integration domain.

Then, consistent with the isoparametric formulation, the q-values are interpolated within each volume
cell using

q =
27∑

i=1

ψi Qi , (33)

where the ψi are the shape functions and Qi is the q-value for the i-th node. Following standard manip-
ulations, the derivatives of q are

qk, j =

27∑
i=1

3∑
l=1

∂ψi

∂ζl

∂ζl

∂x∗j
Qi , (34)

where ζk are the coordinates in the cell isoparametric space and ∂ζk/∂x∗j is the Jacobian matrix of the
transformation.

Finally, if Gaussian integration is used, the discretized form of (6) is

Ḡ(η)=
∑

cells in V

m∑
p=1

{
(σ ∗i j u

∗

j,k − σ
∗

i jε
∗

i jδki )qk, j det
(
∂x j

∂ζk

)}
p
wp, (35)

where m is the number of Gaussian points per cell and the wp are their weighting factors.

7. Application examples

7.1. Thick bimaterial plate in tension with a center interface crack. A thick bimaterial plate containing
a through crack on the interface is considered in the first example. A schematic representation of the
problem geometry, dimensions, and boundary conditions is depicted in Figure 7. The model discretiza-
tion is similar to that depicted in Figure 6. It consists of 658 elements and 2855 nodes. Eighteen elements
are placed along the crack front and a total of 126 elements are used in the crack discretization. Five
rings of cells with normalized radii r/a = 0.1, 0.2, 0.3, 0.44, and 0.64 are used around the crack front
for J computations. For this purpose 648 cells and 6438 nodes are employed.
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a) 

(a) (b)

Figure 7. (a) Schematic representation of a thick tension plate with a center interface
crack and (b) model dimensions.

In order to validate the code, the problem was solved first for homogeneous cases, that is, the material
elastic constants and orientations were set the same for both subdomains. Thus, the direction of the axis
of symmetry, x0

3 , was chosen to be parallel to the crack plane, that is, coincident with the global directions
x and z. The material elastic constants were chosen to be the same as those used for the laminated case
in [Ariza and Dominguez 2004b]. The five independent values of the elastic constants Ci j in (3) are

C11 = 5.37 GPa, C12 = 1.34 GPa, C13 = 3.35 GPa, C33 = 251.168 GPa, C44 = 5 GPa. (36)

The associated elastic properties are: E = 5 GPa, E ′ = 247.83 GPa, ν = 0.245, ν ′ = 0.01, and
µ′ = 2.5. The material orientation is specified for each subdomain by means of the angles which define
the orientation of the material axis of symmetry, x0

3 , with respect to the global coordinate system (x, y, z).
In this way, for the material axis of symmetry oriented in the global direction x , the orientation angles
are 0◦/90◦/90◦, while for the material axis of symmetry oriented in the global direction z, the angles are
90◦/90◦/0◦.

The computed results along the crack front are presented in Figure 8. In order to compare with other
results, the data in Figure 8 is presented in terms of normalized stress intensity factors (SIF), K I /K0,
where K0 = σ

√
πa. To compute the SIF from the J results the expressions of [Chu and Hong 1990] are

used:
J1 = a11K 2

I + a12KIKII+ a22K 2
II,

J2 = b11K 2
I + b12KIKII+ b22K 2

II,
(37)

where the coefficients ai j and bi j depend on the elastic material properties and the material orientation.
The coefficients a12 and a22 and the three coefficients bi j are zero when one of the principal axes of the
material is parallel to the crack plane. Thus, for the cases considered in this work,

J1 = a11K 2
I . (38)
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These are the values of the coefficient a11 and the ratio Ex/Ey between Young’s moduli:

Material symmetry in x-direction: a11 = 0.112× 10−9 Ex/Ey = 49.57

Material symmetry in z-direction: a11 = 0.2× 10−9 Ex/Ey = 1

It can be seen in Figure 8 that, excepting only the regions next to the lateral faces of the specimen (say,
|z/t |> 0.45) where the boundary layer effect takes place, the SIF value is nearly constant along the crack
front. Two sets of results obtained from a two-dimensional high-resolution finite element model are also
shown in Figure 8. The finite element model was solved using ABAQUS [2009], and was discretized
using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress elements (CPS8R). The
SIF were computed using the ABAQUS built-in J -integral procedure. The resultant normalized SIF are
K I /K0 = 1.124 and K I /K0 = 1.184 for the material axis of symmetry oriented in the global directions
x and z, respectively. The maximum difference between the BEM and FEM results along the crack front
in the interior of the specimen (that is, excluding the regions next to the lateral faces) is less than 2%.

The final case consists of a heterogeneous plate with the axis of symmetry of the material oriented in
the global directions z and y for subdomains I and II, respectively; that is, 90◦/90◦/0◦ for subdomain I
and 90◦/0◦/90◦ for subdomain II. The material elastic properties are the same as in the previous cases.
Computed results are presented in Table 1. The results are normalized with respect to J0 = σ

2πa/E ′.
It can be seen that the J value is nearly constant along the complete crack front. Besides, the path
independence is found to be excellent, with a standard deviation of around 5% for the results computed
using the domains with radii r/a ≥ 0.20. The only exceptions are the positions next to the lateral face of

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.95

1.00

1.05

1.10

1.15

1.20

 Material axis of symmetry in x-direction - BEM

 Material axis of symmetry in z-direction - BEM

 Material axis of symmetry in x-direction - 2D FEM

 Material axis of symmetry in z-direction - 2D FEM

K
/K

0

z/t

Figure 8. Normalized SIF results along the crack front for homogeneous transversely
isotropic center crack specimen.
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r/a =
z/t 0.10 0.20 0.30 0.44 0.64 Average

Std.
dev.

0.000 25.6382 30.4503 30.7658 30.7658 30.6081 30.5613 0.49
0.042 25.6382 30.4503 30.7658 30.7658 30.6081 30.5566 0.49
0.083 25.6382 30.4503 30.7658 30.7658 30.6081 30.5512 0.49
0.125 25.6382 30.4503 30.7658 30.7658 30.6081 30.5452 0.49
0.167 25.6382 30.4503 30.7658 30.7658 30.6081 30.5384 0.49
0.192 25.6382 30.4503 30.6869 30.7658 30.6081 30.5306 0.44
0.217 25.6382 30.4503 30.6869 30.7658 30.6081 30.5231 0.44
0.242 25.6382 30.4503 30.6869 30.7658 30.6081 30.5144 0.44
0.267 25.6382 30.4503 30.6869 30.7658 30.6081 30.5041 0.44
0.292 25.6382 30.4503 30.6869 30.7658 30.6081 30.4917 0.44
0.317 25.6382 30.3714 30.6869 30.6869 30.5292 30.4766 0.50
0.342 25.6382 30.3714 30.6081 30.6869 30.4503 30.4651 0.47
0.367 25.6382 30.3714 30.6081 30.6081 30.4503 30.4559 0.39
0.400 25.5593 30.3714 30.6081 30.6081 30.4503 30.4470 0.39
0.433 25.5593 30.2925 30.6081 30.6081 30.4503 30.4345 0.50
0.450 25.5593 30.2925 30.5292 30.6081 30.4503 30.4207 0.44
0.467 25.4804 30.2925 30.6869 30.7658 30.6869 30.4043 0.70
0.483 25.0071 29.9770 30.7658 31.1603 31.2391 30.3024 1.91
0.500 23.5871 28.5570 29.7403 30.3714 30.6081 29.8192 3.08

Table 1. Normalized J -integral results for the heterogeneous plate as a function of the
integration domain size. The results for the smallest integration domains, r/a = 0.1
(shaded column in the table) are excluded for the computation of the average value and
the standard deviation.

the specimen, where the boundary layer effect takes place and the applicability of the J -integral is not
strictly valid. The smallest integration domains with r/a = 0.10 do not provide accurate results. This is
attributed to the fact that these domains are discretized using a single cell in the radial direction. Similar
behaviors were found by the authors previously [Cisilino et al. 1998; Ortiz and Cisilino 2005].

7.2. Bimaterial laminate with an edge interface crack. In this example the analysis of an edge crack in
a bimaterial laminate is considered. The model geometry and discretization are shown in Figure 9. The
model dimensions are: crack length a = 10 mm, specimen width b = 4a, height h = a, and thickness
2t = 1.5a. The material properties are the same ones used in the previous example. The discretization
consists of 596 elements. Five rings of cells with normalized radii r/a = 0.05, 0.1, 0.15, 0.22, and 0.32
are used around the crack front for the J computations. 504 cells are used in the construction of the
integration domains.

The model was solved for a number of relative orientations of the axis of symmetry of the material
in both subdomains. The computed results are reported in Figure 10. The J -results in Figure 10 are
normalized with respect to J0 = σ

2πa/E ′. It can be seen that when one of the principal axes of the
material is specified perpendicular to the crack front direction for both subdomains, the J -integral results
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x 

y 

z 

Figure 9. Bimaterial laminate with an edge crack (deformed geometry).

along the crack front are symmetric with respect to the specimen midplane (z/t = 0). This is the case
for the results labeled 90◦/90◦/0◦-90◦/90◦/0◦ and 0◦/90◦/90◦-90◦/90◦/0◦ in the figure. On the other hand,
when there is no principal axis of the material oriented perpendicular to the crack front in at least one
of the subdomains, the J -integral results are not symmetric with respect to the specimen midplane. The
extreme values for the J -integral are attained at the free surface.
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Figure 10. Normalized J -integral results along the crack front of the edge crack in the ply.
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Figure 11. External circumferential interface crack in a cylindrical bimaterial bar.
(a) Model geometry and dimensions and (b) model discretization (deformed mesh).

7.3. A circumferential interface crack in a cylindrical bimaterial bar. The last example consists of
a cylindrical bimaterial bar containing a circumferential crack subjected to remote axial tension σ , as
illustrated in Figure 11a. The radius of the bar is b= 5a and its height is h = 24a, with a being the crack
depth. A total of 684 elements are employed in the model discretization. Four rings of cells with radii
r/a = 0.25, 0.5, 0.75, and 1 are used around the crack front for the J computations. The integration
domains are constructed using 672 cells. The model discretization is illustrated in Figure 11b. The
material properties are the same reported for the previous examples.

The problem was solved considering different material orientations. The results are shown in Figure 12.
In every case the results are normalized with respect to J0= σ

2πa/E ′. The first solution is for an isotropic
homogeneous material and was used for validation purposes. The J result is constant along the complete
crack front. Also plotted in Figure 12 is the result of [Murakami and Okazaki 1976], which possesses
a reported accuracy of 3%. The difference between the computed result and that of the reference is 5%.
The second solution is for a homogeneous transversely isotropic case, with the material symmetry axis
specified coincident with the direction y for both subdomains (results labeled 90◦/0◦/90◦-90◦/0◦/90◦ in
Figure 12). Once again, and as was expected, the computed J values are constant along the complete
crack front. In the third case the orientation of the material axes of symmetry are different in each
subdomain: for subdomain I the material axis of symmetry is oriented in the z-direction, while for
subdomain II it is oriented in the y-direction (results labeled 90◦/90/0◦-90◦/0◦/90◦ in Figure 12). The
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Figure 12. Normalized J -integral results along the crack front of the circumferential
crack in the biomaterial bar.

J results exhibit a periodic variation along the crack front. The minimum values occur in the positions
coincident with the direction of the z-axis, while the maximum values are in the positions coincident with
the direction of the x-axis. In the last case, the orientation of the material axis of symmetry is specified
in the x-direction for both subdomains (results labeled 0◦/90/90◦-0◦/90◦/90◦ in Figure 12). As for the
previous case, the J results exhibit a periodic variation along the crack front. However, in this case
minimum values occur in the positions coincident with the direction of the x-axis, while the maximums
are in the positions coincident with the direction of the z-axis.

8. Conclusions

A boundary element implementation of the energy domain integral (EDI) for the computation of the
J -integral of three-dimensional interface cracks in transversely isotropic bimaterials has been presented
in this paper. The analysis is addressed using a multidomain boundary element method (BEM) formu-
lation in order to account for the different material properties at both sides of the crack. The J -integral
computation is implemented as a postprocessing technique, and so it can be applied to the results from
a particular model at a later stage. The BEM uses a versatile set of fundamental solutions given only in
terms of real functions which are valid for all possible material configurations. The implementation takes
advantage of the efficiency of the boundary integral equation to directly obtain the required displacement
derivatives, stress, and strain fields from their boundary integral representations.

The efficiency and accuracy of the proposed implementation has been addressed by analyzing a number
of examples with straight and curved crack fronts. The computed results compare very well with those
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reported in the literature for benchmark problems. In addition, the implemented algorithm allowed for
studying the effect of the relative orientations of the materials on both sides of the crack on the J integral
values.

Maximum errors and dependence of the computed results on the integration paths occur for surface
cracks at the intersection of the crack front with a free surface. This behavior is attributed to the boundary
layer effect taking place at the intersection of the crack front and a free surface. Under these circum-
stances, the EDI is not strictly applicable. This problem remains unsolved in this work. Following
previous work [Ortiz and Cisilino 2005], alternative approaches for the selection of the auxiliary function
q for the implementation of the EDI could be explored to improve the accuracy of the computations.

Appendix

Additional terms of the components of the tensor H(x̂):

β3 =

{
C44c2

+C33s2

C66

}1/2

, h =
{

c4
+
ηs2c2

C11C44
+

C33s4

C11

}1/2

, g =
{

2(h+ c2)+
ηs2

C11C44

}1/2
,

ξ = g(h+ gβ3+β
2
3 ), η = C11C33−C2

13− 2C13C44, f = h+c2

C66
+

gh
C66β3

+
C33s2

C11C44
,

where c = cosφ = x3/r , s = sinφ = r12/r , the angle φ being as in Figure 4.
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PORCINE DERMIS IN UNIAXIAL CYCLIC LOADING:
SAMPLE PREPARATION, EXPERIMENTAL RESULTS AND MODELING

ALEXANDER E. EHRET, MARC HOLLENSTEIN, EDOARDO MAZZA AND MIKHAIL ITSKOV

We present a straightforward technique to prepare thin samples of planar or bulky soft tissue with very
accurate geometry. The experimental procedure includes the preparation of thin slices of tissue by means
of a surgical dermatome and specimen extraction by die cutters. We illustrate this method in application
to porcine dermal tissue. The prepared specimens were subjected to uniaxial cyclic tension along and
across the lines of cleavage with increasing upper stretch limits. Besides a distinct anisotropic and
nonlinear behavior, cyclic loading caused considerable preconditioning effects including softening and
substantial residual deformations. This observed behavior is well represented by a recently proposed
constitutive model accounting for the elastic and dissipative behavior of soft tissues.

1. Introduction

Skin provides the barrier of the body to the surrounding environment and is for this reason, more directly
than any other organ, subject to external loads, possibly going beyond the physiological level. A compre-
hensive understanding of the mechanical properties of skin is thus of major importance. Moreover, skin is
widely used as an autograft in reconstructive surgery, for example, for treating burn wounds. In this field,
as well as in plastic surgery, techniques and results can be improved taking the mechanical characteristics
of the skin into account. These properties may also serve as an indicator for connective tissue disorders
which alter the constitution of the skin. Like the majority of soft biological tissues, skin is a composite ma-
terial containing a large amount of fibrous proteins, in particular collagen, which, due to a preferred align-
ment, induce anisotropic material properties. This anisotropy was already discovered in the early 19th
century when Dupuytren [1834] investigated the apparent discrepancy between the circular cross-section
of a weapon injuring the skin and the resulting elliptic shape of the wound. The preferred directions of
this anisotropy coincide with the lines of cleavage of the skin referred to as Langer’s lines [Langer 1861].

For the mechanical characterization of skin, a number of experiments have been proposed using in
vivo methods such as indentation [Delalleau et al. 2006] and suction [Alexander and Cook 1977], as
well as dedicated extension [Alexander and Cook 1977; Khatyr et al. 2004]. The most common in vitro
experiment is the uniaxial tension test. Ridge and Wright [1966] carried out uniaxial tensile experi-
ments on human skin specimens and confirmed the anisotropy of skin by a stress response, which was
remarkably stiffer along than across the Langer’s lines. Further uniaxial tension tests were performed,
for example, on the skin of cats [Veronda and Westmann 1970], rats [Haut 1989; Eshel and Lanir 2001;

The advice and support of Prof. Dr. med. A. Prescher, University Hospital Aachen, and Dr. med. M. Guggenheim, University
Hospital Zurich, concerning the histology of skin and the proper use of the surgical dermatome is gratefully acknowledged. For
technical assistance with the parameter identification process, we thank A. R. Elliott. The work of MH and EM was partially
supported by the Swiss National Science Foundation (NCCR CO-ME).
Keywords: dermis, anisotropy, constitutive modeling, preconditioning, soft tissues, mechanical testing, cyclic loading.
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Delalleau et al. 2006], and mice [Del Prete et al. 2004; Muñoz et al. 2008]. Since physiologically relevant
loading states are of a biaxial nature, Lanir and Fung [1974] investigated the biaxial viscoelastic stress
response of rectangular rabbit skin samples, the width of which was fixed during elongation. By means
of a multiaxial testing device, the planar orthotropic elastic properties of human skin were studied in
[Reihsner et al. 1995], which confirmed only small deviations of the principal stress directions from the
Langer’s lines. For an overview of available testing methods, the reader is also referred to the review
articles [Payne 1991; Edwards and Marks 1995; Xu et al. 2008].

While the majority of investigations focus on elastic and viscoelastic properties as well as on failure,
the anisotropic inelastic softening and, in particular, the preconditioning behavior of skin occurring during
the initial few applied load cycles have rarely been the scientific focus. In this regard, Muñoz et al. [2008]
have presented an interesting study on the inelastic behaviour of murine skin subject to uniaxial cyclic
loading, where the load was successively increased in each step. Besides remarkable residual strains
growing with the achieved maximal stretch, they found softening characteristics which clearly resemble
the Mullins effect [Mullins 1947] in rubber-like materials. The anisotropic preconditioning behavior of
thin porcine dermis samples subject to pure shear loading has recently been investigated in [Hollenstein
et al. 2011] and this study will be extended to the case of uniaxial tension in the present work.

After preconditioning, the response of skin is characterized by a stable hysteresis loop [Tong and Fung
1976]. Accordingly, hyperelastic and viscoelastic models dominate the constitutive modeling approaches,
including both phenomenological and microstructural strategies; see [Xu et al. 2008] for a review. As
for most other tissues, the transient softening behavior during initial load cycles is often treated as a side
effect and is only addressed in few works. For example, preconditioning has been modeled for tendon
[Sverdlik and Lanir 2002], liver [Nava et al. 2004], and ventricular myocardium [Emery et al. 1997]. In
all three works, quasilinear viscoelastic models were enriched either by a plastic or a softening variable to
capture the observed softening effects. Under unphysiological conditions, the stress softening is mostly
related to tissue damage and consequently is modeled in the framework of continuum damage mechanics,
as, for example, applied to overstretched arteries [Balzani et al. 2006] or ligaments [Calvo et al. 2007].
Rubin and Bodner [2002] proposed a viscoplastic model for skin and the underlying fascial tissue, which
has recently been applied to simulate the aging skin of the human face [Barbarino et al. 2009].

In the present work, we apply a novel method to excise thin specimens of accurate geometry from
planar or bulky soft tissues [Hollenstein et al. 2011]. By using a surgical dermatome, 500µm-thick sam-
ples of porcine dermis were prepared and subjected to cyclic quasistatic uniaxial loading. The observed
stress-response is modeled by a recently proposed modeling framework to capture preconditioning and
softening effects [Ehret and Itskov 2009].

2. Materials and methods

The preparation of the specimens was carried out according to a protocol recently presented in conjunc-
tion with a pure shear test series of porcine dermal tissue and is briefly summarized in this section. For a
detailed description and technical specifications please refer to [Hollenstein et al. 2011]. All experiments
were performed in accordance with Swiss federal ethical research standards.

2A. Sample preparation. Porcine skin is anatomically subdivided into the epidermal, dermal, and sub-
cutaneous layers, with respective thicknesses of about 30–140µm, 1–2 mm, and up to 12 mm or more,
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depending on sex, anatomical site, and nutritional state of the pig [Vardaxis et al. 1997]. Light and scan-
ning electron microscopy [Meyer et al. 1982] as well as confocal laser scanning microscopy [Vardaxis
et al. 1997] reveal that porcine dermal tissue is mainly composed of a dense three-dimensional network
of collagen fibers and thick fiber bundles crossing each other in two main directions. Ridge and Wright
[1966] have suggested a simplified planar lattice structure in which these preferred fiber directions of
skin form an angle of “somewhat less than 45◦” to the Langer’s lines. The resulting axes of orthotropy
along and across the Langer’s lines indeed coincide well with experimental results (see, for example,
[Reihsner et al. 1995]). Depending on the anatomical site, a substantial amount of elastic fibers are also
present [Meyer et al. 1981]. The two proteins collagen and elastin constitute about 70–80% and 4% of
the dry weight, respectively [Mathews 1975; Fung 1993].

Skin pieces from the snout and head region of female domestic pigs (Sus scrofa domestica) were
obtained from the slaughterhouse immediately after animal slaughter. The pieces were approximately
300×300 mm large with a thickness of about 10–15 mm, containing the subcutaneous layer. After care-
fully being rinsed with water, the pieces were shaved and finally stored in saline-soaked cloths at 4◦ C.

Following the protocol proposed in [Hollenstein et al. 2011], the pieces were first nailed under slight
tension on a foam damping pad and paraffin oil was applied to the skin surface. Thereafter 500µm-thick
and 80 mm-wide slices were extracted by means of a surgical dermatome (Figure 1a). The second and
third layers extracted in this way consisted completely of dermal tissue and were used for testing.

Finally, rectangular specimens were punched out of the dermis sections by the use of a 10×80 mm die
cutter (Figure 1b) and shortened to a length of 50 mm with the aid of a scalpel. To obtain longitudinal and
transversal specimens, respectively, the die was aligned with its long side either along or perpendicular
to the optically observable crease lines, which coincide well with the cleavage lines [Cox 1941].

2B. Experimental setup and test realization. Uniaxial tension tests were performed on a custom-made
testing device with two horizontally arranged hydraulic actuators with an available piston rod stroke of
100 mm. Load cells with a capacity of 100 N were installed at the end of each actuator. Custom-made

(a) (b) (c)

Figure 1. (a) Surgical air-dermatome. (b) Custom-made die cutter for excision of uni-
axial specimens. (c) Dermis specimen on the supporting table before mounting the upper
grips.
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titanium clamps equipped with sandpaper allowed for specimen fixation by closing a knurled thumb
screw. The force F acting on the fixed actuator and the displacement of the moving actuator relative to
its initial position were recorded.

For precise spreading of the specimens on the grip surfaces, a small supporting table was installed
in between the clamps while the actuator piston rods were in their initial testing position, providing a
distance of 30 mm (Figure 1c). After the closing of the clamps and removal of the table, the specimens
were hanging slightly slack in between the two clamps, and a preload of 0.05 N was applied to straighten
the sample. The resulting length is considered as the reference length. Note that the choice of this
preload thus has significant influence on the stretch calculation. Before and during testing, the samples
were sprayed with physiological saline in order to keep them moist.

The induced nominal strain εn(t), the stretch ratio λn(t), and the nominal stress P were computed as
[Hollenstein et al. 2011]

εn(t)=
d(t)
l0
, λn(t)= 1+ εn(t), P = F

A0
, (2-1)

where d(t) is the displacement of the actuator, A0 the initial cross-sectional area, l0 the free gauge length
at preload, and F the measured force.

We performed the tests in a displacement-controlled mode, where the protocol was defined based
on the nominal strain and its rate. The lower cycle-reversal points, however, were enforced when the
measured force became less than 0.05 N in order to prevent the tissue from becoming slack during
the cyclic loading. The preconditioning protocol contained five sets of five cycles, respectively, with
increasing upper strain levels of 2.9%, 5.7%, 8.5%, 11.4%, and 14.3%. The highest strain level was
chosen well below the rupture strain in preceding tension-to-failure experiments and the lower levels
were obtained by appropriate scaling. All tests were run with ε̇n = 0.1% s−1. In previous experiments,
we found that further decreasing the rate below this value had negligible influence on the tissue response,
which was thus considered quasistatic.

3. Experimental results

In Figure 2 the nominal stress P in the loading direction is plotted against the applied stretch ratio for
a longitudinal and a transversal specimen cut from the same skin sample. As typical for the majority of
soft biological tissues each stress-stretch curve is characterized by a J -shaped form with a distinct toe
region. Comparison between the two graphs reveals the distinct anisotropy of the tissue, with a much
stiffer response for loading along the direction of the cleavage lines.

All specimens showed substantial preconditioning effects. This includes stress softening and a ten-
dency to stabilise after some cycles if the upper stretch limit is kept constant. Increasing this limit,
however, the tissue again undergoes several preconditioning cycles until a reasonably stable response is
reached. It is remarked that even for loading at these low strain rates, the stabilized loading-unloading
cycles demonstrate hysteresis, in line with the phenomenon of pseudoelasticity [Fung 1993]. Along with
the softening, both longitudinal and transversal samples accumulate remarkably large residual strains of
approximately 60% of the applied strain after removing the load. The observed phenomena, in particular
the strong effect of the previous loading history, bear a tremendous resemblance to stress softening
characteristics of rubber-like materials such as the Mullins effect [Mullins 1947].
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Figure 2. Nominal stress response of two dermis specimens cut either (a) along or
(b) perpendicular to the cleavage lines of the skin.

4. Constitutive modeling

In order to interpret the observed anisotropic softening behavior, we consider a recently proposed dis-
sipative modeling framework for anisotropic materials [Ehret and Itskov 2009]. The model treats soft
biological tissues in the framework of classical invariant theory of fiber-reinforced materials consisting of
an isotropic matrix and n families of collagen fibers, the alignment of which is specified by unit vectors
ai , i = 1, 2, . . . , n. Based on these fiber vectors, the structural tensors Li = ai ⊗ ai are introduced and,
by means of the second-order identity tensor I , additionally L0 = I/3, which accounts for the isotropic
matrix. A set of suitable invariants to formulate the free energy function is given in terms of the structural
tensors and the right Cauchy–Green tensor C as (for details, refer to [Ehret and Itskov 2007])

Ii = tr(C Li ), Ji = tr[(cof C)Li ], IIIC = det C, i = 0, 1, . . . , n, (4-1)

where cof C = C−1 det C . In the case i = 0, one finds I0 = IC/3 and J0 = IIC/3, where IC and IIC denote
the first and second principal invariants of C. Moreover, for i = 1, 2, . . . , n, Ii describes the change in
squared length of a line element aligned with the vector ai . Using Nanson’s formula, one further realises
that Ji accounts for the change in squared area of an element with the surface normal ai in the reference
state [Schröder and Neff 2003]. Under the incompressibility constraint det C = 1, the invariants (4-1)
take the form

Ii = tr(C Li ), Ki = tr[C−1 Li ], IIIC = 1, i = 0, 1, . . . , n, (4-2)

where the second set of invariants is denoted by Ki in this case. Taking into account that the isotropic ma-
trix and various fibers may have different influences on the deformation behavior, generalized invariants
are postulated as linear combinations of the form [Ehret and Itskov 2007]

Ĩ =
n∑

i=0

ui Ii , K̃ =
n∑

i=0

vi Ki , (4-3)
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where ui and vi denote nonnegative weight factors controlling the influence of the different constituents,
respectively. As a result of the kinematic interpretation of the invariants (4-2), ui is associated with
longitudinal characteristics, while vi relates to cross-sectional properties. The inelastic modeling concept
is based on the idea that structural alterations of a constituent i must be reflected in a change of the
associated weight factor. Treating the weight factors as internal variables characterising the structural
state of the tissue, its free energy 9 per unit volume is represented in the incompressible case (det C = 1)
by [Itskov and Ehret 2009]

9 = 9̃( Ĩ , K̃ )= 9̂(Ii , Ki , ui , vi )=
µ

4

{ 1
α

[
eα( Ĩ−1)

− 1
]
+

1
β

[
eβ(K̃−1)

− 1
]}
, (4-4)

where µ has dimensions of stress and α > 0 and β > 0 denote dimensionless material constants. Keeping
the weight factors constant, the free energy function (4-4) reduces to the incompressible representation
of a recently proposed polyconvex and coercive strain-energy function [Ehret and Itskov 2007]. In the
elastic case, this property guarantees material stability as well as the existence of the global minimiser of
the total elastic energy, which is an important prerequisite for the solution of boundary value problems
[Ball 1977; Ciarlet 1988; Schröder and Neff 2003].

Inserting (4-4) into the Clausius–Duhem inequality and regarding the incompressibility constraint
yields the second Piola–Kirchhoff stress tensor as S= 2∂9/∂C − pC−1 where p is an arbitrary scalar.
Furthermore, one obtains a dissipation inequality that guarantees a nonnegative rate of entropy production
[Truesdell and Noll 1965]. Borrowing methods from strain space plasticity [Naghdi and Trapp 1975], one
can set up evolution criteria and suitable rate equations for the weight factors so that the latter inequality
is satisfied and the model is thermodynamically consistent. The evolution equations are formulated in
terms of the thermodynamic forces uϕi = ∂9/∂ui and vϕi = ∂9/∂vi , work-conjugate to ui and vi ,
respectively. In the special case of a continuously softening material, these evolution equations take the
form [Ehret and Itskov 2009]

u̇i =

{ud i
u ◦ϕi if u ◦ϕi> 0∧ Ii > 1,

0 else,
v̇i =

{
vd i

v ◦ϕi if v ◦ϕi> 0∧ Ki > 1,
0 else,

(4-5)

for i = 0, 1, . . . , n, where the superposed circle indicates ◦x=∂x/∂C :Ċ , and ud i ≤ 0 and vd i ≤ 0 denote
softening functions.

A structural initial state is introduced such that the tissue is energy and stress-free in the reference
configuration with C = I . Considering the latter relation in (4-4) and the resulting second Piola–Kirchhoff
stress tensor, one easily confirms that the tissue is energy and stress-free if [Itskov and Ehret 2009]

ui = vi = wi ,

n∑
i=0

wi = 1, (4-6)

which will be referred to as the virgin state of the material.

5. Comparison with experimental data

5A. Model specification. Taking the initially discussed arrangement of collagen fibers in the dermis
into account, we adopt the simplified fiber structure suggested in [Ridge and Wright 1966] and model
the tissue as a fiber-reinforced material with two fiber families forming an angle of ±θ with the cleavage
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lines. Introducing the vectors e1 along and e2 across these lines, as well as e3 in the thickness direction,
they form an orthonormal basis with respect to which the two fiber vectors are specified as

a1 = cos(θ)e1+ sin(θ)e2, a2 = cos(θ)e1− sin(θ)e2. (5-1)

For loading along and across the fiber directions, the nominal stresses can thus be calculated in terms of
the principal stretches λk , k = 1, 2, 3, by

Pk =
∂9

∂λk
− pλ−1

k ,

where p denotes an arbitrary parameter which is determined by the assumption of stress-free lateral
boundaries during the uniaxial tests. As a result of the incompressibility condition, the principal stretches
are related by λ3 = 1/(λ1λ2), so that the nominal stresses may be expressed in the form Pk = P̄k(λ1, λ2).

We assign the observed softening exclusively to alterations of the longitudinal fiber properties; the
bulk and cross-sectional properties remain unchanged so that u0 = v0 =w0 and vi =wi , i = 1, 2. Thus it
remains to specify the softening functions in the evolution equations (4-5)1 for ui , i = 1, 2, where with
minor changes the form proposed in [Ehret and Itskov 2009] is adopted as

ud i =
4uki
µ
(ūi − ui ), ūi = wi exp

[
−

uci

( uϕ̄i
µ/4

)ubi
]
, uϕ̄i = max

τ∈(−∞,t]
[

uϕi (τ )], (5-2)

where uϕ̄i indicates the maximum of the thermodynamic force reached in the past loading history, and
uki , ubi , and uci are dimensionless constants. In the virgin state, the two fiber families are assumed
to be mechanically equivalent, and thus w1 = w2 = (1− w0)/2, in view of (4-6). This equivalence
also motivates the evolution of these factors being governed by analogous evolution equations so that
uki , ubi , and uci take the same value for i = 1 and i = 2, respectively. Thus altogether there are three
constants characterising the anisotropic softening as well as the parameters µ, α, β, and w0 and the angle
θ controlling the elastic response.

5B. Parameter identification. In order to determine the aforementioned parameters in comparison with
the uniaxial tension tests, the constitutive equations were implemented in a Maple 10 worksheet. By this
means, the model response was simulated for the applied stretch history in the loading direction. For each
stretch increment, the evolution equations were solved implicitly and the stretch in the lateral direction
was computed from the condition that this direction be stress-free. With these values at hand, the stress
in loading direction was calculated. The model does, however, account only for the dissipative processes,
inducing softening, and not for the hysteresis loops formed by unloading and subsequent reloading curves.
For this reason, the difference between the model and experiment was only taken into account for the 25
unloading paths, where N k

l data points for longitudinal and N k
t data points for transversal loading were

considered on the k-th unloading curve. Based on these differences, a least-squares objective function
of the general form

�=

25∑
k=1

{
ωk

l

N k
l

N k
l∑

i=1

[P̄1(λ
k,i
l , λ

k,i
2 )− Pk,i

l ]
2
+
ωk

t

N k
t

N k
t∑

i=1

[P̄2(λ
k,i
1 , λ

k,i
t )− Pk,i

t ]
2
}

(5-3)

was defined and subjected to an optimization procedure. Here (λk,i
l , Pk,i

l ) and (λk,i
t , Pk,i

t ) are experimental
data pairs, λk,i

1,2 denote the computed lateral stretches, and ωk
l,t are weighting factors.
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Figure 3. Comparison of the simulated stress response based on the parameters obtained
by the fitting procedure with experimental data for loading (a) along and (b) across
the lines of cleavage. Material parameters: µ = 0.9545 MPa, α = 146.2, β = 170.0,
w0 = 0.2348, θ = 42.44◦, uk1 = 0.1420, ub1 = 0.4453, and uc1 = 0.01306.

Based on the parameter values obtained through the fitting procedure, we simulated the model stress
response to the protocol applied in the experiments. The simulation results displayed in Figure 3 (the
black solid lines) show fair agreement with the experimental stresses, where we emphasise once again
that the hysteresis loops formed by the successive reloading paths are not taken into account by the model.
Note that, although the angle between fiber bundles and Langer’s lines was estimated at close to θ = 45◦,
the responses for loading along and across these lines differ remarkably, which is explained by the strong
nonlinearity of the model.

6. Conclusions

In the present paper, we used a novel and robust protocol for the preparation of uniaxial tension specimens
of accurately defined dimensions. Sample preparation from soft biological tissues is challenging: shape
and structure of the available sample material limit possible geometries and thus applicable extraction
procedures. During cutting, the tissue is locally disrupted and new boundaries are created. This may
lead to artefactual behavior which affects the results of the mechanical characterization. Thus, gently
prepared samples with exact geometry are highly valuable for in vitro testing.

The key features of the preparation protocol include the use of a surgical dermatome in combination
with punching dies. The dermatome allows for obtaining thin and thus relatively homogeneous tissue
sections. The punching tools guarantee a precise planar geometry of the specimens. Dermatomes are
designed to perform extremely smooth sectioning in plastic and reconstructive surgery, and are thus
highly suitable for the preparation of evenly shaped specimens for materials testing. Therefore, we argue
that, due to the precise geometry of the samples obtained, the proposed method of sample preparation
leads to a general reduction in systematic errors, which will have to be proven statistically on a broader
database in the future.

Concerning components and structure, dermal tissue is representative of many soft biological tissues
and exhibits typical characteristics such as pronounced preconditioning and a response differing in
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loading and unloading, a phenomenon known as pseudoelasticity. The remarkable residual deformations
demonstrated by the dermis samples in the present study are in line with recent observations on skin
specimens including all layers [Muñoz et al. 2008].

The observed inelastic behavior was taken into account by a constitutive model that regards softening
as structural alterations of the longitudinal and cross-sectional fiber properties. The model in its present
form accounts only for the softening including residual deformations, not, however, for the hysteresis
formed due to pseudoelastic behavior of the tissue during reloading. Consequently, the model was
calibrated only against the unloading part of the stress-strain cycles, while neglecting the stiffening
during reloading. Bearing this in mind, the obtained agreement between simulation and experiment is
remarkable and reveals the potential of the model for future developments.
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ANALYSIS OF NONSTATIONARY RANDOM PROCESSES
USING SMOOTH DECOMPOSITION

RUBENS SAMPAIO AND SERGIO BELLIZZI

Orthogonal decompositions provide a powerful tool for stochastic dynamics analysis. The most popular
decomposition is the Karhunen–Loève decomposition (KLD), also called proper orthogonal decomposi-
tion. KLD is based on the eigenvectors of the correlation matrix of the random field. Recently, a modified
KLD called smooth Karhunen–Loève decomposition (SD) has appeared in the literature. It is based on a
generalized eigenproblem defined from the covariance matrix of the random process and the covariance
matrix of the associated time-derivative random process. SD appears to be an interesting tool to extend
modal analysis. Although it does not satisfy the optimality relation of KLD, and maybe is not as good
a candidate for building reduced models as KLD is, SD gives access to the modal vectors independently
of the mass distribution. In this paper, the main properties of SD for nonstationary random processes are
explored. A discrete nonlinear system is studied through its linearization, for uncorrelated and correlated
excitation, and the SD of the nonlinear system and of the linearization are compared. It seems that SD
detects not only mass inhomogeneities but also nonlinearities.

1. Introduction

The Karhunen–Loève decomposition (KLD) method has been extensively used as a tool for analyzing
random fields [Holmes et al. 1996; Lin et al. 2002; Wolter et al. 2002; Kerschen et al. 2005]. KLD reveals
some coherent structures which have been advantageously used in different domains such as, for example,
the stochastic finite elements method, simulation of random fields, modal analysis of nonlinear systems,
and construction of reduced-order models. Depending on the discipline and the properties of the random
field under study, but also on the averaging operator used to build the KLD [Bellizzi and Sampaio 2006;
2007], this decomposition has been called principal component analysis, singular value decomposition
(these two in finite dimensions), and proper orthogonal decomposition. In the definition of KLD there
are two inner products, one given by the normalization condition involving the standard inner product
and another by the correlation; the latter, like the former, is a symmetric operator. Orthogonality is meant
with respect to the normalization condition. In structural vibration, KLD has been principally applied to
the displacement field, but it can be applied also to the velocity, acceleration, and displacement-velocity
fields [Bellizzi and Sampaio 2009a].

Recently, a new multivariable data analysis method called smooth orthogonal decomposition (SOD)
has been proposed [Chelidze and Zhou 2006]. SOD is defined from a maximization problem associated
with a scalar time series of measurement but subject to a minimization constraint acting on the associated

The authors gratefully acknowledge the financial support of CNPq, Faperj, and the cooperation project 672/10 financed by
CAPES and COFECUB..
Keywords: smooth decomposition, output only modal analysis, linear and nonlinear systems.
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time derivative of the time series. SOD can be used to extract normal modes and natural frequencies of
multi-degree of freedom vibration systems [Zhou 2006]. Free and forced sinusoidal responses have been
considered in [Chelidze and Zhou 2006] and randomly excited systems have been analyzed in [Farooq
and Feeny 2008]. SOD has been formulated in term of a smooth Karhunen–Loève decomposition (SKLD)
to analyze time-continuous stationary random processes in [Bellizzi and Sampaio 2009b]. The SKLD is
obtained solving a generalized eigenproblem defined from the covariance matrix of the random process
and the covariance matrix of its time derivative. In this paper the SKLD will be referred to as smooth
decomposition (SD) since it neither has the properties of a Karhunen–Loève decomposition nor is it
orthogonal in the sense of the standard inner product. There is, indeed, orthogonality with respect to
inner products defined by the two correlations, displacement and velocity, as we shall see.

This work presents and discusses a nontrivial generalization of SD for time-continuous nonstationary
random processes. This generalization is based on an averaging operator combining the temporal mean
and mathematical expectation to build the covariance matrices of the random process and of its time
derivative.

This paper is organized as follows: Section 2 extends the SD for nonstationary processes, Section 3
extends the proprieties of the SD for the nonstationary case, Section 4 gives a mechanical interpretation
of the SD, Section 5 shows some numerical examples, and, finally, Section 6 presents some conclusions.

2. Smooth decomposition

Our goal here is to extend to nonstationary time processes the smooth decomposition introduced in [Bel-
lizzi and Sampaio 2009b] as a smooth Karhunen–Loève decomposition for stationary random processes.

Let {U(t), t ∈ R} be a Rn-valued random process indexed by R. We assume that {U(t), t ∈ R} is a
second-order process and admits a time-derivative process {U̇(t), t ∈ R} which is also a second-order
process. With these assumptions, the covariance matrices of {U(t), t ∈ R} and {U̇(t), t ∈ R}, denoted
RU (t) = E(U(t)TU(t)) and RU̇ (t) = E(U̇(t)T U̇(t)), respectively, are time dependent. Without loss of
generality, we will also assume that {U(t), t ∈ R} is a zero-mean random process and that RU (t) and
RU̇ (t) are symmetric positive definite.

In the case of stationary processes (that is, RU (t) and R •

U
(t) do not depend on time), the smooth

decomposition of {U(t), t ∈R} is defined (see [Bellizzi and Sampaio 2009b]) recursively by the maximum
optimization problem

max
0∈Rn

E( <<U(t), 0>>
2)

E( << U̇(t), 0>>
2)
, (2-1)

where << >> denotes the inner product in Rn .
In the case of nonstationary processes, the objective function (see (2-1)) is time dependent and as in

[Bellizzi and Sampaio 2006], where KLD has been proposed for nonstationary random processes, the
time variable has to be included in the averaging operation. Let ti and t f be two positive constants with
ti < t f . The ratio

1
t f −ti

∫ t f

ti
E( <<U(t), 0>>

2)dt

1
t f −ti

∫ t f

ti
E( << U̇(t), 0>>

2)dt
(2-2)
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can be considered to define the smooth decomposition. The objective function (2-2) can be written

0T R
ti ,t f
U 0

0T R
ti ,t f

U̇ 0
, (2-3)

where

R
ti ,t f
U =

1
t f −ti

∫ t f

ti
RU (t)dt, R

ti ,t f

U̇ =
1

t f −ti

∫ t f

ti
RU̇ (t)dt, (2-4)

showing that the quotient depends on the covariance matrices of {U(t), t ∈ [t f , ti ]} and {U̇(t), t ∈ [t f , ti ]}.
The vectors that yield the extrema of

max
0∈Rn

0T R
ti ,t f
U 0

0T R
ti ,t f

U̇ 0
(2-5)

are solutions of the eigenproblem

R
ti ,t f
U 0k = σkR

ti ,t f

U̇ 0k . (2-6)

The SD of the random process will then be given by

U(t)=
n∑

k=1

ζk(t)0k, (2-7)

where the vectors 0k solve the generalized eigenproblem (2-6) and the scalar random processes, ζk(t),
are given by

ζk(t)=
0T

k R
ti ,t f
U U(t)

0T
k R

ti ,t f
U 0k

=
0T

k R
ti ,t f

U̇ U(t)

0T
k R

ti ,t f

U̇ 0k
. (2-8)

Note that the scalar processes {ζk(t)} can be defined from either Rti ,t f
U or Rti ,t f

U̇ ; that is, they do not
depend on which of these two covariance matrices is used.

The following notation is used: the eigenvalues σk are called the smooth values (SVs) (6 = diag(σk)),
the eigenvectors 0k are called the smooth modes (SMs) (0 = [0101 · · ·0n]), and the scalar random
processes {ζk(t)} are called the smooth components (SCs). All these quantities depend on the time
interval [ti , t f ].

The generalized eigenproblem (2-6) is a temporal version (for nonstationary random processes) of
the generalized eigenvalue problem introduced in [Bellizzi and Sampaio 2009b] to characterize the SD
of the stationary process. In addition, in the definition (2-6) only the generalized covariance matrices
Rti ,t f

U and Rti ,t f
U̇ are used, no other operator is necessary. It is important (and trivial) to note that, if

the random process is stationary, the covariance matrices reduce to the stationary ones (as described in
[Bellizzi and Sampaio 2009b]) and, if the vector signal is deterministic, the covariance matrices reduce to
the time-average ones (as described in [Chelidze and Zhou 2006]). We will show that the results are, of
course, similar to the ones presented in [Chelidze and Zhou 2006; Farooq and Feeny 2008; Bellizzi and
Sampaio 2009b], but now, since one relies on the covariance matrices, one has a powerful computation
tool not available before (see, for example, [Quaranta et al. 2008]).

Finally, the quotient used to define the SD differs significantly from that used to define the classical
Karhunen–Loève decomposition [Bellizzi and Sampaio 2006]. In the SD case, the denominator takes
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the covariance matrix of the time-derivative process {U̇(t), t ∈ R} into account which justifies the name
smooth decomposition since the idea is to have a small rate-of-variation of the process.

3. Some properties of smooth decomposition

The classical properties as established in the case of stationary processes [Bellizzi and Sampaio 2009b]
are extended to the nonstationary case.

3A. Properties of SV, SM, and SC. The matrices Rti ,t f
U and Rti ,t f

U̇ being symmetric positive definite
implies that all the SVs (eigenvalues) νk are strictly positive and the set of the vectors 0k (the SMs)
constitutes a basis which is orthogonal with respect to both covariance matrices Rti ,t f

U and Rti ,t f
U̇ . Note

that the SMs are unique up to a scaling constant.
The scalar processes {ζk(t), t ∈ R} are correlated:

1
t f −ti

∫ t f

ti
E(ζk(t)ζl(t))dt =

0T
k R

ti ,t f
U R

ti ,t f
U R

ti ,t f
U 0l

0T
k R

ti ,t f
U 0k0

T
l R

ti ,t f
U 0l

=
0T

k R
ti ,t f

U̇ R
ti ,t f

U̇ R
ti ,t f

U̇ 0l

0T
k R

ti ,t f

U̇ 0k0
T
l R

ti ,t f

U̇ 0l
. (3-1)

So, the SVs are not related to energy distribution and, of course, the SD does not satisfy the standard
optimality relationship as the Karhunen–Loève decomposition does. So, properly speaking, the SD is
not a Karhunen–Loève decomposition. The introduction of regularity has then its drawbacks.

3B. Linear transformation of the SD. Let {V (t), t ∈ [ti , t f ]} be a Rn-valued random process defined as

V (t)= AU(t), (3-2)

where A is an invertible matrix.
From the relations RV (t) = ARU (t)AT and RV̇ (t) = ARU̇ (t)AT it can be shown that the SVs of
{V (t), t ∈ [ti , t f ]} coincide with the SVs of {U(t), t ∈ [ti , t f ]} and the sets of the SMs satisfy

0k(V )= A−T 0k(U ), (3-3)

where 0k(U ) (respectively, 0k(V )) denotes a SM of {U(t), t ∈ [ti , t f ]} (respectively, of {V (t), t ∈ [ti , t f ]}).
Finally, following (2-8), the SCs are invariant with respect to linear change of variables if and only if
AAT

= I .

4. Mechanical interpretation of the SD

4A. Discrete linear case. Consider a discrete mechanical system with n degrees of freedom. Let U(t)
be the displacement vector at instant t . We assume that U(t) satisfies the initial-value problem

MÜ(t)+CU̇(t)+ K U(t)= F(t), t ∈ [0, t f ], (4-1)

U(0)= U0, U̇(0)= U̇0, (4-2)

where M , C , and K are symmetric square matrices with dimensions n×n. The vectors U0 and U̇0 define
the initial conditions of the motion at t = 0, and {F(t), t ∈ [0, t f ]} is a random vector process. Without
loss of generality, we have assumed that ti = 0.
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The linear normal modes (LNM) are classically defined from the free responses of the associated
undamped system as

K8= M8�2,

where 8= [81 · · · 8i · · · 8n] denotes the modal matrix with the normalization condition 8T M8= I which
implies that 8T K8=�2

= diag(ω2
i ) (ω2

i and 8i denote the squared resonance frequencies and the asso-
ciated normal-mode vectors).

Here we focus on (4-1) with proportional damping. Note that in this case the matrix 8TC8 is also
diagonal. In this section the aim is to establish when and how the SMs and the SVs, defined in Section 2
(which were based on forced responses), can be used to determine the LNM. This part of the study,
which is in line with the results presented in [Kerschen and Golinval 2002; Wolter et al. 2002; Feeny and
Liang 2003; Chelidze and Zhou 2006], will be restricted to the case where the excitation is a white-noise
random process with zero mean (that is, RF (τ )= E(F(t + τ)FT (t))= SFδ(τ ), where SF is a constant
symmetric matrix) and the initial conditions (U0 and U̇0) are two random vectors with zero mean.

4A1. SD and modal analysis. Introducing the modal-displacement vector Q(t) with

U(t)=8 Q(t)=
n∑

i=1

8i Qi (t), (4-3)

the equation of motion (4-1) can be equivalently replaced by

Q̈(t)+2 Q̇(t)+�2 Q(t)=8T F(t), t ∈ [0, t f ], (4-4)

with 2=8TC8= diag(2τiωi ).
The evolution of the covariance matrix, RQ(t)= E(Q(t)QT (t)), of Q(t)= (QT (t), Q̇T (t))T is given

by (see, for example, in [Bellizzi and Sampaio 2006])

ṘQ(t)= AQ RQ(t)+ RQ(t)AT
Q+ DQ, t ∈ [0, t f ], (4-5)

RQ(0)= RQ0, (4-6)

where

AQ =

(
0 I
−2 −�2

)
, DQ =

(
0 0
0 8T SF8

)
,

and RQ0 is easily deduced from RU0 = E(U0UT
0 ) with U= (U T

0 , U̇ T
0 )

T .
If the matrix 8T SF8 is diagonal (that is, if the modal-excitation terms 8T

i F(t) in (4-4) are uncorre-
lated) and if RQ0 is also diagonal then, from (4-5), it can be shown that the covariance matrix RQ(t)
is partitioned into four blocks and each block is a n× n diagonal matrix. Hence, for all t ∈ [0, t f ], the
covariance matrices RQ(t) and R Q̇(t) of the transient responses {Q(t), t ∈ [0, t f ]} and { Q̇(t), t ∈ [0, t f ]}

are diagonal. Integrating over [0, t f ] we deduce that the generalized covariance matrices R0,t f
Q and R0,t f

Q̇
are also diagonal.

Solving (2-6), the SMs associated with {Q(t), t ∈ [0, t f ]} are equal to the vectors of the canonical
basis of Rn . Now using the linear relation (4-3), we can easily deduce (see (3-3)) that the SMs of
{U(t), t ∈ [0, t f ]} are given by

0 =8−T , where 0 = [01 · · ·0n]. (4-7)
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We have here extended the result established in [Bellizzi and Sampaio 2009b] for the stationary case.
Unfortunately, in the case of transient responses, it is not possible to relate the SVs (6) to natural
frequencies of the mechanical system as it is the case for stationary responses where, under the same
assumption on 8T SF8, the following relationship holds:

6 = (�2)−1. (4-8)

It is interesting to note that, as indicated in [Chelidze and Zhou 2006], no assumption on the mass
matrix M is needed to relate the LNMs to the SMs.

4A2. Influence of the mass inhomogeneity on the SM. An interesting property of the SMs is their sensi-
tivity to mass inhomogeneity. Combining the two equations

0 =8−T, 8T M8= I,

the SM matrix reads as 0 = M8. In the case of mass inhomogeneity — that is, when the mass matrix
is diagonal with entries mi , with not all the mi equal — then each SM 0k differs from a LNM 8k by a
scaling vector factor characterizing the mass inhomogeneity, that is,

0k = VM .8k, (4-9)

where VM = (m1, . . . ,mn)
T and “.” denotes the element-by-element product.

This relationship can be used in practice to localize the mass dispersion comparing the SMs and the
column vectors of 0−T . This analysis can be implemented knowing only the covariance matrices of the
displacement and velocity processes.

4A3. Influence of the correlation coefficient between modal excitation terms. As we have seen above
SD can be used to obtain the LNM if the modal excitation terms 8T

i F(t) are uncorrelated. In this section
we will discuss the influence of the correlation coefficient between modal excitation terms considering
transient responses.

Let us take a two-degree of freedom linear system of (4-1) and (4-2) with proportional damping. We
assume that the matrix 8T SF8 is not diagonal and reads

8T SF8=

(
σ11 ρ

√
σ11σ22

ρ
√
σ11σ22 σ22

)
, (4-10)

where σ11 and σ22 denote the modal input level and ρ the associated correlation coefficient.
We focus on the associated modal equation (4-4) where ωi and τi (for i = 1, 2) denote the resonance

frequencies and the associated damping ratios.
We first consider the stationary case. The covariance matrix R̂Q of the stationary response is defined

from the following Lyapunov equation:

AQ R̂Q+ R̂Q AT
Q+ DQ = 0. (4-11)
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Solving (4-11) gives for R̂Q and R̂ Q̇:

R̂Q11 =
σ11

4τ1ω
3
1

, R̂Q22 =
σ22

4τ2ω
3
2

, R̂Q12 = ρQ12

√
R̂Q11 R̂Q22, (4-12)

R̂Q̇11
=

σ11
4τ1ω1

, R̂Q̇22
=

σ22
4τ2ω2

, R̂Q̇12
= ρQ̇12

√
R̂Q̇11

R̂Q̇22
, (4-13)

with

ρQ12 = ρ
8τ 2

1 rω
√

rτrω(1+ rτrω)

(1− r2
ω)

2+ 4τ 2
1 (1+ rτrω)(rτ + rω)rω

, ρQ̇12
= ρ

4
√

rτrω
1+ rτrω

, rτ =
τ2
τ1
, rω =

ω2
ω1
.

Introducing the ratio rσ = σ22/σ11, the stationary covariance matrices take the form

R̂Q =
σ11

4τ1ω
3
1

 1 ρQ12

√
rσ

rτr3
ω

ρQ12

√
rσ

rτr3
ω

rσ
rτr3

ω

 , R̂ Q̇ =
σ11

4τ1ω1

 1 ρQ̇12

√
rσ

rτrω

ρQ̇12

√
rσ

rτrω
rσ

rτrω

 , (4-14)

showing that the SVs of the stationary response defined from the generalized eigenproblem,

R̂Q0k = σk R̂ Q̇0k, (4-15)

depend only on the modal damping (τ1, τ2), modal frequency ratio rω, modal input level ratio rσ , and the
correlation coefficient ρ. Moreover, the SMs (that is, the eigenvectors 0k) do not depend on the absolute
values of the modal frequencies (ω1, ω2).

We now consider the nonstationary case assuming zero initial conditions ( Q(t)= 0 and Q̇(t)= 0).
As introduced in Section 2, the SD is defined from the generalized covariance matrices

R
0,t f
Q =

1
t f

∫ t f

0
RQ(t)dt, R

0,t f

U̇ =
1
t f

∫ t f

0
R Q̇(t)dt, (4-16)

where RQ(t) and R Q̇(t) solve (4-5) over [0, t f ]. Numerical investigations are reported below for ω1 = 1,
rω = 1.5, τ1 = 0.01, rτ = 1, σ11 = 1, and rσ = 1. We discuss the influence of the correlation coefficient
ρ between the modal excitations and the influence of t f on the SD. The time constant of the mechanical
system is used as a time unit. The time constant is defined by Tc =max(1/(τ1ω1), 1/(τ2ω2)).

Figure 1 shows the relative errors between the canonical vectors e1 = (1, 0)T and e2 = (0, 1)T (the
LNMs of (4-4)) and the approximations of these LNMs given by the SMs of the transient response
{Q(t), t ∈ [0, t f ]} using (4-7), plotted versus the correlation coefficient ρ and for different values of t f

(t f = 0.1Tc, 0.2Tc, 0.5Tc, Tc, and 10Tc). First of all, in all the simulation results, the relative errors are
small (less than 0.1) and, of course, the worse case corresponds to ρ = 1 and t f small. As expected, for
a given t f , the relative error decreases as ρ decreases. When t f increases the SD coincides with the SD
given by the stationary response (see the continuous line in Figure 1).

Under the same simulation conditions, Figure 2 shows the relative errors between the resonance fre-
quencies ω1 = 1 and ω2 = 1.5 and the approximation of these resonance frequencies given by the SMs of
the transient response {Q(t), t ∈ [0, t f ]} using (4-8). Here also the relative errors are very small (less than
0.001). Moreover, for fixed t f , the relative error does not depend on ρ and decreases when t f increases.
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Figure 1. Relative error (using Euclidean norm vector) between the canonical vector
(e1 = (1, 0)T (left) and e2 = (0, 1)T (right)) and the approximation of these LNMs given
by the SMs of the transient response {Q(t), t ∈ [0, t f ]} using (4-7) (dotted lines) and the
approximation of these LNMs given by the SMs of the stationary response (continuous
line).
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Figure 2. Relative error between the natural resonance-frequency vector (ω1 (left) and
ω2 (right)) and the approximation of these LNMs given by the SMs of the transient
response {Q(t), t ∈ [0, t f ]} using (4-8) (dotted lines) and the approximation of these
LNMs given by the SMs of the stationary response (continuous line).

4B. Discrete nonlinear case. Consider a discrete mechanical system with n degrees of freedom. Let
U(t) be the displacement vector at the instant t . We assume that U(t) satisfies the initial-value problem

MÜ(t)+ H(U̇(t),U(t))= F(t), t ∈ [0, t f ] (4-17)

U(0)= U0, U̇(0)= U̇0, (4-18)
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where M is a symmetric square matrix with dimension n × n and H is a n-vector smooth nonlinear
function. The vectors U0 and U̇0 define the initial conditions of the motion at t = 0, and {F(t), t ∈ [0, t f ]}

is a random vector process.
One rather interesting result was the difference between the SM obtained using the SD of the stationary

response of the nonlinear system and the SM obtained using the SD of the stationary response of the
equivalent linear system obtained using statistical linearization, as described in [Kozin 1988].

Rewriting (4-17) as a nonlinear first-order differential equation (for U(t)= (U(t)T , U̇(t)T )T )

U̇(t)= N(U(t))+ G(t), (4-19)

with external random excitation G(t)= (0, (M−1 F(t))T )T . A suitable equivalent linear system can be
written as

U̇(t)= LeqU(t)+ G(t), (4-20)

where the constant matrix Leq is determined by

min
L

E
(
‖N(U(t))− LU(t)‖2

)
. (4-21)

Under the assumption that the nonlinear system (4-19) admits a stationary ergodic probability measure,
it can be shown [Kozin 1988] that the stationary covariance matrix of the nonlinear response (4-19)
coincides with the stationary covariance matrix of the equivalent linear response (4-20). Hence, the
SD analysis of the stationary response of the nonlinear system (4-17) gives the same results as the SD
analysis of the stationary response of the equivalent linear system except for the SCs. Following the
modal analysis described in the previous sections, the SD can also be viewed as a tool for modal analysis
of the nonlinear system, the SMs and SVs of the nonlinear system being interpreted as in reference to
the modal characteristics of the linearized system.

5. Numerical example

We consider a finite chain of n mass points with the first one linked by a linear spring to a fixed point, the
others consecutively linked one to the other, and the last one linked only to the previous mass. All the
stiffness coefficients of the strings are equal and their common value is 1. The mass values are denoted
by mi (mi > 0). The system can also include isolated nonlinearities between consecutive masses of the
form λi (Ui (t)−Ui−1(t))3 for i = 2, . . . , n. The associated equations of motion are of the form of (4-17),
with

M =



m1 0 0 · · · 0 0
0 m2 0 0 0
0 0 m3 0 0
...

...

0 0 0 mn−1 0
0 0 0 · · · 0 mn


, K =



2 –1 0 · · · 0 0
–1 2 –1 0 0
0 –1 2 0 0
...

...

0 0 0 2 –1
0 0 0 · · · –1 1


. (5-1)

H , which only depends on U(t), is easily deduced from the form of the nonlinearity. The damping
matrix is chosen to be C = 2τ1ω1 M, with τ1 > 0, which assures that the damping is proportional and
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fixes the damping ratio of the first linear mode. Note that the linear version of this system has been
discussed in [Farooq and Feeny 2008].

Two excitation conditions will be considered:

• Uncorrelated excitation: the system is excited by a standard vector-valued white-noise process with
matrix intensity

SF = S0 M, (5-2)

with S0 > 0. This choice ensures that, for all mass values mi , 8T SF8= S0 I is always diagonal.

• Correlated excitation: the system is excited by a white-noise scalar process applied to the mass
numbered iexcit, that is,

F(t)= (0 · · · 010 · · · 0)T f (t)= P f (t), (5-3)

with { f (t), t ∈ R} being a white-noise process with intensity S0 > 0. The intensity matrix of
{F(t), t ∈R} is given by SF = S0 P PT and hence 8T SF8= S0(8i iexcit8 j i ) is not a diagonal matrix.

The displacement and velocity histories were obtained from excitation histories by solving (4-17)
over [0, t f ] numerically using the Newmark method. The excitation histories were simulated using the
procedure described in [Poirion and Soize 1989]. The following values of parameters were used: n = 10,
m2 = 2, and mi = 1 for i 6= 2, τ1 = 0.05, λ5 = 10, and λi = 0 for i 6= 5, S0 = 1, and for the correlated
case, iexcit = 1. Zero initial displacement and velocity were assumed. The time-discretization parameter
value was chosen equal to 1t = 0.1 (that is, fe = 10) and 65536 instants were simulated. The last-half
points of the displacement and velocity histories were used to approximate the covariance matrices RU
and RU̇ of the stationary response. The simulated data were also used to estimate Leq solving (4-21)
and the SDs of the stationary response of the equivalent linear system (4-20) were computed solving the
associated equation (4-11).

The estimated values of the resonance frequencies obtained from SD analysis are reported in Table 1.
Note that the expression “resonance frequency” is a misnomer because the system is nonlinear; we will

Underlying Uncorrelated case Correlated case
linear system SD from: (4-17) (4-20) (4-17) (4-20)

ω1 0.0236 0.0246 0.0246 0.0243 0.0243
ω2 0.0665 0.0705 0.0706 0.0696 0.0696
ω3 0.1068 0.1077 0.1074 0.1076 0.1073
ω4 0.1515 0.1656 0.1655 0.1626 0.1626
ω5 0.1960 0.1984 0.1983 0.1977 0.1978
ω6 0.2327 0.2430 0.2429 0.2418 0.2417
ω7 0.2491 0.2519 0.2521 0.2513 0.2514
ω8 0.2740 0.2862 0.2866 0.2850 0.2850
ω9 0.2980 0.3010 0.3013 0.2996 0.2997
ω10 0.3132 1.0234 1.0240 0.4533 0.4533

Table 1. Estimated values of the resonance frequencies obtained from SD analysis.
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use it in reference to the associated linearized system. As expected in the uncorrelated case, the estimates
obtained from the nonlinear system coincide with those given by the linearized system. These values
are very close to the resonance-frequency values of the underlying linear system (that is, with λ5 = 0)
except for the last value which is larger due to the nonlinear term. The same comments hold also for the
correlated case showing that the SD properties are robust to the loss of the noncorrelation assumption.
Here also the numerical value of ω10 is large, resulting in the effect of the nonlinear term which is
however smaller than the uncorrelated case.

For the uncorrelated case, the SMs obtained from the stationary responses of the nonlinear system and
the linearized system are plotted in Figure 3. As expected in the uncorrelated case (see Section 4A1), the
SMs obtained from the nonlinear system coincide with those given by the linearized system. The SMs
differ significantly from the normal modes of the underlying linear system, also plotted in the figure. For
the first modes, the difference occurs only around the mass number 2 where the mass inhomogeneity is
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Figure 3. Uncorrelated case: the SMs (dashed lines and point markers) and the associ-
ated normal modes given by 0−T (dotted-dashed lines and square markers), see (4-7),
obtained from the nonlinear system. The normal modes of the underlying linear system
are also reported (dotted lines and circle markers).
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present. The relationship between the normal modes and the SMs is in line with (4-9). For the last mode
(corresponding to ω10), the difference between the normal mode and the SM occurs around the mass
numbers 5 and 6, where there is local nonlinearity. At these two masses the amplitudes of the SMs are
very large and have opposite signs. The SMs, then, seem to be also sensitive to the nonlinearity of the
system. In Figure 4, the modes obtained from the SMs of the stationary responses of the nonlinear system
and the linearized system are plotted and compared to the normal modes of the underlying linear system.
The first modes are very similar. The difference increases for the middle and higher modes. For the
correlated case, the SMs obtained from the stationary responses of the nonlinear system and the linearized
system are plotted in Figure 5 and compared to the normal modes of the underlying linear system. For
the middle modes (vector 4 to vector 8), the nonlinear SMs differ from the linearized SMs. Here also,
the SMs differ from the normal modes of the underlying linear system where the mass inhomogeneity
is present (mass number 2) and where the local nonlinear term acts (mass numbers 5 and 6).
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Figure 4. Uncorrelated case: the normal modes obtained from the nonlinear system
(dashed lines and point markers), 0−T (see (4-7)), and form the linearized system
(dotted-dashed lines and square markers). The normal modes of the underlying linear
system are also reported (dotted lines and circle markers).
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Figure 5. Correlated case: the SMs (dashed lines and point markers) and the associ-
ated normal modes given by 0−T (dotted-dashed lines and square markers), see (4-7),
obtained from the nonlinear system. The normal modes of the underlying linear system
are also reported (dotted lines and circle markers).

In Figure 6, the SMs of the stationary responses of the nonlinear system are compared to the modes
obtained from the SMs of the stationary responses of the nonlinear system. Here also, the SMs differ
from the approximate normal modes where the mass inhomogeneity is present (mass number 2) and
where the local nonlinear term acts (mass numbers 5 and 6). Note that these modes have been obtained
only from data. This shows the ability of SD analysis to extract frequency, mode, and mass information.

6. Conclusions

In this paper, the smooth orthogonal decomposition method introduced in [Chelidze and Zhou 2006]
was formulated in terms of a smooth decomposition (SD) (also called smooth Karhunen–Loève decom-
position in [Bellizzi and Sampaio 2009b]) to analyze time-continuous nonstationary random processes.
The SD is obtained by solving a generalized eigenproblem defined by combining the covariance matrix
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Figure 6. Correlated case: the SMs obtained from the nonlinear system (dashed lines
and point markers) and the associated normal modes given by 0−T (dotted-dashed lines
and square markers), see (4-7).

of the random field with that of the associated time-derivative random field, a constraint in the rate
of variation of the field that originates the term smooth. The covariance operator is defined from an
averaging operator combining the temporal mean and mathematical expectation which reduces to the
mathematical expectation in the case of time-stationary random processes. Note that in this case, the
definition has several computational advantages, for example, the use of Lyapunov equations to compute
the covariances (see [Bellizzi and Sampaio 2006]). SD does not have the best-decomposition properties
of the Karhunen–Loève decomposition (KLD) and its orthogonality is with respect to the two covariance
matrices used in its definition. In the context of output-only modal analysis (that is, without excitation
data), SD has several advantages with respect to KLD. If the modal forcing components are not correlated
and if the damping is proportional it is possible to estimate, without condition on the mass distribution,
normal modes and also, in the stationary case, resonance frequencies directly. This is true independently
of the damping level. Note that if the modal forcing components are correlated, the efficiency of the SD
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method to estimate resonance frequencies and normal modes rapidly decreases when the damping level
increases. Beyond the modal analysis, another interesting property of the SD is that it is possible to extract
the mass distribution from the SD comparing the smooth modes (SMs) and the normal modes estimated
also from the SMs. Finally, the SD can also be viewed as a tool for modal analysis of nonlinear systems.
In the stationary case, the SMs and smooth values (SVs) of the nonlinear response coincide with the SMs
and SVs of the response of the equivalent linear system obtained by a statistical linearization approach.
Moreover under a constant mass matrix assumption, the SMs give access to the mass distribution.
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PERTURBATION STOCHASTIC FINITE ELEMENT-BASED
HOMOGENIZATION OF POLYCRYSTALLINE MATERIALS

SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

This work presents a study of the influence on the macroscopic (homogenized) elastic properties of poly-
crystalline materials induced by uncertainties in the material texture and microstructure geometry. Since
many microelectromechanical systems are made of materials deposited as thin films with <<111>> fiber
texture, we study the variance of the homogenized elastic properties of the material around its nominal
<<111>> texture. To perform this analysis, the perturbation stochastic finite element method (PSFEM)
is coupled to the mathematical theory of homogenization leading to a second-order perturbation-based
homogenization method. This method is able to evaluate the mean and variance of a given homogenized
property as a function of the grain property uncertainty. The multiscale formulation is implemented in a
plane-stress linear elastic finite element framework based on a multigrain periodic unit cell generated by
Voronoi tessellation. This perturbation-based homogenization method is verified against Monte Carlo
simulations, showing its effectiveness and limitations. Then, through applications, it is evaluated how
different levels of uncertainty in grains induce uncertainty in the macroscopic elastic properties of the
polycrystalline material. In particular, the influence of the unit cell is studied. Finally, by coupling the
PSFEM with the Monte Carlo method, the effects on the macroscopic properties of uncertainty of both
the geometry and orientation of the grains is estimated.

1. Introduction

The performance of a microelectromechanical system (MEMS) is affected by uncertainties. Manufac-
turing processes may leave substantial uncertainties in the shape and geometry of the device, while the
material properties of a component are inherently subject to scattering. Moreover, microscale properties
are extremely sensitive to process variations. Accuracy and precision of standard processes are difficult
to control, so properties vary by recipe, by fabrication run, wafer-to-wafer, and across the wafer. The
design of accurate MEMS has to take into account the influence of these uncertainties. This paper focuses
on the prediction of material property variability that is inherent in MEMS due to their microfabrication
processes. The materials making up MEMS are deposited as thin films. In particular, this work is
motivated by the study of texturized gold thin films which are common MEMS materials. Although
the electric characterization of metallic thin films is well established, the mechanical characterization of
the same films is still a challenge. Moreover, the material properties are dependent on the fabrication
process and therefore are not the same as those for the bulk material. The material properties can even
be different between runs of the same fabrication process.

One approach to investigating property variability of metallic thin films is to use homogenization meth-
ods that allow the evaluation of the macroscopic properties based on the polycrystalline microstructure.

Keywords: perturbation stochastic finite element, homogenization, Monte Carlo method, polycrystalline material.
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By that approach the microscopic features, which are defined by the microfabrication processes, can be
taken into account to calculate the macroscopic properties of the film.

The mathematical theory of homogenization (MTH) is a well established multiscale method that pro-
vides the equivalent homogeneous material properties for heterogeneous material when the separation
of scales works [Bensoussan et al. 1978; Sanchez-Palencia and Zaoui 1987]. The MTH provides the
deterministic model which the stochastic finite element scheme will be built upon.

Stochastic finite element methods can be classified into two main categories based on the kind of
results they yield. Firstly, reliability methods aim at calculating the failure probability, and hence focus
on the tails of the probability density function of the response. Secondly, other methods aim at calculating
the probabilistic characterization of the response. In this category, some methods, such as that presented
hereafter, determine only the first two statistical moments of the response. For details, see first two
statistical moments of the response. For more details, the reader should refer to [Schueller 1997; 2001;
Manohar and Ibrahim 1999; Sudret and der Kiureghian 2000; van den Nieuwenhof 2003].

Monte Carlo simulations have the major advantage that accurate statistical solutions can be obtained
for any problem whose deterministic solution is known, since they statistically converge to the correct
solution provided that a large number of simulations is employed. Indeed, the basic principle of direct
Monte Carlo simulation is to generate a sampling of the input parameters according to their probability
distributions and correlations. For each input sample, a deterministic finite element analysis is carried
out, giving an output sample. Finally, a response sampling is obtained, from which the mean and the
standard deviation of the response can be derived. The disadvantage of the direct Monte Carlo method
is that it is usually extremely computationally demanding due to the very large number of analyses that
have to take place. The convergence rate of the estimator does not only increase by increasing the number
of samples but also by decreasing the variance σ 2

y . Variance reduction techniques exploit additional a
priori information to reduce the necessary sample size n for a specified confidence level. Stratification
techniques widely used in practice, such as Latin hypercube sampling (LHS) [McKay et al. 1979], use
conditional expectations to reduce the variance of the estimator.

The basics of the perturbation stochastic finite element method (PSFEM) are expounded in [Kleiber
and Hien 1992]. This method consists in a deterministic analysis complemented by a sensitivity analysis
with respect to the random parameters. This permits the development of a Taylor series expansion of the
response, from which the mean and variance of the response can be derived knowing the mean, variance,
and correlation structure of the random parameters. Depending on the expansion order of the Taylor
series expansion (1 or 2), the statistical moments of the response are first or second-order accurate and
the method is called the first-order second moment (FOSM) or second-order second moment (SOSM)
method, respectively. The main advantages of the PSFEM are its simplicity and applicability to a wide
range of problems at low cost. It has been used in static and dynamic elastic analyses [Hien and Kleiber
1990; Kleiber and Hien 1992], buckling analyses [Altus and Totry 2003], composite ply failure prob-
lems [Onkar et al. 2007], inelastic deformation studies [Doltsinis and Kang 2006], linear transient heat
transfer problems [Hien and Kleiber 1997], the analysis of free vibration of composite cantilevers [Oh
and Librescu 1997], nonlinear dynamics [Lei and Qiu 2000], and the study of eigenvalues of structures
with uncertain boundary conditions [Huang et al. 2007]. Due to the Taylor series expansion, accurate
results are expected only in case of relatively small variability of the parameters and for nearly linear
problems. The derivatives of the structural matrices have to be calculated with respect to the random
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variables. This can be done analytically, semianalytically, or by finite difference. These computations
can be time-consuming, particularly when the second-order terms are included.

The PSFEM has been applied to the homogenization of elastic properties of composite materials such
as a bicomponent 1D bar [Kaminski 2000] and unidirectional fiber-reinforced composites [Kaminski
and Kleiber 2000; Sakata et al. 2008]. All these applications use random variables which are related to
inherent material properties of the composite components. This paper considers polycrystalline material
and in particular accounts for the uncertainty resulting from the scattering of constitutive grain orienta-
tion. Moreover, the effect of the unit cell size on the macroscopic (homogenized) property variation is
investigated as well as the geometry of the grains generated by Voronoi tessellation. The aim of this
study is not only to quantify the uncertainty in the macroscopic polycrystalline elastic properties but
also to gain confidence in the minimum size required to consider the unit cell as a representative volume
element (RVE) of the polycrystalline material. An unit cell is considered as a RVE when the standard
deviation of the homogenized properties is below a threshold defined by the analyst. In that case, the
unit cell is stochastically representative of the material behavior, that is, the standard deviation of the
output represents the uncertainty resulting from the input uncertainty.

After a review of the basics of the finite element implementation of the classical MTH in Section 2,
the perturbation stochastic finite element-based homogenization formulation is derived by applying the
PSFEM to the homogenization scheme in Section 3. In Section 4, the obtained methodology is first
verified against Monte Carlo results for a unit cell of 4 grains in which one random variable is considered.
Then, the methodology is applied on multigrain unit cells made of textured gold. This application inves-
tigates the influence of unit cell size, grain geometry, and orientation randomness on the macroscopic
(homogenized) elastic properties.

2. Multiscale model

As described in the previous section, the focus of this work is on quantifying the stochastic nature of the
elastic properties of polycrystalline media. More precisely, we aim at assessing how the uncertainties
in the material texture (that is, the grain orientation and stiffness) impact its homogenized macroscopic
elastic properties. As indicated earlier, the homogenization scheme adopted in this study is based on the
finite element implementation of the classical mathematical theory of homogenization (MTH). In this
section, the MTH is summarized and the grain-level anisotropic response is described.

Following the classic work [Bensoussan et al. 1978] as well as [Guedes and Kikuchi 1990], we start
from a y-periodic asymptotic expansion of the displacement field

u(x, y)≈ u(0)(x, y)+ ξ 1u(1)(x, y)+ ξ 2u(2)(x, y)+ . . . , (2-1)

where the superscripts in parentheses represent the level in the multiscale expansion, and x and y label
the material points at the macro and microscale, respectively (see Figure 1). The relation between the
two scales is defined by the asymptotic parameter ξ as y = x/ξ , where ξ roughly corresponds to the size
of the periodic unit cell that serves as the basis of the homogenization scheme. Applying the chain rule,

dϕ(x, y)
dx

=
∂ϕ(x, y)
∂x

+
1
ξ

∂ϕ(x, y)
∂ y

, (2-2)
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Figure 1. Schematic view of the homogenization scheme, with the microscopic scale
showing the polycrystalline periodic unit cell.

we obtain the corresponding expansion for the strain tensor

εi j ≈ ξ
−1
(
∂ Su(0)i

∂y j

)
+ ξ 0

(
∂ Su(0)i

∂x j
+
∂ Su(1)i

∂y j

)
+ ξ 1

(
∂ Su(1)i

∂x j
+
∂ Su(2)i

∂y j

)
+ . . . , (2-3)

where we adopt the symmetric gradient tensor notation

∂ S
•i

∂x j
=

1
2

(
∂•i

∂x j
+
∂• j

∂xi

)
. (2-4)

For the elastic problem characterized by a local fourth-order material stiffness tensor Di jkl and tractions
t applied along the portion ∂�t of the boundary ∂�, the principle of virtual work takes the form∫

�

Di jklεkl
∂ Svi

∂x j
d�−

∫
∂�t

tivi d�= 0 (2-5)

for all admissible displacements v satisfying

v ∈ [H 1
]
2, v = 0 on ∂�d = ∂� \ ∂�t , (2-6)

where [H 1
]
2 is the Sobolev space for the 2D problem. Combining (2-3) and (2-5) and grouping the terms

by powers of ξ leads to
1
ξ 2

∫
�

Di jkl
∂ Su(0)k

∂yl

∂ Svi

∂y j
d�= 0, (2-7)

1
ξ

∫
�

Di jkl

[(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂y j
+
∂ Su(0)k

∂yl

∂ Svi

∂x j

]
d�= 0, (2-8)

∫
�

Di jkl

[(
∂ Su(1)k

∂xl
+
∂ Su(2)k

∂yl

)
∂ Svi

∂y j
+

(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂x j

]
d�=

∫
∂�t

tivi d�. (2-9)
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As shown in [Guedes and Kikuchi 1990], we establish from (2-7) that u(0) is exclusively a function
of x, that is,

u(0)(x, y)= u(0)(x), (2-10)

while (2-8) leads to the following expression of the equilibrium at the microscale:

1
|2|

∫
2

Di jkl

[(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂y j

]
d2= 0, (2-11)

where 2 denotes the volume of the periodic unit cell.
Defining the macroscopic strain ε̄ = ∂ Su(0)/∂x and the fluctuation strain ε̃ = ∂ Su(1)/∂ y, we recast

(2-11) as

1
|2|

∫
2

Di jkl ε̃kl
∂ Svi

∂y j
d2=− 1

|2|

∫
2

Di jkl
∂ Svi

∂y j
d2ε̄kl, (2-12)

where we observe that the macroscopic strain serves as a loading term in the solution for the fluctuation
strain. Relation (2-12) allows us to solve for the fluctuation strain at every point in the periodic unit cell,
defining the strain localization operator Gi jkl as

ε̃i j (x, y)= Gi jkl(x, y)ε̄kl . (2-13)

Finally, the homogenized elastic properties of the polycrystalline material can be extracted from the
equilibrium equation (2-9). Assuming that vi is a function of x only, (2-9) reduces to [Guedes and
Kikuchi 1990] ∫

�

[
1
|2|

∫
2

Di jkl(ε̄kl + ε̃kl)d2
]
∂ Svi

∂x j
d�=

∫
∂�

tivi d∂�, (2-14)

or, combining with (2-13),∫
�

[
1
|2|

∫
2

Di jkl(Iklmn +Gklmn)d2
]
ε̄mn

∂ Svi

∂x j
d�=

∫
∂�

tivi d∂�, (2-15)

where Iklmn =
1
2 (δkmδln + δknδlm). From (2-15), we identify the homogenized elastic tensor Dh

i jkl as

Dh
i jmn =

1
|2|

∫
2

Di jkl(Iklmn +Gklmn)d2. (2-16)

For the finite element implementation of this homogenization scheme, it is more convenient to recast
(2-16) using the Voigt formulation (that is, in matrix notation) as

Dh
=

1
|2|

n∑
e=1

∫
2e
(De I + De Ge)d2, (2-17)

where the domain 2 has been subdivided into n elements and the superscript e denotes the local value
in element e.
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In this notation, the stiffness tensor of a material with cubic symmetry, such as the face centered cubic
material of interest in this work, is given by

De
c =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


, (2-18)

in a coordinate system attached to each crystal (or grain) as denoted by the subscript c. To transform
the stiffness matrix into the sample coordinate system (denoted by the subscript s), we adopt the Bunge
convention and introduce the triad (φ1, θ, φ2), defining the individual rotation matrices

R1 =

 cosφ1 sinφ1 0
−sinφ1 cosφ1 0

0 0 1

 , R2 =

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

 , R3 =

 cosφ2 sinφ2 0
−sinφ2 cosφ2 0

0 0 1

 .
The resulting rotation matrix from the crystal coordinate system to the sample one is given by

Q = (R3 R2 R1)
T . (2-19)

The rotation of the forth-order tensor Di jmn denoted D in matrix notation is then expressed as

De
s = K De

c K T , (2-20)

while the compliance matrix Se
c = (De

c)
−1 is transformed as

Se
s = (K

−1)T Se
c K−1. (2-21)

In (2-20) and (2-21), K is given by [Ting 1996]

K =
[

K1 2K2

K3 K4

]
, (2-22)

where

K1 =

Q2
11 Q2

12 Q2
13

Q2
21 Q2

22 Q2
23

Q2
31 Q2

32 Q2
33

 , K2 =

Q12 Q13 Q13 Q11 Q11 Q12

Q22 Q23 Q23 Q21 Q21 Q22

Q32 Q33 Q33 Q31 Q31 Q32

 , K3 =

Q21 Q31 Q22 Q32 Q23 Q33

Q31 Q11 Q32 Q12 Q33 Q13

Q11 Q21 Q12 Q22 Q13 Q23

 ,
K4 =

Q22 Q33+ Q23 Q32 Q23 Q31+ Q21 Q33 Q21 Q32+ Q22 Q31

Q32 Q13+ Q33 Q12 Q33 Q11+ Q31 Q13 Q31 Q12+ Q32 Q11

Q12 Q23+ Q13 Q22 Q13 Q21+ Q11 Q23 Q11 Q22+ Q12 Q21

 ,
with Qi j denoting the components of Q defined in (2-19). To perform the analysis in a plane-stress
framework, the compliance matrix is first expressed in the sample coordinate system using (2-21). The
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Figure 2. For a unit cell with 64 grains: (a) typical φ1 distribution and finite element
mesh and (b) stress field (σxx ). The right figure emphasizes the heterogeneous nature of
the stress field in the RVE.

plane-stress compliance matrix is then obtained as

Se
s,2D =

Ss,11 Ss,12 Ss,16

Ss,21 Ss,22 Ss,26

Ss,61 Ss,62 Ss,66

 , (2-23)

where Ss,ab represents component ab of the 3D compliance matrix Se
s given by (2-21). Finally, the

stiffness matrix is found by inverting the compliance matrix:

De
s,2D = (S

e
s,2D)

−1.

As stated in Section 1, this work is motivated by the study of texturized gold thin films. In this
particular case, the material constants are C11 = 186 GPa, C12 = 157 GPa, and C44 = 42 GPa. To
represent the <<111>> fiber texture only two Euler angles need to be specified, θ = 54.7◦ and φ2 = 45◦.
The third angle φ1 is not defined and can assume any value, as all grains have the <<111>> pole normal to
the surface and the in-plane rotations are random. Here it is important to stress that the φ1 values used
in the application cases in Section 4 have been randomly chosen. However, φ1 is not considered as a
random variable of interest in this work since it does not describe the uncertainty of the material texture.

A typical result obtained with the multiscale scheme is presented in Figure 2 for the case of a 64-grain
RVE and a macroscopic strain ε̄xx equal to 1%. The heterogeneous stress field due to angles mismatch for
a macroscopic strain of 1% presents a ratio of approximately 2.4 between the maximum and minimum
stress values in the RVE.

3. Perturbation stochastic FE formulation

A set of stochastic variables enter the finite element-based homogenization scheme described in previous
section. These random variables, denoted hereafter by ζ , include quantities such as the stiffness and
orientation of the grains that compose the periodic unit cell. Our goal in this section is to derive the key
quantities entering the PSFEM formulation of the MTH scheme summarized in Section 2. We start from
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the stochastic form of the homogenized stiffness matrix (2-17) which is given by

Dh(ζ )=
1
|2|

n∑
e=1

∫
2e

(
De(ζ )I + De(ζ )Ge(ζ )

)
d2, (3-1)

where G implicitly depends on the uncertainty through

1
|2|

∫
BT D(ζ )Ge(ζ )d2= 1

|2|

∫
BT D(ζ )d2, (3-2)

with B denoting the traditional strain-displacement matrix.
The perturbation method considers the random design variables bi as perturbed from their expectation

b̄i , so that the random variables bi are written as the sum of a deterministic value b̄i and a zero-mean
random variable 1bi as

bi = b̄i +1bi . (3-3)

The covariance matrix C of the random variables bi is related to the zero-mean random variables as

Ci j = Cov(bi , b j )= E[1bi1b j ]. (3-4)

The perturbation method consists in expanding the random quantities about their expectations via a
truncated Taylor series expansion. The second-order Taylor expansion about the nominal value b̄ with
respect to the random variables bi is given by

Dh(b̄)≈ D̄h
+

n∑
i=1

Dh
,i1bi +

1
2

n∑
i=1

n∑
j=1

Dh
,i j1bi1b j , (3-5)

where the subscript ,i denotes the derivative with respect to random variable bi . Since the random
variables 1bi are zero-mean random variables of known covariance, the expectation of the homogenized
property matrix is

E[Dh(b̄)]≈ D̄h
+

n∑
i=1

Dh
,i E[1bi ]+

1
2

n∑
i=1

n∑
j=1

Dh
,i j E[1bi1b j ]= D̄h

+
1
2

n∑
i=1

n∑
j=1

Dh
,i j Cov(bi , b j ), (3-6)

while the variance of the homogenized property matrix is expressed as

Var
(

Dh(b̄)
)
=E

[(
Dh(b̄)−E[Dh(b̄)]

)2]
≈

n∑
i=1

n∑
j=1

Dh
,i Dh

, j E[1bi1b j ]=

n∑
i=1

n∑
j=1

Dh
,i Dh

, j Cov(bi , b j ).

(3-7)
The mean is second-order accurate with no first-order term in its expression, while the variance is
first-order accurate since no second-order term appears in its expression. The variance expression will
be the same whether a first-order or a second-order approximation is used in the perturbation method.

The first-order sensitivity of the homogenized property matrix has to be computed. Differentiating
(2-17) with respect to bi gives

Dh
,i (ζ )=

n∑
e=1

∫
2e

(
De
,i (ζ )I + De

,i (ζ )G
e(ζ )+ De(ζ )Ge

,i (ζ )
)
d2, (3-8)
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where G,i is computed by differentiating (3-2) as∫
BT D(ζ )G,i (ζ )d2=

∫
BT D,i (ζ )d2−

∫
BT D,i (ζ )G(ζ )d2. (3-9)

Similarly, (3-8) gives the second-order sensitivity of Dh :

Dh
,i j (ζ )=

n∑
e=1

∫
2e

(
De
,i j (ζ )I + De

,i j (ζ )G
e(ζ )

)
d2

+

n∑
e=1

∫
2e

(
De
,i (ζ )G

e
, j (ζ )+ De

, j (ζ )G
e
,i (ζ )

)
d2+

n∑
e=1

∫
2e

(
De(ζ )Ge

,i j (ζ )
)
d2, (3-10)

where G,i j is computed by differentiating (3-9)∫
BT D(ζ )G,i j (ζ )d2=

∫
BT D,i j (ζ )d2−

∫
BT D,i j (ζ )G(ζ )d2

−

∫
BT D,i (ζ )G, j (ζ )d2−

∫
BT D, j (ζ )G,i (ζ )d2. (3-11)

The quantities of interest, that is, the expectation of the homogenized property (3-6) and its variance
(3-7), are obtained by evaluating (3-8) and (3-10) in a finite element framework.

4. Verification

The second-order PSFEM is applied to analyze the influence of uncertainty on the behavior of a cubic
material in <<111>> texture. The objective of this section is to verify the PSFEM formulation by comparing
its results against Monte Carlo (MC) simulations. For this purpose, we chose to study a small unit cell
composed of only 4 grains, shown in Figure 3.

Using the material constants introduced at the end of Section 2, the 2D nominal stiffness matrix of
each grain is given by

D̄c
=

186 157 0
157 186 0
0 0 42

 (GPa), (4-1)

expressed in its material axes. The Euler angles are set to θ = 54.7◦ and φ2 = 45◦, and φ1 has randomly
assigned values of 188◦, 289◦, 294◦, and 68◦ for grains 1, 2, 3, and 4, respectively. C11, the first

3

1
4

2

Figure 3. Periodic unit cell composed of 4 grains used to perform the verification test
case of PSFEM.
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CoV (%) E[Ch
11] (GPa) E[Ch

11] (GPa)
√

Var[Ch
11] (GPa)

√
Var[Ch

11] (GPa)
(PSFEM) (MC, 2000 samples) (PSFEM) (MC, 2000 samples)

2 120.0338 120.0052 0.5410 0.5529
4 120.0235 119.8789 1.0820 1.1930
6 120.0133 119.6227 1.6229 2.1429

Table 1. Verification test case based on Figure 3 unit cell: PSFEM and MC results for
coefficients of variance of 2%, 4%, and 6% of the random variable C11 of grain 1.

component of the stiffness matrix expressed in the material axes of grain 1, is considered as a Gaussian
random variable. The effect of the level of uncertainty is studied by successively considering a coefficient
of variation, CoV(C11), of 2%, 4%, and 6%.

The unit cell is loaded with a tensile strain in direction 1 of the sample coordinate system. This loading
allows us to quantify the effect of uncertainty on the first column of the homogenized stiffness matrix
expressed in the unit cell axes. The mean and the standard deviation of the homogenized stiffness matrix
of the unit cell are computed using (3-6) and (3-7). In this paper, the results are presented for the first
component of the homogenized stiffness matrix, Ch

11.
In order to verify the validity of the PSFEM approach, the results are compared to the MC results.

A Latin hypercube sampling (LHS) method is used to generate 2000 samples of C11 whose mean and
standard deviation correspond to the values specified in the PSFEM study. LHS generates samples of a
normally distributed random variable s with a mean of zero and a standard deviation of one. C11 is then
expressed as a function of s:

C11 = C̄11(1+CoV(C11)s). (4-2)

Then, the homogenized stiffness matrix is computed for each value of C11. Finally, the mean and standard
deviation of the 2000 samples of Ch

11 are computed and compared to PSFEM results.
Table 1 compares the PSFEM and MC values of the mean and standard deviation of Ch

11 for the three
values of the coefficient of variation. The nominal value of Ch

11 is equal to 120.044 GPa, that is, the
value of the deterministic analysis. As the coefficient of variation increases, the mean value increasingly
deviates from the nominal value even if this difference is not significant. This variation is a quadratic
function, as explained previously and shown in Figure 4, left.

Figure 4, right, shows the variation of the relative error of the mean and standard deviation of Ch
11

computed by PSFEM with respect to MC values, which are considered as reference values. PSFEM
estimation error in both the mean and the standard deviation increases as the coefficient of variation
increases because the approximation of the variation of Ch

11 as a quadratic function with respect to the
uncertainty becomes less appropriate as the level of uncertainty increases.

The error in the mean is smaller than in the standard deviation. This is explained by the fact that
the mean estimation is second-order accurate while the standard deviation estimation is only first-order
accurate. The error is due to the fact that PSFEM approximates the variation of Ch

11 as a second-order
polynomial function while, as shown in the left part of Figure 4, the actual variation of Ch

11 is more
complex. This approximation is thus adequate in the vicinity of the nominal value.
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Figure 4. Verification test case based on Figure 3 unit cell. Left: variation of Ch
11 as

a function of the random variable, that is, C11 of grain 1. Right: percentage errors of
Ch

11 mean and standard deviation between MC and PSFEM analyses for various C11

coefficients of variation.

Another verification test case is to analyze the unit cell represented in Figure 3 assuming C11 of each
grain to be a random variable with a coefficient of variation of 3%. The uncertainty is thus characterized
by 4 random variables. The correlation between them is modeled by a correlation matrix. Three different
correlation matrices are successively investigated. First, the correlation is supposed to be a matrix full
of ones, which means that the four random variables are fully correlated and represent one and only
one random variable. The opposite case is to set the correlation matrix to be the identity matrix, which
is equivalent to considering 4 independent uncorrelated random variables. An intermediate correlation
matrix is also studied: 

1 0.5 0.25 0
0.5 1 0.5 0.25
0.25 0.5 1 0.5

0 0.25 0.5 1

 . (4-3)

Note that such a correlation matrix could result from the representation of C11 as a random field.
Both the mean and standard deviation increase as the correlation of the random variables increases,

as can be observed in Figure 5. The reduction of the variance due to the fact that the random parameter
is modeled by a random field instead of one random variable is also called the compensation effect on
the variability. The verification demonstrates that PSFEM is a suitable tool to quantify the uncertainty of
homogenized properties due to microstructural uncertainty. This method also allows us to evaluate the
effect of different levels of correlation between the random variables on the macroscopic response.

5. Study of geometry and material uncertainty

The second-order PSFEM is applied to the analysis of several unit cells of a cubic material with a <<111>>

texture. As explained in Section 2, for <<111>> texture, the Euler angles are θ = 54.7◦ and φ2 = 45◦, and
φ1 has random assigned values. The influence of uncertainty in the θ angle of each grain is studied on
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Figure 5. Effect of the correlation of random variables on the mean and standard de-
viation of Ch

11. Case 1: four independent random variables; case 2: correlation matrix
(4-3); case 3: one random variable.

the material behavior of periodic unit cells from 4 to 64 grains. In particular, the mean and standard
deviation of the homogenized Ch

11 are quantified.

5A. Influence of material texture uncertainty. To study the influence of texture uncertainty, a unit cell
with 16 grains and 16 random variables (one per grain) is generated. The angle θ which controls the
perpendicularity of the <<111>> pole with respect to the surface of the thin film is chosen as the random
variable. The random variables are assumed to be independent. The standard deviation of θ is varied
from 2◦ to 10◦. In each case, the mean and standard deviation of Ch

11 of the unit cell are computed using
PSFEM and are compared to the values obtained from MC analysis using 15000 samples. The same
finite element model, that is, with the same mesh and grain geometry, is used for the PSFEM and MC
analyses.

Figure 6 shows that as the standard deviation increases, the error of the PSFEM approximation in-
creases. The error on the mean remains lower than one percent while the error on the standard deviation
varies from 0.73% to 9.84%. As explained previously, PSFEM method relies on a second-order approx-
imation of the response, and so its accuracy is limited within a neighborhood of the expectation value
of the random variable. This analysis shows that for the particular problem of interest, the error on the
PSFEM is less than 0.73% for the mean and standard deviation when θ has a standard deviation of at
most 2◦. The error on the means remains low for θ standard deviation up to 10◦, that is, less than one
percent, while the error on the standard deviation becomes not negligible, that is, above 5%, once the
θ standard deviation reaches 7◦. This analysis allows us to quantify the limitation of PSFEM on the
quantification of the influence of material texture uncertainty.

It should be noted that the CPU requirement associated with the PSFEM is substantially lower than for
the MC method since considerably less homogenization problems have to be solved. Therefore, even if
PSFEM approximates the response statistics, it allows us to gain valuable knowledge on the macroscopic
property uncertainty induced by grain-level uncertainties at a lower cost than the classical MC method.
However, it should be noted that if the number of random variables becomes really large, PSFEM’s
computational cost may be such that using the MC method would be more advantageous.
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a 16 grain unit cell.

To study the effect of the unit cell size, for a fixed standard deviation of θ , the number of grains of the
unit cell is varied from 4 to 64. For each unit cell, the mean and standard deviation of Ch

11 are evaluated
using PSFEM and the MC method. For each unit cell size, MC analyses have been performed for three
LHS sets of 8000, 12000, and 15000 samples, respectively. The statistics for Ch

11 were obtained from
those of the three sets. The results of both methodologies are presented in Figure 7. The maximum error
on the mean is 0.0084% while for the standard deviation it is 8.1%. As the unit cell size increases, the
standard deviation of Ch

11 decreases up to a threshold of 0.31 GPa. The influence of the unit cell size
on the standard deviation of Ch

11 provides an important parameter to decide to what extent a unit cell
can be considered as a RVE. Once the standard deviation of the output reaches a threshold, the unit cell

0
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Figure 7. Material texture uncertainty study: Effect of unit cell size on MC and PSFEM
prediction of the mean (solid curves) and standard deviation (dashed curves) for Ch

11 with
a standard deviation of 2◦ in θ .
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Parameter Mean (GPa) Standard deviation (GPa)
Ch

11 119.782 0.311

Ch
12 68.2993 0.088

Ch
21 68.2993 0.088

Ch
22 119.7785 0.3356

Table 2. PSFEM mean and standard deviation of effective components of homogenized
stiffness matrix of a unit cell composed of 64 grains with a standard deviation of 2◦ in θ .

can be considered stochastically representative, that is, the standard deviation threshold value represents
the uncertainty resulting from the input uncertainty. For this particular case, when the unit cell contains
more than 64 grains, it is observed that a textural uncertainty, characterized by a 2◦ standard deviation,
introduces an uncertainty on Ch

11 characterized by a 0.31 GPa standard deviation.
All aforepresented results relate to Ch

11. Table 2 lists the mean and standard deviation obtained for
other effective components of the homogenized stiffness matrix. The results are for a unit cell composed
of 64 grains. For each grain, its θ angle is considered as a random variable characterized by a 2◦ standard
deviation. These 64 random variables are considered as independent, which means that their correlation
matrix is equal to the identity matrix. The uncertainty introduced on Ch

11 and Ch
22 are similar: 0.31 GPa

and 0.33 GPa, respectively. Conclusions based on one or on the other would be the same. The means
of Ch

12 and Ch
21 are equal as well as their standard deviation. The relative importance of the standard

deviation with respect to the mean is twice larger on the diagonal components than on the off-diagonal
ones. Based on these facts, the study will hereafter focus on Ch

11 results.

5B. Combining PSFEM and Monte Carlo methods to evaluate geometry and texture uncertainty. So
far, only uncertainty in the material parameters has been considered and PSFEM and MC analyses have
been carried out on only one representation of the unit cell. In order to take into account the geometric
uncertainty of grains as well as the grains material property randomness, MC and PSFEM are coupled.
A standard deviation of 10◦ is considered for θ . The geometry variation is taken into account by using
the Monte Carlo method. For each geometry sample, a PSFEM analysis is carried out in order to take
into account the material property uncertainty. Using the law of total expectation, the output mean is
computed by averaging over the geometry samples the mean obtained by PSFEM:

S̄ =

∑ngeo
igeo

S̄PSFEM

ngeo
. (5-1)

By applying the law of total variance, we get the value of the variance of the output as

Var(S)= Var(S̄PSFEM)+ E[Var(S)PSFEM]. (5-2)

It is assumed that the randomness of the material properties and the grain geometry are independent.
Monte Carlo analyses are performed for unit cells composed of 4, 16, 36, and 64 grains. For each

unit cell size, 100 different geometry samples are generated by an in-house Voronoi tessellation software
which can control the mean size of the grains. In this study, the mean grain size is defined as 21.36 nm.
The grain size is defined as the diameter of a circle whose area is equal to the grain’s area. The randomness
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Figure 8. Geometry and texture uncertainty study: Variation of Ch
11 mean and normal-

ized standard deviation for unit cell composed of 4 (solid curves) and 64 (dotted curves)
grains with a standard deviation of 10◦ in θ .

on the grain distribution inside the unit cell is obtained by randomly assigning the seed point of the
Voronoi tessellation.

Figure 8 presents the mean and standard deviation of Ch
11 versus the number of geometry samples

considered for the unit cells of 4 and 64 grains. The standard deviation was normalized with respect
to the standard deviations obtained using 100 samples. Those standard deviations were 9.86 GPa and
1.56 GPa for 4 and 64 grains, respectively. 20 geometric samples are sufficient to get a converged mean.
For the standard deviation, convergence occurs from 80 samples. In the following, results are those
obtained from 100 samples since they can be assumed as converged.

Figure 9 presents the mean and standard deviation of Ch
11 when considering geometric and material

uncertainties. It is observed that the mean oscillates between 113 and 114 GPa, while the standard
deviation decreases as the number of grains in the unit cell increases. The standard deviation is an
important parameter for deciding to what extent a unit cell can be considered as a RVE. From this graph,
it is concluded that for unit cells composed of 64 or more grains, the uncertainty in the homogenized
properties is less than 1.56 GPa, that is, about 1.4% of the Ch

11 mean. From a practical point of view, this
application shows that a unit cell of 64 grains can be considered as an RVE for the quantification of the
uncertainty of the macroscopic elastic properties of a polycrystalline material induced by uncertainties
on its grain geometry and texture.

To estimate the uncertainty of the geometry, the approximated grain size probability density function
is plotted in Figure 10. The probability density is obtained by discretizing the grain size into 20 segments.
The number of grains in each segment was counted and a value of the area of that segment was obtained;
these values were normalized by the total area of the histogram. Figure 10 shows that the probability
density functions for unit cells of 16 or more grains are similar. This guarantees that the comparison
between the unit cells with 16, 36, and 64 grains is meaningful since all of them have the same input



1168 SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

12

643616
Number of grains

4
0

8

4

112

113

114

115

C
h 11

m
ea

n
(G

Pa
)

C
h 11

st
an

da
rd

de
vi

at
io

n
(G

Pa
)

Figure 9. Geometry and texture uncertainty study: Effect of the unit cell size on Ch
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uncertainty. So the differences in mean and standard deviation in this case can be attributed to the set of
grain orientations and the unit cell size.

6. Conclusion

This work presents the application of a perturbation-based stochastic method in the study of uncertainty
in homogenized elastic properties of polycrystalline materials. The perturbation stochastic finite element
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method (PSFEM) has been applied to the mathematical theory of homogenization. The formulation
obtained has been used to study the influence of geometry and material texture uncertainties at the grain
level on the macroscopic polycrystalline material properties.

By comparing the results with Monte Carlo results on verification test cases, it has been shown that the
PSFEM approximation errors depend on the problem of interest and the coefficient of variation for the
input random variables. In the case of homogenization of gold polycrystalline structures, the limitation
of PSFEM on the computation of the influence of material texture uncertainty has been quantified. The
error on the Ch

11 standard deviation remains below 5% for a standard deviation in the Euler angle defining
the <<111>> texture up to 7◦.

By combining Monte Carlo and PSFEM, the uncertainty of the geometry of the grains has been taken
into account on top of the material texture uncertainty. The convergence of this approach has been
demonstrated by numerical examples. The results show that for gold thin films, a unit cell with 64 grains
or more predicts an uncertainty characterized by a coefficient of variation of 1.4% on Ch

11 for a standard
deviation of 10◦ in the Euler angle defining the <<111>> texture.

The proposed approach is a general tool for quantifying the uncertainty of the elastic properties of
polycrystalline materials as a function of the grain geometric and material properties and the unit cell
size. Moreover, this study can provide better confidence on the necessary representative volume element
size.
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A COLLOCATION APPROACH FOR SPATIAL DISCRETIZATION
OF STOCHASTIC PERIDYNAMIC MODELING OF FRACTURE

GEORGIOS I. EVANGELATOS AND POL D. SPANOS

In this paper a collocation approach is presented for spatial discretization of the partial integrodifferential
equation arising in a peridynamic formulation in stochastic fracture mechanics. In the formulation nodes
are distributed inside the domain forming a grid, and the inverse multiquadric radial basis functions are
used as interpolation functions inside the domain. Due to this discretization the peridynamic stiffness is
generated in a manner similar to the finite element method. Further, any discontinuity in the domain is
included in this discretized form and affects only the peridynamic stiffness of the adjacent nodes. Using
this approach as a tool, the probability density function of the energy release rate can be determined
at a given crack tip point for all possible crack paths. Thus, the crack propagation direction can be
probabilistically identified. This is accomplished by numerical evaluation of the requisite Neumann
expansion using pertinent Monte Carlo simulations. Specific examples of applications are included.

1. Introduction

The problem of modeling dynamic or static systems that contain discontinuities is fundamental in me-
chanics. Fractured surfaces and propagating cracks are discontinuities which disrupt the domains of
differential equations and create mathematical singularities. There are several approaches to dealing with
these kinds of discontinuities. Two classical ones are the finite element method (FEM), with remeshing of
the continuous domain, and the extended finite element method (XFEM), which circumvents the constant
remeshing of the domain and uses the same mesh by simply adjusting the stiffness of the cracked element
[Zi and Belytschko 2003]. Further, mesh-free techniques have been applied to the same problem with
quite reasonable results [Belytschko et al. 1994; 1995]. However, all of these approaches have been based
on local mechanics theory. In local mechanics theory, a single point in the medium is in direct contact
with only its immediate neighboring points, and thus spatial derivatives exist in such a continuum. In
nonlocal mechanics, however, a single point in the medium is in direct contact with points further away
in addition to its immediate neighboring points. Nonlocal theories were initially developed in [Kröner
1967; Eringen et al. 1977] and since then several researchers have contributed to this concept.

In a pioneering publication, S. A. Silling extended the concept of nonlocal mechanics. Until then
the concept of nonlocality was used as a generalization of local mechanics and it was assumed that
spatial derivatives of a certain finite neighborhood around the point of interest could be used. Silling
[2000] proposed a fully nonlocal peridynamic modeling in which no spatial derivatives are needed, and
therefore the inherent problem of a discontinuity in the domain can be circumvented. The model involves
the formulation of a partial integrodifferential equation that holds for discontinuous domains with no
additional treatment such as enrichment.

Keywords: peridynamics, fracture mechanics, radial basis functions, stochastic medium, collocation method.
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Since this pioneering work, several publications have focused on the application of this approach to
a wide spectrum of problems. In [Silling et al. 2003] the deformation of an infinite bar was investigated
using peridynamic theory. In [Silling et al. 2007] a generalization of the original peridynamics framework
was proposed to extend the kinds of materials that can be modeled by peridynamic theory. In [Bobaru
et al. 2009] adaptive refinement was proposed and the uniform convergence of peridynamic theory to
classical mechanics was shown for dynamic and static 1D solutions when the horizon is approaching
zero. In [Warren et al. 2009] the previous peridynamic theory was extended to handle Poisson ratios
other than 1

4 and to allow bonds to exhibit noncentral forces. In [Macek and Silling 2007] peridynamic
theory was extended beyond EMU meshless formulations to FEM by incorporating truss elements. In
[Bobaru 2007] the peridynamic method was used to analyze the effect of van der Waals forces on the
mechanical behavior, strength, and toughness of 3D nanofiber networks. In the benchmark study, the
fracture was introduced at the microstructural level using the concept of bonds; it was concluded that
two main mechanisms control the deformation: fiber reorientation and fiber accretion. In [Silling and
Askari 2005] a numerical mesh-free method for solving the partial integrodifferential equation arising
from peridynamic theory was proposed and examples of modeling crack growth in brittle materials were
presented. In [Zhou and Du 2010] a mathematically based approach for linear peridynamic FEMs was
introduced.

In this paper a peridynamic modeling of systems with stochastic material properties exposed to sto-
chastic excitations is considered. Proceeding to this task, a novel spatial discretization of the peridynamic
equation is applied which allows for the stochastic extension of the model. The governing partial inte-
grodifferential equation is treated by the Kansa collocation method [Kansa 1990a; 1990b] using inverse
multiquadric (IMQ) radial basis functions (RBF). In this formulation the direction and length of the
crack propagation is not governed by the nodal density and positioning of the nodes as it is in the usual
mesh-free peridynamic approach. The approach is quite similar to the XFEM [Zi and Belytschko 2003]
where the crack is influencing only one finite element and the stiffness of the current element through
which the crack is going needs only to be determined. Further, the boundary conditions are imposed in a
simpler manner than in peridynamic theory; it is quite similar to FEM. Finally, after having established a
reliable collocation method to treat the deterministic problem, the stochastic problem is considered and
is solved utilizing the concept proposed in the stochastic finite element method (SFEM) [Ghanem and
Spanos 1991]. The reliability of the system is evaluated by calculating the probability density function
(PDF) of the energy release rate around the crack tip.

2. Peridynamic formulation

2.1. The peridynamic partial integrodifferential equation. Consider a mechanical component having
one dimension significantly smaller than the other two, and operating under an excitation in the plane
defined by its two significant dimensions. Obviously, the significant displacements of the vibrating
medium are lying on the same 2D plane. Next, consider nonlocal peridynamic theory for modeling
the behavior of the medium. The nonlocal theory of peridynamics involves a partial integrodifferential
equation for dynamic problems [Emmrich and Weckner 2007b]. Specifically, this equation is a second-
order differential equation with respect to time, and an integral equation with respect to space. In this
context, the governing equation of motion of any particle inside the vibrating 2D medium is given by the
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equation

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫
H(x)

f
([

u(x, t)− u( x̂, t)
v(x, t)− v( x̂, t)

]
, x − x̂

)
dVx̂ =

[
bx(x, t)
by(x, t)

]
, (1)

where ü and v̈ denote the second-order derivatives of u and v with respect to time, and the vectors x and
x̂ are defined by the equations

x =
(

x
y

)
(2)

and

x̂ =
(

x̂
ŷ

)
. (3)

Note that ρ is the material density, bx(x, t) and by(x, t) are the force densities, u(x) and v(x) denote the
displacements of the point x on the x and y axes respectively, f denotes the force function measured in
force per unit volume squared exerted on the point x by the point x̂ , and H(x) is the domain of integration.
Note that the force function f may depend on the partial derivatives of the displacement with respect to
the directions x and y, and thus (1) is a partial integrodifferential equation. In peridynamic theory the
domain of x̂ is restricted by the position of x by defining the relative position

ξ = x − x̂ (4)

such that
|ξ |< δ. (5)

The distance δ is called the horizon and represents the distance of the nonlocal approximation. The
domain H(x) for every given point x is defined by the equation

H(x)= {x̂ : |x − x̂ |< δ}, (6)

and yields a circular disc centered at x of radius δ; Figure 1 helps to elucidate this concept.
Further, the pairwise force function f represents the force between two particles separated by a dis-

tance of length ξ [Silling 2000]. Thus it must exhibit the properties

f (−η,−ξ)=− f (η, ξ), (7)

(ξ + η)⊗ f (η, ξ)= 0, (8)

Horizon of point x

H

xx
ξ

δ

Body

Figure 1. Each point x in the body � interacts directly with the points x̂ in the circular
disc H(x) through bonds.
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where ⊗ is the symbol of the tensor product, and the vector η is defined by the equation

η =

[
u(x)− u( x̂)
v(x)− v( x̂)

]
. (9)

These restrictions ensure the conservation of angular momentum and the collinearity of the force with
respect to the relative position of the particles. Details on the force function can be found in [Silling
2000]. Next, for the linearized pairwise force function introduced in that reference, the force yields

f (η, ξ)= C(ξ)η, (10)

where the micromodulus C satisfies the condition

C(−ξ)= C(ξ). (11)

A fundamental measure of peridynamic theory is the bond stretch given by the formula

s =
|ξ + η| − |ξ |

|ξ |
. (12)

Specifically, stretch is used to determine whether the bond has failed or not, and thus it is the measure
governing the force between the particles, like strain in classical mechanics theory. Bonds which have
exceeded the predetermined value of s0 are damaged. In quantifying the damage on a specific point x
from the points in the horizon of x the function

φ(x, t)= 1−

∫
H(x) µ(x, t, ξ) dVx̂∫

H(x) dVx̂
(13)

is used, where the damage can be assumed to cause total failure of the bond by

µ(ξ, t)=
{

1 if s(t, ξ) < s0,

0 otherwise.
(14)

In linear peridynamics, the pairwise force amplitude is given by the equation [Silling 2000; Silling and
Askari 2005]

| f (η, ξ)| = c
|η|

|ξ |
, (15)

where the force vector f is aligned with the vector ξ + η, and for a 2D plate problem the constant c is
given by

c = 9E
2πδ3 , (16)

where k is the bulk modulus of the material in [Emmrich and Weckner 2007a]. Several other formulations
can be found in [Silling 2000] regarding the pairwise force function.
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2.2. Polar coordinate transformation. Equation (1) can also be cast into polar coordinates, yielding

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫
H(θ,r)

f
([

u(x, t)− u(x + r , t)
v(x, t)− v(x + r , t)

]
,−r

)
|J | dθ dr =

[
bx(x, t)
by(x, t)

]
, (17)

where

|J | = −r, (18)

r =−ξ, (19)

r = r
(

cos θ
sin θ

)
. (20)

Note that (9) in polar coordinates yields

η =

[
u(x)− u(x + r)
v(x)− v(x + r)

]
, (21)

and equivalently (15) yields

| f (η, r)| = c
r
|η|. (22)

For purposes of elucidation, the displacements u and v of a bond are shown in Figure 2.
Adopting the linearized pairwise force function, and using the fact that the horizon δ is a small distance,

the total stretch of the bond can be approximated quite accurately by just the collinear component of the
vector r . The contribution to the extension of the bond from the perpendicular displacements with respect
to the vector r shown in Figure 2 can be neglected for small distances r . This is due to the assumption
that small rigid body rotations of the bond can be neglected (see Appendix C). With this assumption and
since this force is in the direction of the vector r the forces per unit volume in the x and y directions

v(x)

v(x) sin(90 −θ)−u(x) sinθ

u(x) cosθ+v(x+r) sinθ

u(x+r) cosθ+v(x+r) sinθ
r

v(x+r) sin(90 −θ)−u(x+r) sinθ

v(x+r)
u(x+r)

u(x)

r

y

x

θ

θ

Figure 2. A bond of length r and angle θ with respect to the global coordinate system.
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yield

forcex =
c
r
(
(u(x)− u(x + r)) dVx+r cos θ + (v(x)− v(x + r)) dVx+r sin θ

)
cos θ,

forcey =
c
r
(
(v(x)− v(x + r)) dVx+r cos θ + (v(x)− v(x + r)) dVx+r sin θ

)
sin θ.

(23)

These equations represent the force in the x and y directions due to one bond formed from two particles
at distance r and at angle from the reference point θ . Since (17) is given in polar coordinates, (1) can be
cast as

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫ δ

0

∫ 2π

0

c
r

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

](
u(x, t)− u(x + r , t)
v(x, t)− v(x + r , t)

)
|J | dθ dr=

[
bx(x, t)
by(x, t)

]
. (24)

3. Spatial discretization

3.1. Radial basis function expansion. Having derived (24), we proceed to use the Kansa collocation
method for its spatial discretization; see [Kansa 1990a; 1990b]. In implementing the Kansa collocation
method, a series of nodes is distributed in the domain forming a grid of points. Inverse multiquadric
(IMQ) radial basis functions (RBFs) are used as defined in those references; they correspond to the
inverse of the Euclidean distance of the point x from the collocation node k:

gk(Ex)=
1√

(x − xk)2+ (y− yk)2+ψ
2
k

, (25)

where the distance ψk is a local shape parameter regulating the shape of the basis. Large values of this
parameter contribute to smoother shapes and are quite accurate approximations of flat and slowly varying
solutions. However, small parameters represent sharper shapes and are particularly good for peaks and
steep slopes. The IMQ function attains its maximum at the node and monotonically decreases as the
distance from the node increases. Next, using the same IMQs for both the u and v displacements yields

u(x)=
N∑

k=1

a1k gk(x)+
M∑

j=1

a2 j q j (x), v(x)=
N∑

k=1

d1k gk(x)+
M∑

j=1

d2 j q j (x). (26)

Further, the polynomials q that correspond to the a and d coefficients can be arbitrarily chosen. Note
that details on the Kansa collocation method and the IMQ RBFs are included in Appendix B. Next, (26)
on the collocation points with time-dependent coefficients can be cast in the form

u(x1, t)
v(x1, t)

...

0
...

=


g1(x1) 0 . . . q1(x1) 0 . . .

0 g1(x1) . . . 0 q1(x1) . . .
...

...
...

...
...

...

q1(x1) q1(x2) q1(x3) . . . 0 0
...

...
...

...
...

. . .





a11(t)
d11(t)
...

a21(t)
d21(t)
...


. (27)

Equation (27) is the basis upon which the 2D solution of the integrodifferential equation is expanded.
The difference in the displacements of a bond, denoted by the vector η and shown in (21), is obtained
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using (26). Specifically, the vector η with time dependence yields

η(x, r , t)=
[

G1(x, r) 0 G2(x, r) . . . Q1(x, r) 0 . . .

0 G1(x, r) 0 . . . 0 Q1(x, r) . . .

]


a11(t)
d11(t)
...

a21(t)
d21(t)
...


, (28)

where

Gk(x, r)= gk(x)− gk(x + r), Q j (x, r)= q j (x)− q j (x + r). (29)

3.2. Stiffness determination. Having represented the displacements by linear combinations of the basis
functions, an approach similar to the one of FEM is followed. It is assumed that the displacement of any
given point inside the domain is captured by interpolating the four adjacent nodes surrounding the point.
Figure 3, left, elucidates this interpolation scheme.

It is clear that for any point that belongs in the square, the four adjacent nodes contribute to its
displacement. This leads to a quite convenient and efficient way to integrate over the horizon of each
node. Figure 3, right, shows the horizon of each node in a specific element.

Obviously the integration of (1) can be performed using a finite element approximation inside an
element. Specifically, integration over the horizon is required only for one element and its four nodes.
Then, the integration over the horizon of each node is performed by merely adding the nodal values of
the elements, identically as done in FEM. Therefore combining (21), (24), and (28), the peridynamic
stiffness density of the node i is given as

K =
∫ δ

0

∫ 2π

0

c
r

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

] [
Gi (x i ) 0 . . . Q1(x i ) 0 . . .

0 Gi (x i ) . . . 0 Q1(x i ) . . .

]
|J | dθ dr. (30)

In this regard, combining (30) with (18) yields the second-order micromodulus tensor

C(ξ)= c
[

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

]
, (31)

ri+3

i+3

ri+2

i+2

ri+1

i+1

ri

i

i+3 i+2

i+1i

δ

δ
δ

δ

Figure 3. Left: a point of interest surrounded by its four closest nodes. Right: horizon
of each node in a square element formed by four grid points.
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and combining (4), (19), and (20), (31) can be cast in a form identical to that of [Silling 2000] as

C(ξ)=
c
|ξ |2

ξ ⊗ ξ . (32)

Next, the stiffness density matrix corresponding to the g basis functions for a four-node element consists
of 4× 4 blocks of 2× 2 matrices and yields

KG =−

∫ δ

0



∫ π/2

0
C(θ, r)

[
G i (x i , r, θ) G i+1(x i , r, θ) G i+2(x i , r, θ) G i+3(x i , r, θ)

]
dθ∫ π

π/2
C(θ, r)

[
G i (x i+1, r, θ) G i+1(x i+1, r, θ) G i+2(x i+1, r, θ) G i+3(x i+1, r, θ)

]
dθ

∫ 3π/2

π

C(θ, r)
[
G i (x i+2, r, θ) G i+1(x i+2, r, θ) G i+2(x i+2, r, θ) G i+3(x i+2, r, θ)

]
dθ∫ 2π

3π/2
C(θ, r)

[
G i (x i+3, r, θ) G i+1(x i+3, r, θ) G i+2(x i+3, r, θ) G i+3(x i+3, r, θ)

]
dθ


dr. (33)

Further, the stiffness density matrix corresponding to the q basis functions for the node i consists of a
2×M matrix, where M is the number of the q functions, and yields

K Q =−

∫ δ

0

[∫ 2π

0
C(θ, r)

[
Q1(x i , r, θ) dθ . . . QM(x i , r, θ)

]
dθ
]

dr. (34)

4. Implementation aspect

4.1. Linear differential equations. Utilizing the concept shown in Figure 3 and combining (1), (33), and
(34) yields a set of linear differential equations. Specifically, the set of linear second-order differential
equations can be cast in the matrix form as


∑

i

ρi Gi

∑
j

ρ j Q j∑
j

QT
j 0





a11

d11
...

a21

d21
...


+


∑

i

KGi

∑
j

K Qi∑
j

QT
j 0





a11

d11
...

a21

d21
...


=

[
b
0

]
, (35)

where
∑

i ρi Gi is a 2N × 2N square matrix representing the nodal material density related to the g
basis functions,

∑
j ρ j Q j is a 2N × 2M rectangular matrix representing the nodal material density

related to the additional basis functions q,
∑

j QT
j is a 2M × 2N rectangular matrix and is called the

regularization condition, and finally 0 is a 2M × 2M zero matrix. More details on the regularization
conditions can be found in [Kansa 1990a; 1990b] and in Appendix B. Equivalently

∑
i KGi , which is a

square 2N × 2N matrix, is the stiffness density related to the g basis functions,
∑

j K Qi is the 2N × 2M
stiffness density matrix related to the q basis functions, and

[
b
0

]
is the 2N × 1 loading vector on top of a

2M × 1 zero vector representing the regularization conditions. Further, (35) is a 2(N +M)× 2(N +M)
system of second-order linear differential equations and can be readily integrated in time using a time
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integration scheme. Note that since the quantities at (30), (33), and (34) represent the stiffness density,
this collocation approach is different from FEM.

4.2. Crack-inclusion treatment. Next, we proceed to address the crack growth or crack initiation prob-
lem utilizing the preceding peridynamic theory. In this regard, assume that a crack exists in a specific
position in the medium. With the above formulation this crack will affect only the peridynamic stiffness
of the surrounding nodes. Naturally the cracks interrupt the horizon of the nodes surrounding them;
Figure 4 shows how the horizon of node i + 1 is affected.

It is perhaps easier to appreciate from Figure 4 how powerful the peridynamic formulation becomes
when it comes to dealing with discontinuities in the domain. The crack essentially describes the bond
failure at these points and therefore node i + 1 along with the other nodes cannot “see” past the crack,
thus inducing less stiffness density. This is implemented by using the same equations as before, only with
different integration limits in (33) and (34). The integration over the discontinuous horizon poses many
difficulties; it is carried out numerically in Appendix A. Gaussian quadrature is used for the element KG

referring to the healthy part of the domain, shown in Appendix A. Despite the fact that a more laborious
numerical integration is needed for the cracked element, peridynamic modeling through this approach
is quite efficient since a uniform grid of points would have only one kind of element and thus no other
integration is needed. For the integration over the horizon of the functions Q, closed-form solutions are
available for “healthy” bonds around the nodes, but for discontinuities numerical integration is again
needed, as shown in Appendix A.

Keeping in mind that the collocation approach yields stiffness density, in contrast to the finite element
formulation, which yields stiffness, note that the weak form of the problem, given in [Emmrich and
Weckner 2007b], is∫

R
ρ(x)∂2

t

(
u(x)
v(x)

)
w(x) dVx +

1
2

∫
R

∫
H(x)

(
u( x̂)
v( x̂)

)
C(x, x̂)w(x) dVx dVx̂

=

∫
R

(
bx(x, t)
by(x, t)

)
w(x) dVx . (36)

In this equation w denotes the weight function, and substituting the displacement function in (36) yields
the Galerkin approximation, which leads to FEM. As is clear for the stiffness expression, a double

i+3 i+2

i+1i

Figure 4. The disrupted horizon of node i + 1, as it is modeled in peridynamics.
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1*

4*

4

1

3

2
2*

3*R ,u* *

e

R,u

δ

Figure 5. The additional layer of material R∗ needed for implementing the boundary conditions.

integration is involved, one on the domain R and one in the horizon domain H . This emphasizes that in
the formulation of (33) and (34), the stiffness density at a collocation point is calculated. Therefore (1)
is solved not in terms of displacements and nodal forces as it is from (36), but rather in terms of loading
density at the collocation points and displacements. Utilizing this formulation, the peridynamic boundary
conditions are applied in a much simpler way since the input loading is actually a load density. Further,
two consecutive integrations over the discontinuous domains R and H are quite laborious. This is in fact
the reason why the finite element formulation is substituting the large number of bonds in an equivalently
large number of truss elements in [Macek and Silling 2007]. The formulation proposed herein is quite
similar to the truss approach; each node is virtually connected to all the trusses inside its horizon and
its stiffness is obtained by direct integration without the actual introduction of the trusses. Further, since
the crack is handled geometrically inside the element, there is no need of checking all the bonds inside
the domain. The displacements inside the domain are interpolated from the nodal displacements and
are directly obtained. Then, the energy release rate is calculated around the crack independently from
the mesh size. Naturally, for a more accurate approximation around the crack tip, enrichment of the q
functions according to [Fleming et al. 1997] is available in addition to the grid refinement.

4.3. Peridynamic boundary conditions. Having derived the governing equation as a set of linear second-
order differential equations in matrix form, we proceed to incorporate the boundary conditions. Details
on incorporating boundary conditions in peridynamic theory are covered in [Silling 2000]. However, due
to this formulation the implementation of boundary conditions becomes readily available. Specifically,
an additional layer of material is added to the external part of the elements standing on the boundaries
of the domain; it is denoted by R∗ in [Silling 2000]. The corresponding displacements of the additional
layer are decomposed on the same g and q basis functions and therefore the displacements of the material
R∗, denoted by u∗ in [Silling 2000], are given from (26). Figure 5 shows the additional layer of material
R∗ that needs to be added on the boundaries.

Next, the stiffness density related to the lightly shaded area has been already calculated from the
preceding equations. However, the stiffness density related to a small layer of thickness e and shown in
Figure 5 with the darker shade needs to be added to the stiffness density of the nodes. In this regard,
since the displacements u∗ are decomposed into the same basis as the displacements u, the boundary



COLLOCATION-BASED DISCRETIZATION OF STOCHASTIC PERIDYNAMIC FRACTURE MODELING 1181

conditions, such as simple supports, etc., can be applied on the external nodes 1∗, 2∗, etc., by utilizing
the expansion basis and the displacements of these nodes. Next, for imposing certain boundary conditions
on the collocation nodes of the Kansa method, specific rows in the matrices shown in (35) are changed to
account for the imposed constraints. Details can be found on the implementation of boundary conditions
of the Kansa collocation method in [Kansa 1990a; 1990b]. Note that the governing equation is solved
in terms of displacements u(x) and v(x) and force density b(x), and since the force loading conditions
by definition are force densities, the boundary conditions are imposed readily using the basis functions.
For comparison with any theoretical models involving stress applied on the above described example,
the loading density b(x) must be multiplied by the layer thickness e to yield force per unit area.

5. Illustrative example

To illustrate the applicability of the proposed approach, a deterministic problem is considered. In this
regard, a square 2D plate of dimensions 1 cm× 1 cm and bulk modulus k = 1 N/cm2 under tensile stress
is modeled with FEM and peridynamic theory. The tension is of unitary amplitude σ = 1 N/cm2 and
the displacements obtained by peridynamic theory are compared to the FEM displacements. Figure 6
shows the equivalent modeling of this simple problem with FEM and the proposed peridynamic theory
involving the Kansa collocation method.

For FEM, the nodal forces are readily calculated using the stress applied on that edge. In peridynamic
theory, however, the nodal forces are force densities and b∗e = σ thus the force density simply depends
on the additional layer thickness. The displacements given by the finite element model are compared to
the ones obtained from the proposed formulation in Table 1 on the next page; a layer of thickness e= δ/5
is assumed for the numerical calculations.

Next, a cracked element is considered. Figure 7 shows a simple patch test used to verify displacements
for a cracked square plate under tension.

4

1

3

2

0.5 N

K = 1
v = 1/4
e = 3/2

FE Model
Peridynamics Model

1cm

1cm

0.5 N

b = 1/e  N/cm3

4

1

3

2

1cm

1cm
e

Figure 6. A simple 2D plate of unit thickness under tension of σ = 1 N/cm2, modeled
via FEM and peridynamic theory by the Kansa collocation method.
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e = 3/2
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Peridynamics Model

1cm

s

crack

v

u 1cm

b = 1/e  N/cm3

4

1

3

2

1cm

1cm

e2*1*

3*4*
crack

v

u

Figure 7. A cracked square plate under uniform tension modeled via peridynamic theory
and the Kansa collocation method.

The displacements of the theoretical solution are given by the closed-form equations in [Gdoutos
1990] and yield

u(x)=
k1

2µ

√
r

2π
cos
(
θ

2

)[
k2− 1+ 2 sin

(
θ

2

)]
, v(x)=

k1

2µ

√
r

2π
sin
(
θ

2

)[
k2+ 1− 2 cos

(
θ

2

)]
. (37)

Taking into account the symmetry of the loading, and transforming the coordinate system, the dis-
placements of the two models are compared for the displacements u and v. The symbol k1 stands for the
first mode stress intensity factor, r is the distance from the center of the element, µ stands for the shear
modulus, θ is the angle with respect to the initial crack, and k2 is a parameter depending on the Poisson
ratio and the crack geometry. For the element in Figure 7 the theoretical displacements are compared
with the results of the peridynamic formulation. However, the peridynamic results with this formulation
were not accurate. A more accurate approximation of the displacements around the crack tip points is
achieved through the enrichment of the basis functions q from [Fleming et al. 1997] with the basis

q5 =
√

r cos θ
2
, q6 =

√
r sin θ

2
, q7 =

√
r sin θ

2
sin θ, q8 =

√
r cos θ

2
sin θ. (38)

Peridynamics via Kansa collocation method FEM displacements
Node u (cm) v (cm) εx ν Node u (cm) v (cm) εx ν

1 −0.027 0.112 −0.160 0.237 1 0 0 −0.167 0.250
2 −0.187 0.112 2 −0.167 0
3 −0.026 0.787 εy 3 0 0.667 εy

4 −0.187 0.787 0.674 4 −0.167 0.667 0.667

Table 1. Comparison of displacements for a plate under uniform tension.
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Peridynamics via Kansa collocation method Theoretical displacements
Node* u (cm) v (cm) Node* u (cm) v (cm)

1 0.128 −0.31 1 0.1354 −0.3269
2 0.179 −0.078 2 0.1706 −0.0707
3 0.178 0.079 3 0.1706 0.0707
4 0.126 0.31 4 0.1354 0.3269

Table 2. Comparison of displacements for a cracked plate under uniform tension.

The problem of obtaining the displacements around the crack tip was encountered in [Fleming et al.
1997] and the results were accurate enough when the basis was expanded with the basis containing the
displacements near the crack tip. Thus, the linear functions q are enriched with an additional four basis
functions for the crack tip. For the simple example shown in Figure 7, Table 2 summarizes the results
for the corners of the square inside the element with side length 0.2 cm.

The numerical results obtained prior to the basis enrichment are omitted due to their poor accuracy.
However, it has been seen that the numerical results after the enrichment are significantly better than the
ones obtained without the basis enrichment. Further, there are persistent errors which must be addressed.
The horizon δ that has been used in both examples is δ = 1 cm and the solution of the first example
remains constant for any δ value less than 1 cm. The displacements obtained from the cracked domain
appear to be dependent on the horizon length for values larger than δ = 0.80 cm, which is another issue
that needs to be addressed. Integration over the horizon for the IMQ basis functions is achieved by
implementing the “visibility” criterion, extensively described in [Fleming et al. 1997]. That is, the crack
interrupts the horizon and thus the values of the g basis functions beyond the crack line are set equal to
zero. The same concept holds for all the q basis functions.

6. Stochastic peridynamic theory

6.1. Maximum energy release rate criterion. The reliability of a structure including a crack or initiating
a crack is considered in this section. Specifically, the probability of crack propagation and the direction
in which the crack will propagate is of particular interest. For this, the position of the propagating or
initiating fracture can be determined by the maximum energy release rate for brittle materials in [Gdoutos
1990]. To obtain the energy release rate, the length of the crack propagation is preselected as δα and
therefore points to be checked lay on the circular area given by the selected equation

x test = xc+ δα

(
cosφ
sinφ

)
(39)

for φ ∈ [0, 2π ], where x test is the position of the potential next crack tip and xc is the position of the
current crack tip. Since the points on the circle x test and the crack tip xc form potential fracture surfaces,
the work of all the tensile bonds per unit area of potential fracture can be directly calculated by (see
[Silling and Askari 2005])

G E =

∫
z

∫
V ′
w(η, ξ) dV ′ dz. (40)
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crack tip
initial crack surface

fracture surface

ϕ

δα

δ
ξ

θ

bond

V’

Z

Figure 8. The propagating fracture of length δα at angle φ from the initial crack and
the calculation of the energy release rate per unit of fractured area.

In this equation z denotes the perpendicular distance of a point from the fractured surface and V ′ is
the volume of integration. Figure 8 helps to elucidate the concept of the distance z and the volume of
integration. For the linearized pairwise force function, the work of a single bond yields

w(η, ξ)= 1
2 cs2
|ξ |, (41)

and utilizing (19) yields the energy per unit surface area of a 2D plate with unit thickness:

G E =

∫ δ

0

∫ δ

z

∫ cos−1(z/r)

− cos−1(z/r)

1
2 cs2r2 d θ̂ dr dz. (42)

Figure 8 also helps visualize the concept of bonds breaking and forming a cracked surface. Obviously,
the energy per unit surface area depends on the initial crack tip, the angle φ, and the length δα, since the
stretch s depends on these parameters. From the assumption of a linear pairwise force function and small
rigid body rotations shown in Appendix C, the stretch of the bonds can be calculated from a simpler form
than (12). This form is

s(x, r, θ)= 1
r
[
cos θ sin θ

] [u(x)− u(x + r)
v(x)− v(x + r)

]
, (43)

and Figure 2 helps to illustrate this concept. Next, combining (43), (42), and (39) and correlating the
angles θ̂ , φ, and θ through the simple equation

π/2− θ̂ +φ = θ (44)

yields

G E(δα, φ, xc)=

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
|η(θ, ξ, z, δα, φ, xc)|

2 dθ dr dz, (45)
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where |η| is given for the linearized pairwise force function shown in Appendix C as

|η| = s|ξ |. (46)

Naturally, the angle at which the tensile energy per unit area is the maximum can be chosen as the fracture
propagation angle; see [Gdoutos 1990]. Further, in brittle materials the energy release is a measurable
quantity and can be used in real applications as a threshold for fracture. Figure 8 can be used to clarify
this concept; see also [Silling and Askari 2005].

6.2. Stochastic fracture on elastostatic peridynamic theory. Having derived the energy release rate as
a function of the crack tip xc, propagating crack length δα, and propagating crack angle φ, we proceed
to probabilistically identify the propagation angle. In this context, in classical mechanics, materials with
random properties are modeled by expressing the Young’s modulus as a random process. However, in
the peridynamic approach this must be modified. The fact that each node is connected with an infinite
number of points belonging in the node’s horizon should make the random process which represents the
micromodulus of the bonds depend both on the angle θ and on the distance r in the polar coordinate
system. In this paper, the bond micromodulus is treated as a random process depending only on the
distance from the node r . Therefore, the micromodulus coefficient c is a random process c(r, ϑ) where
ϑ is the random parameter. Further, the loading of the structure involves uncertainties which are specified
in terms of a random variable. The PDF of the energy release rate G E given in (45) must be calculated in
order for the reliability of the crack propagation to be calculated. Naturally the PDF of the coefficients
for the static case can be obtained by utilizing (35), which yields

a11

d11
...

a21

d21
...


=


∑

i

KGi
∑

j K Qi∑
j

QT
j 0


−1 [

b
0

]
. (47)

Obviously, the equation above includes a random matrix inversion and a multiplication by a random
forcing vector. In this context, (46) combined with (43) can be cast in the form

|η| =

n∑
i=1

αiβi , (48)

where αi =
[
a . . . d

]
is the set of the random coefficients, and

βi =
[
G1(x test+ z, r) cos θ . . . Q4(x test+ z, r) sin θ

]
is the set of the deterministic functions which depend on the angle φ and the length δα. Clearly,

|η|2 =

n∑
i=1

(αiβi )
2
+ 2

n−1∑
i=1

n∑
l

αiαlβiβl, (49)
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where l > i . In this case, the PDF of the energy release at a given orientation can be determined by
combining (49) and (45) and yields

G E(δα, φ, xc)=

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
[β1(θ, r, z)2 . . . βn(θ, r, z)2] dθ dr dz

α
2
1
...

α2
n


+ 2

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
[β1β2(θ, r, z) . . . βn−1βn(θ, r, z)] dθ dr dz

 α1α2
...

αn−1αn

 . (50)

Equation (50) involves a summation of products of deterministic coefficients multiplied by random
variables and yields the energy release rate for a given probable fracture surface. Having samples of
the random variables leads to the determination of the energy release rate PDF for any direction of
propagation and length since the deterministic coefficients depend only on φ, δα, and xc.

Assuming now that the micromodulus function is of the form of (31), the coefficient c of (15) can be
taken as a random process such as

c(r, ϑ)= c̃0+ ĉ(r, ϑ), (51)

where c̃0 is the mean value.
The stiffness density of (33) and (34) involve integration over the horizon δ. Thus, the random process

can be decomposed by the Karhunen–Loève expansion in a way extensively described in stochastic finite
element methods (SFEM) in [Ghanem and Spanos 1991]. In this study, the Monte Carlo simulation
(MCS) technique is pursued for the determination of the energy PDF, and thus, the random process
shown in (51) is sampled for the construction of the stiffness density. Due to the computational intensity
of MCS, only the static case with initial fracture inside the domain is addressed in this study. In this
context, (47), which involves the inversion of a random matrix, is obtained using the inverse Neumann
expansion used in SFEM [Ghanem and Spanos 1991]. This yields

a11

d11
...

a21

d21
...


=

Ne∑
j=0



∑

i

K̃Gi

∑
j

K̃ Qi∑
j

QT
j 0


−1

∑
i

KGi

∑
j

K Qi∑
j

QT
j 0




j 
∑

i

K̃Gi

∑
j

K̃ Qi∑
j

QT
j 0


−1 [

b
0

]
, (52)

where Ne is the order of the Neumann expansion, K̃G and K̃ Q are the average stiffness densities corre-
sponding to the mean value of the random field, and KG and K Q are the stiffness densities corresponding
to the zero mean random field. Note that a quite large sample of the coefficients must be calculated by
pertinent MC simulations in order for the PDF of the energy release rate to be available for all lengths
and angles of the crack propagation.

6.3. Monte Carlo application. For the example shown in Figure 9 with initial crack of 2 mm in the
middle of the domain, δα = 1 mm, the PDF of the energy release rate at angles φ = π and φ = 3π/4 is
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Initial crack

5cm

5cm

Figure 9. A 5 cm× 5 cm plate under tension, including an initial crack in the center.

calculated by extensive MC simulations of (50) and (52). White Gaussian noise is used for the random
process describing the micromodulus coefficient c with mean value obtained from (16) for bulk modulus
k = 1 N/cm2. The horizon is discretized using 100 points, and thus 100 identical independent Gaussian
random variables are considered. The inversion of the random matrix is obtained by a fourth-order
Neumann expansion and the loading is perturbed by an additional white Gaussian noise with standard
deviation 20% of the mean value which is taken to be equal to 1 N/cm2.

After a large enough sample of the coefficients is obtained by pertinent MCS of (52), the probability
density function of fracture in omnidirectional propagation orientations can be calculated by the deter-
ministic integration of the coefficients of (50) for any angle φ, propagation length δα, and initial crack
tip point xc. Figure 10 shows one realization of the random micromodulus coefficient with variance 20%
of the mean value shown in (51). Figure 11 summarizes the results for the two approaches. The state
of the art mesh-free numerical method is considered the method described in [Silling and Askari 2005].

Figure 10. Random micromodulus coefficient spanning the horizon from 0 to δ.
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Figure 11. The PDF of the energy release rate for the left crack tip point estimated by
6000 Monte Carlo simulations.

The grid used for the mesh-free numerical method is 1x = 0.01 cm and thus 10201 nodes have been
used. The horizon δ = 51x and the force constant c is sampled from a Gaussian distribution.

The PDFs obtained from 6000 MC simulations using the two methods are in reasonable agreement.
However, the difference of the PDFs shown in Figure 11 is attributed to the fact that the methods do
not produce identical results around the crack tip. Obviously, a finer grid of nodes will produce more
accurate results for the Kansa collocation method. Further, for slightly different cracks inside the element
the results deviate from the ones obtained by closed-form solutions. A possible resolution of this issue
is the refinement of the grid by adding more nodes on the cracked element. However, in this paper,
the introduction of a novel spatial discretization for deterministic/stochastic peridynamic modeling is
the primary concern, and further work is warranted towards the direction of specifically describing the
enrichment efficiency vis a vis the node refinement. In this model, node refinement was not considered
due to the nature and simplicity of the numerical example and due to the fact that the enrichment of the
q basis [Fleming et al. 1997] provided quite accurate results for the specific example. However, for more
elaborate cracks and medium shapes, node refinement is the most convenient option to achieve accuracy
at the expense of additional computation cost.

7. Concluding remarks

In this work the application of peridynamic modeling to stochastic systems incorporating discontinuities
has been considered. A novel approach for the spatial discretization of the integrodifferential equation
arising from peridynamic theory that allows for stochastic extension has been devised. This spatial
discretization has been based on the inverse multiquadric radial basis functions enriched with polynomials
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from the finite element method. Due to this formulation the stochastic problem has been solved in a
manner similar to the stochastic finite element method, with some minor differences arising from the
peridynamic stiffness density formulation. Following this similar path to the finite element method,
the stiffness density of each element surrounded by four nodes has been constructed incorporating the
fracture inside. The discontinuity inside the element has been handled by applying the visibility criterion
and by changing the integration limits in the polar coordinate system. After formulating the stiffness
density of the healthy and cracked elements, the global stiffness density matrix on the collocation points
has been assembled and the system has become readily solvable. Next, the idea that the crack propagates
in such a way that the energy release rate attains its maximum value has been adopted. In this context,
since a continuous approximation has been devised for the displacements inside the domain, the energy
release rate has been calculated progressively around the crack tip. For systems with random material
properties under random excitations the PDF of the energy release rate has been obtained by Monte
Carlo simulation of the requisite Neumann expansion. Further, having the PDF of the energy release
for the area around the crack tip determines whether the crack propagates and in which direction with
respect to the initial crack surface. Furthermore, this formulation has the advantage that the equilibrium
equation is formed in terms of force density and displacement. Thus, there is no need for a double
integration over the discontinuous medium. In the preceding regard, this is the first paper correlating
the peridynamic formulation with reliability of failure. Specifically, stochastic fracture propagation and
stochastic response of systems modeled utilizing the peridynamic formulation has been presented and
results have demonstrated the effectiveness of the proposed approach.

Appendix A: Numerical integration for stiffness determination

For elements that do not include fracture or any kind of discontinuity the integrations of (33) are carried
out by Gaussian quadrature using 2× 2 points. Figure A.1 shows the Gaussian quadrature points.

Integrating the function f (r, θ) on a 2D rectangular domain H = [θ1, θ2]× [r1, r2] yields∫ r2

r1

∫ θ2

θ1

f (r, θ) dr dθ =
r2− r1

2
θ2− θ1

2

∫ 1

−1

∫ 1

−1
f
(

r2− r1

2
r̂ +

r2+ r1

2
,
θ2− θ1

2
θ̂ +

θ2+ θ1

2

)
dr̂ d θ̂ .

(A.1)

(−1/   3,1/   3)

(−1,1)

(−1,−1)

(1,1)

(1,−1)

(1/   3,1/   3)

(−1/   3,−1/   3) (1/   3,−1/   3)
Gauss
Points

Figure A.1. Gaussian quadrature of 2× 2 points of weight 1.
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Applying Gaussian quadrature of 2× 2 points for the numerical integration of (A.1) yields∫ r2

r1

∫ θ2

θ1

f (r, θ) dr dθ =
r2− r1

2
θ2− θ1

2

2∑
i, j=1

(
r2− r1

2
r̂i +

r2+ r1

2
,
θ2− θ1

2
θ̂i +

θ2+ θ1

2

)
. (A.2)

Next, for elements including fracture and discontinuity, numerical integration on a refined grid of points
is needed. Figure A.2 shows an example of a refined grid.

The accurate determination of the fracture contour in polar coordinates is considered herein; specifi-
cally the determination of the curve AB shown in Figure A.2. For the purposes of elucidation consider
the initial crack shown in Figure A.3. Next, the position of the initial crack is known, therefore the
vectors shown in Figure A.3 can be obtained; z1 and z2 are the vectors from the node of interest to the
crack tips and u is the vector aligned with the crack with orientation from one crack tip to the other. The

Coarse grid for numerical integration

Fine grid for numerical integration

Contour of fracture

A

0

r

B

δ

2π θ

Figure A.2. Refined discretization for the numerical evaluation of the stiffness density
of a fractured element.

T T
T
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z z
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Figure A.3. Determination of the fractured contour of a cracked element.
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tangent of the angle of a vector z shown in Figure A.3 is given by

tan θ(a)=
l

|z1| cos θ1+α|u|
, (A.3)

where α is a coefficient such that α ∈ [0, 1]. Next, the partial derivative of (A.3) with respect to the
coefficient α yields

dθ
dα

1
cos2 θ(α)

=−
l|u|

(|z1| cos θ1+α|u|)2
. (A.4)

Carrying out the calculations yields a simplified expression for (A.4):

dθ =−
l|u|

(|z1| cos θ1+α|u|)2+ l2 dα. (A.5)

Obviously, as the vector αEu approaches the crack tip on the right, the rate of the angle is changing. Thus,
the curve AB shown in Figure A.2 is obtained numerically by fixing the dα value. Specifically, for a
certain dα value, α j is defined as

α j = j · dα, (A.6)

where j = 1, . . . , 1/dα and thus dθ j is defined as

dθ j =−
l|u|

(|z1| cos θ1+α j |u|)2+ l2 dα. (A.7)

Numerically integrating (A.7) by fixing dα yields

θ j = θ1−
∑

j

l|u|
(|z1| cos θ1+α j |u|)2+ l2 dα. (A.8)

Next, the corresponding length r j to the angle θ j shown in Figure A.2 yields

r j = |z1+α j u|. (A.9)

In this way the curve AB is obtained as points θ j and r j for α j ∈ [0, 1], and thus the contour of integration
is determined for the numerical integration. For purposes of elucidation, points A and B in Figure A.2
correspond to the crack tips z2 and z1 shown in Figure A.3. In the same way (34) is numerically eval-
uated for elements including cracks. However, for healthy elements, polynomial functions q, and the
micromodulus function shown in (31), the integration has a closed-form solution. Specifically, consider
the first four linear functions of FEM as the q functions

q1(x)= 1, q2(x)= x, q3(x)= y, q4(x)= xy. (A.10)

Combining (29), (34), and (A.10) yields

K Q = c
∫ δ

0

[∫ 2π

0

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

] [
0 r cos θ r sin θ (x + r cos θ)(y+ r sin θ)− xy

]
dθ
]

dr,

expanding which yields
K Q = c

[
K Q1 K Q2 K Q3 K Q4

]
, (A.11)
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where

K Q1 =

[
0 0
0 0

]
, K Q2 =

cos2 θ sin θ
3

+
2 sin θ

3
−

cos3 θ

3

−
cos3 θ

3
sin3 θ

3


∣∣∣∣∣∣∣
2π

0

r2

2

∣∣∣∣δ
0
,

K Q3 =

−cos3 θ

3
sin3 θ

3
sin3 θ

3
cos θ sin2 θ

3
−

2 cos θ
3


∣∣∣∣∣∣∣
2π

0

r2

2

∣∣∣∣δ
0
,

(A.12)

and finally

K Q4=

 −
cos4 θ

4
−

sin2 θ cos3 θ

4
+
θ

8
+

sin 2θ
16

−
sin2 θ cos3 θ

4
+
θ

8
+

sin 2θ
16

sin4 θ

4


∣∣∣∣∣∣∣
2π

0

r3

3

∣∣∣∣δ
0
+x K Q3+yK Q2. (A.13)

Appendix B: Kansa collocation method

The Kansa collocation method in 1D, for a set of N = L/1x + 1 equally spaced grid points of distance
1x , yields the equations in the following form:



u(0)
u(1x)
u(21x)

...

0
0


=



g1(0) g1(0) . . . gN (0) q0(0) . . .

g1(1x) g1(1x) . . . gN (1x) q0(1x) . . .

g1(21x) g1(21x) . . . gN (21x) q0(21x) . . .
...

...
...

...
...

...

q1(0) q1(1x) q1(21x) . . . 0 0
...

...
...

... 0 0





a11

a12
...

a1N

a21
...


. (B.1)

The last M rows represent the regularization equations of the coefficients which state that

N∑
k=1

q j (xk) d2k = 0 and
N∑

k=1

q j (xk) d2k = 0 for j = 1, . . . ,M, (B.2)

where M is the number of the additional basis functions q .
Assuming that the displacements of a point in the domain of Figure B.1 can be approximated by the

adjacent nodes, (26) yields the displacement for a point inside the upper right square:

u(x i + r)=
i+3∑
k=i

a1k gk(x i + r)+
M∑

j=1

a2 j q j (x i + r),

v(x i + r)=
i+3∑
k=i

d1k gk(x i + r)+
M∑

j=1

d2 j q j (x i + r).

(B.3)
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i+1
node i

i+2i+3i+4

i+5

i+6 i+7 i+8

horizon δ

Figure B.1. The horizon of one node over four elements, the stiffness density of the
node i is calculated through (33) and (34).

Figure B.2. IMQ basis function of the corresponding node on a four-node element, with
and without a crack inside the horizon.

Figure B.2 shows the IMQ function for the same node, both for a healthy and a cracked four-node element.
It can be seen that the visibility criterion is applied on the cracked element since the crack disrupts the
horizon of the node.

Appendix C: Linearized pairwise force function

The linearized pairwise force function as introduced in [Silling 2000] imposes an implicit assumption
of small rigid body rotations. Specifically, consider Equation (12), which defines the stretch of a bond.



1194 GEORGIOS I. EVANGELATOS AND POL D. SPANOS

y

x
θ

θξ

θη

ξ ξ

x

u(x)
x+ξ

u(x+ξ)
η+ξ

η+ξ

η

Figure C.1. One bond before and after deformation.

Carrying out the calculations yields

s =
∣∣∣∣1+ ηξ

∣∣∣∣− 1. (C.1)

Next, using complex notation for the vectors yields

η = |η|(cos θη+ i sin θη), ξ = |ξ |(cos θξ + i sin θξ ), (C.2)

where θη and θξ are the angles of the vectors with respect to the orthogonal reference system. Figure C.1
helps elucidate the concept. Next, combining both parts of (C.2) yields

η

ξ
=
|η|

|ξ |

(
cos(θη− θξ )+ i sin(θη− θξ )

)
. (C.3)

Obviously the angles of the vectors determine if the vector division yields a vector or a scalar. For the
case of

θη ' θξ , (C.4)

(C.3) yields
η

ξ
'
|η|

|ξ |
, (C.5)

and (C.1) becomes

s '
|η|

|ξ |
. (C.6)

Equation (C.6) implicitly assumes that the deformation of the bond is collinear with the bond’s initial
orientation or that the bond exhibits small rotation which can be neglected.
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