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NUMERICAL INVESTIGATION OF DIRECTOR ORIENTATION AND FLOW
OF NEMATIC LIQUID CRYSTALS IN A PLANAR 1:4 EXPANSION

PEDRO A. CRUZ, MURILO F. TOMÉ, IAIN W. STEWART AND SEAN MCKEE

Numerical solutions to the equations describing Ericksen–Leslie dynamic theory for 2D nematic liq-
uid crystal flows subject to a magnetic field are obtained. The governing equations are solved by a
finite difference technique based on the GENSMAC methodology. The resulting numerical technique
was verified by comparing numerical solutions for 2D-channel flow by means of mesh refinement. To
demonstrate the capabilities of this method, the flow of a nematic liquid crystal in a planar 1:4 expansion
was simulated. Calculations were performed for various Ericksen and Reynolds numbers. The results
showed that an increase in the Ericksen number caused the appearance of lip and corner vortices.

1. Introduction

Although the discovery of liquid crystals is generally attributed to Reinitzer [1888], the term “liquid
crystal” was established by Lehmann in 1900, after he originally suggested the term “flowing crystals”
[Lehmann 1889]. In [Friedel 1922] different liquid crystal phases were described and three broad cat-
egories were proposed: nematic, cholesteric, and smectic. Nematic liquid crystals are characterized by
long-range orientational order of the molecules; in other words, the molecular orientation in a nematic
liquid crystal exhibits a preferred direction which can be represented by a unit vector n, called the director.
Gray et al. [1973; 1974] synthesized a nematic liquid crystal that was stable at room temperature and so
could be used in display monitors, known as liquid crystal displays; since then, nematic liquid crystals
have been rather attractive owing to their applications in high-performance optoelectronic products and
their striking rheological properties.

The basic theory that describes the dynamics of nematic liquid crystals is the Ericksen–Leslie dynamic
theory, proposed by [Ericksen 1961; Leslie 1966; 1968]. This theory has consistently been applied to
many flow problems of nematic liquid crystals, but the equations are complex so that analytic solutions
of nematic liquid crystals flows are extremely rare. Consequently, numerical methods are becoming an
important tool for solving these highly nonlinear equations.

Many articles treating the flow of nematic liquid crystals can be found (see, for example, [Pieranski
and Guyon 1974; Baleo et al. 1992; Chono and Suji 1998; Chono et al. 1998; Carou et al. 2006]). For
instance, in [Baleo et al. 1992] elasticity was neglected, in which case the equations reduce to the Ericksen
transversely isotropic fluids. In [Chono et al. 1998] the spatial development of the director orientation
was studied in tumbling nematic liquid crystals in channel flow. In [Chono and Suji 1998] the flow
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around a circular cylinder was analyzed. In other studies, such as [Pieranski and Guyon 1974], the
investigation was through experimentation. However, to our knowledge, studies using the full Ericksen–
Leslie equations for 2D flows are extremely rare.

This paper presents a finite difference technique for solving the full Ericksen–Leslie dynamic equations
in two dimensions under the influence of a finite magnetic field.

2. Governing equations

We consider the 2D flow of nematic liquid crystals. A magnetic field is applied and we assume the one-
constant approximation for the elastic constants. The unitary director n and velocity v can be written as

n= (cosφ, sinφ, 0), φ = φ(x, y, t), (2-1)

v =
(
u(x, y, t), v(x, y, t), 0

)
, (2-2)

where φ is the orientation angle of the director. The magnetic field potential (equal to the negative of the
magnetic energy) is

9 = 1
2µ01χ(n · H)2, H = H(cosφ0, sinφ0, 0), |H| = H <∞, (2-3)

where 1χ > 0 is the magnetic anisotropy, H is the magnitude of the field, and φ0 is a constant. The
related external generalized body force Gi is given by

Gi =
∂9

∂ni
= µ01χ(n · H)Hi , (2-4)

where µ0 > 0 is the permeability of free space.
We shall use the usual Einstein summation convention where appropriate. A comma indicates partial

differentiation with respect to the variable it precedes; for example ni, j denotes the partial derivative of
the i-th component of ni with respect to the j-th variable.

The basic equations for simulating 2D flows of a nematic liquid crystal are the conservation of mass,
elastic energy, linear momentum, and angular momentum, which can be written, respectively, in dimen-
sionless form as follows (for details see [Cruz et al. 2010]):

u,x + v,y = 0, (2-5)

(wF ),x =
1

ReEr
[φ,xx + (φ,y),x ], (wF ),y =

1
ReEr

[(φ,x),y +φ,yy], (2-6)

u,t =−(uu),x − (vu),y − p,x −wF,x + R j n j,x +
1

Re
[ 1

2α4(u,xx + u,yy)+8xx,x +8xy,y
]

+
1
2µ01χH 2 sin(2(φ0−φ))φ,x , (2-7)

v,t =−(uv),x − (vv),y − p,y −wF,y + R j n j,y +
1

Re
[1

2α4(v,xx + v,yy)+8yx,x +8yy,y
]

+
1
2µ01χH 2 sin(2(φ0−φ))φ,y, (2-8)

φ,t =−(uφ),x − (vφ),y +
1

Erγ1
[φ,xx +φ,yy] −

γ2

2γ1

[
(u,y + v,x) cos(2φ)+ (v,y − u,x) sin(2φ)

]
−

1
2(u,y − v,x)−

Re
2γ1

µ01χH 2 sin(2(φ0−φ)), (2-9)
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where Re = ρU L/η and Er = U L(η/K ) are the Reynolds and Ericksen numbers, respectively. The
coefficient γ1 = α3− α2 ≥ 0 is often referred to as the twist or rotational viscosity and the coefficient
γ2 = α2 + α3 = α6 − α5 is called the torsion coefficient. The viscosities α1, α2, . . . , α6 are the Leslie
viscosities.

The functions 8xx , . . . , 8yy are given by

8xx = α1 cos2 φ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

− (α2+α3) sinφ cosφ
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+ (α5+α6)
(
u,x cos2 φ+ 1

2 sinφ cosφ(u,y + v,x)
)
, (2-10)

8xy = α1 sinφ cosφ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α3 cos2 φ−α2 sin2 φ)
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+
1
2(α5 sin2 φ+α6 cos2 φ)(u,y + v,x)+ (α5u,x +α6v,y) sinφ cosφ, (2-11)

8yx = α1 sinφ cosφ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α2 cos2 φ−α3 sin2 φ)
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+
1
2(α5 cos2 φ+α6 sin2 φ)(u,y + v,x)+ (α5v,y +α6u,x) sinφ cosφ, (2-12)

8yy = α1 sin2 φ
(
u,x cos2 φ+ v,y sin2 φ+ 1

2(u,y + v,x) sin(2φ)
)

+ (α2+α3) sinφ cosφ
(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

+ (α5+α6)
(
v,y sin2 φ+ 1

2 sinφ cosφ(u,y + v,x)
)
. (2-13)

The terms R j n j,x and R j n j,y are given by

R j n j,x =
1

Re
{
−γ1φ,x

(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

−
1
2

(
γ2φ,x cos(2φ)(u,y + v,x)+ γ2φ,x sin(2φ)(u,x − v,y)

)}
, (2-14)

R j n j,y =
1

Re
{
−γ1φ,y

(
φ,t + uφ,x + vφ,y + 1

2(u,y − v,x)
)

−
1
2

(
γ2φ,y cos(2φ)(u,y + v,x)+ γ2φ,y sin(2φ)(u,x − v,y)

)}
. (2-15)

In these equations, the viscosities α1, . . . , α6 have been scaled by the factor η = α3−α2.
Equations (2-5) and (2-7)–(2-9) form the complete set of dynamic equations and must be solved

subject to suitable boundary conditions in order to find solutions for φ, p, u, and v.

2A. Boundary conditions. To solve (2-5) and (2-7)–(2-9) we impose the following boundary conditions
for the velocity field. On rigid boundaries we set vi = 0 while at fluid entrances (inflows) the normal
velocity is specified by vN = Vinf and the tangential velocity by vT = 0. Here N denotes normal direction
to the boundary and T denotes the tangential direction. At fluid exits (outflows) the Neumann condition
vi,N = 0 is adopted.

The director is strongly anchored on rigid walls. This means that the anchoring angle is set according
to the orientation of the rigid wall. Details of this anchoring angle will be given in the section dealing
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with numerical results. The choice of the angle of the director at fluid entrances (inflows) is φ = 0, and
at fluid exits (outflows) we set φ,N = 0.

2B. Numerical procedure. The numerical method is a standard and robust approach using Chorin’s
projection method. An interesting but different method was employed in [Svenšek and Žumer 2002]. The
momentum equations (2-7) and (2-8), the mass conservation equation (2-5), and the angular momentum
equation (2-9) will be solved by a methodology based on the algorithm introduced in [Tomé et al. 2002]
as follows.

Assume that, at time tn , the velocity field vi (xk, tn) and the orientation angle of the director φ(xk, tn)
are known and that suitable boundary conditions are provided. To calculate the velocity field vi (xk, tn+1),
the pressure p(xk, tn+1), the functions 8i j (xk, tn+1), and the orientation angle of the director φ(xk, tn+1),
we proceed in the following manner:

Step 1. Using the values of vi (xk, tn) and φ(xk, tn), solve (2-6) for wF (xk, tn) and calculate wF,i (xk, tn),
8i j (xk, tn), and R j n j,i (xk, tn) from (2-10)–(2-13), (2-14) and (2-15), respectively.

Step 2. Calculate an intermediate velocity field ṽi (xk, tn+1) from

∂ṽi
∂t
=−(v jvi ), j −wF,i + R j n j,i +

1
2µ01χH 2 sin(2(φ0−φ))φ,i +

1
Re
[ 1

2α4(vi, j ), j +8i j, j
]
, (2-16)

with ṽi (xk, tn)= vi (xk, tn) using the same boundary conditions for the velocity vi (xk, tn). This equation
is solved by an explicit finite difference method. In [Tomé et al. 1996] it was shown that ṽi possesses
the correct vorticity at time tn+1.

Step 3. Solve the Poisson equation

ψ,i i (xk, tn+1)= ṽi,i (xk, tn+1), (2-17)

subject to the boundary conditions that ψ,N = 0 on rigid boundaries and inflows and ψ = 0 on outflows
[Tomé and McKee 1994].

Step 4. Calculate the final velocity field:

vi (xk, tn+1)= ṽi (xk, tn+1)−ψ,i (xk, tn+1). (2-18)

Step 5. Determine the pressure field p(xk, tn+1) [Tomé et al. 1996]:

p(xk, tn+1)=
ψ(xk, tn+1)

δt
. (2-19)

Step 6. Calculate the angle of the director φ(xk, tn+1) from (2-9). This equation is solved by an explicit
finite difference method.

Step 7. Calculate the functions 8i j (xk, tn+1) from (2-10).

3. Approximation of the equations by finite differences

The equations contained in the numerical procedure outlined in the previous section are solved by the
finite difference method as follows. A staggered grid is employed. This was first introduced in [Harlow
and Welch 1965]; it has been used by many investigators because it locally guarantees conservation of
mass and momentum while remaining computationally simple.
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Figure 1. 2D staggered cell.

The velocities u and v are located at the middle of cell faces while the other quantities (φ, 8, p, wF )
are positioned at cell centers. Figure 1 illustrates a typical 2D cell of dimensions δx × δy.

The momentum conservation equations (2-7) and (2-8) and the angular momentum equation (2-9) are
solved by the explicit Euler method. The spatial derivatives in the momentum conservation equations are
discretized at points

((
i + 1

2

)
δx, jδy

)
and

(
iδx,

(
j + 1

2

)
δy
)

while the angular momentum equation (2-9),
the density of elastic energy (2-6), and the functions 8i j are approximated at cell centers (iδx, jδy).
The divergence of 8i j , the gradient of the density of elastic energy wF,i , and the terms R j n j,i are
approximated by central differences.

For reasons of space, the details of the finite differences equations involved are not presented here;
they can be found in [Cruz et al. 2010].

4. Validation results

The numerical method described in the previous sections was applied to simulate the flow of the nematic
liquid crystal MBBA at 25◦ C. We considered a 2D-channel (see Figure 2) with width L and length
C = 10L . The boundary conditions for the velocity field were those specified in Section 2A. At the fluid
entrance, a fully developed flow was applied:

u(y)=−4U
L

(
y− L

2

)2
+U, (4-1)

where U is a prescribed value for velocity.

L

C

y

x 

n

φ 

Figure 2. Definition of the domain for the simulation of the flow in a 2D channel. The
red arrows indicate the boundary conditions used for the calculation of the angle φ by
means of (2-9).



1022 PEDRO A. CRUZ, MURILO F. TOMÉ, IAIN W. STEWART AND SEAN MCKEE

Leslie viscosities α1 α2 α3 α4 α5 α6

MBBA near 25◦ C −0.0181 −0.1104 −0.001104 0.0826 0.0779 −0.0336
MBBA near 42◦ C −0.0036 −0.0310 −0.00218 0.0394 0.0224 −0.01086

Table 1. Leslie viscosities for the nematic liquid crystal MBBA, in SI units [Stewart 2004].

Physical parameter 1χ ρ µ0 K
Values 1.219× 10−6 1088 kg m−3 12.566× 10−7 H m−1 7.5× 10−12 N

Table 2. Physical parameters for the nematic phases of MBBA, in SI units: magnetic
anisotropy (1χ , unitless) [Stephen and Straley 1974], density (ρ) [Stephen and Straley
1974; Stewart 2004], permeability of free space (µ0), and elastic constant (K). The
viscosities at 42◦ C were taken from [Kneppe et al. 1982].

To simulate this problem, the following input data (specifying the flow) were employed:

• Width of the entry plane L = 0.001 m and velocity scale U = 0.00038 m s−1.

A magnetic field H = 1/(4π)103 A m−1 was applied. The physical parameters, specifying the nematic
liquid crystal MBBA at 25◦, are given in Tables 1 and 2. With these data we obtain Re = 0.0038
and Er = 55.38. To demonstrate the convergence of the numerical method presented in this paper,
we simulated channel flow using four embedded meshes until steady state was achieved. The meshes
employed were:

• M0: δx = δy = 0.000125 m (80× 8 cells),

• M1: δx = δy = 0.0000625 m (160× 16 cells),

• M2: δx = δy = 0.00003125 m (320× 32 cells), and

• M3: δx = δy = 0.000015625 m (640× 64 cells).

An analytic solution for this problem is not known, so we compared the solutions obtained on meshes
M0, M1, and M2 to the solution obtained on the finest mesh, M3, which we refer to here to as “exact”.

Figure 3 displays the numerical and the “exact” values of u(y) at the end of the channel (x = 10L).
We can see that there is good agreement between the solutions. Moreover, Figure 3 shows that as the
mesh is refined the numerical solutions tend to the “exact” solution. Similar results were obtained for
the functions 8xx , 8xy , 8yx , and 8yy . These results suggest that the numerical method presented in this
work is convergent.

5. Numerical investigation of nematic liquid crystal flow in a planar 1:4 expansion

In this section we present numerical results from the simulation of the flow of a nematic liquid crystal
through a planar 1:4 expansion as illustrated in Figure 4. In this problem, the fluid flows from a channel
with width 2L into another channel having width 8L .

This problem is one of the classic benchmarks employed in the study of the development of numerical
methods for simulating non-Newtonian fluids. The interest in simulations of this kind of flow comes
from the fact that non-Newtonian fluids exhibit a variety of phenomena. A particular point of interest is
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Figure 3. Numerical simulation of channel flow: Re = 0.0038 and Er = 55.38. Com-
parison between the “exact” and the numerical solutions of u(y) at x = 10L .

the study of the behavior of vortices in the corners, and vortices that are generated near the expansion
entrance (known as lip vortices). The length and intensity of these vortices can be affected by both the
Ericksen and Reynolds numbers and the type of expansion as well as by rheological properties of the
material such as viscosity and elastic constants.

The boundary conditions for the velocity field were those specified in Section 2A while at the channel
entrance the velocity was specified by the fully developed profile given by (4-1).

Boundary conditions for the angle φ. The boundary conditions for the angle φ were specified as follows
(for details see Figure 4):

(1) Along the horizontal walls, the anchoring angle was set to zero, implying parallel alignment to the
walls.

8L

C C

 x

 y

2L 

Figure 4. Definition of the domain for the simulation of the flow in a 1:4 expansion.
The red arrows indicate the boundary conditions used for the calculation of the angle φ
by (2-9).
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(2) At the expansion entrance, we used:

(a) φ = 45◦ (upper lip corner in Figure 4);
(b) φ =−45◦ (lower lip corner in Figure 4).

(3) On the vertical walls (or the expansion walls), we employed:

(a) φ =−90◦ at x = C and 0≤ y ≤ 3L;
(b) φ = 90◦ at x = C and 5L ≤ y ≤ 8L .

(4) At the channel entry defined by x = 0 and 3L ≤ y ≤ 5L , we set φ = 0 and at the exit plane, x = 2C
and 0≤ y ≤ 8L , we assumed φ,x = 0.

The relevant physical parameters specific to the nematic liquid crystal MBBA at 25◦ and 42◦ are
presented in Tables 1 and 2, respectively. The remaining parameters specifying the flow were:

• viscosity scales: η25◦ = α3−α2 = 0.109296 Pa·s and η42◦ = α3−α2 = 0.02882 Pa·s;

• mesh (M): 200× 40 cells (δx = δy = 0.0001 m);

• width of the entry plane: 2L = 0.001 m;

(a)

(b)

(c)

Figure 5. Numerical simulation of the flow in a planar 1:4 expansion with Re= 0.005
and Er= 7.2 at t = 40 s. Isolines: (a) pressure, (b) velocity u, and (c) velocity v.
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(a) (b)

(c) (d)

Figure 6. Plots of director with Re= 0.019 for different Ericksen numbers: (a) Er= 1.9,
(b) Er= 19.2, (c) Er= 192, and (d) Er= 1920.

• length of the channels: C = 0.01 m;

• width of the exit plane: 8L = 0.004 m;

• velocity at the entry channel: Vinf = 0.00025 m s−1;

• velocity scale: U = 0.001 m s−1;

• length scale: L = 0.0005 m.

The Reynolds number was calculated using the half-width L of the channel entrance, the velocity scale
U = 0.001 m s−1, and the viscosity scales η25◦ and η42◦ were selected so that Re= 0.005 and Re= 0.019,
respectively. In the results that follow the following Ericksen numbers (Er=U Lη/K ) were employed:

Re= 0.005


K = 7.5× 10−9

H⇒ Er= 7.2,

K = 7.5× 10−10
H⇒ Er= 72.8,

K = 7.5× 10−11
H⇒ Er= 728,

K = 7.5× 10−12
H⇒ Er= 7286,
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Re= 0.019


K = 7.5× 10−9

H⇒ Er= 1.9,

K = 7.5× 10−10
H⇒ Er= 19.2,

K = 7.5× 10−11
H⇒ Er= 192,

K = 7.5× 10−12
H⇒ Er= 1920.

To observe elastic and viscous effects in the flow, such as the appearance of corner and lip vortices,
we simulated this problem for the values of the Reynolds and Ericksen numbers given above until a
steady state was reached. Each simulation was performed until t = 40 s. Figure 5 displays the isolines
of pressure and velocity at time t = 40 s for Re= 0.005 and Er= 7.2. From Figure 5 one can see that
the pressure only varies in the x-direction and the velocity is parabolic within the entrance channel so
we can conclude that the steady state has been reached.

A zoom-in on the solutions obtained for the director and the streamlines near the expansion entrance
for the case Re= 0.019 is displayed in Figures 6 and 7 while Figures 8 and 9 show the results obtained
with Re= 0.005.

For Er= 1.9, 19.2 (see Figures 6a and 6b) the director profile did not display a great deal of variation:
at the centerline the vectors are parallel while away from it, the vectors are diverging pointing to the
expansion walls. For Er= 192 we can observe significant disturbances in the director profile where one

(a) (b)

(c) (d)

Figure 7. Plots of streamlines with Re= 0.019 for different Ericksen numbers: (a) Er=
1.9, (b) Er= 19.2, (c) Er= 192, and (d) Er= 1920.
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(a) (b)

(c) (d)

Figure 8. Plots of director with Re= 0.005 for different Ericksen numbers: (a) Er= 7.2,
(b) Er= 72.8, (c) Er= 728, and (d) Er= 7286.

can see the appearance of a small lip vortex (see Figure 6c). Near the symmetry axis, we can see that the
director is converging to the centerline. For Er= 1920 (see Figure 6d), the director, at the symmetry axis,
is perpendicular to the centerline. We now observe a larger lip vortex concentrated near the entrance of
the expansion walls.

The corresponding streamlines displayed in Figure 7 are interesting since they display a lip vortex
for Er= 192, 1920 (see Figures 7c and 7d). As the Ericksen number is increased to Er= 1920 a large
corner vortex is generated. These results show that the appearance of the lip and corner vortices were
caused by an increase in the Ericksen number. This phenomenon is similar to that observed by many
authors in certain viscous anisotropic fluids through a 4:1 contraction (for example, [Yoo and Na 1991;
Nigen and Walters 2002; Alves et al. 2003]) where the corner vortex decreases with increasing elasticity.
The results obtained with Re= 0.005 were similar to those obtained with Re= 0.019 except that the lip
vortex appears first at the smaller Ericksen number of Er= 72.8. The occurrence of the corner vortex
is also anticipated (see Figure 9b). Tables 3 and 4 display the size of vortices obtained for each value
of the Ericksen number employed in the simulations. We see in these tables that the size of the corner
vortices encountered for Re = 0.005 are larger than those obtained with Re = 0.019. We believe that
the appearance of larger corner vortices in the case Re = 0.005 was due to viscous and elastic forces
associated with a smaller Re and higher Er.
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Er 1.9 19.2 192 1920

length 0.0000 0.0000 0.1000 1.441506

Table 3. Length of the corner vortices as a function of the Ericksen number for Re= 0.019.

Er 7.2 72.8 728 7280

length 0.0000 0.0500 0.618543 1.738053

Table 4. Length of the corner vortices as a function of the Ericksen number for Re= 0.005.

(a) (b)

(c) (d)

Figure 9. Plots of streamlines with Re= 0.005 for different Ericksen numbers: (a) Er=
7.2, (b) Er= 72.8, (c) Er= 728, and (d) Er= 7286.

6. Conclusions

This paper has dealt with the development of a numerical method for simulating 2D flows of nematic
liquid crystals described by the Ericksen–Leslie equations. The numerical technique was based on the
method developed in [Tomé et al. 2002] and used the finite difference method. The validation of the
technique was performed through the simulation of the flow in a channel using four refined meshes: M0,
M1, M2, and M3. An analytic solution for this problem is not yet available, so we compared the solutions
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obtained on meshes M0, M1, and M2 to the solution obtained on the finest mesh M3, which we called
“exact”. Good agreement was obtained between the numerical solutions on the coarser meshes and the
solution on mesh M3. We then applied the numerical technique to simulate the flow through a planar 1:4
expansion for various values of the Ericksen number. The results showed that as the Ericksen number is
increased interesting effects were observed: the orientation of the director displayed the appearance of a
lip vortex while increasing the Ericksen number had the effect of producing a lip vortex at the entrance of
the expansion. Increasing the Ericksen number further resulted in the appearance of a corner vortex that
increased in size with increasing Ericksen number. The results showed that both elasticity and viscosity
had a considerable effect on the formation of corner and lip vortices.
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