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TURTLE SHELL AND MAMMAL SKULL RESISTANCE TO FRACTURE
DUE TO PREDATOR BITES AND GROUND IMPACT

DAVID L. HU, KELLY SIELERT AND MICHAEL GORDON

We investigate the relation between the thickness and diameter of naturally occurring shells, such as the
carapaces of turtles and the skulls of mammals. We hypothesize that shells used for different protective
functions (for example, protection against headbutting or falling on the ground) will exhibit different
power-law trends for shell thickness and diameter. To test this hypothesis, we examine over 600 shells
from museum collections with diameters between 1 and 100 cm. Our measurements indicate that eggs,
turtle shells, and mammalian skulls exhibit clear and distinct allometric trends. We use a theoretical
scaling analysis based on elastic thin shell theory to show that the trends observed are consistent with the
corresponding protective functions hypothesized. We thus provide theoretical evidence that shells can
be classified by their protective function.

1. Introduction

While the study of safety factors of leg bones during locomotion has a long history [McMahon and
Bonner 1985; Currey 1988; Biewener 1990; Biewener 2003; Vogel 2003], less work has been done on
shells and armor. Over millions of years, shell-based armor has evolved in a variety of organisms, and has
manifested in diverse forms such as eggshells, mollusk shells, skulls, nuts, fingernails, and gourds. Some
of these champion protectors, such as the abalone shell, have inspired material science advances such as
new forms of bullet-proof armor [Jackson et al. 1988; Menig et al. 2000]. Others, such as the Macadamia
nut shell, still require ingenious methods (for example, lasers [Jennings and Macmillan 1986]) to fracture
without crushing their fragile contents. One significant obstacle in predicting the strength of natural shells
is understanding their complex material properties [Currey 2002]. As a result, existing mechanical shell
theories must be applied exceedingly carefully.

The study of man-made shells is a well-developed subject in architectural and mechanical engineering.
A physical description of shells used in architecture is provided by [Heyman 1995]; mathematical treat-
ments of shells are provided by [Flügge 1973; Heyman 1977; Steele 1989]. In this study, we consider a
spherical shell with a thickness t much less than its diameter L , as in the inset of Figure 1. If its material
properties are homogeneous and isotropic, we may apply a relation from linear elastic shell theory [Steele
1989] to determine the shell’s strength. As shown in the Appendix, the maximum force F that a shell
can resist, when loaded between two plates, is

F = Aσf t2, (1)

where t is the shell thickness, σf is the ultimate tensile stress of the material, and A = π . This relation
shows that for spherical shells, breaking force depends exclusively on shell thickness. It is noteworthy
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Figure 1. Relation between diameter L and thickness t for turtles, skulls, and eggshells
(reprinted from [Schönwetter 1960]). The ovals indicate the range of thicknesses found
for each shell type. Inset: schematic of a spherical shell of thickness t and diameter L
subject to an applied force F by a flat plate. The load dimples the shell, inducing high
stresses at points along a circular region at an angle α to the vertical.

that the derivation (in the Appendix) relies upon the elastic energy of the shell and so implicitly takes
into account the work to fracture. Consideration of the work of fracture is beyond the scope of this study.

While the assumptions surrounding the derivation of (1) are numerous, extensive experiments by
Ar et al. [1979] have shown that (1) provides excellent predictions for egg-breaking. They tested the
following hypothesis:

H0. Birds evolved eggs of sufficient thickness to support the mother’s weight during incubation.

To test this hypothesis, the authors measured the force to break hundreds of eggs, ranging in mass between
0.86 and 1460 g, collecting the data summarized in Figure 2. They found that (1) provides an excellent
estimate of breaking strength over a large range of egg sizes and shapes. Specifically, their measurements
of breaking force show that F = 1.7t2.0 (Figure 1, with r = 0.98, t in cm, and F in kgf). Using (1) to
infer the value of σf yields that the tensile strength of eggshells is σf ≈ 53.6 MPa, a value that is within
the range given for mollusk and eggshells [Biggs et al. 1976]. Next, [Ar et al. 1979; Pritchard 1993]
use scaling arguments involving (1) to make a biologically meaningful statement about constraints on
eggshells. They showed that in order for eggs to support the weight of their mother during incubation, the
egg thickness must scale with egg diameter L according to t ∼ L3/2. The work on eggshells represents



TURTLE SHELL AND MAMMAL SKULL RESISTANCE TO FRACTURE BY PREDATOR BITES AND IMPACT 1199

.05 .1 .2 .5 1 2

.05

.1

.2

.5

1

2

5

10

20

50

t (mm)

F
(k

gf
)

Figure 2. The relation between breaking force F and egg thickness t . The best fit (red
line) is given by (1). Adapted from [Ar et al. 1979].

the most precise work on natural shells performed thus far. As we review here, there is much evidence
that other kinds of shells have also evolved to resist specific types of loads.

Currey [1988] extensively studied the strength of mollusk shells, giving compelling evidence that they
evolved to resist the attacks of predators. He examined the stomachs of fishes, finding that only fish above
a certain size had the remains of mollusk shells in their stomachs; this evidence suggests that fish must
grow to a critical size before mustering sufficient jaw strength to break mollusk shells. By examining
populations of dog whelks exposed to crab predation, Currey found that in areas of intense predation,
shells were stronger, weight for weight, than in areas with less predation. Currey also found that the
maximum load of a shell varies according to thickness to the 1.7 power, in rough accordance with the
trend found for eggs by Ar et al. Zuschin and Stanton [2001] also confirmed that mollusk shells increase
in strength primarily by thickening rather than changing their material properties.

Substantial work has been done on the allometry of skulls and is summarized by Emerson and Bramble
[1993]. The skull is divided into two parts: the cerebral skull, consisting of the braincase and the eye
and ear capsules, and the facial skull, consisting of the jaw and associated musculature. Of particular
interest to previous investigators has been the scaling of braincase size to body size. Another topic
receiving attention has been how the scaling of predator jaws affects prey consumption [Radinsky 1981].
One example reviewed by Emerson and Bramble shows the importance of jaw size: an examination of
the stomach contents of Southeast Asian frogs finds that only frogs above a certain size can eat crabs,
presumably because of their jaw strength. It is noteworthy that among these studies, braincase thickness
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has not been systematically measured. As we will show here, thickness is the most important variable
governing the strength of the cerebral skull.

Ramming animals such as those of the family Bovidae have skulls that must resist the impact forces
of head-to-head strikes. Generally, such skulls are covered by one of a variety of horns, whose utility
for wrestling, fencing and ramming are discussed by Lundrigan [1996]. Schaffer [1968] estimates the
impact forces resulting from ramming goats and sheep. He shows that the neck musculature of sheep is
sufficient to prevent the neck from excessive skull rotation upon impact. Other authors, such as Alvarez
[1990], have investigated the design of the horns, showing in particular that the horn’s wide base of
attachment with the skull helps minimize stress during impact. Very few of these authors have examined
the skull thickness of ramming animals.

Zangerl [1969] gives a comprehensive overview of turtle shell anatomy and development. It has been
suggested that the success of the turtle family is owed to the strength of the turtle’s shell; however,
biomechanical evidence for this has yet to be found. The shell mass of a turtle is reported to be a
significant fraction (25–30%) of body mass [Bramble 1974; Iverson 1984]. This fraction remains constant
across a range of turtles sizes: specifically, shell mass scales with the 1.2 power of body mass, or nearly
isometrically. In contrast, the plastron is not isometric with body mass, but scales with body mass to the
0.5 power, indicating that larger turtles have thicker plastron than suggested by isometry. The mechanical
rationale for these trends remains unknown.

In this study, we will test three hypotheses:

H1. Turtles evolved shells to resist the bites of predators.

H2. Nonramming mammals evolved skulls to resist impact in accidental falls.

H3. Ramming mammals evolved skulls to resist headbutting impacts.

Studies on ramming impacts [Jaslow and Biewener 1995] have used destructive testing and high-speed
imagery to make quantitative measurements of stress and strain in shells under impact. In this study, we
will use an approach based on nondestructive measurements and scaling. Central to our approach is the
assumption that animals evolved shells of the minimum thickness necessary to satisfy their functionality
[Alexander 1996].

Our approach is to compare the thickness of shells across a broad range of species. Such measurements
do not provide a complete description of shell strength, but provide at least a first-order description, and
a simple metric by which to compare different shells. Our methods and results on shell measurements
are presented in Sections 2 and 3, respectively. In Section 4, we present scaling arguments intended to
provide physical insight into the geometric trends observed. In Section 5, we discuss the implications of
our work and future avenues for research.

2. Methods

We measured the geometries of 111 turtle carapaces, 341 hornless mammalian skulls, 264 horned mam-
malian skulls, and 4 glyptodon fossils, courtesy of the Smithsonian and American Museums of Natural
History. Rulers, calipers, and ball-micrometers were used to take these measurements in the same relative
position for each type of shell. Turtle carapace thickness was measured at the intersection of the first
pleural scute and its adjoining marginal scute. glyptodon shell thicknesses were measured at their anterior
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edge. Skulls were measured at the pharyngeal tubercle, accessed at the brainstem opening. An ordinary
least squares (OLS) regression, implemented in MATLAB, was used to find the best fits to the data,
standard errors of fitting, and closeness of fit (R2). Best fits are given using one significant digit.

In our study, we assume shells are spherical. The shell “diameter” L reported is defined as twice the
shell’s maximum radius of curvature. In turtle shells, the maximum radius of curvature was measured
directly with rulers placed inside the open half of the shell. Animal skulls were generally not available
in cross section. Thus, the diameter was measured by placing measuring tools inside the skull through
the brainstem opening.

Before presenting our results, we briefly comment on our assumption of sphericity. Firstly, we ob-
served that many shells (especially brain cases) were indeed nearly spherical, in part because spheres
minimize the material required to grow the shell. To demonstrate this statement quantitatively, cross-
sections of the shells would have to be measured, by either destructive methods or by using an X-ray
machine, all of which is beyond the scope of this study. Examples of clearly nonspherical shells include
aquatic shells (turtles, mollusks) that appeared hydrodynamically streamlined. Secondly, we speculate
that deviations from sphericity will have a second-order effect on strength compared to changes in thick-
ness. For example, in egg-breaking studies [Ar et al. 1979], no effort was made to choose specimens
that were spherical; however, the authors found that the main relation used in this work, (1), was still an
excellent predictor of strength for eggs of nearly all shapes and sizes. Based on the success of the methods
employed in [Ar et al. 1979], we continue with our study, assuming the shells are generally spherical.

3. Results

Figure 1 shows the relation between shell thickness t and diameter L for the shells studied; tabulated
values are given in the Electronic Supplement. Clearly, each shell type (turtles, ramming skulls, and
non-ramming skulls) exhibits a different power-law trend, as shown by the ellipses in Figure 1. Best
power-law fits for the data were found using the method of least squares and are presented in Table 1. In
the next section, we propose scaling arguments to account for the scaling exponents observed.

OLS Lower 95% Upper 95% R2 N L (cm) Rationale
a b a b a b range

Eggs 0.004 1.4 0.004 1.3 0.005 1.5 0.90 201 0.7–13 incubation
Turtle shells 0.03 0.8 0.03 0.7 0.05 0.9 0.71 111 2.3–95 bite resistance
Hornless skulls 0.02 1.5 0.01 1.4 0.02 1.5 0.93 341 10–16 falling
Horned skulls 0.0026 2.3 0.0015 2.1 0.0044 2.6 0.64 264 10–20 ramming
Whales 1.3 0.2 0.7 0.1 2.3 0.2 0.61 60 10–40 NA

Table 1. Best fits for shell thickness as a function of shell length, given in terms of
coefficients a and b, where the shell thickness t and length L vary according to t =
bLa . Fitting coefficients are given using the OLS method, which provides the best fit
coefficients and closeness of fit R2. The upper and lower bounds for the 95th-percentile
confidence interval estimates for a and b are given. N shells were measured by ourselves
and by previous workers [Ar et al. 1979].

http://msp.berkeley.edu/jomms/2011/6-9/extra-v6-n9-x01-suppl.pdf
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4. Model

We propose simple models to account for the shell geometry trends observed in Section 3.

4.1. Turtles. The armored shell of the turtle has long been assumed to protect turtles from predation
[Zangerl 1969; Gibbons 1987]. The shell protects the legs and head, which, for many species, can be
retracted into the shell. However, a few animals use their teeth to nibble at the edges of the shell, or poke
into soft or thin parts of the shell or carapace. This includes ravens, raccoons, and coyotes [Gibbons
1987; Boarman 2003]. Other very large predators dispatch turtles by biting through their shells with
great force. Alligators and crocodiles have been observed eating turtles by biting through their shells
[Carpenter and Lindsey 1980; Pérez-Higareda et al. 1989]. Sharks, especially tiger sharks, are known to
bite through sea turtle shells of all sizes [Stancyk 1981]. Given this biological evidence, we hypothesize
that turtle shells evolved to resist the bites of predators.

To test this hypothesis, we determine whether our measurements of turtle shells (Figure 3a) are con-
sistent with resisting the attacks of predators. For a turtle shell to resist the bite force Fpred of a predator,
we require the breaking force of the shell F to satisfy

F > Fpred. (2)

The scaling of Fpred in (2) is estimated using measurements [Meers 2003; Wroe et al. 2005] of predator
bite force and weight Wpred, for which

Fpred ∼W 0.6
pred, (3)

where R2
= 0.76. This relation is consistent with the view that the maximum force exerted by animals

scales as the cross-sectional area of the animal’s muscles [Alexander 1985; McMahon and Bonner 1985].
The measurements by Wroe et al. [2005] also provide a relation between the weight of the predators and
the weight W of their largest prey

Wpred = 1.5W 0.9, (4)

where weights are expressed in newtons and R2
= 0.82. The weight W of turtle shells is modeled as a

hemisphere with the density ρ of water: W = 1
12πρgL3, where g is the acceleration of gravity. Combining

relations (1)–(4) yields the result that turtle shells should be nearly isometric to resist predation equally
among all turtle sizes: t ∼ L0.8. Our predictions are close to the trends given by our measurements, as
shown by the points in Figure 3b, whose best fit gives t ∼ L0.8 with R2

= 0.68. Comparing turtle shells
from over two orders of magnitude in length scale, as in Figure 3a, one finds little visible difference in
their thickness-length aspect ratios, as predicted by our model.

Figure 3c shows two relations: filled symbols relate the breaking force and weight W of turtle shells
(whose best fit is F ∼W 0.5); open symbols relate the bite force of predators to the weight of their largest
prey (whose best fit is Fpred ∼W 0.6). It is noteworthy that while trends for shell strength F and bite force
Fpred were found using three independent sources (our study, [Meers 2003], and [Wroe et al. 2005]),
nevertheless F and Fpred are found to have similar power-law exponents (a values of 0.5 and 0.6). This
similarity suggests that shell thickness and bite force evolved in parallel. Using a t-test, we find that
there is only a 0.05% probability that the power-law exponents are identical [Zar 2007].

In this section, we hypothesized that predators are capable of breaking turtle shells. We now examine
the reasonableness of this assumption by examining which animals in Figure 3c can successfully bite
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Figure 3. (a) Turtle shells from 3–100 cm in diameter, here magnified to the same size,
highlighting the similarity of their proportions. (a1) Angulate tortoise (Chersina an-
gulata), L = 3.9 cm. (a2) Florida redbelly turtle (Pseudemys nelsoni), L = 28.5 cm.
(a3) Leopard tortoise (Geochelone pardalis), L = 29.1 cm. (a4) Galapagos giant tor-
toise (Geochelone nigra), L = 58.8 cm. (a5) Shell of glyptodon, a prehistoric armored
mammal, L = 130 cm. (b) The relation between turtle shell thickness t and length L .
Solid lines indicate the best fit (t = 0.04L0.8); dashed lines indicate the 95% confidence
intervals for this fit. Characteristic errors of measurement are shown. (c) Bite force Fpred

of predators (red) and bite resistance F of turtle shells (black) as a function of their body
weights W . Solid lines indicate the best fits: Fpred = 20W 0.6, F = 470W 0.5; dashed lines
indicate the 95% confidence intervals for this fit.

through a turtle shell. Suppose that predators would like to prey on animals of their same weight. Then
the vertical distance between the curves in Figure 3c shows that the average breaking force of turtle shells
is approximately 40 times the average bite force of same-weight predators: specifically Fb ≈ SFp with
a constant safety factor S = 40. Clearly, turtles can resist the bite force of predators of the same weight.

Conversely, by drawing horizontal lines in Figure 3c, we predict that predators 200 times the weight
of turtles can succeed in their attack. Thus, juvenile turtles (or turtles with masses on the order of grams)
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may be eaten by numerous predators. Moreover, we predict that a 360 kg adult alligator is sufficiently
strong to bite through the shell of a 2 kg turtle. Weaknesses such as thinner areas in the shell will allow
predators to attack even larger turtles. As turtles grow larger, they will have fewer predators. The so-
called “size refuge” of turtles, the size at which they have grown too large to have their shells broken
by any predators, is M∗ = 100 kg, which corresponds to the weights of the Galapagos turtles. Our
predictions seem physically reasonable, and give credibility to our scaling argument.

We also include in Figure 3c the predicted shell strength of the armadillo-like glyptodon (Figure 3a5)
and the bite force of the predator Tyrannosaurus rex [Erickson et al. 2003; Meers 2003]. While the
glyptodon has little shared genetics with the turtles, its shell length and thickness follow the trends
predicted for turtles (Figure 1), suggesting a universality in shell thickness trends among mammals and
reptiles.

In this part of our investigation, our goal was to rationalize the measured scaling for turtle shell
thickness. Using previously collected predator bite force data, we found that the scaling exponents for
shell thickness are consistent with turtles resisting predator bites. A future approach might take into
consideration the measured breaking force of the shell and the energetics of the turtle’s bearing of their
shell.

4.2. Nonramming skulls. Creatures that are taller and faster than turtles must survive the impacts of
accidental falls. We hypothesize that mammalian skulls (Figure 4a) are designed to survive impacts
from either falling from a stand or from head-to-head ramming. We consider the mechanics of each of
these impacts in turn.

One design requirement for a skull is that it should resist breaking due to impact with the ground
during locomotion. For the animal to survive such a fall, the breaking force F of the skull must be in
excess of this impact force Fimpact:

F > Fimpact. (5)

The impact force Fimpact results entirely from the transfer of gravitational energy into kinetic and finally
into elastic deformation energy of the skull. At the moment of impact, the speed U of a skull of mass M
falling from a height H is U =

√
2gH , where H is the maximum height of the skull during locomotion.

The impact force is simply the momentum of this impact divided by the impact time τ :

Fimpact = MU/τ = M
√

2gH/τ. (6)

We simplify (6) by making some further assumptions. First, since we have assumed the shell is spherical,
we can write the weight of the shell as M ∼ ρL3. Second, we must make an assumption about the contact
duration τ during impact with the ground. Impact mechanics is a complex subject [Chaudhri et al. 1981;
Stronge and Stronge 2000; Goldsmith 2001]. For an elastic sphere of diameter L striking a rigid plane
surface, the contact time is given by

τ =
π

2

√
M

πHd L
, (7)

where Hd is the dynamic hardness of the sphere, a material property. Assuming Hd is a constant yields
that τ ∼ L . Thus, Fimpact ∼ H 1/2L2. Combining (6) with (1) yields

t ∼ H 1/4L . (8)
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Figure 4. (a) Some mammalian skulls measured in this study. Measurements of charac-
teristic skull thickness were performed at the skull’s opening to the brainstem. (a1) Rat
(Rattus rattus). (a2) Cat (Felis catus). (a3) Hippopotamus (Hippopotamus amphibius).
(a4) Bighorn sheep (Ovis ammon). (b) The relation between diameter L and shell thick-
ness t for hornless mammalian skulls. The solid line indicates best fit t = 0.02L1.5,
dashed lines the 95% confidence intervals for this fit. (c) Relation between diameter L
and shell thickness t for horned mammalian skulls. The inset shows the relation between
diameter and thickness of mountain goat skulls, which display less scatter than the data
for other horned mammalian skulls. The solid line indicates best fit t = 0.0026L2.3 for
all horned skulls and t = 0.0019L2.6 for mountain goat skulls; dashed lines the 95%
confidence intervals for this fit. Characteristic errors of measurement are shown.

Equation (8) successfully predicts the change of skull thickness with head height (see open symbols in
Figure 4b). Juvenile giraffes have comparable heights (2 m) and skull dimensions (thickness 0.8–1.1 cm
and length 12–15 cm) to their evolutionary predecessors, the okapi. As giraffes grow to their adult heights
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of 5 m, their skulls broaden to L ≈ 17–19 cm and thicken to t ≈ 2–2.6 cm. According to (8), increasing
an animal’s height by a factor n and skull length by a factor m results in the skull thickening by a factor
p = n1/4m. Since giraffes increase in height by a factor of n = 2.5 and in skull length by a factor of
m = 1.1–1.6, we predict that their skulls should thicken by a factor of p = 1.4–2.0. This predicted
thickening is less than (but comparable to) the measured value p = 1.8–3.2. Thus, our model provides
one reason for why giraffes have thicker skulls than okapi: the giraffe skull must grow thicker as the
animal ages in order to absorb the shock of falling from a greater height.

Assuming that animals must at least survive falls from a stand yields that H ∼ L . Therefore, (8)
simplifies to t ∼ L1.25, which has an exponent close (1.25 versus 1.4) to the trend observed, t = 0.018L1.4

with R2
= 0.93 (Figure 4b). Thus, our model works well to predict skull thickness scaling exponents for

non-ramming mammals.

4.3. Ramming skulls. Some creatures must endure the impacts due to headbutting during mating rituals
and self-defense, as is common in the family Bovidae (cows, sheep, rams, and bulls [Schaffer 1968;
Lundrigan 1996]) as well as other mammals that are purported to ram underwater such as beaked and
sperm whales [Carrier et al. 2002]. The skulls of such creatures must be able to survive the impact of
a headbutt: the breaking force F must exceed the impact force Fimpact : F > Fimpact. The impact force
results from the two skulls striking each other at relative speed 2U . Since both animals are at a standstill
after the headbutt, the total impact force is given by Fimpact = 2MU/τ , where M and U are the mass and
speed of the animal. Kitchener [1988] claims that much of this impact energy is absorbed by the neck
muscles of the animal. As a worst case scenario, we assume that all the kinetic energy of the running
animals is transferred entirely into elastic deformation energy of the skull.

We now make a series of assumptions to simplify our relation for impact force. First, since (7) also
holds for the impact of two identical spheres [Goldsmith 2001], we assume that the impact time again
scales as L . Next, we can make some assumptions for running speed from the biology literature. The
maximum speed of swimming animals is nearly constant at 1–2 m/s [Sato et al. 2007]. The maximum
speed U of large terrestrial mammals [Iriarte-Díaz 2002] has been shown to scale as U ∼ L−0.5 where
L is the skull size (assuming that animal skull size scales with body size). These assumptions yield that
Fimpact ∼ L1.5–2.0.

Proceeding similarly to the analysis in Sections 4.1 and 4.2, we predict that land-based and aquatic
mammals should have a trend of t ∼ L0.75–1.0 in order to resist fracture by headbutting. However, for
land-based mammals, we observed a trend of t = 0.0026L2.3 with R2

= 0.65, which exhibits a power
exponent a more than double our predictions. Our model thus works rather poorly to predict the thickness
of ramming animals. The R2 coefficient indicates the high variability in skull thickness for this class
of animals. We note that less variability is present among certain individual species, such as mountain
goats, for which t = 0.0019L2.6 with R2

= 0.96.
Finally, while our model cannot account for the observed trends of ramming skull thicknesses, it is

useful to investigate its predictive ability for an individual case. We consider the ramming of bighorn
sheep. According to high-speed measurements [Schaffer 1968; Kitchener 1988], two bighorn sheep,
each of mass M = 100 kg can run towards each other at a relative speed of 2U = 50 mph= 20 m/s,
striking with an impact time τ of 0.3 seconds. This yields an impact force of 2MU/τ ≈ 3000–6000 N
[Kitchener 1988]. Given a maximum tensile stress of σf = 100 MPa (given for bone in [Vogel 2003]), our



TURTLE SHELL AND MAMMAL SKULL RESISTANCE TO FRACTURE BY PREDATOR BITES AND IMPACT 1207

model predicts that a skull thickness of t ∼ (2MU/(τσf ))
0.5
= 0.5–0.7 cm is needed to avoid fracture,

which is less than (but of the same order of magnitude as) the skull thickness of 1.9 cm for bighorn sheep
(Figure 4c). One reason for this discrepancy is that our model relies on an assumption of uniform shell
thickness, whereas in our observations, sheep skulls had walls that were honeycombed; thus, while it
worked well for other types of shells, it performs poorly here. We are unable to validate Hypothesis 3,
that ramming skulls have thicknesses in order to absorb impact force by plastic deformation. Instead, it is
likely that much of the energy of impact is absorbed by neck muscles [Kitchener 1988]. It is worthwhile
to note, however, that the skulls of ramming animals must be stronger than those of non-rammers of the
same size, as shown by the trends in thicknesses in Figure 1. While some portion of the impact energy
may be absorbed by musculature, ramming animals still require skulls thicker than their non-ramming
counterparts.

We apply our results to two other classes of animals, speculated to use ramming. Shown in Figure 1
are measurements of whale skull thickness, which are fitted by the trend t = 0.12L1.1 with R2

= 0.66
(see Table 1). Since this power-law exponent of 1.1 is much smaller than 2.4, the observed power law
for ramming creatures, we conclude that whale skulls were not designed for ramming. Another animal
once postulated to use ramming is the thick-headed dinosaur Pachycephalosaurus [Goodwin and Horner
2004]. Trends from previous measurements of 7 dinosaurs (t = 0.3L1.2 with R2

= 0.94) exhibit a power
exponent much less than that of the rammers in this study, suggesting that Pachycephalosaurus’ skull
was also not designed for ramming.

5. Summary and conclusions

In this study, we used measurements of shell thickness to describe quantitatively how shell strength
varied across turtles and mammals. The key results of this study include (1) clarifying the biomechanical
rationale for why shell strength depends exclusively on thickness rather than on diameter and (2) using
this result to conduct a structural classification of shells. Our scaling arguments were able to account for
the geometries measured for turtle shells and hornless skulls, but not for horned skulls.

Our measurements indicate that eggs, turtle shells, and mammal skulls each exhibit distinct geometric
trends. We showed this quantitatively by monitoring changes in thickness t according to shell size L .
Specifically, we modeled change in shell shape using power laws, t ∼ bLa , where b is a scaling prefactor
and the scaling exponent a indicates how the shell must change in thickness-to-length aspect ratio as
the shell grows. For example, values of a ≈ 1 indicate isometry, in which the organism’s proportions
are independent of size. Values of a < 1 indicate negative allometry, in which thickness-to-length ratio
decreases with shell length. Conversely, values of a > 1 indicate positive allometry, in which thickness-
to-length ratio increases with shell length; such organisms must devote relatively more resources into
building up their shell thickness as they grow.

The exponent a can be used to compare how much energy it costs to bear the shell as the animal
increases in size, a topic considered in [Zani and Claussen 1995; Miller and Birchard 2005]. The maxi-
mum force that animals can produce scales as their length squared [Alexander 1985]. The weight of the
shells scales as L2t ∼ L2+a . Since all of the observed exponents a are greater than zero, larger animals
will use a larger portion of their maximum load-bearing capacity than smaller animals. This means that
larger animals will also use more energy to bear the shell during locomotion.
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Eggshells exhibit a power law of a ≈ 1.5 in order for eggs to support the gravitational loads of their
mothers [Ar et al. 1979]. Our measurements indicated that a ≈ 0.8 for turtles, a ≈ 1.4 for non-ramming
skulls, and a ≈ 2.4 for ramming skulls. We hypothesized that turtle shells evolved to resist predator
bites and mammal skulls evolved to resist the impact of accidental falls to the ground. Using simple
scaling arguments for destructive force, we predicted scaling exponents consistent with those measured
for turtles and non-ramming skulls, providing theoretical evidence for the validity of our hypotheses
1 and 2. We were unable to account for the scaling of ramming skulls. To further validate our hypotheses
would require one to also predict the prefactors b and the factors of safety.

We now make a few comments on the measured prefactors b in our study (see Table 1). Predicting
such prefactors is beyond the scope of this study, as it would require quantitative fracture experiments.
However, such prefactors are important in developing factors of safety. A safety factor for a shell may
be defined as the ratio of the maximum force to the typical force that may be resisted by the shell. The
concept of safety factor is an important factor in device design and manufacturing. For instance, to design
portable and safe helmets for use in sports and the military, one must first choose a particular function for
the helmet, such as deflecting a bullet or resisting a fall, and then a factor of safety [Newman 2001]. With
regards to natural shells, future workers may gain some insight on safety factors by conducting free-fall
experiments. For example, reports by the CDC state that nearly 100% of human falls from six stories or
higher are fatal, mainly due to head trauma, followed by abdominal hemorrhage [Stevens 2005]. In our
theoretical section, we show that breaking force scales as falling height to the one-half power. Thus, if
each story is approximately 2–3 human body lengths, and the skull is designed to survive falling from a
single body length, the safety factor for the human skull (asterisk in Figure 3b) should be approximately
√

12–
√

18∼ 3.5–4.2. It would be interesting to examine safety factors for skulls among arboreal animals,
in which the height fallen can greatly exceed body length.

In this study, we have focused on strength trends among adult animals. This was because juvenile
skulls and shells were generally not readily available in museums. Some juvenile skulls were available
for pigs and elephants as shown by the trends in Figure 4b. During growth, pig skulls increased in length
by a factor of five, and elephant skulls by a factor of two. Trends in thickness among these two species
indicates growth within these species at higher allometric rates (a > 4) than for hornless skulls in general.
Our methods could not account for this large increase in thickness. Perhaps the thickening helps to offset
decreases in bone density with age. For instance, falls by humans are the leading cause of death and
injury for those over 65 years of age [Stevens 2005]. Other factors that may affect shell strength are the
effect of environmental contaminants such as DDT in reducing shell density or thickness [Green 1998].

While here we examined how structural strength affects skull shape, the effect of hydrodynamic and
aerodynamic forces remains unknown. For example, aquatic turtle shells have recently been found to
be flattened compared to the land-dwelling turtles studied (Tristan Stayton, personal communication).
Other superficial adaptations to the shell may also affect strength without accruing substantial weight;
thus, for example, spines and ribs [Strathmann 1981] may deter predators or break a fall.

Appendix: Supplementary information

We describe the mechanics of a spherical shell loaded by a point or an area of pressure, as discussed
by Steele [1989]. Consider a vertical point load F acting on a spherical dome of uniform thickness t ,
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diameter L composed of an isotropic, homogeneous material (see Figure 1). If the shell is sufficiently
stiff, loading causes the cap to invert at an edge which lies at an angle α < 0.3 with respect to the vertical.
This observation has been confirmed qualitatively by Ar et al. [1979], who observed apex flattening of
eggshells when loaded. The shells’ greatest stresses lie at the edge of this shallow spherical cap, and will
be estimated here. The elastic potential energy associated with this dimpled deformation, found using a
linear expansion, is

U (α)=−F L α
2

4
+ 2πEtc2

√
L
c
α3, (A.1)

where E is the Young’s modulus of the material and c is the reduced thickness, c = t/
√

12(1− ν2). For
a given force, the dimple forms at a position such that the potential energy is a minimum; this occurs at
the angle

α∗ =
F L

12πEtc2
√

L/c
. (A.2)

As shown in [Steele 1989, Equations 5 and 7b], the bending moment per radius of the shell, Ms , and
bending stress σb at the edge of this dimple can be expressed as

Ms = Etc

√
4c
L
α∗, σb =

6Ms

t2 =
F
π t2 . (A.3)

Thus, the shell breaks when the stress at the edge exceeds the fracture stress σf ; this occurs when the
applied force exceeds the breaking force, F = πσ f t2.

Supplementary information

A table of lengths and thicknesses of skulls and turtle shells is available in the Electronic Supplement.
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LINEAR BUCKLING ANALYSIS OF CRACKED PLATES BY SFEM AND XFEM

PEDRO M. BAIZ, SUNDARARAJAN NATARAJAN,
STÉPHANE P. A. BORDAS, PIERRE KERFRIDEN AND TIMON RABCZUK

In this paper, the linear buckling problem for isotropic plates is studied using a quadrilateral element with
smoothed curvatures and the extended finite element method. First, the curvature at each point is obtained
by a nonlocal approximation via a smoothing function. This element is later coupled with partition of
unity enrichment to simplify the simulation of cracks. The proposed formulation suppresses locking and
yields elements which behave very well, even in the thin plate limit. The buckling coefficient and mode
shapes of square and rectangular plates are computed as functions of crack length, crack location, and
plate thickness. The effects of different boundary conditions are also studied.

1. Introduction

Plate-like structures (thin-walled structures) are one of the most widely used structural elements in ad-
vanced engineering design, particularly in the aerospace industry. In order to efficiently study such
structures, different plate theories have been proposed during the years. In classical plate theory (also
known as Kirchhoff) the shear deformation through the plate thickness is neglected because of the assump-
tion that the normal to the middle surface remains normal after deformation. Although for most practical
applications this theory is sufficient, it has been proved (see references [5] and [6] in [Reissner 1947]) that
the Kirchhoff theory of thin plates is not in accordance with experimental results for problems with stress
concentration — stresses at an edge of a hole when the hole diameter is of the same order of magnitude
as the plate thickness — or in the case of composite plates, where the ratio of the Young’s modulus to
the shear modulus can be very large (low transverse shear modulus compared to isotropic materials). In
shear deformable plate theory (also referred to as Mindlin or Reissner), it is assumed that the normal-
to-the-middle surface will not necessarily remain perpendicular after deformation, adding rotations of
the normal as extra unknowns into the partial differential equations, and therefore overcoming problems
associated with the application of the classical theory.

A plate structure may lose its ability to withstand external loading when the stored compressive mem-
brane strain energy reaches a critical level. This phenomenon, known as buckling, is characterised by
sudden and disproportionate large displacements that could lead to structural failure. In the presence of
flaws such as through-the-thickness cracks, critical buckling loads will decrease as a result of the local
flexibility provided by the crack, severely affecting the performance of the plate structure. Buckling
analysis of isotropic cracked panels has been conducted by researchers analytically and numerically. In

The support of the Royal Academy of Engineering/Leverhulme Trust for Bordas’ senior research fellowship is gratefully
acknowledged.
Keywords: Mindlin, Reissner, shear deformable plate theory, buckling, partition of unity methods (PUM), extended finite

element method (XFEM), fracture.
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[Stahl and Keer 1972] homogeneous Fredholm integral equations of the second kind were used to solve
the eigenvalue problem for cracked plates under compressive loading. Buckling of cracked elastic plates
subjected to uniaxial tensile loads was presented in [Markström and Storȧkers 1980]. More recently, in
[Brighenti 2009] the effects of crack length and orientation on the buckling loads of rectangular elastic
thin plates under different boundary conditions were shown, and similarly in [Alinia et al. 2007] for
analysis of panels containing central or edge cracks under shear loading, both using the finite element
method (FEM). Numerical approaches not based on FEM that address the eigenvalue problem of cracked
plates under compressive loading include those of [Liu 2001] using the differential quadrature element
method and [Purbolaksono and Aliabadi 2005] using the dual boundary element method. Other works
dealing with buckling of cracked plates are [Sih and Lee 1986; Riks et al. 1992; Vafai et al. 2002].

Nowadays, it is well accepted that engineers need to resort to numerical approaches to solve a wider
range of practical problems. FEM is the most widely used numerical technique in industry to solve
structural problems and a wide range of commercially packages are currently available. Despite its
robustness and versatility, FEM efficiency in modelling cracks, discontinuities, and areas of high stress
concentration has always been considered an area for improvement since a very refined discretisation
is typically necessary in order to obtain accurate solutions. If the discontinuity is moving or is located
within a complex geometry, the task of obtaining an acceptable mesh could become very cumbersome
and extremely time-consuming.

Extended FEM (XFEM) [Belytschko and Black 1999], which is based on a standard Galerkin proce-
dure and employs the concept of partition of unity proposed in [Babuška et al. 1994], can accommodate
the internal boundaries of a crack without regenerating the mesh around the discontinuity. The basic
concept behind the method is the incorporation of special local enrichment functions into a standard
FEM approximation. Recent areas of XFEM application cover a wide range of scientific and engineer-
ing problems, including fracture, dislocations, inclusions, grain boundaries, phase interfaces, multiscale,
among others (see [Belytschko et al. 2009] for a recent review). In the particular case of plate bending,
the first work on fracture of plates with XFEM was [Dolbow et al. 2000] while in [Areias and Belytschko
2005] a general nonlinear XFEM formulation for analysis of shells was presented. Wyart et al. [2007]
presented a mixed-dimensional approach (shell/3D XFEM) for accurate analysis of cracks in thin-walled
structures and Bordas et al. [2009] presented applications of strain smoothing in finite element problems
with discontinuities and singularities for 2D, 3D, and plate/shell formulations (smoothed extended finite
element method (SmXFEM)). In terms of eigenvalue problems, [Bachene et al. 2009; Natarajan et al.
2009b] presented an application of XFEM for the study of the linear vibration of cracked isotropic plates.
Other recent works dealing with cracks in thin-walled structures are [Rabczuk and Areias 2006; Rabczuk
et al. 2007; 2010].

The strain smoothing concept within FEM (SFEM) was recently proposed in [Liu et al. 2007a], and
since then a series of publications addressing the properties and applications of the method in a variety
of structural mechanics problems have been presented. Some of the recent papers on the area include:
its mathematical foundations [Liu et al. 2007b; Nguyen-Xuan et al. 2008a; Bordas and Natarajan 2010],
plate [Nguyen-Xuan et al. 2008b] and shell [Nguyen-Thanh et al. 2008] analyses, limit analysis [Le et al.
2010], and polygonal meshes [Dai et al. 2007]. The main idea behind SFEM is to split a finite element
into subcells over which the gradients (strains) are smoothed. If a constant smoothing function is used
over each subcell, the area integration can be recast into a line integration along its edges. This allows
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for field gradients to be computed directly by only using the shape functions (no derivatives of shape
functions are needed), which accordingly reduces the requirement on the smoothness of shape functions.
Some of the major advantages of SFEM that have been shown in the literature include: insensitivity to
mesh distortion, lower computational cost than FEM for the same accuracy level, flexibility (by offering
elements ranging from the standard FEM to quasiequilibrium FEM), insensitivity to locking for low
numbers of subcells, and the possibility of constructing arbitrary polygonal elements. This field of
research has led to the development of related approaches such as node-based SFEM [Liu et al. 2009b]
and edge-based smoothed FEM for 2D problems [Liu et al. 2009a] (called face-based smoothed FEM for
3D problems). Following all these new developments, very recently in [Liu 2010a; 2010b] a theoretical
framework was presented to unify the formulation of element-based and mesh-free methods; it attempts
to improve the accuracy and efficiency of numerical solutions by using incompatible formulations based
on a weakened weak form.

All the above mentioned developments illustrate the great potential of XFEM, particularly when
combined with strain smoothing techniques [Bordas et al. 2009]. Some of the areas of improvement
that strain smoothing could provide for XFEM are simplifying integration of discontinuous functions
by replacing domain integration by boundary integration (see also [Natarajan et al. 2009a; 2010] for
techniques suppressing the need for subcells for the integration of discontinuous approximations) and
increasing stress and stress intensity factor accuracy.

The present paper is inspired by recent developments that show how curvature smoothing coupled
with partition of unity enrichment can produce a plate element capable of cracking which is significantly
more accurate than formerly proposed elements [Bordas et al. 2009]. This work attempts specifically
to investigate the possibilities of smoothed XFEM for linear plate buckling and the effect of using the
smoothing operator for the higher-order terms in the plate buckling equation. First a recently developed
curvature strain smoothing plate bending element [Nguyen-Xuan et al. 2008b] is used to study the linear
plate buckling phenomena (eigenvalue problem). Then, XFEM is used to obtain critical buckling loads
of cracked isotropic shear deformable plates. Finally, the SmXFEM [Bordas et al. 2009] approach is
applied to the linear buckling problem of cracked Mindlin–Reissner plates. Some of these approaches
have been previously introduced by the authors in the context of free vibration analysis of cracked plates
[Natarajan et al. 2009b], but until now the application of SFEM, XFEM, and SmXFEM has not been
attempted in the area of linear plate buckling.

2. Mindlin–Reissner plate buckling

2.1. Basic problem formulation. Let � be the domain of a flat isotropic homogeneous thick plate, 0
the boundary, and h the thickness. The midplane of the plate is taken as the reference plane, see Figure 1.

The basic assumption for displacements is
u(x, y, z)
v(x, y, z)
w(x, y, z)

=


zβx(x, y)
zβy(x, y)
w(x, y)

 , (1)

where u(x, y, z), v(x, y, z), and w(x, y, z) are the components of displacement at a general point in
� on the x , y, and z axes, respectively; w(x, y) represents the transverse deflection and βx(x, y) and
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Figure 1. Quadrilateral shear deformable plate element.

βy(x, y) are the rotations in the x and y directions of the middle surface, respectively. The bending and
shear strains for Mindlin–Reissner plate theory are given by

κ =

 βx,x

βy,y

βx,y+βy,x

 , γ =

[
βx+w,x

βy+w,y

]
. (2)

The total potential energy for a shear deformable plate subjected to in-plane prebuckling stresses (σ̂0),
in the absence of other external forces and neglecting terms with third and higher powers, can be written
as

5=
1
2

∫∫∫
V
κT Qbκ dx dydz+ 1

2

∫∫∫
V
γ T Qsγ dx dydz+

∫∫∫
V
σ 0

xxε
N L
xx dx dydz

+

∫∫∫
V
σ 0

yyε
N L
yy dx dydz+

∫∫∫
V
σ 0

xyε
N L
xy dx dydz, (3)

where 
εN L

xx

εN L
yy

εN L
xy

=


1
2

(
(u,x)2+(v,x)2+(w,x)2

)
1
2

(
(u,y)2+(v,y)2+(w,y)2

)
(u,x u,y+v,xv,y+w,xw,y)

 . (4)

Combining (1)–(4) and integrating over the thickness (3), the total potential energy can be rewritten

5=
1
2

∫∫
�

κT Dbκ dx dy+ 1
2

∫∫
�

γ T Dsγ dx dy+ 1
2

∫∫
�

[
w,x w,y

]
σ̂0

{
w,x

w,y

}
h dx dy

+
1
2

∫∫
�

[
βx,x βx,y

]
σ̂0

{
βx,x

βx,y

}
h3

12
dx dy+ 1

2

∫∫
�

[
βy,x βy,y

]
σ̂0

{
βy,x

βy,y

}
h3

12
dx dy. (5)
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The coefficient matrices in (3) are defined as

Db =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1

2(1−ν)

 , Ds =
ks Eh

2(1+ ν)

[
1 0
0 1

]
, (6)

σ̂0 =

[
σ 0

xx σ 0
xy

σ 0
yx σ 0

yy

]
, (7)

where Db is the bending stiffness matrix, Ds the shear stiffness matrix, E the Young’s modulus, ν the
Poisson ratio, and ks the transverse shear correction factor (taken as 5

6 in this work).

2.2. Finite element implementation (Q4). The problem domain � will be discretised into a finite num-
ber of quadrilateral isoparametric elements Ne:

�≈�h
=

Ne⋃
e=1

�e.

Using the shape functions of the quadrilateral element shown in Figure 1, lateral displacement and rota-
tions can be expressed as

w =

4∑
i=1

Niwi , βx =

4∑
i=1

Niβxi , βy =

4∑
i=1

Niβyi , (8)

where wi , βxi , and βyi denote nodal displacements and rotations and Ni the vector of bilinear shape
functions. Using the approximation in (8) the following expansions can be written:

κ = Bbq, γ = Bs q, (9){
w,x

w,y

}
= Gbq,

{
βx,x

βx,y

}
= Gs1q,

{
βy,x

βy,y

}
= Gs2q, (10)

where

Bbi =

0 Ni,x 0
0 0 Ni,y

0 Ni,y Ni,x

 , Bsi =

[
Ni,x Ni 0
Ni,y 0 Ni

]
, qi =

wi

βxi

βyi

 , (11)

Gbi =

[
Ni,x 0 0
Ni,y 0 0

]
, Gs1i =

[
0 Ni,x 0
0 Ni,y 0

]
, Gs2i =

[
0 0 Ni,x

0 0 Ni,y

]
. (12)

Using (8)–(12), the stationary form of the total potential energy expression (3) can be expressed as

(K − λKG)qm
= 0, m = 1, 2, . . . degrees of freedom,, (13)

where K is the global stiffness matrix, KG is the geometrical stiffness matrix, λ is a scalar by which the
chosen in-plane loads must be multiplied in order to cause buckling, and vector qm is the m-th buckling
mode. The stiffness matrices in (13) can be explicitly written as

K = Kb+ Ks,
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that is,

K =
∫
�e

BT
b Db Bb d�e

+

∫
�e

BT
s Ds Bs d�e (14)

and KG KGb+ KGs , with

KGb = h
∫
�e

GT
b σ̂0Gb d�e, (15)

KGs =
h3

12

∫
�e

GT
s1σ̂0Gs1 d�e

+
h3

12

∫
�e

GT
s2σ̂0Gs2 d�e. (16)

The shear contribution for the geometric stiffness matrix (KGs) is negligible for thin plates, but its
effect becomes more significant as the plate thickness increases. Most of the available literature dealing
with buckling of cracked plates does not consider the effect of (16); therefore, in order to establish
meaningful comparisons with the reported literature [Stahl and Keer 1972; Liu 2001; Purbolaksono and
Aliabadi 2005] this term could be included or neglected in the numerical solution (in the present work,
all examples considered neglect this term).

2.3. Shear locking. It is well known that the bilinear element described above exhibits shear locking as
the plate thickness approaches the Kirchhoff limit. This is due to the fact that when using the bilinear
interpolation for displacements and rotations the transverse shear strains cannot vanish at all points in the
element when subjected to a constant bending moment. To overcome this deficiency, various remedies
such as reduced integration have been proposed. In the present work, classical reduced integration and
MITC (mixed interpolation of tensorial components) [Bathe and Dvorkin 1985] approaches will be used
to eliminate shear locking.

In the classical approach, the shear part of the stiffness matrix, Ks in (14), will be integrated using a
1× 1 Gauss quadrature to avoid shear locking; this element will be referred to as Q4R.

In the approach proposed by [Bathe and Dvorkin 1985] displacement and rotations are interpolated as
usual, but for the transverse shear strains, the covariant components measured in the natural coordinate
system are interpolated. Following [Bathe and Dvorkin 1985] for the approximation of the shear strains,
the second equation in (2) can be expressed as

γ =

[
γx

γy

]
= J−1

[
γξ

γη

]
, (17)

with
γξ =

1
2 [(1− η)γ

B
ξ + (1+ η)γ

D
ξ ], (18)

γη =
1
2 [(1− ξ)γ

A
η + (1+ ξ)γ

C
η ], (19)

where J is the Jacobian matrix and γ A
η , γ B

ξ , γ C
η , and γ D

ξ are the (physical) shear strains at the midside
points A, B, C , and D, shown in Figure 1 together with the global (x, y, z) and local (ξ, η, ζ ) coordinate
systems. Using (17) and (19) and following the description in [Gruttmann and Wagner 2004], the shear
part of the stiffness matrix, Ks in (14), can be rewritten as

B̄si = J−1

[
Ni,ξ b11

i Ni,ξ b12
i Ni,ξ

Ni,η b21
i Ni,η b22

i Ni,η

]
, (20)
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where

b11
i = ξi x M

,ξ , b12
i = ξi yM

,ξ , b21
i = ηi x L

,η, b22
i = ηi yL

,η. (21)

The coordinates of the unit square are ξi ∈ {−1, 1, 1,−1}, ηi ∈ {−1,−1, 1, 1} and the allocation of the
midside nodes to the corner nodes is given by (i,M, L) ∈ {(1, B, A); (2, B,C); (3, D,C); (4, D, A)},
see Figure 1. Using (20), now the shear part of the stiffness matrix (Ks) can be computed using full
integration (2× 2 Gauss quadrature); this element will be referred to as MITC.

3. Curvature strain smoothing

Strain smoothing has appeared in the finite element literature [Liu et al. 2007a; Nguyen-Xuan et al.
2008b] as an attractive option to obtain increased accuracy at a lower computational cost, deal with
mesh distortion, and avoid locking, among other advantages. The idea behind the method is to express
the strain field as a spatial average of the compatible strains and use this “smoothed strain” to obtain the
element stiffness matrix.

Curvature strain smoothing for plate bending was first proposed in [Wang and Chen 2004] in meshfree
methods and in [Nguyen-Xuan et al. 2008b] in a finite element framework. Following the derivation in
[Nguyen-Xuan et al. 2008b], the smoothed bending strains for Mindlin–Reissner plates are given as

κ̃ = B̃C
b q, (22)

and the corresponding smoothed element bending stiffness matrix is

K̃b =

∫
�e
(B̃C

b )
T Db B̃C

b d�e
=

nc∑
C=1

(
B̃C

b (xC)
)T Db B̃C

b (xC)AC , (23)

where nc is the number of smoothing cells in the element. As described in [Nguyen-Xuan et al. 2008b],
the integrands are constant over each smoothing cell domain (�e

C ) and the nonlocal curvature displace-
ment matrix is given by

B̃C
bi (xC)=

1
AC

∫
0C

0 Ni nx 0
0 0 Ni ny

0 Ni ny Ni nx

 d0C . (24)

This equation is evaluated using one Gauss point over each boundary cell segment 0m
C :

B̃C
bi (xC)=

1
AC

mt∑
m=1

0 Ni (xG
m )nx(xG

m ) 0
0 0 Ni (xG

m )ny(xG
m )

0 Ni (xG
m )ny(xG

m ) Ni (xG
m )nx(xG

m )

 lC
m , (25)

where xG
m is the Gauss point (midpoint of segment m), lC

m is the length of segment m, and mt is the total
number of segments. The expression in (25) already includes the product of the Jacobian of transfor-
mation for a 1D 2-node element (lC

m/2) and the Gauss quadrature weight (2). Combining the curvature
strain smoothing and the mixed interpolation of tensorial components gives the following expression for
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the stiffness matrix of a Mindlin–Reissner plate:

K̃ = K̃b+ K̄s, (26)

K̃ =
nc∑

C=1

(
B̃C

b (xC)
)T Db B̃C

b (xC)AC +

∫
�e

B̄T
s Ds B̄s d�e. (27)

As mentioned in [Nguyen-Xuan et al. 2008b], this element will be referred to as MISCk (mixed
interpolation and smoothed curvatures) with k ∈ {1, 2, 3, 4} representing the number of smoothing cells
(nc). These elements were shown to pass the patch test and to be slightly more accurate than the MITC
for regular meshes. The most promising feature was their improved performance for irregular meshes
and coarse meshes and their lower computational cost.

3.1. Smoothing of bending geometric stiffness matrix. Following a similar approach as the one pre-
sented by [Wang and Chen 2004; Nguyen-Xuan et al. 2008b] and shown above, the bending part of the
geometric stiffness matrix given in (15) can be written as

K̃Gb = h
∫
�e
(G̃C

b )
T σ̂0G̃C

b d�e
= h

nc∑
C=1

(
G̃C

b (xC)
)T
σ̂0G̃C

b (xC)AC , (28)

where

G̃C
bi (xC)=

1
AC

∫
0C

(
Ni nx 0 0
Ni ny 0 0

)
d0C . (29)

Following the same numerical implementation used for (24), (29) will be evaluated using one Gauss
point over each boundary cell segment 0m

C :

G̃C
bi (xC)=

1
AC

mt∑
m=1

(
Ni (xG

m )nx(xG
m ) 0 0

Ni (xG
m )ny(xG

m ) 0 0

)
lC
m . (30)

Using this expression in (28) corresponds to smoothing the higher-order bending terms given in (4).
This case will be considered in the present work, in order to study the effect of smoothing higher-order
terms within a shear deformable plate formulation. This element will be defined as MISCk_b (mixed
interpolation and smoothed curvatures of global stiffness and geometric stiffness matrix). Similarly to
MISCk, the number k in MISCk_b represents the number of smoothing cells in the element.

4. Extended finite element method for shear deformable plates

Following a similar enriched approximation for plate bending as presented in [Dolbow et al. 2000],
deflection and rotations can be approximated as

wh(x)=
∑

i∈N fem

Ni (x)wi +
∑

j∈N crack

N j (x)H j (x)bwj +
∑

k∈N tip

Nk(x)
( 4∑

l=1

Glk(r, θ)cwkl

)
, (31)

βh(x)=
∑

i∈N fem

Ni (x)βi +
∑

j∈N crack

N j (x)H j (x)b
β

j +
∑

k∈N tip

Nk(x)
( 4∑

l=1

F lk(r, θ)c
β

kl

)
, (32)
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Figure 2. Crack on an uniform mesh of bilinear quadrilateral elements. Circle nodes
are enriched by jump functions and square nodes by the asymptotic crack tip field.

where N (x) denotes the standard bilinear shape functions, wi and βi the nodal unknowns associated with
the continuous solution, b j the nodal enriched degrees of freedom associated with the Heaviside function
H j (x), and ckl the nodal enriched degrees of freedom associated with the elastic asymptotic crack tip
functions Glk(r, θ) and F lk(r, θ). In (31) and (32) N fem is the set of all nodes in the mesh, N crack is the
set of nodes whose shape function support is cut by the crack interior (circular nodes in Figure 2), and
N tip is the set of nodes whose shape function support is cut by the crack tip (square nodes in Figure 2).

4.1. Enrichment functions. The shifted enrichment functions in (31) and (32) are given by

H i (x)=
(
H(x)− H(xi )

)
, (33)

Gli (x)=
(
Gl(x)−Gl(xi )

)
, F li (x)=

(
Fl(x)− Fl(xi )

)
. (34)

Shifting the enrichment functions is particularly useful because the influence of the enrichment on the
displacement must vanish at the nodes for ease of applying boundary conditions.

The Heaviside enrichment function H(x) in (33) is defined by

H(x)=
{
+1 if the point is above the crack face,
−1 if the point is below the crack face.

(35)

Equation (35) is responsible for the description of the interior of the crack (jump in displacements).
The elastic crack tip enrichment functions in (34) are defined as (see [Dolbow et al. 2000; Bordas et al.

2009])

{Gl(r, θ)} ≡
{

r3/2 sin
(
θ

2

)
, r3/2 cos

(
θ

2

)
, r3/2 sin

(3θ
2

)
, r3/2 cos

(3θ
2

)}
, (36)

{Fl(r, θ)} ≡
{√

r sin
(
θ

2

)
,
√

r cos
(
θ

2

)
,
√

r sin
(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

}
. (37)

Here (r, θ) are polar coordinates with origin at the crack tip. These functions are not only responsible for
closing the crack at the tip but they also introduce analytical information in the numerical approximation.



1222 P. M. BAIZ, S. NATARAJAN, S. P. A. BORDAS, P. KERFRIDEN AND T. RABCZUK

5. Smoothed extended finite element method

In [Bordas et al. 2009] it was shown how strain smoothing could be incorporated into XFEM formula-
tions (including plate bending). In SmXFEM, smoothing must now be performed on discontinuous and
nonpolynomial approximations. In the present case, curvature smoothing coupled with partition of unity
enrichment can produce a plate element capable of cracking which is significantly more accurate than
formerly proposed elements [Bordas et al. 2009].

5.1. Summary of plate formulations. As outlined in previous sections, four plate elements (enriched or
standard) are considered in the present work:

• Q4R: This plate element uses the basic FE formulation for Mindlin–Reissner plate theory. It uses the
standard gradient operators (plain shape function derivatives) for both bending and shear parts, and
in order to avoid shear locking the shear part of the stiffness matrix, Ks in (14), will be integrated
using a 1× 1 Gauss quadrature.

• MITC: This element interpolates the out-of-plane shear stresses using collocation points at the
element boundaries. It uses the standard gradient operators for the bending part (Kb), and the
mixed interpolation of tensorial components [Bathe and Dvorkin 1985] for the shear part (Ks) of
the stiffness matrix, (20).

• MISCk: This element, first introduced in [Nguyen-Xuan et al. 2008b], uses the curvature strain
smoothing operator for the bending part given by (25), and the mixed interpolation of tensorial
components [Bathe and Dvorkin 1985] for the shear part of the stiffness matrix given by (20),
leading to the expression in (27).

• MISCk_b: This element is similar to MISCk but instead of using the standard operator for the
bending part of the geometric matrix given by (15), it uses a smoothing operator for the higher-order
terms given in (4). In other words, it uses the expression in (27) for the stiffness matrix (K ) and the
expression in (30) for the bending part of the geometric stiffness matrix (KGb).

5.2. Strain smoothing in XFEM plate bending. In this subsection, detailed description of the SmXFEM
implementation for the buckling analysis of cracked Mindlin–Reissner plates is provided. For the sake of
simplicity, only the expressions for the enriched MISCk element will be shown here. Enriched smoothed
bending strain and enriched shear strain can be written as

κ̃h
=

∑
i∈N fem

B̃C
bfemi qi +

∑
j∈N crack

B̃C
bcrack j b j +

∑
k∈N tip

B̃C
btipk ck, (38)

γ h
=

∑
i∈N fem

B̄sfemi qi +
∑

j∈N crack

B̄scrack j b j +
∑

k∈N tip

B̄stipk ck . (39)

The enriched gradient operators in (38) and (39) can be explicitly written as

B̃C
bcrack j (xC)=

1
AC

mt∑
m=1

0 N j (xG
m )H j (xG

m )nx(xG
m ) 0

0 0 N j (xG
m )H j (xG

m )ny(xG
m )

0 N j (xG
m )H j (xG

m )ny(xG
m ) N j (xG

m )H j (xG
m )nx(xG

m )

 lC
m , (40)
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B̃C
btip k(xC)

∣∣
l=1,2,3,4 =

1
AC

mt∑
m=1

0 Nk(xG
m )F lk(xG

m )nx(xG
m ) 0

0 0 Nk(xG
m )F lk(xG

m )ny(xG
m )

0 Nk(xG
m )F lk(xG

m )ny(xG
m ) Nk(xG

m )F lk(xG
m )nx(xG

m )

 lC
m (41)

and

B̄scrack j = J−1

[
[N j (x)H j (x)],ξ b11

j [N j (x)H j (x)],ξ b12
j [N j (x)H j (x)],ξ

[N j (x)H j (x)],η b21
j [N j (x)H j (x)],η b22

j [N j (x)H j (x)],η

]
, (42)

B̄stip k
∣∣
l=1,2,3,4 = J−1

[
[Nk(x)Glk(x)],ξ b11

i [Nk(x)F lk(x)],ξ b12
i [Nk(x)F lk(x)],ξ

[Nk(x)Glk(x)],η b21
i [Nk(x)F lk(x)],η b22

i [Nk(x)F lk(x)],η

]
. (43)

Similarly, for the bending and shear part of the geometric stiffness, the enriched gradient operators
can be expressed as

Gbcrack j =

[
[N j (x)H j (x)],x 0 0
[N j (x)H j (x)],y 0 0

]
, Gbtipk

∣∣
l=1,2,3,4 =

[
[Nk(x)Glk(x)],x 0 0
[Nk(x)Glk(x)],y 0 0

]
, (44)

Gs1crack j =

[
0 [N j (x)H j (x)],x 0
0 [N j (x)H j (x)],y 0

]
, Gs1tipk

∣∣
l=1,2,3,4 =

[
0 [Nk(x)F lk(x)],x 0
0 [Nk(x)F lk(x)],y 0

]
, (45)

Gs2crack j =

[
0 0 [N j (x)H j (x)],x
0 0 [N j (x)H j (x)],y

]
, Gs2tipk

∣∣
l=1,2,3,4 =

[
0 0 [Nk(x)F lk(x)],x
0 0 [Nk(x)F lk(x)],y

]
. (46)

5.3. Integration. As mentioned, the integrations of the discretised terms presented in the previous sec-
tions are done using Gauss quadrature. In the present work boundary and domain integrals are evaluated
for the MISCk and MISCk_b elements (the smoothed terms are evaluated using surface integrals, whereas
the nonsmooth are obtained using domain integration) and only domain integrals for the classical Q4R
and MITC elements.

The standard (nonenriched) domain integration uses 2× 2 Gauss quadrature as it evaluates the bilinear
shape functions sufficiently. The only exception to the standard (nonenriched) domain integration is with
the shear part of the stiffness matrix, Ks in (14), which uses 1× 1 Gauss quadrature.

For standard surface integration, terms in (25) and (30), two subcells with one Gauss point per bound-
ary are used, as recommended in [Nguyen-Xuan et al. 2008b]; in this way computational efficiency and
numerical stability are guaranteed. This implies that MISC2 and MISC2_b are the specific smoothed
elements used in the present work.

For elements that are enriched the integration has to be adapted, so that the weak form on both sides of
the crack contributes the correct enriched terms. The most common approach, which is also implemented
here, is to subtriangulate the element (for example, Delaunay triangulation) in a way that the triangle
edges conform with the discontinuity.

In the case of enriched elements using domain integration the following integration rules are used:
• Tip-blending elements: 16 Gauss points for the total element.
• Split-blending elements: 2 Gauss points for the total element.
• Split-tip-blending elements: 4 Gauss points for each triangular subelement.
• Split elements: 3 Gauss points for each triangular subelement.
• Tip elements: 13 Gauss points for each triangular subelement.
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In the case of enriched elements using surface integration (smoothed enriched elements) the following
integration rules are used:

• Tip-blending elements: 8 subcells with 1 Gauss points per edge.
• Split-blending elements: 2 subcells with 1 Gauss points per edge.
• Split-tip-blending elements: 4 subelements, each with 4 subcells with 1 Gauss points per edge.
• Split elements: 4 subelements, each with 2 subcells with 1 Gauss points per edge.
• Tip elements: 4 subelements, each with 8 subcells with 1 Gauss points per edge.

As in standard XFEM, there are 6 different types of elements:

• Tip elements are elements that contain the crack tip. All nodes belonging to a tip element are
enriched with the near-tip fields (Gl(x) and F l(x)).

• Split elements are elements completely cut by the crack. Their nodes are enriched with the discon-
tinuous function H(x).

• Tip-blending elements are elements neighbouring tip elements. They are such that some of their
nodes are enriched with the near-tip fields (Gl(x) and F l(x)) and others are not enriched at all.

• Split-blending elements are elements neighbouring split elements. They are such that some of their
nodes are enriched with the discontinuous function, H(x), and others are not enriched at all.

• Split-tip-blending elements are elements completely cut by the crack and neighbouring tip elements.
They are such that all of their nodes are enriched with the discontinuous function, H(x), and some
of their nodes are enriched with the near-tip fields (Gl(x) and F l(x)).

• Standard elements are elements that are in neither of the above categories. None of their nodes are
enriched.

6. Numerical examples

In this section the formulation presented in the previous paragraphs is now applied to determine the
normalised buckling coefficients for rectangular plates with different thicknesses (h/a), crack sizes (c/a),
and boundary conditions. The plates have Young’s modulus E , Poisson’s ratio ν = 0.3, length a (sides),
and width b (ends). The compressive stress is applied in the longitudinal direction; see Figure 3. The
results are compared with available analytical and numerical solutions when available. Due to the crack
orientation considered in all examples (Figure 3) traction free boundary conditions (no contact between
crack faces) can be assumed in all cases.

Normalised results are obtained using the classical plate buckling coefficient (K ):

K = b2

π2 D
σcr =

12(1− ν2)b2

π2 Eh3 λσ. (47)

Plate boundary conditions are defined as follows:

Simply supported: w= 0, βt = 0,

Clamped: w= 0, βn= 0, βt= 0,

where n denotes normal and t tangential directions to the plate boundary.
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Figure 3. Centre crack plate geometry.

6.1. Buckling of simply supported plate (convergence). The first problem to be considered involves
simply supported thin and thick square plates with no crack (c/a = 0). This example will illustrate the
convergence performance of the recently developed MISC2 [Nguyen-Xuan et al. 2008b] and MISC2_b
elements within the linear buckling problem (eigenvalue problem).

Six different uniform element distributions are considered in the convergence study (as shown in Tables
1 and 2). An analytical solution for linear buckling of Mindlin–Reissner plates was recently introduced

Mesh density Q4R MITC MISC2 MISC2_b

11× 11 4.0715 (1.79%) 4.0437 (1.09%) 4.0320 (0.80%) 4.0389 (0.97%)
15× 15 4.0371 (0.93%) 4.0223 (0.56%) 4.0161 (0.40%) 4.0198 (0.49%)
19× 19 4.0222 (0.55%) 4.013 (0.32%) 4.0092 (0.23%) 4.0115 (0.29%)
23× 23 4.0144 (0.36%) 4.0082 (0.21%) 4.0055 (0.14%) 4.0071 (0.18%)
27× 27 4.0098 (0.25%) 4.0053 (0.13%) 4.0034 (0.09%) 4.0045 (0.11%)
31× 31 4.0069 (0.17%) 4.0035 (0.09%) 4.0020 (0.05%) 4.0029 (0.07%)

Table 1. Convergence of simply supported square plate with thickness ratio h/a = 0.01
(thin plate analytical solution K = 4.000).

Mesh density Q4R MITC MISC2 MISC2_b

11× 11 3.3127 (1.50%) 3.2943 (0.94%) 3.2865 (0.70%) 3.2922 (0.87%)
15× 15 3.2899 (0.80%) 3.2801 (0.50%) 3.2760 (0.38%) 3.2790 (0.47%)
19× 19 3.2800 (0.50%) 3.2739 (0.31%) 3.2713 (0.23%) 3.2732 (0.29%)
23× 23 3.2748 (0.34%) 3.2707 (0.21%) 3.2689 (0.16%) 3.2702 (0.20%)
27× 27 3.2718 (0.25%) 3.2688 (0.16%) 3.2675 (0.12%) 3.2684 (0.14%)
31× 31 3.2698 (0.19%) 3.2676 (0.12%) 3.2666 (0.09%) 3.2673 (0.11%)

Table 2. Convergence of simply supported square plate with thickness ratio h/a = 0.2
(thick plate analytical solution K = 3.2922 [Hosseini-Hashemi et al. 2008]).
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Figure 4. Convergence of normalised buckling coefficient for simply supported square
(a/b = 1) plates (c/a = 0).

in [Hosseini-Hashemi et al. 2008] for a wide range of plate thicknesses that covers both thin and thick
plates. Figure 4 presents an error comparison for each plate thickness (h/a = 0.01, 0.05, 0.1, 0.2) of all
the elements considered in the present work. Additionally, Tables 1 and 2 present detailed results for
only thin (h/a = 0.01) and very thick plates (h/a = 0.2), respectively.

As mentioned, the shear contribution for the geometric stiffness matrix (KGs) is neglected in all
cases in order to establish meaningful comparisons with the available analytical results [Stahl and Keer
1972; Liu 2001; Purbolaksono and Aliabadi 2005; Hosseini-Hashemi et al. 2008]. As can be seen from
Figure 4, all results agree well with the analytical solution, with less than 2% difference for even the
less refined mesh. The largest errors are obtained using the classical Q4R element while the smallest
errors are obtained with the MISC2 element (always less than 1% error for even the less refined case).
The MITC results are better than for the classical Q4R element but less accurate than the MISC2 and
MISC2_b. Finally, it is possible to see from Figure 4 that the smoothed buckling element (MISC2_b)
gives improved results over the MITC element but not better than the MISC2 element, implying that
smoothing the higher powers of deformation given in (4) does not improve the element performance for
regular meshes (not distorted).

Figure 5 shows the buckling modes for the coarsest mesh (11× 11) used in the present example. The
classical 1, 2, and 3 half ways expected for modes 1, 2, and 3 are clear in Figure 5.

6.2. Sensitivity to mesh distortion of uncracked plates. This second example will consider the effect of
mesh distortion on the recently developed MISC2 [Nguyen-Xuan et al. 2008b] and MISC2_b elements
within the linear buckling problem (eigenvalue problem). To study the effect of mesh distortion on
the results, interior nodes are moved by an irregularity factor s. The coordinates of interior nodes are
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Figure 5. Buckling modes for simply supported square (a/b = 1) plate (c/a = 0).

obtained by the expressions [Liu et al. 2007a]

x ′ = x + src1x, y′ = y+ src1y,

where rc is a randomly generated number between −1.0 and 1.0, s ∈ [0, 0.4] is used to control the
degree of element distortion, and 1x and 1y are initial regular element sizes in the x and y directions,
respectively.

Thin (h/a = 0.01) and thick (h/a = 0.1) simply supported square plates (a/b = 1) with no crack
(c/a = 0) will be considered. The less refined mesh of the previous example (11× 11 elements) will be
used in all cases (see Figure 6).

Tables 3 and 4 provide the buckling coefficients for thin (h/a = 0.01) and thick plates (h/a = 0.1),
respectively, and Figure 7 plots the normalised values for both cases. In the case of thin plates, the
classical Q4R shows the largest errors while the newly presented MISC2_b (with smoothed bending part
of the geometric stiffness matrix) provides the best results. A similar behaviour occurs for thick plates
but with much less detrimental effects for the classical Q4R. This dependency of mesh distortion on plate
thickness has been shown in previous works [Nguyen-Xuan et al. 2008b].

Figure 6. Effect of mesh distortion parameter in square plate with 11× 11 elements.



1228 P. M. BAIZ, S. NATARAJAN, S. P. A. BORDAS, P. KERFRIDEN AND T. RABCZUK

0.9

1

1.1

1.2

1.3

1.4

0 0 .1 0.2 0 .3 0.4

Distortion Parameter (s)

N
o

rm
al

iz
ed

 B
u

ck
li

n
g

 (
K
/K

  
  

  
)

ex
ac

t

Q4R h/a=0.01

MITC h/a=0.01

MISC2 h/a=0.01

MISC2_b h/a=0.01

Q4R h/a=0.1

MITC h/a=0.1

MISC2 h/a=0.1

MISC2_b h/a=0.1

Figure 7. Influence of mesh distortion for buckling coefficient of simply supported
square thin and thick plates.

From results in Tables 3 and 4 it is clear that although results for the smoothed buckling element
(MISC2_b) give results that are not as accurate as the MISC2 element for regular meshes (no distortion),
smoothing the higher powers of deformation given in (4) does improve the element performance for
irregular meshes.

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 4.0715 (1.79%) 4.0437 (1.09%) 4.0320 (0.80%) 4.0389 (0.97%)
0.1 4.1853 (4.63%) 4.0453 (1.13%) 4.0353 (0.88%) 4.0333 (0.83%)
0.2 4.5838 (14.6%) 4.0478 (1.19%) 4.0467 (1.17%) 4.0170 (0.43%)
0.3 4.9639 (24.1%) 4.0594 (1.48%) 4.0708 (1.77%) 3.9854 (0.37%)
0.4 5.5411 (38.5%) 4.0666 (1.66%) 4.0825 (2.06%) 3.9428 (1.43%)

Table 3. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.01 (thin plate analytical solution K = 4.000).

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 3.8526 (1.75%) 3.8276 (1.09%) 3.8172 (0.81%) 3.8237 (0.99%)
0.1 3.8585 (1.90%) 3.8291 (1.13%) 3.8203 (0.89%) 3.8183 (0.84%)
0.2 3.8665 (2.12%) 3.8342 (1.26%) 3.8259 (1.04%) 3.7663 (0.53%)
0.3 3.8911 (2.76%) 3.8382 (1.37%) 3.8359 (1.31%) 3.7616 (0.65%)
0.4 3.9291 (3.77%) – – 3.7029 (2.20%)

Table 4. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.1 (thick plate analytical solution K = 3.7864 [Hosseini-Hashemi et al. 2008]).
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6.3. Sensitivity to mesh distortion of plates with a longitudinal centre crack. This example extends on
the previous example by including a longitudinal centre crack in the distorted mesh. Again, the same
mesh density of the previous example will be used to obtain buckling coefficients of thin (h/a= 0.01) and
thick (h/a = 0.1) simply supported square plates (a/b = 1) with a longitudinal centre crack (c/a = 0.2).

Tables 5 and 6 provide the buckling coefficients for thin (h/a = 0.01) and thick plates (h/a = 0.1),
respectively; Figure 8 plots the normalised values for both cases. Table 5 shows why the classical Q4R is
not used in XFEM plate formulations as it exhibits locking when modelling thin cracked plates (at least
50% error for regular meshes). The relatively large errors exhibited by other elements (∼6%) is due to
the coarse mesh size (11× 11 elements) as will be shown in next examples.

6.4. Rectangular plate with a longitudinal centre crack. This example considers simply supported
square and rectangular plates of different thickness (h/a = 0.01, 0.1, 0.2) with longitudinal centre cracks,
as shown in Figure 3. All results were obtained with uniform meshes of 31× 31 and 19× 38 elements
for the square and rectangular plates, respectively.

Figure 9 shows results for the square (a/b= 1) plates with Q4R-MITC and MISC2-MISC2_b elements,
respectively. The classical Q4R element exhibits locking when modelling thin cracked plates (h/a =
0.01), and therefore are not shown in Figure 9. This is because when enriched elements are present
in the model, a higher quadrature than 1× 1 must be used (as mentioned in Section 5.3), leading to
inaccurate results in the thin plate limit. All other elements exhibit an excellent performance for both
thin and thick plates.

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 5.8248 (52.2%) 4.0229 (5.15%) 4.0325 (5.40%) 4.0394 (5.58%)
0.1 6.1392 (60.5%) 4.0274 (5.27%) 4.0381 (5.55%) 4.0356 (5.48%)
0.2 6.5515 (71.2%) 4.0286 (5.30%) 4.0477 (5.80%) 3.9894 (4.27%)
0.3 7.2942 (90.7%) 4.0310 (5.36%) 4.0889 (6.87%) 3.9872 (4.21%)
0.4 – – – 3.9568 (3.42%)

Table 5. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a= 0.01 and longitudinal centre crack c/a= 0.2 (thin plate exact solution K = 3.8259
[Stahl and Keer 1972]).

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 3.8235 (8.05%) 3.6606 (3.44%) 3.8170 (7.86%) 3.8236 (8.05%)
0.1 3.8158 (7.83%) 3.6569 (3.34%) 3.8185 (7.90%) 3.8142 (7.78%)
0.2 3.7931 (7.19%) 3.6497 (3.14%) 3.8256 (8.11%) 3.8003 (7.39%)
0.3 3.8800 (9.64%) 3.6931 (4.36%) 3.8474 (8.72%) 3.7538 (6.08%)
0.4 3.9557 (11.8%) 3.7160 (5.08%) 3.8553 (8.94%) 3.6420 (2.92%)

Table 6. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.1 and longitudinal centre crack c/a = 0.2 (thick plate solution K = 3.53879
[Liu 2001]).
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Figure 10. Buckling coefficients for rectangular (a/b = 2) centre cracked plates. Top:
Q4R and MITC. Bottom: MISC2 and MISC2_b.

Figure 10 shows results for rectangular (a/b = 2) plates with Q4R-MITC and MISC2-MISC2_b
elements, respectively. Again, results with the classical Q4R element are excluded for thin cracked
plates (h/a = 0.01), due to locking.

As shown in Figures 9 and 10, an increase in crack length and thickness leads to a decrease on the
critical buckling load. The 3 plate thicknesses (h/a = 0.01, 0.1, 0.2) and 10 crack sizes considered
(c/a = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) give a clear picture of the behaviour of cracked thin
and thick plates. In all cases results converge to the noncracked solution of thin and thick plates presented
in the previous example.

In all cases good agreement is obtained with reported results (approximately 2% difference). The
largest discrepancy (∼3%) between reported solutions occurs for short-medium crack sizes (a/c =
0.2, 0.3, 0.4, 0.5) in rectangular plates (Figure 10). In this area the present results agree more with
the results in [Purbolaksono and Aliabadi 2005] than with [Liu 2001], particularly for the MISC2 and
MISC2_b elements.
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Figure 11. Buckling modes for simply supported centre cracked (c/a = 0.9) square
plate (a/b = 1).

Figure 12. Buckling modes for simply supported centre cracked (c/a = 0.9) rectangular
plate (a/b = 2).

Buckling modes for square and rectangular thin plates (h/a = 0.01) with the largest crack size
(a/c = 0.9) are given in Figures 11 and 12, respectively. It is clear, by comparing Figures 5 and 11 that
buckling modes change with the presence of the crack, in this case by adding a new mode (mode 2 in
Figure 11) that replaces the classical second mode of 2 half waves (now mode 3 in Figure 11). Similarly,
in the case of rectangular plates, instead of the classical 2 half waves for mode 1, now the presence of
the crack leads to only 1 half waves mode (mode 1 in Figure 12).

6.5. Rectangular plate with a longitudinal edge crack. In this example, simply supported rectangular
(a/b= 2) thin and thick plates with a transverse edge crack as shown in Figure 13 are analysed. Buckling
coefficients for Q4R (except for the thin plate case h/a = 0.01) and MITC elements are given with
respect to the normalised crack size in the top part of Figure 14. Similarly, the bottom part of the same
figure shows buckling coefficients for MISC2 and MISC2_b elements. All results were obtained with an
uniform mesh of 19× 38 elements.
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Figure 13. Edge crack plate geometry.

1

1.5

2

2.5

3

3.5

4

4.5

0 0 .1 0.2 0 .3 0.4 0 .5 0.6 0 .7 0.8 0 .9

c/a

K

Exact_Stahl1972 h/a=0.01

Liu2001 h/a=0.01

Liu2001 h/a=0.1

Liu2001 h/a=0.2

MITC h/a=0.01

MITC h/a=0.1

MITC h/a=0.2

Q4R h/a=0.1

Q4R h/a=0.2

1

1.5

2

2.5

3

3.5

4

4.5

0 0 .1 0.2 0 .3 0.4 0 .5 0.6 0 .7 0.8 0 .9

c/a

K

Exact_Stahl1972 h/a=0.01

Liu2001 h/a=0.01

Liu2001 h/a=0.1

Liu2001 h/a=0.2

MISC h/a=0.01

MISC h/a=0.1

MISC h/a=0.2

MISC2_b h/a=0.01

MISC2_b h/a=0.1

MISC2_b h/a=0.2
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Figure 15. Buckling modes for simply supported edge cracked (c/a = 0.5) rectangular
plate (a/b = 2).

Figure 14 also presents the analytical solution for thin cracked plates [Stahl and Keer 1972] and
numerical solutions [Liu 2001]. In the majority of cases, very good agreement (∼1%) was obtained
with the reported results. The largest difference (∼3%) with the reported data occurs for short-medium
crack sizes (a/c = 0.2, 0.3, 0.4, 0.5), particularly for the MISC2 and MISC2_b elements. The first 3
buckling modes for a thin (h/a = 0.01) edge cracked (c/a = 0.5) rectangular plate (a/b = 2) are shown
in Figure 15.
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Figure 16. Buckling coefficients for rectangular (a/b = 2) centre cracked plates with
different boundary conditions.
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6.6. Rectangular plate with a longitudinal centre crack under different boundary conditions. This last
example considers different boundary conditions in a rectangular centre cracked thin plate. The boundary
conditions for each case are given as follows:

CCCC : Sides and ends clamped,

SCSC : Sides clamped and ends simply supported,

CSCS : Sides simply supported and ends clamped.

The aspect ratio of the plate is a/b = 2 and the plate thickness is h/a = 0.01, therefore only buck-
ling coefficients for elements MITC, MISC2, and MISC2_b versus crack lengths (c/a) are presented in
Figure 16 (as shown in the previous examples, element Q4R will exhibit locking under this condition).
As expected each case of boundary conditions converges to the noncracked thin plate solutions (c/a = 0).

Figure 16 shows that as the crack size increases, buckling coefficients decrease for all the different
boundary conditions. All the present results were obtained with an uniform mesh of 19× 38 elements.
In order to establish a comparison with standard FEM, symmetric ABAQUS models [ABAQUS 2009]

Figure 17. Buckling modes of clamped centre cracked (c/a = 0.9) rectangular plates
(a/b = 2). Left: ABAQUS-seam model. Centre: XFEM model. Right: ABAQUS-
symmetric model.
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with an average of 4500 linear elements (S4R) are also plotted in Figure 16. Totally clamped cracked
plates exhibit the highest buckling coefficient. SCSC, as expected, gives higher buckling coefficients
than CSCS, as the simply supported condition along the sides (see Figure 3) in the CSCS case provides
a weaker constraint than in the SCSC case.

Buckling modes for the largest crack size (c/a = 0.9) and totally clamped boundary conditions are
presented in Figure 17. In this case, an additional ABAQUS model with a seam crack (ABAQUS-seam)
is performed in order to compare buckling modes of full and symmetric models. It is clear from this
figure the similarity in the first buckling mode for all cases. The second and third modes differ in
the full and symmetric models as the antisymmetric opening mode (mode 2 in Figure 17) given by
XFEM and ABAQUS-seam is not obtained in the symmetric ABAQUS model. Notice that the second
mode in the ABAQUS symmetric solution corresponds to the third mode in the full models (XFEM and
ABAQUS-seam).

7. Conclusions

In this paper, the smoothed extended finite element method was used to model the linear buckling re-
sponse of uncracked and cracked isotropic shear deformable plates. Three different enriched elements
were proposed: a stabilised MITC, a curvature smoothed MISC2, and a bending geometric stiffness
matrix smoothed MISC2_b element. Each case corresponds to an extension of the previous. MISC2_b
is an element only valid for linear plate buckling problems, and shows the influence of smoothing higher-
order (nonlinear) terms. All enriched elements perform excellently (except for the Q4R element, which
exhibits locking in the thin plate limit), with the MISC2 and MISC2_b elements providing slightly better
results than the MITC element.

The effect of mesh distortion for uncracked and cracked plates was also considered, including the
dependency on plate thickness. For distorted meshes, the classical Q4R element exhibits the worst
performance, particularly for thin plates, while the newly proposed MISC2_b is shown to provide the
most acceptable results for all cases (thin-thick and cracked-uncracked plates).

Two types of crack configurations have been considered in this study: a plate with a crack emanating
from one edge, and a plate with a centrally located internal crack. Different plate thicknesses were
considered, giving an overview of applications to thin and thick cracked plate buckling problems. It
is seen that with increasing crack length and thickness, the buckling load decreases. Finally, different
sets of boundary conditions were studied. It is worth noting that the present method greatly simplifies
modelling of plate buckling with cracks, allowing us in some cases to provide antisymmetric crack
opening modes that are not provided in classical symmetric FEM simulations, as shown with the totally
clamped example.
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[Markström and Storȧkers 1980] K. Markström and B. Storȧkers, “Buckling of cracked members under tension”, Int. J. Solids
Struct. 16:3 (1980), 217–229.

[Natarajan et al. 2009a] S. Natarajan, S. Bordas, and D. R. Mahapatra, “Numerical integration over arbitrary polygonal domains
based on Schwarz–Christoffel conformal mapping”, Int. J. Numer. Meth. Eng. 80:1 (2009), 103–134.

[Natarajan et al. 2009b] S. Natarajan, S. P. A. Bordas, and T. Rabczuk, “Linear free flexural vibration of cracked isotropic
plates using the extended finite element method”, preprint, 2009. Submitted to Algorithms.

http://dx.doi.org/10.1137/0731051
http://dx.doi.org/10.1137/0731051
http://dx.doi.org/10.1007/s00419-008-0224-7
http://dx.doi.org/10.1007/s00419-008-0224-7
http://dx.doi.org/10.1002/nme.1620210213
http://dx.doi.org/10.1002/nme.1620210213
http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
http://dx.doi.org/10.1016/j.compstruc.2008.07.006
http://dx.doi.org/10.1016/j.compstruc.2008.07.006
http://dx.doi.org/10.1016/j.nucengdes.2009.01.008
http://dx.doi.org/10.1016/j.nucengdes.2009.01.008
http://dx.doi.org/10.1016/j.finel.2007.05.009
http://dx.doi.org/10.1016/j.finel.2007.05.009
http://dx.doi.org/10.1016/S0020-7683(00)00194-3
http://dx.doi.org/10.1016/S0020-7683(00)00194-3
http://dx.doi.org/10.1002/nme.1148
http://dx.doi.org/10.1002/nme.1148
http://dx.doi.org/10.1016/j.jsv.2008.01.059
http://dx.doi.org/10.1016/j.jsv.2008.01.059
http://dx.doi.org/10.1002/nme.2897
http://dx.doi.org/10.1002/nme.2897
http://dx.doi.org/10.1016/S0020-7683(00)00120-7
http://dx.doi.org/10.1016/S0020-7683(00)00120-7
http://dx.doi.org/10.1007/s00466-006-0075-4
http://dx.doi.org/10.1002/nme.1968
http://dx.doi.org/10.1002/nme.1968
http://dx.doi.org/10.1016/j.jsv.2008.08.027
http://dx.doi.org/10.1016/j.jsv.2008.08.027
http://dx.doi.org/10.1016/j.compstruc.2008.09.003
http://dx.doi.org/10.1016/j.compstruc.2008.09.003
http://dx.doi.org/10.1016/0020-7683(80)90075-X
http://dx.doi.org/10.1002/nme.2589
http://dx.doi.org/10.1002/nme.2589


1238 P. M. BAIZ, S. NATARAJAN, S. P. A. BORDAS, P. KERFRIDEN AND T. RABCZUK

[Natarajan et al. 2010] S. Natarajan, D. R. Mahapatra, and S. P. A. Bordas, “Integrating strong and weak discontinuities without
integration subcells and example applications in an XFEM/GFEM framework”, Int. J. Numer. Meth. Eng. 83:3 (2010), 269–
294.

[Nguyen-Thanh et al. 2008] N. Nguyen-Thanh, T. Rabczuk, H. Nguyen-Xuan, and S. P. A. Bordas, “A smoothed finite element
method for shell analysis”, Comput. Methods Appl. Mech. Eng. 198:2 (2008), 165–177.

[Nguyen-Xuan et al. 2008a] H. Nguyen-Xuan, S. Bordas, and H. Nguyen-Dang, “Smooth finite element methods: convergence,
accuracy and properties”, Int. J. Numer. Meth. Eng. 74:2 (2008), 175–208.

[Nguyen-Xuan et al. 2008b] H. Nguyen-Xuan, T. Rabczuk, S. Bordas, and J. F. Debongnie, “A smoothed finite element method
for plate analysis”, Comput. Methods Appl. Mech. Eng. 197:13-16 (2008), 1184–1203.

[Purbolaksono and Aliabadi 2005] J. Purbolaksono and M. H. Aliabadi, “Dual boundary element method for instability analysis
of cracked plates”, Comput. Model. Eng. Sci. 8:1 (2005), 73–90.

[Rabczuk and Areias 2006] T. Rabczuk and P. Areias, “A meshfree thin shell for arbitrary evolving cracks based on an extrinsic
basis”, Comput. Model. Eng. Sci. 16:2 (2006), 115–130.

[Rabczuk et al. 2007] T. Rabczuk, P. M. A. Areias, and T. Belytschko, “A meshfree thin shell method for non-linear dynamic
fracture”, Int. J. Numer. Meth. Eng. 72:5 (2007), 524–548.

[Rabczuk et al. 2010] T. Rabczuk, R. Gracie, J.-H. Song, and T. Belytschko, “Immersed particle method for fluid-structure
interaction”, Int. J. Numer. Meth. Eng. 81:1 (2010), 48–71.

[Reissner 1947] E. Reissner, “On bending of elastic plates”, Quart. Appl. Math. 5 (1947), 55–68.

[Riks et al. 1992] E. Riks, C. C. Rankin, and F. A. Brogan, “The buckling behavior of a central crack in a plate under tension”,
Eng. Fract. Mech. 43:4 (1992), 529–548.

[Sih and Lee 1986] G. C. Sih and Y. D. Lee, “Tensile and compressive buckling of plates weakened by cracks”, Theor. Appl.
Fract. Mech. 6:2 (1986), 129–138.

[Stahl and Keer 1972] B. Stahl and L. M. Keer, “Vibration and stability of cracked rectangular plates”, Int. J. Solids Struct. 8
(1972), 69–91.

[Vafai et al. 2002] A. Vafai, M. Javidruzi, and H. E. Estekanchi, “Parametric instability of edge cracked plates”, Thin-Walled
Struct. 40:1 (2002), 29–44.

[Wang and Chen 2004] D. Wang and J.-S. Chen, “Locking-free stabilized conforming nodal integration for meshfree Mindlin–
Reissner plate formulation”, Comput. Methods Appl. Mech. Eng. 193:12-14 (2004), 1065–1083.

[Wyart et al. 2007] E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.-F. Remacle, and F. Lani, “A substructured FE-shell/XFE-3D
method for crack analysis in thin-walled structures”, Int. J. Numer. Meth. Eng. 72:7 (2007), 757–779.

Received 28 Apr 2010. Revised 28 Sep 2010. Accepted 30 Nov 2010.

PEDRO M. BAIZ: p.m.baiz@imperial.ac.uk
Department of Aeronautics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

SUNDARARAJAN NATARAJAN: sundararajan.natarajan@gmail.com
School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom

STÉPHANE P. A. BORDAS: stephane.bordas@gmail.com
School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom

PIERRE KERFRIDEN: pierre.kerfriden@gmail.com
School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom

TIMON RABCZUK: timon.rabczuk@uni-weimar.de
Department of Civil Engineering, Bauhaus-Universität Weimar, 99421 Weimar, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1002/nme.2798
http://dx.doi.org/10.1002/nme.2798
http://dx.doi.org/10.1016/j.cma.2008.05.029
http://dx.doi.org/10.1016/j.cma.2008.05.029
http://dx.doi.org/10.1002/nme.2146
http://dx.doi.org/10.1002/nme.2146
http://dx.doi.org/10.1016/j.cma.2007.10.008
http://dx.doi.org/10.1016/j.cma.2007.10.008
http://dx.doi.org/10.1002/nme.2013
http://dx.doi.org/10.1002/nme.2013
http://dx.doi.org/10.1016/0013-7944(92)90197-M
http://dx.doi.org/10.1016/0167-8442(86)90033-9
http://dx.doi.org/10.1016/0020-7683(72)90052-2
http://dx.doi.org/10.1016/S0263-8231(01)00050-7
http://dx.doi.org/10.1016/j.cma.2003.12.006
http://dx.doi.org/10.1016/j.cma.2003.12.006
http://dx.doi.org/10.1002/nme.2029
http://dx.doi.org/10.1002/nme.2029
mailto:p.m.baiz@imperial.ac.uk
mailto:sundararajan.natarajan@gmail.com
mailto:stephane.bordas@gmail.com
mailto:pierre.kerfriden@gmail.com
mailto:timon.rabczuk@uni-weimar.de
http://www.mathscipub.org/


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 9-10, 2011

msp

A FINITE ELEMENT FOR FORM-FINDING
AND STATIC ANALYSIS OF TENSEGRITY STRUCTURES

DARIO GASPARINI, KATALIN K. KLINKA AND VINICIUS F. ARCARO

This text describes a mathematical model for both form-finding and static analysis of tensegrity struc-
tures. A special line element that shows constant stress for any displacement of its nodes is used to
define a prestressed equilibrium configuration. The form-finding and static analysis are formulated as
an unconstrained nonlinear programming problem, where the objective function is the total potential
energy and the displacements of the nodal points are the unknowns. Analytical solutions for tensegrity
prisms are presented and compared with the numerical results of the proposed approach. A quasi-Newton
method is used, which avoids the evaluation of the tangent stiffness matrix. The source and executable
computer codes of the algorithm are available for download from the website of one of the authors.

1. Introduction

A review of the important literature related to form-finding methods for tensegrity structures is given
in [Tibert and Pellegrino 2003]. These methods can be classified into kinematical and statical methods.
This text concentrates on the total potential energy minimization method for both form-finding and static
analysis of tensegrity structures. A special line element that shows constant stress for any displacement
of its nodes is used to define a prestressed equilibrium configuration. The form-finding and static analysis
are formulated as an unconstrained nonlinear programming problem, where the objective function is the
total potential energy and the displacements of the nodal points are the unknowns. A quasi-Newton
method is used, which avoids the evaluation of the tangent stiffness matrix. There is an interesting
connection between minimizing the total potential energy, which is defined by an unconstrained nonlinear
programming problem, and the general method for form-finding first described in [Pellegrino 1986],
which is defined by a constrained nonlinear programming problem. The strain energy for a line element
can be interpreted as a penalty function, as it imposes resistance to changing the length of the element.
Minimization methods based on penalty functions were the first methods used for constrained nonlinear
programming. The total potential energy minimization method for the analysis of cable structures was
first described in [Pietrzak 1978]. The following conventions apply unless otherwise specified or made
clear by the context: a Greek letter expresses a scalar, and a lower-case letter represents a column vector.

2. Line element definition

Figure 1 shows the geometry of the element. The nodes are labeled 1 and 2. The nodal displacements
transform the element from its initial configuration to its final configuration. The strain is assumed
constant along the element and the material homogeneous and isotropic.

Keywords: cable, element, line, minimization, nonlinear, optimization, tensegrity.
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Figure 1. Line element.

3. Deformed length

The vector u is a unit vector. Note that λ represents the distance between the nodes of the element in
this initial configuration. However, this distance will not always represent the undeformed length of the
element. The nodal displacements vectors are numbered according to its node numbers. The deformed
length can be written as

λ̄= λ
√

1+ δ, (1)

where

δ = 2uT z+ zT z, z = u2
−u1

λ
. (2)

The unit vector parallel to the element in its deformed configuration can be written as

ū =
u+ z
√

1+ δ
. (3)

4. State of constant cut

Consider an element with undeformed length less than the initial distance of its nodes. This situation can
be pictured as an imaginary cut in the element’s undeformed length. The element shows tension with
zero nodal displacements. Considering µ as the value of the cut in the undeformed length, the strain-free
length of the element can be written as

ρ =
µ

λ
, λ0 = λ(1− ρ). (4)

The engineering strain can be written as

ε =

√
1+ δ− 1+ ρ

1− ρ
. (5)

Inaccuracy often results from the severe cancellation that occurs when nearly equal values are sub-
tracted. In order to avoid it, the previous expression should be evaluated as

ε =
δ/(
√

1+ δ+ 1)+ ρ
1− ρ

. (6)
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5. Potential strain energy

Considering σ as the conjugate stress to the engineering strain ε and α as the undeformed area of the
element, the potential strain energy and its gradient with respect to the nodal displacements can be written
as

φ = αλ0

∫ ε

0
σ(ξ)dξ,

∂ϕ

∂u1
i
= αλ0σ(ε)

∂ε

∂u1
i
,

∂ϕ

∂u1
i
=−ασ(ε)ūi , (7)

∂ϕ

∂u2
i
= αλ0σ(ε)

∂ε

∂u2
i
,

∂ϕ

∂u2
i
=+ασ(ε)ūi . (8)

Note that the conjugate stress to the engineering strain is not the Cauchy stress. However, for practical
purposes where the strain is usually small, this stress can be taken as an approximation to the Cauchy
stress.

6. Geometric interpretation

Figure 2 shows the geometric interpretation of the gradient of the potential strain energy as forces acting
on nodes of the element. These forces are known as internal forces.

u

Figure 2. Geometric interpretation.

7. State of constant stress

Consider an element with strain-free length given by λ0. The engineering strain can be written as

ε =
λ̄− λ0

λ0
. (9)

Supposing that the element shows constant stress σ , the potential strain energy can be written as

ϕ = αλ0

∫ ε

0
σ dξ = ασ(λ̄− λ0). (10)

The potential strain energy is equal to the force multiplied by the relative displacement between the
nodes. In the expression for the strain energy, the strain-free length can be eliminated because it does not
depend on the nodal displacements. Its permanence in the expression would only add constants, one for
each element, to the total potential energy function. Minimizing a function plus a constant is equivalent
to minimizing the function only. Therefore, the potential strain energy can be defined as

ϕ = ασλ
√

1+ δ. (11)
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The gradient with respect to the nodal displacements can be written as

∂ϕ

∂u1
i
=−ασ ūi ,

∂ϕ

∂u2
i
=+ασ ūi . (12)

The gradient can be interpreted as internal forces with constant modulus acting on nodes of the element.
The element shows constant stress for any displacement of its nodes. A similar element was described
in [Meek 1971]. The element was called a variable initial length element.

8. Internal forces equivalence

A cut value is equivalent to a stress value in the sense that they both produce the same internal forces.
The following approach can be used when stress is a nonlinear invertible function of strain.

To find the cut value equivalent to the stress value, first find the strain:

σ(ε)= σ. (13)

Then, find the cut value:

µ=
λ

(1+ ε)

(
ε−

δ

1+
√

1+ δ

)
. (14)

To find the stress value equivalent to the cut value, first find the strain:

ε =
δ/(
√

1+ δ+ 1)+ ρ
1− ρ

. (15)

Then, find the stress:
σ = σ(ε). (16)

9. Stress and strain

For simplicity, consider a linear function with E as the modulus of elasticity. The potential strain energy
can be written as

σ = Eε, ϕ = 1
2 αλ0 Eε2. (17)

In the case of a hyperelastic material, it is important to emphasize that the strain energy and its
corresponding Cauchy stress can be written as functions of the nodal displacements. Therefore, this type
of material can be considered without introducing any additional difficulty.

10. Analysis strategy

The initial configuration of a tensegrity structure is defined as the configuration of zero nodal displace-
ments for all its nodes. An analysis strategy can be defined as follows: Select some elements and set them
to the constant stress state by specifying a stress value. Find the prestressed equilibrium configuration.
At this equilibrium configuration, change the elements from the constant stress state to its equivalent
constant cut state. Note that the equilibrium configuration remains the same. Apply the loading and find
the final equilibrium configuration.
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11. Equilibrium configuration

Considering u as the vector of unknown displacements and f as the vector of applied nodal forces, the
total potential energy function and its gradient can be written as

π(u)=
∑

elements

ϕ(u)− f T u, ∇π(u)=
∑

elements

∇ϕ(u)− f. (18)

The stable equilibrium configurations correspond to local minimum points of the total potential energy
function. In order to find the local minimum points of a nonlinear multivariate function, the general
strategy that can be used is: Choose a starting point and move in a given direction such that the function
decreases. Find the minimum point in this direction and use it as a new starting point. Continue this
way until a local minimum point is reached. The problem of finding the minimum points of a nonlin-
ear multivariate function is replaced by a sequence of subproblems, each one consisting of finding the
minimum of a univariate nonlinear function. In the quasi-Newton methods, starting with the unit matrix,
a positive-definite approximation to the inverse of the Hessian matrix is updated at each iteration. This
update is made using only values of the gradient vector. A direction such that the function decreases
is calculated as minus the product of this approximation of the inverse of the Hessian matrix and the
gradient vector calculated at the starting point of each iteration. Consequently, it is not necessary to
solve any system of equations. Moreover, analytical derivation of an expression for the Hessian matrix is
not necessary. Note that by minimizing the total potential energy function it is almost impossible to find
an unstable equilibrium configuration, which corresponds to a local maximum point. The only exception
is that it is possible to find a saddle point, that is, a point the is a local minimum and also a local maximum.
However, even in this improbable situation, a direction of negative curvature to continue toward a local
minimum point can be found as described in [Gill and Murray 1974]. It is important to emphasize that
minimizing total potential energy to find equilibrium configurations does not require support constraints
to prevent rigid body motion. The computer code uses the limited-memory BFGS algorithm to tackle
large-scale problems as described in [Nocedal and Wright 1999]. It also employs a line search procedure
through cubic interpolation, as described in the same reference.

12. Geometrical shape minimization

Consider the following special case: A structure composed of elements in the state of constant stress with
stress equal to one and elements in the state of constant cut with cut equal to zero. The area is equal to
one for all elements. The vector of applied nodal forces is equal to zero. The stress-strain relationship is
given by a linear function with E as the modulus of elasticity. The total potential energy can be written as

π(u)=
∑
stress

λ
√

1+ δ+ E
2

∑
cut

λε2. (19)

The strain energy of an element in the state of constant stress is simply its final length. A high modulus
of elasticity imposes resistance for changing the length of an element in the state of constant cut. The
strain energy of an element in the state of constant cut can be interpreted as a penalty function. The
problem can be interpreted as a constrained nonlinear programming problem of minimizing the sum of
the lengths of the elements in the state of constant stress while keeping the lengths of the elements in the
state of constant cut. This leads to an extension of the mathematical model of [Arcaro and Klinka 2009].
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13. Analysis of a simple tensegrity

This problem and its relation to tensegrity structures was first described in [Calladine 1978]. Figure 3
shows a two-element truss with a vertical displacement on the center node.

0

0

Figure 3. Two-element truss.

13.1. Geometry. From Figure 3 we can write

λ cos θ = λ0 cos θ0, λ sin θ = λ0 sin θ0+ δ. (20)

13.2. Element length. The element length as function of the rotation angle can be written as

λ(θ)=
λ0 cos θ0

cos θ
. (21)

The derivative of the rotation angle with respect to the vertical displacement can be written as

dθ
dδ
=

cos2 θ

λ0 cos θ0
. (22)

13.3. Equilibrium equation. Considering α as the undeformed area of the elements, the total potential
strain energy can be written as

ϕ = 2αλµ

∫ ε

0
σ(ξ)dξ . (23)

The derivative of the total potential strain energy with respect to the vertical displacement is equal to the
force applied in the direction of this displacement (note that the force is positive upward):

f = dϕ
dε

dε
dθ

dθ
dδ
, f = 2ασ(ε) cos2 θ

λ0 cos θ0
λ′(θ). (24)

13.4. Element strain. Considering a cut µ in the initial length of the element, its undeformed length
can be written as

λµ = λ0−µ. (25)

The element strain can be written as

ε =
λ(θ)

λµ
− 1. (26)
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13.5. Stress and strain. The following approach can be used when stress is a nonlinear invertible func-
tion of strain. For simplicity, consider a linear function with E as the modulus of elasticity. By imposing
a tension σµ on the elements at the prestressed configuration, its undeformed lengths can be written as

λµ =
λ0 cos θ0

(1+ σµ/E)
. (27)

The cut in the initial length of the elements is given by

µ= λ0− λµ. (28)

The equilibrium equation can be written as

f
Eα
= 2 sin θ

[(
1+

σµ

E

)
1

cos θ
− 1

]
. (29)

Figure 4 shows the nondimensional force as a function of the rotation angle for σµ/E = 0.001.
The axial force on the elements can be written as

ασ(ε)= αE
[(

1+
σµ

E

)
1

cos θ
− 1

]
. (30)
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Figure 4. Nondimensional force versus rotation angle.
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Figure 5. Straight tensegrity prism.

14. Analysis of tensegrity prisms

The analysis of [Oppenheim and Williams 2000] for a three-sided tensegrity prism is extended to a n-
sided tensegrity prism. Figure 5 shows a straight tensegrity prism. The bottom and top regular polygons
are inscribed in circles of equal radius. The sum of the lengths of the diagonal elements (shown in red) is
minimized by rotating the top polygon counterclockwise with respect to the bottom polygon, while the
lengths of the elements shown in black remain constant. The geometry defined by the final shape is also
called a minimal tensegrity prism and can be used as a building block of complex tensegrity structures
[Skelton and de Oliveira 2009].
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Figure 6. Top view of a straight tensegrity prism.

14.1. Geometry. For n-sided regular polygons, the coordinates of the vertices can be written as

γ =
2π
n
, pi

=

ρ cos(γ i)
ρ sin(γ i)

0

 , p̄i
=

ρ cos(θ + γ i)
ρ sin(θ + γ i)

δ(θ)

 . (31)

The following vectors are defined in terms of the coordinates of the vertices:

bi
= pi+1

− pi , l i
= p̄i
− pi+1, vi

= p̄i
− pi . (32)

14.2. Interval for the rotation angle. Figure 6 shows the top view of a straight tensegrity prism with
one diagonal element shown in red.

The maximum clockwise rotation happens when a diagonal element intercepts the vertical axis on the
center of the circle resulting in diagonal elements interference. This rotation angle is given by

θmin =−(π − γ ). (33)

The maximum counterclockwise rotation happens when a vertical element (connects corresponding ver-
tices of top and bottom polygons) intercepts the vertical axis on the center of the circle resulting in
vertical elements interference. This rotation angle is given by

θmax = π. (34)

The interval for the rotation angle is
−(π − γ )6 θ 6 π. (35)

14.3. Height. The square of the norm of vector vi can be written as

‖vi
‖

2
= 2ρ2(1− cos θ)+ δ2(θ). (36)

Considering ν as the norm of vector vi , which is constant, the expression for the height as function of
rotation angle can be written as

δ2(θ)= ν2
− 2ρ2(1− cos θ). (37)

14.4. Diagonal element length. Considering λ as the norm of vector l i , the square of the diagonal
element length can be written as

λ2(θ)= ν2
+ 2ρ2

[cos θ − cos(θ − γ )]. (38)
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14.5. Minimum diagonal element length. Due to symmetry, minimizing the sum of the diagonal ele-
ment lengths is equivalent to minimizing the square of one diagonal element length.

∂λ2

∂θ
= 0 ⇒ tan θ̄ = sin γ

cos γ−1
. (39)

Notice that this expression is valid when the diagonal elements connect the corresponding bottom and
top points in any symmetric way:

θ̄ > 0 ⇒ cos θ̄ =
cos γ − 1
√

2(1− cos γ )
, (40)

θ̄ > 0 ⇒ sin θ̄ =
sin γ

√
2(1− cos γ )

. (41)

14.6. Element strain. Considering a cut µ in the initial length of the diagonal element, its undeformed
length can be written as

λµ = λ(0)−µ. (42)

The element strain can be written as
ε =

λ(θ)

λµ
− 1. (43)

14.7. Equilibrium equation. Considering α as the undeformed area of the diagonal elements, the total
potential strain energy can be written as

ϕ = nαλµ

∫ ε

0
σ(ξ)dξ . (44)

The derivative of the total potential strain energy with respect to the vertical displacement is equal to the
force applied in the direction of this displacement. This derivative is equal to the derivative with respect
to the height (note that the force is positive upward when the vertical displacements of the bottom vertices
are fixed):

f = dϕ
dε

dε
dθ

dθ
dδ
, f = nασ(ε)

[
1−

sin(θ − γ )
sin θ

]
δ(θ)

λ(θ)
. (45)

14.8. Stress and strain. The following approach can be used when stress is a nonlinear invertible func-
tion of strain. For simplicity, consider a linear function with E as the modulus of elasticity. By imposing
a tension σµ on the diagonal elements at the prestressed configuration, its undeformed lengths can be
written as

λµ =

√
ν2− 2ρ2

√
2(1− cos γ )

(1+ σµ/E)
. (46)

The cut in the initial length of the diagonal elements can be written as

µ= λ(0)− λµ. (47)

The equilibrium equation can be written as

f
Eα
= n

[ 1
λµ
−

1
λ(θ)

][
1−

sin(θ − γ )
sin θ

]
δ(θ). (48)
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Figure 7. Nondimensional force versus rotation angle.

Figure 7 shows the nondimensional force as a function of the rotation angle for n = 5, ν/ρ = 3,
and σµ/E = 0.001. Note that the vertical axis is placed on the position defined by the prestressed
configuration.

The axial force on the diagonal elements can be written as ασ(ε)= αE
[
λ(θ)

λµ
− 1

]
.

15. The stella octangula

Figure 8 shows the geometry of a sculpture called the stella octangula, which was proposed by the
Hungarian architect, sculptor and author David Georges Emmerich. An extensive description of his
works is given in [Chassagnoux 2006]. An analysis of this structure, using the dynamic relaxation
method, was given in [Motro 2011].

Figure 8. The stella octangula.
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The geometry is composed of 18 elements with length s and 6 diagonal elements with length s
√

3.
The diagonal elements are connected as follows:

Element Node Node

3 4 11
6 5 10
9 6 12

12 7 1
15 8 3
18 9 2

Next we give the coordinates of the vertices, in terms of the parameters r = s/
√

3 and h = s/
√

6:

Node X Y Z Node X Y Z

1 −s/2 −r/2 h 7 s −r −h
2 s/2 −r/2 h 8 −s −r −h
3 0 r h 9 0 2r −h
4 0 −2r h 10 0 −r −h
5 s r h 11 −s/2 r/2 −h
6 −s r h 12 s/2 r/2 −h

16. Examples

In the illustrations given in this section, elements shown in red are in compression; elements shown in
blue are in tension; and elements in the initial configuration that start in the state of constant stress are
shown in green.

Example 16.1 (A two-element truss with a vertical downward force applied on the center node). The
force was calculated to make the element rotate −45 degrees from the prestressed configuration. The
analytical expression for the equilibrium equation is presented in Section 12. The parameter values are

θ0 = 45 degrees, λ0 = 1, E = 1000, α = 1, σµ = 1, f =−587.7864.

The value of the axial force found numerically coincides with the analytic one: 415.6278.
Here are the initial (left), prestressed (middle) configurations, and loaded (right) configurations:

Example 16.2 (A pentagonal prism with vertical forces applied on the top nodes). The bottom nodes are
fixed only in the vertical direction. The analytical expression for the equilibrium equation is presented
in Section 13. The parameter values are n = 5, ν = 3, ρ = 1, E = 1000 for the diagonal elements,
E = 1000000 to simulate the inextensible elements, α = 1, and σµ = 1.
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Here are the initial (a) and the prestressed (b) configurations; the rotation angle from the initial con-
figuration is equal to 126 degrees.

(a) (b)

f +20.0 −20.0

Analytical 30.72 19.83
Numerical 30.71 19.80

Error −0.03% −0.15%

(c) (d)

Also shown in (c) is the loaded configuration for f = 20 (rotation angle of about −34 degrees from
the prestressed configuration), and in (d) the loaded configurations for f =−20 (rotation angle of about
27 degrees). The values for the axial force on the diagonal elements are given for these two cases.

Example 16.3. This is the same structure described in Example 16.2, except that E = 1000 for all
elements. Here are the initial (a) and prestressed (b) configurations; the rotation angle from the initial
configuration is 126 degrees.

(a) (b)

f +20.0 −20.0
Numerical 27.77 4.86

(c) (d)

Also shown in (c) is the loaded configuration for f = 20 (rotation angle of about −38 degrees from
the prestressed configuration), and in (d) the loaded configurations for f =−20 (rotation angle of about
45 degrees). The values for the axial force on the diagonal elements are given for these two cases.
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Example 16.4 (A circular prism with axis on a circumference of radius 10). The section is defined by a
regular triangle inscribed in a circle of radius 1. It is composed of 72 elements. The modulus of elasticity
is 1000. The elements have area 1. Note that this is a nonplanar circular tensegrity that originates from
connecting the ends of a straight prism tensegrity. This is a simple idea that can be used to define
circular nonplanar tensegrities with any number of segments. A circular planar tensegrity was described
recently in [Yuan et al. 2008]. Elements in the initial configuration that start in the state of constant
stress are shown in green with stress of 5. There are no support constraints. The loading consists of
self-equilibrated radial forces applied on the nodes of the exterior circumference.

Here are the initial (left), prestressed (middle), and loaded (right) configurations under the forces
shown in the table.

Node Axis Force
1 1 1.4142
4 1 1.0000
4 2 1.0000
7 2 1.4142

The elements are connected as follows:

Element 1 2 3 4 5 6 7 8 9 25 26 27 28 29 30 49 50 51 52 53 54
Node 1 2 3 4 5 6 7 8 9 1 2 3 5 6 4 2 3 1 4 5 6
Node 2 3 1 5 6 4 8 9 7 4 5 6 8 9 7 4 5 6 8 9 7

Here are the coordinates of the initial (left), prestressed (middle), and loaded (right) configurations.
Due to symmetry, the tables show information for only one fourth of the structure.

Node X Y Z Node X Y Z Node X Y Z

1 11.0000 0.0000 0.0000 1 9.3879 –0.0000 –2.1490 1 9.5010 –0.0000 –2.0677
2 9.5000 0.0000 0.8660 2 9.9007 0.0000 –0.4922 2 9.9371 0.0000 –0.3904
3 9.5000 0.0000 –0.8660 3 8.2098 0.0000 –0.8759 3 8.2630 0.0000 –0.8446
4 7.7782 7.7782 0.0000 4 6.6382 6.6382 2.1490 4 6.7182 6.7182 2.0677
5 6.7175 6.7175 0.8660 5 5.8052 5.8052 0.8759 5 5.8428 5.8428 0.8446
6 6.7175 6.7175 –0.8660 6 7.0009 7.0009 0.4922 6 7.0266 7.0266 0.3904
7 0.0000 11.0000 0.0000 7 0.0000 9.3879 –2.1490 7 0.0000 9.5010 –2.0677
8 0.0000 9.5000 0.8660 8 –0.0000 9.9007 –0.4922 8 –0.0000 9.9371 –0.3904
9 0.0000 9.5000 –0.8660 9 0.0000 8.2098 –0.8759 9 0.0000 8.2630 –0.8446
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The next table shows the axial force for the prestressed and the loaded configurations:

Element 1, 6, 7 2, 5, 8 3, 4, 9 25, 30 26, 27, 28, 29 49, 51, 52, 54 50, 53
Force 1.3113 1.0841 1.4375 −5.5232 −4.9454 5.0000 5.0000
Force 0.5762 1.5137 4.7852 −6.3702 −4.1728 3.7936 8.5064

Example 16.5 (A stella octangula with parameter s = 1). The modulus of elasticity is 1000. The el-
ements have area 1. There are support constraints on nodes 1, 2, and 3 to prevent rigid body motion.
A nonregular tensegrity can be generated by imposing different stress values for selected elements of a
regular tensegrity. The regular tensegrity can be recovered by imposing equal stress values for the same
selected elements on the previously generated nonregular tensegrity.

We illustrate here the initial configuration of the regular stella octangula and its prestressed configura-
tion (nonregular stella octangula). The stress values for the diagonal elements of the initial configuration
and the lengths of the diagonal elements of the prestressed configuration are also shown.

Element Stress Length

3 −1.25 1.4573
6 −1.50 1.5664
9 −1.75 1.6312

12 −2.00 1.8578
15 −2.25 1.8899
18 −2.50 1.8914

Finally, we illustrate the initial configuration of the nonregular stella octangula and its prestressed
version, which is again a regular stella octangula. The stress values for the diagonal elements (initial
configuration) and the lengths of the diagonal elements (prestressed configuration) are also shown.

Element Stress Length

3 −1.00 1.7343
6 −1.00 1.7345
9 −1.00 1.7348

12 −1.00 1.7351
15 −1.00 1.7353
18 −1.00 1.7357
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17. Conclusions

A mathematical model is presented for form-finding and static analysis of tensegrity structures. The
proposed model shows good agreement with analytical solutions for regular tensegrity structures. It
can also handle nonregular tensegrity structures. The minimization of total potential energy has several
advantages over solving the equilibrium equations in nonlinear mechanics: it allows solving for under-
constrained structures. It is not necessary to derive the tangent stiffness matrix. It is not necessary to
solve any system of equations. The model can handle large-scale problems.
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STRUCTURAL DESIGN OF PYRAMIDAL TRUSS CORE
SANDWICH BEAMS LOADED IN 3-POINT BENDING

MING LI, LINZHI WU, LI MA, BING WANG AND ZHENGXI GUAN

The dimensions of pyramidal lattice truss core sandwich beams loaded in 3-point bending are designed
to achieve the most weight-efficient structure. The bending stiffness and strength of the sandwich beam
is predicted theoretically, and the identified failure modes include core member buckling, core member
crushing, face wrinkling, and face crushing. To predict the relevant limit loads of the four failure modes,
a force analysis is carried out based on structural mechanics. The inclined angle of the core member
is determined by maximizing the bending stiffness-to-weight ratio. The length and radius of the core
member, the thickness of the face, and the length of the sandwich beam are determined by maximizing
the bending strength-to-weight ratio for the given height of the core. The effectiveness of the design
method is validated by experiments, and the specimen with optimal geometric parameters possesses the
largest weight efficiency. The useful results are extended to give an available design tool for sandwich
beam manufacturers.

1. Introduction

Sandwich structures are widely used in weight-sensitive structures where high stiffness-to-weight and
strength-to-weight ratios are required [Vinson 2001]. The cores of sandwich structures are conventionally
made of foams and honeycombs [Bitzer 1997; Gibson and Ashby 1997; He and Hu 2008]. Recent
research has shown the higher weight efficiency of lattice structures compared to that of foams [Evans
et al. 2001]. Numerous studies on metallic and polymer foams have shown that the strength of the
foams is governed by cell wall bending (that is, bending-dominated materials) for all loading conditions
and scales as ρ̄1.5, where ρ̄ is the relative density of the foam [Chen et al. 1999; Ashby et al. 2000].
On the other hand, the strength of a structure that deforms by cell wall stretching (that is, strength-
dominated materials) scales with ρ̄. Deshpande et al. [2001] have analyzed the topological criteria
for lattice structures to be stretching-dominated. They considered a periodic assembly of pin-jointed
trusses with similarly situated nodes, and determined the degree of connectivity of bars per node in order
to ensure stretching domination. For the case of a sandwich panel comprised of solid faces and a pin-
jointed truss core, at least three core trusses per node are required for collapse to occur by truss stretching.
Based on this criterion, numerous lattice topology structures have been proposed including those with
tetrahedral [Deshpande et al. 2001; Deshpande and Fleck 2001; Wallach and Gibson 2001; Wicks and
Hutchinson 2001; Chiras et al. 2002], pyramidal [Zok et al. 2004; Cote et al. 2007; Queheillalt and
Wadley 2009], 3D-Kagome [Hyun et al. 2003; Wang et al. 2003; Lim and Kang 2006; Fan et al. 2007]
structures, and so on. Besides the superior mechanical properties, truss core sandwich structures have
additional potential by virtue of their open structure for multifunctional applications [Evans et al. 1998;

Keywords: sandwich structures, structural design, three-point bending.
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Lu et al. 2005; Wadley 2006]. For example, sandwich panels with solid faces and truss cores can serve
as a heat transfer element simultaneously carrying loads. The cavity between the faces could be used for
storage of a liquid in other applications.

For truss core sandwich structures, optimal design is an important problem that has attracted the
attention of many researchers. The goal is to find the optimal geometric parameters that minimize the
weight subject to a given load. Wicks and Hutchinson [2001] have studied the structural optimization
of sandwich panels with octet truss cores and truss faces or solid faces in combinations of bending
and transverse shear loads. Cote et al. [2007] have studied the minimum weight designs of pyramidal
truss core sandwich columns in in-plane compression. It appears that only a few researchers have dealt
with the optimal design of pyramidal truss core sandwich structures subject to 3-point bending loads.
Zok et al. [2004], for example, investigated optimal design of pyramidal truss core sandwich panels in
combinations of bending and transverse shear loads.

In the above-mentioned works, however, we cannot determine the thickness of the core, the thickness
of the face, the radius of the core member, and the length of the sandwich structure simultaneously,
and there is always a family of relationships among these variables. Thus, it is inconvenient for a
structural designer. A simple and direct mathematical relation is preferable for a structural designer.
Furthermore, for the lattice truss core sandwich beams, the common failure modes include face yielding,
face buckling, core member yielding, and core member buckling [Wicks and Hutchinson 2001; Zok et al.
2004]. However, the four failure modes often can’t converge at one point in the failure mechanism maps,
and the optimal design is based on three failure modes: face yielding, face buckling, and core buckling
(or face yielding, face buckling, and core yielding). Theoretically, the optimal design should be based on
all four failure modes simultaneously. In the present paper, we consider a pyramidal truss core sandwich
beam comprised of a pyramidal lattice truss core and two solid faces. When the sandwich beam is loaded
in 3-point bending, the structural parameters are designed on the basis of optimal bending stiffness as
well as bending strength, which is not according to the failure mechanism maps. Thus, all failure modes
are active simultaneously. The present optimal design method offers a principle foundation for designing
pyramidal truss core sandwich beams.

In this study, three assumptions are given, and then the bending stiffness and strength of a pyramidal
truss core sandwich beam loaded in 3-point bending are predicted theoretically. To better understand
the failure modes, force analysis of the pyramidal truss core sandwich beam is conducted. Based on the
principle of minimizing the weight, the inclined angle, and the radius of the core member, the thickness
of the face and the length of the sandwich beam are calculated. Experiments are carried out to validate
the effectiveness of the structural design method on the specimen with optimal geometric parameters that
possesses the largest weight efficiency. Several conclusions are given in the last section.

2. Predictions of the stiffness and strength of pyramidal truss core sandwich beams
in 3-point bending

Consider a 3D sandwich beam with pyramidal truss cores and solid faces loaded in 3-point bending and
with the geometry as shown in Figure 1. The loading is imposed on the center line of the top face. The
sandwich beam is comprised of faces of thickness t f and a square base pyramidal truss core with circular
section of radius r and length l, and inclined at an angle ω with respect to the face. Thus, the height, Hc,
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Figure 1. Geometry of the pyramidal truss core sandwich beam.

of the core is given by
Hc = l sinω. (1)

The span between the supports and the width of the sandwich beam are denoted by L and B, respectively.
In the present paper, the span between the supports of the beam is almost equal to the length of the beam.
Thus, L also represents the length of the beam in the following content. The relative density ρ̄ of the
core is given by

ρ̄ =
2πr2

sinω(l cosω)2
. (2)

The underlying assumptions considered in the analytical predictions are:

• The faces are very thin compared with the total thickness of the sandwich beam.

• The macroscopic mechanical performance of the pyramidal truss core is too weak to provide a
significant contribution to the bending rigidity of the sandwich beam.

• The nodes between the truss core and the faces are pin-joints offering no rotational restriction, and
will not rupture in the loading process.

2.1. Analytical predictions of the bending stiffness. Referring to [Allen 1969, pp. 15–21], the deflection
of a sandwich beam loaded in 3-point bending is the sum of the bending and shear deflections:

δ =
P L3

48(E I )eq
+

P L
4(AG)eq

, (3)

where δ is the deflection at the beam’s center due to P . The equivalent bending and shear stiffness are,
respectively, given by

(E I )eq ≈
1
2 E f Bt f H 2

c , (AG)eq = G13 B Hc. (4)

E f is the elastic modulus of the faces and G13 is the transverse shear modulus of the pyramidal truss
core. According to assumptions (1) and (2), the core gives a negligible contribution to the overall bend-
ing stiffness and the faces give a negligible contribution to the overall transverse shear stiffness. The
transverse shear modulus G13 is given by [Deshpande and Fleck 2001]

G13 =
1
8 ρ̄Ec sin2(2ω), (5)

where Ec is the elastic modulus in the axial direction of the core member.
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2.2. Analytical predictions of the bending strength. When a pyramidal truss core sandwich beam is
loaded in 3-point bending, four main failure modes have been identified [Wicks and Hutchinson 2001]:
core member buckling, core member crushing, face wrinkling, and face crushing. (If the material com-
prising the sandwich beam is elastic-brittle, such as a fiber reinforced composite, it will crush in a
compression stress state; if the material is elastic-plastic, such as a metal, it will yield. We take crushing
as the failure mode). To better understand the failure modes, it is essential to analyze the force distribution
of a pyramidal truss core sandwich beam loaded in 3-point bending.

Force analysis based on structural mechanics. For simplicity, we initially consider a 2D sandwich struc-
ture with truss cores and truss faces subjected to a 3-point bending load, as sketched in Figure 2. The
sandwich structure possesses m unit cells along the length direction, where the unit cell is represented
by the gray area. The height of the core is also denoted as Hc and the inclined angle is denoted as
θ . According to the foregoing pin-joint idealization of assumption (3), all members in the truss core
sandwich beam are two-force rods which can only bear axial force. Based on the theory of structural
mechanics, the forces in the face members and core members are shown in Figure 2. The maximum force
in the face members is beneath the loading roller, which is (m/2)P cot θ . The span L of the sandwich is
given by

L = 2m Hc cot θ, (6)

and therefore the maximum force F f in the face members is given by

F f =
m
2

P cot θ = P L
4Hc

. (7)

The forces in all of the core members are identical, and are given by

Fc =
P

2 sin θ
. (8)

Subsequently, consider a 3D sandwich beam with a pyramidal truss core and solid faces as shown in
Figure 1. The sandwich beam is subjected to a 3-point bending load P along the whole width, so the
load carried by a unit cell along the width direction is P

√
2l cosω/B. The schematic illustration of the

c
H  

L 

P 

P/2 P/2 2
cot

2

m
P θ

−
 2

cot
2

m
P θ

−
 

3
cot

2

m
P θ

−
 

1
cot

2

m
P θ

−
 3

cot
2

m
P θ

−
 

4
cot

2

m
P θ

−

 

cot
2

m
P θ  

1
cot

2

m
P θ

−
 5

cot
2

m
P θ

−
 

θ  

4
cot

2

m
P θ

−
 

2sin

P

θ
 

5
cot

2

m
P θ

−
 

Figure 2. Force distribution of 2D sandwich beam with truss cores and truss faces.
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Figure 3. Force analysis and geometrical relations of a pyramidal unit cell.

force distribution of a unit cell is shown in Figure 3. From the above analysis, we have

FAF = 2FAB sinα =
P
√

2l cosω
2B sin θ

. (9)

According to the geometric relations, sinα= AF/AB, sin θ = AH/AF , and sinω= AH/AB, we obtain

FAB =
P
√

2l cosω
4B sinα sin θ

=
P
√

2l cosω
4B sinω

. (10)

So, the forces in the core members are

Fc = FAB =
P
√

2l cosω
4B sinω

. (11)

The maximum force in the faces of the 3D sandwich beam is also given by (7).

Failure modes: limit load calculations. According to (7) and (11), limit loads corresponding to the four
failure modes are given by

Pcb =
4B sinω
√

2l cosω
σcbπr2 (core member buckling), P fw =

4Hc
L
σ fwBt f (face wrinkling),

Pcc =
4B sinω
√

2l cosω
σccπr2 (core member crushing), P f c =

4Hc
L
σ f c Bt f (face crushing),

(12)

where σcb and σcc are the buckling and crushing strength of the core member, respectively, and σ fw and
σ f c are the wrinkling and crushing strength of the faces, respectively. Core member buckling occurs
between the two end joints of the truss loaded in a compressive stress state, and the buckling strength of
the core member is given by

σcb = k2
1π

2 Ec

( r
2l

)2
, (13)

where k1 = 1 for a core member with simply supported ends, consistent with the pin-joint assumption.
The upper face is subjected to compressive stress, and may fail by elastic buckling or crushing at the
location on the face with maximum force (beneath the central roller). Face wrinkling occurs between
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the adjacent nodes of attachment, which is known as intercellular buckling. The wrinkling strength of
the faces is given by

σ fw =
k2

2π
2 E f t2

f

12(
√

2l cosω)2
. (14)

The rotational restraining effect of the truss core on the faces at the nodes of attachment is neglected, so
k2 = 1. The crushing strength of the core member σcc and the crushing strength of the face σ f c can be
measured experimentally.

3. Structural design of the pyramidal truss core sandwich beam

3.1. Design of the inclined angle of the core member. From (3), the overall bending stiffness-to-weight
ratio will increase with the increase of the shear-modulus-to-weight ratio. The shear-modulus-to-weight
ratio is given as

G13

ρρ̄
=

1
8ρ

Ec sin2(2ω), (15)

where ρ is the density of the parent material. The shear-modulus-to-weight ratio reaches its maximum
when the inclined angle, ω, equals 45◦; the overall bending stiffness-to-weight ratio also reaches its
maximum here, while other geometric parameters remain constant. Thus, the inclined angle of the core
member should be fixed at 45◦.

3.2. Design of the radius of the core member. For a core member loaded in axial compression loading,
its weight efficiency will achieve its maximum value when core member crushing and buckling occur
simultaneously. Based on this principle, we can obtain the optimal radius of the core member upon
equating Pcb to Pcc, as follows:

rcr = Hc
2

k1π sinω

√
σcc

Ec
. (16)

Then, take σc,cr as the failure strength of the core member, which is given by σc,cr = σcc = σcb.

3.3. Design of the thickness of the faces. Based on the same principle used in Section 3.2, the weight
efficiency of the face will achieve its maximum value when the face crushing and wrinkling occur simul-
taneously. The optimal thickness, t f,cr, of the faces can be obtained upon equating P f c to P fw:

t f,cr = Hc
cosω

k2π sinω

√
24σ f c

E f
. (17)

Then, take σ f,cr as the failure strength of the faces, which is given by σ f,cr = σ f c = σ fw.

Design of the length of the sandwich beam. Using (12), the failure loads of the core member and faces
are given as

Pc,cr =
4B sinω
√

2l cosω
σc,crπ(rcr)

2, P f,cr =
4Hc

L
σ f,cr Bt f,cr. (18)

The weight efficiency of the whole sandwich structure achieves its maximum when every part fails
simultaneously. So the faces and core members of the sandwich beam should fail simultaneously, which
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means the failure load P f,cr of the faces equates to the failure load Pc,cr of the core member, given as

4Hc
L
σ f,cr Bt f,cr =

4B sinω
√

2l cosω
σc,crπ(rcr)

2. (19)

Substituting (1), (16), and (17) into (19), we obtain

L = Hc
k2

1

k2

(cosω)2

sinω
σ f,cr Ec

σ 2
c,cr

√
3σ f,cr

E f
. (20)

Hitherto, the design procedure can be summarized as follows:

• From (14), the inclined angle of the core member should be fixed at 45◦.

• Given Hc, one can determine the length of the core member, the radius of the core member, the
thickness of the faces and the length of the sandwich beam from (1), (16), (17), and (20), respec-
tively.

4. Experiments and discussion

In order to validate the feasibility and effectiveness of the proposed structural design method, experiments
are conducted.

4.1. Fabrication of specimen. The sandwich beam specimen is made of a carbon fiber reinforced com-
posite T700/epoxy with a hot compression molding method. A set of molds with special structures are
designed to fabricate the pyramidal truss core sandwich beam. The faces are comprised of a laminate of
prepreg with the stack sequence (0/90)n , where the number n can vary to gain a different face thickness.
The core member is rolled into a circular cross section from two plies of prepreg with the stack sequence
(0/90). The preformed sandwich beam is cured at 125◦ C in an autoclave under a pressure of 0.5 MPa
for an hour, and cools down to room temperature naturally. Then the specimen is taken out from the
autoclave and removed from the molds. Because the sandwich beam specimen is fabricated with the
same composite material and stack sequence, the equivalent elastic modulus and crushing strength of the
face and core member are equal. Thus, E f = Ec = 60 GPa and σcc = σ f c = 329 MPa. The density of
the T700/epoxy composite is ρ = 1500 kg m−3.

4.2. Test protocol. Ideally, the specimen geometries are designed to probe the different failure modes
of face crushing, face wrinkling, core member crushing, and core member buckling. However, in the
current study, it was not feasible to make a range of pyramidal truss core sandwich beams with different
truss dimensions. From the above analysis, the optimal inclined angle of the core member is 45◦, and
thus the inclined angle of the specimen is fixed at 45◦ and the height of the core is 15 mm. The optimal
radius of the core member is 1 mm. For the sandwich beam specimen, the radius of the core member
is chosen as 1.25 mm, which is slightly lager than the optimal radius computed from (16). The reasons
are as follows. First, it is difficult for fabrication if the truss radius is too small. Second, the material
properties of the composite possess discreteness, so, we take a conservative value of the truss radius to
prevent core member crushing from occurring prematurely. The optimal length of the sandwich beam
and the thickness of the face are 248 mm and 1.73 mm, respectively. In order to find the largest weight
efficiency, three types of specimens with face thicknesses 0.84 mm, 1.73 mm, and 2.6 mm are designed



1262 MING LI, LINZHI WU, LI MA, BING WANG AND ZHENGXI GUAN

and fabricated. The width of the specimen is 100 mm, and the span of the sandwich beam is taken as
248 mm, which is equal to the optimal value.

The weight of the sandwich beam is

W = ρL B(ρ̄Hc+ 2t f ). (21)

The weight efficiency η is defined as

η =
Pcr

W
, (22)

where Pcr is the failure load of the pyramidal lattice truss core sandwich beam loaded in 3-point bending.
The specimen is tested under 3-point bending using an Instron 5569 machine, applying loading through

a 10 mm diameter cylindrical roller in accordance with ASTM standard C393 [ASTM 2006]. The load
is applied at a rate of 1 mm min−1 and recorded with the load cell of the testing machine. A laser
extensometer is used to measure the deflection, δ, of the specimen.

4.3. Results and discussion. The failure loads and weight efficiencies of the three types of specimens
are listed in Table 1, and the corresponding bending responses are shown in Figure 4. From Table 1,
good agreement is found between the measured and predicted failure loads, and the measured failure
loads are somewhat lower than the predicted ones. These discrepancies are attributed to imperfections
in the manufactured specimens, while the analytical predictions pertain to the idealized geometry. The
predicted and measured weight efficiencies of the specimen with face thickness 1.73 mm are larger than
those of the specimens with face thicknesses 0.84 mm and 2.6 mm, which validates the effectiveness of
the structural design method.

The corresponding failure mode photographs are shown in Figures 5, 6, and 7. From Figure 5, it is
found that the upper face of the specimen with face thickness 0.84 mm wrinkles like a sine wave in the
compressive stress. For the specimen with face thickness 1.73 mm, it is found, from Figure 6, that the
upper face and the core member crush simultaneously. From Figure 7, it is found that only core member

Predicted
Thickness of face-sheet (mm) Failure mode Failure load (kN) Weight (g) Weight efficiency

0.84 FW 1.57 74.5 2107
1.73 FCC 13.73 151.9 9038
2.6 CC 13.78 227.6 6054

Measured
Thickness of face-sheet (mm) Failure mode Failure load (kN) Weight (g) Weight efficiency

0.84 FW 1.55 85 1823
1.73 FCC 11.63 156 7455
2.6 CC 12.87 235 5476

Table 1. The predicted and measured failure loads and weight efficiencies. FW indi-
cates face wrinkling, FCC face and core member crushing simultaneously, and CC core
member crushing; for simplicity, the acceleration of gravity is taken as 10 N kg−1 in the
computation of weight efficiency.
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Figure 4. Bending response of sandwich structures with different face-sheet thicknesses:
0.84 mm (upper left), 1.73 mm (upper right), and 2.6 mm (lower).

Figure 5. Face-sheet wrinkling of the specimen with face-sheet thickness 0.84 mm.
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Figure 6. Face-sheet and core member crushing occur simultaneously for the specimen
with face-sheet thickness 1.73 mm.

 

core member crushing 

Figure 7. Core member crushing of the specimen with face-sheet thickness 2.6 mm.

crushing occurs for the specimen with face thickness 2.6 mm. All the failure modes observed above
agree well with the predicted ones.

From Table 1, it is found that the ratio of the core thickness to the face thickness is about 9 at the
condition of optimal geometric parameters. According to the quantitative definition of thin and thick face-
sheets of sandwich structures given by [Allen 1969, pp. 15–21], the face can be treated as thin when the
core thickness is lager than 5.77 times the face thickness. So, assumption (1) is reasonable. The length
to the radius of the core member is about 20, which causes the transverse force of the core member to
be rather smaller than the axial force, so the pin-joint idealization of assumption (2) is reasonable.

Generally, in actual loading conditions, the length of the beam is given. For example, for a bridge,
the total span is directly given. Thus, in the geometric parameter optimization of a sandwich beam, the
thickness of the core is considered as a design variable and the length of the sandwich beam is considered
to be fixed. The thickness of the core can be determined from (20). Subsequently, the length of the core
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member, the radius of the core member and the thickness of the face can be determined with (1), (16),
and (17), respectively.

5. Conclusions

• Based on the pin-joint assumption, force analysis is implemented in a pyramidal truss core sandwich
beam loaded in 3-point bending, and the limit load calculations are then conducted.

• The inclined angle of the core member should be fixed at 45◦ to maximize the overall bending
stiffness-to-weight ratio.

• The length of the core member, the radius of the core member, the thickness of the face, and
the length of the sandwich beam are all deduced with the condition of maximizing the bending
strength-to-weight ratio.

• Experiments validate the feasibility and effectiveness of the proposed structural design method, and
the specimen with optimal geometric parameters possesses the largest weight efficiency.

• In the present study, a simple and direct design procedure is developed, which is easy to implement
for manufacturers.
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WAVE SCATTERING FROM A RECTANGULAR CRACK
IN AN ANISOTROPIC CLADDING

PER-ÅKE JANSSON

Ultrasonic testing of a thick elastic plate with a crack in an anisotropic cladding is modeled analytically
for a fully three-dimensional case. The model includes an ultrasonic transmitter and a receiver as well
as wave scattering from a rectangular crack. The effect of a corrugated interface between the base
component and the cladding is also taken into account. To solve the scattering problem the null field
approach is employed to determine a Green’s tensor for the same structure without a crack and the source
point located in the cladding. Utilizing the Green’s tensor an integral representation for the displacement
field in the same structure with a crack and an incident field generated by an ultrasonic transducer may
be derived. It is then straightforward to derive a hypersingular integral equation for the crack opening
displacement, which can be used to determine the change in signal response due to the crack by Auld’s
reciprocity argument. Numerical results are given for a variety of cases illustrating the effects of size,
position, and orientation of the crack and the properties of the corrugated interface.

Introduction

Ultrasonic nondestructive testing is frequently used to detect defects, e.g., in nuclear power plants. Even
though the method has been in use for a considerable time and may be regarded as well-established, there
is a need for modeling of the testing procedure. Such a model may be useful for planning of testing, for
qualification of testing procedures, for interpretation of results, and for education purposes. Using a good
mathematical model also has the benefit of being much cheaper than experimental methods, in particular
when parameter studies are performed.

In the nuclear power industry it is common to use claddings, i.e., layers of austenitic steel, to prevent
or reduce corrosion. A cladding may be applied to a thick plate or a thick-walled pipe by a manual or
automated welding process. As a result of the fabrication process the interface between the base material
and the cladding usually becomes corrugated, which is likely to affect the propagation of ultrasonic waves.
Furthermore, the cladding material is normally anisotropic, which will also complicate the interpretation
of test results. Thus, a numerical model for the testing procedure may be useful for understanding of the
influence of the cladding on the signal response. An overview of ultrasonic testing of clad components
is given in [Hudgell 1994].

Various wave propagation problems for a thick plate with a cladding with or without a crack have
been studied previously. The 2D and 3D wave propagation problems for a structure without a crack
have been investigated in [Krasnova et al. 2005; Krasnova 2005] using the null field approach, and in
[Krasnova and Jansson 2006] using approximate boundary conditions at the interface. The 2D scalar
scattering problem with a strip-like crack was solved in [Zagbai and Boström 2006], and the 2D P-SV

Keywords: ultrasound, crack, anisotropy, cladding.
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problem in [Jansson and Zagbai 2007]. In the present paper the analysis is generalized to the 3D case.
A rudimentary version has previously been presented at a conference [Jansson 2010].

The aim of this paper is to develop a fully three-dimensional analytical model for a thick plate with
a rectangular crack of arbitrary orientation in a cladding. Both materials are allowed to be anisotropic
without any restrictions on symmetry or orientation of the crystal axes. In the numerical examples,
however, only the case of an isotropic base material and a transversely isotropic cladding is studied. The
effect of a one-dimensionally periodic interface between the base component and the cladding is also
taken into account. Actually, real interfaces for welded claddings are more or less periodic. Besides, the
analysis will be considerably simplified, since the periodicity can be utilized to discretize the problem.
To solve the scattering problem a hypersingular integral equation technique is employed. The solution
is exact in the sense that no restrictions are imposed on the frequency of the ultrasonic transmitter or
the shape of the periodic interface, although numerical results are only given for a sinusoidal surface.
In practice, however, the convergence will be poor for high frequencies and very rough interfaces. The
results are believed to be valid, at least qualitatively, not only for a plate but also for components with
curved surfaces, like pressure vessels and pipes, as long as the curvature is sufficiently small.

The integral equation method used in this paper is computationally efficient, but has the drawback that
only defects of simple shapes can be handled. For more complex geometries it is necessary to rely on
other methods, such as the finite element method. However, for 3D geometries and high frequencies a
very large number of elements is needed, which may be a limitation. Other numerical methods include
the strip element method of [Liu and Achenbach 1995], the elastodynamic finite integration technique, or
EFIT [Langenberg et al. 2000], and the boundary element method (see [Wang et al. 1996], for example).
Elastic wave scattering from periodic surfaces have previously been studied extensively for the case of
isotropic media; see, e.g., [Fokkema and van den Berg 1977; Fokkema 1980; Lakhtakia et al. 1984].

1. Problem formulation

The geometry of the wave propagation problem is depicted in Figure 1. A thick plate is composed of two
layers of different generally anisotropic materials in welded contact. The crystal axes may be arbitrarily

Figure 1. The geometry of a plate with a crack inside a cladding.
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oriented. The interface S0 is assumed to be periodic with a period a. This is believed to be a reasonable
approximation, since real interfaces are more or less periodic. The layer of thickness d1 is the base
material. The cladding of thickness d2 contains a rectangular crack

SC (|y1|< c, |y2|< d),

which may be tilted arbitrarily with respect to the back wall S2. An ultrasonic transmitter is placed
on the free surface S1 of the base material. All numerical examples given here are for a transducer
working in pulse-echo mode, even though the analysis is valid for the case of tandem inspection as well.
Only the case of a transducer working at a fixed angular frequency ω will be considered, although it is
straightforward, but somewhat time-consuming, to obtain results in the time domain.

For time-harmonic conditions the displacement fields ui
j in the two materials i = 1, 2 satisfy

∂

∂xk
σ i

k j + ρ
iω2ui

j = 0, (1)

where ρi is the corresponding density, and σ i
k j is the stress tensor, which is related to the displacement

by the constitutive relation

σ i
k j = ci

k jk′ j ′
∂

∂x j ′
ui

k′, (2)

where ci
k jk′ j ′ are the stiffnesses of material i . Unless otherwise stated the summation convention is used

throughout in the following.
The boundary conditions to be satisfied are

t j = σk j nk = 0

on S1 (except directly below the transducer), S2, and SC. Furthermore, u j and t j are continuous on the
interface S0, where x3 = s(x1). Here s(x1) is assumed to be a periodic function; in fact, it is taken as
sinusoidal in the numerical examples:

s(x1)= b sin
2πx1

a
. (3)

There are two main reasons for this. Firstly, real interfaces are more or less sinusoidal. Secondly,
certain integrals that will appear during the analysis can be evaluated analytically, which will speed up
the computations considerably. It should be pointed out, however, that there is no fundamental difficulty
in choosing some other periodic function, as long as it is differentiable. Finally, it is assumed that the
radiation conditions are fulfilled, so that all waves are outgoing at infinity.

The first step in the solution is to determine a Green’s tensor for the same structure without a crack.
The source point is located in the cladding. This tensor is then used to derive an integral representation for
the displacement field in the same structure with a crack and an incident field generated by an ultrasonic
transducer. From the integral representation it is then possible to derive a hypersingular integral equation
for the crack opening displacement. Once the crack opening displacement is known the change in signal
response due to the crack can be determined using Auld’s reciprocity argument [1979].



1270 PER-ÅKE JANSSON

2. The Green’s tensor for the structure without a crack

To determine the Green’s tensor for the layered plate without a crack with a source in the cladding, i.e.,
the displacement field in both materials caused by a point force in material 2, the following integral
representations are used:∫

S1−S0

[
6k j j ′(x; x′)G1

j j ′′(x; x
′′)−G j j ′(x; x′)61

k j j ′′(x; x
′′)
]
nk dS

=

{
G j ′′ j ′(x′′; x′) (x′′ in material 1),
0 (x′′ in material 2);

(4)∫
S0−S2

[
6k j j ′(x; x′)G2

j j ′′(x; x
′′)−G j j ′(x; x′)62

k j j ′′(x; x
′′)
]
nk dS

=

{
−G2

j ′′ j ′(x
′′
; x′) (x′′ in material 1),

−G2
j ′′ j ′(x

′′
; x′)+G j ′′ j ′(x′′; x′). (x′′ in material 2).

(5)

Here G j j ′(x; x′) is the Green’s tensor to be determined, and Gi
j j ′(x; x

′) are half-space Green’s tensors
for material i = 1, 2. If the scattering properties of the interface are considered, G2

j ′′ j ′ may be regarded
as an incident field, G j ′′ j ′ as the scattered field in material 1, and G j ′′ j ′ −G2

j ′′ j ′ as the scattered field in
material 2. The corresponding stress tensors 6i

k j j ′ are related to the Green’s tensors by

6i
k j j ′(x; x

′)= ci
k jk′ j ′′

∂

∂x j ′′
Gi

k′ j ′(x; x
′). (6)

The half-space Green’s tensors can be expressed as double Fourier transforms in x1 and x2:

G2
j j ′(x; x

′)=

∫
∞

−∞

∫
∞

−∞

3∑
n=1

D2±
n U 2±

nj ′U
2±
nj ei(q(x1−x ′1)+p(x2−x ′2)+h2±

n (x3−x ′3)) dq dp

+

∫
∞

−∞

∫
∞

−∞

3∑
n,n′=1

D2−
n U 2−

nj ′ B
2
nn′U

2+
n′ j ei(q(x1−x ′1)+p(x2−x ′2)+h2+

n′ (x3+d2)−h2−
n (x ′3+d2)) dq dp, (7)

for x3
>
<x ′3, and similarly for G1

j j ′ ; see Appendix A. Here U 2±
nj are polarization vectors and h2±

n are the
corresponding wavenumbers in the x3-direction for plane wave solutions. These can be determined from
a generalized eigenvalue problem derived from (1) and (2). The + and − signs refer to up- and downgoing
waves, respectively. The coefficients D2±

n are determined from the jump condition at x3 = x ′3, and B2
nn′ is

a reflection matrix determined from the condition of vanishing traction at the free surface S2. The details
are given in Appendix A.

The scattered field in material 2 may be expanded as

G j j ′(x; x′)−G2
j j ′(x; x

′)=

∫
∞

−∞

∫
∞

−∞

3∑
n=1

fnj ′(q, p; x ′1, x ′2, x ′3)[U
2−
nj ei(qx1+px2+h2−

n x3)

+

3∑
n,n′=1

B2
nn′U

2+
n′ j ei(qx1+px2+h3+

n′ (x3+d2)−h2−
n d2)] dq dp. (8)
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The surface fields G j j ′ and 6k j j ′nk at the interface can also be expanded as Fourier transforms:

G j j ′(x1, x2, s(x1); x′)=
∫
∞

−∞

∫
∞

−∞

α j j ′(q ′, p′; x′)ei(q ′x1+p′x2) dq ′ dp′,

6k j j ′(x1, x2, s(x1); x′)(1+ s ′(x1)
2)1/2nk =

∫
∞

−∞

∫
∞

−∞

β j j ′(q ′, p′; x′)ei(q ′x1+p′x2) dq ′ dp′.
(9)

The factor (1+ s ′2)1/2 that appears in the integration measure is incorporated into the surface field
for later convenience. To proceed the Fourier expansions for the Green’s tensors and the surface fields
are inserted into the integral representations (4)–(5), noting that G j j ′(x; x′) = G j ′ j (x′; x). Since the
interface is periodic, the infinite integrals over the interface S0 in (4) and (5) can be reduced to integrals
over one period by using the identity∫

∞

−∞

g(x)eiqx dx =
∞∑

l=−∞

δ
(qa

2π
+ l
) ∫ a

0
g(x)eiqx dx, (10)

where g(x) is periodic with period a; see [Richtmyer 1981], for instance.
After some tedious algebra a set of simultaneous equations for the Fourier coefficients is obtained:

0=
∞∑

l ′=−∞

(
Q1

nl j ′l ′α j ′ jl ′ + Q2
nl j ′l ′β j ′ jl ′

)
,

−ηnjl =

∞∑
l ′=−∞

(
Q3

nl j ′l ′α j ′ jl ′ + Q4
nl j ′l ′β j ′ jl ′

)
,

fnjl =

∞∑
l ′=−∞

(
P3

nl j ′l ′α j ′ jl ′ + P4
nl j ′l ′β j ′ jl ′

)
,

(11)

together with an equation for the Fourier coefficients of the scattered field in material 1, that will not be
needed in the following. Here

fnjl(q0, p)= fnj (q0+ 2lπ/a, p)= fnj (q, p)

with |q0| < π/a, etc. The coefficients ηnj are expansion coefficients for the incident field, i.e., for the
half-space Green’s tensor in material 2:

ηnj (q, p; x′)= D2+
n U 2+

nj e−i(qx ′1+px ′2+h2+
n x ′3)+

3∑
n′=1

D2−
n′ U 2−

n′ j B2
n′ne−i(qx ′1+px ′2h2+

n d2+h2−
n′ (x

′

3+d2)). (12)

Explicit expressions for the matrices P i and Qi are given in Appendix B for the case of a sinusoidal
interface. From (11) it is now possible to solve for the coefficients fnjl , which means that the Green’s
tensor G j j ′ is determined in material 2. Introducing a matrix A such that

fnjl =

3∑
n′=1

∞∑
l ′=−∞

Anln′l ′ηn′ jl ′, (13)
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the explicit expression for the Green’s tensor is

G j j ′(x; x′)= G2
j j ′(x; x

′)

+

∞∑
l,l ′=−∞

∫ π/a

−π/a

∫
∞

−∞

3∑
n=1

[
U 2−

njl eih2−
nl x3 +

3∑
n′=1

B2
nn′lU

2+
n′ jle

i[h2+
n′l (x3+d2)−h2−

nl d2]
]
ei(ql x1+px2)

3∑
n′′=1

Anln′′l ′

×

[
D2+

n′′l ′U
2+
n′′ j ′l ′e

−ih2+
n′′l′ x

′

3 +

3∑
n′′′=1

D2−
n′′′l ′U

2−
n′′′ j ′l ′B

2
n′′′n′′l ′e

i(h2+
n′′l′d2−h2−

n′′′l′ (x
′

3+d2))
]
× e−i(ql′ x

′

1+px ′2) dq0 dp, (14)

where ql = q0+ 2lπ/a.

3. The integral equation for the crack opening displacement

In order to derive an integral equation for the crack opening displacement it is convenient to first transform
the Green’s stress tensor derived in the previous section to the crack coordinate system y1 y2 y3; see
Figure 1. Denoting the coordinates of the center of the crack by (ac, 0, −dc) and introducing a rotation
matrix R, the coordinate transformation is

x1 = R1 j y j + ac, x2 = R2 j y j , x3 = R3 j y j − dc. (15)

The transformed Green’s tensor is

Gc
j j ′(y1, y2, y3; y′1, y′2, y′3)

=

∫
∞

−∞

∫
∞

−∞

3∑
n=1

Dc±
n U c±

nj U c±
nj ′ e

i[q(y1−y′1)+p(y2−y′2)+h2+
n (y3−y′3)] dq dp

+

∫
∞

−∞

∫
∞

−∞

3∑
n=1

3∑
n′=1

D2−
n U 2c−

nj ′ B2
nn′U

2c+
n′ j ei[λ+kn′ yk−λ

−

kn′ y
′

k+(h
2+
n′ −h2−

n )(d2−dc)] dq dp

+

∞∑
l,l ′=−∞

∫ π/a

−π/a

∫
∞

−∞

3∑
n=1

(
U 2c−

njl ei(λ−knl yk−h2−
nl dc)+

3∑
n′=1

B2c+
nn′l ei[λ+kn′l yk+h2+

n′l (d2−dc)−h2−
nl d2]

)

× eiql ac

3∑
n′′=1

Anln′′l ′

( 3∑
n′′′=1

D2−
n′′′l ′U

2c−
n′′′ j ′l ′B

2
n′′n′′′l ′e

−i[λ−k′n′′′l′ y
′

k′−h2−
n′′l′d2+h2−

n′′′l′ (d2−dc)]

+ D2+
n′′l ′U

2c+
n′′ j ′l ′e

−i(λ+k′n′′l′ y
′

k′−h2+
n′′l′dc)

)
e−iql′ac dq0 dp, (16)

for y3
>
<y′3. Here

λ±kn = R1kq + R2k p+ R3kh±n , (17)

U 2c±
nj = R j j ′U±nj . (18)

Since the free space part of the Green’s function has the same expression in both systems, Dc±
n and

U c±
nj are determined in the same way as the corresponding quantities in the x1x2x3-system using the

appropriate stiffnesses, see Appendix A.



WAVE SCATTERING FROM A RECTANGULAR CRACK IN AN ANISOTROPIC CLADDING 1273

The corresponding stress tensor 6c
k j j ′(x; x

′) is given by

6c
k j j ′(x; x

′)= c2c
k jk′ j ′′

∂

∂x j ′′
Gc

k′ j ′(x; x
′), (19)

where c2c
k jk′ j ′′ are the stiffnesses of material 2 in the crack coordinate system.

Starting from the Green’s tensor an integral representation for the crack opening displacement 1u j (x)
can be derived: ∫

Sc

1uc
j (x)6

c
k j j ′(x; x

′)nc
kdSc =−uinc,2c

j ′ (x′)+ u2c
j ′ (x
′). (20)

Here superscript c denotes components in the crack system, and uinc,2c
j ′ (x′) is the displacement field that

would have existed in material 2 if the crack had not been there. This field was determined in [Krasnova
et al. 2005; Krasnova 2005] using a model for the ultrasonic transducer, where the stress below the
transducer is prescribed; see next section.

Operating once more with the traction operator, this time with respect to the field point x′ and taking
the limit as y′3 approaches zero yield an integral equation for the crack opening displacement:

lim
y′3→0+

∫
Sc

1u j (y1, y2)τ j j ′(y1, y2, 0; y′1, y′2, y′3) dSc =−σ
inc,2c
3 j ′ (y′1, y′2, 0) (21)

Here τ j j ′ is the double Green’s stress tensor, and σ inc,2c
3 j ′ are stress components in the crack system due

to the incident field. The explicit expression for τ j j ′ is obtained by replacing U c±
nj , U 2c±

nj , and U 2c±
njl in

(16) by S±nj , S2c±
nj , and S2c±

njl , respectively, where

Sc±
nj = i(c2c

3 j1 j ′q + c2c
3 j2 j ′ p+ c2c

3 j3 j ′h
2±
n )U c±

nj ′ , (22)

S2c±
nj = ic2c

3 jl j ′λ
±

lnU 2c±
nj ′ , (23)

S2c±
njl = ic2c

3 jk j ′λ
±

knlU
2c±
nj ′l . (24)

Equation (21) is hypersingular as a consequence of the twice differentiated Green’s tensor. The limit
in front cannot therefore be moved inside the integrand.

4. The incoming field

In the numerical examples only the case of an isotropic base material is studied. For this reason a
transducer model developed in [Boström and Wirdelius 1995] is employed. In this model the stress at
the interface between the transducer and the component is prescribed. It should be mentioned that there
is no fundamental difficulty in treating an anisotropic base material, for instance by using the transducer
model of [Niklasson 1998]. The explicit expression for the displacement field generated in an isotropic
half-space is

ut
j =

∫
∞

−∞

∫
∞

−∞

3∑
n=1

ξn(q, p)U 1−
nj ei[q(x1−xt)+p(x2−yt)+h1−

n (x3−d1)] dq dp. (25)
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Here (xt, yt, d1) are the coordinates of the transmitter, and the coefficients ξn are given in [Boström and
Wirdelius 1995] for various types of transmitters. The displacement field in a cladding without a crack is

uinc
j =

∞∑
l=−∞

3∑
n=1

∫ π/a

−π/a

∫
∞

−∞

gnl

(
U 2−

njl eih2−
nl x3+

3∑
n′=1

B2
nn′lU

2+
n′ jle

i[h2+
n′l (x3+d3)−h2−

nl d2]

)
ei(ql x1+px2) dq0 dp, (26)

according to [Krasnova et al. 2005; Krasnova 2005]. Here the coefficients gnl are solutions to

∞∑
l ′=−∞

(
Q1

nl jl ′α jl ′ + Q2
nl jl ′β jl ′

)
= ξnle−i(ql xt+pyt+h1−

nl d1),

∞∑
l ′=−∞

(
Q3

nl jl ′α jl ′ + Q4
nl jl ′β jl ′

)
= 0,

∞∑
l ′=−∞

(
P3

nl jl ′α jl ′ + P4
nl jl ′β jl ′

)
= gnl .

(27)

Transforming to the crack coordinate system, and operating with the traction operator, the right hand
side of (21) is obtained.

5. Solution to the integral equation

To discretize the integral equation, the crack opening displacement is expanded in Chebyshev functions
φm according to

1u j (y1, y2)=

∞∑
m,m′=1

γ jmm′φm(y1/c)φm′(y2/d), (28)

where c, d are half the sides of the crack, and the expansion functions are defined as

φm(s)=


1
π

cos (m arcsin s) for m = 1, 3, . . . ,

i
π

sin (m arcsin s) for m = 2, 4, . . . .
(29)

It is convenient to choose the Chebyshev functions, since they form a complete set that exhibits, like
the displacement field, a square root behavior at the crack tips. Furthermore, the functions have the
pleasant property that ∫ c

−c
φm(y1/c)eiqy1 dy1 = (−1)m+1m

Jm(qc)
q

. (30)

Inserting the expression for 1u j into (21) and projecting the result onto the Chebyshev functions yield
a linear system of equations for the unknowns γ jmm′ :

3∑
j ′=1

∞∑
m′′=1

∞∑
m′′′=1

Z jmm′ j ′m′′m′′′γ j ′m′′m′′′ = M jmm′ (31)

The explicit expressions for the matrices Z and M are given in Appendix C. It is now straightforward
to solve for the coefficients γ jmm′ . Hence, the crack opening displacement is determined.
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6. The signal response

Next, the reciprocity result of [Auld 1979] is used to relate the crack opening displacement (COD) to
the output voltage from the receiving probe:

δ01 =−
iω
4P

∫ c

−c

∫ d

−d
1u j (y1, y2)σ

re
3 j (y1, y2) dy1 dy2, (32)

where P is the incident electric power to the probe, 1u j is the COD due to the incoming field, and σ re
2 j

is the traction with the receiving probe acting as a transmitter in the absence of the crack. The quantity
δ01 denotes the extra electric reflection coefficient from the receiving probe due to the presence of the
crack; this is essentially the quantity measured in practice.

Inserting the expansion (28) of the COD into (32) yields

δ01 =
iω
4P

3∑
j=1

∞∑
m=1

∞∑
m′=1

γ jmm′M re
jmm′, (33)

where M re
jmm′ is determined from the traction on the position of the crack with the receiver acting as a

transmitter in the absence of a crack. For a transducer acting in pulse-echo mode it is, of course, not
necessary to distinguish between the transmitter and the receiver.

Though the change in signal response due to the crack is the key quantity in a practical case, it may be
of some interest to consider the effect of the interface separately. Using Auld’s approach an expression for
the difference in signal response between the structure without a crack and a half-space can be derived:

δ02 =
iω
4P
(2π)2

∞∑
l,l ′=−∞

3∑
n=1

∫ π/a

−π/a

∫
∞

−∞

ξ re
nl e
−i[ql (xr+ac)+pyr+h1−

nl d1]

×

[(
2π(l − l ′)

ah1−
nl

Jl ′−l(h1−
nl b)S1−

n1 jl + Jl ′−l(h1−
nl b)S1−

n3 jl

)
α j

(
− q0− l ′ 2π

a
,−p

)
−U 1−

njl Jl ′−l(h1−
nl b)β j

(
− q0− l ′ 2π

a
,−p

)]
dq0 dp. (34)

Here ξ re
nl are the coefficients of (25) with the receiver acting as a transmitter, (xr, yr, d1) are the coordinates

of the receiver, and α j , β j are determined from (27).

7. Numerical results

There are numerous parameters that can be varied in this problem. Here some numerical results that
illustrate the effect of the interface and the crack will be given. The base material 1 has a thickness
d1 = 30 mm and is regarded as an isotropic steel with density ρ1

= 8.40 g/cm3, and with longitudinal
and transverse wave velocities 5.90 mm/µs and 3.20 mm/µs, respectively. The cladding has a thickness
d2 = 5 mm and is assumed to be a transversely isotropic steel with density ρ2

= 8.50 g/cm3 and stiffness
constants (in GPa) C2

11 = 216, C2
22 = C2

33 = 250, C2
12 = C2

13 = 115, and C2
44 = 100, all in abbreviated

notation. Only the case where the crystal axes coincide with the x1x2x3-axes have been considered in
the numerical examples. Damping in the materials is modeled by adding a small imaginary part, 2% of
the real part, to all stiffnesses. It should be noted, however, that Auld’s reciprocity relation is strictly
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valid only for lossless media, which means that the present numerical results are approximate in that
sense. The interface between the base material and the cladding is taken as sinusoidal according to (3)
with a = 5 mm. Reflection from the scan surface x3 = d1 has been neglected in all numerical examples.
The transmitter is of SV type working in pulse echo mode with an angle of 45◦, and the size is 10 by
10 mm. Only the case of a fixed frequency, 1 or 2 MHz, has been studied. All results are calibrated with
a side-drilled hole of diameter 3 mm and depth 33 mm.

When calculating the matrices Z and M from (52) and (53), it is necessary to truncate the infinite
integrals. For the first two terms in matrix Z this has already been accomplished in [Boström et al.
2003], and the reader is referred to that paper for details. For the infinite integrals in the third term
of Z and in M it was found that it is sufficient to evaluate the integrals from −N to N , where N =
cs,cl/2cs,b. Here cs,cl =

√

C2
44/ρ

2 is a typical shear wave velocity in the cladding, and cs,b is the shear
wave velocity in the base material. Increasing N further above this value will not change the final
result significantly. The sums over subscripts l and l ′ in the third term of matrix Z also need to be
truncated. By experimenting numerically it has been found that the maximum value of l may be taken as
lmax =max(ks,cla− 3, 4), where ks,cl = 2π f/cs,cl is the shear wave number in the cladding. In the same
way it is necessary to truncate the summation over subscripts m and m′ in (32). Using mmax= 2ks,cl/3+4
it is seen that the convergence will be sufficient. With the truncations chosen the accuracy is well below
0.1 dB, which corresponds to about 1 per cent in the amplitude of the signal measured. For comparison
a difference of about 1-2 dB between simulations and experiments is normally considered as satisfactory
in ultrasonic testing. To the author’s knowledge there are neither results obtained by alternative methods
nor experimental data to compare with for this particular problem.

Figure 2 shows the signal response for a few different sizes of the crack as a function of the position
of a 2 MHz transmitter. The crack is “vertical”, i.e., y1 =−x3+ dc, y2 = x2, and y3 = x1− ac, and it is
located below a valley of the interface (ac = 3.75 mm). The amplitude of the interface is b = 1 mm.
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Figure 2. Signal response (δ01) as a function of the position (xt) of a 2 MHz transmitter
for different sizes of the crack, 2× 2 mm (solid), 2× 4 mm (dashed), 3× 3 mm (dotted),
and 3× 6 mm (dash-dotted).
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Figure 3. Signal response (δ01) as a function of the position (xt) of a 2 MHz transmitter
for various values of the amplitude of the interface, b = 0 (solid), b = 0.5 mm (dashed),
b = 1 mm (dotted).

Figure 3 shows the influence of the amplitude of the interface (b) for the 3× 6 mm crack of Figure 2.
The same 2 MHz transducer is used. Obviously the amplitude is very important for the signal response.
Changing the b from 0.5 to 1 mm gives a decrease of about 9 dB for the maximum value. However, there
does not seem to be any simple systematic relation between the amplitude b and the maximum signal
response.

Figure 4 shows the effect of translating the crack with respect to the interface for the same transducer
as in the previous examples. The positions chosen correspond to a crack centered directly below a top
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Figure 4. Signal response (δ01) as a function of the position (xt) of a 2 MHz transmitter
for various values of the position of the crack relative to the corrugated interface, ac =

1.25 mm (solid), ac = 2.5 mm (dashed), ac = 3.75 mm (dotted), ac = 0 (dash-dotted).
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Figure 5. Signal response (δ01) as a function of the position (xt) of a 2 MHz transmitter
for various values of the orientation of the crack, ϕ = 0 (horizontal crack, solid), ϕ = 45◦

(dashed), ϕ = 90◦ (vertical crack, dotted), ϕ = 135◦ (dash-dotted).

or a valley of the interface, or in the middle of these two. There does not seem to be any systematic
dependence on the position, but it is worth pointing out that there is a difference of about 8 dB between
the maximum responses for a crack below a top (ac = 1.25 mm) and a crack directly below a valley
(ac = 3.75 mm).

In Figure 5 the response from cracks with varying orientation is examined, still with a 2 MHz trans-
ducer. All cracks have a normal (y3-axis) in the x1x3-plane and are rotated an angle ϕ about the x2-axis
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Figure 6. Signal response (δ01) as a function of the position (xt) of a 1 MHz transmitter
for various values of the amplitude of the interface, b = 0 (solid), b = 0.5 mm (dashed),
b = 1 mm (dotted).
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with ϕ = 0 corresponding to the “horizontal” position, where the y1 y2 y3-system is not rotated. The
strongest echo is obtained from the horizontal crack, about 5 dB stronger than for the vertical crack.

Finally, in Figure 6 some results for a 1 MHz transducer are shown. Apart from the frequency, all
parameters have the same values as in Figure 3. The obvious result is that at low frequencies the wavy
interface only has a minor influence on the signal response. Similar results are obtained when the crack
is translated sideways as in Figure 4. Tilting the crack, however, give results more in accordance with
the 2 MHz case.

8. Concluding remarks

In this paper the effect of a two-dimensional periodic interface on three-dimensional wave scattering
by a rectangular crack in a cladding has been investigated. A mathematical model has been developed,
where the elastic wave propagation problem is solved exactly. It is seen that the properties of the wavy
interface are of major importance for the signal response at higher frequencies. From systematic studies
with varying values of the governing parameters it should possible to acquire a deeper understanding of
the influence of the properties of the interface, the size, location, and orientation of the crack, the material
parameters, etc. It is believed that the model will provide a useful tool for planning and qualification
of ultrasonic testing procedures. For instance, it should be possible to judge whether a defect of a
certain size, location, and orientation would be possible to detect using a certain method of inspection
(transmitter type, frequency, search pattern).
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Appendix A: The half-space Green’s tensors

The half space Green’s tensor expressed as a double Fourier transform has been derived in [Boström et al.
2003]. To do this plane wave solutions are determined by defining a vector vi (i = 1, 2) as

vi
=
(

ui
1 ui

2 ui
3 σ

i
13 σ

i
23 σ

i
33

)T
, (35)

where all elements are assumed to have an exp(i(qx1+ px2+ hi x3)) dependence, which is suppressed
in the following. Substituting into (1) and (2) leads to a generalized eigenvalue problem

Aivi
= hi C ivi . (36)

The explicit expressions for the matrices Ai and C i are not given here. The reader is referred to [Boström
et al. 2003] for details. Solving the eigenvalue problem gives six eigenvalues hi±

n , n = 1, 2, 3, where the
superscript indicates propagation in the positive or negative x3-direction. The corresponding eigenvectors
are denoted by

vi±
n =

(
U i±

n1 U i±
n2 U i±

n3 T i±
n1 T i±

n2 T i±
n3

)T
. (37)

The half-space Green’s tensor can then be expressed as a double Fourier transform by adding the free
space Green’s tensor and a reflected part that is constructed so that the stress-free boundary condition on
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the free surface is satisfied. For the base material (i = 1) the result is

G1
j j ′(x; x

′)=

∫
∞

−∞

∫
∞

−∞

3∑
n=1

D1±
n U 1±

nj ′U
1±
nj ei(q(x1−x ′1)+p(x2−x ′2)+h1±

n (x3−x ′3)) dq dp

+

∫
∞

−∞

∫
∞

−∞

3∑
n,n′=1

D1+
n U i+

nj ′ B
1
nn′U

1−
n′ j ei(q(x1−x ′1)+p(x2−x ′2)+h1−

n′ (x3−d1)−h1+
n (x ′3−d1)) dq dp, (38)

for x3
>
<x ′3. The quantities Di±

n are determined by the jump condition for the free space Green’s tensor at
x3 = x ′3. This leads to

3∑
n=1

(Di+
n U i+

nj U i+
nj ′ − Di−

n U i−
nj U i−

nj ′ )= 0, (39)

3∑
n=1

(Di+
n T i+

nj U i+
nj ′ − Di−

n T i−
nj U i−

nj ′ )=−δ j j ′/(2π)2. (40)

Obviously, there are 18 equations and 6 unknowns for each material. However, the equations are not
linearly independent, since the symmetry properties of the Green’s tensor have already been exploited.
The reflection matrix Bi is determined from the condition that the traction vanishes on the free surface,
which means that

T 1+
nj +

3∑
n′=1

B1
nn′T

1−
n′ j = 0, (41)

T 2−
nj +

3∑
n′=1

B2
nn′T

2+
n′ j = 0, (42)

for n, j = 1, 2, 3.

Appendix B: The matrices Q i and P i

If reflection at the scan surface S1 is neglected, and the interface is taken as sinusoidal,

s(x1)= b sin
2πx1

a
, (43)

then the explicit expressions for the matrices Q1, . . . , Q4, P3, P4 are

Q1
nl jl ′ = A1−

nl jl ′e
ih1−

nl d1, (44)

Q2
nl jl ′ = C1−

nl jl ′e
ih1−

nl d1, (45)

Q3
nl jl ′ = A2+

nl jl ′ +
3∑

n′=1
A2−

n′l jl ′B
2
n′nle

id2(h2+
nl −h2−

n′l ), (46)

Q4
nl jl ′ = C2+

nl jl ′ +
3∑

n′=1
C2−

n′l jl ′B
2
n′nle

id2(h2+
nl −h2−

n′l ), (47)
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P3
nl jl ′ = A2−

nl jl ′, (48)

P4
nl jl ′ = C2−

nl jl ′, (49)

where

Ai±
nkl jl ′ = 2π

(
2π(l − l ′)

hi±
nl

Si±
n1 jl + aSi±

n3 jl

)
Jl ′−l(bhi±

nl )D
i±
nl , (50)

C i±
nl jl ′ = 2πaU i±

njlJl ′−l(bhi±
nl )D

i±
nl . (51)

Appendix C: The matrices Z and M

The explicit expressions for the matrices Z and M from (31) are

Z jmm′ j ′m′′m′′′

= (−1)m
′′
+m′′′mm′m′′m′′′

∫
∞

−∞

∫
∞

−∞

3∑
n=1

Dc−
n Sc−

nj Sc−
nj ′

Jm(qc)Jm′(pd)Jm′′(qc)Jm′′′(pd)
q2 p2 dq dp

+ (−1)m
′′
+m′′′mm′m′′m′′′

∫
∞

−∞

∫
∞

−∞

3∑
n,n′=1

D2−
n S2c−

nj B2
nn′S

2c+
n′ j ′

×
Jm(λ

−

1nc)Jm′(λ
−

2nd)Jm′′(λ
+

1n′c)Jm′′′(λ
+

2n′d)

λ−1nλ
−

2nλ
+

1n′λ
+

2n′
ei(h2+

n′ −h2−
n )(d2−dc) dq dp

+ (−1)m
′′
+m′′′mm′m′′m′′′

∞∑
l,l ′=−∞

∫ π/a

−π/a

∫
∞

−∞

3∑
n,n′=1

Anln′l ′

×

(
S2c−

nj ′l
Jm′′(λ

−

1nlc)Jm′′′(λ
−

2nld)

λ−1nlλ
−

2nl
e−ih2−

nl dc+

3∑
n′′=1

B2
nn′′l S

2c+
n′′ j ′l

Jm′′(λ
+

1n′′lc)Jm′′′(λ
+

2n′′ld)

λ+1n′′lλ
+

2n′′l
ei[h2+

n′′l (d2−dc)−h2−
nl d2]

)

×

(
D2+

n′l ′S
2c+
n′ jl ′

Jm(λ
+

1n′l ′c)Jm′(λ
+

2n′ld)

λ+1n′l ′λ
+

2n′l ′
eih2+

n′l′dc

+

3∑
n′′′=1

D2−
n′′′l ′B

2
n′′′n′l ′S

2c−
n′′′ j ′l ′

Jm(λ
−

1n′′′l ′c)Jm′(λ
−

2n′′′l ′d)

λ−1n′′′l ′λ
+

2n′′′l ′
ei[−h2−

n′′′l′ (d2−dc)+h2+
n′l′d2]

)
e2π i(l−l ′)ac/a dq0 dp.

(52)

It should be noted that the first two terms in the matrix Z correspond to scattering from a rectangular
crack in a homogeneous anisotropic medium, which is the problem solved in [Boström et al. 2003]. Thus,
it is only the third term, describing the influence of the cladding, which needs to be calculated.

M jmm′ = (−1)(m+m′)mm′
3∑

n,n′=1

∞∑
l,l ′=−∞

∫ π/a

−π/a

∫
∞

−∞

gnleiql ac

×

(
S2c−

njl
Jm(λ

−

1nlc)Jm′(λ
−

2nld)

λ−1nlλ
−

2nl
e−ih2−

nl dc +

3∑
n′=1

B2
nn′l S

2c+
n′ jl

Jm(λ
+

1n′lc)Jm′(λ
+

2n′ld)

λ+1n′lλ
+

2n′l
ei[h2+

n′l (d2−dc)−h2−
nl d2]

)
dq0dp.

(53)
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EFFECT OF ADDING CRUMB TIRE RUBBER PARTICLES
ON THE MECHANICAL PROPERTIES OF

DCPD-MODIFIED SULFUR POLYMER MORTARS

HAMED MARAGHECHI, IMAN FOTOVAT AHMADI AND SIAMAK MOTAHARI

Sulfur polymer mortars are composite materials in which modified sulfur is the binder while sand and
other fillers are used as aggregates. Sulfur-based composite materials are characterized by their high
chemical and mechanical properties along with fast setting behavior. However, sulfur modification is
essential in order to achieve sulfur mortars with enhanced characteristics. In this study, incorporation
of crumb tire rubber in dicyclopentadiene-modified sulfur-based mortars, as some replacement of sand,
is evaluated. Use of crumb tire rubber influences the compressive stress-strain behavior of the mortars
significantly. While the compressive strength of the rubber-added mortars is reduced dramatically, the
postpeak response of the mortars is of the great interest. Use of a reactive-mixing method improves the
compressive strength of rubber-added sulfur polymer mortars up to approximately 25%. Scanning elec-
tron microscopy observations confirm better adhesion between the rubber particles and sulfur polymer
matrix via reactive mixing. Furthermore, it is clarified that the crumb tire rubber type and presence of a
curing agent during the mortar preparation process affect the mechanical properties of the sulfur mortar.

1. Introduction

Large amounts of sulfur are produced annually in some countries, from the mining of sulfur deposits and
as a byproduct of oil and gas refining in the petroleum industry. Nowadays sulfur is known as a prominent
candidate for certain applications in construction industries. As an alternative to cement concrete, sulfur
concretes have found their way among other construction materials. Sulfur concrete is obtained by mixing
modified sulfur melt as the binder and preheated stone, sand, and filler as aggregates. Solidification of the
fresh mix occurs rapidly and the concrete gains its strength shortly. High mechanical strength, fast setting,
low permeability, and high chemical resistance against strong acids and saline environments are some of
the remarkable characteristics of sulfur concrete [Abdel-Jawad and Al-Qudah 1994]. In many specialized
construction and transportation applications in which conventional materials like Portland cement are
unable to endure the operational conditions, sulfur concretes would be an appropriate substituent option.
These conditions could include pipes or tiles for handling acidic sewer waters, airfield runways and
aircraft parking, flooring material for industrial plants, and tanks for holding corrosive substances [Yue
et al. 2006; Mohamed and El Gamal 2007; 2009].

Sulfur concrete with unmodified sulfur binder lacks durability and stability. During solidification
from melt, pure or unmodified sulfur crystallizes to the monoclinic allotrope (Sβ), which is stable be-
tween the melting point of sulfur and 95◦C. On further cooling to ambient temperature, the monoclinic
allotrope reverts to the denser orthorhombic allotrope (Sα), which has a different crystalline structure.
This transition takes approximately a day to complete. As a result of the distinct densities and structures

Keywords: sulfur polymer mortar, modified sulfur binder, crumb tire rubber, ductile behavior, allotropic transformation.
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of these two allotropes, large shrinkage and residual internal stresses are induced within the bulk of
the sulfur. In addition, when using unmodified sulfur as the binder in composite materials or concretes,
microcrystals of orthorhombic sulfur start to grow and change into macrocrystals of orthorhombic sulfur.
This makes the composite brittle and impractical for most applications, due to loss of durability. Chemical
modification of sulfur overcomes these problems, particularly concerning the changes in crystallinity.
Frequently, polysulfides, or some commercial materials such as SRX™ (Starcrete™ Technologies Inc.),
are used in order to modify and control the crystallization of sulfur [Blight et al. 1978; Bordoloi and
Pearce 1978]. Other chemicals, such as dicyclopentadiene (DCPD), its oligomers, and bitumen have
also been employed [McBee and Sullivan 1982; Mohamed et al. 2006]. The reaction products of these
components are mostly mixtures of various polysulfides and unreacted sulfur. The reactions of sulfur
with dicyclopentadiene have been investigated by several researchers [Blight et al. 1978; Bordoloi and
Pearce 1978; Mohamed and El Gamal 2007]. While sulfur-modified concrete is a promising alternative
material in specialized applications, its high initial fabrication costs and relatively low melting tempera-
ture comparing to Portland cement restrict its utilization in large-scale ordinary constructions.

The increasing volume of used tires in landfills has caused serious environmental problems. Since
waste rubber is not easily biodegradable even after a long period of landfill treatment, material and energy
recovery are alternatives to disposal. Thus, many studies have been carried out in recent decades look-
ing for applications of waste rubber in construction materials, especially in Portland cement concretes.
Researchers have endeavored to enhance some mechanical properties of concrete, such as toughness
and energy absorption, by incorporating scrap tire rubber of various shapes and sizes: crumb, milled
tire rubber, slit, and shredded or chipped tires [Topçu and Avcular 1997; Khatib and Bayomy 1999;
Segre and Joekes 2000; Bennazzouk et al. 2003; Albano et al. 2005; Bignozzi and Sandrolini 2006].
Tantala et al. [1996] examined the energy absorption capacity of rubberized Portland cement concrete
(rubcrete) mixtures made by replacing 5% to 10% of coarse aggregate by volume with scrap rubber, and
reported that the toughness of rubcretes is higher than that of the control concrete mixture. Low-density
concrete mixtures, made using crumb rubber to replace up to 30% by weight of coarse and fine aggregate,
have shown improved crack and chemical resistance [Sukontasukkul and Chaikaew 2006]. According to
[Siddique and Naik 2004], on the use of scrap tire rubber in concrete, the compressive strengths of rubber
modified concretes are less than those of unmodified concretes; however, toughness and impact strength
improve. Moreover, it was observed that the use of coarse scrap tire rubber affects the properties more
negatively than the use of fine particles [Eldin and Senouci 1993]. Analyzing the fracture mechanisms
in rubber modified concretes indicated that the bonds between cement and rubber particles were weak.
Bond strength augmentation between rubber and cement is the key parameter in overcoming the defects
of rubber modified concrete [Topçu and Avcular 1997].

This paper presents the results of a study on the use of crumb tire rubber as a feasible toughness
enhancer in sulfur polymer mortars. The effect of rubber content on stress-strain behavior, compres-
sive strength, density, and elastic modulus is investigated and compared with Portland cement mortars.
Furthermore, reactive mixing and ordinary mixing procedures and their influence on the compressive
strength of the prepared samples are evaluated. As a result, the effect of the presence of crumb rubber
particles during the copolymerization of sulfur with dicyclopentadiene (DCPD) is determined. Finally,
the influence of rubber type — tread or sidewall tire rubber — and the availability of traditional rubber-
curing agents during mortar mixing on the mechanical properties of the sulfur polymer mortar is studied.
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2. Experimental

Materials. Elemental sulfur (99.9% purity) was obtained from the Tehran Refinery Complex, Iran. Di-
cyclopentadiene (DCPD) was supplied by Merck with 99.9% purity. Stearic acid, zinc oxide, and accel-
erator CZ (N-cyclohexyl benzothiazole-2-sulfenamide) were supplied by Issatiss (Yazd Tire Co.) and
used as curing agents. Crumb tire rubber selected from tread and sidewall sections of car tires was sup-
plied by Issatiss (Yazd Tire Co.), with maximum particle size of approximately 0.4 mm and densities of
1.15 ± 0.02 g/cm3 and 1.09 ± 0.02 g/cm3, respectively. The composition of tire tread and sidewall rubber
are presented in Table 1. Ordinary Portland cement type II was provided by the Abeyek Company, Iran.
Washed natural river sand with density of 2.60 g/cm3 was used as fine aggregate in sulfur and Portland
cement mortar mixtures. The sand was kept in a 140◦C oven for twelve hours to dry and heat up. The
maximum size of sand in sulfur-based mortars is 2.4 mm and the stone dust was used as filler. Cumulative
grain size distribution of the crumb tire rubber and sand particles are shown in Figure 1.

Procedures. As a binder of mortars, modified sulfur was produced by a copolymerization reaction of
sulfur melt with 10% (w/w) dicyclopentadiene uniformly mixed for three hours at 140◦C using a mechan-
ical stirrer. The progress of the reaction was followed carefully by temperature and viscosity variation.

Components Tire tread Tire sidewall

Natural rubber 50 50
Synthetic rubber 50 (SBR) 45 (BR)
Carbon black 45 50
Naphthenic oil 9 7
Zinc oxide 3 3
Sulfur 1.5 2

Table 1. Chemical compositions of tire tread and sidewall tire (parts per hundred of rubber).

Figure 1. Cumulative grain-size distribution of crumb rubber and sand particles.
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Components P S MS0 MS5 MS10 MS15

Sulfur 0 35 0 0 0 0
Portland cement 35 0 0 0 0 0
Modified sulfur 0 0 35 35 35 35
Sand 55 55 55 50 45 40
Filler 10 10 10 10 10 10
Crumb rubber 0 0 0 5 10 15

Table 2. Mix design of Portland cement and sulfur polymer mortars with and without
crumb tire rubber (volume %).

Since the reaction was exothermic, accurate temperature control was essential to make sure the reaction
temperature did not exceed 145◦C; otherwise the viscosity would rise abruptly and unstable sulfur would
form. The reaction product, which hereafter is called modified sulfur binder, was a mixture of polysulfide
and unreacted sulfur.

Portland cement and pristine and modified sulfur polymer mortar proportions are reported in Table 2,
so that their characteristics can be assessed and compared with each other by performing the proposed
analyses. The mixtures marked with “P” and “S” are the formulations in which Portland cement and
pristine sulfur, respectively, are used as the binder. The symbol “MS” represents the mortars containing
modified sulfur binder. MS0, MS5, MS10, and MS15 mixtures are those in which 0, 5, 10, and 15%
(v/v) of sand are replaced by crumb tire rubber with identical particle size, respectively. Portland cement
mortars were prepared by mixing the components shown in Table 1 with a water/cement ratio of 0.48.
Specimens were cured at 20◦C and 100% relative humidity for 28 days prior to testing. In order to make
fresh sulfur polymer mortars comprising crumb tire rubber particles, initially prefabricated modified
sulfur binder was melt mixed with the specified amounts of rubber particles for 5 minutes mechanically
so that homogeneous mixtures in which modified sulfur binder wetted the rubber particles utterly were
obtained. Subsequently, sand and filler particles that were preheated up to 140◦C were added to the
mixture according to their volume percentages in Table 2 under strict temperature control. After a homo-
geneous mixture was attained, prepared mortars were cast in cubic preheated steel molds (130◦C) with
dimensions of 50 × 50 × 50 mm. They were then compacted by a vibrator for 30 s. The samples were
permitted to cool down to ambient temperature and demolded after 24 hours. All tests were implemented
one week after mixing.

In one set of experiments, in order to evaluate the increase in adhesion between rubber particles
and sulfur polymer matrix, reactive mixing and ordinary mixing procedures were studied. In the former
procedure, crumb rubber particles were added to the reaction mixture of sulfur/DCPD from the beginning
of the copolymerization, while in latter the rubber particles were added after the copolymerization of
sulfur with DCPD.

Testing techniques. Differential scanning calorimetry (DSC) was performed by Dupont 2000 V4.0B
equipment to examine the influence of different DCPD percentages on the allotropic phase transformation
of the sulfur as a result of thermal variation. Three different sulfur mixtures with 5, 8, and 10 wt% DCPD
were analyzed after being stored for a week; the heating rate was 10◦C/min.
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Mechanical properties of the prepared samples were determined one week after molding as average
value of three samples for each mixture by a Zwick 1494 (Germany) testing machine on 50×50×50 mm
cubic sulfur polymer mortar with a constant deflection rate of 5 mm/min.

In order to investigate the interface adhesion between the rubber particles and modified sulfur binder
qualitatively, microstructure observations were carried out by scanning electron microscopy (CamScan,
MV2300, operated at 20 kV) on the fracture surface resulting from compressive strength tests after sam-
ples were sputtered with silver layer.

3. Results and discussion

DSC characterization of modified sulfur. In order to be assured of the copolymerization reaction be-
tween the sulfur and the modifier, DSC diagrams for pure sulfur and sulfur with three different DCPD
loading percentages are depicted in Figure 2. It was mentioned before that the advantage of sulfur modi-
fication is that the crystalline phase transformation during cooling down of the molten sulfur to ambient
temperature would be retarded. Hence, less orthorhombic structures are formed due to the presence of
polysulfides. Sulfur and modified sulfur samples prepared from the molten state were analyzed with
DSC after proper storage time under ambient conditions. The storage period is to ensure enough time for
the phase transformation from Sβ to Sα to be complete. In the DSC heating diagram corresponding to
pure sulfur (Figure 2a), two separated endothermic peaks are observed. The first peak at around 102◦C is
attributed to the crystalline phase transformation of orthorhombic (Sα) to monoclinic (Sβ) structures dur-
ing temperature increase. The second peak is associated with the melting of sulfur monoclinic structures

Figure 2. DSC diagrams of (a) pristine sulfur, (b) 5 wt% DCPD and sulfur, (c) 8 wt%
DCPD and sulfur, and (d) 10 wt% DCPD and sulfur.
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which obviously require more heating energy. However, it is observed that by addition of DCPD to pure
sulfur the first peak gradually broadens and becomes the shoulder of the second peak as the percentage
loading of the modifier increases (Figures 2b and 2c) and then when 10 wt% DCPD is used the second
peak is mostly diminished (Figure 2d). A similar observation was reported in [Lui et al. 2008], a study
on sulfur coated urea. The modified sulfur is a mixture of polysulfides and unreacted sulfur. In fact,
polysulfides hinder the crystallization of free unreacted sulfur in the modified sulfur binder substantially.
Thus, the unpleasant mechanical behavior of pristine sulfur concrete as well as its volume shrinkage is
avoided via modification process since the modified sulfur does not undergo the allotropic transformation
during thermal alteration.

Effect of the addition and replacement methods. The compressive strength of two sulfur polymer mortar
mixtures, with the same formulation as MS10, yet prepared through different approaches — addition and
replacement — was compared. In the addition method sand grains were replaced by rubber particles
indiscriminately, while in the replacement method sand aggregates were replaced with crumb rubber tire
of a similar grain size. The results indicate that using the replacement method the compressive strength
grows by approximately %5, reaching 18.96 MPa, relative to 17.98 MPa for the sample prepared via the
addition method. As a consequence of volumetric substitution of the similar size sand with crumb rubber
particles in the replacement method, it is observed that sulfur polymer mortar with higher compressive
strength and fluidity is achieved. This is mainly because in the addition method, sand particles are
replaced by rubber grains with a larger total surface area for the same bulk volume. Thus the resulting
mortar has a higher interface area between sulfur paste and rubber grains, relative to mortar prepared via
the replacement method. Since the sulfur-rubber bond is weaker than the sulfur-sand bond, reduction in
strength and workability is observed in the case of the addition method. Similarly, replacing the sand by
rubber based on mass percentage would result in a severe slump and strength reduction. Therefore, all
mortars in this study are prepared through the replacement method, in which sand particles are replaced
by similar-sized rubber grains.

Effect of rubber particles on physical and mechanical properties of mortar. The physical and mechan-
ical properties of the mortars described in Table 2 are listed in Table 3. Preliminary observations of
all fresh mortars showed relatively good flowability, as a result of the high volume fraction of binder.
During the preparation of the sulfur polymer mortars, it was observed that the workability of the fresh
mixtures decreases with an increase in the rubber content. According to [Eldin and Senouci 1994], on

Composition Hardened unit Compressive strength Elastic modulus Failure strain
weight (g/cm3) (MPa) (GPa) (%)

P 2.45 32.48 – –
S 2.43 39.54 18.34 0.221
MS0 2.40 48.87 21.68 0.229
MS5 2.34 31.62 17.36 0.242
MS10 2.25 18.96 9.31 0.254
MS15 2.19 15.51 6.86 0.313

Table 3. Physical and mechanical properties of the samples.
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rubberized concrete, this observation is attributed to the interlocking structure of tire chips, which lessens
the flowability of concrete. It is also claimed that this behavior could be related to the reduced density
of the concrete as well as the high friction between the rubber particles and the mixture due to the rough
surface of the rubber aggregate particles [Nehdi and Khan 2001; Cairns et al. 2004].

All prepared sulfur polymer mortars possess lower density than the Portland cement mortar. Logically,
replacement of natural sand with rubber particles reduces the density of the sulfur polymer mortars, as
a result of the inherent lower density of rubber particles compared to sand. Unit weight results indicate
that increasing the crumb rubber content decreases the sulfur polymer mortar density, resulting in lighter
mortars (Table 3). For instance, the MS15 sample exhibited lighter weight, with density decreased
approximately 8.7% as compared to sulfur polymer mortar without rubber particles (MS0).

According to Table 3, the compressive strength of the pristine sulfur mortar (S) is almost 21% higher
than that of Portland cement mortar. It is also observed that sulfur polymer mortar (MS0) has higher
compressive strength and elastic modulus than pristine sulfur mortar. This is due to the fact that polysul-
fides retard the unfavorable crystallization transformation and thus less shrinkage occurs upon cooling
and less residual stresses are developed within mortar. This leads to higher mechanical properties in
comparison with unmodified mortar. Introduction of rubber particles in sulfur polymer mortars leads to a
general decreasing of mechanical properties. Considerable reduction in compressive strength is observed
for sulfur polymer mortars in which sand grains are replaced by rubber particles. The more sand grains
substituted by rubber particles, the less the compressive strength of the mortar. In mortars with 5% rubber,
a decrease of approximately 35% in compressive strength is observed in comparison with MS0, while
the approximate reductions in compressive strength of the mortars with 10% and 15% rubber content
are 61% and 68% respectively. That an increase in volume percentage of rubber particles in the mortar
from 10 to 15% reduces the compressive strength at a slower rate has also been observed and reported by
other authors [Eldin and Senouci 1994]. Reduction in compressive strength and modulus was anticipated
because rubber particles have lower modulus and higher resiliency in comparison with sand grains. This
results in the formation of cracks within the mortar, particularly along the boundary of separated phases,
upon loading and also in failure of sulfur polymer mortar. In fact, weak adhesion between the surface
of rubber particles and the modified sulfur binder causes the mortars to fail at lower stresses as a result
of debonding between the rubber and the binder. Similar findings have been made by other researchers
while using scrap tire rubber in Portland cement concretes. The reduction of the compressive strength is
attributed to the weak rubber/binder adhesion [Eldin and Senouci 1994; Bignozzi and Sandrolini 2006].
It can also be assumed that since crumb rubber particles have a low elasticity modulus they act as void
in concrete, and hence they are not able to withstand the applied external load. However, it is found
that the enhancement of the adhesion between the rubber and binder through pretreatment of the rubber
particles improves its ultimate mechanical strength [Nehdi and Khan 2001]. The comparison between the
compressive strength of rubber-added sulfur polymer mortar and that of Portland cement mortar reveals
that although with incorporation of crumb rubber in sulfur polymer mortar composition the mechanical
strength is decreased, the obtained values may still be acceptable for some nonstructural applications.

Stress-strain curves for pristine sulfur mortar and sulfur polymer mortars, with and without rubber
particles, are presented in Figure 3. As observed in the left part of the figure, pure sulfur mortar ex-
hibits completely brittle behavior and after its peak stress, the mortar fractures and collapses abruptly.
Modification of sulfur by DCPD has generated a binder system with slightly ductile characteristics;
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Figure 3. Left: Stress-strain curves for pristine sulfur mortar (S) and sulfur polymer
mortar (MS0) samples. Right: Stress-strain curves for mortar samples containing differ-
ent percentages of crumb rubber particles.

therefore the MS0 sample shows improved behavior in comparison with mortar S, resulting from the
inhibition of allotrope conversion, as discussed before. Despite the unfavorable effect of rubber particles
on compressive strength, the increase in rubber content improves postpeak response of the mortars. It
can be inferred from Figure 3, right, that rubber-added sulfur polymer mortars sustain their integrity
and withstand deformations better than mortars without rubber. As a matter of fact, various cracks are
generated within samples under compression loads due to stress concentration on the interface of rubber
particles and binder, which leads to failure of the sample; however, rubber particles lessen the crack
propagation rate and hence delay the failure of samples containing crumb rubber tire. Figure 4 shows
photographs of an MS15 sample during postpeak deformation and after its failure. The picture in part (a)
is taken at a stress of 7 MPa and strain of 0.66%, and as it is seen the sample has withstood large plastic
deformation without full disintegration and has kept its unity after undergoing remarkable displacement.

Figure 4. Behavior of MS15 mortar (a) during postpeak deformation and (b) after failure.
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Such a behavior of the rubber-added mortars is not observed in mortars without rubber particles. With an
increase in the rubber content, samples reveal more ductile behavior and the deformability of the sulfur
polymer mortar is enhanced. The displacement of strain at peak toward higher values for rubber-added
mortars confirms the above-mentioned behavior transition. Similar behavior was reported in [Yue et al.
2006] by increasing the rubber content in sulfur rubber concrete. This is mainly because rubber particles
serve as crack stabilizers and toughness enhancers in sulfur polymer mortars. Moreover, it can be seen in
Table 3 that the elastic modulus declines with increasing rubber content in sulfur polymer mortar, which
is associated with the formation of a less rigid mortar.

Comparison of ordinary mixing and reactive mixing procedures. As mentioned before, the weak adhe-
sion of the rubber and modified sulfur binder results in significant strength loss in rubber-added mortars.
Hence, promoting affinity by means of chemical interaction between the rubber particles and the modified
sulfur binder can improve the mechanical properties. To this end, favorable conditions for the reaction
between the surface of the rubber particles and the modified sulfur binder are achieved through the
inclusion of the rubber particles in the sulfur modification reactor during copolymerization by DCPD.
This procedure is called reactive mixing, due to the simultaneous presence of DCPD, sulfur, and rubber
particles in the reactor, while in the ordinary method rubber particles are added after the copolymerization
of sulfur with DCPD. It is evident that the sulfur radicals serve to substitute allylic hydrogen sites present
in elastomer chains to form crosslinked structures. Noting the possibility of the existence of double bonds
on the surface of cured rubber particles, pristine sulfur or DCPD-modified sulfur could react with rubber
unsaturated bonds at 140◦C for 3 hours, and further vulcanization of rubber particles and interaction
with the sulfur would form during reactive mixing. According to Table 4, the compressive strengths
of the samples prepared through reactive mixing indicate more than 20% growth. Although increase in
the rubber content decreases the compressive strength of sulfur polymer mortars, the growth rate of the
compressive strength of the samples prepared via reactive mixing in comparison with that of samples
prepared by the ordinary mixing method is enhanced with increase in rubber content. In other words,
the compressive strength of MS5, MS10, and MS15 improve by approximately 21%, 24%, and 25%,
respectively, which shows enhanced interactions between sulfur and rubber in the case of reactive mixing.

In order to visualize the enhanced interaction and adhesion between rubber and sulfur phases, SEM
micrographs of the fracture surfaces of rubber-added sulfur polymer mortar (MS10) prepared by ordinary
and reactive mixing procedures are presented in Figure 5. The images depict the interface of rubber par-
ticles and a bulk region of modified sulfur binder phases. Comparing the two micrographs, it is observed
that the adhesion of rubber particles and modified sulfur binder is enhanced by the reactive mixing method

Compressive strength (MPa)
Ordinary mixing Reactive mixing

MS5 31.62 RMS5 38.26
MS10 18.96 RMS10 23.51
MS15 15.51 RMS15 19.39

Table 4. Comparison of the compressive strengths of samples prepared via reactive
mixing and ordinary mixing procedures.
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Figure 5. SEM micrographs of the sample prepared via (a) ordinary mixing and (b) re-
active mixing procedures.

while relatively weaker bonding between components is obtained through ordinary mixing. Figure 5b
shows a rubber particle well-adhered to the modified sulfur binder as a result of chemical interaction
between them during reactive mixing. The increase in compressive strength of reactively mixed mortars
further confirms the improved interactions between the sulfur binder and rubber particles.

Effect of rubber type and curing agent. Finally, the effect of utilizing two different rubber types, se-
lected from the treads and sidewalls of tires, on compressive strength of the sulfur polymer mortar is
evaluated. The compressive strengths of the MS10 and MS15 formulations comprising the different
rubber type are shown in Table 5. The increase in compressive strength as a result of using the sidewalls
of tires in comparison with using the tread sections is due to the distinct composition of these sections.
The fact that the properties and microstructure of the rubber employed in tread and sidewall sections of tire
are different may lead to enhanced strength of sulfur polymer mortar to which sidewall rubber has been
added. In the supplied sidewall sections of tires, good resistance against crack propagation and fatigue are
the most desirable characteristics, which leads frequently to usage of polybutadiene and natural rubber
in this part. On the other hand, styrene butadiene rubber (SBR) accompanied by natural rubber are used
extensively in tread sections of supplied tires due to its great abrasion resistance, as presented in Table 1.

Sulfur polymer mortar properties
Unit weight Compressive strength Failure strain

(g/cm3) (MPa) (%)

Tread rubber MS10 2.27 18.96 0.254
MS15 2.21 15.51 0.313

Sidewall rubber MS10 2.25 19.87 0.221
MS15 2.17 16.08 0.276

Table 5. Comparison of properties of sulfur polymer mortars containing rubber from
tread and sidewall tire sections.
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Therefore, the selection of appropriate rubber is a key parameter in achieving improved properties. In
order to study the effect of conventional rubber-curing agents on improving the adhesion between sulfur
and rubber, several agents were added to the sulfur polymer reactor in the reactive mixing procedure,
30 minutes before the end of the polymerization: namely, stearic acid, zinc oxide, and the accelerator
known as CZ (N -cyclohexyl-2-benzothiazolesulfenamide). These compounds, which are well-known in
rubber industry, are typically added to rubber to accelerate and improve vulcanization by sulfur. The
mass ratio of stearic acid, zinc oxide, CZ and rubber was adjusted to 2:10:2:100. Through this approach,
the compressive strength of a sulfur polymer mortar mixture including 10% rubber was increased by
approximately 7%, which can be attributed to further vulcanization of the surface of rubber particles by
sulfur.

4. Conclusions

The overall results in this work reveal that the incorporation of crumb tire rubber particles in sulfur
polymer mortars results in a composite material with lower density and more ductile behavior, which
maintains its consistency after failure to high strains. However, the lower strength of rubber particles
and the poor adhesion between the surface of the rubber and the modified sulfur binder reduce the
compressive strength of the mortars. Use of a reactive mixing method causes some chemical interactions
between the surface of the rubber particles and the modified sulfur binder which finally improves the
compressive strength of the rubber-added sulfur polymer mortars. Also, use of sidewall tire rubber results
in a slight improvement in the compressive strength of mortars compared with the use of tread section
tire rubber. Furthermore, it is observed that the presence of curing agents during the preparation process
of the sulfur polymer mortars enhanced their mechanical properties due to the further vulcanization
of the rubber particles. Although compressive strength reduction occurred due to the usage of rubber
particles in the sulfur polymer mortar, these mortars still can be utilized in many applications thanks to
their generally higher compressive strength as compared to Portland cement mortars, as well as the other
features that have been described.
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UNIQUENESS THEOREMS IN THE EQUILIBRIUM THEORY OF
THERMOELASTICITY WITH MICROTEMPERATURES FOR MICROSTRETCH

SOLIDS

ANTONIO SCALIA AND MERAB SVANADZE

In this paper the linear equilibrium theory of thermoelasticity with microtemperatures for isotropic mi-
crostretch solids is considered and some basic results of the classical theories of elasticity and thermoe-
lasticity are generalized. Green’s formulas in the theory are obtained. A wide class of internal and
external boundary value problems are formulated, and uniqueness theorems are proved.

1. Introduction

In the last years the theory of thermoelasticity for bodies with microstructure has been intensively studied.
A thermodynamic theory for elastic materials with inner structure whose particles, in addition to mi-
crodeformations, possess microtemperatures was proposed in [Grot 1969]. Riha [1975; 1976] developed
a theory of micromorphic fluids with microtemperatures.

The linear theory of thermoelasticity with microtemperatures for materials with inner structure whose
particles, in addition to the classical displacement and temperature fields, possess microtemperatures was
presented in [Ieşan and Quintanilla 2000], where an existence theorem was proved and the continuous
dependence of solutions of the initial data and body loads was established. The exponential stability of
solutions of equations in this theory was established in [Casas and Quintanilla 2005]. The fundamental
solutions of equations in the theory of thermoelasticity with microtemperatures were constructed in
[Svanadze 2004b]. Representations of Galerkin type and general solutions of equations of dynamic and
steady vibrations in this theory were obtained in [Scalia and Svanadze 2006]. In [Scalia and Svanadze
2009b; Svanadze 2003], the basic boundary value problems (BVPs) of steady vibrations were investigated
using the potential method and the theory of singular integral equations. In [Scalia and Svanadze 2009a;
Scalia et al. 2010; Ieşan and Scalia 2010], basic theorems in the equilibrium and steady vibrations theories
of thermoelasticity with microtemperatures were proved.

The theory of micromorphic elastic solids with microtemperatures, in which microelements possess
microtemperatures and can stretch and contract independently of their translations, was presented in
[Ieşan 2001]. The fundamental solutions of equations in this theory were constructed in [Svanadze 2004a].
Uniqueness theorems in the dynamical theory thermoelasticity of porous media with microtemperatures
were proved in [Quintanilla 2009]. The existence and uniqueness of solutions in the linear theory of heat
conduction in micromorphic continua were established in [Ieşan 2002]. Recently, the representations of
solutions in the theory of thermoelasticity with microtemperatures for microstretch solids were obtained
in [Svanadze and Tracinà 2011].

The authors would like to thank two referees for their helpful suggestions concerning this work.
Keywords: thermoelasticity with microtemperatures, equilibrium theory, uniqueness theorems.

1295

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2011.6-9-10
http://www.mathscipub.org/


1296 ANTONIO SCALIA AND MERAB SVANADZE

The theory of micropolar thermoelasticity with microtemperatures was presented in [Ieşan 2007].
The existence and asymptotic behavior of the solutions in this theory were proved in [Aouadi 2008].
A linear theory of thermoelastic bodies with microstructure and microtemperatures which permits the
transmission of heat as thermal waves at finite speed was constructed in [Ieşan and Quintanilla 2009],
and existence and uniqueness results in the context of the dynamic theory were established. An extensive
review and the basic results in the microcontinuum field theories are given in [Eringen 1999; Ieşan 2004].

In this paper the linear equilibrium theory of thermoelasticity with microtemperatures for isotropic
microstretch solids [Ieşan 2001] is considered and some basic results of the classical theories of elasticity
and thermoelasticity (see [Kupradze et al. 1979; Knops and Payne 1971]) are generalized. Green’s
formulae are obtained for the theory. A wide class of internal and external BVPs are formulated, and
uniqueness theorems are proved.

2. Basic equations

We consider an isotropic elastic material with microstructure that occupies a region � of Euclidean
three-dimensional space E3. Let x = (x1, x2, x3) be a point of E3 and set Dx = (∂/∂x1, ∂/∂x2, ∂/∂x3).

The fundamental system of field equations in the linear equilibrium theory of thermoelasticity with
microtemperatures for isotropic microstretch solids consists of the equations of equilibrium [Ieşan 2001]

t jl, j + ρF (1)l = 0, (2-1)

the first moment of energy
q jl, j + ql − Ql + ρF (2)l = 0, (2-2)

the balance of energy
ql,l + ρs1 = 0, (2-3)

the balance of first stress moment
hl,l − s+ ρ s2 = 0, (2-4)

the constitutive equations
t jl = (λ err −β θ + b ϕ )δ jl + 2µe jl,

ql = k θ,l + k1wl,

q jl =−k4wr,rδ jl − k5w j,l − k6wl, j ,

Ql = (k1− k2)wl + (k− k3) θ,l,

hl = γ ϕ,l − d wl,

s = b err −m θ + ξ ϕ,

(2-5)

and the geometric equations
el j =

1
2(ul, j + u j,l), (2-6)

where u = (u1, u2, u3) is the displacement vector, w = (w1, w2, w3) is the microtemperature vector, θ is
the temperature measured from the constant absolute temperature T0 (T0 > 0), ϕ is the microdilatation
function, t jl are the components of stress tensor, ρ is the reference mass density (ρ > 0), hl is the
microstretch, F(1)

= (F (1)1 , F (1)2 , F (1)3 ) is the body force, q = (q1, q2, q3) is the heat flux vector, s is the
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intrinsic body load, s1 is the heat supply, s2 is the general external body load, q jl are the components of
first heat flux moment tensor, Q = (Q1, Q2, Q3) is the mean heat flux vector, F(2)

= (F (2)1 , F (2)2 , F (2)3 )

is first heat source moment vector, λ,µ, β, γ, ξ, b, d,m, k, k1, k2, . . . , k6 are constitutive coefficients,
δl j is the Kronecker delta, el j are the components of strain tensor, the subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coordinate, j, l = 1, 2, 3, and
repeated indices are summed over the range {1, 2, 3}.

By virtue of (2-5) and (2-6), the system (2-1)–(2-4) can be expressed in terms of the displacement
vector u, the microtemperature vector w, the temperature θ and the microdilatation function ϕ. We obtain
a system of eight partial differential equations of the linear equilibrium theory of thermoelasticity with
microtemperatures for isotropic and homogeneous microstretch solids [Ieşan 2001]:

µ1u+ (λ+µ) grad div u−β grad θ + b gradϕ =−ρ F(1),

k61w+ (k4+ k5) grad divw− k3 grad θ − k2w = ρ F(2),

k1θ + k1 divw =−ρ s1,

γ1ϕ− b div u− d divw+m θ − ξ ϕ =−ρ s2.

(2-7)

We introduce the matrix differential operator

A(Dx)=
(

Apq(Dx)
)

8×8 ,

where, for j, l = 1, 2, 3, we have

Al j (Dx)= µ1δl j + (λ+µ)
∂2

∂xl∂x j
, Al7(Dx)=−β

∂

∂xl
, Al8(Dx)= b

∂

∂xl
,

Al; j+3(Dx)= Al+3; j (Dx)= Al+3;8(Dx)= A7l(Dx)= A78(Dx)= 0,

Al+3; j+3(Dx)= (k61− k2)δl j + (k4+ k5)
∂2

∂xl∂x j
, Al+3;7(Dx)=−k3

∂

∂xl
,

A7;l+3(Dx)= k1
∂

∂xl
, A77(Dx)= k1, A8l(Dx)=−b

∂

∂xl
,

A8;l+3(Dx)=−d
∂

∂xl
, A87(Dx)= m, A88(Dx)= γ1− ξ,

(2-8)

Obviously, the system (2-7) can be written as

A(Dx)U(x)= F(x), (2-9)

where U = (u,w, θ, ϕ), F = (−ρF(1), ρF(2),−ρs1,−ρ s2), and x ∈�.

3. Boundary value problems

In this section a wide class of BVPs of the linear equilibrium theory of thermoelasticity with microtem-
peratures for isotropic and homogeneous microstretch solids is formulated.

Let S be the closed surface surrounding the finite domain �+ in E3, S ∈ C2,α1, 0 < α1 ≤ 1, �̄+ =
�+ ∪ S, �− = E3

\�̄+, �̄− =�− ∪ S.
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Definition 3.1. A vector function U = (u,w, θ, ϕ)= (U1,U2, . . . ,U8) is called regular in�− (or�+) if

Ul ∈ C2(�−)∩C1(�̄−) (or Ul ∈ C2(�+)∩C1(�̄+))

and

Ul(x)= O(|x|−1),
∂

∂x j
Ul(x)= o(|x|−1) for |x| � 1, (3-1)

where j = 1, 2, 3 and l = 1, 2, . . . , 8.

We will use the matrix differential operators

P (m)(Dx, n)= (P (m)l j (Dx, n))3×3 and P(Dx, n)= (Pl j (Dx, n))8×8,

where

P (1)l j (Dx, n)= µδl j
∂

∂n
+µn j

∂

∂xl
+ λnl

∂

∂x j
= µδl j

∂

∂n
+ (λ+µ)nl

∂

∂x j
+µMl j ,

P (2)l j (Dx, n)= k6δl j
∂

∂n
+ k5n j

∂

∂xl
+ k4nl

∂

∂x j
= k6δl j

∂

∂n
+ (k4+ k5)nl

∂

∂x j
+ k5 Ml j

(3-2)

and, for m = 1, 2 and j, l = 1, 2, 3,

Pl j (Dx, n)= P (1)l j (Dx, n), Pl7(Dx, n)=−βnl,

Pl+3; j+3(Dx, n)= P (2)l j (Dx, n), Pl8(Dx, n)= b nl,

P7;l+3(Dx, n)= k1 nl, P77(Dx, n)= k
∂

∂n
,

P8;l+3(Dx, n)=−d nl, P88(Dx, n)= γ
∂

∂n
,

Pl; j+3 = Pl+3; j = Pl+3;7 = Pl+3;8 = P7l = P78 = P8l = P87 = 0,

(3-3)

where n= (n1, n2, n3), n(z) is the external unit normal vector to S at z, ∂/∂n is the derivative along the
vector n, and

Ml j = n j
∂

∂xl
− nl

∂

∂x j
. (3-4)

P(Dx, n) and P(Dx, n)U(x) are the stress operator and stress vector, respectively, in the linear theory
of thermoelasticity with microtemperatures for microstretch solids; see [Ieşan 2001].

The internal BVPs of the linear equilibrium theory of thermoelasticity with microtemperatures for
isotropic and homogeneous microstretch solids are formulated as follows:

Problem (I)+F, f . Find a regular (classical) solution to system (2-9) for x ∈�+ satisfying the boundary
conditions

lim
x→z∈S

u(x)≡ {u(z)}+ = f (1)(z), (3-5)

{w(z)}+ = f (2)(z), (3-6)

{θ(z)}+ = f7(z), (3-7)

{ϕ(z)}+ = f8(z) (3-8)
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with f (1) = ( f1, f2, f3), f (2) = ( f4, f5, f6); here f1, f2, . . . , f8 are known functions and F is a known
eight-component vector function. Obviously, we can rewrite the boundary condition (3-5)–(3-8) in the
form

{U(z)}+ = f (z),
where f = ( f1, f2, . . . , f8).

Problem (II)+F, f . Find a regular solution to system (2-9) for x ∈�+ satisfying the boundary conditions{
P (1)(Dz, n(z))u(z)−β θ(z) n(z)+ b ϕ(z) n(z)

}+
= f (1)(z), (3-9){

P (2)(Dz, n(z))w(z)
}+
= f (2)(z), (3-10){

k
∂θ(z)
∂n(z)

+ k1w(z)n(z)
}+
= f7(z), (3-11){

γ
∂ϕ(z)
∂n(z)

− dw(z)n(z)
}+
= f8(z). (3-12)

Obviously, by virtue of (3-3) we can rewrite the boundary conditions (3-9)–(3-12) in the form

{P(Dz, n(z))U(z)}+ = f (z).

Problem (III)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-7), (3-8).

Problem (IV)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-6), (3-7), (3-12).

Problem (V)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-7), (3-12).

Problem (VI)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-7), (3-8).

Problem (VII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-10), (3-7), (3-8).

Problem (VIII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-7), (3-12).

Problem (IX)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-10), (3-7), (3-12).

Problem (X)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-11), (3-12).

Problem (XI)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-6), (3-11), (3-12).

Problem (XII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-11), (3-12).

We now turn to the external BVPs, spelling out only the first two (the external BVPs (III)−F, f through
(XII)−F, f are formulated similarly).

Problem (I)−F, f . Find a regular solution to system (2-9) for x ∈�− satisfying the boundary condition

lim
x→z∈S

U(x)≡ {U(z)}− = f (z),

where F and f are known eight-component vector functions, and supp F is a finite domain in �−.

Problem (II)−F, f . Find a regular solution to system (2-9) for x ∈�− satisfying the boundary condition

{P(Dz, n(z))U(z)}− = f (z).
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4. Green’s formulae

In this section the Green’s formulae in the linear equilibrium theory of thermoelasticity with microtem-
peratures for isotropic and homogeneous microstretch solids are obtained.

We introduce the notation

W (U,U ′)=W (1)(u, u′)+W (2)(w,w′)+ (b ϕ−β θ) div u′+ (k2w+ k3 grad θ)w′

+ (k1w+ k grad θ) grad θ ′+ (γ gradϕ− d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′, (4-1)

where u′ = (u′1, u′2, u′3) and w′ = (w′1, w
′

2, w
′

3) are three-component vector functions, θ ′ and ϕ′ are scalar
functions, U ′ = (u′,w′, θ ′, ϕ′) and

W (1)(u, u′)= 1
3(3λ+ 2µ) div u div u′

+µ

[
1
2

3∑
l, j=1
l 6= j

(
∂u j

∂xl
+
∂ul

∂x j

)(
∂u′j
∂xl
+
∂u′l
∂x j

)
+

1
3

3∑
l, j=1

(
∂ul

∂xl
−
∂u j

∂x j

)(
∂u′l
∂xl
−
∂u′j
∂x j

)]
,

W (2)(w,w′)= 1
3(3k4+ k5+ k6) divw divw′+ 1

2(k6− k5) curlw curlw′

+
k6+ k5

2

[
1
2

3∑
l, j=1
l 6= j

(
∂w j

∂xl
+
∂wl

∂x j

)(
∂w′j

∂xl
+
∂w′l

∂x j

)
+

1
3

3∑
l, j=1

(
∂wl

∂xl
−
∂w j

∂x j

)(
∂w′l

∂xl
−
∂w′j

∂x j

)]
. (4-2)

We are now in a position to prove Green’s theorem in the linear equilibrium theory of thermoelasticity
with microtemperatures for the domains �+ and �−.

Theorem 4.1. If U = (u,w, θ) is a regular vector field in �+ and U ′ = (u′,w′, θ ′) ∈ C1(�+), then∫
�+

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx =

∫
S

P(Dz, n(z))U(z)U ′(z) dz S, (4-3)

where A(Dx) and P(Dz, n(z)) are the operators defined by (2-8) and (3-3), respectively.

Proof. We introduce the matrix differential operators

A(1)(Dx)=
(

A(1)l j (Dx)
)

3×3, A(1)l j (Dx)= Al j (Dx),

A(2)(Dx)=
(

A(2)l j (Dx)
)

3×3, A(2)l j (Dx)= Al+3; j+3(Dx).

From Green’s formula in the classical theory of elasticity, expressed as∫
�+

[
A(1)(Dx) u u′+W (1)(u, u′)

]
dx =

∫
S

P (1)(Dz(n, z)) u(z) u′(z) dz S

(see [Kupradze et al. 1979]), we have∫
�+

[
(A(1) u−β grad θ + b gradϕ)u′+W (1)(u, u′)+ (β grad θ − b gradϕ) u′

]
dx

=

∫
S

P (1)(Dz, n(z)) u(z) u′(z) dz S. (4-4)



UNIQUENESS THEOREMS IN EQUILIBRIUM THERMOELASTICITY WITH MICROTEMPERATURES 1301

On account of the identity
∫
�+
(grad θ u′+ θ div u′) dx =

∫
S
θ n u′ dz S (see [Kupradze et al. 1979]),

it follows from (4-4) that∫
�+

[
(A(1) u−β grad θ + b gradϕ)u′+W (1)(u, u′)+ (b ϕ−β θ) div u′

]
dx

=

∫
S

R(Dz, n(z))v(z)u′(z) dz S, (4-5)

where v = (u, θ, ϕ) is a five-component vector and

R(Dx, n)= (Rl j (Dx, n))3×5, Rl j (Dx, n)= Pl j (Dx, n), Rl4(Dx, n)=−β nl, Rl5(Dx, n)= b nl,

for l, j = 1, 2, 3. It may be shown similarly that Green’s formula [Kupradze et al. 1979]∫
�+

[
A(2)(Dx)ww

′
+W (2)(w,w′)

]
dx =

∫
S

P (2)(Dz(n, z))w(z)w′(z) dz S

may be rewritten as∫
�+

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=

∫
S

P (2)(Dz(n, z))w(z)w′(z) dz S. (4-6)

By virtue of the identities [Kupradze et al. 1979]∫
�+

(
1θ θ ′+ grad θ grad θ ′

)
dx =

∫
S

∂θ(z)
∂n(z)

θ ′(z) dz S,∫
�+

(
divw θ ′ +w grad θ ′

)
dx =

∫
S
w n θ ′dz S,

we have∫
�+

[
(k1θ + k1 divw)θ ′+ (k grad θ + k1w) grad θ ′

]
dx =

∫
S

(
k ∂θ
∂n + k1w n

)
θ ′dz S. (4-7)

It may be shown similarly that∫
�+

[
(γ1ϕ−b div u−d divw+m θ − ξ ϕ) ϕ′+ (γ gradϕ−d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′

]
dx

=

∫
S

(
γ
∂ϕ

∂n
− d w n

)
ϕ′dz S. (4-8)

Keeping (4-1) in mind, (4-5)–(4-8) yield (4-3), and the theorem is proved. �

The following theorem holds for an infinite domain �−.

Theorem 4.2. Let U = (u,w, θ, ϕ) be a regular vector field in �−. Let U ′ = (u′,w′, θ ′, ϕ′) ∈ C1(�−)

satisfy

U ′(x)= O(|x|−1) and
∂

∂x j
U ′(x)= o(|x|−1) for |x| � 1, j = 1, 2, 3. (4-9)

Then ∫
�−

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx =−

∫
S

P(Dz, n(z))U(z)U ′(z) dz S. (4-10)



1302 ANTONIO SCALIA AND MERAB SVANADZE

Proof. Let �r be a sphere of sufficiently large radius r so that �̄+ ⊂�r , Sr is the boundary of the sphere
�r . The theorem is proved by applying Green’s formula (4-3) to the finite domain �−r =�

−
∩�r . The

positive normal to the boundary �−r is the inward one. Hence, we obtain∫
�−r

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx

=−

∫
S

P(Dz, n(z))U(z)U ′(z)dz S−
∫

Sr

P(Dz, n(z))U(z)U ′(z) dz S. (4-11)

In view of (3-1) and (4-9), the integral over Sr tends to zero when r →∞. Therefore, the limit of the
right-hand side and hence the limit of the left-hand side of (4-11) exist and are equal. From (4-4) we
obtain (4-10) and the theorem is proved. �

In the classical theory of elasticity one considers the generalized stress operator [Kupradze et al. 1979,
Chapter I]. We denote this operator by P (1)(τ1)

(Dx, n) and we have (ibid.)

P (1)(τ1)
(Dx, n)=

(
P (1)(τ1) l j (Dx, n)

)
3×3,

P (1)(τ1) l j (Dx, n)= µδl j
∂

∂n
+ (λ+µ)nl

∂

∂x j
+ τ1 Ml j ,

(4-12)

where τ1 is an arbitrary number and Ml j is defined by (3-4). Obviously, the operator P (1) is obtained
from the operator P (1)(τ1)

if we set τ1 = µ, i.e., P (1)(µ) = P (1).
In the sequel we use the matrix differential operator [Scalia et al. 2010]

P (2)(τ2)
(Dx, n)=

(
P (2)(τ2) l j (Dx, n)

)
3×3,

P (2)(τ2) l j (Dx, n)= k6δl j
∂

∂n
+ (k4+ k5)nl

∂

∂x j
+ τ2 Ml j ,

(4-13)

where τ2 is an arbitrary number. Obviously, the operator P (2) is obtained from operator P (2)(τ2)
if we set

τ2 = k5, i.e., P (2)(k5)
= P (2).

We introduce the notation

W(τ )(U,U ′)=W (1)
(τ1)
(u, u′)+W (2)

(τ2)
(w,w′)+ (b ϕ−β θ) div u′+ (k2w+ k3 grad θ)w′

+(k1w+ k grad θ) grad θ ′+ (γ gradϕ− d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′, (4-14)

where τ = (τ1, τ2) and

W (1)
(τ1)
(u, u′)= 1

3(3λ+ 4µ− 2τ1) div u div u′+ 1
2(µ− τ1) curl u curl u′

+
1
2
(µ+ τ1)

[
1
2

3∑
l, j=1; l 6= j

(
∂u j

∂xl
+
∂ul

∂x j

)(
∂u′j
∂xl
+
∂u′l
∂x j

)
+

1
3

3∑
l, j=1

(
∂ul

∂xl
−
∂u j

∂x j

)(
∂u′l
∂xl
−
∂u′j
∂x j

)]
,

W (2)
(τ2)
(w,w′)= 1

3(3k4+ 3k5+ k6− 2τ2) divw divw′+ 1
2(k6− τ2) curlw curlw′

+
1
2
(k6+τ2)

[
1
2

3∑
l, j=1; l 6= j

(
∂w j

∂xl
+
∂wl

∂x j

)(
∂w′j

∂xl
+
∂w′l

∂x j

)
+

1
3

3∑
l, j=1

(
∂wl

∂xl
−
∂w j

∂x j

)(
∂w′l

∂xl
−
∂w′j

∂x j

)]
. (4-15)

It is easy to see that W (1)
(µ) =W (1) and W (2)

(k5)
=W (2).
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Equations (4-5), (4-6), (4-12)–(4-15) and Theorems 4.1 and 4.2 have the following consequences.

Theorem 4.3. Let U = (u,w, θ, ϕ) be a regular vector field in�+ and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�+).
Suppose τ = (τ1, τ2) is an arbitrary vector and set, for l, j = 1, 2, 3,

R(τ1)(Dx, n)=
(
R(τ1) l j (Dx, n)

)
3×5, R(τ1) l4(Dx, n)=−β nl,

R(τ1) l j (Dx, n)= P (1)(τ1) l j (Dx, n), R(τ1) l5(Dx, n)= b nl .

Then∫
�+

[
(A(1) u−β grad θ + b gradϕ )u′+W (1)

(τ1)
(u, u′)+ (b ϕ−β θ) div u′

]
dx

=

∫
S

R(τ1)(Dz(n, z)) v(z) u′(z) dz S,∫
�+

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)

(τ2)
(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=

∫
S

P (2)(τ2)
(Dz, n(z))w(z)w′(z) dz S. (4-16)

Theorem 4.4. Let U = (u,w, θ, ϕ) be a regular vector field in�− and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�−)

satisfy (4-9). Then, for τ = (τ1, τ2) is an arbitrary vector, we have∫
�−

[
(A(1) u−β grad θ + b gradϕ )u′+W (1)

(τ1)
(u, u′)+ (b ϕ−β θ) div u′

]
dx

=−

∫
S

R(τ1)(Dz(n, z)) v(z) u′(z) dz S,∫
�−

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)

(τ2)
(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=−

∫
S

P (2)(τ2)
(Dz(n, z))w(z)w′(z) dz S,∫

�−

[
(k1θ + k1divw)θ ′+ (k grad θ + k1w) grad θ ′

]
dx =−

∫
S

(
k
∂θ

∂n
+ k1w n

)
θ ′dz S,∫

�−

[
(γ1ϕ−b div u−d divw+m θ − ξ ϕ) ϕ′+ (γ gradϕ−d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′

]
dx

=−

∫
S

(
γ
∂ϕ

∂n
− d w n

)
ϕ′dz S, (4-17)

Theorem 4.5. Let U = (u,w, θ, ϕ) be a regular vector field in�+ and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�+).
Let τ = (τ1, τ2) be an arbitrary vector and set, for l, j = 1, 2, 3,

P(τ )(Dx, n)=
(
P(τ ) l j (Dx, n)

)
8×8 , P(τ ) l j (Dx, n)= P (1)(τ1) l j (Dx, n),

P(τ ) l+3; j+3(Dx, n)= P (2)(τ2) l j (Dx, n), P(τ ) l7(Dx, n)=−βnl, P(τ ) l8(Dx, n)= b nl,

P(τ ) 7;l+3(Dx, n)=k1 nl, P(τ ) 77(Dx, n)=k ∂
∂n , P(τ ) 88(Dx, n)=γ ∂

∂n , P(τ ) 8;l+3(Dx, n)=−d nl,

P(τ ) l; j+3 = P(τ ) l+3; j = P(τ ) l+3;7 = P(τ ) l+3;8 = P(τ ) 7l = P(τ ) 78 = P(τ ) 8l = P(τ ) 87 = 0. (4-18)
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Then ∫
�+

[
A(Dx)U(x)U ′(x)+W(τ )(U,U ′)

]
dx =

∫
S

P(τ )(Dz, n(z))U(z)U ′(z) dz S.

Theorem 4.6. Let U = (u,w, θ, ϕ) be a regular vector field in�− and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�−)

and U ′ satisfy (4-9). Then∫
�−

[
A(Dx)U(x)U ′(x)+W(τ )(U,U ′)

]
dx =−

∫
S

P(τ )(Dz, n(z))U(z)U ′(z)dz S,

where τ = (τ1, τ2) is an arbitrary vector.

In the sequel we use the following two values τ (1) and τ (2) of the vector τ :

τ (1) = (µ, k5), τ (2) = (−µ, −k6). (4-19)

By virtue of (3-2), (3-3), (4-1), (4-2), it follows from (4-14) and (4-18) that P(τ (1)) = P and W(τ (1)) =W .
The operator P(τ )(Dz, n) will be called the generalized stress operator in the linear theory of ther-

moelasticity with microtemperatures for microstretch solids.

5. Uniqueness theorems

In this section we prove the uniqueness theorems for the internal and external BVPs (K )+F, f and (K )−F, f ,
where K = I, II, . . . ,XII.

Theorem 5.1. If the conditions

µ > 0, 3λ+ 2µ > 0, γ > 0, (3λ+ 2µ) ξ > 3b2, (5-1)

k > 0, k6+ k5 > 0 k6− k5 > 0, 3k4+ k5+ k6 > 0, (k1+ T0 k3)
2 < 4T0 k k2 (5-2)

are satisfied, the internal BVP (K )+F, f admits at most one regular solution, where K = I, III, IV, V .

Proof. Suppose that there are two regular solutions of the internal BVP (K )+F, f . Then their difference
U corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem (K )+0,0, where K =
I, III, IV, V . If U = U ′, we obtain from (4-5)–(4-8)∫

�+

[
W (1)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (5-3)∫

�+

[
W (2)(w,w)+ (k2w+ k3 grad θ) w

]
dx = 0, (5-4)∫

�+
(k grad θ + k1w) grad θ dx = 0, (5-5)∫

�+

[
(γ gradϕ− d w) gradϕ+ (b div u−m θ + ξ ϕ) ϕ

]
dx = 0. (5-6)

Equations (5-4) and (5-5) imply∫
�+

[
T0 W (2)(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

)]
dx = 0. (5-7)
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Keeping (5-2) in mind, (4-2) yields

W (2)(w,w)≥ 0, T0 k2|w|
2
+ (k1+ T0 k3)w grad θ + k |grad θ |2 ≥ 0. (5-8)

On the basis of (5-8) we obtain from (5-7) w(x) = 0 and θ(x) = const, for x ∈ �+. In view of
homogeneous boundary condition {θ(z)}+ = 0 it follows that

w(x)= 0 and θ(x)= 0 for x ∈�+. (5-9)

By virtue of (5-9) from (5-3) and (5-6) we obtain∫
�+

[
W (1)(u, u)+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0, (5-10)

Keeping (4-2) and (5-1) in mind, (5-10) gives

ϕ(x)= 0, (5-11)

W (1)(u, u)= 0 for x ∈�+. (5-12)

Equations (5-1) and (5-12) show that u is the rigid displacement vector [Ieşan 2004], having the form

u(x)= a′+ [a′′× x], (5-13)

where a′ and a′′ are arbitrary real constant three-component vectors and [a′′× x] is the vector product
of a′′ and x. Keeping in mind the homogeneous boundary condition {u(z)}+ = 0 from (5-13) we have
u(x)= 0 for x ∈�+. In view of (5-9) and (5-11) we get U(x)= 0 for x ∈�+. Hence, the uniqueness
of the solution of BVP (K )+F, f is proved, where K = I, III, IV, V . �

Theorem 5.1 leads to:

Theorem 5.2. If the conditions (5-1) and (5-2) are satisfied, then any two regular solutions of the BVP
(K )+F, f , K = VI,VII,VIII, IX, differ only by an additive vector U = (u,w, θ, ϕ), where

u(x)= a′+ [a′′× x], w(x)= 0, θ(x)= ϕ(x)= 0 for x ∈�+,

a′ and a′′ being arbitrary real constant three-component vectors.

Theorem 5.3. If the conditions (5-1) and (5-2) are satisfied, then any two regular solutions of the BVP
(K )+F, f , K = II, X , differ only by an additive vector U = (u,w, θ, ϕ), where

u(x)= a′+ [a′′× x] + d1x, w(x)= 0, θ(x)= c1, ϕ(x)= d2 for x ∈�+, (5-14)

a′ and a′′ being arbitrary real constant three-component vectors, c1 an arbitrary real constant,

d1 =
β ξ − b m

(3λ+ 2µ)ξ − 3b2 c1, and d2 =
(3λ+ 2µ)m− 3bβ
(3λ+ 2µ)ξ − 3b2 c1.

Proof. The difference U between two regular solutions of the BVP (K )+F, f is a regular solution of the
homogeneous BVP (K )+0,0, where K = II, X . It may be shown similarly that

w(x)= 0, θ(x)= c1, for x ∈�+, (5-15)
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where c1 is an arbitrary real constant. On the basis of (5-16) the vector (u, ϕ) is a regular solution in
�+ of the nonhomogeneous system

µ1u+ (λ+µ) grad div u+ b gradϕ = 0,

(γ1− ξ) ϕ− b div u =−m c1,
(5-16)

satisfying the nonhomogeneous boundary condition{
P (1)(Dz, n)u(z)+ bϕ n

}+
= c1β n(z),

{
∂ϕ(z)
∂n(z)

}+
= 0 for z ∈ S. (5-17)

We introduce the notation

ũ(x)= u(x)− d1 x, ϕ̃(x)= ϕ(x)− d2. (5-18)

Thanks to (5-17), (5-18), and the equalities 3b d1+ ξ d2 = mc1, (3λ+ 2µ) d1+ b d2 = β c1, the vector
(ũ, ϕ̃) is the regular solution of the homogeneous BVP

µ1ũ(x)+ (λ+µ) grad div ũ(x)+ b grad ϕ̃(x)= 0,

(γ1− ξ) ϕ̃(x)− b div ũ(x)= 0,{
P (1)(Dz, n)ũ(z)+ b ϕ̃ n

}+
= 0,

{
∂ϕ̃(z)
∂n(z)

}+
= 0

(5-19)

for x ∈�+ and z ∈ S. It is easily to see that the Green’s formulae for ũ and ϕ̃ have the form∫
�+

[
(A(1) ũ+ b grad ϕ̃)ũ+W (1)(ũ, ũ)+ b ϕ̃ div ũ

]
dx =

∫
S

[
P (1)(Dz, n)+ bϕ̃ n

]
ũ dz S,∫

�+

[(
(γ1− ξ) ϕ̃− b div ũ

)
ϕ̃+

(
γ |grad ϕ̃|2+ ξ |ϕ̃|2+ b ϕ̃ div ũ

)]
dx = γ

∫
S

∂ϕ̃

∂n
ϕ̃ dz S.

(5-20)

Keeping in mind (5-19) from (5-20) we obtain∫
�+

[
W (1)(ũ, ũ)+ 2 b ϕ̃ div ũ+ ξ |ϕ̃|2+ γ |grad ϕ̃|2

]
dx = 0. (5-21)

On account of (5-1) from (5-21) it follows that

ũ(x)= a′+ [a′′× x] and ϕ̃(x)= 0 for x ∈�+, (5-22)

where a′ and a′′ are arbitrary real constant three-component vectors. Using (5-15), (5-18) and (5-22) we
get (5-14). Hence, the theorem is proved. �

Theorem 5.3 leads to:

Theorem 5.4. If the conditions (5-1) and (5-2) are satisfied, any two regular solutions of the BVP
(K )+F, f , K = XI,XII, differ only by additive vector U = (u,w, θ, ϕ), where

u(x)= w(x)= 0, θ(x)= c1, ϕ(x)= d3 for x ∈�+, (5-23)

c1 is an arbitrary real constant, and d3 = m c1/ξ .

Now let us establish the uniqueness of regular solutions of the external BVPs.
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Theorem 5.5. If conditions (5-1) and (5-2) are satisfied, then the external BVP (K )−F, f admits at most
one regular solution, where K = I, II, . . . ,XII.

Proof. Suppose that there are two regular solutions of the external BVP (K )−F, f , where K = I, II, . . . ,XII.
Then their difference U corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem
(K )−0,0.

In a similar way as in the proof of Theorem 4.4 we obtain∫
�−

[
W (1)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (5-24)∫

�−

[
W (2)(w,w)+ (k2w+ k3 grad θ) w

]
dx = 0, (5-25)∫

�−
(k grad θ + k1w) grad θ dx = 0, (5-26)∫

�−

[
(γ gradϕ− d w) gradϕ+ (b div u−m θ + ξ ϕ) ϕ

]
dx = 0. (5-27)

Equations (5-25) and (5-26) imply w(x)= 0 and θ(x)= const, for x ∈�−. In view of condition (3-1)
we get θ(x)= 0 for x ∈�−; hence,

w(x)= 0 and θ(x)= 0 for x ∈�−. (5-28)

Taking (5-28) into account, (5-24) and (5-27) yield∫
�−

[
W (1)(u, u)+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0. (5-29)

Keeping in mind (3-1) and (5-1) from Eq. (5-29) we have

u(x)= 0 and ϕ(x)= 0 for x ∈�−, (5-30)

and in view of (5-28) we get U(x)= 0 for x ∈�−, as desired. �

6. Uniqueness theorems under weak conditions

In this section we use Theorems 4.3 and 4.4 to prove the uniqueness of regular solutions of the problems
(I )+F, f and (I )−F, f under weaker conditions that (5-1) and (5-2).

Theorem 6.1. If the conditions

µ > 0, λ+ 2µ > 0, γ > 0, (λ+ 2µ) ξ > b2, (6-1)

k > 0, k6 > 0, k7 > 0, (k1+ T0 k3)
2 < 4T0 k k2 (6-2)

are satisfied, the internal BVP (K )+F, f admits at most one regular solution, where k7 = k4+ k5+ k6 and
K = I, IV.

Proof. Suppose that there are two regular solutions of problem (K )+F, f . Their difference U is a regular
solution of problem (K )+0,0, where K = I, IV . If U = U ′ and τ = τ (2) (see (4-19)), it follows from (4-7),
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(4-8), (4-15), and (4-16) that ∫
�+

[
W (1)
(−µ)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (6-3)∫

�+

[
W (2)
(−k6)

(w,w)+ (k2w+ k3grad θ) w
]

dx = 0, (6-4)∫
�+

[
k |grad θ |2+ k1w grad θ

]
dx = 0, (6-5)∫

�+

[
γ |gradϕ|2− d wgradϕ+ b ϕ div u−m θ ϕ+ ξ |ϕ|2

]
dx = 0, (6-6)

where

W (1)
(−µ)(u, u)= (λ+ 2µ) |div u|2+µ |curl u|2, W (2)

(−k6)
(w,w)= k7 |divw|2+ k6 |curlw|2.

From (6-4) and (6-5) it follows that∫
�+

[
T0 W (2)

(−k6)
(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

)]
dx = 0. (6-7)

Keeping in mind (6-2), we have from (6-7)

w(x)= 0, θ(x)= const for x ∈�+.

By the homogeneous boundary condition we get θ(x)= 0 for x ∈�+, and from (6-3) and (6-6) we get∫
�+

[
µ |curl u|2+ (λ+ 2µ) |div u|2+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0. (6-8)

By (6-1) from (6-8) we obtain ϕ(x)= 0, div u(x)= 0, curl u(x)= 0 for x ∈�+. Hence, u is a regular
solution of the BVP

1 u(x)= 0, {u(z)}+ = 0 for x ∈�+, z ∈ S. (6-9)

This implies u(x)= 0 for x ∈�+, as needed. �

Theorem 6.2. If the conditions (6-1) and (6-2) are satisfied, any two regular solutions of the BVP
(X I )+F, f may differ only by an additive vector U = (u,w, θ, ϕ), where U is given by (5-23), c1 is
an arbitrary real constant and d3 is defined in Theorem 5.4.

Proof. The difference U between two regular solutions of the BVP (X I )+F, f is a regular solution of the
homogeneous BVP (X I )+0,0. Using Green’s formula (4-16) and (6-2), we can show as above that

w(x)= 0 and θ(x)= c1 for x ∈�+,

and the vector function u and function ϕ from a regular solution in �+ of the nonhomogeneous system

µ1u+ (λ+µ) grad div u+ b gradϕ = 0,

(γ1− ξ) ϕ− b div u =−m c1,

satisfying the homogeneous boundary condition

{u(z)}+ = 0,
{
∂ ϕ(z)
∂n(z)

}+
= 0 for z ∈ S,
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where c1 is an arbitrary real constant. If we introduce

ϕ̃(x)= ϕ(x)− d3, (6-10)

the vector (u, ϕ̃) is then a regular solution of the homogeneous BVP

µ1u(x)+ (λ+µ) grad div u(x)+ b grad ϕ̃(x)= 0,

(γ1− ξ) ϕ̃(x)− b div u(x)= 0, {u(z)}+ = 0,
{
∂ϕ̃(z)
∂n(z)

}+
= 0

(6-11)

for x ∈�+ and z ∈ S. It is easily to see that by virtue of (6-11) the Green’s formulas (4-8) and (4-16)
for u and ϕ̃ take on the form∫

�+

[
W (1)
(−µ)(u, u)+ b ϕ̃ div u

]
dx = 0,

∫
�+

[(
γ |grad ϕ̃|2+ ξ |ϕ̃|2+ b ϕ̃ div u

)]
dx = 0, (6-12)

and on the basis of (6-7) we obtain from (6-12)∫
�+

[
(λ+ 2µ) |div u|2+ 2 b ϕ̃ div u+ ξ |ϕ̃|2+µ |curl u|2+ γ |grad ϕ̃|2

]
dx = 0. (6-13)

Taking (6-1) into account, (6-13) implies that

u(x)= a′+ [a′′× x] and ϕ̃(x)= 0 for x ∈�+, (6-14)

where a′ and a′′ are arbitrary real constant three-component vectors. Using the homogeneous boundary
condition (6-11), we obtain from (6-14) that u(x)= 0 for x ∈�+, and using (6-14) we get from (6-10)
that ϕ(x)= d3 for x ∈�+, as needed. �

Theorem 6.3. If conditions (6-1) and (6-2) are satisfied, the external BVP (K )−F, f admit at most one
regular solution, where K = I, II,XI.

Proof. Suppose that there are two regular solutions of problem (K )−F, f . Their difference U is a regular
solution of problem (K )−0,0, where K = I, II,XI. If U =U ′ and τ = τ (2), we have from (4-17) and (4-19)∫

�−

[
W (1)
(−µ)(u, u)+ (b ϕ−β θ) div u

]
dx = 0,∫

�−

[
T0 W (2)

(−k6)
(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

) ]
dx = 0,∫

�−

[
γ |gradϕ|2− d wgradϕ+ b ϕ div u−m θ ϕ+ ξ |ϕ|2

]
dx = 0.

(6-15)

Similarly, taking (3-1), (6-1), and (6-2) into account, we obtain from (6-15) that w(x) = 0, θ(x) =
ϕ(x)= 0, div u(x)= 0, and curl u(x)= 0 for x ∈�−. Hence, u is regular solution of the BVP

1 u(x)= 0, {u(z)}− = 0 for x ∈�−, z ∈ S. (6-16)

Therefore (6-16) shows that u(x)= 0 for x ∈�−. �

Remark 6.4. From (5-1) and (5-2) we have (6-1) and (6-2), respectively. Indeed, (5-1) and (5-2) imply

λ+2µ= 1
3

(
(3λ+2µ)+4µ

)
>0, k6=

1
2

(
(k6+k5)+(k6−k5)

)
>0, k7=

1
3

(
(3k4+k5+k6)+2(k6+k5)

)
>0.
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7. Concluding remarks

(1) In [Knops and Payne 1971], the uniqueness theorems of the first BVP (on the boundary given the
displacement vector) and the second BVP (on the boundary given the stress vector) in the classical theory
of elasticity are proved under the conditions µ > 0, λ+ 2µ > 0 and µ > 0, 3λ+ 2µ > 0, respectively.

(2) Using the uniqueness Theorems 5.1–5.4 and 6.1–6.3 it is possible to prove the existence theorems in
the equilibrium theory of thermoelasticity with microtemperatures for microstretch solids by means of
the potential method and the theory of singular integral equations.

(3) The conditions (5-1), (5-2) and (6-1), (6-2) are sufficient for the uniqueness of solutions of BVPs
in the theory of equilibrium thermoelasticity with microtemperatures for microstretch solids occupying
arbitrary 3D domains with a smooth surface. Establishing necessary conditions for the uniqueness of
solutions is an open problem in the classical theory of thermoelasticity [Kupradze et al. 1979], the theory
of thermoelasticity with microtemperatures [Ieşan and Quintanilla 2000], the micropolar theory of ther-
moelasticity, theories of micromorphic elasticity and thermomicrostretch elastic solid [Eringen 1999],
and in the theory of thermoelasticity with microtemperatures for microstretch solids [Ieşan 2001]. The
necessary condition for uniqueness of solutions have been established only in the classical theory of
elasticity (see [Knops and Payne 1971; Fosdick et al. 2007], for details).
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IMPLICATIONS OF SHAKEDOWN FOR DESIGN OF ACTIVELY COOLED
THERMOSTRUCTURAL PANELS

NATASHA VERMAAK, LORENZO VALDEVIT, ANTHONY G. EVANS,
FRANK W. ZOK AND ROBERT M. MCMEEKING

Propulsion systems in future hypersonic vehicles will require use of actively cooled structures that can
withstand extreme thermomechanical loads. Candidate designs and materials for such structures have
previously been identified through conventional yield-based design principles. The present article out-
lines an approach that utilizes concepts of localized plasticity and shakedown under cyclic loading in the
design process. For this purpose, an established computational technique is used to determine shakedown
limits for prototypical cooled structures. The results are employed in a design sensitivity study. The
study demonstrates that, by allowing for shakedown, structures with areal densities significantly lower
than those obtained from yield-limited design can be obtained. The magnitude of the benefits depends on
the specific geometry of interest, the thermomechanical boundary conditions and the constraints placed
on the design.

1. Introduction

The operating conditions of scramjet engines require use of lightweight materials that can withstand
extreme heat fluxes and structural loads. They also demand designs that incorporate active cooling
by the fuel. Previous studies on the design of thermostructural panels for scramjet engine liners have
been based on established yield-limited design principles, i.e., with allowable stresses up to (but not
exceeding) that required for yielding at the most critically stressed point in the structure [Heiser and
Pratt 1994; Buchmann 1979; Scotti et al. 1988; Youn and Mills 1995; Flieder et al. 1971; Valdevit et al.
2008]. Building upon this body of work, the present study integrates concepts of local plasticity and
thermomechanical shakedown into the design strategy. The objective is to reduce the structural weight.
The rationale is that allowing the stresses to locally exceed the yield strength of the material upon the
first few cycles, with fully elastic response thereafter (shakedown), can result in substantially lighter
designs. For this purpose, a simplified technique [Abdalla et al. 2007] is used to conduct numerical Bree-
like analysis [Bree 1967] of prospective geometries and determine shakedown limits, defined by critical
combinations of thermal and mechanical stresses. The geometries selected for numerical analysis are
obtained from previous optimizations based on yield-limited design [Valdevit et al. 2008]. The numerical
analysis is used in combination with analytical models for stress and temperature predictions to identify
designs that yield structures that are lighter than those found by yield-limited optimization yet lie within
the shakedown regime.

Figure 1, left, depicts the notional combustor liner of present interest. The liner consists of four panels,
three of which are shown in a rectangular configuration in the figure; each panel has rectangular cooling

Keywords: shakedown, lightweight structures, elastoplastic design, thermostructural panels.
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Figure 1. Left: notional design of scramjet engine liner. The two designs are distin-
guished by the nature of the underlying structure: either periodic linear supports or
continuous panel. Both are assumed to be connected to the liner via rollers, thereby
allowing unconstrained lateral thermal expansion. Right: cross-section through the liner
and the locations of the 18 points most susceptible to yielding and monitored in the
optimization code.

channels. The principal mechanical loads are those due to the internal pressure of the cooling fuel
and the external pressure from the combustion gas. The dominant thermal loads arise from temperature
gradients across the panel, subject to mechanical constraints imposed by the external boundaries (detailed
in Section 3.) [Vermaak et al. 2010]. These loads and the pertinent structural dimensions are summarized
in Figure 2.

H

tf
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z

pcool

tc
L

W

pcomb

Tf0

Tfuel(Z)

Taw

hG

Z

b

Figure 2. Schematic defining the geometry of the actively cooled panel, the pertinent
dimensions, and the thermal and mechanical loads.
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The article is organized as follows. First, the technique used to numerically determine shakedown
limits is presented. Next, the use of the technique in the construction of a Bree diagram for a proto-
typical geometry is demonstrated. The results of a series of such computations are then used to identify
optimal designs (with minimum mass) and their mass compared with those obtained through yield-limited
optimizations. The weight benefits imparted by extending the design from yield-limited to shakedown-
limited are computed for two types of external boundary conditions on the panel.

2. Construction of Bree diagrams

The classic problem. Bree diagrams [Bree 1967] have been used extensively in the nuclear pressure
vessel industry to delineate the boundaries between various elastoplastic regimes. In the classic Bree
problem, a thin-walled cylinder of an elastic, perfectly plastic material (see inset in Figure 3) is subjected
to a fixed internal pressure, P , and a cyclic radial temperature difference 1T between the inside and
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Figure 3. Top: prototypical stress-strain behaviors for an elastic-plastic material in the
classic Bree problem. Bottom: the corresponding analytic Bree diagram. The fuel can
is modeled as a cylindrical pressure vessel subject to constant internal pressure and a
cyclic thermal gradient through the wall thickness. Data points represent FE calculations
of the shakedown limit reported in [Abdalla et al. 2007].
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outside walls.1 The resulting Bree diagram is shown in Figure 3, bottom. The ordinate is 1T/1T0,
where 1T0 is the temperature difference required for yield initiation in the absence of a mechanical load;
the abscissa is P/P0 with P0 being the pressure that causes yielding in the absence of a temperature
gradient.

For this configuration, the elastic domain is defined by P/P0+1T/1T0 < 1. At one extreme, where
P/P0 > 1, plastic collapse occurs on the first load cycle. For intermediate combinations of P and 1T ,
one of three behaviors is obtained (Figure 3) [Abdel-Karim 2005].

(1) In the shakedown regime, localized plastic deformation that occurs in the early stages of cycling
gives rise to residual stresses that stabilize the plastic deformation. The consequence is purely elastic
behavior during further loading cycles.

(2) Alternating plasticity occurs by loading beyond the shakedown limit. Here the plastic strain incre-
ment obtained during the first half of each loading cycle is followed by a plastic strain increment of
equal magnitude but opposite sign during the second half. No net strain accrues during each cycle
but the structure ultimately fails by low-cycle fatigue.

(3) Ratcheting refers to the condition in which a net increment of plastic strain accumulates during each
cycle, eventually causing plastic collapse.

Computational approach. Although Bree diagrams can be constructed for simple geometries and load-
ing conditions using analytical models [Bree 1967], numerical techniques are generally required [Abdel-
Karim 2005]. In the present study, finite element analysis (FEA) is used to apply a methodology initially
reported in [Abdalla et al. 2007]. The approach yields an estimate of the shakedown limit in accordance
with Melan’s lower bound theorem2. The theorem states that a structure will shakedown if a time-
independent residual stress field can be found which satisfies mechanical equilibrium and the boundary
conditions and the combined residual and elastic stresses do not exceed yield at any time during the
loading cycle [König 1987; Bower 2009].

For implementation, the methodology requires two sets of computations for each geometry. In the first,
the stresses caused by the cyclic load in an elastic structure are computed. This analysis is performed
only once and its output stored. The second is an elastic-plastic analysis, assuming perfectly plastic
behavior beyond yield, incorporating both the time-invariant and the cyclic loads in consecutive steps.
The time-invariant load is applied first to a specified level and a half cycle of the varying load is then
applied to its specified level. Each is incremented monotonically from zero to its peak value while an
elastic-plastic analysis is carried out. Residual stresses are then calculated at every material point in
accordance with

σr,n = σEP,n − σE
1Cn

1Cref
, (1)

where σE and 1Cref are the stress tensor and cyclic load amplitude for the elastic analysis and σEP,n and
1Cn are the corresponding values for the stress tensor and cyclic load amplitude resulting from the n-th
trial calculation in the elastic-plastic analysis [Abdalla et al. 2007]. If the effective (von Mises) residual

1Subsequently, the effects of alternative loading sequences (e.g., in-phase versus out-of-phase) were also investigated [Ng
and Moreton 1983].

2The Melan theorem and all analyses presented herein assume elastic perfectly plastic material behavior.
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stresses lie inside the yield surface at every point in the structure, the n-th combination of time-invariant
and cyclic loads constitute a lower bound to the shakedown limit. The process is repeated for progres-
sively increasing time-invariant and cyclic loads until yield is just reached by the resulting effective
residual stress. The associated combination of time-invariant and cyclic loads represents one point on
the shakedown curve on the Bree diagram. The computations are repeated for other load combinations
until the full shakedown boundary is obtained over the domain of interest. Results obtained in [Abdalla
et al. 2007] for the classic Bree problem are reported in Figure 3.

Implementation for actively cooled combustor liner. The Bree diagram for a representative unit cell
of an actively cooled panel was constructed in accordance with the preceding prescription. The cell
geometry and dimensions (depicted in Figure 4) were obtained from a yield-limited optimization analysis
reported in an earlier study [Valdevit et al. 2008]. Here the internal pressure within the channels is
assumed to be time-invariant. The thermal load (assumed cyclic) consists of a uniform temperature
difference between the two faces (denoted “hot” and “cold”). Uniform thermal expansion in the lateral
(x1) direction (without bending) is permitted. The selection of the internal pressure as the time-invariant
load and the temperature difference as the cyclic load is consistent with Bree’s original analysis.

All computations were performed using the ABAQUS© finite element code. The mesh consisted of bi-
quadratic generalized plane strain elements with reduced integration and hybrid formulation (CPEG8RH).
The radius of the corner fillet in the finite element analysis was taken to be 0.1 mm, representative of that
obtained through electrical discharge machining (EDM) when a nominally square corner is prescribed.
(The resulting radius is dictated largely by the diameter of the EDM wire.) This fillet value also repre-
sents the most conservative design as smaller fillets are not feasible by EDM (or any other reasonable

x2

x1
x3

P cool = 4 MP a 

Hot F ac e

C old F ac e

R  = 0.1 mm

W/2 = 4 mm 

L = 5 mm

tf = 0.4 mm

tf = 0.4 mm

tc /2 = 0.5 mm

Figure 4. The half unit cell used in the finite element computations for construction of
the Bree diagram in Figure 5. This particular geometry emerged as being nearly optimal
for a yield-limited design. The boundary conditions are defined by: u1 = 0 along x1 = 0,
u2 = 0 along x2 = 0, and u1 = constant along x1 = (W + tc)/2 (u being displacement).
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Inconel X-750 C-SiC

Upper use temperature, T ∗ (K) 1100 1810

Yield strength, σ0 (at T ∗) (MPa) 527 400

Temperature dependence of strength, dσ0/dT (MPa/K) −0.4 —

Young’s modulus, E (GPa) 130 140

Thermal expansion coefficient, α (10−6 K−1) 16 2

Thermal conductivity, k (W/mK) 23 15 (in-plane)
5 (through-thickness)

Density, ρ (kg/m3) 8280 2000

Table 1. Thermomechanical properties of candidate materials.

manufacturing approach) and larger fillets will relax stress concentrations. The material properties were
selected to be representative of Inconel X-750 (Table 1).

Elastic-plastic computations were performed for coolant pressures P ranging from zero to that needed
to exceed the shakedown boundary in the absence of a thermal load. For presentation on a Bree diagram,
the pressure was normalized by the nominal value P0 required for first yield, obtained by modeling the
face-sheet as a uniformly loaded edge-clamped plate under plane strain conditions. The result is (see
[Valdevit et al. 2008; Beer and Johnston 1981])

P0 =
4
√

3
σ0

( t f

W

)2
, (2)

where W is the channel width and t f the face-sheet thickness (Figure 4). The value of P0 obtained
from the finite element analysis is somewhat lower than that calculated from (2), by about 30%. The
nonconservative nature of the analytical prediction is due to the stress concentrations that arise at the
corners in the finite element analysis but are neglected in the plate model.

At each pressure level, the temperature difference 1T between the faces was incremented to ascertain
both the first yield and the shakedown boundaries.3 (No attempt was made to differentiate the elasto-
plastic deformation modes beyond the shakedown limit, as they would all be equally unacceptable for
the application under consideration.) This temperature difference was normalized by the critical value
needed for yield initiation, calculated using the analytical solution presented in the Appendix.

The resulting Bree diagram is shown in Figure 5. It exhibits elastic and shakedown boundaries that
are qualitatively similar to those in Figure 3 (though without the specific plasticity modes beyond the
shakedown limit). While the classic Bree diagram for the thin-walled cylindrical pressure vessel is
universally applicable to all such vessels subjected to the same sequence of loading conditions, the
rectangular geometry of the present combustor panels precludes interpretation of Figure 5 as a similarly
universal result. That is, the Melan theorem requirements are not automatically satisfied when the unit-
cell geometry of the combustor panel is changed. Consequently, the Bree diagram in Figure 5 is specific

3In the FEA, conditions are checked at integration stations of the elements and the component is deemed to shakedown if
all integration stations pass the test of not violating yield.
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Figure 5. The Bree diagram for the combustor panel, based on analyses of the unit cell
in Figure 4. Elastoplastic behaviors beyond shakedown (ratcheting, cyclic plasticity and
plastic collapse) are considered inadmissible.

to the geometry depicted in Figure 4. Strictly, in order to utilize such results in an optimization code,
computations of this kind would need to be performed for all possible geometries. The computational
effort for this task would be prohibitive.

In light of these limitations, the shakedown concept was employed in the optimization in the following
way. First, the dimensions of the optimal yield-limited design were obtained using the algorithm pre-
sented in [Valdevit et al. 2008] and summarized in Section 3. Then, the dimensions were incrementally
varied in a manner that yielded a mass reduction and the shakedown limit was numerically computed.
The process was repeated until the resulting structure was no longer within the shakedown limit. Com-
parisons of the mass of the penultimate structure with that of the yield-limited design were used to
assess the benefits of extending the design into the shakedown domain. The following section describes
the protocol used to determine optimal yield-limited designs. It also describes how these designs were
varied in a sensitivity study to find lighter weight solutions subject to the shakedown limit.

3. Sensitivity study procedure

The reference [Valdevit et al. 2008] may be consulted for details not given in this section.

Optimal yield-or-fracture-limited designs. The optimization protocol was applied to two representative
combustor panel support conditions (Figure 1). In Design I, periodic line supports are placed along the
panel base. Panel-level bending stresses ensue between the supports due to the combustion pressure. In
Design II, a supporting panel is attached to the base, preventing panel-level bending. Isotropic thermal
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expansion is permitted in both designs. The essential difference between the designs is that, in Design II,
the combustion pressure is rendered inconsequential, reducing the dominant loads to two: the coolant
pressure and the panel level thermal gradient. In contrast, three loads remain for Design I.

The optimization protocol consists of the following steps. The values of heat load and fuel flow rate
are identified for the specified vehicle Mach number, assumed to be 7. The heat load is characterized
by the temperature difference between the combustion gas (specifically, the adiabatic wall temperature,
Taw = 3050 K) and the hot surface (evaluated analytically) and the corresponding heat transfer coefficient,
hG . The latter was computed assuming steady-state combustion conditions, yielding hG = 445 W/m2K.
The fuel flow rate through the cooling channels was taken to be that for stoichiometric combustion of the
fuel with the available oxygen in the flowpath. The (internal) pressure in the cooling channels is set by
injection requirements (pcool = 4 MPa for a prototypical vehicle), and the (external) combustion chamber
pressure is obtained by the flow conditions in the combustor (pcomb = 0.16 MPa for Mach 7 conditions).
The design parameters are incrementally varied over a prescribed range and the pertinent stresses and
temperatures were computed. (In principle, the heat transfer coefficient can be increased to reflect local
heat spikes due to nonuniform combustion and the flow rate varied relative to the stoichiometric value.
Variations in these parameters were not considered in the present study.)

Temperature distributions were obtained by means of a thermal network model. The stresses due to
both the coolant pressure and the temperature gradients were obtained at critical locations using stan-
dard thermoelastic plate analysis. A synopsis of the models for the temperature and stress distributions
is presented in the Appendix. Upon comparison of the computed stresses and temperatures with the
corresponding material and coolant properties, the viability of the design is ascertained.

Specifically, for viability in the case of metallic candidates that are yield-limited, the effective (von
Mises) stress must not exceed the yield stress anywhere in the structure. Similarly, for ceramic matrix
composite (CMC) candidates such as C/SiC, fracture-limited design is determined by ensuring that the
maximum and minimum principal stresses in the structure remain below/above critical values (±400 MPa
for C/SiC).

Additionally, for all candidates the fuel temperature must not exceed that for coking (975 K for JP-7)
and the maximum material temperature must not exceed its upper use (softening) temperature (1100 K
for Inconel X-750). If solutions exist, the design is optimized for minimum mass, Additionally, to
ensure realistic designs, constraints based on panel manufacturability and fuel pressure drop were also
prescribed. For instance, to enable manufacturing of the panels by conventional means, minimum values
were prescribed for the face and core member thicknesses (0.4 mm), the channel height (5 mm) and the
channel width (2 mm). Numerical optimizations were performed using the quadratic optimizer MINCON
in MATLAB. The process was repeated using several different randomly generated initial guesses to
ensure the optimized solutions were not in local minima.

Probing benefits of shakedown. Two slightly different schemes were employed to calculate the opera-
tional conditions associated with the two sets of boundary conditions (defined by Designs I and II) and
assess whether they reside within the shakedown limit. The scheme for Design II is straightforward.
The internal pressure is selected to be 4 MPa and the operational temperature difference, 1Tpanel, is
calculated from the thermal network model (Appendix). Comparisons of 1Tpanel with the shakedown
value (calculated by FEA) determine the viability of the structure.
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For Design I, an additional calculation is required to account for the combustion pressure in the Bree
analysis. Since the panel acts essentially as a clamped plate that bends between the supports, the combus-
tion pressure produces uniform tensile or compressive stresses in the face sheets normal to the direction
of the underlying supports. These uniform stresses are of the same form as those arising from the thermal
load. Additionally, both are operative at the same time, i.e., during combustion. Consequently, from a
mathematical viewpoint, the two loads can be represented by an effective (fictitious) temperature change,
1Teff, that produces the same stresses in the face sheets. The stresses are obtained in the following way.

From an analysis of a plate under generalized plane strain conditions, the stresses induced by the real
temperature difference 1Tpanel are given by

σ
1Tpanel
xx =


−

Eα1Tpanel

2(1− ν)
in the hot face,

Eα1Tpanel

2(1− ν)
in the cold face,

σ
1Tpanel
zz =


[
−Eα1Tpanel

2(1− ν)

][(2− ν)Ltc+ 2t f (W + tc)
Ltc+ 2t f (W + tc)

]
in the hot face,[Eα1Tpanel

2(1− ν)

][νLtc+ 2t f (W + tc)
Ltc+ 2t f (W + tc)

]
in the cold face.

(3)

From an analogous plate bending analysis, the stresses caused by the combustion pressure are

σ pcomb
xx =



pcomb
1

12
b2

(L+t f )t f
at points 1, 2, 5, 6,

−pcomb
1
12

b2

(L+t f )t f
at points 3, 4, 7, 8,

pcomb
1

24
b2

(L+t f )t f
at points 12, 13, 16, 17,

−pcomb
1
24

b2

(L+t f )t f
at points 10, 11, 14, 15,

σ pcomb
zz = νσ pcomb

xx at all points.

(4)

where b is the distance between supports (assumed to be 0.5 m) and the points 1–17, defined on Figure 1,
right, represent critical locations where stress combinations are most severe. The stress components in
(3) and (4) are added at every point and the von Mises stress σ̄ (1Tpanel, pcomb) obtained in the usual
manner:

σ̄ (1Tpanel, pcomb)=

√
1
2

(
σ 2

xx + σ
2
zz + (σxx − σzz)2

)
. (5)

The stresses produced by the effective temperature difference are of similar form to those in (3), with
1Tpanel replaced by 1Teff, yielding

σ1Teff
xx =


−

Eα1Teff

2(1− ν)
in the hot face,

Eα1Teff

2(1− ν)
in the cold face,

(6a)
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σ1Teff
zz =


[
−Eα1Teff

2(1− ν)

][(2− ν)Ltc+ 2t f (W + tc)
Ltc+ 2t f (W + tc)

]
in the hot face,[Eα1Teff

2(1− ν)

][νLtc+ 2t f (W + tc)
Ltc+ 2t f (W + tc)

]
in the cold face.

(6b)

The corresponding effective stress is

σ̄ (1Teff)=

√
1
2

[(
σ
1Teff
xx

)2
+ (σ

1Teff
zz )2+ (σ

1Teff
xx − σ

1Teff
zz )2

]
. (7)

The effective temperature difference is obtained by setting σ̄ (1Tpanel, pcomb) = σ̄ (1Teff)— see Equa-
tions (5) and (7) — and numerically inverting the result to obtain 1Teff(1Tpanel, pcomb). The viability of
a design is ascertained by comparing 1Teff with the shakedown limit computed by FEA.

4. Designs allowing shakedown

The key results of the sensitivity study are summarized in Figure 6 for Designs I and II. The figure
illustrates the benefits associated with designing to shakedown, characterized by the ratio of minimum
panel masses. Also shown in Figure 6 is the panel mass for an optimized C/SiC composite. (This result is
based on a fracture-limited design, using criteria based on critical values of the maximum and minimum
principal stresses. Shakedown is not considered in this case since the underlying plasticity mechanisms
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Figure 6. Benefits of shakedown-limited design in the minimum mass of an actively
cooled Inconel X-750 panel under the two design scenarios. Here M0 is the mass of
the optimal yield-limited design. For all Inconel solutions, channel height, L , is at the
minimum value (5 mm). Also shown for comparison are the results for the fracture-
limited optimum for a C/SiC composite.
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Design I Design II

C/SiC Inconel X-750 C/SiC Inconel X-750

L 10.71 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

W 5.11 2 2 2 4 6 8 10 2 4 4 4 4.97 3.77 4 6 7 8 10

t f 0.87 0.92 0.5 0.4 0.92 0.92 0.92 0.92 0.92 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

tc 0.4 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

M/M0 0.2 1 0.73 − 0.82 0.75 0.71 − 0.85 0.59 0.53 − 0.22 1 0.98 0.87 0.84 − −

FL YL SL − SL SL SL − SL SL SL − FL YL SL SL SL − −

Table 2. Geometries for design optimization and shakedown analyses. Abbreviations on
the last row stand for fracture-limited (FY), yield-limited (YL), and shakedown-limited
(SL). A dash on the last two rows indicates no solution. The geometric parameters L ,
W , t f , and tc are given in units of mm.

are not operative in these materials at the temperatures of interest.) For consistency, the C/SiC panel
mass is also normalized by that of the optimized Inconel X-750 structure. Previous optimization studies
have revealed C/SiC to yield the lightest structure and it is thus used as a benchmark against which the
metallic designs are assessed.

Evidently the benefits of incorporating shakedown depend sensitively on the boundary conditions. For
instance, for Design II, the optimal face sheet and core member thicknesses as well as channel height
are already at their minimum allowable values in the yield-limited design (Table 2). Consequently, they
cannot be reduced further to take advantage of the shakedown phenomenon. The only available avenue
for weight reduction is to increase the channel width, W , from its optimal value of 3.8 mm. The results
from a number of FEA computations for several values of W are summarized in Table 2 and plotted on
Figure 6. In this case, the shakedown limit is breached when W exceeds 7 mm. The resulting weight
reduction is modest (about 16%).

For Design I, incorporating shakedown yields greater benefits in mass reduction. In this case, among
the free geometric variables, only the channel height, L , is at its minimum allowable value for the
optimal yield-limited design. Consequently, computations were performed for lower values of face sheet
and core member thicknesses as well as higher values of channel width. The results in Figure 6(a) are
labeled accordingly. While each of these changes results in some mass reduction, the magnitudes of the
contributions differ. For example, decreasing tc from 0.71 mm to its minimum allowable value (0.4 mm)
while maintaining all other parameters fixed yields a mass reduction of 15%. Mass reductions of 27%
and 29% are obtained for reduced values of t f (from 0.92 mm to 0.5 mm) and elevated values of W
(from 2 mm to 8 mm), respectively. The greatest benefits are obtained by varying the three dimensions
simultaneously. Among the cases considered here (Table 2), the best one produces a nearly 50% reduction
in mass.

Even exploiting shakedown in the design of the Inconel X-750 structure, its mass is still about 2.7
times that of the optimized C/SiC structure. But, because of the relative ease of manufacturing metallic
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components along with their superior structural robustness, the metallic alloy may prove to be preferable
to the ceramic composite for the present application.

While the present shakedown analysis demonstrates potential weight savings, additional research is
required to provide more insight into the physical behavior of such structures. Particularly, their response
in competition with creep environments is of interest. The computational approach presented provides
a working limit for shakedown that motivates the development of complementary models of material
behavior during structural shakedown.

5. Conclusions

Incorporating shakedown into the design of actively cooled thermostructural panels can enable significant
weight reduction. The magnitude of the benefit depends on the component of interest, the boundary
conditions and the specific constraints placed on the design. For the component considered here — a liner
for a scramjet engine operating at stoichiometric fuel flow rates under steady-state combustion conditions
for Mach 7 flight — significant benefits accrue only when the liner is weakly supported by an external
structure. Otherwise, when the support structure provides a more substantial constraint on deformation,
the design is influenced more heavily by the material softening temperature and the secondary constraints
derived from manufacturing limitations than by the thermomechanical loads. In such cases, the more
aggressive design strategy, exploiting shakedown, is of minimal benefit.

Appendix: Synopsis of analytical models

Temperature distributions. Analytical expressions for the temperatures at critical locations in the panel
have been obtained via a thermal network approach, subject to four simplifying assumptions:

(1) Taw and hG are uniform along the hot face;

(2) all heat is removed by forced convection in the cooling channels;

(3) longitudinal panel conduction is negligible so that the gradient of hot surface temperature in the fuel
flow direction is due only to cooling into the fuel channel; and

(4) the coolant temperature, due to turbulent mixing, is uniform across the channel cross-section.

Based on the thermal network in Figure 7, the temperature in the fluid is:

T f = Taw− (Taw− T 0
f ) · exp(−βz) (A.1)

and the temperature distributions at the 18 locations depicted in Figure 1 are:

T (i)
= Taw− (Taw− T 0

f ) · F
(i) exp(−βz) (A.2)

where F (i) and β depend on: the geometry of the panel (W, L , t f , tc); the thermal conductivity of
the material, ks ; the thermal conductivity, k f , kinematic viscosity, ν f , and volumetric specific heat,
ρ f cp, f , of the fuel; the heat transfer coefficient on the hot side, hG ; and the volumetric fuel flow rate, V̇
(see [Valdevit et al. 2008] for details). Importantly, these functional dependencies are intertwined, thus
precluding straightforward interpretation of the effect of each quantity on the temperature distribution.
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Figure 7. Thermal resistance network used to determine temperature distributions,
along with expressions for all relevant thermal resistances.

The dominant thermal stresses in the panel depend on the temperature difference between the two
faces 1Tpanel(z). For simplicity, this difference is averaged in the x-direction, and can be expressed as:

1Tpanel(z)= (Taw− T 0
f ) ·G1 · exp(−βz) (A.3)

where G1 depends on the same quantities as F (i).
The accuracy of this analytical model has been verified with a number of selected computational fluid

dynamics and FEA computations; the temperature distributions are generally captured by (A.2) to within
∼ 1% and the temperature gradient captured by (A.3) to within ∼ 8% [Valdevit et al. 2008].

Stress distributions. The dominant stresses are induced by the combustion chamber pressure, pcomb,
on the hot side of the panel, the fuel pressure, pcool, inside the cooling channels, and the temperature
difference, 1Tpanel, between the hot and cold faces. Assuming generalized plane strain conditions (with
no rotation about the x and y axes), the mechanical stresses (membrane plus bending) at each of the 18
locations depicted in Figure 1 are given by

σ (i)m,x = A(i) pcool+ B(i) pcomb, σ (i)m,z = νσ
(i)
m,x (A.4)
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where the functions A(i), B(i) depend on panel geometry and support conditions and ν is Poisson’s ratio.
Similarly, the dominant thermal stresses can be expressed as:

σ
(i)
T,x =

Eα
1− ν

(D(i)
x 1T (i)

panel), σ
(i)
T,z =

Eα
1− ν

(D(i)
z 1T (i)

panel), (A.5)

where E and α are the Young’s modulus and the coefficient of thermal expansion, respectively. The
quantities D(i)

x and D(i)
z are functions of geometry only. Additional details are presented in [Valdevit

et al. 2008]. The accuracy of this model has been verified with FEA. Its accuracy is better than ∼ 10%
on the top face and ∼ 20% on the bottom face (loc. cit.).
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