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THE INVERSE PROBLEM OF SEISMIC FAULT DETERMINATION
USING PART TIME MEASUREMENTS

HUY DUONG BUI, ANDREI CONSTANTINESCU AND HUBERT MAIGRE

This paper shows how a part time measurement T of the acceleration on the ground can be done to avoid
the consideration of reflections of seismic waves on the Moho discontinuity. A bounded hemispherical
solid is considered with radius greater than cpT , but smaller than the Moho depth, in order to get the
null boundary conditions on the hemispherical surface. The inverse problem to determine the fault plane
and the time-dependent fault geometry is well-defined and solved in closed form by the reciprocity gap
functional method. Two formulae are established for the components of the fault slip, which involve time
and spatial Fourier transforms of some quantities related to the reciprocity gap functional. A forward
initial boundary value problem in elastodynamics enables us to get the internal wave field, the shear
stress as well as the normal stress on the fault. This full solution would be useful for understanding the
friction mechanism on the fault during a real strike, whenever the initial uniform tectonic stresses are
known from geophysical considerations.

1. Introduction

The determination of the characteristics of an earthquake from measurements of the acceleration1

∂t∂t(u)(x, t)

on the stress-free ground G is one important seismic inverse problem in geophysics [Aki and Richards
1980]. Mathematically, one has to determine the fault history 6(t), its plane and geometry, the slip and
the shear stress released from ground measurements, without considering the physical friction mecha-
nisms at the origin of the strike. Physical models of earthquakes are not considered in this paper (for
a review of such models, see [Madariaga et al. 2000]). We need a model which is generally an elastic
one, bounded or unbounded and some assumption on the seismic process. Due to tectonic stresses, it is
generally assumed that the release of the shear stress, completely or incompletely, corresponds to some
unknown amount of tangential slip [[u]]. In some cases, the fault plane is already known, for example
when the slip occurs in existing plane (San Andreas fault) or when the slip plane emerges on the ground.
The analysis of data in view of the inversion is simpler in these cases.

Before introducing the aim of the paper, we briefly review some methods of earthquake inverse prob-
lems in order to see what can be improved.

In simple cases listed above, some forward models in infinite elastic medium can give good prediction
of the acceleration signals to be compared to measurements [Campillo 1983; Cochard and Rice 1997;
Vallée 2003; Peyrat et al. 2004; Lapusta et al. 2001]. True inverse problems are divided into two kinds.

Keywords: earthquake, inverse problem, reciprocity gap, elastic wave, fault history.
1We use the notation ∂t = ∂/∂t .
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In the first one, a feedback between forward models of faults and observations is made to determine the
optimal solution [Das and Kostrov 1990; Das and Suhadolc 1996]. Most papers on inverse problems in
seismology are based on this optimization method (or geometry control method). The method has some
advantage, since it is based on numerical approaches for which powerful finite element software exist.
However, there are also some limitations because of the ill-posedness of inverse problems, for which
analytical solutions are missing. According to Das and Suhadolc [1996], the least-squares functional
(for fitting the computed acceleration from a guess fault S with the measured one a)

J (S(τ ))= ‖∂τ∂τu− a‖2u +α‖∂τu‖2∂S, (1)

6(t)= arg min
S(τ )

J (S(τ )), (2)

with possible additional regularizing term with α > 0 to bound the velocity of the fault front ∂S, has a
flat minimum in the u space.

The same authors give a clear statement on such an optimal solution: “Even if the fitting of data seems
to be quite good, the faulting process is poorly reproduced, so that in the real case, it would be difficult
to know when one has obtained a correct solution.”

In the second kind of method, introduced by the authors and their colleagues for many kinds of inverse
problems in solid and fracture mechanics, ranging from elastostatics [Andrieux et al. 1999] to heat
diffusion in solids, acoustics and elastodynamics, with the earthquake-like analysis (see the reviews in
[Bui 2006]), the original nonlinear inverse problems with respect to the unknowns considered together, is
put in a special variational form which enables us to determine the unknowns separately in a certain order:
first the normal to the fault plane N , then the fault plane and finally the fault geometry. Each subproblem
is characterized by the use of a specific adjoint field. More importantly, the subvariational equations are
linear or quasilinear (this word will be explained in Section 3) with respect to the considered unknowns.
Therefore, the original nonlinear inverse problem is decomposed into successive linear inverse problems
which are solved analytically in a certain order.

In previous works, models have been worked out for some earthquake inverse problems, which differ
by physical considerations and methods of solution. First, to avoid reflection of waves in the underground
discontinuities, by considering the near field only and assuming certain shape of the source, one can
obtain signals to be compared to observations [Campillo 1983]. An earthquake like model assumes that
the bounded solid is entirely elastic and that data are available in its whole boundary. Such a model
does not apply to real earthquake, because data cannot be obtained in the underground, but has the
advantage of giving an exact solution to the fault history 6(t) [Bui et al. 2005]. The second approximate
model which also determines the full history of the fault considers a semi infinite elastic medium, for
which it is necessary to specify the far-field radiated by the earthquake [Vallée 2003], which can be
estimated approximately. Both models give the entire fault history described by the displacement jump
across the fault [[u]] = u+− u−, a function of (x, t) and suppose an infinite duration of the acceleration
measurement a. The method is based on the use of adjoint fields v(x, t) to establish a variational equation
for the current discontinuous elastodynamic field u(x, t) called reciprocity gap functional (Section 2).

Regarding the actual seismic process, the physical models above are not realistic. In a real process,
waves travel in the crust, then reflect on and diffract through the Mohorovičić discontinuity; see Figure 1.
Suppose that the crust has a depth of 60 km, P-waves from a point source near the ground will take



THE INVERSE PROBLEM OF SEISMIC FAULT DETERMINATION USING PART TIME MEASUREMENTS 999
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Figure 1. The seismic model. Part time measurement of the acceleration on the stress-
free ground G, inside a circular area of radius cpT during the time T ; H is a hemispher-
ical surface tangent to the Mohorovičić discontinuity containing a small fault 6 near the
ground. All seismic signals are inside the elastic hemisphere, for 0< t < T .

about 10 s to reach the Moho discontinuity. Beyond this time, after 20 s, reflected waves arrive on the
ground so that measured data correspond to so many sources, the fault and the Moho interface. So the
question is: what part of the signal can be used for the reconstruction of the wave due to the strike only?
A two-dimensional simulation of a sudden release of shear stress over a small fault located near the
free surface is shown in Figure 2. It is observed that complex waves, P-waves, S-waves and intermediate
waves are generated, as predicted [Hudson 1980]. Numerical solutions are much more complex when the
reflection of waves occurs at the interface. Ghost solutions are observed near the ground which explain
the difficulty encountered in numerical optimization methods [Das and Suhadolc 1996].

Ghost

Ghost

Fault

P-waves

Intermediate waves

S-waves

Figure 2. A two-dimensional numerical simulation of an earthquake by the sudden re-
lease of shear stress on a small fault near the ground, showing ghost solution.
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Now, consider a finite duration T such that P-waves from the source do not reach the Moho disconti-
nuity, the depth of which is more or less known from geophysical considerations. Take any volume or a
hemisphere with boundary H in the elastic region above the Moho discontinuity, with radius larger than
cpT but smaller than the Moho discontinuity depth, containing the perturbation field. We then know the
boundary fields on H :

u = 0 and T = σ [u].n= 0 on H ×[0, T ]. (3)

The aim of the paper is to show how to solve analytically the nonlinear inverse problem, using partial
information on the ground acceleration, conditions of (3) and the a priori knowledge on the planar
character of slip fault. No uncertainties of data are considered in this paper. The smaller the time T ,
the shorter the history of the strike which can be recovered. We shall assume first that acceleration data
are due to some rapid release of shear stresses on the moving fault faces. The assumption is based on
the experimental evidence of shear cracks faster than the shear wave speed which has been reported in
[Rosakis et al. 1999], cs < V ≤

√
2cs . Actually, the only assumed boundary condition on the fault is that

it is a planar shear fault. We do not know how the shear stresses are released, or what the fault speed
is. We shall show that a rigorous mathematical analysis will solve the inverse problem in closed form,
giving the fault plane in Section 3. Section 4 discusses a proposal to determine the fault history 6(t) and
establishes two formulae giving the components of the displacement jump explicitly. The solution allows
the determination of the release stress on the fault via a forward initial and boundary value problem in
elastodynamics. A complete solution of the inverse problem, giving both the shear stress and the slip
components on the fault, would be helpful for understanding the friction law mechanism. This paper
examines the mathematical aspects of such an inverse problem.

2. The reciprocity gap functional

Since waves travel in the crust of finite depth we shall consider a finite duration T for the analysis of the
inverse problem. The physical model is based on the following assumptions. At initial time, a sudden
shear slip or a release of (unknown) shear stress over the fault faces 6± generates elastic waves which
can be measured on the stress-free ground. No stresses are applied to the external boundary of the solid.
Such conditions have been considered in our earthquake-like model [Bui et al. 2005]. No reflections of
waves occur yet at the Moho discontinuty during the time T and (3) holds. No other assumptions will
be needed except that measurements of the acceleration (a time-dependent vector field) on the ground
are done on the perturbed area up to T .

For the self-consistency of the paper, we reestablish the general expression of the reciprocity gap
functional R and its particular expression for the present study for a finite duration time of measurements.
Let � be the elastic region before the quake, with boundary ∂�= G ∪ H . After the quake, the sound
region is �′ = � \6, with boundary ∂�′ = G ∪ H ∪6±. We shall denote the region occupied by
the current wave by �′′. Its boundary is the convex hull generated by spherical P-waves of radius cpT
emitted by all points of the fault.

The current elastodynamic displacement field u(x, t) due to either the release of shear stress on 6±

or the imposition of the tangential jump [[u]] on a plane of normal N satisfies the equation of motion,
initial conditions and boundary conditions (L is the isotropic elastic moduli tensor, ρ is the density)
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as follows:

div(L : grad(u))− ρ∂t∂t u = 0 on (� \6)×[0, T ], (4)

u(x, 0)= 0, ∂t u(x, 0)= 0 in (� \6), (5)

∂t∂t u = a on G×[0, T ], (6)

T = σ [u].n= 0 on G×[0, T ], (7)

T = σ [u].n= 0 on H ×[0, T ], (8)

u = 0 on H ×[0, T ], (9)

[[u]].n= 0 on 6±. (10)

The adjoint field v is continuous throughout � and satisfies the wave equation and the final condi-
tions

div(L : grad(v))− ρ∂t∂tv = 0 in �×[0, T ], (11)

v(x, t = T )= 0, ∂tv(x, t = T )= 0 in �. (12)

Multiply (4) by v, (11) by u, subtract the result, then integrate the final result in �′×[0, T ] where N is
the normal to the fault (N is also the normal to 6−)∫ T

0

∫
6

[[u]].σ [v].N dt d S+
∫ T

0

∫
�′
ρ
∂

∂t
(u∂tv− v∂t u) dt dV = R(data, v), (13)

where

R(data, v) def
=

∫ T

0

∫
G

u.σ [v].n dt d S. (14)

We have ∫ T

0

∫
�′
ρ
∂

∂t
(u.∂tv− v.∂t u) dt dV =

∫
�′

dVρ(u.∂tv− v.∂t u) |T0 . (15)

Using the initial conditions on u and the final conditions on v we obtain∫
�′

dVρ(u.∂tv− v.∂t u) |T0= 0. (16)

Finally the variational equation for the inverse problem is given by∫ T

0

∫
6

[[u]].σ [v].N dt d S = R(data, v) for all v. (17)

R(data, v) is called the reciprocity gap functional, which measures the symmetry loss between u and
v. It depends on the acceleration data a on the ground. By a time integration of a, twice, we get the
surface field u(x, t) over G for the right side of (14).

As a matter of fact, the origin of time has been taken at the origin of the hidden source strike. Recorded
acceleration signals start when the first strike arrives at the ground with some delay t1. The true origin
of time takes account of this delay, equal to t1 = (cp/cs − 1)1 with the difference 1 between the arrival
times of the first S-wave and P-wave.
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3. Adjoint fields to determine the fault plane

The adjoint fields v(x, t) to be considered will depend on parameters (scalar, vector, tensor). They are
either plane S-shear waves or plane P-waves, with the moving front 0 propagating in the p direction, with
respective velocity c = cs or c = cp. There is a smooth transition of v(x, t) from the zero value behind
the wave to the one in front of the wave, in a narrow band of width w > 0, w→ 0. Adjoint P-waves are
discussed later. Adjoint S-waves polarized in the direction k are proportional to the regularized (smooth)
Heaviside function Yw(x. p/c− t−τ), where τ is a parameter fixing the initial position of the wave front,
denoted by 0τ , w is a positive number tending to zero (Y (y)= 1 for y >w and Y (y)= 0 for y < 0)

v(x, t; τ, p)= Y+0(x. p/cs − t − τ)k. (18)

They satisfy the homogeneous wave equation in (� \0)×[0, T ] and depend on the scalar τ and vectors
p and do not have discontinuities across the fault. The adjoint stress in the band tends to an impulse as
the width w > 0 tends to zero. R becomes the instantaneous reciprocity gap introduced in [Bui et al.
2004].

The fault plane. The choice of the propagating direction p for adjoint S-waves must satisfy (16). Fig-
ures 3 and 4(b) show that adjoint S-waves can be considered near the top A of the fault only, with fronts
more or less inclined with the angle α with respect to the horizontal plane, with the maximum angle
αmax which depends on the depth d of point A. The existence of a maximum angle is explained by the
fact that an S-wave is slower than a P-wave and that possibly the final condition (12) cannot be satisfied
for large angle. If the front has a steep angle, the S-wave at time T has a nonempty intersection with the
domain �′′, so (16) is not satisfied:

0≤ α < αmax = a sin
cs

cp
− a sin

d
T cp

. (19)

Fault

c  Tp

c  Ts

c  Ts
c  Ts

A

Figure 3. Adjoint S-waves propagating upwards. The angles between the propagating
vectors and the vertical depend on the depth d of the nearest point A to the ground. The
maximun angle is for the front 03, the minimum (zero value) for the front 01.
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x3

x2

x1

x3

x2

x1

p

A

Figure 4. Left: adjoint S-waves propagating upwards (a) with different p under some
angle constraints for determining the tangents to the fault front near point A. Right:
P-waves of arbitrary propagation vectors (b) can also be used for determining the fault
plane. A P-wave parallel to the fault plane (c) is used to determine the fault geometry.

Adjoint P-waves of arbitrary propagation vectors p can also be considered for determining the fault
plane; see label (b) in Figure 4. Once the fault plane has been determined, a particular wave parallel to
the fault can be used for determining the geometry; see label (c) in the same figure.

The apex of point A can be determined by geometrical considerations of the first waves reaching the
ground. It can also be determined directly by horizontal adjoint waves of type 01 by changing τ . First
choose τ so that the fault is entirely behind the wave front, thus σ [v] = 0 on the fault or the integral in
the left side of (17) vanishes, hence R = 0. Then change τ so that R 6=0. The transition of R from zero
(for large τ ) to a non zero value indicates that the adjoint wave front is tangent to the fault boundary.

Let us consider now a wave front of the type 02 of Figure 3, the initial position of which is near to
point A. By changing τ we change its initial position and by changing p we change its orientation, also
to get the transition from zero to a nonzero value of R revealing the contact point and the tangents to
the fault front ∂6. Therefore by trials and errors with this zero-crossing method, we determine a small
three-dimensional curve of the fault front near the point A. This is sufficient to get the entire fault plane.

Remark that we do not make the assumption of a global convex shape of the fault plane, but only a
locally convex front; see Figure 4. The zero-crossing method is the same as the one considered for a
line crack in 2 dimensions [Bui et al. 2004], which is illustrated in Figure 5 where the zero-crossing has
been appreciated with a small number. Having determined the fault plane, we take the axes Ox1x2 on
the fault plane and N = e3.

In our previous method to determine the normal N , we considered an adjoint field such that the stress
σ [v] is constant everywhere, so that (17) can be written as

N.σ [v].
(∫

−τ

0

∫
6

[[u]] dt d S
)
= R(data, v) for all v,

which is quasilinear in N , because 6 still depends on N . However, using an argument given in [Andrieux
et al. 1999] we can show that two independent data are necessary and sufficient to determine the direction
of the normal which is linked to the eigenvectors of the tensor Z i j of components R(vi j ), without knowing
6 and [[u]]. Unfortunately, this analytical method is useless for the seismic inverse problem because the
seismic event is unique.
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Figure 5. Instantaneous adjoint S-waves for determining the convex hull of a line crack
[Bui et al. 2004].

4. The partial fault history

We need another kind of adjoint P-waves and S-waves, which allows the components [[u1]], [[u2]] to be
calculated separately, but under some additional assumptions. Moreover, new adjoint waves allow the
determination of the partial fault history 6(t) for 0< t < T .

The reciprocity gap functional is rewritten below∫ T

0

∫
6

[[u]].σ [v].N dt d S+
∫
�′

dV [ρ(u.∂tv− v.∂t u)] |T0= R(data, v) for all v. (20)

The additional assumption. In the second integral, denoted by K , the term for t = 0 already vanishes
because of the initial conditions on u. We make the assumption that second term for t = T can be omitted
for a particular adjoint field. More precisely, for fixed T and for any given positive number ε, as small
as we want, we can find a particular adjoint field such that

K =
∫
�′

dV [ρ(u.∂tv− v.∂t u)] |T0= O(ε) (21)

instead of K = 0, (16). The additional assumption is based on two arguments: firstly a natural and small
damping of the medium exists so that the wave equation is only an approximated one,2 secondly adjoint
fields v having a good behavior at large time (rapid decay with time) can be easily found.

We study the geometry of the moving fault 6(t) with the coordinates attached to the fault plane x3 = 0.
Consider functions F depending on parameters (s ∈ R2, q ∈ R), satisfying the scalar wave equation for
0< t < T (and F = 0 otherwise) of the form

F(x, t; s, q, c)= exp((iq − k)t) exp(i s.x) exp
(

x3

[
‖s‖2+

(iq − k)2

c2

]1/2)
, (22)

2To take account of a small damping, a term such as −η∂t u (η > 0) can be added to the left side of (4) and the corresponding
antidamping term +η∂tv to (11), the assumption becomes

∫
�′ dV [ρ(u.∂tv− v.∂t u)− ηu.v] |t=T

= O(ε).
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with positive k > 0 chosen so that exp(−kT ) = ε and c = cp for P-waves and c = cs for S-waves.3

Adjoint waves that are proportional to F have a good behavior at large time T as exp(−kT ). The term
exp(x3)‖s‖2 is finite in the bounded medium. Two adjoint waves are considered, one for P-waves and
the other for S-waves:

v(p) = grad F(x, t; s, q, cp), v(s) = curl F(x, t; s, q, cs)e3. (23)

The components of the slip. Equation (17) gives two linear systems of equations, with x3 = 0 on the
left sides of the equations, for D def

= [[u]]:∫
x3=0

∫ T

0
[is1 D1+ is2 D2] exp((iq − k)t) exp(i s.x) dt d S

=
1

2µ

[
‖s‖2+

(iq−k)2

c2
p

]−1/2
R(data, v(p)(s, q, cp))

def
= iG(1)(data, s, q, cp),∫

x3=0

∫ T

0
[is2 D1− is1 D2] exp((iq − k)t) exp(i s.x) dt d S

=
1
µ

[
‖s‖2+

(iq − k)2

c2
s

]−1/2
R(data, v(s)(s, q, cs))

def
= iG(2)(data, s, q, cs).

The equations defines G(1) and G(2) in terms of R(data, v(p)) and R(data, v(s)), respectively. We see
that the combinations (s1G(1)

+ s2G(2)) and (s2G(1)
− s1G(2)) are proportional to ‖s‖2, so we can divide

them by ‖s‖2. Now define function E(t)= exp(−kt) for 0< t < T and E(t)= 0 otherwise. It follows
that the double integral can be extended to the whole space-time. We obtain∫

x3=0

∫
+∞

−∞

D1(x, t)E(t) exp(iqt) exp(i s.x) dt d S = (s1G(1)
+ s2G(2))/‖s‖2, (24)∫

x3=0

∫
+∞

−∞

D2(x, t)E(t) exp(iqt) exp(i s.x) dt d S = (s2G(1)
− s1G(2))/‖s‖2. (25)

Since s ∈ R2 and q ∈ R, the left sides of (24) and (25) are the double time Fourier transform Ft and
spatial Fourier transform Fx of D1(x, t)E(t) and D2(x, t)E(t) respectively. Their right sides are known
functions of data and s, q.

Based on our previous works, which considered adjoint waves of the same exponential type, we know
that the reciprocity gap functional is the spatial Fourier transform of a compact support function. For a
similar inverse problem, the proof (based on the Wiener–Paley theorem) can be found in [Ben Abda and
Bui 2003].

Finally, by double inverse Fourier transforms in the image spaces (s, q), we obtain each component of
the displacement jump and the fault history given by its support function, 6 = supp ([[u1]])∪supp ([[u2]]),
for ε = exp(−kT )→ 0:

[[u1]](x, t)E(t)= F−1
q F−1

s
s1G(1)

+ s2G(2)

‖s‖2
, [[u2]](x, t)E(t)= F−1

q F−1
s

s2G(1)
− s1G(2)

‖s‖2
. (26)

3In the case of damping, we take

F(x, t; s, q, c)= exp((iq − k)t) exp(i s.x) exp
(

x3[‖s‖
2
+
(iq − k)2

c2 − η(iq − k)]1/2
)
.
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The released stresses. Knowing the displacement jump on the fault, the acceleration on the ground, the
null displacement on H, with the initial conditions, we are left with a well-posed forward problem of
elastodynamics which determines the displacement field inside the volume �′ and the release stresses
on the fault.

The knowledge of both the shear stress and the slip on the fault, could be helpful for understanding
the friction law mechanism. The solution of the inverse problem and the forward one give the stress field
σ [u], in particular the normal stress σ33 and the shear stress on the fault σ3m , along the direction m of
the fault slip. These stress components are only variations of the stress in the strike. The actual stresses
to be considered in the friction law are the sum of the released stress σ [u] and the tectonic one 6tect

provided by geophysical considerations only.

Remarks. 1. For an infinite medium or infinite time measurement cpT = ∞, we have K = 0. The
solution is the same given by (26).

2. For an explicit solution ∂t∂t u and exact data a in the residual J of (1), the numerical calculation
of the slip via fast Fourier transforms in space and time, followed by the calculation of the theoretical
acceleration on the ground via the elastodynamic solution, always involve errors. Therefore the residual
J does not vanish. This behavior is also related to the remark of Das and Suhadolc about the flat minimum
of the residual (quoted on page 998).

5. Conclusions

To avoid reflections of waves in the Moho discontinuity, one generally considers either near-fields or
infinite medium for studying earthquake inverse problems. We have shown that these assumptions are
not necessary. Firstly, we can consider a bounded solid above the Moho discontinuity. Secondly, we
have shown that a part time T of measurement of the acceleration on the ground, before seismic waves
reach the boundary of the solid considered, leads to a rigorous mathematical analysis of the equations
and provides the solution to the inverse problem: the fault plane and its time-dependent geometry are
determined. We establish the formulae giving the components of the fault slip in terms of the ground data
during the time T . Having solved the inverse problem, a forward initial and boundary value problem in
elastodynamics can provide the field solution and consequently the shear stress released on the fault.

The explicit solution of the earthquake inverse problem, obtained by the reciprocity gap method,
provides both the slip field and the shear stress (and also the normal stress) on the fault and would be
useful to understand the seismic mechanisms, particularly to find the friction law on the active fault.

Numerical applications of the proposed method are beyond the scope of this paper and will appear in
a forthcoming paper.
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