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MICROMECHANICAL ANALYSIS OF UNIDIRECTIONAL COMPOSITES
USING A LEAST-SQUARES-BASED DIFFERENTIAL

QUADRATURE ELEMENT METHOD

MOHAMMAD BAYAT AND MOHAMMAD MOHAMMADI AGHDAM

A generalized plane strain micromechanical model is developed to predict the stress and strain fields
and overall elastic properties of a unidirectional fiber-reinforced composite subjected to various axial
and transverse normal loading conditions using a least-squares-based differential quadrature element
method (DQEM). The representative volume element (RVE) of the composite consists of a quarter of
the fiber surrounded by matrix to represent the real composite with a repeating square array of fibers.
The cubic serendipity shape functions are used to convert the solution domain to a proper rectangular
domain and the new versions of the governing equations and boundary conditions are also derived. The
fully bonded fiber-matrix interface condition is considered and the displacement continuity and traction
reciprocity are imposed on the fiber-matrix interface. Application of DQEM to the problem leads to
an overdetermined system of linear equations mainly due to the particular periodic boundary conditions
of the RVE. A least-squares differential quadrature element method is used to obtain solutions for the
governing partial differential equations of the problem. The numerical results are in excellent agreement
with the available analytical and finite element studies. Moreover, the results of this study reveal that the
presented model can provide highly accurate results with a very small number of elements and grid points
within each element. In addition, the model shows advantages over conventional analytical models for
fewer simplifying assumptions related to the geometry of the RVE.

1. Introduction

Effective and proper use of composites relies on how these materials behave under various types of
loading. Both numerical [Adams and Doner 1967; Adams 1970; Eischen and Torquato 1993; Nedele
and Wisnom 1994; Sun and Vaidya 1996; Aghdam et al. 2000; 2001; Ahmadi and Aghdam 2010]
and analytical [Eshelby 1957; Hashin and Rosen 1964; Hill 1965; Uemura et al. 1979; Mikata and Taya
1985; Nairn 1985; Aboudi 1987; 1989; Nimmer 1990; Robertson and Mall 1993; Aghdam and Dezhestan
2005] micromechanical models have been used to predict the elastic, plastic, and thermal properties of
composite materials and their responses to different thermal and mechanical loading conditions.

Numerical models include finite difference [Adams and Doner 1967], finite element [Adams 1970;
Nedele and Wisnom 1994; Sun and Vaidya 1996; Aghdam et al. 2000; 2001], boundary element [Eischen
and Torquato 1993], and, more recently, meshless [Ahmadi and Aghdam 2010] methods. Among the
earliest finite element models, one can refer to [Adams 1970], covering the inelastic behavior of compos-
ites subjected to transverse normal loading using a plane strain finite element approach. Other studies
on the finite element micromechanical modeling of composites for obtaining overall properties include

Keywords: least-squares DQEM, micromechanics, generalized plane strain, UD fiber-reinforced composite, microstress/strain
fields, overall properties.
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various simple uniaxial loading conditions such as longitudinal and transverse normal or shear loading
[Sun and Vaidya 1996], combined axial shear and thermal loading [Nedele and Wisnom 1994] and off-
axis loading of composites [Aghdam et al. 2001], and yielding and collapse behavior of unidirectional
(UD) composites [Aghdam et al. 2000]. The boundary element method [Eischen and Torquato 1993] is
also used to study the elastic behavior of composite materials.

Various analytical micromechanical models have also been proposed to evaluate the behavior of het-
erogeneous materials based on constituent properties, volume fractions, and their interactions. Among
the first analytical approaches to model composite behavior were the model presented in [Eshelby 1957]
and the self-consistent model of [Hill 1965]. Analytical models based on the variational principles of
the theory of elasticity [Hashin and Rosen 1964] have also been employed to obtain upper and lower
bounds of the overall elastic properties of composite materials. In these models, while the minimum
complementary energy method yields the lower bounds, the minimum potential energy principle results
in the upper bounds.

There is another class of analytical models in which a small area of the composite is considered as a
representative volume element (RVE) of the composite. These types of models can be categorized into
various groups based on the simplifying assumptions made about the geometry of the composite. The
two major groups are composite cylinder models (CCM) and unit cell models (UCM). The geometry
of the RVE in CCM consists of a circular fiber surrounded by a circular matrix [Uemura et al. 1979].
In some cases, more than two concentric cylinders were considered to study the effects of the interface
[Nairn 1985] and fiber coating [Mikata and Taya 1985]. In UCM however, the cross section of the RVE
includes a rectangular fiber surrounded by several rectangular blocks of matrix. One of the well-known
micromechanical models in the category of UCM is the method of cells (MC), which was developed
in [Aboudi 1987; 1989]. This model has several advantages compared with other similar models while
also being mathematically rigorous. More UCM types of models can be found elsewhere [Nimmer 1990;
Robertson and Mall 1993; Aghdam and Dezhestan 2005].

Analytical models normally require more rigorous mathematical procedures [Aboudi 1987; 1989]
while normally involving more simplifying assumptions [Aboudi 1987; 1989; Nimmer 1990; Robertson
and Mall 1993; Aghdam and Dezhestan 2005]. Furthermore, most analytical models are not able to
provide a nonuniform distribution of stress and strain fields within the RVE, though their predictions for
overall properties are reasonably accurate. In numerical techniques, however, there are fewer simplifying
assumptions, and accuracy depends on the number of elements or grid points. For instance, in order to
obtain more accurate results in finite element analysis, the geometry of the RVE should be divided into
a few hundred small elements.

In the past decade, the differential quadrature element method (DQEM) has been used to study the
behavior of different structural elements [Wang et al. 1996; Wang and Gu 1997; Karami and Malekzadeh
2002; Chen 2003]. However, apart from applications of the differential quadrature (DQ) method in fluid
mechanics, all the studies in the literature have been restricted to various 2D elasticity problems of
isotropic and laminated plates and shells; the method has not been used in micromechanics of heteroge-
neous materials. These studies revealed that the method offers a good convergence rate and accuracy with
a relatively small number of grid points. However, implementation of boundary conditions is a challeng-
ing and time-consuming procedure in DQEM. This is mainly due to the resultant overdetermined system
of algebraic equations in most DQEM problems. In order to prevent formation of overdetermined system
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of equations after implementation of multiboundary conditions, several approaches have been presented
in the literature. For example, some DQ equations at inner nodes can be replaced by the additional
boundary conditions. However, it has been found that the accuracy of the results may vary depending
on which DQ equations at the inner grids are replaced by the boundary conditions [Zong and Zhang
2009]. Jang et al. [1989] proposed the so-called δ-technique wherein, adjacent to the boundary points
of the differential quadrature grid, points are chosen at a small distance δ ∼= 10−5 (as a dimensionless
value). Then the DQ analog of the two conditions at a boundary are written for the boundary points and
their adjacent δ-points. Wang and Bert [1993] introduced an approach where the boundary conditions
are formed during formulation of the weighting coefficients for higher-order derivatives. Malik and Bert
[1996] tried to employ this approach for all boundary conditions. Wang et al. [1996; Wang and Gu 1997]
introduced another method in which multiboundary conditions are imposed by assigning two degrees
of freedom to each end point for a fourth-order differential equation. Wu and Liu [2000] proposed
a generalized differential quadrature rule, introducing multiple degrees of freedom at boundary points.
Recently, Karami and Malekzadeh [2002] proposed a method of applying the multiboundary conditions.
In formulations of the weighting coefficients of third and fourth-order derivatives, the second derivatives
at the boundary points are viewed as additional independent variables.

Briefly, in order to adjust the number of equations and unknowns, researchers normally eliminate
some of the equations [Wang 2001] or add extra unknowns to the problem [Karami and Malekzadeh
2002; Wu and Liu 2000]. However, in this study all of the governing equations and boundary conditions
are considered and, therefore, the resultant overdetermined system of equations is solved using a least-
squares technique.

In this study, a two-dimensional generalized plane strain micromechanical model is presented to pre-
dict the behavior of a UD composite system using DQEM. The geometry of the RVE is divided into
three elements, as shown in Figure 1, which are then mapped to a rectangular domain using the cubic
serendipity shape functions (see Figure 2). The fully bonded fiber-matrix interface condition is consid-
ered and the displacement continuity and traction reciprocity are imposed on the fiber-matrix interface.
The new version of the governing partial differential equations of the problem and their boundary and
interface conditions are obtained. Application of DQEM to the problem leads to an overdetermined
system of linear equations mainly due to the particular periodic boundary conditions of the RVE. A least-
squares differential quadrature element method (LSDQEM) is used to obtain solutions for the governing
partial differential equations of the problem. The results of this study show excellent agreement with the
finite element analysis for various stress and displacement components of a SiC/Ti composite system.
The predicted overall properties of the same SiC/Ti system also show excellent agreement with other
analytical and finite element analyses.

2. Analysis

2.1. Geometry of the model. In a real UD fiber-reinforced composite, the fibers are likely to be arranged
in a random array. It is difficult, if not impossible, to model the composite behavior with the real
constituent geometry. Apart from some approximate bounds found for a random array of fibers and
arbitrary phase geometry using a variational method [Hill 1965], the actual cross section of the composite
has to be idealized as a regular array of fibers. In most analytical, finite element, and numerical models,
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Figure 1. Geometry of the RVE and selected elements.
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Figure 2. Mapping of the cubic serendipity element from the physical domain (left) to
the computational domain (right).

the cross section of the composite is simplified as periodic arrays of fibers, either in a square or hexagonal
array packing, as shown in Figure 3. In this study, the fibers are assumed to be arranged in square arrays.
The second step is to choose the smallest informative and repeating area of the geometry for the whole
cross section as the RVE. It is assumed that all the effective characteristics and global behavior of the
composite are similar to those of the RVE. Hence, special care should be taken to select the correct
RVE and to apply the correct boundary conditions to model the real loading conditions on the composite.
Commonly, a quarter of the fiber and the corresponding matrix, as shown in Figure 1, are sufficient to
model various loading conditions.
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Figure 3. Left: schematic diagram of a real UD composite. Middle: unit cell and RVE
of hexagonal array. Right: unit cell and RVE of square array.



MICROMECHANICAL ANALYSIS OF UNIDIRECTIONAL COMPOSITES USING DIFFERENTIAL QUADRATURE 123

2.2. Governing equations. Assuming a generalized plane strain condition which can provide more re-
alistic predictions, the displacement fields within the RVE can be considered as

u = u(x, y), v = v(x, y), w = εz0 · z, (1)

where u, v, and w are displacements in the x , y, and z directions, respectively, and εz0 is an unknown
constant strain in the fiber direction to be determined. Based on the theory of elasticity, the strain-
displacement relations within the RVE are

εx = u,x , εy = v,y, εz = w,z, γxy = v,x + u,y, γxz = w,x + u,z, γyz = w,y + v,z, (2)

in which ( ),x ≡ ∂( )/∂x . The generalized plane strain condition for displacements requires vanishing
shear strains γxz = γyz = 0 and consequently zero shear stresses τxz = τyz = 0. Furthermore, assuming
linear elastic behavior for both constituents, stress-strain relations for each phase of the RVE can be
written as

σx = B(u,x +Cv,y +Cε0z), σy = B(Cu,x + v,y +Cε0z),

σz = B(Cu,x +Cv,y + ε0z), τxy = G(v,x + u,y),
(3)

where constants B and C are

B =
E(1− ν)

(1+ ν)(1− 2ν)
, C = ν

1−ν
, (4)

in which E and ν are the elasticity modulus and the Poisson’s ratio of the constituents, respectively.
Finally, the governing equilibrium equations of the problem in the absence of body forces can be written
in terms of displacement components as

αu,xx +βv,xy + u,yy = 0, αv,yy +βu,xy + v,xx = 0, (5)

where α = 2(1− ν)/(1− 2ν) and β = 1/(1− 2ν).

2.3. Mapping the geometry of the RVE. In this study, a RVE corresponding to a square array of fibers
is considered. In order to apply DQEM to solve the governing equations, the RVE is divided into three
irregular regions/elements, as shown in Figure 1. Using geometric natural-to-Cartesian mappings, an
irregular quadrilateral physical domain (x, y), as shown in Figure 2, can be mapped into a normalized
computational domain (ξ, η) based on the following cubic serendipity shape function:

x =
12∑

i=1

Ni (ξ, η) · xi , y =
12∑

i=1

Ni (ξ, η) · yi (−1≤ ξ, η ≤ 1), (6)

where Ni (ξ, η) is the cubic serendipity shape function defined by

Ni (ξ, η)=
1
32 (1+ ξξi )(1+ ηηi )[9(ξ 2

+ η2)− 10], i = 1, 2, 3, 4,

Ni (ξ, η)=
9
32 (1− ξ

2)(1+ ηηi )(1+ 9ξξi ), i = 5, 6, 7, 8,

Ni (ξ, η)=
9
32 (1+ ξξi )(1− η2)(1+ 9ηηi ), i = 9, 10, 11, 12,

(7)
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in which ξi and ηi are the coordinates of the node i in the ξ -η domain. In order to obtain the new version
of the governing equations in the computational square element, the Jacobian of transformation matrix,

[J ] =
[

x,ξ y,ξ
x,η y,η

]
,

is inverted:

[J ]−1
=

[
ξ,x η,x

ξ,y η,y

]
=

1
|J |

[
y,η −y,ξ
−x,η x,ξ

]
, |J | = x,ξ y,η− x,ηy,ξ , (8)

where |J | is the determinant of the Jacobian matrix. Thus, the transformation of the first-order derivatives
is {

u,x
u,y

}
= [J ]−1

{
u,ξ
u,η

}
. (9)

To include second-order derivatives, the transformation may be written in matrix form as
u,ξ
u,η
u,ξη
u,ξξ
u,ηη

=


x,ξ y,ξ 0 0 0
x,η y,η 0 0 0
x,ξη y,ξη x,ξ y,η+ x,ηy,ξ x,ξ x,η y,ηy,ξ
x,ξξ y,ξξ 2x,ξ y,ξ x2

,ξ y2
,ξ

x2
,η y2

,η 2x,ηy,η x2
,η y2

,η




u,x
u,y
u,xy

u,xx

u,yy

 . (10)

The inverse transformation can be expressed as explicit functions of (ξ, η), similar to (9). Implementation
of the DQ method on the computational square domain is straightforward.

2.4. DQ method. The quadrature rules for a function 9 =9(x, y) on a rectangular domain (0≤ x ≤ a,
0≤ y ≤ b), can be written as follows [Bert and Malik 1996]:

∂r9

∂xr

∣∣∣∣
x=x i

=

Nx∑
k=1

A(r)ik 9k j , i = 1, 2, . . . , Nx ,
∂s9

∂ys

∣∣∣∣
y=y j

=

Ny∑
l=1

B(s)jl 9il, j = 1, 2, . . . , Ny, (11)

∫ a

x=0
9(x, y j )dx =

Nx∑
k=1

Ck9k j ,

∫ b

y=0
9(xi , y)dy =

Ny∑
l=1

Cl9il,

∫ a

x=0

∫ b

y=0
9(x, y)dxdy =

Nx∑
k=1

Ck

Ny∑
l=1

Dl9kl,
∂(r+s)9

∂xr∂ys

∣∣∣∣
xi ,y j

=
∂r

∂xr

(
∂s9

∂ys

)∣∣∣∣
xi ,y j

=

Nx∑
k=1

A(r)ik

Ny∑
l=1

B(s)jl 9kl,

where Nx and Ny are the numbers of grid points in the x and y directions, respectively, ψi j = ψ(xi , y j ),
and A(r)i j , B(s)i j , Ci , and Di are weighting coefficients. For example, in order to determine the weighting

coefficients A(r)ik , the Lagrange interpolation basic functions [Shu and Richards 1992b; Bert et al. 1993]
are used as test functions and, therefore, explicit formulas for computing the weighting coefficients of
the first-order derivative can be obtained as follows [Shu and Richards 1992a]:

A(1)ik =

∏
(xi )

(xi − xk)
∏
(xk)

for i, k = 1, 2, . . . , Nx and k 6= i,
∏
(xi )=

Nx∏
ν=1,ν 6=k

(xi − xν). (12)
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For higher-order derivatives, one can use the following relations iteratively:

A(r)ik = r
[

A(r−1)
i i A(1)ik −

A(r−1)
ik

xi − xk

]
for i, k = 1, 2, . . . , Nx and k 6= i, 2≤ r ≤ (Nx − 1),

A(r)i i =−

Nx∑
ν=1,ν 6=i

A(r)iν for i = 1, 2, . . . , Nx , 1≤ r ≤ (Nx − 1).
(13)

The next step is the discretization of the domain to Nξ × Nη grid points. It is shown [Shu et al. 2001]
that one of the best options for obtaining grid points is zeros of the well-known Chebyshev polynomials:

ξi= − 1+ cos
[
(i − 1)π
Nξ − 1

]
, i=1, 2, . . . , Nξ , η j= − 1+ cos

[
( j − 1)π
Nη− 1

]
, j=1, 2, . . . , Nη. (14)

In DQEM, the procedure of the DQ method should be repeated for the governing equation within each
element. Therefore, the governing equations (5) can be written in the computational domain as

(αξ 2
,x + ξ

2
,y)

Nξ∑
k=1

A(2)ik uk j + (αη
2
,x + η

2
,y)

Nη∑
l=1

B(2)jl uil + (αξ,xx + ξ,yy)

Nξ∑
k=1

A(1)ik uk j

+ (αη,xx + η,yy)

Nη∑
l=1

B(1)jl uil + (2αξ,xη,x + 2ξ,yη,y)
Nξ∑

k=1

A(1)ik

Nη∑
l=1

B(1)jl ukl

+ (βξ,xξ,y)

Nξ∑
k=1

A(2)ik vk j + (βη,xη,y)

Nη∑
l=1

B(2)jl vil + (βξ ,xy)

Nξ∑
k=1

A(1)ik vk j

+(βη,xy)

Nη∑
l=1

B(1)jl vil +β(ξ,xη,y + ξ,yη,x)

Nξ∑
k=1

A(1)ik

Nη∑
l=1

B(1)jl vkl = 0,

(ξ 2
,x +αξ

2
,y)

Nξ∑
k=1

A(2)ik vk j + (η
2
,x +αη

2
,y)

Nη∑
l=1

B(2)jl vil + (ξ,xx +αξ,yy)

Nξ∑
k=1

A(1)ik vk j

+ (η,xx +αη,yy)

Nη∑
l=1

B(1)jl vil + (2ξ,xη,x + 2αξ,yη,y)
Nξ∑

k=1

A(1)ik

Nη∑
l=1

B(1)jl vkl

+ (βξ,xξ,y)

Nξ∑
k=1

A(2)ik uk j + (βη,xη,y)

Nη∑
l=1

B(2)jl uil + (βξ ,xy)

Nξ∑
k=1

A(1)ik uk j

+(βη,xy)

Nη∑
l=1

B(1)jl uil +β(ξ,xη,y + ξ,yη,x)

Nξ∑
k=1

A(1)ik

Nη∑
l=1

B(1)jl ukl = 0.

2.5. Compatibility, loading, and boundary conditions. Assuming a perfectly bonded interface between
the fiber and matrix, the following displacement continuity and traction reciprocity conditions should be
satisfied at the common nodes of the two adjacent elements:

ua
= ub, va

= vb, σ a
x ·n1+τ

a
xy ·n2 = σ

b
x ·n1+τ

b
xy ·n2, τ a

xy ·n1+σ
a
y ·n2 = τ

b
xy ·n1+σ

b
y ·n2, (15)
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where a and b refer to two adjacent elements and n= (n1, n2) is unit normal to the interface. Furthermore,
appropriate loading and boundary conditions for the normal loading of the RVE in the transverse and
axial directions are (Figure 1):

u = τxy = 0 on x = 0,

v = τxy = 0 on y = 0,

u = const., τxy = 0,
∫ L2

0
σx dy = σx0L2 on x = L1,

v = const., τxy = 0,
∫ L1

0
σy dx = σy0L1 on y = L2,

εz0 = const.,
∫ L1

0

∫ L2

0
σz dxdy = σz0L1L2 on the RVE,

(16)

in which σx0, σy0, and σz0 are the applied macrostress components on the RVE in the x , y, and z directions,
respectively. The compatibility conditions at the element interface and the boundary conditions have a
dominant influence on the accuracy of the results and, therefore, (15) and (16) should be mapped to the
computational domain and discretized carefully.

Application of DQEM to the problem together with the boundary and compatibility conditions leads
to an overdetermined system of algebraic linear equations Ax = b, that is, A is a rectangular matrix of
size m× n, n < m. In order to solve the nonsymmetric linear system Ax = b, one may use an equivalent
system,

AT Ax = AT b, (17)

which is symmetric positive definite. This system is known as the system of the normal equations
associated with the following least-squares problem:

minimize ‖b− Ax‖2, (18)

in which ‖b− Ax‖2 ≡ (
∑m

i=1 [bi −
∑n

j=1 Ai j x j ]
2
)1/2. It can be shown that minimizing (18), which is a

least-squares solution for the nonsymmetric linear system Ax = b, leads to the symmetric system (17);
see, for instance, [Saad 2003] for more details.

Finally, it is interesting to note that application of DQEM leads to a compatible overdetermined system
of equations, and therefore, the above-mentioned least-squares technique results in accurate predictions.

3. Numerical results and discussion

The procedure explained in the previous sections is used to obtain stress and displacement components
within the fiber and matrix of a SiC/Ti metal matrix composite with a 40% fiber volume fraction (FVF).
The composite is subjected to normal loading in the axial and transverse directions. Various overall
properties of the composite system can also be determined by applying uniaxial loads. The mechanical
properties of the constituents of the SiC/Ti system are as follows (see [Aghdam et al. 2000]):

SiC (fiber): E = 409 GPa ν = 0.2

Ti (matrix): E = 107 GPa ν = 0.3
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Figure 4. Convergence of transverse normal stress σx at point A, with εx0 = 0.001.

3.1. Convergence study and CPU time. In this section, the convergence rate and CPU time of the pre-
sented method are compared with those of ANSYS and a mesh-free method for two examples. In the first
example, a UD SiC/Ti metal matrix composite with a 40% FVF is considered. The RVE is subjected to
a uniform strain of εx0 = 0.001 in the x direction on the right-hand side, while all other stress and strain
components are zero. Figure 4 represents the convergence of the transverse normal stress σx at point A
of the RVE. The figure also includes convergence of the same results obtained by the commercial finite
element code ANSYS [ANSYS 2008]. The geometry of the RVE in the ANSYS simulation is modeled
by two-dimensional generalized plane strain PLANE183 elements with eight nodes. The results suggest
that very good convergence can be achieved by using about 100 nodes in LSDQEM while FEM analysis
requires more than 1000 nodes for the same level of convergence.

The efficiency of the presented method is examined in another example in which a boron/aluminum
metal matrix composite with a 47% FVF is considered. The material properties of the constituents are
as follows:

Boron (fiber) E = 379.3 GPa ν = 0.2

Aluminum (matrix) E = 68.3 GPa ν = 0.3

The overall transverse Young’s modulus of the boron/aluminum composite (Ec
T ) is calculated using

three different methods including the presented LSDQEM, FEM (ANSYS), and meshless method [Ah-
madi and Aghdam 2010]. The CPU times for these methods are tabulated in Table 1. Again, it can be

Method Number of nodes CPU time (s) Ec
T (GPa)

LSDQEM 108 6 143.92
FEM (ANSYS) 1200 ∼15 143.96
Meshless method [Ahmadi and Aghdam 2010] 350 14.9 144.31

Table 1. Comparison of the CPU time for LSDQEM and other methods (FVF= 0.47).
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seen that the number of nodes and the CPU time for LSDQEM are significantly less than for the other
two methods which implies efficiency for the presented method. The predictions of the presented model
for the transverse Young’s modulus (Ec

T ) are also in excellent agreement with the predictions of ANSYS.

3.2. Stress analysis.

Transverse normal loading. In this section, the SiC/Ti composite system with a 40% FVF subjected to a
transverse strain of εx0 = 0.001 in the x direction is considered. The RVE is assumed to be square, that
is, L1 = L2. In order to examine the validity of the results, another analysis was also carried out using the
finite element code ANSYS [ANSYS 2008]. All the predicted stress and displacement components show
excellent agreement with the finite element results for the entire domain of the problem. For example, the
comparison of the normal stress σx is presented in Figure 5. The stresses and displacements within the
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Figure 5. Contours of normal stress σx (in MPa) in the RVE of (a) DQEM and (b) ANSYS.
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RVE are compared with the finite element results in Figures 6–8. As expected, it can be seen in Figures
6–8 that εy and σy are continuous along the y-axis while σx and σz are discontinuous at the fiber-matrix
interface. Furthermore the SiC/Ti composite is subjected to a uniaxial transverse normal load in the x
direction, σx = 100 MPa. The dimensionless stress σ ∗ is defined as the ratio of the microstress σ to the
applied macrostress σ = 100 MPa, that is, σ ∗ = σ/100. The distribution of the dimensionless normal
and effective von Mises σ ∗e stresses on the x and y axes of the RVE are shown in Figures 9 and 10. It
is seen that on the x-axis the microstress σ ∗x is greater than the applied macrostress. The coefficient of
stress concentration for transverse loading is σx max/σx = 1.4. As expected, it can also be seen that σx

along the x-axis (Figure 9) and σy along the y-axis (Figure 11) are continuous, while the other stresses
are discontinuous at the fiber-matrix interface.

Axial normal stress loading. The uniaxial axial normal load in the z direction, σz = 100 MPa, is applied
to a SiC/Ti composite system. The resultant dimensionless normal and effective von Mises σ ∗e stresses
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MICROMECHANICAL ANALYSIS OF UNIDIRECTIONAL COMPOSITES USING DIFFERENTIAL QUADRATURE 131

y/L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 st
re

ss
es

−0.5

0

0.5

1

1.5

2

(     )
(     )
(     )
(     )
(     )
(     )
(     )
(     )

σ
σ
σ
σ
σ
σ
σ
σ

LSDQEM *
*
*
*
*
*
*
*

ANSYS
LSDQEM
ANSYS

x
x
y
y

LSDQEM
ANSYS
LSDQEM
ANSYS

z
z
e
e

Figure 11. Comparison of normalized stresses along the y-axis, with σz = 100 MPa.

x/L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 st
re

ss
es

−1

−0.5

0

0.5

1

1.5

2

2.5

(     )
(     )
(     )
(     )
(     )
(     )
(     )
(     )

σ
σ
σ
σ
σ
σ
σ
σ

LSDQEM *
*
*
*
*
*
*
*

ANSYS
LSDQEM
ANSYS

x
x
y
y

LSDQEM
ANSYS
LSDQEM
ANSYS

z
z
e
e

Figure 12. Comparison of normalized stresses along the x-axis, with σx = −50 MPa,
σz = 100 MPa.

on the y-axis of the RVE are shown in Figure 11. It is seen that the microstress σ ∗z within the fiber
is greater than the applied macrostress. The coefficient of stress concentration for the axial loading is
σz max/σz = 1.79. As expected, σz is nearly constant within the fiber and matrix with larger a value in
the fiber which results from the generalized plane strain assumption and all other stress components are
nearly zero.

Biaxial normal stress loading. In the next example, the SiC/Ti composite system subjected to a biaxial
normal stress of σx =−50 MPa, σz = 100 MPa is studied. The dimensionless normal and effective von
Mises σ ∗e stresses on the x axis of the RVE are shown in Figure 12. It can be seen that σx along the
x-axis, Figure 12, is continuous while the other stresses are discontinuous at the fiber-matrix interface.
Furthermore σz is nearly constant within the fiber and matrix.



132 MOHAMMAD BAYAT AND MOHAMMAD MOHAMMADI AGHDAM

x/L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 st
re

ss
es

−1

−0.5

0

0.5

1

1.5

2

2.5

(     )
(     )
(     )
(     )
(     )
(     )
(     )
(     )

σ
σ
σ
σ
σ
σ
σ
σ

LSDQEM *
*
*
*
*
*
*
*

ANSYS
LSDQEM
ANSYS

x
x
y
y

LSDQEM
ANSYS
LSDQEM
ANSYS

z
z
e
e

Figure 13. Comparison of normalized stresses along the x-axis, with σx = −50 MPa,
σy = 80 MPa, σz = 100 MPa.

Triaxial normal stress loading. Finally, the SiC/Ti composite system subjected to a triaxial normal stress
of σx = −50 MPa, σy = 80 MPa, σz = 100 MPa is considered. The distribution of the dimensionless
stresses on the x-axis of the RVE is shown in Figure 13. All the predicted stress components show
excellent agreement with the finite element results.

3.3. Elastic properties. In order to obtain the overall mechanical properties of the composite system, the
square RVE is analyzed using uniaxial loadings in the transverse and longitudinal directions. For instance,
the RVE is subjected to a uniform stress in the x direction (σx0) while the other stress components
(σy0, σz0) are zero. Then, the overall strain of the RVE in the x and y directions (εx0, εy0) can be
determined. The transverse Young’s modulus and Poisson’s ratio can be calculated using

Ec
T = σx0/εx0, νc

T = |εy0/εx0|, (19)

in which the superscript c refers to the overall composite property. A similar procedure can be used
to obtain the axial properties of the composite system. Predictions for the overall transverse Young’s
modulus, Ec

T , of the SiC/Ti are shown in Table 1. It should be noted that three elements with 8× 8
grid points are considered in the presented DQEM while more elements are used in the finite element
analysis.

Included in Table 2 are also results from finite element analysis [Aghdam et al. 2000] and the method
of cells (MC) [Aboudi 1987]. As can be seen in Table 2, all the predictions are in close agreement with
each other. It should be noted that due to geometrical restrictions for the square array fiber assumption,
the maximum fiber volume fraction (FVF) for both the finite element method and DQEM is 0.785. The
predictions for the overall transverse Poisson’s ratio, νc

T , for the same material are shown in Table 2.
Again, excellent agreement can be seen between the DQEM and finite element results while the results
of MC shows an overestimate for the entire range of the FVF. The predictions for the overall longitudinal
Young’s modulus, Ec

L , and Poisson’s ratio, νc
L , of the SiC/Ti composite system are depicted in Table 2.
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FVF Solution method Ec
L (GPa) νc

L Ec
T (GPa) νc

T

20% LSDQEM 167.63 0.2766 136.66 0.3103
ANSYS 167.62 0.2766 136.74 0.3099
FEM 168.80 0.2612 136.91 0.3102
MC 167.93 0.2637 135.18 0.323

40% LSDQEM 228.13 0.2550 177.86 0.2820
ANSYS 228.12 0.2550 177.93 0.2818
FEM 228.61 0.2252 177.75 0.2822
MC 227.75 0.2274 169.5 0.3130

60% LSDQEM 288.56 0.2348 234.46 0.2450
ANSYS 288.54 0.2348 234.35 0.2455
FEM 289.30 0.1913 243.23 0.2458
MC 288.86 0.1929 217.29 0.2885

Table 2. Comparison of the longitudinal (axial) and transverse Young’s moduli and
Poisson’s ratios for various fiber volume fractions (FVF). The FEM values are from
[Aghdam et al. 2000] and the method of cells (MC) values from [Aboudi 1987].

The predictions of the MC and finite element analysis are also included in the table. The MC predictions
can be obtained by the closed form solutions given in [Aboudi 1987].

4. Concluding remarks

A micromechanical model is developed to predict the behavior of a unidirectional (UD) fiber-reinforced
composite subjected to various axial and transverse normal loading conditions using the differential
quadrature element method (DQEM). The theory of elasticity is used to derive the governing partial
differential equations of the problem. The geometry of the representative volume element (RVE) is then
divided into three elements and mapping is used to convert the solution domain to a computational square
domain. The new versions of the governing equations and boundary conditions are derived.

The application of DQEM for this problem leads to an overdetermined system of linear equations
since the RVE has particular boundary conditions. The least-squares approximation is used to solve
the resultant system of equations. It is demonstrated that the least-squares differential quadrature ele-
ment method (LSDQEM) is a simple and fast approach to imposing the various boundary conditions
of the problem. It can be seen that the number of nodes and the CPU time for LSDQEM are signif-
icantly less than for the mesh-free method and FEM. Comparison of the predicted results for various
stress and displacement components shows excellent agreement with the finite element method. More-
over, results for overall the mechanical properties of the UD composites also show excellent agreement
with other published analytical and finite element models. In addition, the model has the advantage
over conventional analytical models of making fewer simplifying assumptions on the geometry of the
RVE.
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SIZE-DEPENDENT FREE VIBRATION ANALYSIS
OF INFINITE NANOTUBES USING ELASTICITY THEORY

JAFAR ESKANDARI JAM, YASER MIRZAEI, BEHNAM GHESHLAGHI AND REZA AVAZMOHAMMADI

Exact elasticity theory is employed to study the (two-dimensional) free vibration of nanoscale cylindrical
tubes in the presence of free surface energy. Use is made of the Gurtin–Murdoch surface elasticity model
to incorporate the surface stress terms into the pertinent boundary conditions. Some numerical examples
are provided to depict the influence of the surface energy, and particularly the inner radius size of the
nanocylinder, on the natural frequencies of the system. The results indicate a stronger influence of
surface effects for both smaller values of the outer to inner radius ratio and higher modes of vibration.

1. Introduction

Due to accelerated miniaturization of components and devices in micro and nanoelectromechanical sys-
tems, there is an increasing demand for understanding of the behaviors of small-sized materials and
structures. Nanostructured devices and materials have become progressively more important both in
fundamental and applied research because of their unique physical properties [Tan and Lim 2006]. When
the characteristic size of materials and devices shrinks to microns or nanometers, surface and interface
effects start to play a considerable or even dominant role in their deformability, performance, and relia-
bility, owing to the increasing ratio of surface/interface area to volume [Wong et al. 1997; Cuenot et al.
2004]. Also, atomic simulations have revealed that a solid surface/interface may be either elastically
softer or stiffer than its bulk counterparts [Benveniste and Miloh 2001; Zhou and Huang 2004].

A continuum model of surface elasticity was first established in [Gurtin and Murdoch 1975] to ac-
count for the effects of surfaces, and further extended in [Gurtin et al. 1998] to incorporate the effects
of interfaces as well. Surface elastic constants can be obtained through atomic calculations [Shenoy
2005]; their direct measurement has been very difficult until now. Investigations of the deformation
of some elementary nanosized devices (for example, beams, tubes, and plates) have demonstrated that
the predictions of Gurtin’s surface/interface elasticity theory agree reasonably well with direct atomic
simulations [Miller and Shenoy 2000; Shenoy 2002].

Although surface elasticity theory has been extensively used to elucidate the effects of various size-
dependent phenomena on elastic fields in nanowires caused by static loadings [Chen et al. 2006; Jing
et al. 2006], to date, however, investigation of surface effects on the dynamic behaviors of long nan-
otubes/nanowires has been comparatively lacking. As a few examples in the context of dynamic loadings
in conjunction with surface elasticity theory, we mention studies regarding the diffraction of plane com-
pressional/shear waves by nanosized inhomogeneities/voids (embedded in an elastic medium) [Wang
2007; Hasheminejad and Avazmohammadi 2009] which demonstrate the considerable importance of the

Yaser Mirzaei is the corresponding author.
Keywords: free surface energy, free vibration, nanotube, elasticity solution.
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surface effects on dynamic stress concentration around the nanoinhomogeneities. He and Lilley [2008]
studied the influence of the surface stress on the resonance frequencies of bending nanowires using Euler–
Bernoulli beam theory and, similarly, the natural frequencies of a microbeam in the presence of surface
effects were estimated in [Abbasion et al. 2009] based on Timoshenko beam theory. Furthermore, in
[Hasheminejad and Gheshlaghi 2010] a dissipative surface stress model was adopted to study the effect of
size-dependent surface dissipation on natural frequencies of vibrating elastic nanowires. Nevertheless, as
far as the authors know, investigation of surface effects on the natural frequencies of nanosized cylindrical
tubes is still lacking. Here, we make use of classical elasticity theory in conjunction with Gurtin–Murdoch
theory to carry out a (exact) two-dimensional natural frequency analysis of long, nanosized cylindrical
tubes (nanotubes) in presence of free surface-energy effects.

2. Formulation

The elastic material of the nanotube (NT) under consideration is assumed to be linear, macroscopically
homogeneous, and isotropic. Its constitutive equation may be written as

σi j = λδi jε j j + 2µεi j , (1)

where δi j is the Kronecker delta, (λ, µ) are the Lamé constants, and σi j and εi j are the stress and the strain
tensors, respectively. The problem can be analyzed by means of the standard methods of elastodynamics.
In the absence of body forces, the displacement field is governed by the classical Navier’s equation [Pao
and Mow 1973]

ρ
∂2u
∂ t2 = µ∇

2u+ (λ+µ)∇(∇ · u), (2)

subjected to appropriate boundary conditions. Here, ρ is the elastic material density and u is the dis-
placement vector that can advantageously be expressed as sum of the gradient of a scalar potential and
the curl of a vector potential:

u =∇ϕ+∇×ψ, (3)

with the condition ∇ ·ψ = 0. The above decomposition enables us to separate the dynamic equation of
motion (2) into the Helmholtz wave equations

c2
p∇

2ϕ = ϕ̈, c2
s∇

2ψ = ψ̈, (4)

where c2
p = (λ+2µ)/ρ and c2

s =µ/ρ are the propagation velocities of compressional and shear waves in
the elastic medium, respectively, and superposed dots stand for the time derivative. Taking the divergence-
free condition of ψ into account, only two of the three components of ψ remain independent. Also,
considering the plane-strain assumption, (4) can be reduced to the following fully uncoupled scalar wave
equations (see [Hasheminejad and Mirzaei 2009, Equations (b-2)]):

c2
p∇

2φ = φ̈, c2
s∇

2ψ = ψ̈. (5)

Furthermore, the relevant displacement components in polar coordinates, (r, θ), in terms of compres-
sional and shear wave potentials may be simply written as [Pao and Mow 1973]

ur =
∂φ

∂r
+

1
r
∂ψ

∂θ
, uθ =

1
r
∂φ

∂θ
−
∂ψ

∂r
. (6)
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Correspondingly, the relevant stress components are

σrr = λ∇
2ϕ+ 2µ

[
∂2ϕ

∂r2 +
∂

∂r

(1
r
∂ψ

∂θ

)]
, σrθ = µ

{
2 ∂
∂r

(1
r
∂ϕ

∂θ

)
+

1
r2

∂2ψ

∂θ2 − r ∂
∂r

(1
r
∂ψ

∂r

)}
. (7)

Consider a long cylindrical NT with inner and outer radii a and b, respectively. The in-plane cross section
of the NT is shown in Figure 1. The field expansions for the standing compressional and shear waves
within the tube (that is, the solutions to the wave equations (5)) with respect to the polar coordinate
system may be written as [Pao and Mow 1973]

ϕ(r, θ, ω)=
∞∑

n=0

[an Jn(αr)+ bnYn(αr)]einθ , ψ(r, θ, ω)=
∞∑

n=0

[cn Jn(βr)+ dnYn(βr)]einθ , (8)

where i =
√
−1, an through dn are unknown modal coefficients, α = ω/cp and β = ω/cs are the

compressional and shear wave numbers, respectively, Jn and Yn are the cylindrical Bessel functions of
the first and second kind, respectively, and ω is the circular frequency. Substituting (8) into (7), the
relevant stress components can be respectively written as

σrr (r, θ, ω)=
∞∑

n=0

(
anT (1)

1n + bnT (2)
1n + cnT (1)

2n + dnT (2)
2n

)
einθ ,

σrθ (r, θ, ω)=
∞∑

n=0

(
anT (1)

3n + bnT (2)
3n + cnT (1)

4n + dnT (2)
4n

)
einθ ,

(9)

in which

T (i)
1n (r, ω)=−2µα

r
`
(i)
n−1(αr)+

[
2µ

n(1+ n)
r2 − (λ+ 2µ)α2

]
`(i)n (αr),

T (i)
2n (r, ω)= 2iµn

[
β

r
`
(i)
n−1(βr)−

(1+ n)
r2 `(i)n (βr)

]
,

T (i)
3n (r, ω)= 2iµn

[
α

r
`
(i)
n−1(αr)−

(1+ n)
r2 `(i)n (αr)

]
,

T (i)
4n (r, ω)= 2µβ

r
`
(i)
n−1(βr)+µ

[
−2

n(1+ n)
r2 +β2

]
`(i)n (βr),

(10)

where i = 1, 2 and

`(i)n =

{
Jn (i = 1),
Yn (i = 2).

According to surface elasticity theory, a surface is considered as a negligibly thin layer adhered to an
abutting bulk material without slipping [Gurtin and Murdoch 1975; Gurtin et al. 1998]. The equilibrium
and constitutive equations in the abutting (bulk) solids are the same as those in classical elasticity theory.
However, the surface has different elastic constants than the solids. Hence, in general, a nonzero surface
stress associated with the (nonzero) surface constants should be taken into account in order to derive the
(localized) equilibrium equations on the surface. Here, for the sake of brevity, we only provide the final
set of pertinent nonclassical boundary conditions (caused by presence of the surface stress) in the polar
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Figure 1. Problem geometry: two-dimensional view of the NT.

coordinate system [Wang et al. 2006]:

σrr (r = a, θ, ω)= 1
a
σ
(s)
θθ (a, θ, ω), σrθ (r = a, θ, ω)=−1

a
∂σ

(s)
θθ (a, θ, ω)
∂θ

, (11a)

σrr (r = b, θ, ω)=−1
b
σ
(s)
θθ (b, θ, ω), σrθ (r = b, θ, ω)= 1

b
∂σ

(s)
θθ (b, θ, ω)
∂θ

, (11b)

where σ (s)θθ (r, θ, ω) is the resultant surface stress at the surface with radius r and is written as

σ
(s)
θθ (a, θ, ω)= τ0+ E sεθθ (r = a, θ, ω), σ

(s)
θθ (b, θ, ω)= τ0+ E sεθθ (r = b, θ, ω), (12)

in which E s is the (Young’s modulus-type) elastic constant of the surface, εθθ = (∂uθ/∂θ)/r and τ0 is
the surface residual stress whose effect is not taken into account here (that is, we assume τ0 = 0). Making
use of (6) and (8), the strain component εθθ may be written as

εθθ (r, θ, ω)=
∞∑

n=0

(
anT (1)

5n + bnT (2)
5n + cnT (1)

6n + dnT (2)
6n

)
einθ , (13)

where

T (i)
5n (r, ω)= rα`(i)n−1(αr)− n(1+ n)`(i)n (αr), T (i)

6n (r, ω)= in
(
−rβ`(i)n−1(βr)+ (1+ n)`(i)n (βr)

)
. (14)

Substitution of (9) and (12), along with (13), into the boundary conditions (11a) and (11b) leads to the
following system of linear algebraic equations:

an
(
T (1)

1n (a, ω)− E s T (1)
5n (a, ω)/a

)
+ bn

(
T (2)

1n (a, ω)− E s T (2)
5n (a, ω)/a

)
+ cn

(
T (1)

2n (a, ω)− E s T (1)
6n (a, ω)/a

)
+ dn

(
T (2)

2n (a, ω)− E s T (2)
6n (a, ω)/a

)
= 0, (15a)

an
(
T (1)

3n (a, ω)+ inE s T (1)
5n (a, ω)/a

)
+ bn

(
T (2)

3n (a, ω)+ inE s T (2)
5n (a, ω)/a

)
+ cn

(
T (1)

4n (a, ω)+ inE s T (1)
6n (a, ω)/a

)
+ dn

(
T (2)

4n (a, ω)+ inE s T (2)
6n (a, ω)/a

)
= 0, (15b)

an
(
T (1)

1n (b, ω)+ E s T (1)
5n (b, ω)/b

)
+ bn

(
T (2)

1n (b, ω)+ E s T (2)
5n (b, ω)/b

)
+ cn

(
T (1)

2n (b, ω)+ E s T (1)
6n (b, ω)/b

)
+ dn

(
T (2)

2n (b, ω)+ E s T (2)
6n (b, ω)/b

)
= 0, (15c)
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an
(
T (1)

3n (b, ω)− inE s T (1)
5n (b, ω)/b

)
+ bn

(
T (2)

3n (b, ω)− inE s T (2)
5n (b, ω)/b

)
+ cn

(
T (1)

4n (b, ω)− inE s T (1)
6n (b, ω)/b

)
+ dn

(
T (2)

4n (b, ω)− inE s T (2)
6n (b, ω)/b

)
= 0. (15d)

This system can be cast in the form
T n dn = 0, (16)

in which dn = [an, bn, cn, dn]
T (n = 0, 1, 2, . . .) is the modal vector multiplied by (4× 4) square ma-

trix T n , containing frequency-dependent coefficients. Setting the determinant of T n equal to zero, the
characteristic equation of the system is obtained which leads to determination of the natural frequencies.
It should be noted that for each frequency number, n, there are infinite numbers of longitudinal modes,
denoted by m. A Mathematica program was written for numerical calculation of the natural frequencies
as a function of the NT inner and outer radii through a simple root finding technique based on the
bisection approach.

3. Numerical examples

To illustrate the influence of the surface stress on the dynamic behavior of the nanotube, some numer-
ical examples are provided in this section. To this end, a NT with an infinite length and of selected
outer to inner radius ratio is considered to be made of isotropic aluminum with the following physical
properties: ρ = 2700 kg/m3, λ = 52.0× 109 N/m2, and µ = 34.7× 109 N/m2. Two different sets of
surface properties corresponding to the crystallographic directions [100] (denoted as surface A (SA)) and
[111] (denoted as surface B (SB)) in aluminum are used in the calculation. The corresponding elastic
constants are [Hasheminejad and Avazmohammadi 2009] E s

=−8.95 N/m for SA and E s
= 6.08 N/m

for SB. Surface C (SC) (with E s
= 0 N/m) refers to a surface with the classical perfect bonding condition.

Furthermore, as mentioned before, we assume τ0 = 0. In the following examples, the natural frequencies
have been normalized by cp/b.

Figure 2 displays the variation of the normalized natural frequency versus the inner radius of the NT,
for the first longitudinal mode (m = 1) and for two selected outer to inner radius ratios (b/a = 1.1, 1.5).
These figures include the results associated with the first two frequencies numbers (n = 0, 1) for three
different surface types, SA, SB, and SC. Some observations are in order. It can be seen that the surface
effect is more evident for lower values of the outer to inner radius ratio, corresponding to thinner NTs.
Also, the frequency values for SA and SB are, respectively, lower and higher than that of the classical SC.
This drop (rise) for SA (SB) is connected to the negative (positive) sign of the associated constant E s .
Moreover, since the absolute value of E s for SA is greater than that of SB, its discrepancy with the classic
solution (SC) is larger. Furthermore, as expected, by increasing the inner radius of NT (specifically, for
a > 15 nm), the surface effect gradually diminishes and the normalized frequencies (associated with SA
and SB) approach the classical (size-independent) limit (we used [Gazis 1958, Equation (17)] to obtain
the classical solution).

Figure 3 displays the variation of the normalized natural frequency, for three types of surfaces, SA,
SB, and SC, versus the frequency number (1≤ n ≤ 8) for a NT with b/a = 3. The results are calculated
for the first three longitudinal modes (that is, 1≤m ≤ 3) at each frequency number, n. It is found that the
surface effects become more evident as the frequency number, n, increases. Similarly, a larger surface
effect is observed at higher longitudinal mode numbers. This may be linked to the fact that the deformed
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Figure 2. Variation of the normalized natural frequency with NT size, for selected radius
ratio, surface type, longitudinal mode (m = 1), and frequency number (n = 0, 1).

shape of the inner/outer surfaces of the NT at higher modes of vibration has more curvature associated
with a larger hoop strain at the surfaces. Hence, based on (12), a stronger surface effect at these modes
is anticipated. Also, the fundamental frequency number ( n = 2) that has the minimum value among all
frequencies remains unchanged despite the presence of the surface effect.
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4. Conclusions

Making use of the Helmholtz wave equations together with the theory of surface elasticity, the influence
of surface stress was investigated on the natural frequencies of a long, nanoscaled, cylindrical tube with a
circular cross-section. As a numerical example, the free vibration of a nanotube (NT) made of aluminum
with two different types of surface constants was studied. In this example, the size-dependence of the
natural frequencies of the NT was analyzed for various natural frequency numbers and longitudinal
modes. It was found that the size dependence is more noticeable at higher modes of vibration. This
observation could be considerable technological interest in the area of designing nanoscaled devices.
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SPECTRAL ELEMENT MODEL FOR THE VIBRATION
OF A SPINNING TIMOSHENKO SHAFT

USIK LEE AND INJOON JANG

A spectral element model for a spinning uniform shaft is developed. The spinning shaft supported by
bearings is represented by the uniform Timoshenko beam model and the bearing-supports are represented
by equivalent springs. The variational approach is used to formulate the spectral element model by using
the frequency-dependent shape functions derived from exact wave solutions on the frequency-domain
governing differential equations. The conventional finite element model is also formulated for evaluating
the accuracy of the present spectral element model through some example problems.

1. Introduction

Spinning shafts have been extensively used in diverse engineering applications such as motors, engines,
turbines, and machine tools. In general, the rotating machines consist of multiple spinning shafts and
disks (or blades) which are connected to each other to form rotor systems supported by multiple bearings.
As it is very important to predict the dynamic characteristics of the rotor systems accurately in the early
design phase, there have been extensive studies on the modeling and analysis of such rotor systems in
past decades [Nelson 2003].

In previous studies, the dynamics of spinning shafts were represented by various models. When the
diameter of a shaft is large relative to its length and when vibration occurs at high frequencies, deflections
due to transverse shear and rotary inertia become important. Thus, many researchers have used the
Timoshenko beam models for spinning shafts [Eshleman and Eubanks 1969; Nelson 1980; Ehrich 1992;
Zu and Han 1992; Ghoneim and Lawrie 2007; Chen 2010]. In this study, we adopt the Timoshenko
beam model used by [Ehrich 1992; Zu and Han 1992].

The early methods used to determine the critical speed of a rotor are Rayleigh’s method, Dunkerley’s
formula, Holzer’s method, and the transfer matrix method [Lund 1974]. As the size of the transfer
matrix generated to represent a rotor system is not large, the transfer matrix method is very efficient for
the analysis of one-dimensional (1D) systems such as rotor systems. However, as the transfer matrix
method provides dynamic responses only at the endpoints of a 1D system, postprocessing is necessary
to compute the dynamic responses at the interim positions of the system. [Ruhl and Booker 1972] and
[Nelson 1980] used FEM to investigate the stability and dynamics of rotor systems. In general, a large
number of degrees of freedom (DOFs) are required for an FEM model of a large flexible rotor system,
which may result in an increase in the computational cost as well as a widely spread frequency spectrum

This research was supported in part by the Basic Science Research Program through the National Research Foundation of Korea
funded by the Ministry of Education, Science and Technology (2010-0007741) and in part by an Inha University research grant.
Keywords: spinning Timoshenko shaft, spectral element model, finite element model, natural frequency, critical speed,

dispersion curve.
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which may include many insignificant vibration modes. To cope with these problems, reduced-order
modeling techniques have been introduced [Kane and Torby 1991]. Though reduced-order modeling
techniques are useful for reducing the size of FEM models, they are known to degrade the accuracy of
FEM solutions.

Thus, as an alternative analysis method, this paper adopts the spectral element method (SEM) for the
dynamic analysis of the flexible spinning shafts of a rotor system. SEM may meet two requirements:
high accuracy up to the frequency range of interest and the use of a minimum number of DOFs [Doyle
1997; Lee et al. 2000; Vinod et al. 2007; Lee 2009]. Thus, SEM has apparent advantages over the
other solution methods such as the transfer matrix method and FEM, especially when it is applied to 1D
structural dynamic problems such as rotor systems as well as to structural health monitoring problems.
However, though SEM can be also used for nonlinear analysis by using an iterative approach [Lee 2009],
conventional FEM can be more efficiently used for nonlinear analysis.

Thus, the purposes of this paper are:
• to develop a spectral element model for the spinning Timoshenko shaft (T-shaft) and

• to apply the spectral element model to investigate the natural frequencies and critical speeds of
example spinning shafts.

The results obtained by using the spectral element model are then compared with the results obtained
by using the conventional finite element model and the analytical theories available in the literature to
verify the accuracy of the spectral element model.

2. Governing equations

Consider a spinning flexible uniform shaft subjected to transverse vibrations and represent it as a spinning
uniform T-shaft. The equations of motion and relevant boundary conditions for the spinning uniform T-
shaft can be derived by using Hamilton’s principle [Meirovitch 1980]:∫ t2

t1
(δT − δU + δW ) dt = 0, (1)

where T is the kinetic energy, U is the potential energy, and δW is the virtual work done by external
forces and moments. As shown in Figure 1, the uniform T-shaft of circular cross-section is spinning about
the central axis x at a constant speed of � radians/s and it has length L , bending rigidity E I , transverse
shear rigidity κG A, mass per length ρA, mass moment of inertia about the y or z-axes ρ I , and polar
mass moment of inertia about the x-axis ρ J . In Figure 1a, v(x, t) is the transverse displacement in the
y-direction, w(x, t) is the transverse displacement in the z-direction, φ(x, t) is the rotation angle about
the y-axis, and ψ(x, t) is the rotation angle about the z-axis.

Assuming that the uniform T-shaft takes small amplitude transverse vibrations in the y and z-directions,
the kinetic and potential energies can be obtained as [Nelson 1980; Ehrich 1992]

T = 1
2

∫ L

0
ρA(v̇2

+ ẇ2) dx + 1
2

∫ L

0
ρ I (φ̇2

+ ψ̇2) dx + 1
2

∫ L

0
ρ J (�−φψ̇)2 dx, (2)

U = 1
2

∫ L

0
E I (φ′2+ψ ′2) dx + 1

2

∫ L

0
κG A[(v′−ψ)2+ (w′+φ)2] dx +

2∑
i=1

1
2
vT

i Ksupport(i)vi , (3)
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Figure 1. A spinning uniform shaft: (a) displacement fields and the boundary forces
and moments and (b) bearing-supports.

where

vi =

{
vi

wi

}
, Ksupport(i) =

[
K yyi K yzi

Kzyi Kzzi

]
(i = 1, 2). (4)

The matrices Ksupport(1) and Ksupport(2) represent the stiffnesses of bearing-supports 1 and 2, as shown in
Figure 1b, and the vectors v1 and v2 represent the transverse displacements at bearing-supports 1 and
2. The dot ( ˙ ) and prime ( ′ ) denote the derivatives with respect to the time t and axial coordinate
x , respectively. In (2), the first integral represents the translational kinetic energy and the other two
integrals the rotational kinetic energies. In (3), the first integral represents the strain energy for the
transverse bending deformations, the second integral for the transverse shear deformations, and the last
term for the bearing-support deformations. The virtual work δW is given by

δW =
∫ L

0
(pyδv+ pzδw+ τyδφ+ τzδψ) dx + Q y1δv1+ Q y2δv2+ Qz1δw1+ Qz2δw2

+My1δφ1+My2δφ2+Mz1δψ1+Mz2δψ2− fv̇1δv1− fẇ1δw1− fv̇2δv2− fẇ2δw2, (5)

where Q yi , Qzi , Myi , and Mzi (i = 1, 2) are the transverse shear forces and bending moments applied
at the two ends of the T-shaft as shown in Figure 1a. The forces and bending moments distributed along
the x-axis are py , pz , τy , and τz . The viscous damping forces generated by bearing-supports 1 and 2 are
fv̇i and fẇi (i = 1, 2), and they can be computed from

fv̇i =
∂R
∂v̇i

, fẇi =
∂R
∂ẇi

(i = 1, 2). (6)
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The Rayleigh’s dissipation function R is given by

R =
2∑

i=1

1
2
v̇T

i Csupport(i)v̇i , (7)

where

Csupport(i) =

[
Cyyi Cyzi

Czyi Czzi

]
(i = 1, 2), (8)

where Cabi (a, b = y, z) are viscous damping coefficients of the bearing-supports as shown in Figure 1b.
Substituting (2), (3), and (6) into (1) and then applying the integral by parts, we can obtain the differ-

ential equations of motion as

ρAv̈− κG A(v′′−ψ ′)= py, ρ I ψ̈ −ρ J�φ̇− E Iψ ′′− κG A(v′−ψ)+ρ J (2φφ̇ψ̇+φ2ψ̈)= τz,

ρAẅ− κG A(w′′+φ′)= pz, ρ I φ̈+ρ J�ψ̇ − E Iφ′′+ κG A(w′+φ)−ρ Jφψ̇2
= τy,

(9)

and the natural boundary conditions as

Q y(0, t)= K yy1v1+
1
2 (K yz1+ Kzy1)w1+Cyy1v̇1+

1
2 (Cyz1+Czy1)ẇ1− Q y1,

Q y(L , t)=−K yy2v2−
1
2 (K yz2+ Kzy2)w2−Cyy2v̇2−

1
2 (Cyz2+Czy2)ẇ2+ Q y2,

Qz(0, t)= Kzz1w1+
1
2 (K yz1+ Kzy1)v1+Czz1ẇ1+

1
2 (Cyz1+Czy1)v̇1− Qz1,

Qz(L , t)=−Kzz2w2−
1
2 (K yz2+ Kzy2)v2−Czz2ẇ2−

1
2 (Cyz2+Czy2)v̇2+ Qz2,

My(0, t)=−My1, My(L , t)= My2,

Mz(0, t)=−Mz1, Mz(L , t)= Mz2.

(10)

The force-displacement relations are defined by

Q y(x, t)= κG A(v′−ψ), My(x, t)= E Iφ′,

Qz(x, t)= κG A(w′+φ), Mz(x, t)= E Iψ ′.
(11)

By neglecting small nonlinear terms from (9), we can obtain

ρAv̈− κG A(v′′−ψ ′)= py, ρ I ψ̈ − ρ J�φ̇− E Iψ ′′− κG A(v′−ψ)= τz,

ρAẅ− κG A(w′′+φ′)= pz, ρ I φ̈+ ρ J�ψ̇ − E Iφ′′+ κG A(w′+φ)= τy .
(12)

Equations (12) are identical to the governing equations introduced in [Ehrich 1992; Zu and Han 1992].
Equations (12) will be used herein for developing a spectral element model for spinning T-shafts.

3. Spectral element modeling

The spectral element model for the spinning uniform T-shaft is derived from the differential equations of
motion given by (12). To formulate the spectral element, we represent the solutions of (12), the external
forces, and the resultant forces and moments in spectral forms as [Lee 2009]

{
v(x, t) w(x, t) ψ(x, t) φ(x, t)

}
=

1
N

N−1∑
n=0

{
Vn(x;ωn) Wn(x;ωn) ψn(x;ωn) φn(x;ωn)

}
eiωn t , (13)
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{
py(x, t) pz(x, t) τy(x, t) τz(x, t)

}
=

1
N

N−1∑
n=0

{
Pyn(x;ωn) Pzn(x;ωn) Tyn(x;ωn) Tzn(x;ωn)

}
eiωn t ,

(14){
Q y(x, t) Qz(x, t) My(x, t) Mz(x, t)

}
=

1
N

N−1∑
n=0

{
Q yn(x;ωn) Qzn(x;ωn) Myn(x;ωn) Mzn(x;ωn)

}
eiωn t . (15)

Substituting (13) and (14) into (12) gives

κG A(V ′′−ψ ′)+ ρAω2V + Py = 0, E Iψ ′′+ iω�ρ J8+ κG A(V ′−ψ)+ ρ Iω2ψ + Tz = 0,

κG A(W ′′+8′)+ ρAω2W + Pz = 0, E I8′′− iω�ρ Jψ − κG A(W ′+8)+ ρ Iω28+ Ty = 0,
(16)

where the subscripts n are omitted for brevity. Similarly, substituting (13) and (15) into (11) gives

Q y(x)= κG A(V ′−ψ), My(x)= E I8′,

Qz(x)= κG A(W ′+8), Mz(x)= E Iψ ′.
(17)

Consider the homogeneous equations reduced from (16) as

κG A(V ′′−ψ ′)+ ρAω2V = 0, E Iψ ′′+ iω�ρ J8+ κG A(V ′−ψ)+ ρ Iω2ψ = 0,

κG A(W ′′+8′)+ ρAω2W = 0, E Iφ′′− iω�ρ Jψ − κG A(W ′+8)+ ρ Iω28= 0.
(18)

Assume the homogeneous solutions of (18) as

V (x)= ae−ikx , W (x)= tae−ikx , ψ(x)= rae−ikx , 8(x)= tr̂ae−ikx . (19)

Substitution of (19) into (18) yields an eigenvalue problem as
σ1 −σ3 0 0
σ3 σ2 0 −σ4

0 0 σ1 σ3

0 σ4 −σ3 σ2




1
r
t
tr̂

=


0
0
0
0

 , (20)

where

σ1 = k2κG A−ω2ρA, σ2 = k2 E I + κG A−ω2ρ I, σ3 = ikκG A, σ4 = iω�ρ J. (21)

From (20), we can get a dispersion equation as

k8
− 2(η1k4

F + k4
G)k

6
+ (η2

1k8
F + 4η1k4

Gk4
F + k8

G − 2k4
F − η

−2
2 η2

3�
2ω2)k4

+ (−2η2
1k4

Gk8
F − 2η1k8

Gk4
F + 2η1k8

F + 2k4
F k4

G + 2k4
Fη
−1
2 η2

3�
2ω2)k2

+ η2
1k8

Gk8
F − 2η1k4

Gk8
F + (1− η

2
3�

2ω2)k8
F = 0, (22)

where

kF =
√
ω
(
ρA
E I

)1/4
, kG =

√
ω
(
ρA
κG A

)1/4
, η1 =

ρ I
ρA

, η2 =
E I
κG A

, η3 =
ρ J
κG A

. (23)
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Eight wavenumbers ki (i = 1, 2, . . . , 8) can be computed from (22). By substituting each wavenumber
into (20), we can obtain

r j = ik−1
j (k

4
G − k2

j ), r̂ j =−r j ,

t j =−(iη3�ω)
−1r−1

j [ik j + (η2k2
j − η1k4

G)r j ]
( j = 1, 2, . . . , 8). (24)

By using the eight wavenumbers computed from (22), the homogeneous solutions of (18) can be obtained
as

V (x)= Nv(x;ω)d, W (x)= Nw(x;ω)d, ψ(x)= Nψ(x;ω)d, 8(x)= Nφ(x;ω)d. (25)

where

d =
{

V1 ψ1 W1 81 V2 ψ2 W2 82
}T
≡
{

V (0) ψ(0) W (0) 8(0) V (L) ψ(L) W (L) 8(L)
}T

(26)

and
Nv(x;ω)= ev(x)H−1

B , Nw(x;ω)= ew(x)H−1
B ,

Nψ(x;ω)= eψ(x)H−1
B , Nφ(x;ω)= eφ(x)H−1

B ,
(27)

with the use of the following definitions:

ev(x)=
[
e−ik1x eik1x e−ik3x eik3x e−ik5x eik5x e−ik7x eik7x

]
,

eψ(x)= ev(x)R, ew(x)= ev(x)T , eφ(x)=−ev(x)T R,

HB =

[
eT
v (0) eT

ψ(0) eT
w(0) eT

φ (0) eT
v (L) eT

ψ(L) eT
w(L) eT

φ (L)
]T
,

(28)

where
R = diag[r j ], T = diag[t j ] ( j = 1, 2, . . . , 8). (29)

Nv , Nψ , Nw, and Nφ are the frequency-dependent dynamic shape function matrices and d is the spectral
nodal DOFs vector for the transverse bending vibrations of the spinning shaft.

To formulate the spectral element equation, the weak form of (16) are obtained in the form∫ L

0
[E I (8′δ8′+ψ ′δψ ′)+ κG A(V ′δV ′+W ′δW ′)− κG A(ψδV ′+ V ′δψ)

+ κG A(8δW ′+W ′δ8)+ κG A(8δ8+ψδψ)] dx

+

∫ L

0
iω�ρ J (ψδ8−8δψ) dx −

∫ L

0
ω2
[ρA(V δV +WδW )+ ρ I (8δ8+ψδψ)] dx

=

∫ L

0
(PyδV + Tzδψ + PzδW + Tyδφ) dx + Q yδV

∣∣L
0 +Mzδψ

∣∣L
0 + QzδW

∣∣L
0 +Myδ8

∣∣L
0 . (30)

Substituting (25) into (30) and applying the associated boundary conditions, we can get

S(ω)d = fc+ fd , (31)

where S(ω) is the spectral element matrix given by

S(ω)= H−T DH−1
+ Ksupport+ iωCsupport, (32)
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where

D(ω)=−E I (RT K E K T R+ RK E K R)− κG A(K E K + T K E K T )+ iκG A(K E R+ RE K )

+ iκG A(T K ET R+ RT E K T )+ κG A(RT ET R+ RE R)−ω2ρA(E+ T ET )

−ω2ρ I (RT ET R+ RE R)− iω�ρ J (RT E R− RET R), (33)

Ksupport =

[
K1 0
0 K2

]
, Csupport =

[
C1 0
0 C2

]
, (34)

with the use of following definitions:

E(ω)=
∫ L

0
eT
v ev dx ≡ [Elm] =


i

kl + km
[e−i(kl+km)L − 1] if kl + km 6= 0,

L if kl + km = 0,
(35)

K = diag[k j ] ( j = 1, 2, . . . , 8), (36)

Ki =


K yyi 0 1

2 (K yzi + Kzyi ) 0
0 0 0 0

1
2 (K yzi + Kzyi ) 0 Kzzi 0

0 0 0 0

 (i = 1, 2), (37)

Ci =


Cyyi 0 1

2 (Cyzi +Czyi ) 0
0 0 0 0

1
2 (Cyzi +Czyi ) 0 Czzi 0

0 0 0 0

 (i = 1, 2). (38)

In (31), fc represents the spectral nodal forces and moments due to the concentrated forces and moments,
while fd represents the ones due to the distributed forces and moments. They are defined by

fc =
{

Q y1 Mz1 Qz1 My1 Q y2 Mz2 Qz2 My2
}T
,

fd =

∫ L

0
[Py(x)NT

v (x)+ Tz(x)NT
ψ (x)+ Pz(x)NT

w (x)+ Ty(x)NT
φ (x)] dx

=
{

Fv1 Fψ1 Fw1 Fφ1 Fv2 Fψ2 Fw2 Fφ2
}T
.

(39)

The last term of (33) is skew symmetric and represents the gyroscopic effect.

4. Spectral element analysis

The spectral element (31) can be assembled in an analogous way as in conventional FEM. After imposing
the relevant boundary conditions, a global dynamic stiffness matrix equation can be obtained in the form

Sg(ω)dg = fcg + fdg = fg, (40)
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where the subscripts g denote the quantities for the assembled global spinning shaft system. As the
spectral element matrix S(ω) is formulated by using exact wave solutions to the frequency-domain gov-
erning differential equations, only one element will suffice for modeling a regular shaft of any length in
the absence of any discontinuity or irregularity in the geometrical and material properties.

The natural frequencies ωNAT of a global system can be computed from the condition that the deter-
minant of the global dynamic stiffness matrix vanishes at ωNAT. That is

det Sg(ωNAT)= 0. (41)

To compute the roots (that is, natural frequencies ωNAT) of (41), we can use a proper root-searching
algorithm in conjunction with the Wittrick–William algorithm [Wittrick and Williams 1971] not to miss
any roots within a frequency range specified during the root search. The spectral nodal DOFs can be
exactly computed from (40) as

dg = Sg(ω)
−1, fg = Tg(ω) fg, (42)

where Tg(ω) = Sg(ω)
−1 is the system transfer matrix (or frequency response function). Thus, (42)

implies that the spectral nodal DOFs can be computed by convolving the system transfer matrix with
the spectral nodal forces and moments. Once the spectral nodal DOFs are computed from (42), one can
readily use the inverse FFT to compute the time history of the dynamic responses.

5. Numerical examples

5.1. Simply supported uniform shaft. Consider a simply supported uniform shaft as shown in Figure 2.
The geometric and material properties of the uniform shaft are given as follows: length 2L = 2 m, radius
r = 0.02 m, mass density ρ = 7700 kg/m3, Young’s modulus E = 207 GPa, shear modulus 77.6 GPa, and
shear correction factor for the circular cross-section κ = 0.9.

To verify the accuracy of the present spectral element model, the natural frequencies of the stationary
(nonspinning) uniform shaft obtained by using the present spectral element model are compared in Table 1
with those obtained by using the finite element model (see the Appendix) as well as with those obtained
by using the analytical formula given by [Blevins 1979] as

fn = f̄nαn

√
βn −

√
β2

n − η
−1
1 η−1

2 Hz, (43)

where f̄n are the natural frequencies of the simply supported, stationary uniform Bernoulli–Euler beam
and

αn =
L

nπ
, βn =

1
2
[η−1

1 + (1+α
2
nη
−1
1 )η−1

2 ]. (44)

 

2L 

2r 
:

Figure 2. A simply supported uniform shaft, where � is the spinning speed.
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) [Blevins 1979]

1st 20.43 20.35 20.35 20.35 20.35 20.35 20.35
2nd 90.35 81.23 81.29 81.29 81.29 81.29 81.29
3rd 226.9 182.6 182.5 182.5 182.5 182.5 182.5
4th 414.1 324.0 323.3 323.3 323.3 323.3 323.3
5th - 505.8 503.1 503.0 502.9 502.9 502.9

10th - 2232 1952 1947 1945 1945 1945
15th - 5521 4228 4182 4166 4160 4160
20th - 10261 7260 7058 6982 6956 6956

Table 1. Natural frequencies (in Hz) of the simply supported stationary uniform shaft
(�= 0 rpm), with n the total number of finite elements used in the analysis.

For the spectral element analysis, the whole uniform shaft is represented by using a single element, that
is, a one-element model. On the other hand, for the finite element analysis, the total number of finite
elements used in the analysis is increased step by step until the FEM results converge to the exact analyt-
ical results. Table 1 shows that the SEM results are indeed identical to those obtained by the analytical
formula (43), while the FEM results converge to the SEM results (or the exact results) as the total number
of finite elements used in the finite element analysis is increased. For instance, Table 1 shows, for the
present example problem, that more than 100 finite elements must be used for the finite element analysis
to satisfy an accuracy of five significant figures for the fifth and higher natural frequencies while the one-
element model suffices for the spectral element analysis. The maximum number of natural frequencies
which can be obtained by finite element analysis is certainly limited by the total number of finite elements
used in the analysis (for example, four natural frequencies when two finite elements are used, as shown in
Table 1), while the present spectral element analysis provides an infinite number of natural frequencies.

The natural frequencies of the spinning uniform shaft are compared in Table 2. It is assumed that the
uniform shaft is spinning at a constant speed of 3600 rpm. The SEM results are compared with those
obtained by using the finite element model as well as with those obtained from the analytical formula
given by [Zu and Han 1992] as

sin
(

L
√

2

√
χ1η5+

√
χ2

1η
2
5− 4χ2

)
= 0, (45)

where
χ1 =−η6�ω+ (η1+ η2)ω

2,

χ2 =−ω− η3�ω
3
+ η4ω

4,
η4 =

ρ I
κG A

, η5 =
ρA
E I
, η6 =

ρ J
ρA

. (46)

Table 2 also shows that the natural frequencies for both forward and backward whirling modes obtained
by using the spectral element model (the one-element model) are very close to the results obtained by
using the analytical formula (45), while those obtained by using the finite element model converge to
the SEM results as the total number of finite elements used in the finite element analysis is increased.
Figure 3 shows the spinning speed �-dependence of the first and second natural frequencies, all computed
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) Z&H

1st
forward 20.45 20.37 20.37 20.37 20.37 20.37 20.37
backward 20.42 20.34 20.34 20.34 20.34 20.34

2nd
forward 90.41 81.36 81.34 81.34 81.34 81.34 81.34
backward 90.29 81.24 81.23 81.23 81.23 81.23

3rd
forward 227.1 182.7 182.6 182.6 182.6 182.6 182.6
backward 226.8 182.5 182.3 182.3 182.3 182.3

4th
forward 414.4 324.3 323.5 323.5 323.5 323.5 323.5
backward 413.9 323.8 323.1 323.0 323.0 323.0

5th
forward - 506.1 503.4 503.3 503.3 503.3 503.3
backward - 505.4 502.7 502.6 502.6 502.6

10th
forward - 2234 1953 1948 1947 1946 1946
backward - 2231 1951 1946 1944 1943

15th
forward - 5524 4231 4185 4168 4163 4163
backward - 5518 4225 4180 4163 4158

20th
forward - 10267 7264 7061 6985 6961 6961
backward - 10255 7257 7054 6978 6954

Table 2. Natural frequencies (in Hz) of the simply supported spinning uniform shaft
(� = 3600 rpm), with n the total number of finite elements used in the analysis, and
where Z&H indicates data from [Zu and Han 1992].

by using the present spectral element model. Figure 3 shows that both forward and backward whirling
modes appear when the uniform shaft starts spinning.
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Figure 3. Natural frequencies versus spinning speed � of the simply supported uniform shaft.
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) E&E

1st
forward 20.44 20.36 20.36 20.36 20.36 20.36 20.36
backward 20.43 20.35 20.35 20.35 20.35 20.35 20.35

2nd
forward 90.44 81.38 81.37 81.36 81.36 81.36 81.36
backward 90.26 81.22 81.21 81.21 81.21 81.21 81.21

3rd
forward 227.5 183.0 182.9 182.8 182.8 182.8 182.8
backward 226.4 182.2 182.1 182.0 182.0 182.0 182.0

4th
forward 415.9 325.3 324.6 324.5 324.5 324.5 324.5
backward 412.4 322.8 322.1 322.0 322.0 322.0 322.0

5th
forward - 508.8 506.1 506.0 506.0 506.0 506.0
backward - 502.8 500.1 500.0 500.0 500.0 499.9

10th
forward - 2289 2001 1995 1994 1989 1989
backward - 2180 1912 1907 1906 1901 1901

15th
forward - 5835 4413 4360 4341 4350 4350
backward - 5252 4063 4022 4007 3971 3971

20th
forward - 11449 7770 7548 7465 7454 7454
backward - 10971 6752 6563 6489 6462 6462

Table 3. Critical speeds (in Hz) of the simply supported spinning uniform shaft, with n
the total number of finite elements used in the analysis, and where E&E indicates data
from [Eshleman and Eubanks 1969].

The critical speeds of the uniform shaft are compared in Table 3. The critical speeds of a spinning
shaft are defined by the spinning speeds which are identical to the natural frequencies of the shaft. As
the gyroscopic effect will change the effective compliance of the shaft to raise or lower the natural
frequencies, one critical speed is raised (forward whirling mode) while one is lowered (backward whirling
mode). The critical speeds obtained by using the present spectral element model are compared with the
results obtained by using the finite element model and the analytical formula given by [Eshleman and
Eubanks 1969] as

�n =


f̄n

√
α2

n

α2
n + η2− η1

(Hz) (forward whirling),

f̄n

√
α2

n

α2
n + η2+ 3η1

(Hz) (backward whirling).

(47)

It is also obvious from Table 3 that the critical speeds of the present spectral element model (the one-
element model) are very close to the results of the analytical formula (47), while the FEM results certainly
converge to the SEM results as the total number of finite elements used in the finite element analysis is
increased.
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Figure 4. Dispersion curves of the simply supported uniform shaft.

In summary, the results displayed in Tables 1, 2, and 3 confirm the accuracy of the present spectral
element model when compared with the conventional finite element model which is provided in the
Appendix.

Lastly, Figure 4 compares the dispersion curves when the shaft is stationary and rotating at a constant
speed of 3600 rpm. In the last graph, the group velocities are nondimensionalized with respect to c0 =
√

E I/ρA. Figure 4 shows that the group velocity of the bending (flexural) wave mode decreases as the
shaft rotates. For the shear wave mode, the cutoff frequency shifts to a lower frequency as the shaft
rotates and its group velocity also decreases at higher frequencies than the cutoff frequency.

5.2. Bearing-supported uniform shaft. To investigate the effect of the stiffness and damping of the
bearing-supports on the natural and critical speeds of a spinning shaft, we consider a bearing-supported
uniform shaft as shown in Figure 5 as the second example problem. The geometric and material properties
for the bearing-supported uniform shaft are exactly same as those for the previous simply supported

2r 

K C K C

2L 

:

Figure 5. A bearing-supported uniform shaft, where � is the spinning speed.
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uniform shaft. It is assumed that the stiffness and damping properties of the left bearing-support are
identical to those of the right. For the stiffness and damping properties of the bearing-supports, we
consider three cases:

• Case A: K yy = Kzz = 1.0× 106 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 400 Ns/m, and Cyz =

Czy = 0 Ns/m;

• Case B: K yy = Kzz = 1.0× 108 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 400 Ns/m, and Cyz =

Czy = 0 Ns/m;

• Case C: K yy = Kzz = 1.0× 106 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 800 Ns/m, and Cyz =

Czy = 0 Ns/m.

Compared to Case A, Case B has higher stiffness, while Case C has lower damping.
For these three cases of bearing-supported uniform shaft problems, exact solutions are not available

from the literature. Thus, as shown in Tables 4, 5, and 6, the FEM results are also provided as refer-
ence solutions to evaluate the present SEM results. The one-element model suffices for accurate SEM
results. On the other hand, a sufficient number of finite elements (100 finite elements) are used to obtain
sufficiently converged accurate FEM results.

Table 4 shows the lowest three natural frequencies for uniform shafts which are not spinning, while
Table 5 shows the forward and backward natural frequencies of the lowest three modes for uniform shafts
which are spinning at �= 3600 rpm. Lastly Table 6 shows the forward and backward critical speeds of

Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st 19.13 19.13 20.34 20.34 19.14 19.14
2nd 63.61 63.61 81.08 81.08 64.19 64.19
3rd 110.6 110.6 181.4 181.4 111.5 111.5

Table 4. Natural frequencies (in Hz) of the simply supported stationary stepped shafts
(�= 0 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st
forward 19.14 19.14 20.35 20.35 19.15 19.15
backward 19.12 19.12 20.32 20.32 19.13 19.13

2nd
forward 63.64 63.64 81.14 81.14 64.22 64.22
backward 63.59 63.59 81.02 81.02 64.17 64.17

3rd
forward 110.7 110.7 181.5 181.5 111.6 111.6
backward 110.6 110.6 181.3 181.3 111.5 111.5

Table 5. Natural frequencies (in Hz) of the simply supported spinning stepped shafts
(�= 3600 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.
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Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st
forward 19.14 19.14 20.34 20.34 19.143 19.143
backward 19.13 19.13 20.33 20.33 19.136 19.136

2nd
forward 63.64 63.64 81.16 81.16 64.22 64.22
backward 63.59 63.59 81.00 81.00 64.17 64.17

3rd
forward 110.7 110.7 181.8 181.8 111.6 111.6
backward 110.5 110.5 181.0 181.0 111.4 111.4

Table 6. Critical speeds (in Hz) of the simply supported spinning stepped shafts, with
the number in parentheses being the total number of finite elements used in the analysis.

the lowest three modes. The effects of the stiffness and damping of the bearing-supports on the natural
frequencies and critical speeds can be observed in Tables 4, 5, and 6. When compared with Case A,
both Cases B, with bearing-supports of higher stiffness, and C, with bearing-supports of higher damping,
have higher natural frequencies and critical speeds.

5.3. Bearing-supported stepped shaft. As the third example problem, consider a bearing-supported
stepped shaft which consists of two uniform shafts of equal length L = 1 m as shown in Figure 6. The
material properties for the two uniform shafts are identical to those used the previous two example
problems. The spring constants and viscous damping coefficients for the left and right bearing-supports
are identical, and they are assumed to be identical to those for Case A of the previous bearing-supported
uniform shaft problem. For the radii of the two equal-length uniform shafts, we consider three cases:

• Case I: r1 = r2 = 0.02 m;

• Case II: r1 = 0.02 m, r2 = 0.01 m;

• Case III: r1 = 0.02 m, r2 = 0.03 m.

Exact solutions are not available from the literature for these three cases of bearing-supported stepped
shaft problems. Thus, as shown in Tables 7, 8, and 9, the FEM results are also provided as the reference
solutions to evaluate the present SEM results. A sufficient number of finite elements (100 finite elements)
is used to obtain sufficiently converged accurate FEM results. For the SEM results, a one-element model
is used for Case I, while two-element models are used for Cases II and III due to the existence of a single
geometric discontinuity at the middle of the stepped shafts.

Table 7 displays the lowest three natural frequencies when the stepped shafts are not spinning, while
Table 8 displays the forward and backward natural frequencies of the lowest three modes when the
stepped shafts are spinning at �= 3600 rpm. Lastly Table 9 displays the forward and backward critical

K C K C

L L

2r2 2r1 

:

Figure 6. A bearing-supported stepped shaft, where � is the spinning speed.



SPECTRAL ELEMENT MODEL FOR THE VIBRATION OF A SPINNING TIMOSHENKO SHAFT 159

speeds of the lowest three modes. The natural frequencies and critical speeds for Case III are shown to
be higher than for Cases I and II for the first mode. However, for the second and third modes, the values
for Case I are higher than for Cases II and III. In addition, the natural frequencies and critical speeds
given in Tables 7, 8, and 9 for the bearing-supported uniform shaft (Case I) are shown to be lower than
the values given in Tables 1, 2, and 3 for the simply supported uniform shaft.

Figure 7 shows the first three normalized modes of the transverse displacement v(x, t) when the
stepped shafts are spinning at � = 0 rpm and � = 3600 rpm. The mode shapes for the stepped shafts

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st 19.13 19.13 9.563 9.563 19.28 19.28
2nd 63.61 63.61 56.32 56.32 58.46 58.46
3rd 110.6 110.6 93.15 93.15 103.2 103.2

Table 7. Natural frequencies (in Hz) of the bearing-supported stationary stepped shafts
(�= 0 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st
forward 19.14 19.14 9.578 9.578 19.29 19.29
backward 19.12 19.12 9.551 9.551 19.26 19.26

2nd
forward 63.64 63.64 56.34 56.34 58.51 58.51
backward 63.59 63.59 56.30 56.30 58.42 58.42

3rd
forward 110.7 110.7 93.20 93.20 103.3 103.3
backward 110.6 110.6 93.10 93.10 103.1 103.1

Table 8. Natural frequencies (in Hz) of the bearing-supported spinning stepped shafts
(�= 3600 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st
forward 19.14 19.14 9.565 9.565 19.28 19.28
backward 19.13 19.13 9.561 9.561 19.27 19.27

2nd
forward 63.64 63.64 56.34 56.34 58.51 58.51
backward 63.59 63.59 56.30 56.30 58.42 58.42

3rd
forward 110.7 110.7 93.23 93.23 103.4 103.4
backward 110.5 110.5 93.07 93.07 103.1 103.1

Table 9. Critical speeds (in Hz) of the bearing-supported spinning stepped shafts, with
the number in parentheses being the total number of finite elements used in the analysis.
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Figure 7. The first three normalized modes of the bearing-supported stepped shafts.

(Cases II and III) are shown to deviate significantly from those for the uniform shaft (Case I) at both
�= 0 rpm and �= 3600 rpm. Though the mode shapes are dependent on the spinning speed, Figure 7
shows that the change of mode shapes at � = 3600 rpm is not so significant for the example shafts
considered herein.

6. Conclusions

This paper develops a spectral element model for a spinning uniform shaft. The spinning uniform shaft
is represented by a spinning uniform Timoshenko beam model and its bearing-supports are represented
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by two translational springs and two rotational springs. The spectral element model is then used to inves-
tigate the natural frequencies and critical speeds of the simply supported and bearing-supported spinning
uniform shafts and the results are compared with the results obtained by using the conventional finite
element model and the analytical theories available in existing references. It is numerically shown that
the present spectral element model provides extremely accurate results by using only a small number of
finite elements when compared with the conventional finite element model. In addition, some numerical
investigation is also conducted for the bearing-supported stepped shafts.

Appendix: Finite element model

The equations of motion for the transverse bending vibration are given by (10) and the corresponding
weak form can be derived in the form∫ L

0
[E I (φ′δφ′+ψ ′δψ ′)+ κG A(v′δv′+w′δw′)− κG A(ψδv′+ v′δψ)+ κG A(φδw′+w′δφ)

+ κG A(φδφ+ψδψ)] dx +
∫ L

0
�ρ J (ψ̇δφ− φ̇δψ) dx +

∫ L

0
[ρA(v̈δv+ ẅδw)+ ρ I (φ̈δφ+ ψ̈δψ)] dx

=

∫ L

0
(pyδv+ τzδψ + pzδw+ τyδφ) dx + Q yδv

∣∣L
0 +Mzδψ

∣∣L
0 + Qzδw

∣∣L
0 +Myδφ

∣∣L
0 . (A.1)

The displacement fields v(x, t), w(x, t), φ(x, t), and ψ(x, t) are represented by

v = Nv(x)d(t), w = Nw(x)d(t), φ = Nφ(x)d(t), ψ = Nψ(x)d(t), (A.2)

where

d(t)=
{

d1(t) d2(t)
}T
, d j (t)=

{
v j (t) ψ j (t) w j (t) φ j (t)

}T
( j = 1, 2), (A.3)

and

Nv(x)= [(1− ξ)(2− ξ − ξ 2
+ 6r)(R/4) L(1− ξ 2)(1− ξ + 3r)(R/8) 0 0

(1+ ξ)(2+ ξ − ξ 2
+ 6r)(R/4) −L(1− ξ 2)(1+ ξ + 3r)(R/8) 0 0],

Nw(x)= [0 0 (1− ξ)(2− ξ − ξ 2
+ 6r)(R/4) −L(1− ξ 2)(1− ξ + 3r)(R/8)

0 0 (1+ ξ)(2+ ξ − ξ 2
+ 6r)(R/4) L(1− ξ 2)(1+ ξ + 3r)(R/8)],

Nφ(x)= [0 0 3(1− ξ 2)(R/2L) −(1− ξ)(1+ 3ξ − 6r)(R/4)

0 0 −3(1− ξ 2)(R/2L) −(1+ ξ)(1− 3ξ − 6r)(R/4)],

Nψ(x)= [−3(1− ξ 2)(R/2L) −(1− ξ)(1+ 3ξ − 6r)(R/4) 0 0

3(1− ξ 2)(R/2L) −(1+ ξ)(1− 3ξ − 6r)(R/4) 0 0],

(A.4)

with

ξ = 2
( x

L

)
− 1 (0≤ x ≤ L), r =

4E I
κG AL2 , R = 1

1+3r
. (A.5)
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Substitution of (A.2) into (A.1) gives the finite element equation in the form

Md̈(t)+Gḋ(t)+ K d(t)= f (t), (A.6)

where

M = [mi j ] =

∫ L

0
[ρA(NT

v Nv + NT
w Nw)+ ρ I (NT

φ Nφ + NT
ψ Nψ)] dx,

G = [gi j ] =

∫ L

0
�ρ J (NT

φ Nψ − NT
ψ Nφ) dx,

K = [ki j ] =

∫ L

0
[E I (N ′φ

T N ′φ + N ′ψ
T N ′ψ)+ κG A(N ′v

T N ′v + N ′w
T N ′w + NT

φ Nφ

+ NT
ψ Nψ + N ′w

T Nφ + NT
φ N ′w − N ′v

T Nψ − NT
ψ N ′v)] dx,

(A.7)

and

f (t)= fc(t)+ fd(t)≡
{

f1(t) f2(t)
}T
,

fc(t)=
{

Q y1(t) Mz1(t) Qz1(t) My1(t) Q y2(t) Mz2(t) Qz2(t) My2(t)
}T
,

fd(t)=
∫ L

0
(NT

v py + NT
w pz + NT

φ τy + NT
ψ τz) dx,

fi (t)=
{

fvi (t) fψi (t) fwi (t) fφi (t)
}T

(i = 1, 2).

(A.8)

M and K are the 8×8 symmetric matrices and G is the 8×8 skew symmetric matrix. Their components
are given by

m11 = m33 = m55 = m77 = 12α1(26+ 147r + 210r2)+ 36α2,

m12 =−m34 =−m56 = m78 = α1L(44+ 231r + 315r2)+ 3α2L(1− 15r),

m15 = m37 = 36α1(3+ 21r + 35r2)− 36α2,

m16 =−m25 =−m38 = m47 =−α1L(26+ 189r + 315r2)+ 3α2L(1− 15r),

m22 = m44 = m66 = m88 = α1L2(8+ 42r + 63r2)+α2L2(4+ 15r + 90r2),

m26 = m48 =−3α1L2(2+ 14r + 21r2)−α2L2(1+ 15r − 45r2),

(A.9)

and other mi j = 0,

g13 =−g17 = g35 = g57 = 36η,

g14 = g18 =−g23 = g27 = g36 = g45 =−g58 = g67 =−3ηL(1− 15r),

g24 = g68 =−ηL2(4+ 15r + 90r2),

g28 =−g46 = ηL2(1+ 15r − 45r2),

(A.10)
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and other gi j = 0, and

k11 =−k15 = k33 =−k37 = k55 = k77 = 12β1+ 540β2r2,

k12 =−k25 =−k34 = k47 = 6β1L + 270β2Lr2,

k16 =−k38 =−k56 = k78 = 6β1L + 90β2Lr(1+ 3r),

k22 = k44 = β1L2(4+ 6r + 9r2)+ 135β2L2r2,

k26 = k48 = β1L2(2− 6r − 9r2)+ 45β2L2r(1+ 3r),

k66 = k88 = β1L2(4+ 6r + 9r2)+β2L2(47+ 210r + 315r2),

(A.11)

and other ki j = 0, where

α1 =
R2

840
ρAL , β1 =

R2

L3 E I,

α2 =
R2

30L
ρ I, β2 =

R2

60L
κG A,

η =
R2

30L
ρ J�. (A.12)
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ON INDENTER BOUNDARY EFFECTS AT ELASTIC CONTACT

DENIS JELAGIN AND PER-LENNART LARSSON

Axisymmetric contact problems at finite Coulomb friction and rounded profiles are examined for linear
elastic solids. In previous analytical/numerical approaches to this problem often incremental procedures
have been developed resulting in a reduced incremental problem corresponding to a rigid flat indentation
of an elastic half-space. The reduced problem, being independent of loading and contact region, can
be solved by a finite element method based on a stationary contact contour and characterized by high
accuracy. Subsequently, with cumulative superposition procedures it is then possible to resolve the
original problem in order to determine global and local field values. Such a procedure, when applied
to for example to flat and conical profiles with rounded edges and apices, is exact save for the influ-
ence from boundaries close to the contact region. This influence could be exemplified by the indenter
boundaries of a flat deformable profile with rounded edges indenting a linear elastic half-space. In the
present analysis such effects are investigated qualitatively and quantitatively. In doing so, the results
derived using previously discussed analytical/numerical approaches are compared with corresponding
ones from full-field finite element calculations. Both local as well as global quantities are included in
the comparison in order to arrive at a complete understanding of the boundary effects at elastic contact.

1. Introduction

Following the classical results by Hertz [1882] for normal frictionless contact between two linear elastic
nonconforming bodies of elliptical profiles the corresponding problem was attacked for adhesive contact
by Mossakovskii [1963] and Spence [1968] and for finite friction by Spence [1975a; 1975b]. Even though
the Hertz formulation was based on linear elasticity and linear kinematics, the problem is indeed nonlinear
due to the presence of a moving contact boundary. At finite friction further nonlinearities will evolve
as stick-slip boundaries then have to be determined when partial slip occurs. In this context substantial
progress was made by Spence [1975a; 1975b], who showed that under monotonic loading a single stick-
slip contour will evolve being independent of the contact profile provided it has a polynomial shape.
More recently (see [Ciavarella and Hills 1999; Ciavarella 1999; Argatov 2002; Jaffar 2002; Storåkers
and Elaguine 2005]], contact of various nonstandard profiles such as blunted cones and flat indenters with
rounded edges, has been investigated. Besides a more general contact law behavior, the main intention
has been to predict initiation of plastic flow or the occurrence of brittle fracture (also the contact behavior
at nanoindentation is an interesting feature in this context; see [Fu 2006; Fu and Cao 2009]). Related
experimental work has been presented in [Pau et al. 2006], for example.

Mossakovskii [1963] seems to have been the first to propose that normal contact problems at adhesive
behavior may be attacked in two steps, by first solving the problem at an incremental advance and sub-
sequently apply superposition. By emphasizing self-similarity for power-law profiles, further advances

Keywords: Contact mechanics, Elastic material, Friction, Indenter boundary effects.
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were made by Spence [1968; 1975a; 1975b]. Mossakovskii and Spence were mainly concerned with
determination of surface tractions and displacements. Mossakovskii’s analysis was later developed for
indentation methods by Borodich and Keer [2004]. In case of axisymmetric and frictionless contact it
was later shown in [Hill and Storåkers 1990] that complete field values may readily be determined by a
solution for incremental fields followed by the cumulative superposition along radial paths. Numerically,
such a procedure is at advantage as only a stationary mesh is required when finite elements are to be
used. In view of self similarity principles applied by Hill et al. [1989] the strategy was utilized in full by
Storåkers and Larsson [1994] for Norton creep by combining a finite element procedure with cumulative
superposition. For the case of linear viscosity, the approach corresponds to linear elasticity though with
incompressibility anticipated. In subsequent work, hereditary material behavior was treated in the same
spirit for the case of plastic flow theory [Biwa and Storåkers 1995] and viscoplasticity [Storåkers et al.
1997], with finite friction also included [Carlsson et al. 2000] and oblique (nonnormal) loading [Larsson
and Storåkers 2002].

Presently, with linear elastic contact at issue, history dependence evolves through the presence of
finite friction. However, it was shown in [Storåkers and Elaguine 2005] for the case of monotonically
increasing loading that history dependence is only fictitious and that the stick-slip contour relative to
the external contact contour will be invariant for any contact profile provided that it is smooth and
convex and the loading is axisymmetric and monotonically increasing. In the same paper a consistent
and robust method was described to solve frictional normal contact problems at smooth and convex but
otherwise arbitrary profiles with special emphasis put on the presence of finite friction causing partial
slip between dissimilar solids. For profiles represented by monomials self-similarity will prevail as has
been thoroughly discussed, for instance in [Borodich 1993] and [Borodich and Galanov 2002], in case
of finite friction and also nonlinear elasticity. Analytically this is a convenient property but it will be lost
for general profiles.

Usually, the normal contact problem sketched refers to one rigid member impressed into one elastically
deforming. This requires only a half-space solution to be dealt with. If two of the contacting solids are
deforming, formally a full-space solution with proper interface conditions needs to be mastered save for
the degenerate case of two identical elastic materials. It has been pointed out by Mossakovskii [1963]
and Spence [1968; 1975a; 1975b], however, that the contact tractions arising may be determined from
a single half-space solution by using a tailored combination of material parameters for two dissimilar
solids. When these interface conditions are captured, the respective fields of the two solids may be
obtained individually.

The above described theoretical approaches and computational procedures, applied to the different
indentation problems; rest, however, on the assumption that, at contact of rounded profiles, any effects
from the boundary of the deformable indenter outside of the contact region are negligible. This may
be so in many situations of practical interest but is from a theoretical point of view not immediately
obvious and has been discussed for the 2D half-plane case by Banerjee et al. [2009]. Argatov [2010]
considered the size effect associated with the finite dimensions of the indented sample, and the size
effects associated with material length scales included in constitutive description where studied in some
detail by Huang et al. [2006] and Harsono et al. [2011]. At axisymmetric conditions size effects related
to the dimensions of the deformable indenter have not been studied in detail previously and, accordingly,
they will be investigated in the present analysis for the case of linear elasticity and a flat cylindrical



ON INDENTER BOUNDARY EFFECTS AT ELASTIC CONTACT 167

punch with rounded edges. The latter case was chosen as it is expected that these boundary effects
may be most significant for such a situation. It should be emphasized that this effect should not be
confused with effects due to elastic deformation of the indenters in the contact region. This is sometimes
called the indenter elasticity effect and is usually and also here as outlined below, considered in the
analysis by using modified elastic parameters. The problem will be examined in detail using the finite
element method and in particular the commercial finite element package ABAQUS is relied upon. It
should be emphasized that the importance of the presently discussed problem is not limited to elastic
indentation problems but is also relevant at for example analysis of fretting fatigue crack nucleation [Hills
and Dini 2006; Nowell et al. 2006]. An accurate description of the local particle contact problem is of
principal importance in discrete element modeling (DEM) of mechanical behavior of granular media
(see Cundall and Hart [1992], for example) and in several other DEM applications. This include such
problems as micromechanical analysis of powder compaction Heyliger and McMeeking [2001; Martin
and Bouvard [2003; Martin et al. [2003; Skrinjar and Larsson [2004] and micromechanical modeling of
rock materials [Matsuoka and Yamamoto 1993], as the size of the bodies in contact may be comparable to
the characteristic contact dimensions (see [Thornton and Antony 1998] and [Thornton and Lanier 1997],
for instance).

2. Formulation of the problem

The geometry of the problem to be analyzed is depicted in Figure 1 along with the notation; it involves
contact between a flat indenter with rounded edges and a half-space under monotonically increasing load.
It should be noted that this also includes the special cases of a flat and spherical indenters, as

b = a and b = 0 (1)

respectively in Figure 1. The two solids are in a general case elastically dissimilar. The indenter geometry
is defined by the indenter radius, w, indenter height, l, along with the radius of the flat part, b, and the

15 

 

 

 

w 

l 

Figure 1. Geometry and notation of the problem of a flat indenter with a rounded corners
indenting an elastic half-space.
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curvature radius of the round-off, R. It should be noted that in case of a nonrigid indenter, the Hertz
theory of contact is strictly valid only when w, l, R� a.

In the analysis, quasi-static conditions are assumed to prevail and in the absence of body forces,
equilibrium equations may be expressed as

σi j, j = 0 (2)

and strain-displacement relations as

εi j =
( 1

2

)
(ui, j + u j,i ) (3)

in obvious notation and linear kinematics assumed. Furthermore, Hooke’s law in the elastic solids is
expressed in the form

εi j = (1/2G)(σi j − (ν/(1+ ν))σkkδi j ) (4)

where G denotes the shear modulus and ν Poisson’s ratio.
Coulomb friction is assumed to be valid at the interface between the elastic solids and the following

boundary condition holds at points where frictional tractions are not sufficient to initiate tangential slip:

µ|σzz(r)| − |σr z(r)|> 0,
∂ur (r, a)
∂a

= 0, r ≤ c, z = 0 (5)

and at points where slip occurs

µ|σzz(r)| − |σr z(r)| = 0,
∂ur (r, a)
∂a

/∣∣∣∂ur (r, a)
∂a

∣∣∣= σr z(r)/|σr z(r)|, c ≤ r ≤ a, z = 0. (6)

In Equations (5) and (6) c is the stick-slip radius.
Storåkers and Elaguine [2005] analyzed the present problem, depicted in Figure 1, and the correspond-

ing one for a cone indenter with a rounded tip. In this investigation a reduced incremental problem was
laid down based on a flat stationary boundary and modeled by finite elements. The reduced incremental
problem concerned a rigid flat die indenting an elastic half-space. Subsequently, the original problem
was readily solved by cumulative superposition as relative stick-slip contours proved to be invariant for
any smooth and convex profile. As a consequence, in case of a rigid indenter, complete displacement and
stress fields may be superposed for different contact profiles provided that monotonic loading prevails.
Accordingly, when the interior fields are to be determined by for example a finite element method only
a half-space solution is required.

When two dissimilar elastic solids are in contact solutions for interior fields are in general required in
a full space. It has been shown, however, by Mossakovskii [1963] and Spence [1975b], that a half-space
solution will still suffice to determine surface values. As explained in [Storåkers and Elaguine 2005],
following [Spence 1975b], the stress state in the contact region between two elastic bodies is equivalent
to that arising from contact between a rigid indenter and an elastic half-space with material parameters
modified according to the relations:

1− νm

Gm
=

1− ν1

G1
+

1− ν2

G2
,

1− 2νm

2Gm
=

1− 2ν1

2G1
+

1− 2ν2

2G2
(7)
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where Gm , νm are the modified elasticity parameters for the reduced rigid-elastic problem and gi , νi (i =
1, 2) are the elasticity parameters for the original two bodies in contact.

Thus, the resulting contact tractions may be directly determined by aid of a half-space solution pro-
cedure described in [Storåkers and Elaguine 2005]. As a result, two uncoupled problems pertinent to
dissimilar half-spaces with prescribed normal and tangential stress distributions are obtained and the
complete internal stress fields may be subsequently generated by two harmonic potentials as explained
in detail in e.g. [Hills et al. 1993].

Accordingly, from the discussion above it is clear that the solutions to the contact problems described
can be derived in a computationally favorable way from the solution of a reduced incremental problem
with a stationary contact boundary corresponding to a flat rigid punch indenting an elastic half-space.
However, due to the fact that the reduced incremental problem is rigid-elastic, unavoidable effects on
global and local quantities from the boundaries of the indenter are not accounted for. The validity of
this assumption in the case when the indenter has dimensions comparable with the contact size will be
investigated here. In particular the attention will be focused on the influence of the relative indenter
radius, w/a, on the contact conditions. In order to ensure that other indenter geometrical parameters do
not contribute to the deviation from the Hertz theory (and to ensure the validity of the rigid-modified
elastic solution), the indenter height, l, and the curvature radius, R, will be kept sufficiently large, as
compared to the contact radius, in all of the simulations. This of course also indicates that the indentation
depth is much smaller than the contact radius.

Provided that the dimensions of contacting bodies are large compared to the contact size (R/a, l/a,
w/a � 1), the pressure and shear tractions distributions obtained at elastic-elastic and rigid-modified
elastic formulations should be identical. Furthermore, the relative stick-slip radius, c/a is then invariant
of indenter geometry as well as of depth of indentation and depends only on composite elastic coefficients
and coefficient of friction, as shown for the case of smooth and convex, but otherwise arbitrary profiles
by Storåkers and Elaguine [2005]. On the other hand, when the indenter dimensions are close to the
contact radii, the invariance properties are lost and pressure and shear traction distribution are influenced
by the global stress-strain state in the indenter, which is in turn controlled by the material parameters of
the contact pair; the details of indenter geometry and of the load application. It seems to be impossible
to establish a complete set of parameters describing any possible combination of the above. One would
rather have to rely on numerical modeling to find out what exactly happens in each particular contact
configuration. The main intention of the present study is to establish the limits of the validity of the
rigid-modified elastic formulation with respect to the relative indenter radius, w/a. Situations with w/a
close to 1 are considered to be of practical interest as they may be found in the contact configuration
with flat indenters and flat indenter with rounded corners.

Contact between two dissimilar elastic bodies, as depicted in Figure 1, will be investigated in two
different ways: by prescribing the respective elastic constants to each of the bodies and by prescribing
high values to the elastic parameters of the indenter and modifying the elasticity parameters of the half-
space according to (7). The discrepancy between the two solutions indicates the indenter boundary effects
at issue presently.

In the present study an ABAQUS-based finite element method is used to analyze frictional contact
between two dissimilar elastic bodies, as depicted in Figure 1, drawing upon the experience gained during
previous and similar analyses [Elaguine et al. 2006; Jelagin and Larsson 2008a; 2008b]. In Figure 2 the



170 DENIS JELAGIN AND PER-LENNART LARSSON

Figure 2. Finite element mesh; indenter with spherical contact profile.

finite element mesh is shown for the case of a spherical indenter with axisymmetry taken into account
and with eight-noded isoparametric quadrilateral elements used. The contact pair is shown in Figure 2
for the particular case of the indenter with spherical contact profile and with w = 25arigid_sphere. One
may notice the domain with especially dense mesh in the vicinity of the contact region with the element
size chosen to have at least 50 elements in contact. The outer boundary of the half-space was introduced
to be at least 200 times the maximum contact radius in order to avoid remote boundary effects. At the
outer boundary of the half-space the horizontal displacements were free to move while the vertical ones
were set to vanish. The outer boundary of the indenter was set free outside the contact region. The load
was applied by prescribing a uniform vertical displacement to the indenter’s upper boundary.

A surface based contact formulation was used to model the interaction between two elastic bodies. At
normal contact behavior, a hard contact formulation was used, where surfaces may not penetrate each
other. To model the basic Coulomb friction Lagrange multiplier method was employed which allowed
for sticking constraints to be enforced exactly.

In order to validate the numerical procedure developed presently, the global and local field values
found at frictionless contact between a linear elastic half-space and rigid flat and spherical indenters
were compared with the analytical solution due to Hertz [1882]. The global values were found to be
accurate up to 0.3%, while the accuracy of the local field values was found to be within 1%.

The global and local field values obtained at frictional contact between a rigid indenter and a linear
elastic half-space were compared to the ones found with an alternative computational procedure devel-
oped by Storåkers and Elaguine [2005]. Results were found to agree with 1% accuracy. As shown
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elastic-elastic contact rigid-elastic contact
E (GPa) ν E (GPa) ν

Indenter 200 0.300 1000 0.499
Halfspace 70 0.220 47.2 0.377

Table 1. Material parameters for the contact pair.

by these authors for the case of smooth and convex but otherwise arbitrary profiles and monotonically
increasing load, the stick-slip radius is invariant of the loading and profile geometry. Presently, it has
been found at monotonic frictional indentation of rigid flat, spherical and flat and rounded indenters that
the relative stick-slip radius was almost constant and never varied more than one element size.

3. Results and discussion

The effect of indenter elasticity on a contact induced stress state is investigated presently for the case of a
steel indenter pressed into a glass halfspace. The elasticity parameters for the contact materials are given
in Table 1, along with material parameters for the equivalent rigid-elastic contact pair. The interfacial
friction coefficient, µ, is set to 0.1 as measured by Elaguine et al. [2006].

Numerical studies are performed for the case of flat and rounded contact profiles as shown in Figure 1.
The relative radius of the flat part, b/a, is varied between 0 and 1 giving in the limits spherical and
flat indenters respectively. The indenter height, l, is kept fixed being 7 times the maximum contact
radii attained during simulations, l ≈ 7aMAX. The round-off radius of the rounded part is kept fixed at
R ≈ 30aMAX. The validity of the Hertz theory assumption regarding the contact area being small as
compared to indenter dimensions is then controlled by the ratio between indenter radius, w, and contact
area radius, a. The analysis is performed presently for the cases of 1≤ w/a ≤ 50, where the geometries
with high w/a ratios are considered to be close to the Hertz theory, and the lower ratios represent an
indenter with dimensions finite as compared to the contact size. The indenter shown in Figure 3 is used
in simulations to represent a perfectly flat punch with w/a > 1; it consists of two cylinders the first one
of radius a and length l, and the second one with radius w− a and a bit shorter so it does not come in

S 

H 

= 

Figure 3. The flat indenter with w� a.
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Figure 4. Normal and tangential tractions at spherical indentation (w >> a).

contact with the specimen. It has to be pointed out that in Figure 3 proportions are not kept for illustrative
reasons, in the simulations the first cylinder had the length l = 7aMAX and the second cylinder had the
length of l − 0.05aMAX.

In all the simulations performed the load was applied in displacement control mode, by prescribing a
uniform vertical displacement, δ, to the upper boundary of the indenter. All comparative studies have been
performed at fixed δ ≈ 0.02aMIN (chosen to be small compared to the contact radii in all the simulations).
In the presentation below, results pertinent to spherical indentation are depicted in Figure 4, flat punch
results are depicted in Figures 5–9 and in Figures 10–12 a comparison is made between the results
for different indenter geometries. Contact features such as pressure distribution, tangential tractions,
vertical and horizontal displacements, contact area and stick-slip radius are considered and pertinent
results presented.

In Figure 4 then, the pressure and frictional traction distributions are shown, for the case of a spherical
indenter (b = 0), w/a > 50, and elastic-elastic contact. The distributions are normalized with the mean
pressure, p0= P/(πa2), and for illustrative purposes the pressure distribution is multiplied by the friction
coefficient. Obviously, the region where the distributions coincide correspond to the slip region; see (5)
and (6). The relative stick-slip radius in the present case was found to be c/a = 0.5, which is well within
one element length from the 0.497 given by the analytical formula developed by Spence. It has been
found that for the case of w/a > 50, normal and tangential tractions computed with the equivalent rigid
elastic formulation differ less than 0.5% from the results obtained with the elastic-elastic model for all
the contact geometries studied, i.e., 0≤ b/a ≤ 1.

Furthermore, it has been shown by Storåkers and Elaguine [2005] that the relative stick-slip radius
is independent of profile geometry provided that profiles are smooth and convex. Presently, in all the
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Figure 5. Pressure distribution at frictionless flat punch indentation (w = a).

simulations performed for the big indenters (w/a > 50), the stick-slip radius was found approximately
constant and equal to 0.5 both for elastic-elastic and equivalent rigid-elastic formulations.

In Figure 5 normalized pressure distributions are shown for the frictionless flat punch indentation,
(b/a = w/a = 1). Distributions obtained with elastic-elastic and equivalent rigid-elastic formulations
are presented along with the analytical solution; see [Johnson 1985]. The figure shows that the pres-
sure distribution obtained with a rigid indenter basically coincides with the analytical solution. The
distribution corresponding to the steel to glass contact deviates however from the analytical and rigid
elastic distribution; as one may observe in Figure 5 the pressure in the middle of the contact area is
approximately 35% higher for the elastic-elastic as compared to the rigid-elastic case. Furthermore, at
the vicinity of the contact boundary indenter elasticity results in somewhat lower pressure. This difference
between the two sets of results is due to the fact that the steel indenter undergoes significant deformation
under action of high pressure at the vicinity of the contact boundary and the resulting contact geometry
deviates from the perfectly flat punch. This is shown in Figure 6, where the vertical displacements on the
surface of the halfspace are presented normalized with maximum indentation depth. It may be seen that
displacements induced in the contact area by a steel punch deviates from the one induced by a rigid punch
by approximately 12% at the contact boundary. The simulations have also been performed with steel
indenters having heights l/a = 1and 5, the shape of vertical surfaces displacements were found to be inde-
pendent of height. However, in simulations of flat punch indentation performed at w/a� 1, the indenter
elasticity was found to have a very minor effect on the pressure distribution and surface displacement
profiles, resulting in approximately 1% variation from the rigid-modified elastic case. This indicates that
the effect of local indenter deformations on the pressure and frictional tractions distributions is minute.

Regarding the results in Figures 5 and 6 for frictionless indentation, it is important to emphasize
that the influence of friction on the pressure distribution, Figure 5 and the vertical surface displacements,
Figure 6, was found presently to be very small. This has also been shown in several previous studies; see,
for example, [[Hills and Sackfield 1987; Andersson 1996; Storåkers and Elaguine 2005]]. Consequently,
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Figure 6. Vertical surface displacements at flat punch indentation, rigid-elastic vs
elastic-elastic formulation.

Figure 7. Normal and tangential tractions, flat punch indentation at finite friction, rigid-
elastic contact.

the impact of the finite size of the elastic indenter on these quantities would be the same for frictionless
and finite frictional cases.

Figures 7 and 8 examine frictional flat punch indentation with rigid-elastic and elastic-elastic solutions
respectively. Normalized shear tractions are presented, along with normalized pressure distributions
multiplied by friction coefficients. It may be observed in Figure 7 that the relative stick-slip radius for
the rigid flat punch is approximately 0.5, equal to the one found for profiles with w/a > 50. However, as
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Figure 8. Normal and tangential tractions, flat punch indentation at finite friction,
elastic-elastic contact.

Figure 9. Horizontal surface displacements at frictional flat punch indentation.

shown in Figure 8, the relative stick-slip radius found at steel to glass contact is much smaller, approxi-
mately 0.04. In Figure 9 the horizontal displacements on the surfaces of the steel indenter and the glass
halfspace are shown normalized with the depth of indentation. It may be seen that while the material in
the glass specimen tend towards the center of the contact area, the steel indenter undergoes some elastic
expansion with the material moving away from the axis of symmetry. This elastic expansion gives rise
to additional shear tractions on the interface which result in a much smaller stick zone radius.
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Figure 10. Relative stick-slip radii at flat and rounded contact.

As seen from the study of the limiting cases of w/a > 50 and w/a = 1 (Figures 5–9) the indenter
elasticity may have a profound influence on the induced pressure and frictional tractions at dissimilar
elastic contact. In order to examine this effect further the contacts between flat and rounded indenters,
with a size comparable with the size of the contact area, have been studied. The indenter radius has been
set to three times the contact area at rigid spherical indentation w = aMAX. The radius of the flat part, b,
has been varied while the indenter radius was kept constant.

In Figure 10 the relative stick-slip radii, c/a, obtained at elastic-elastic indentation with a finite flat
and rounded indenter are shown as a function of b/a. Also in Figure 10 the stick-slip radii are presented
for flat and rounded indenters with w � a as well as for the elastic-elastic flat punch indentation at
w = a. As one may observe in Figure 10 the stick-slip radii at w� a are invariant of contact geometry
and of contact formulation and are approximately equal to 0.5a. The same stick-slip radii have been
found at rigid-modified elastic contact for the flat and rounded indenter with w = 3arigid_sphere, results
are not shown in Figure 10 for brevity. At elastic-elastic contact however this invariance is lost. It may
be seen that for finite indenters with shapes close to spherical (b/a <= 0.1) the stick-slip radius deviates
approximately 10% from the rigid-elasic case. As b/a increases the stick-slip radius decreases and for
b/a > 0.8 it is equal to the one at elastic-elastic flat punch indentation.

The results presented in Figure 10 indicate the existence of the indenter boundary effect at indentation
of a flat and rounded punch with dimensions comparable to the contact radius. The b/a variation was
achieved presently by varying the size of the flat part with respect to the indenter size, i.e. b/a varying
between 0 and 1 corresponds to b/w varying between 0 and 1 and w/a varying from 3 to 1.

In Figure 11 the contact area radii at spherical and flat and rounded elastic-elastic contacts are shown as
function of w/a. Results are normalized with the corresponding contact area radii obtained at equivalent
rigid-elastic contact. As it may be observed in Figure 11 the contact radii obtained with elastic-elastic and
rigid-elastic formulations coincide for at least w > 10a. At relative indenter sizes w < 10a the contact
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Figure 11. Contact area at elastic-elastic contact spherical and flat and rounded indenters.

Figure 12. Stick-slip radii at elastic-elastic contact as a function of indenter size relative
to the contact area.

area is somewhat smaller than the one at rigid-elastic contact, the amount of reduction depending on the
contact geometry. The difference is however less than 10% for w > 4a in the spherical case and for
w > 2a for the flat and rounded case. For the flat and rounded contact the radius of the flat part was
taken to be equal to the contact area at rigid spherical indentation b = arigid_sphere, the relative size of
the flat part, b/a, was varying between 0.54 for w >= 6a and 0.7 for w = a. The reason behind the
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sharp decrease of the contact area at small values on w/a is the fact that the effect of indenter stiffness
is not adequately accounted for by the reduced modulus of the halfspace. The particular indenter shape
investigated has l/a = 20, and at small w/a the indenter deforms significantly more than predicted by
Hertz contact theory.

In Figure 12 the relative stick-slip radii at spherical, flat and flat and rounded elastic-elastic contact are
shown as function of w/a. As in Figure 11 results are normalized with the ones obtained at rigid elastic
contact. One may observe that indenter elasticity doesn’t influence the stick-slip radius for w > 10a, at
w/a < 10 the stick region starts to decrease and also becomes geometry dependent.

It has to be emphasized that the results depicted in Figures 10–12 relate to the effect that the global
indenter stress state has on the pressure and frictional tractions distributions. Therefore, as the self-
similarity is lost here, the results presented are strictly valid only for the particular geometries investi-
gated; altering the indenter height, elastic properties and/or load application mode would alter the effect.
Rodriguez et al. [2011] evaluated the effect of the elastic indenter deformation on the instrumented
indentation measurements. They preformed FE simulations of diamond sphere frictionless indentation
into different elastic materials at the following contact parameters w/a ≈ 3.2, l/a ≈ 3.2, R/δmax = 10,
δmax being the mutual approach distance, and a is the contact radius estimated based on Hertz theory.
Analogous to the present study, they ran comparative analysis with elastic-elastic and rigid-modified
elastic contact simulations. They reported that indenter elasticity taken into account results in a slight
increase of the contact radius as compared to the rigid-elastic solution; in particular, for the case of
Especimen/Eindenter = 0.39 they found 2.1% increase of the contact radius. As it may be seen in Figure 11,
an approximately 7% reduction in the contact area radius is observed presently when indenter elasticity
is taken into account at w/a = 3.2. The discrepancy between present results and the ones Rodriguez et
al. is due to the fact that the rest of contact parameters are different; present simulations are performed
at Especimen/Eindenter = 0.39 and l/a ≈ 20, R/δmax = 1e3. In order to check the effect of indenter height
on the contact radius the analysis has been performed presently at l/a = w/a ≈ 3 keeping the rest of
parameters as in other simulations and it has been found that the contact radius increases approximately
1.5% in this case due to indenter elasticity. This is close to the 2.1% found by Rodriguez et al., with the
remaining difference most likely due to differences in curvature radii and material properties used.

Results presented in Figures 11 and 12 indicate that indenter boundaries significantly affect the distri-
butions of pressure and frictional tractions only when w is less than say 4a, the exact range depending
of course on indenter geometry. In case of the contact geometries close to spherical (b→ 0) the loads re-
quired to produce w< 4a will induce significant plastic deformations or fracture in most of the practically
interesting contact pairs.

Contact at flat and rounded profiles with a flat part radius comparable with the indenter radius may
result in w/a ≈ 1 even at moderate loads. Pau et al. [2006] used ultrasound based technique to examine
the contact geometry at indentation with a steel flat indenter with rounded corners into a steel plate.
The indenter used had a radius of 10 mm and the radius of the flat part was 2.5 mm. The reported
measurements were performed at a load level which resulted in a ≈ 4 mm, b/a ≈ 0.63 and thus in
w/a ≈ 2.5. As shown in Figure 11 the contact area for the flat and rounded indenter at w/a = 2.5,
b/a = 0.57 is approximately 5% smaller as compared to the one obtained at rigid-modified elastic contact.
The relative stick-slip radius for this geometry is shown in Figure 12 and is approximately 78% of the
one found at rigid-modified elastic contact. At smaller loads giving b/a ≈ 1, the indenter geometry used
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Figure 13. Stick-slip radii at elastic-elastic contact as a function of relative indentation depth.

by Pau et al. [2006] would result in w/a ≈ 4. In this case, based on the results presented in Figure 11
the effect of the indenter boundaries on the contact area will be very minor. The relative stick-slip radius
will be reduced by approximately 5% as compared to the rigid-modified elastic formulation.

As it has been pointed by Chaudhri in relation to the postprocessing of nanoindentation tests data
(see also Lim and Chaudhri [2003]), the Boussinesq [1885] and Sneddon [1965] solutions are strictly
valid only for rigid indenters. Results presented in Figures 5–8 substantiate this observation for the case
of a flat cylindrical indenter w = a — the rigid-modified elastic formulation is not capable of properly
accounting for the elastic deformation of the indenter. However, based on the results in Figure 12 and
the related discussion it appears to be possible to use the rigid-modified elastic formulation to evaluate
the frictional indentation with a elastic flat-ended punch, provided that it’s geometry results in w/a� 1.

In Figure 13, the stick-slip radii found at elastic-elastic contact are shown as a function of the relative
indentation depth. Results in Figure 13 are given for flat indenters with w� a and w = a, as well as for
spherical indenters with w� a, and w ∼ a. In the case of a spherical indenter with finite dimensions the
relative indenter radius, w/a, varies with increasing depth of indentation between 11.72 and 1.05. As
one may observe in Figure 13, the relative stick-slip radii for flat indenters and for the spherical indenter
with w� a remain approximately constant at relative indentation depths varying between 2e−3 and
6e−2. In case of a spherical indenter with w ∼ a the stick-slip radius decreases from 0.5a to 0.15a,
which agrees well with approximately the 70% decrease in stick-slip radius depicted in Figure 12.

4. Concluding remarks

The influence of the boundary effects on the frictional contact of dissimilar elastic solids has been exam-
ined presently for the case of flat and rounded contact profiles. In particular, the effect of relative indenter
size, w/a on the pressure and tangential tractions distribution has been evaluated based on the comparison
between elastic-elastic and rigid-modified elastic contact formulations. In general, it has been found that
the results obtained with these two formulations start to deviate significantly at w/a < 4. This indicates
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that the approximation given in (7) does not account properly for the indenter elasticity at small w/a, and
the contact tractions distributions depend than on the global stress state in the indenter. Thus, solution
of the coupled problem taking into account the indenter geometry and constraints is required in order
to accurately describe the contact between specimen and the indenter with the dimensions close to the
contact area radius.

The practically important class of contacts with w/a ≈ 1 are the complete or nearly complete contacts,
i.e. flat indenters with rounded corners and b/a ≈ 1. In these situations indenter boundary effects should
be accounted for in order to obtain an accurate description of contact interactions. One practically im-
portant case where this effect is of significance is indentation testing with flat punch [Chaudhri 2001].
At the same time most of the practically important contacts at profile geometries close to spherical
b/a << 1 will have the indenter dimensions much bigger as compared to the contact radius as long as
the load is relatively small and linear elasticity prevails. The boundary effects will however affect contact
conditions for these geometries in case of multiple contacts located close to each other as may be the
case in micromechanical simulations with discrete element method.

In the present study, the effect of local elastic deformations of the indenter on the normal and tan-
gential tractions was found to be minute for all the geometries investigated. Thus, it may furthermore
be concluded that the computational procedure developed by Storåkers and Elaguine [2005] based on
self-similarity can be used to accurately evaluate frictional dissimilar elastic contact at flat and rounded
contact profiles at least for w/a > 4.
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REFLECTION OF P AND SV WAVES FROM THE FREE SURFACE
OF A TWO-TEMPERATURE THERMOELASTIC SOLID HALF-SPACE

BALJEET SINGH AND KIRAN BALA

The present paper is concerned with the propagation of plane waves in an isotropic generalized thermoe-
lastic solid half-space with two temperatures. The governing equations are modified in the context of
the Lord–Shulman theory of generalized thermoelasticity and are solved to show the existence of three
plane waves, namely, P , thermal, and SV waves in the x-z plane. The reflection of the P and SV waves
from a thermally insulated free surface is studied to obtain the reflection coefficients in closed form. For
numerical computations of the speeds and reflection coefficients, a particular material is chosen. The
speeds of the plane waves are shown graphically against the two-temperature parameter. The reflection
coefficients are also shown graphically against the angle of incidence for different values of the two-
temperature parameter.

1. Introduction

Lord and Shulman [1967] and Green and Lindsay [1972] extended the classical dynamical coupled theory
of thermoelasticity to generalized thermoelasticity theories. Their theories treat heat propagation as a
wave phenomenon rather than a diffusion phenomenon and predict a finite speed of heat propagation.
Ignaczak and Ostoja-Starzewski [2010] explained these theories in detail. The representative theories in
the range of generalized thermoelasticity are reviewed in [Hetnarski and Ignaczak 1999]. Wave prop-
agation in thermoelasticity has many applications in various engineering fields. Several problems in
wave propagation in coupled or generalized thermoelasticity have been studied by various researchers
[Deresiewicz 1960; Sinha and Sinha 1974; Sinha and Elsibai 1996; 1997; Sharma et al. 2003; Othman
and Song 2007; Singh 2008; 2010].

Gurtin and Williams [1966; 1967] suggested a second law of thermodynamics for continuous bodies
in which the entropy due to heat conduction was governed by one temperature, that of the heat supply
by another. Based on this suggestion, Chen and Gurtin [1968] and Chen et al. [1968; 1969] formulated
a theory of thermoelasticity which depends on two distinct temperatures, the conductive temperature 8
and the thermodynamic temperature T . Two-temperature theory involves a material parameter a∗ > 0.
The limit a∗→ 0 implies that 8→ T and hence classical theory can be recovered from two-temperature
theory. The two-temperature model has been widely used to predict electron and phonon temperature
distributions in ultrashort laser processing of metals.

Warren and Chen [1973] stated that these two temperatures can be equal in time-dependent problems
under certain conditions, whereas 8 and T are generally different in particular problems involving wave
propagation. Following [Boley and Tolins 1962], they studied wave propagation in the two-temperature
theory of coupled thermoelasticity. They showed that the two temperatures T and 8 and the strain are

Keywords: two-temperature parameter, generalized thermoelasticity, plane waves, reflection coefficients.
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represented in the form of a traveling wave plus a response, which occurs instantaneously throughout
the body. Puri and Jordan [2006] discussed the propagation of harmonic plane waves in two-temperature
theory. Quintanilla and Jordan [2009] presented exact solutions of two initial-boundary value problems
in the two-temperature theory with dual-phase-lag delay.

Youssef [2006] formulated a theory of two-temperature generalized thermoelasticity. Kumar and
Mukhopadhyay [2010] extended the work of Puri and Jordan [2006] in the context of the linear theory
of two-temperature generalized thermoelasticity formulated in [Youssef 2006]. Magaña and Quintanilla
[2009] studied the uniqueness and growth of solutions in two-temperature generalized thermoelastic
theories. Youssef [2011] also presented a theory of two-temperature thermoelasticity without energy
dissipation. Ezzat and El-Karamany [2011] developed a two-temperature theory in generalized magne-
tothermoelasticity with two relaxation times.

In the present paper, we have applied the theory of [Youssef 2006] to the study of wave propagation
in an isotropic two-temperature thermoelastic solid. The expressions for the speeds of plane waves are
obtained. The required boundary conditions at a thermally insulated stress-free surface are satisfied by
the appropriate solutions in an isotropic thermoelastic solid half-space to obtain the reflection coefficients
in closed form for a particular incident wave. The speeds and reflection coefficients of plane waves are
computed numerically for a particular model of the half-space to observe the effect of the two-temperature
parameter.

2. Basic equations

Following [Youssef 2006], the governing equations for two-temperature anisotropic generalized thermoe-
lasticity with one relaxation parameter are:

• The stress-strain-temperature relations:

σi j = ci jklekl − γi j (T −80), (1)

• The displacement-strain relation:

ei j =
1
2 (ui, j + u j,i ), (2)

• The equation of motion:

ρü = σ j i, j + ρFi , (3)

• The energy equation:

−qi,i = ρT0 Ṡ, (4)

• The modified Fourier’s law:

−Ki jφ, j = qi + τ0q̇i , (5)

• The entropy-strain-temperature relation:

ρS =
ρcE

T0
θ + γi j ei j . (6)
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Here, γi j are the coupling parameters, T is the mechanical temperature, 80 = T0 is the reference temper-
ature, θ = T − T0 with |θ/T0| � 1, σi j is the stress tensor, ekl is the strain tensor, ci jkl is the tensor of
elastic constants, ρ is the mass density, qi is the heat conduction vector, Ki j is the thermal conductivity
tensor, cE is the specific heat at constant strain, ui are the components of the displacement vector, S is
the entropy per unit mass, τ0 is the thermal relaxation time (which will ensure that the heat conduction
equation will predict finite speeds of heat propagation), and φ is the conductive temperature satisfying
the relation

8− T = a∗8,i i , (7)

where a∗ > 0 is the two-temperature parameter.

3. Formulation and solution of the problem

We consider a homogeneous and isotropic thermoelastic medium of infinite extent, with a Cartesian
coordinate system (x, y, z), which is previously at a uniform temperature. The origin is taken on the
plane surface and the z-axis is taken normally into the medium (z ≥ 0). The surface z = 0 is assumed
stress-free and thermally insulated. The present study is restricted to the plane strain parallel to the x-z
plane, with the displacement vector u= (u1, 0, u3). With the help of (1)–(3), we obtain the following
two components of the equation of motion:

(λ+ 2µ)u1,11+ (λ+µ)u3,13+µu1,33− γ θ,1 = ρü1, (8)

(λ+ 2µ)u3,33+ (λ+µ)u1,13+µu3,11− γ θ,3 = ρü3. (9)

Equations (4)–(6) lead to the following heat conduction equation:

K (8,11+8,33)= ρcE(θ̇ + τ0θ̈ )+ γ T0(u̇1,1+ τ0ü1,1)+ γ T0(u̇3,3+ τ0ü3,3), (10)

and (7) becomes
8− T = a∗(8,11+8,33). (11)

The displacement components u1 and u3 are written in terms of potentials q and ψ as

u1 =
∂q
∂x
−
∂ψ

∂z
, u3 =

∂q
∂z
+
∂ψ

∂x
. (12)

Using (12) in (8)–(11), we obtain

(λ+ 2µ)
(
∂2q
∂x2 +

∂2q
∂z2

)
− γ

[
8− a∗

(
∂28

∂x2 +
∂28

∂z2

)]
= ρ

∂2q
∂t2 , (13)

K (8,11+8,33)= ρcE

(
∂8

∂t
+ τ0

∂28

∂t2

)
− a∗ρcE

(
1+ τ0

∂

∂t

)
∂

∂t

(
∂28

∂x2 +
∂28

∂z2

)
+ γ T0

(
1+ τ0

∂

∂t

)
∂

∂t

(
∂2q
∂x2 +

∂2q
∂z2

)
, (14)

µ

(
∂2ψ

∂x2 +
∂2ψ

∂z2

)
= ρ

∂2ψ

∂t2 . (15)
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Here (15) is uncoupled, whereas (13) and (14) are coupled in q and 8. Solutions (13)–(15) are now
sought in the form of a harmonic traveling wave:

(q,8,ψ)= (A, B,C) exp(ik(x sin θ + z cos θ − vt)), (16)

in which v is the phase speed, k is the wave number, and (sin θ, cos θ) denotes the projection of the wave
normal onto the x-z plane. Inserting (16) into (13)–(15), we obtain the following formulae for the speeds
of the plane waves:

v1 =

√
1

2ρ
[
{(Ka + ε)+ (λ+ 2µ)}+

√
(Ka + ε)2+ (λ+ 2µ)2− 2(Ka − ε)(λ+ 2µ)

]
, (17)

v2 =

√
1

2ρ
[
{(Ka + ε)+ (λ+ 2µ)}−

√
(Ka + ε)2+ (λ+ 2µ)2− 2(Ka − ε)(λ+ 2µ)

]
, (18)

v3 =

√
µ

ρ
, (19)

where ε = (γ 2T0)/(ρcE) is the thermocoupling coefficient and Ka = K/(cEτ
∗(1+ a∗k2)), with τ ∗ =

τ0+ i/ω, ω = kv. The speeds v1, v2, and v3 correspond to the P , thermal, and SV waves, respectively.
From (17)–(19), it is clear that the speeds of the modified P and thermal waves are functions of the
two-temperature parameter a∗. The speed of the SV wave is not affected by a∗.

If we neglect the thermal parameters (that is, Ka = 0, ε = 0), the speed v1 reduces to
√
(λ+ 2µ)/ρ,

the speed of a P wave in an elastic solid. The thermal wave will disappear.

4. Boundary conditions

Let us now consider an incident P or SV wave. The boundary conditions at the stress-free thermally
insulated surface z = 0 are satisfied if the incident P or SV wave gives rise to a reflected shear (SV ) and
two reflected longitudinal waves (P and thermal). The required boundary conditions at the free surface
z = 0 are:
• Vanishing of the normal stress component:

σzz = 0, (20)

• Vanishing of the tangential stress component:

σzx = 0, (21)

• Vanishing of the normal heat flux component:

∂8

∂z
= 0, (22)

where

σzz = λ

(
∂2q
∂x2 +

∂2q
∂z2

)
+ 2µ

(
∂2ψ

∂x∂z

)
+ 2µ

∂2q
∂z2 − γ

[
8− a∗

(
∂28

∂x2 +
∂28

∂z2

)]
, (23)

σzx = µ

[
2
∂2q
∂x∂z

−
∂2ψ

∂z2 +
∂2ψ

∂x2

]
. (24)
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The appropriate displacement potentials ψ , q , and 8 are taken in the form

ψ = C1 exp(ik3(x sin θ0+ z cos θ0− v3t))+C2 exp(ik3(x sin θ3− z cos θ3− v3t)), (25)

q = A1 exp(ik1(x sin θ0+ z cos θ0− v1t))+ A2 exp(ik1(x sin θ1− z cos θ1− v1t))
+ A3 exp(ik2(x sin θ2− z cos θ2− v2t)), (26)

8= η1 A1 exp(ik1(x sin θ0+ z cos θ0− v1t))+ η1 A2 exp(ik1(x sin θ1− z cos θ1− v1t))
+ η2 A3 exp(ik2(x sin θ2− z cos θ2− v2t)), (27)

where the wave normal to the incident P or SV wave makes an angle θ0 with the positive direction of
the z-axis and those of the reflected P , thermal, and SV waves make angles θ1, θ2, and θ3, respectively,
with the same direction, and

η1

k1
2 =

ρv1
2
− (λ+ 2µ)

γ (1+ a∗k1
2)

,
η2

k2
2 =

ρv2
2
− (λ+ 2µ)

γ (1+ a∗k2
2)

. (28)

5. Reflection coefficients

The ratios of the amplitudes of the reflected waves to the amplitude of incident P wave, namely C2/A1,
A2/A1, and A3/A1, are the reflection coefficients (amplitude ratios) of the reflected SV , reflected P , and
reflected thermal waves, respectively. Similarly, for the incident SV wave, C2/C1, A2/C1, and A3/C1

are the reflection coefficients of the reflected SV , reflected P , and reflected thermal waves, respectively.
The wave numbers k1, k2, and k3 and the angles θ0, θ1, θ2, and θ3 are connected by the relation

k1 sin θ0 = k3 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3, (29)

at the surface z = 0. In order to satisfy the boundary conditions (20)–(22), we write (29) as

sin θ0
v1 or v3

=
sin θ1
v1
=

sin θ2
v2
=

sin θ3
v3

. (30)

x

z

Oz = 0

Two-temperature

thermoelastic solid

half-space P

T

SV

P or SV

T
�

T
�

T
�

T
�

Figure 1. Geometry of the problem.
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5.1. Incident P wave. Making use of the potentials given by (25)–(27) in the boundary conditions
(20)–(22), we obtain a system of three nonhomogeneous equations which results in the following ex-
pressions for the reflection coefficients of the SV , P , and thermal waves:

C2
A1
=

D1
D
,

A2
A1
=

D2
D
,

A3
A1
=

D3
D
, (31)

where

D = v1
2

v2v3

[
2µ sin θ0 sin 2θ0(η2− η1)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

−
v1
v3

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
−η2

√
1−

v22

v12 sin2 θ0+ η1
v2
v1

cos θ0

)]
, (32)

D1 =
v1

v2
sin 2θ0(ρv1

2
− 2µ sin2 θ0)(η2− η1)

√
1−

v22

v12 sin2 θ0

(
1+

√
1−

v22

v12 sin2 θ0

)
, (33)

D2 =
v1

2

v2v3

[
2µ sin θ0 sin 2θ0(η2− η1)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

−
v1
v3

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
η2

√
1−

v22

v12 sin2 θ0+ η1
v2
v1

cos θ0

)]
, (34)

D3 = 2η1 cos θ0
v1

2

v32

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0). (35)

5.2. Incident SV wave. Similarly, making use of the potentials given by (25)–(27) in the boundary
conditions (20)–(22), we obtain the following expressions for the reflection coefficients of the SV , P ,
and thermal waves:

C2

C1
=

D′1
D′
,

A2

C1
=

D′2
D′
,

A3

C1
=

D′3
D′
. (36)

Here,

D′ =− v3
3

v1v2

[
2µ
v12 sin θ0 sin 2θ0(η1− η2)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

+

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
η2

v1

√
1−

v22

v12 sin2 θ0− η1
v2

v12 cos θ0

)]
, (37)

D′1 =−
v3

3

v1v2

[
µ

v1
sin22θ0

√
1−

v22

v12 sin2 θ0(η2− η1)

−
(ρv1

2
− 2µ sin2 θ0)

v1

(
η2 cos 2θ0

√
1−

v22

v12 sin2 θ0−
η1

v1
v2 cos θ0

)]
, (38)
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D′2 = 2µη2
v3
v2

sin θ0

√
1−

v22

v12 sin2 θ0[
v3
v1

cos 2θ0

√
1−

v32

v12 sin2 θ0+ cos θ0(1− 2
v3

2

v12 sin2 θ0)], (39)

D′3 =−2µη1
v3
v1

sin 2θ0[
v3
v1

cos 2θ0

√
1−

v32

v12 sin2 θ0+ cos θ0(1− 2
v3

2

v12 sin2 θ0)]. (40)

6. Numerical results and discussion

To study numerically the effects of the two-temperature parameter on the speeds of propagation and reflec-
tion coefficients, we consider the following physical constants of aluminum as an isotropic thermoelastic
solid half-space:

λ= 7.59× 1010 Nm−2, µ= 1.89× 1010 Nm−2, K = 237 Wm−1deg−1,

Ce = 24.2 Jkg−1deg−1, ρ = 2.7× 103 kgm−3, T0 = 296 K, τ0 = 0.05 s, ω = 20 s−1.

Using the relation V−1
j = v

−1
j − ıω−1q j ( j = 1, . . . , 3), the real values of the propagation speeds of the

P , SV , and thermal waves are computed for the range 0≤ a∗ ≤ 1 of the two-temperature parameter. The
speeds of the P , SV , and thermal waves are shown graphically against the two-temperature parameter
a∗ in Figure 2. The speed of the P wave decreases with an increase in the two-temperature parameter,
whereas the speed of the thermal wave increases. The speed of the SV wave is not affected by change
in the two-temperature parameter.

With the help of (31), the reflection coefficients of the reflected P , SV , and thermal waves are com-
puted for the incidence of a P wave. For the range 0◦ < θ0 ≤ 90◦ of the angle of incidence of the P wave,
the reflection coefficients of the P , thermal, and SV waves are shown graphically in Figure 3, when
a∗ = 0, 0.5, and 1. For a∗ = 1, the reflection coefficient of the P wave decreases from its maximum
value of 1.211 at θ0 = 1◦ to its minimum value of 0.88 at θ0 = 69◦. Thereafter, it increases up to the
grazing incidence. For a∗ = 1, the reflection coefficient of the thermal wave decreases from its maximum
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Figure 2. Variations of speed of reflected P wave (solid line), thermal wave (dashed
line, and SV wave (dashed line with stars) against the two-temperature parameter.
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value of 0.7132 at θ = 1◦ to its minimum value of zero at θ0= 90◦. For a∗= 1, the reflection coefficient of
SV wave increases from its minimum value of zero at normal incidence to its maximum value of 0.5062
at θ0 = 48◦. Beyond θ0 = 48◦, it decreases to its minimum value of zero at grazing incidence. From
Figure 3, it is observed that the effect of a∗ on the reflection coefficients of the P and thermal waves
is maximal at normal incidence. The effect of the two-temperature parameter on these waves decreases
with increase in the angle of incidence. For grazing incidence, there is no effect of the two-temperature
parameter on these reflected waves. The reflection coefficient of SV is also affected by two-temperature
parameter. For normal and grazing incidences, there is no effect of two-temperature parameter on the
reflected SV wave. The maximal effect of the two-temperature parameter on the reflected SV wave is
observed at θ0 = 45◦.

With the help of (36), the reflection coefficients of the reflected P , SV , and thermal waves are com-
puted for the incidence of a SV wave. For the range 0◦ < θ0 ≤ 27◦ of the angle of incidence of the
SV wave, the reflection coefficients of the P , thermal, and SV waves are shown graphically in Figure 4,
when a∗ = 0, 0.5 and 1. For a∗ = 1, the reflection coefficient of the P wave increases from its minimum
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Figure 3. Variation in the reflection coefficients of the reflected P (top left), thermal
(top right), and SV (bottom) waves against the angle of incidence of the incident P
wave.
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value of 0.07 at θ0 = 1◦ to its maximum value of 1.926 at θ0 = 27◦. For a∗ = 1, the reflection coefficient
of the thermal wave increases from its minimum value of 0.02 at θ = 1◦ to its maximum value of 0.3887
at θ0 = 23◦. Thereafter, it decreases up to the angle of incidence θ = 27◦. For a∗ = 1, the reflection
coefficient of the SV wave decreases from its maximum value of one at normal incidence to its minimum
value of 0.5992 at θ0 = 26◦. Thereafter, it increases to a value of 0.6058 at θ0 = 27◦. From Figure 4, it
is observed that the effect of a∗ on the reflection coefficients of the P wave is maximal at angles near
θ0 = 20◦. There is no effect of the two-temperature parameter on this wave at normal incidence. At
normal incidence, the reflected thermal and SV waves are also not affected by a∗. The effect of a∗ on
these reflected waves increases with the increase in the angle of incidence and it becomes maximal at
angles near θ0 = 25◦.

0 5 10 15 20 25 30

Angle of incidence

0.0

0.4

0.8

1.2

1.6

2.0

R
e
fl

e
c
ti

o
n

 C
o

e
ff

ic
ie

n
t

Reflected P wave

a = 0

a = 0.5

a = 1.0

0 5 10 15 20 25 30

Angle of incidence

0.0

0.1

0.2

0.3

0.4
R

e
fl

e
c
ti

o
n

 C
o

e
ff

ic
ie

n
t

Reflected thermal wave

a = 0

a = 0.5

a = 1.0

 
 

0 5 10 15 20 25 30

Angle of incidence

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fl

e
c
ti

o
n

 C
o
e
ff

ic
ie

n
t

Reflected SV wave

a = 0

a = 0.5

a = 1.0

 

Figure 4. Variation in the reflection coefficients of the reflected P (top left), thermal
(top right), and SV (bottom) waves against the angle of incidence of the incident SV
wave.
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7. Conclusion

The two-dimensional solution of the governing equations of an isotropic two-temperature thermoelastic
medium indicates the existence of three plane waves, namely the P , thermal, and SV waves. The
expressions for the speeds of the P , thermal, and SV waves are obtained explicitly. The reflection
coefficients of the reflected P , thermal, and SV waves are also obtained in closed form for the incidence
of P and SV waves. The speeds and reflection coefficients of plane waves are computed for a particular
material representing the model. From the theory and numerical results, it is observed that the speeds and
reflection coefficients of the plane waves are significantly affected by the two-temperature parameter.
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A NONLINEAR TIMOSHENKO BEAM FORMULATION
BASED ON STRAIN GRADIENT THEORY

REZA ANSARI, RAHEB GHOLAMI AND MOHAMMAD ALI DARABI

Developed herein is a comprehensive geometrically nonlinear size-dependent microscale Timoshenko
beam model based on strain gradient and von Kármán theories. The nonlinear governing equations
and the corresponding boundary conditions are derived from employing Hamilton’s principle. A simply
supported microbeam is considered to delineate the nonlinear size-dependent free vibration behavior of
the presented model. Utilizing the harmonic balance method, the solution for free vibration is presented
analytically. The influence of the geometric parameters, Poisson’s ratio, and material length-scale pa-
rameters on the linear frequency and nonlinear frequency ratio are thoroughly investigated. The results
obtained from the present model are compared, in special cases, with those of the linear strain gradient
theory, linear and nonlinear modified couple stress theory, and linear and nonlinear classical models; ex-
cellent agreement is found. It is concluded that the nonlinear natural frequency and nonlinear frequency
ratio predicted by strain gradient theory are more precise than those from the other theories mentioned,
especially for shorter beams.

1. Introduction

Micro- and nanoscale beams are increasingly used in micro- and nanoelectromechanical systems such as
vibration shock sensors [Lun et al. 2006], electrostatically excited microactuators [Moghimi Zand and
Ahmadian 2009; Mojahedi et al. 2010], microswitches [Coutu et al. 2004], and atomic force microscopes
[Mahdavi et al. 2008]. The thickness of microscale beams is on the order of microns and submicrons. The
size-dependent deformation behavior in microscale beams has been detected experimentally [Fleck et al.
1994; Lam et al. 2003]. Moreover, experiments confirm the significance of the effects of nonlinearity
on the behavior of micro and nanomechanical resonators [Turner et al. 1998; Craighead 2000; Scheible
et al. 2002].

Due to the absence of a material length-scale parameter, classical continuum mechanics is not able to
interpret and predict such a size-dependent phenomenon which occurs in micron and submicron-scale
structures. Accordingly, many attempts have been made to develop different size-dependent continuum
theories such as the couple stress elasticity [Mindlin and Tiersten 1962; Toupin 1962], nonlocal elastic-
ity [Eringen 1972], strain gradient elasticity [Aifantis 1999], and surface elasticity [Gurtin et al. 1998]
theories. On the basis of elasticity theory, Yang et al. [2002] proposed a modified couple stress theory
for elasticity in which only one higher-order material constant exists in the constitutive equations. In
recent years, this theory has been applied by many researchers to interpret the size-dependent static and

Keywords: microbeams, strain gradient elasticity, modified couple stress theory, size effect, nonlinear behavior, Timoshenko
beam theory.
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vibration behaviors of microstructures [Lazopoulos 2004; Park and Gao 2006; Kong et al. 2008; Ma et al.
2008; 2010; 2011; Asghari et al. 2010b; 2010a; Lazopoulos and Lazopoulos 2010].

Lazopoulos [2004] was apparently the first to employ the von Kármán kinematic relations in non-
classical analyses of beams and plates. Mindlin [1965] proposed a higher-order gradient theory for
elastic materials by considering the first and second derivatives of the strain tensor effective on the strain
energy density. In [Fleck and Hutchinson 1993; 1997; 2001], Mindlin’s proposition was reformulated
by considering only the first derivative of the strain this was called strain gradient theory. In comparison
to couple stress theory, this theory comprises several higher-order stress components together with the
classical and couple stresses. This means that couple stress theory can be attained via strain gradient
theory by omitting the additional higher-order stress components. In this direction, Lam et al. [2003]
modified strain gradient theory by considering three higher-order material constants in the constitutive
equations. Also, this theory can be regenerated into the modified couple stress theory of [Yang et al.
2002] by setting the two material length-scale parameters equal to zero. In another work, Ma et al.
[2011] developed a nonclassical Mindlin plate model based on modified couple stress theory. Tsepoura
et al. [2002] have investigated the size effect of the Bernoulli–Euler beam model. In [Papargyri-Beskou
et al. 2003b; Park and Gao 2006], based on the gradient elasticity theory with surface energy of [Var-
doulakis and Sulem 1995], a higher-order Bernoulli–Euler beam model was expanded. Also, a cantilever
beam subjected to bending and a cracked bar under stretching have been investigated by using the strain
gradient beam model of [Giannakopoulos and Stamoulis 2007]. Wang et al. [2010], on the basis of
strain gradient elasticity theory, developed a microscale Timoshenko beam model in which the Poisson
effect was incorporated and also investigated the static bending and free vibration of a simply supported
microscale Timoshenko beam to illustrate this model. Kahrobaiyan et al. [2011] developed a nonlinear
size-dependent Euler–Bernoulli beam model based on strain gradient theory.

In the current work, by employing strain gradient theory and Hamilton’s principle, a large-deformation
size-dependent Timoshenko microbeam model is presented. The present model accommodates some
previously published beam models including the linear couple stress [Park and Gao 2006; Kong et al.
2008; Ma et al. 2008], linear strain gradient [Kaneko 1975; Kahrobaiyan et al. 2011], nonlinear couple
stress [Asghari et al. 2010b], nonlinear strain gradient [Kahrobaiyan et al. 2011] theories. Then, utilizing
this model, the nonlinear size-dependent free vibration behavior of simply supported microbeams is
described using the harmonic balance method. The numerical results are illustrated to study the effects
of the geometric parameters, Poisson’s ratio, and material length-scale parameters on the linear frequency
and nonlinear frequency ratio.

2. Preliminaries

In comparison to the modified couple stress theory of [Yang et al. 2002], Lam et al. [2003] has presented
a strain gradient elasticity theory which in addition to the symmetric rotation gradient tensor presents two
additional gradient tensors, the dilatation gradient tensor and the deviatoric stretch gradient tensor. These
tensors are specified by two classical material constants for isotropic linear elastic materials and three
independent material length-scale parameters. The stored strain energy Um in a continuum constructed
by a linear elastic material occupying a region � with infinitesimal deformations is given by

Um =
1
2

∫
�

(
σi jεi j + piγi + τ

(1)
i jk η

(1)
i jk +ms

i jχ
s
i j
)

dv, (1)
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in which the components of the strain tensor, the dilatation gradient tensor, the deviatoric stretch gradient
tensor, and the symmetric rotation gradient tensor, respectively represented by εi j , γi , η

(1)
i jk , and χ s

i j [Lam
et al. 2003], are defined as

εi j =
1
2 (ui, j + u j,i ), γi = εmm,i , (2a)

η
(1)
i jk=

1
3 (ε jk,i+εki, j+εi j,k)−

1
15 δi j (εmm,k+2εmk,m)−

1
15 [δ jk(εmm,i+2εmi,m)+δki (εmm, j+2εmj,m)], (2b)

χ s
i j =

1
2 (θi, j + θ j,i ), θi =

1
2 (curl(u))i , (2c)

where ui represents the components of the displacement vector u, θi is the infinitesimal rotation vector
θ , and δ is Kronecker’s delta. For a linear isotropic elastic material, the stresses are explained by the
kinematic parameters effective on the strain energy density which are given in the following constitutive
relations [Lam et al. 2003]:

σi j = λtr(ε)δi j + 2µεi j , pi = 2µl2
0γi , τ

(1)
i jk = 2µl2

1η
(1)
i jk, ms

i j = 2µl2
2χ

s
i j . (3)

The parameters p, τ (1), and ms are called the higher-order stresses. In the constitutive equation of the
classical stress σ , the parameters λ and µ are the bulk and shear modules, respectively, and are given as
[Timoshenko and Goodier 1970]

λ=
Eν

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (4)

Also, l0, l1, and l2 appearing in the higher-order stresses represent the additional independent material
length-scale parameters connected with the dilatation gradients, deviatoric stretch gradients, and sym-
metric rotation gradients, respectively. The kinematics of the Timoshenko beam theory can be written
as [Reddy 2007]

u1 = u(x, t)− zψ(x, t), u2 = 0, u3 = w(x, t), (5)

where u(x, t), w(x, t), and ψ(x, t) stand for the axial displacement of the center of sections, the lateral
deflection of the beam, and the rotation angle of the cross section with respect to the vertical direction.

3. Nonlinear formulation of motion and corresponding boundary conditions

As depicted in Figure 1, a straight beam of length L subjected to an initial axial load N0(x) is considered
in which its top and bottom surfaces are perpendicular to the z-direction. The centroid of each section is
assumed to be located on the plane z = 0. The kinematic parameters, boundary conditions, and loading
of a Timoshenko beam modeled based on the strain gradient theory are demonstrated in this figure. In
addition, G(x, t) is related to the axial body force per unit length and F(x, t) denotes the transverse
distributed force intensity per unit length.

Based on Timoshenko beam theory under the assumption of small strains and moderate rotations,
the nonlinear strain-displacement relations of a beam subjected to large-amplitude vibrations can be
approximated by the von Kármán relation as [Reddy 2003; Ma et al. 2008; Asghari et al. 2010b]

ε11 =
∂u1
∂x
+

1
2

(
∂w

∂x

)2
=
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2
, ε13 =

1
2

(
∂w

∂x
−ψ

)
. (6)
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Figure 1. Schematic of a simply supported Timoshenko beam: kinematic parameters,
coordinate system, geometry, and loading.

By inserting (5) and (6) into (2), the following nonzero components of θ , χ s, γ , and η(1) will be achieved:

θ2 =−
1
2

(
ψ +

∂w

∂x

)
, χ s

12 = χ
s
21 =−

1
4

(
∂ψ

∂x
+
∂2w

∂x2

)
, (7a)

γ1 =
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2 , γ3 =−
∂ψ

∂x
, (7b)

η
(1)
111 =

2
5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, η

(1)
333 =−

1
5

(
∂2w

∂x2 − 2∂ψ
∂x

)
,

η
(1)
113 = η

(1)
311 = η

(1)
131 =

4
15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, η

(1)
223 = η

(1)
322 = η

(1)
232 =−

1
15

(
∂2w

∂x2 − 2∂ψ
∂x

)
,

η
(1)
221 = η

(1)
212 = η

(1)
122 = η

(1)
313 = η

(1)
133 = η

(1)
331 =−

1
5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
.

(7c)

The major components of the symmetric section of the stress tensor can be expressed by the kinematic
parameters as follows:

σ11 = (λ+ 2µ)
(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
, σ22 = λ

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
,

σ33 = λ
(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
, σ13 = µ

(
∂w

∂x
−ψ

)
.

(8)

Note that σ13 depends only on one direction. Due to taking the nonuniformity of the shear strain over the
beam cross-section into account, a correction factor ks , which depends on the shape of the beam section,
is multiplied into the stress component σ13 as follows [Hutchinson 2001; Wang et al. 2010]:

σ13 = ksµ
(
∂w

∂x
−ψ

)
. (9)

At last, by inserting (6)–(9) into (3), the nonzero components of the higher-order stresses are obtained:
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p1 = 2µl2
0

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, p3 =−2µl2

0
∂ψ

∂x
, (10a)

τ
(1)
111 =

4µl2
1

5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, τ

(1)
333 =−

2µl2
1

5

(
∂2w

∂x2 − 2∂ψ
∂x

)
, (10b)

τ
(1)
113 = τ

(1)
311 = τ

(1)
131 =

8µl2
1

15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, τ

(1)
223 = τ

(1)
322 = τ

(1)
232 =−

2µl2
1

15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, (10c)

τ
(1)
221 = τ

(1)
212 = τ

(1)
122 = τ

(1)
313 = τ

(1)
133 = τ

(1)
331 =−

2µl2
1

5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, (10d)

ms
12 = ms

21 =−
µl2

2

2

(
∂ψ

∂x
+
∂2w

∂x2

)
. (10e)

The initial axial stress in the beam, which is uniformly distributed in a section, can be written as σ (0)11 (x)=
N0(x)/A. Accordingly, (6) and (8) for ε11 and σ11 do not express the total values of the strain and the
stress changes with respect to the fully unloaded conditions, but only express them with respect to the
initial configuration.

In the following, the strain energy resulted from the advent of a variation in the classical and higher-
order stresses with respect to the initial configuration denoted by U1, the strain energy due to the presence
of the initial axial stresses and the next imposed stretching denoted by U2, and the beam’s kinetic energy,
T , are expressed as:

U1 =
1
2

∫ L

0

∫
A

(
σi jεi j + piγi + τ

(1)
i jk η

(1)
i jk +ms

i jχ
s
i j
)

dA dx = 1
2

∫ L

0

∫
A

{
(λ+ 2µ)

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )2

+ ksµ
(
∂w

∂x
−ψ

)2
+ 2µl2

0

(
∂ψ

∂x

)2
+

(
2µl2

0 +
20µl2

1

25

)(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)2

+
40µl2

1

75

(
∂2w

∂x2 − 2∂ψ
∂x

)2

+
µl2

2

4

(
∂ψ

∂x
+
∂2w

∂x2

)2 }
dA dx,

U2 =

∫ L

0

N0

A

∫
A

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
dA dx, T = 1

2

∫ L

0

∫
A
ρ

{(
∂u
∂t
− z ∂ψ

∂t

)2
+

(
∂w

∂t

)2
}

dA dx,

where ρ and I are the density and area moments of inertia of sections with respect to the y-axis, respec-
tively, and the latter is given by I =

∫
A z2 dA. Also, note that

∫
A z dA = 0. Hence, for the total potential

energy U =U1+U2 and the kinetic energy we will have

U = 1
2

∫ L

0

{
k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )2
+ k2

(
∂ψ

∂x

)2
+ k3

(
∂w

∂x
−ψ

)2
+ k4

(
∂2ψ

∂x2

)2

+ k5

(
∂2u

∂x2 +
∂w

∂x
·
∂2w

∂x2

)2

+ k6

(
∂2w

∂x2 − 2∂ψ
∂x

)2

+ k7

(
∂ψ

∂x
+
∂2w

∂x2

)2

+ N0

(
2∂u
∂x
+

(
∂w

∂x

)2 )}
dx, (11)

T = 1
2

∫ L

0

{
ρA
(
∂u
∂t

)2
+ ρ I

(
∂ψ

∂t

)2
+ ρA

(
∂w

∂t

)2
}

dx, (12)
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where

k1 = (λ+ 2µ)A, k2 = (λ+ 2µ)I + 2µAl2
0, k3 = ksµA, k4 = µI

(
2l2

0 +
4
5 l2

1
)
,

k5 = µA
(
2l2

0 +
4
5 l2

1
)
, k6 =

8
15µAl2

1, k7 =
1
4µAl2

2 .
(13)

The external induced work associated with the body forces, body couples, and boundary surface tractions
is

W ext
=

∫ L

0
(G(x, t)u+ F(x, t)w+C(x, t)θ2) dx

+

(
N̂u+ V̂w+ M̂σψ + M̂M

∂w

∂x
+ P̂

(
∂u
∂x
+

1
2

(
∂w

∂x

)2)
+ Q̂ ∂ψ

∂x

)∣∣∣∣x=L

x=0
, (14)

in which N̂ is the axial resultant force of normal stresses σxx + N0/A, V̂ denotes the transverse resultant
force of the shear stresses and M̂M the resultant moment in a section caused by the classical and higher-
order stress components, and M̂σ is the resultant moment around the y-axis due to the couple stresses
mxy at sections. In addition, the higher-order resultants in a section are denoted by P̂ and Q̂, which are
due to higher-order stresses acting on that section.

By employing the Hamilton principle,

δ

∫ t2

t1
(T −U +W ext) dt = 0, (15)

taking the variation of u, w, and ψ , integrating by parts, and finally the coefficients of δu, δw, and δψ
equal to zero, we obtain the governing equations of motion

∂

∂x

{
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )}
+G(x, t)= ρA

∂2u

∂t2 , (16a)

∂

∂x

{[
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )]∂w
∂x

}
+ k3

(
∂2w

∂x2 −
∂ψ

∂x

)
+ (k6− k7)

∂4w

∂x4 − (2k6+ k7)
∂3ψ

∂x3 + F(x, t)+ 1
2
∂C(x, t)
∂x

= ρA
∂2w

∂t2 , (16b)

k2
∂2ψ

∂x2 + k3

(
∂w

∂x
−ψ

)
− k4

∂4ψ

∂x4 + (k7− 2k6)
∂3w

∂x3 + (k7+ 4k6)
∂2ψ

∂x2 −
C(x, t)

2
= ρ I

∂2ψ

∂t2 , (16c)

and the boundary conditions:(
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− N̂

)∣∣∣∣
x=0,L

= 0 or δu
∣∣
x=0,L = 0,(

k2
∂ψ

∂x
− k4

∂3ψ

∂x3 + (k7− 2k6)
∂2w

∂x2 + (k7+ 4k6)
∂ψ

∂x
− M̂σ

)∣∣∣∣
x=0,L

= 0 or δψ
∣∣
x=0,L = 0,
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N0+ k1

(
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1
2

(
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)2 )
− k5
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(
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∂x
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1
2

(
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∂x

)2 ))∂w
∂x

+ k3

(
∂w

∂x
−ψ

)
− (k6+ k7)

∂3w

∂x3 + (2k6− k7)
∂2ψ

∂x2 +
C(x, t)

2
− V̂

∣∣∣∣
x=0,L

= 0 or δw
∣∣
x=0,L = 0,(

k5
∂

∂x

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− P̂

)∣∣∣∣
x=0,L

= 0 or δ
(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )∣∣∣∣
x=0,L

= 0,(
k4
∂2ψ

∂x2 − Q̂
)∣∣∣∣

x=0,L
= 0 or δ

(
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0,(
(k6+ k7)

∂2w

∂x2 + (k7− 2k6)
∂ψ

∂x
− M̂M

)∣∣∣∣
x=0,L

= 0 or δ
(
∂w

∂x

)∣∣∣∣
x=0,L

= 0.

Consequently, on the basis of the strain gradient theory the governing equations of motion of a nonlinear
size-dependent Timoshenko beam are achieved. Neglecting the nonlinear terms, body forces, body cou-
ples, and boundary surface tractions in (16b) and (16c), these equations can be reduced to those given
by [Wang et al. 2010]. In the cases associated with a thin beam with a huge aspect ratio, same as in the
classical beam theories, Poisson’s effect is no more effective and can be negligible, that is, ν = 0; but in
other cases it must be considered to get reliable outcomes. Letting the material length-scale parameters
l0, l1, and l2 equal zero, the governing equations and corresponding boundary conditions related to a
nonlinear Timoshenko beam modeled by classical beam theory will be achieved. Moreover, the governing
equations and boundary conditions of a nonlinear Timoshenko beam modeled via the modified couple
stress theory can be achieved if only l0 = l1 = 0 and l2 = l (see [Asghari et al. 2010b]). Additionally,
by neglecting the shear deformation, governing equations and boundary conditions corresponding to the
microscale Euler–Bernoulli beam model based on the strain gradient elasticity theory will be attained
(see [Kahrobaiyan et al. 2011]).

4. Governing equations of motion of a simply supported beam with immovable ends and
corresponding boundary conditions: A specific case

Herein, specifically simply supported beams with immobile ends are considered and the strain gradient
formulation of the earlier section is developed for this case. The relevant boundary conditions are

u(0, t)= u(L , t)= 0 and w(0, t)= w(L , t)= 0. (17)

We assume P̂ , Q̂, M̂σ , and M̂M are zero at the end sections. Accordingly, the other boundary conditions
can be obtained as follows:

∂

∂x

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )∣∣∣∣
x=0,L

= 0, (18a)(
k2
∂ψ

∂x
− k4

∂3ψ

∂x3 + (k7− 2k6)
∂2w

∂x2 + (k7+ 4k6)
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0, (18b)(
(k6+k7)

∂2w

∂x2 + (k7−2k6)
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0,
(
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0. (18c)
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Compared to the inertia term in the transverse direction, the horizontal inertia force can be neglected
[Asghari et al. 2010b]. Considering this assumption and assuming N0 independent of x , in the absence
of axial body forces (that is, G(x, t) = 0), the equation of motion in the axial direction (16a) and the
boundary condition (18a) give

k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
+ N0 = N (t). (19)

In the case of axially immobile ends (u(0, t)= u(L , t)= 0), integrating (19) between the limits 0 and L
leads to

N (t)= N0+ Ñ (t)= N0+
k1

2L

∫ L

0

(
∂w

∂x

)2
dx . (20)

The axial force variation in the beam with respect to the initial configuration is denoted by Ñ (t) and
is indeed due to the extension resulting from the transverse deformation. Inserting (20) into (16b), the
equations of motion can be rewritten in the following form:

N
∂2w

∂x2 + k3

(
∂2w

∂x2 −
∂ψ

∂x

)
+ (k6− k7)

∂4w

∂x4 − (2k6+ k7)
∂3ψ

∂x3 + F(x, t)+ 1
2
∂C(x, t)
∂x

= ρA
∂2w

∂t2 . (21)

The governing equations of the dynamic behavior of a nonlinear size-dependent Timoshenko beam with
two immobile ends modeled on the basis of strain gradient theory are represented in (16c) and (21)
and the associated boundary conditions are given by w(0, t) = w(L , t) = 0 and by (18b)–(18c). If
the material length-scale parameters l0, l1, and l2 are set to be zero, the governing equations and cor-
responding boundary conditions of a nonlinear Timoshenko beam with immobile supports modeled by
classical beam theory will be attained (see [Ansari and Ramezannezhad 2011]). Furthermore, to achieve
the governing equations and boundary conditions of a nonlinear Timoshenko beam with two immobile
supports modeled by modified couple stress theory, it is enough to let l0 = l1 = 0 and l2 = l.

5. Investigation of the free vibration of a simply supported beam

Herein, as an example, based on strain gradient theory, the free vibration of nonlinear size-dependent
Timoshenko beams with simply supported boundary conditions and immovable ends under the assump-
tion N0 = F = C = 0 are investigated.

For beams with simply supported edges, the solutions of the governing equations can be introduced
as ψ(x, t)=9(t)cos(mπx/L) and w(x, t)=W (t)sin(mπx/L). Inserting these solutions into (16c) and
(21) results in

Ẅ +
π4m4(λ+ 2µ)

4ρL4 W 3
+

(
ksµπ

2m2

ρL2 −
8µl2

1π
4m4

15ρL4 +
µl2

2π
4m4

4ρL4

)
W

+

(
16µl2

1π
3m3

15ρL3 −
ksµmπ
ρL

+
µl2

2π
3m3

ρL3

)
9 = 0, (22a)
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9̈+

(
π2m2(λ+ 2µ)

ρL2 +
2µAπ2m2l2

0

ρ I L2 +
ksµA
ρ I
+

2µl2
0π

4m4

ρL4 +
4µl2

1π
4m4

5ρL4 +
32µAl2

1π
2m2

15ρ I L2 +
µAl2

2π
2m2

4ρ I L2

)
9

+

(
µAl2

2π
3m3

4ρ I L3 −
ksµAmπ
ρ I L

−
16µAl2

1π
3m3

15ρ I L3

)
W = 0. (22b)

The governing equations must be expressed in nondimensional form by using the following nondimen-
sional parameters:

ωl =

√
π2(λ+ 2µ)

ρL2 , ωs =

√
ksµA
ρ I

, ωr =

√
π2ksµ

ρL2 ,

ωm =

√
µπ2

ρL2 , ωn =

√
µA
ρ I
, (α0, α1, α2)=

π2

4L2 (l
2
0, l

2
1, l

2
2), τ = ωt.

(23)

In order to achieve an accurate analytical solution, the nonlinear equations resulting from (22) are solved
utilizing the harmonic balance method. According to this method, the solutions are assumed as a trun-
cated Fourier series of the form [Gao and Lei 2009]

W (τ )= 01 cos τ +01 cos 3τ, 9(τ)=31 cos τ +32 cos 3τ. (24a)

Inserting the given solution into (22), substituting the above Fourier series, ignoring the higher-order
harmonics than ones comprised in the original assumed solutions and setting the coefficients of like
cosine harmonics (such as the cos τ and cos 3τ terms) equal to zero, a set of algebraic equations will be
achieved as follows:

−ω201

L
+

(
m4α2ω

2
m +m2πω2

r −
32m4

15
α1ω

2
m

)01
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+

(
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π

)
31

+
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03
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4
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102+
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2
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201
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= 0, (25a)
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+
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2
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m4α1ω
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15
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2
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)02

L
= 0. (25d)

Utilizing the Newton–Raphson method, these nonlinear equations can be solved for ω, 31, 32, and 02

by choosing 01 as a determined parameter.
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A microbeam made of epoxy with mechanical properties E = 1.44 GPa and ρ = 1.22× 103 kg/m3

[Maneschy et al. 1986] is considered under the assumption l0 = l1 = l2 = l = 17.6µm [Ma et al. 2008;
Kong et al. 2009]. The shear coefficient ks is given as (5+ 5ν)/(6+ 5ν) which is assessed as the most
efficient description for a rectangular cross-section beam [Ke et al. 2012].

As was mentioned, if the material length-scale parameters are set as l0 = l1 = 0 and l2 = l and the
nonlinearity is neglected, the linear free vibration of the homogeneous microbeams presented in [Ma et al.
2008] can be degenerated. To check the validity and accuracy of the present analysis, the first four natural
frequencies of a simply supported Timoshenko microbeam with E = 1.44 GPa, ρ = 1.22× 103 kg/m3,
L/h= 10, and l = 17.6µm obtained from the present analysis are compared with those of Ma et al., given
in Table 1. As can be seen from the table, a good agreement has been achieved. The small difference
between our results and those of Ma et al. is due to considering the Poisson effect. We observe that these
differences become really significant at lower l/h and higher modes.

Table 2 compares the results obtained with the present method, based on classical, modified couple
stress, and strain gradient theories, with those reported in [Ansari et al. 2011] for the same theories.
As in that paper, we report the dimensionless natural frequencies, �= ωL

√
ρm/(λm + 2µm), of simply

supported homogeneous metal (Al) and ceramic (SiC) microbeams with material properties Em = 70 GPa,
νm = 0.3, and ρm = 2702 kg/m3 for Al and Ec = 427 GPa, νc = 0.17, and ρc = 3100 kg/m3 for SiC. The
other parameters used are L/h = 10, h/ l = 2, and l = 15µm. Excellent agreement can be observed
between the present results and the earlier ones.

Table 3 gives the nonlinear frequency ratios for simply supported homogeneous microbeams with the
material properties E = 70 GPa, ρ = 2702 kg/m3, and ν = 0.3 [Ke et al. 2012] based on modified couple
stress theory. The results of Ke et al. are also provided for comparison. The other parameters used in the
example are L/h = 12, h/ l = 2, and l = 15µm [Ke et al. 2012]. Excellent agreement can be observed

Mode h/ l = 1 h/ l = 3 h/ l = 10
present Ma et al. present Ma et al. present Ma et al.

1 0.6733 0.6723 0.1393 0.1391 0.0377 0.0377
2 2.4643 2.4530 0.5182 0.5163 0.1402 0.1396
3 4.9741 4.9368 1.0588 1.0519 0.2858 0.2838
4 7.9372 7.8606 1.6966 1.6814 0.4557 0.4514

Table 1. Comparison of the first four linear natural frequencies (in MHz) of microbeams
with consideration of size effect. Literature results are from [Ma et al. 2008].

Theory Ceramic Metal
present previous present previous

Classical 0.5778 0.5776 0.2810 0.2854
Modified couple stress 0.8541 0.8538 0.3820 0.3863

Strain gradient 1.2705 1.2608 0.5471 0.5430

Table 2. Comparison of the dimensionless natural frequencies of microbeams corre-
sponding to different beam models. “Previous” refers to results from [Ansari et al. 2011].
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�Linear = ωL
√
ρ/E Nonlinear frequency ratio

wmax/h = 0.2 wmax/h = 0.4 wmax/h = 0.6
present 0.3187 1.0338 1.1259 1.2654

[Ke et al. 2012] 0.3186 1.0340 1.1265 1.2671

Table 3. Comparison of the dimensionless natural frequency and nonlinear frequency
ratios of microbeams.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Non-dimensional amplitude

N
o

n
li

n
ea

r 
fr

eq
u

en
cy

 r
at

io
 (

 Z
/Z

L
 )

 

 

L/h = 10    , Z
L

 = 1.0499MHz

L/h = 15    , Z
L

 = 0.5212MHz

L/h = 20    , Z
L

 = 0.3067MHz

L/h = 30    , Z
L

 = 0.1412MHz

Figure 2. Effect of the length-to-thickness ratio (L/h) on the nonlinear frequency ratio,
for h = l and b = 2h.

between our results and those of Ke et al.
The nonlinear free vibration of a simply supported beam is investigated in Figures 2–6. The linear

fundamental frequencies (ωL ) are also given in Figures 2–5. Figure 2 illustrates the nonlinear frequency
ratio versus the vibration amplitude for different length-to-thickness ratios for the geometric parameters
h = l, b = 2h. It is seen that the beam exhibits a typical hard-spring behavior, that is, the nonlinear
frequency ratio increases as the vibration amplitude increases. The length-to-thickness ratio has a signifi-
cant effect on the nonlinear vibration behavior. At a given vibration amplitude, both the linear frequency
and nonlinear frequency ratios decrease with the increase of the length-to-thickness ratio.

The effect of the ratio of the beam thickness to the material length-scale parameter (h/ l) on the
nonlinear frequency ratio is investigated in Figure 3. This figure is illustrated for the geometric parameters
b = 2h and L = 20h and reveals that as the ratio h/ l increases, unlike for the linear frequency, the
nonlinear frequency ratio gets bigger. At higher amplitudes, the discrepancy between the curves becomes
more prominent.

Figure 4 depicts the Poisson’s ratio’s influence on the linear and nonlinear frequencies for two different
geometric parameters. For the case of h = l, b = 2h, and L = 30h, an increase in the Poisson’s ratio
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Figure 3. Effect of the ratio of the beam thickness to the material length scale parameter
(h/ l) on the nonlinear frequency ratio, for b = 2h and L = 20h.

leads to lower linear frequencies while the nonlinear frequency ratio becomes higher. In addition, for the
geometric parameters h = 3l, b = 2h, and L = 20h, an increase in the Poisson’s ratio results in higher
nonlinear frequency ratios but results in unpredictable behavior of the linear frequency. This indicates
that the size effect plays a key role in the investigation of the effect of Poisson’s ratio on the natural
frequency of microbeams.

Figure 5 illustrates the influences of additional material parameters on the nonlinear frequency ratio.
The figure is plotted for the nonlinear frequency ratio versus the nondimensional amplitude for h = 2l,
b = 2h, L = 10h, and ν = 0.38. As the figure indicates, the value of the nonlinear frequency ratio
predicted by classical beam theory is more than that of the nonclassical beam theories. Also, according
to the figure, strain gradient beam theory predicts the lowest nonlinear frequency ratio. In other words,
the modified couple stress and classical beam theories tend to overestimate the nonlinear frequency ratio,
especially when the amplitude gets higher. Furthermore, as the amplitude rises, the deviation between
the theories becomes more prominent.

Another comparison between the classical and nonclassical beam theories is illustrated in Figure 6, but
this time the figure shows the natural frequency of a microbeam assessed by the nonclassical and classical
theories for two different Poisson’s ratios. The trends are illustrated for a nondimensional vibrational
amplitude (wmax/

√
I/A) equal to 3. This figure indicates that the natural frequencies obtained by the

nonclassical Timoshenko beam models are higher than the ones predicted by the classical model for both
Poisson’s ratios. The natural frequencies predicted by the strain gradient model are higher than those
from the modified couple stress model. In other words, apart from strain gradient theory, the theories
mentioned tend to underestimate the natural frequency. In addition, as can be deduced from this figure,
for the classical beam model, the natural frequency with ν = 0 is always lower than that with ν = 0.38.
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(a):  D = H  , > = 2D , . = 30D  
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(b): D = 3H  , > = 2D , . = 20D  
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Figure 4. Influence of the Poisson’s ratio on the nonlinear frequency ratio for the given
values of h, b, and L .

However, for the nonclassical beam theories, this is not true at low h/ l. At low and high h/ l, with
an increase of the Poisson’s ratio, the microbeam natural frequency corresponding to the nonclassical
beam models decreases and increases, respectively. According to this figure, it can be concluded that
the Poisson effect is more prominent at low thickness ratios. Hence, the reliability of the beam theories
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which neglect the Poisson effect is questionable, so in order to obtain more accurate results, this effect
must be incorporated.
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6. Conclusion

Based on strain gradient theory and using Hamilton’s principle, a comprehensive geometrically nonlinear
size-dependent Timoshenko beam model incorporating the Poisson effect was developed. The model con-
tains the nonlinear governing partial differential equations of motions and the corresponding classical and
nonclassical boundary conditions. The current nonclassical Timoshenko beam model encompasses the
available modified couple stress and classical models and recovers the nonclassical Euler–Bernoulli beam
model when ψ = ∂w/∂x . As a specific case, the governing equations and the corresponding boundary
conditions were solved by the use of the harmonic balance method to describe the large-amplitude size-
dependent vibration behavior of simply supported microbeams. The numerical results obtained from the
present model were compared with previously published results, from the linear strain gradient and the
nonlinear and linear modified couple stress theories, as well as linear and nonlinear classical models,
showing good agreement.
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FINITE ELEMENT ANALYSIS OF BENDING-STIFF
COMPOSITE CONICAL SHELLS WITH MULTIPLE DELAMINATION

SUDIP DEY AND AMIT KARMAKAR

This paper presents a finite element method to investigate the effects of multiple delaminations on
the free-vibration characteristics of graphite-epoxy bending-stiff composite pretwisted shallow conical
shells. (We call bending-stiff a laminate configuration having maximum stiffness for the spanwise first
bending mode.) The generalized dynamic equilibrium equation is derived from Lagrange’s equation
of motion neglecting the Coriolis effect for moderate rotational speeds. An eight-noded isoparametric
plate bending element is employed in the finite element formulation incorporating rotary inertia and the
effects of transverse shear deformation based on Mindlin theory. A multipoint constraint algorithm is
utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at
the delamination crack front. The standard eigenvalue problem is solved by applying the QR iteration
algorithm. Finite element codes are developed to obtain numerical results concerning the effects of twist
angle and rotational speed on the natural frequencies of multiple delaminated bending-stiff composite
conical shells. The mode shapes are also depicted for a typical laminate configuration. The numerical
results obtained for comparison of single and multiple delaminated bending-stiff composite laminates
are the first known nondimensional natural frequencies under the combined effect of rotation and twist
for the type of analyses carried out here.

1. Introduction

Composite structures are extensively used in aerospace, automobile, civil, and other various high per-
formance applications. Composite materials are immensely popular in weight-sensitive applications
because of their high specific stiffness, low weight, and high strength-to-weight ratio, but one of the major
causes of failure in fiber-reinforced laminate composites is the delamination resulting from interlaminar
debonding of constituent laminae. Pretwisted composite conical shells with low aspect ratios can be
idealized as turbomachinery blades. Prior knowledge of the resonant characteristics of turbomachinery
blades is of utmost importance in ensuring a reliably long life for turbine engines. The presence of
invisible delamination in such a structural element made of composite materials can be detected with
the help of prior knowledge of the natural frequencies if delamination exists. Moreover, the initial stress
system in a rotating shell due to centrifugal body forces has appreciable cascading affects on the natural
frequency. The vibratory characteristics are thus of critical influence on the performance and safety of
such composite structures. In realistic situations, pretwisted conical shell structures have geometrical
complexities arising due to their specific applications in various service environments. Hence certain
dynamic parameters are to be considered when these structural elements are in rotation, and the finite

Keywords: delamination, finite element, vibration, conical shell, bending-stiff.
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element method is an efficient tool for the dynamic analysis of such types of applications. Multiple
delaminated composite laminated structures exhibit new vibration frequencies depending on the size and
location of the delamination. In order to ensure safety of operation, a profound understanding of the
dynamic characteristics of composite pretwisted conical shells is essential for designers.

The first established work on pretwisted composite plates [Qatu and Leissa 1991b] determined the
natural frequencies of stationary plates using laminated shallow shell theory and the Ritz method. Liew
et al. [1994] investigated a pretwisted conical shell to find out the vibratory characteristics of a stationary
conical shell by using the Ritz procedure. By using the same method, the first known three-dimensional
continuum vibration analysis including full geometric nonlinearities and centrifugal accelerations in com-
posite blades was carried out in [McGee and Chu 1994].

The two important investigations on delamination model were by Shen and Grady [1992] and Krawczuk
et al. [1997]. The first dealt with the analytical and experimental determination of natural frequencies of
delaminated composite beam while the second one undertook a finite element free vibration analysis of
the delaminated composite cantilever beam and plate. Rebière and Gamby [2004] employed a variational
approach to model the behavior of composite cross-ply laminates damaged by transverse and longitudinal
cracking and delamination, while Aydogdu and Timarci [2003] and Tripathi et al. [2007] studied the
free-vibration behavior of a delaminated composite employing the finite element method. Lee et al.
[2002] carried out the vibration analysis of a twisted cantilevered conical composite shell using a finite
element method based on the Hellinger–Reissner principle, again for single and multiple delaminations.
Parhi et al. [2001] and Aymerich et al. [2009] have demonstrated the effects of multiple delamination
on laminated composites using FEM. The first dealt with failure analysis of a composite plate due to
bending and impact, while the second simulated cross-ply laminates subject to impact based on cohesive
interface elements.

As far as the authors are aware, there is no work available in the literature which deals with ro-
tating multiple delaminated composite pretwisted cantilever conical shells by a finite element method
considering the combined effect of rotation and twist on the vibration characteristics of the bending-
stiff configuration [0◦2 /±30◦]s [Crawley 1979]. (We call bending-stiff a laminate configuration having
maximum stiffness for the spanwise first bending mode in terms of design compliance.) Turbomachinery
blades may flutter due to high-speed rotation which may lead to fouling of the blades in the cantilevered
arrangements. Although the free ends of the blades are restrained by lacing wire, in resonant condition,
excessive vibration may lead to severe damage of the vibratory blades. This can be prevented to a great
extent provided the blades have high stiffness against spanwise bending. In this paper, the multipoint
constraint algorithm [Gim 1994] is incorporated which leads to asymmetric element stiffness matrices.
The QR iteration algorithm [Bathe 1990] is utilized to solve the standard eigenvalue problem. The present
analysis is aimed at obtaining the nondimensional fundamental frequency (NDFF) and nondimensional
second natural frequencies (NDSF) of pretwisted bending-stiff composite shallow conical shells having
delamination without taking care of the effect of dynamic contact between delaminated layers.

In the present study, the shell surface is considered as a shallow conical shell with length L , reference
width b0, thickness h, vertex angle θv , and base subtended angle of cone θ0 as depicted in Figure 1. Since
the conical shell is shallow, it may be assumed that the cross section is elliptical. The component of radius
of curvature in the chord-wise direction Ry(x, y) is a parameter varying both in the x and y-directions.
The variation in the x-direction is linear. There is no curvature along the spanwise direction (Rx =∞).
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Figure 1. Geometry of an untwisted conical shell (left) and a twisted plate (right).

The cantilever shell, clamped along x = 0, is pretwisted with radius of twist Rxy as shown in the figure.
Thus a pretwisted shallow conical shell of uniform thickness, made of laminated composite is considered.

2. Mathematical formulation

A shallow shell is characterized by its middle surface which is defined by the equation [Leissa et al.
1984]

z =− 1
2

[ x2

Rx
+ 2 xy

Rxy
+

y2

Ry

]
, (1)

where Rx and Ry denote the radii of curvature in the x and y-directions, respectively. The radius of twist
(Rxy), length (L) of shell, and twist angle (ψ) are related as

tanψ =− L
Rxy

. (2)

The dynamic equilibrium equation for moderate rotational speeds neglecting the Coriolis effect is derived
employing Lagrange’s equation of motion. The equation in global form is expressed as [Karmakar and
Sinha 2001]

[M]{δ̈}+ ([K ] + [Kσ ]){δ} = {F(�2)}, (3)

where [M], [K ], and [Kσ ] are the global mass, elastic stiffness, and geometric stiffness matrices, respec-
tively. {F(�2)} is the nodal equivalent centrifugal force and {δ} is the global displacement vector. [Kσ ]

depends on the initial stress distribution and is obtained by the iterative procedure upon solving

([K ] + [Kσ ]){δ} = {F(�2)}. (4)

The natural frequencies (ωn) are determined from the standard eigenvalue problem [Bathe 1990], which
is represented below and is solved by the QR iteration algorithm:

[A]{δ} = λ{δ}, (5)

where
[A] = ([K ] + [Kσ ])

−1
[M] and λ= 1/ω2

n. (6)
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Figure 2. Plate elements at a delamination crack tip.

3. Multipoint constraint

Figure 2 represents the cross-sectional view of a typical delamination crack tip [Gim 1994] where nodes
of three plate elements meet together to form a common node. The undelaminated region is modeled by
plate element 1 of thickness h, and the delaminated region is modeled by plate elements 2 and 3 whose
interface contains the delamination (h2 and h3 are the thicknesses of elements 2 and 3, respectively).
Elements 1, 2, and 3 are freely allowed to deform prior to imposition of the constraint conditions. The
plate elements at a delamination crack front are shown in Figure 3. The nodal displacements of elements 2
and 3 at the crack tip are expressed as

U j =U ′j − (Z − Z ′j )θx j , V j = V ′j − (Z − Z ′j )θy j , W j =W ′j ( j = 2, 3), (7)

where U ′j , V ′j , and W ′j are the midplane displacements, Z ′j is the z-coordinate of the midplane of ele-
ment j , and θx and θy are the rotations about x and y-axes, respectively. The above equation also holds
good for element 1 and Z ′1 equal to zero. The transverse displacements and rotations at a common node
have values expressed as

W1 =W2 =W3 =W, θx1 = θx2 = θx3 = θx , θy1 = θy2 = θy3 = θy . (8)

(See [Gim 1994] for Equations (8)–(13).) The in-plane displacements of all three elements at the crack
tip are equal and they are related as

U ′2 =U ′1− Z ′2θx , and V ′2 = V ′1− Z ′2θy, (9)

U ′3 =U ′1− Z ′3θx , and V ′3 = V ′1− Z ′3θy, (10)

where U ′1 is the midplane displacement of element 1. Equations (8)–(10) relating the nodal displacements
and rotations of elements 1, 2, and 3 at the delamination crack tip are the multipoint constraint equations
used in the finite element formulation to satisfy the compatibility of the displacements and rotations. The
midplane strains between elements 2 and 3 are related as

{ε′} j = {ε
′
} j + Z ′j {k}, (11)

where {ε′} represents the strain vector and {k} is the curvature vector, which is identical at the crack tip
for elements 1, 2, and 3. This equation can be considered as a special case for element 1 and Z ′1 equal
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Figure 3. Influence of the relative position of delamination on the first natural frequency
of the composite cantilever beam [Krawczuk et al. 1997].

to zero. The in-plane stress-resultants, {N }, and moment resultants, {M}, of elements 2 and 3 can be
expressed as

{N } j = [A] j {ε′}1+ (Z ′j [A] j + [B] j ){k}, (12)

{M} j = [B] j {ε′}1+ (Z ′j [B] j + [D] j ){k}. (13)

The resultant forces and moments at the delamination front for elements 1, 2, and 3 satisfy the following
equilibrium conditions:

{N } = {N }1 = {N }2+{N }3, (14)

{M} = {M}1 = {M}2+{M}3+ Z ′2{N }2+ Z ′3{N }3, (15)

{Q} = {Q}1 = {Q}2+{Q}3, (16)

where {Q} denotes the transverse shear resultants.
In the finite element analysis the structure has to be discretized into a number of elements connected

at the nodal points. The element shall be such that it can properly define the behavior of the structure.
In the present analysis an eight-noded quadratic isoparametric element with five degrees of freedom at
each node (three translational and two rotational) is employed. The quadrilateral element has four corner
nodes and four midside nodes. The isoparametric plate bending element shall be oriented in the natural
coordinate system wherein the shape functions are as follows [Bathe 1990]:

Ni = (1+ εεi )(1+ ηηi )(εεi + ηηi − 1)/4 (for i = 1, . . . , 4), (17)

Ni = (1− ε2)(1+ ηηi )/2 (for i = 5, 6), (18)

Ni = (1− η2)(1+ εεi )/2 (for i = 6, 8), (19)

where η and ε are local natural coordinates of the element.
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Aspect ratio Present FEM Present FEM [Liew et al. 1994]
ψ (L/s) (8× 8) (6× 6)

0.6 0.3524 0.3552 0.3599
0◦ 0.7 0.2991 0.3013 0.3060

0.8 0.2715 0.2741 0.2783

0.6 0.2805 0.2834 0.2882
30◦ 0.7 0.2507 0.2528 0.2575

0.8 0.2364 0.2389 0.2417

Table 1. Convergence study for NDFF (ω=ωnb2
0
√
(ρh/D), where D= Eh3/12(1−ν2))

of the pretwisted shallow conical shells, considering ν = 0.3, s/h = 1000, θv = 15◦, and
θ0 = 30◦.

4. Results and discussion

The nondimensional fundamental frequencies (NDFF) and nondimensional second natural frequencies
(NDSF) for conical shells having a curvature ratio (b0/Ry) of 0.5 and a thickness ratio (s/h) of 1000
are obtained corresponding to different nondimensional speeds of rotation, �= 0.0, 0.5, and 1.0 (where
� = �′/ω0), with relative distance d/L = 0.5; the parameters nd , n, a, �′, ω0, ρ, and d represent the
number of delaminations, number of layers, crack length, actual angular speed of rotation, fundamental
natural frequency of a nonrotating shell, and density, respectively. The material properties of the graphite-
epoxy composite [Qatu and Leissa 1991a] are considered as E1 = 138.0 GPa, E2 = 8.96 GPa, ν = 0.3,
G12= 7.1 GPa, G13= 7.1 GPa, and G23= 2.84 GPa. Convergence studies are also performed to determine
the converged mesh size (Table 1). It is observed from the convergence study that uniform mesh divisions
of 6× 6 and 8× 8 considering the complete planform of the shell provide nearly equal results, the
difference being around one percent; the results also corroborate monotonic downward convergence.
The slight differences between the values of the present solution and those of [Liew et al. 1994] can be
attributed to consideration of transverse shear deformation and rotary inertia in the present FEM and also
to the fact that the Ritz method always overestimates the structural stiffness. Moreover, increasing the
size of the matrix because of higher mesh size increases the ill-conditioning of the numerical eigenvalue
problem [Qatu and Leissa 1991b]. Hence, the lower mesh size (6× 6), consisting of 36 elements and
133 nodes, has been used for the analysis due to computational efficiency. The total number of degrees
of freedom involved in the computation is 665 as each node of the isoparametric plate bending element
has five degrees of freedom, three translational and two rotational.

4.1. Validation of results. Computer codes were developed based on the present finite element method.
The numerical results obtained are compared and validated with the results of [Liew et al. 1994; Krawczuk
et al. 1997; Karmakar et al. 2005] as furnished in Table 1, Figure 3, and Table 2, respectively. The com-
parative study shows excellent agreement with the previously published results and hence demonstrates
the capability of the code developed and proves the accuracy of the analyses.

4.2. Effect of stacking sequence and twist angle. A parametric study is conducted to obtain the nondi-
mensional natural frequencies of eight-layered graphite-epoxy bending-stiff composite shallow conical
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Two delaminations Three delaminations
� Present FEM [Karmakar et al. 2005] Present FEM [Karmakar et al. 2005]
0.0 1.9316 1.9332 1.9048 1.8994
0.5 2.1080 2.1921 2.0469 2.1495
1.0 2.6735 2.7475 2.5996 2.6874

Table 2. NDFF (ω = ωn L2√(ρ/E1h2)) of eight-layered graphite-epoxy composite
[0◦/0◦/30◦/−30◦]s rotating cylindrical shells with 25% delaminations located at several
positions (for 2 delaminations: 0◦/0◦/30◦//−30◦/−30◦/30◦/0◦//0◦ and for 3 delamina-
tions: 0◦//0◦/30◦/−30◦//−30◦/30◦//0◦/0◦, where // indicates the location of delamination)
across the thickness, a/b = 1, b/h = 100, and b0/Ry = 0.5.

 

15° 78 52 84 46 69 0.

30° 34 17 63 35 42 0.

30° 95 57 01 97 49 0.

45° 82 05 88 96 67 0.

28 34 69 65 30 0.

0° 65 80 75 27 70 0.

Figure 4. Arrangement of layers of eight-layered laminated composite with delamination.

shells under single, double, triple, and quadruple delaminations with different twist angles, as furnished
in Table 3. The arrangement of layers with delamination is shown in Figure 4. At a stationary condition
for a particular number of delaminations, nondimensional fundamental natural frequencies are identified
to attain a maximum value for twist angle ψ = 0◦ and gradually decrease to a minimum value for twist
angle ψ = 45◦. It is also noted that at a stationary condition for a particular angle of twist, the nondi-
mensional fundamental frequencies are found to reduce with the increase of the number of delamination.
This can be attributed to the fact that the delamination leads to reduction in the elastic stiffness. The
centrifugal stiffening effect (that is, the increase of structural stiffness with increase of rotational speed)
is predominantly found with reference to nondimensional fundamental and second natural frequencies
of bending-stiff composites irrespective of twist angle. Under a rotating condition, the nondimensional
fundamental frequencies of delaminated composite laminates found a drooping trend with an increase of
twist angle.

4.3. Effect of relative frequency. The trends of the relative frequencies (the ratio of rotating natural
frequency and stationary natural frequency) at � = 0.5 and � = 1.0 for a bending stiff configuration
corresponding to NDFF are furnished in Figures 5a and 5b, respectively. The percentage difference
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NDFF NDSF
nd ψ �= 0.0 �= 0.5 �= 1.0 �= 0.0 �= 0.5 �= 1.0

1

0◦ 0.3925 0.5231 0.6015 0.4953 0.6281 0.6279
15◦ 0.2378 0.4552 0.5584 0.4946 0.5669 0.5644
30◦ 0.1434 0.2617 0.4863 0.4935 0.5042 0.4983
45◦ 0.0947 0.2056 0.3641 0.4932 0.5041 0.4550

2

0◦ 0.3190 0.5130 0.5529 0.5337 0.7227 0.6175
15◦ 0.2092 0.3884 0.4353 0.4677 0.6555 0.6982
30◦ 0.1295 0.1457 0.1401 0.4197 0.5249 0.5731
45◦ 0.0882 0.1505 0.2388 0.4196 0.4867 0.5289

3

0◦ 0.2449 0.4967 0.4430 0.3825 0.5551 0.8587
15◦ 0.1831 0.3316 0.4004 0.3339 0.3729 0.4402
30◦ 0.1174 0.0664 0.4125 0.3017 0.2992 0.6361
45◦ 0.0828 0.1134 0.2469 0.2965 0.5030 0.4840

4

0◦ 0.2565 0.4880 0.4075 0.2727 0.4670 0.6622
15◦ 0.1841 0.3235 0.3667 0.2343 0.4136 0.5655
30◦ 0.1162 0.2815 0.2168 0.2087 0.3711 0.6706
45◦ 0.0816 0.0983 0.4494 0.2010 0.3549 0.7109

Table 3. NDFF and NDSF (ω = ωn L2√(ρ/E1h2)) of delaminated bending-stiff com-
posite conical shells for various twist angles, considering n = 8, h = 0.0004, s/h = 1000,
a/L = 0.33, d/L = 0.5, L/s = 0.7, θ0 = 45◦, and θv = 20◦.

between the maximum and minimum relative frequencies with respect to NDFF at lower rotational speeds
are found as 38.6%, 39.4%, 72.1%, and 50.3% corresponding to nd = 1, 2, 3, and 4, respectively. On
the other hand, the same at higher rotational speeds are found as 60.1%, 60.0%, 48.5% and 71.2%
corresponding to nd = 1, 2, 3, and 4, respectively. Hence this also proves the fact that for higher rotational
speeds, the relative frequencies have a pronounced effect. Considering the twist of the laminate at lower
rotational speeds, the percentage difference between the maximum and minimum relative frequencies
with respect to NDFF are found as 34.3%, 8.2%, 76.7%, and 44.5% corresponding to ψ = 0◦, 15◦, 30◦,
and 45◦, respectively. On the other hand, the same at higher rotational speeds are found as 15.3%, 15.2%,
69.2%, and 50.8% corresponding to ψ = 0◦, 15◦, 30◦, and 45◦, respectively. Hence it is observed that
under a rotating condition, the relative frequencies (NDFF) have a pronounced effect corresponding to
twist angle ψ = 30◦.

In contrast, at lower rotational speeds, the percentage difference between the maximum and minimum
relative frequencies with respect to NDSF are found as 19.4%, 17.2%, 41.5%, and 3.7% corresponding
to nd = 1, 2, 3, and 4, respectively, while the same at higher rotational speeds are found as 15.3%, 15.2%,
69.2%, and 50.8% corresponding to nd = 1, 2, 3, and 4, respectively. On the other hand, the percentage
difference between the maximum and minimum relative frequencies with respect to NDSF are found
as 25.9%, 36.7%, 44.2%, and 42.1% corresponding to ψ = 0◦, 15◦, 30◦, and 45◦, respectively, while
the same at higher rotational speeds are obtained as 52.4%, 52.7%, 68.6%, and 73.9% corresponding
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Figure 5. Variation of relative frequencies (NDFF) of graphite-epoxy bending stiff com-
posite conical shells with delamination at rotation speeds � = 0.5 (left) and � = 1.0
(right) for different twist angles 9 and different numbers of delaminations. Other param-
eters are n = 8, h = 0.0004, a/L = 0.33, d/L = 0.5, s/h = 1000, L/s = 0.7, θ0 = 45◦,
and θv = 20◦.

to ψ = 0◦, 15◦, 30◦, and 45◦, respectively. Hence it could be inferred that the relative frequencies
corresponding to NDSF have a greater effect only for higher rotational speeds.

5. Mode shapes

The mode shapes corresponding to NDFF and NDSF are shown in Figures 6 and 7, respectively, for
various twist angles at the stationary condition (� = 0.0) and a number of delaminations, for eight-
layered graphite-epoxy symmetric bending-stiff composite shallow conical shells. The fundamental
mode corresponds to the first torsion. The symmetry modes are absent when the twist angle is nonzero
and the nodal lines indicate zero displacement amplitude. The first spanwise bending is observed for an
untwisted conical shell at the stationary condition corresponding to the second natural frequencies for
single, double, and triple delamination cases (nd = 1, 2, 3), but the dominance of the first torsional mode
is identified for the twisted cases corresponding to the second natural frequency.

6. Conclusions

The following conclusions are drawn from the present study:

(1) The finite element formulation presented in this paper can be successfully applied to analyze the
natural frequencies of multiple delaminated conical shells for any particular laminate configuration.

(2) In general, at a stationary condition, the nondimensional fundamental frequency parameter decreases
with increase in the twist angle. Under a rotating condition, nondimensional fundamental frequen-
cies of the delaminated composite laminates with bending-stiff configuration are found to decrease
with an increase of the twist angle.
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Figure 6. Effect of twist and number of delaminations on mode shapes for NDFF of
graphite-epoxy bending-stiff delaminated composite conical shells, considering n = 8,
h = 0.0004, s/h = 1000, a/L = 0.33, d/L = 0.5, L/s = 0.7, θ0 = 45◦, and θv = 20◦.

(3) An increase in the number of delaminations leads to a reduction in elastic stiffness irrespective of
the twist angles.

(4) The relative frequencies corresponding to the nondimensional second natural frequencies have a
pronounced effect for higher rotational speeds.

(5) The fundamental mode corresponds to the first torsion. The first spanwise bending is observed for
an untwisted conical shell at a stationary condition corresponding to the second natural frequencies
for single, double, and triple delamination cases.

(6) The nondimensional frequencies obtained are the first known results which can serve as reference
solutions for future investigations.
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Figure 7. Effect of twist and number of delaminations on mode shapes for NDSF of
graphite-epoxy bending-stiff delaminated composite conical shells, considering n = 8,
h = 0.0004, s/h = 1000, a/L = 0.33, d/L = 0.5, L/s = 0.7, θ0 = 45◦, and θv = 20◦.
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