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PREFACE

BOGDAN T. MARUSZEWSKI, WOLFGANG MUSCHIK,
JOSEPH N. GRIMA AND KRZYSZTOF W. WOJCIECHOWSKI

Guest Editors

The International Symposia on Trends in Continuum Physics have been held every three years since
1998. The first three events took place at the Poznan University of Technology in Poznan, Poland. The
fourth one took place in Lviv, Ukraine, for the first time outside the European Union. The fifth jubilee
Symposium was held July 16–20, 2010 in Msida, Malta.

The first four Symposia were jointly planned and organized by B. T. Maruszewski (Poznan University
of Technology), W. Muschik (Technische Universität Berlin) and A. Radowicz (Kielce University of
Technology). Organization of the fifth one was possible by courtesy of Joseph N. Grima (University of
Malta, Msida, Malta).

One of the main aims of those meetings has been to bring together scientists from Eastern Europe
working in different fields of continuum physics, broadly understood, as well as those from Western and
Central Europe, in order to extend their cooperation and to create new connections and acquaintances.

Special emphasis was placed on the representation of various concepts applied to different physical
fields interacting with each other. The scope of the Symposia includes fundamentals of continuum
physics, new trends in thermodynamics and in electrodynamics, physics of materials (encompassing
defective crystals, ferroic crystals, liquid crystals, molecular crystals, high-temperature superconductors,
semiconductors, plasma, polymers, amorphous media, smart materials, and anomalous phenomena such
as auxetics and negative thermal expansion), biophysics, multiphase systems, and multiscale problems.
These fields have been developing fast in recent years.

The chairs of the Fifth International Symposium on Trends in Continuum Physics (TRECOP’10),
where most of the articles in this issue were presented, would like to acknowledge support by the spon-
soring institutions who made the meeting possible. They are:

• Institute of Applied Mechanics, Poznan University of Technology
• Institute of Theoretical Physics, Technical University of Berlin, Berlin, Germany
• Kielce University of Technology, Kielce, Poland
• University of Malta, Msida, Malta
• Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland
• Foundation for Development of Poznan University of Technology, Poznan, Poland
• Poznan Division of the Polish Society of Theoretical and Applied Mechanics, Poznan, Poland
• Institute of Environmental Mechanics and Applied Computer Science, Kazimierz Wielki University,

Bydgoszcz, Poland,
• Department of Solid State Physics, Gdansk University of Technology, Gdansk, Poland
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THE INVERSE DETERMINATION OF THE VOLUME FRACTION
OF FIBERS IN A UNIDIRECTIONALLY REINFORCED COMPOSITE

FOR A GIVEN EFFECTIVE THERMAL CONDUCTIVITY

MAGDALENA MIERZWICZAK AND JAN ADAM KOŁODZIEJ

We consider the problem of determining the volume fraction of fibers in a unidirectionally reinforced
composite in order to provide the appropriate effective thermal conductivity. The problem is formulated
in such a way as to be treated as an inverse heat transfer problem. The thermal conductivities of the
constituents (fibers and matrix) and fiber arrangement are known. The calculations are carried out for a
perfect thermal contact between the fibers and matrix.

1. Introduction

In the literature the following problems are considered to be classical inverse heat conduction problems:

• determination of heat sources [Yan et al. 2008],

• determination of the heat transfer coefficient [Hon and Wei 2004],

• the Cauchy problem [Marin 2005], and

• determination of the temperature dependent thermal conductivity [Chantasiriwan 2002].

These problems usually apply to homogeneous media. In the case of composite materials (nonhomoge-
neous media) other practically important issues might have to be considered. One of them is the inverse
problem of determination of the volume fraction of constituents in order to obtain the appropriate effec-
tive thermal conductivity. Let’s consider a unidirectional fibrous composite with regular arrangement of
fibers (Figure 1, left). If the thermal conductivity coefficients of constituents and their volume fractions
are known then the composite can be treated as a homogeneous region for which effective thermal
conductivity can be determined as a function of known parameters. Currently there are many papers
in which the effective thermal conductivity coefficient is determined for a regular arrangement of fibers
for given thermal conductivity of constituents and volume fraction of fibers (the direct problem). The
method of determination is usually based on the solution of the heat transfer equation at a microstructure
level in repeated elements of an array [Han and Cosner 1981]. But to our knowledge no paper has
considered the inverse problem of determination of the volume fraction of fibers for a given effective
thermal conductivity. Here we propose an analytic-numerical algorithm for determination of the volume
fraction of fibers in order to obtain a given value of the transverse effective thermal conductivity λz (the
inverse problem).

Keywords: effective thermal conductivity, inverse heat transfer problem, boundary collocation method, Newton’s method.
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Figure 1. A unidirectional reinforced fibrous composite with fibers arranged in a square
array. Left: general view, with marked repeated element. Right: formulation of the
boundary value problem in the repeated element for nondimensional variables.

2. Direct problem: determination of the effective thermal conductivity coefficient of the
composite material

Consider a unidirectional composite with fibers arranged in a matrix in a regular, square array with
imperfect thermal contact between the fiber and matrix (Figure 1, left), where a is radius of the fibers,
2b is the distance between neighboring fibers, E = a/b, and ϕ = πE2/4 is the volume fraction of
the fibers. The ratio of the thermal conductivity of fibers λ f to matrix λm is denoted as F = λ f /λm ,
R = r/b is the dimensionless radius, X = x/b and Y = y/b are the dimensionless Cartesian coordinates,
T = (T̂ − T̂R)/(T̂R − T̂L) is the dimensionless temperature field, and T̂R and T̂L are the temperatures
on the left and right boundaries of the repeated element, respectively. In order to solve the boundary
value problem in the repeated element of the composite (Figure 1) the boundary collocation method is
used [Kołodziej and Zieliński 2009]. The general solution of the Laplace equation in a polar coordinate
system has the form

T = A0+ A1θ + A2θ ln R+ A3 ln R+
∞∑

k=1

(Bk Rk
+Ck R−k) cos(kθ)+ (Dk Rk

+ Ek R−k) sin(kθ), (2-1)

where A0, A1, . . . , Ek are integral constants.
Given the repetitive element of the square array �=�m +� f in the region of the fiber � f and the

matrix �m , a solution is predicted with the form of (2-1). Some of the constants must be determined
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strictly by the conditions at the bottom and on the left side of the repeated element:

∂T f

∂θ
=
∂Tm

∂θ
= 0 for θ = 0, T f = Tm = 1 for θ =

π

2
, (2-2)

and the contact conditions of the fiber-matrix:

F
∂T f

∂R
=
∂Tm

∂R
for R = E, T f = Tm for R = E . (2-3)

After determining the constants from the boundary conditions (2-2) and from the contact conditions
(2-3) of fiber-matrix, marking the remaining constants as wk , and cutting off an infinite number of test
functions to N expressions, we obtain a solution for the temperature field of the fiber and matrix:

T f = 1+
N∑

k=1

wk R(2k−1) cos
(
(2k− 1)θ

)
, (2-4)

Tm = 1+
N∑

k=1

wk

2

[
(1+ F)R(2k−1)

+ (1− F)
E2(2k−1)

R(2k−1)

]
cos
(
(2k− 1)θ

)
. (2-5)

The constants wk are determined by fulfillment of the condition on the collocation points on the upper
02 and on the right 01 edges of the concerned region (Figure 2):

Tm = 0 for X = 1, (2-6)

∂Tm

∂Y
= 0 for Y = 1. (2-7)

0=mT  

Y

X  
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jθ

mmT λ,
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∂

∂

Y

Tm  
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2Γ
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Figure 2. The collocation points at the upper and right boundaries of the matrix in a
repeated element in which the boundary conditions are collocated.
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The condition (2-7) can be written for polar coordinates:

∂Tm

∂Y
=
∂Tm

∂R
sin(θ)+ 1

R
∂Tm

∂θ
cos(θ). (2-8)

Choosing N1 points on the right boundary 01 and N2 points on the upper boundary 02 and collocating the
conditions (2-6) and (2-8) we obtain the system of N1+N2 linear equations with N unknown coefficients
wk , k = 1, . . . , N :

Aw = b, (2-9)

N∑
k=1

wk

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

]
cos
(
(2k− 1)θ j

)
=−2, (R j , θ j ) ∈ 01, j = 1, . . . , N1,

N∑
k=1

wk(2k− 1)
[
(1+ F)R(2k−1)

j sin
(
(2k− 1)θ j

)
+ (1− F)E2(2k−1)

R2k
j

cos(2kθ j )

]
= 0,

(R j , θ j ) ∈ 02, j = N1+ 1, . . . , N1+ N2.

The constants wk obtained by the Gaussian elimination method provide estimates of the value of the
global heat flux through the unit region of the considered element:

q = 1
b

[
−λ f

∫ a

0

∂ T̂ f

∂x

∣∣∣
x=0

dy+ λm

∫ b

a

∂ T̂m

∂x

∣∣∣
x=0

dy
]
. (2-10)

The transverse effective thermal conductivity is defined by the formula

λz =
qb

1T̂
, (2-11)

where b is the distance between the isothermal boundaries and 1T̂ = T̂L − T̂R is the difference of the
temperatures at the isothermal edges. After taking into consideration in formula (2-11) the definition
of the nondimensional temperature and coordinates, the value of the effective thermal conductivity in
relation to the thermal conductivity of the matrix can be calculated from the relationship:

λz

λm
=−F

∫ E

0

1
R
∂T f

∂θ

∣∣∣∣
θ=

π
2

d R+
∫ 1

E

1
R
∂Tm

∂θ

∣∣∣∣
θ=

π
2

d R, (2-12)

or
λz

λm
=

N∑
k=1

wk

2
(−1)k

[
(F + 1)+ (F − 1)E2(2k−1)]. (2-13)

3. The results of the numerical experiment

The results of the calculations of the effective thermal conductivity of the fibrous composite are shown
in Figure 3. The value of the effective thermal conductivity in relation to the thermal conductivity of
the matrix λz/λm = (λz/λm)(ϕ)

∣∣
F is presented as a function of the volume fraction of fibers ϕ for the

desired value of thermal conductivity ratio F of the fiber λ f to the matrix λm , with F ∈ {0.5, 2, 10, 20}.
In order to compare the results, for a flat layer composite consisting of two components with different
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( )
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=  

Figure 3. The effective thermal conductivity as a function of the volume fraction of the
fibers in the matrix for different values of the ratio of thermal conductivity of the fibers
to the matrix.

coefficients of thermal conductivity we calculate the effective thermal conductivity coefficient in relation
to the thermal conductivity of the matrix for an ideal contact of the components from the formula

λz

λm
=

(
(1−ϕ)+

ϕ

F

)−1
.

The comparative results for a flat layer of composite are shown in Figure 3 by the dotted line. The value
of the effective thermal conductivity λz depends not only on the constants characterizing the composite,
F and E , but also on the coefficients wk involved in fulfilling the boundary conditions at the N1+ N2

collocation points. Table 1 shows the influence of the number of collocation points on the maximum error
fulfilling the collocation boundary conditions calculated at the control points (between the collocation
points). The analysis of the results shows that increase in the number of collocation points doesn’t lead
to an increase in the accuracy of the calculations. Increasing the number of collocation points entails a
rise in the dimension of the matrix system of equations. In all four examples presented in Table 1, the
smallest maximum error satisfying the boundary conditions was obtained for 7 collocation points on the
right edge and for 6 points on the upper edge of the region considered.

4. Inverse problem: determination of the volume fraction of fibers in a composite for a given
effective thermal conductivity

At times, when designing composites with specific properties of the fibers and matrix we must estimate
the fraction of the volume of fibers to obtain effective thermal conductivity values. Assuming that E =
a/b is unknown, we use the known value of the effective thermal conductivity in relation to the thermal
conductivity of the matrix λz/λm . From the collocation of the boundary conditions in the N1+ N2 points
on the right and upper edges of the considered region and from condition (2-11) we obtain a system of
N1+ N2+ 1 nonlinear equations with the N + 1 unknowns wk and E :
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E = 0.5, F = 10 E = 0.9, F = 10
N1 N2 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 1.3829 1.13× 10−4 1.33× 10−3 3.3401 0.004232 0.004027
6 5 1.3829 2.42× 10−5 3.83× 10−4 3.3408 2.61× 10−3 1.12× 10−2

7 6 1.3829 6.20× 10−7 8.38× 10−5 3.3405 5.48× 10−4 1.63× 10−2

8 7 1.3829 9.35× 10−6 3.85× 10−4 3.3413 1.55× 10−3 8.48× 10−2

9 8 1.3829 1.97× 10−5 8.77× 10−4 3.3396 4.25× 10−3 2.02× 10−1

10 9 1.3829 4.96× 10−5 2.47× 10−3 3.3431 1.14× 10−2 0.578786
11 10 1.3829 7.29× 10−5 3.98× 10−3 3.3372 1.72× 10−2 0.943426
12 11 1.3829 2.26× 10−4 0.013628 3.3502 0.053729 3.235684
13 12 1.3829 1.87× 10−4 0.012135 3.3328 4.46× 10−2 2.895936
14 13 1.3831 1.98× 10−3 0.139725 3.4128 0.463741 32.72905
15 14 1.3829 4.42× 10−4 0.033299 3.3242 1.06× 10−1 7.967415

E = 0.5, F = 0.5 E = 0.9, F = 0.5
N1 N2 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.87713 3.73× 10−5 0.000484 0.64835 4.10× 10−4 0.010038
6 5 0.87714 8.21× 10−6 1.46× 10−4 0.64849 2.28× 10−4 6.92× 10−3

7 6 0.87714 1.14× 10−7 2.17× 10−5 0.64844 6.26× 10−5 2.18× 10−3

8 7 0.87714 2.96× 10−6 1.21× 10−4 0.64845 4.66× 10−6 2.22× 10−4

9 8 0.87714 6.31× 10−6 2.81× 10−4 0.64846 9.55× 10−5 4.29× 10−3

10 9 0.87713 1.59× 10−5 0.000792 0.64842 2.96× 10−4 0.014795
11 10 0.87714 2.34× 10−5 0.001275 0.64849 4.58× 10−4 0.025030
12 11 0.87713 7.26× 10−5 0.00437 0.64834 1.44× 10−3 0.086817
13 12 0.87714 6.00× 10−5 0.003891 0.64855 1.20× 10−3 0.077723
14 13 0.87708 6.35× 10−4 0.044798 0.64758 0.012614 0.890239
15 14 0.87715 1.42× 10−4 0.010678 0.64865 2.84× 10−3 0.213776

Table 1. The impact of the number of collocation points on the value of the effective
thermal conductivity of the composite and the maximum error of fulfilling the boundary
conditions at control points.

f j = 1+
N∑

k=1

wk

2

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

+

]
cos
(
(2k− 1)θ j

)
= 0,

(R j , θ j ) ∈ 01 j = 1, . . . , N1,

f j =

N∑
k=1

wk(2k− 1)
[
(1+ F)R(2k−1)

j sin
(
(2k− 1)θ j

)
+ (1− F)

E2(2k−1)

R(2k−1)
j

cos(2kθ j )

]
= 0,

(R j , θ j ) ∈ 02 j = N1+ 1, . . . , N1+ N2,

fN1+N2+1 =

N∑
k=1

wk

2
(−1)k

[
(1+ F)+ (F − 1)E2(2k−1)]

−
λz

λm
= 0. (4-1)
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The nonlinear system of N1+N2+1 equations f with N+1 unknowns W = [w1, . . . , wN , E]T is solved
by using Newton’s iterative method:


w1
...

wN

E


(i+1)

=


w1
...

wN

E


(i)

−


f (i)1
...

f (i)N1+N2

f (i)N1+N2+1




J (i)1,1 · · · J (i)1,N+1
...

. . .
...

J (i)N1+N2,1 · · ·
...

J (i)N1+N2+1,1 · · · J (i)N1+N2+1,N+1


−1

,

W (i+1)
=W (i)

− f
(
W (i))J

(
W (i))−1

→ W (i+1)
=W (i)

−Y
(
W (i)),

Y
(
W (i))

= f
(
W (i))J

(
W (i))−1

→ J
(
W (i))−1Y

(
W (i))

= f
(
W (i)).

(4-2)

The functions fi are described by (4-1), while the Jacobi elements have the following form:

J j,k =
∂ f j

∂wk
=

1
2

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

+

]
cos
(
(2k− 1)θ j

)
,

j = 1, . . . , N1, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)(1− F)
E (4k−3)

R(2k−1)
j

cos
(
(2k− 1)θ j

)
, j = 1, . . . , N1,

J j,k =
∂ f j

∂wk
=
(2k− 1)

2

[
(1+ F)R2(k−1)

j sin
(
2(k− 1)θ j

)
+ (1− F)

E2(2k−1)

R(2k)
j

sin(2kθ j )

]
,

j = N1+ 1, . . . , N1+ N2, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)2
[
(1− F)

E (4k−3)

R(2k)
j

sin(2kθ j )

]
, j = N1+ 1, . . . , N1+ N2,

J j,k =
∂ f j

∂wk
=
(−1)k

2

[
(1+ F)+ (F − 1)E2(2k−1)], j = N1+ N2+ 1, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)(−1)k(F − 1)E (4k−3), j = N1+ N2+ 1.

(4-3)

To start the Newton’s iteration we need to know W (0)
=
[
w(0)1 , . . . , w(0)N , E (0)

]T as an initial condition. As
an initial value of the constants w(0)k , k = 1, . . . , n, the solution of the linear problem for E = 0.1 has been
adopted. The condition for the end of the iteration was adopted at δNewton = ‖W (i+1)

−W (i)
‖max ≤ 10−7,

where ‖ ‖max means the maximum norm.

5. The results of the numerical experiment

The results of the iterative calculation of the volume fraction of fibers for a composite are shown in
Figure 4. The value of the volume fraction of fibers in a composite φ is presented as a function ϕ =
ϕ(λz/λm)

∣∣
F of the effective thermal conductivity in relation to the thermal conductivity of the matrix
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F
m

z









=

λ

λ
ϕϕ  

Figure 4. The volume fraction of fibers in the matrix as a function of the effective ther-
mal conductivity of the composite for different relative values of thermal conductivity
of the fiber and matrix.

λz/λm for the assumed value of the thermal conductivity ratio of the fiber to the matrix, F = λ f /λm ∈

{0.5, 2, 10, 20}. In order to compare the results for a flat composite layer consisting of two components
with different thermal conductivities, the volume fraction of the fibers for a known value of the effective
thermal conductivity for an ideal contact with the components can be calculated from

ϕ =

(( λz

λm

)−1
− 1

)
F

1− F
.

λz/λm = 1.4, F = 10 λz/λm = 3.35, F = 10
N1 N2 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.1904 0.4924 5.82·10−5 0.100879 0.5013 0.7989 1.74·10−3 2.688120
6 5 0.2036 0.5092 4.99·10−5 0.000256 0.6362 0.9 2.05·10−2 0.059686
7 6 0.2036 0.5092 6.72·10−7 8.91·10−5 0.6372 0.9007 5.68·10−4 0.016511
8 7 − − − − − − − −

λz/λm = 0.88, F = 0.5 λz/λm = 0, 65, F = 0.5
N1 N2 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.1790 0.4774 1.49·10−5 0.026341 0.7876 1.0014 0.00025 0.32083
6 5 0.1915 0.4937 1.18·10−5 7.26·10−5 0.6327 0.8976 0.00025 0.0005
7 6 0.1915 0.4938 1.13·10−7 2.13·10−5 0.6328 0.8976 5.84·10−5 0.00204
8 7 − − − − − − − −

Table 2. The impact of the number of collocation points on the value of the volumetric
fraction of the fibers in the composite and the maximal error fulfillment of the boundary
conditions at checkpoints.
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F = 10
λz/λm λz/λm = 1.4 λz/λm = 3.35
Iter. δNewton E δNewton E

1 0.456063 0.5439 0.265565 0.7344
2 0.032858 0.5111 0.179407 0.9138
3 1.89× 10−3 0.5092 0.013073 0.9008
4 3.41× 10−6 0.5092 4.17× 10−5 0.9007
5 1.13× 10−11 0.5092 2.71× 10−9 0.9007

F = 0.5
λz/λm λz/λm = 0.88 λz/λm = 0.65
Iter. δNewton E δNewton E

1 0.357932 0.6421 0.217974 0.9164
2 1.31× 10−1 0.5113 0.018393 0.8980
3 1.72× 10−2 0.4941 0.000336 0.8976
4 2.99× 10−4 0.4938 3.61× 10−8 0.8976
5 9.05× 10−8 0.4938 − −

Table 3. Convergence of Newton’s method for the test examples, with N1 = 7 and N2 = 8.

The results for a flat composite layer are presented by the dotted lines in Figure 4. As with the problem
of identification of λz/λm , so also for the iterative identification of the volume fraction of fibers ϕ in a
composite; the number of collocation points N1+ N2 where the boundary condition is approximately
fulfilled affects the accuracy of the calculations. Table 2 shows the impact of the number of collocation
points on the value of the volumetric fraction of fibers ϕ in the composite and the maximum error of
fulfillment of boundary conditions at the checkpoints (between collocation points). As in the case of
the direct problem, we obtain the best results for 7 collocation points at the right edge 01 of a large
finite element and 6 points at the upper edge 02. In the case of the inverse problem for a large number
of collocation points (greater than 7) the convergence of the algorithm is lost. Table 3 presents the
convergence of the used Newton’s iterative method for four test examples. The method proves to be
convergent very quickly, and just after five iterations we get the correct result of the iteration with an
error of less than 10−7.

6. Conclusions

The presented method of determining the volume fraction of fibers of a composite or the effective thermal
conductivity except in the cases of maximal fiber density is easy to implement and efficient. It can be
easily applied to other configurations of regular arrangement of fibers in the matrix, for example to a
triangular or hexagonal mesh. This study compared the influence of the ratio of the thermal conductivity
of fibers to the thermal conductivity of matrix F on the value of the volumetric fraction of the fibers and
the value of the effective thermal conductivity of the composite. It was also shown that increasing the
number of collocation points doesn’t reduce the error of the approximation of the boundary conditions;
it leads to the ill-conditioning of the system of equations.
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ANALYTICAL-NUMERICAL SOLUTION OF THE INVERSE PROBLEM FOR THE
HEAT CONDUCTION EQUATION

MICHAŁ CIAŁKOWSKI, ANDRZEJ MAĆKIEWICZ,
JAN ADAM KOŁODZIEJ, UWE GAMPE AND ANDRZEJ FRĄCKOWIAK

The solution of the inverse problem for the transient heat transfer equation is considered. The partial
differential equation was discretized with respect to the space variable, and a system of ordinary differ-
ential equations of first order was obtained. The solution of the system of equations has a wave form.
The numerical results obtained from the solution of the inverse problem confirm the effectiveness of the
proposed method.

1. Introduction

Numerical solutions to linear partial differential equations can be obtained by different methods depend-
ing on the number of variables and the shape of the domain. When the unknown variable is a function of
time, one can use the finite difference method, finite element method, boundary element method or other
methods in order to conduct discretization with respect to the space variables. Consider a differential
equation of heat transfer with initial and boundary conditions as follows:

ρc
∂T
∂t
= λ∇T x, y, z ∈�⊂ R3 t ∈ (0,∞), (1-1)

with an initial and boundary condition

T (x, y, z, 0)= g(x, y, z) T (x, y, z, t) |x,y,z∈0= T0(t), t > 0, (1-2)

The solution of the matrix equation using the initial condition has the form

{
dT (t)

dt
} = [A]{T (t)}+ [B]{T0(t)} (1-3)

(see [Athans and Falb 1969]), which integrates to

{T (t)} = e[A]t {g}+
∫ t

0
e[A](t−p)

[B]{T0(p)}dp, t ≥ 0. (1-4)

The purpose of this paper is to investigate solutions to the inverse problem in the form proposed above
by using the different approximation of space-dependent temperature.

The inverse problem considered in this paper is a boundary type problem, which means seeking an
unknown boundary condition based on temperature measured in some chosen points inside the domain.
In engineering practice, the number of measured points is limited, and in the case of turbines it is typically

The work was partially supported by Grant 3134/B/T02/2007/33 and 4917/B/T02/2010/39.
Keywords: inverse problems, stability, matrix exponential, sensitivity analysis, transient heat transfer equation.
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240 M. CIAŁKOWSKI, A. MAĆKIEWICZ, J. A. KOŁODZIEJ, U. GAMPE AND A. FRĄCKOWIAK

only one or two points, as a result of the occurrence of stress concentration surrounding the thermoele-
ment. That is why we decided to investigate the one-dimensional problem.

During the last decades, some numerical techniques have been proposed to solve a 1-D IHCP. In [Al-
Khalidy 1998] the control volume algorithm has been combined with a digital filter method to estimate
temperature and heat flux values on the surface of a body based on the temperature measurement inside
the body. The accuracy of the method was verified by comparison with a direct analytical solution of
the problem. Lesnic and Elliott [1999] have used the Adomian’s decomposition approach for solving the
inverse heat conduction problem in which temperature and heat flux histories on the left boundary were
estimated based on temperature and heat flux on the right boundary. The mollification method was applied
to deal with noisy input data and to obtain a stable approximate solution. In [Shen 1999] two kinds of
boundary element method were employed to solve IHCP, namely a collocation method and a weighted
method. The author has used the Tikhonov’s regularization method and the truncated singular value
decomposition method for stabilization results. The conjugate gradient method supported by Fourier
analysis has been applied in [Prud’homme and Hguyen 1999] to solve the IHCP among others for the
1-D case. It was found that an unknown time-dependent heat flux may be recovered satisfactorily using a
single sensor inside the region. A Kalman filter combined with a variable forgetting factor as a weighting
function in a recursive least-squares algorithm was applied in [Lee et al. 2000] to estimate impulsive heat
flux. In this method, a spatial derivative in the 1-D heat equation was approximated by finite differences.
In [Jonas and Louis 2000] some versions of mollification method have been used to solve the 1-D IHCP.
Usually the mollification is done in the data space, but in this paper the mollification is performed in
the solution space. In [Taler and Duba 2001] the 1-D non-linear IHCP was solved by means of the
method of lines. This method is based on replacing the partial differential equation of heat conduction
by the system of ordinary differential equations through discretization of the space derivative or the time
derivative. Instead of other optimization techniques, the maximum entropy method was used in [Kim and
Lee 2002] in the solution of the IHCP. The presented results showed considerable enhancement in the
resolution of the inverse problem and bias reduction in comparison with the conventional methods. One
of the most popular methods for solving IHCP is a sequential function specification method proposed at
first by Beck [1970]. In [Lin et al. 2004] a modification of Beck’s method was presented to estimate the
heat source in the 1-D case. One base of this proposition is an application of a finite difference method
for approximation the spatial and time derivatives. Almost all of the methods mentioned above are mesh
methods which need some kind of mesh. In [Hon and Wei 2004] the meshless method, namely the method
of fundamental solution, has been used for solution the 1-D IHCP. For regularization of the results, the
authors used Tikhonov’s regularization technique equipped with the L-curve method. The IHCP in which
surface heat flux is estimated based on moving measurements inside the body was presented in [Shidfar
and Karamali 2005]. The authors use an integral equation method and a linear least-squares method.
The sequential function specification method supported by singular value decomposition was discussed
in [Cabeza et al. 2005]. In [Shidfar and Pourgholi 2006; Pourgholi et al. 2009], the ill-posed IHCP
is transformed to Cauchy’s problem by means of a linear transformation. Next, Cauchy’s problem is
solved successfully by applying Legendre polynomials. The numerical approach combining the use of
the finite difference method with the solution of ordinary differential equations has been proposed in
[Ebrahimian et al. 2007] for solving the 1-D IHCP. The least-squares method has been used to determine
the unknown boundary condition [Cabeza et al. 2005]. Four different versions of the variable metric
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method for solving the 1-D IHCP [Luksan and Spedicato 2000] with a symmetric rank-one update are
compared in [Pourshaghaghy et al. 2007]. The results indicate that the accuracy of these versions do not
differ significantly from each other. In [Deng and Hwang 2007] the 1-D IHCP is solved by means of a
Kalman filter-enhanced Bayesian back propagation neutral network. The results show that the proposed
method can predict the unknown parameters in inverse problems with acceptable error.

In [Grysa 2010] an application of the Trefftz function for solving the inverse heat conduction problem
is considered for 1-D problems, among others.

The use of hyperbolic spline functions to approximate the solution with respect to the space variable
is novel in our paper. Thanks to it, the second derivative of the approximate solution is continuous.

2. Formulation of the problem

The linear equation of heat conduction has the form

ρc
λ

∂T
∂t
=
∂2T
∂r2 +

1− 2γ
r

∂T
∂r
, Ri < r < Ra, (2-1)

where

γ =


−

1
2 for a spherical layer,

0 for a cylindrical layer,
1
2 for a plane layer,

is a parameter describing the shape of the domain (see Figure 1). The following conditions are imposed:

– The initial condition,
T (r, 0)= T0(r), Ri ≤ r ≤ Ra. (2-2)

– The boundary condition at the surface r = Ra ,

−λ
∂T
∂r

∣∣∣∣
r=Ra

= α(T − Tfluid). (2-3)

h∗1
h∗20 1

Ri Ra r

h

r∗1

r∗2

Figure 1. Notation.
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– Additional conditions resulting from the measurement of temperature at the inner points of the
region r∗k , k = 1, 2, . . . ,M :

T (r∗k , t)= fk(t). (2-4)

We will apply the substitutions

r = Ri + η(Ra − Ri ), 0≤ η ≤ 1,

ϑ =
T
Tm
, Tm =max(T0(r), Tfluid), τ =

λ

ρc
t

(Ra − Ri )2
, a =

Ri

Ra − Ri

(2-5)

to obtain the nondimensional counterparts of (2-1)–(2-4):

– The equation of heat transfer,

∂ϑ

∂τ
=
∂2ϑ

∂η2 +
1− 2γ
η+ a

∂ϑ

∂η
, η ∈ (0, 1), τ > 0. (2-6)

– The initial condition,

ϑ(η, 0)=
T0(r, η)

Tm
= g(η), η ∈ [0, 1]. (2-7)

– The boundary condition at surface r = Ra ,

∂ϑ

∂η
|η=1=

α(Ra − Ri )

λ
(ϑ −ϑfluid)= Bia(ϑ −ϑfluid), τ > 0. (2-8)

– The additional conditions in inner points η∗k , k = 1, . . . ,M :

ϑ(η∗k , τ )= fk(τ ), τ > 0. (2-9)

The solution of (2-6) can be expressed as

ϑ(η, τ )=

N∑
i=0

ϑi (τ )ϕi (η) (2-10)

where the interpolation basis functions ϕi (η) are specified on a grid of points (see Figure 2).
Taking into consideration the character of the temperature function in r direction (the character of a

hyperbolic function), the spline hyperbolic function is chosen as a base function. The unknown functions
ϑi (τ ), i = 0, . . . , N are sought by solving (2-6) in the interior marked points of the segment [0, 1]; that

   

0 N=1 K 

0 1 

Figure 2. Grid of points for interpolation of spline function.
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is, we substitute (2-10) into (2-6) to obtain N − 1 equations:

N∑
i=0

ϑi (τ )

dτ
ϕi (ηk)=

N∑
i=0

ϑi (τ )

(
d2ϕi (η)

dη2 +
1− 2γ
ηk + a

dϕi (η)

dη

)
=

N∑
i=0

ϑi (τ )ψi (ηk), k=1, . . . , N−1. (2-11)

The successive equations result from the conditions (2-8) and (2-9); that is, by substituting the solution
(2-10) to the condition (2-8) we obtain

−

N∑
i=0
ϑi (τ )ϕ

′

i (1)= Bia

(
N∑

i=0
ϑi (τ )ϕi (1)−ϑfluid

)
= Bia(ϑN (τ )−ϑfluid),

which we rewrite in the form

−

N−1∑
i=0

ϑi (τ )ϕ
′

i (1)−ϑN (τ )(ϕ
′

N (1)+ Bia)=−Biaϑfluid(τ ). (2-12)

Introducing

bi = ϕ
′

i (1), i = 0, 1, . . . , N − 1,

and

bN = ϕ
′

N (N )+ Bia,

Equation (2-12) becomes
N∑

i=0

ϑi (τ )bi = Biaϑfluid(τ ). (2-13)

The additional conditions for the temperature function result from condition (2-9) and have the form

N∑
i=0

ϑi (τ )ϕi (η
∗

k )= fk(τ ), i = 1, 2, . . . ,M. (2-14)

3. The solution of the direct problem

The idea for solving the inverse problem is based on the ability to express the solution of the direct
problem in parametric form with the boundary conditions attached. Equation (2-11) leads to the following
system of equations:

ϕ0(η1) · · · ϕN (η1)
...

...

ϕ0(ηk) · · · ϕN (ηk)
...

...

ϕ0(ηN−1) · · · ϕN (ηN−1)





dϑ0
dτ
...

dϑN−1
dτ

dϑN
dτ


=


ψ0(η1) · · · ψN (η1)
...

...

ψ0(ηk) · · · ψN (ηk)
...

...

ψ0(ηN−1) · · · ψN (ηN−1)



ϑ0
...

ϑN−1

ϑN

 (3-1)
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The system (3-1) has dimension (N − 1) ∗ (N + 1). In the direct problem, a boundary condition in point
η = 1 is attached, which leads to an equation involving an (N − 1)× (N − 1) matrix:


ϕ1(η1) · · · ϕN−1(η1)
...

...

ϕ1(ηk) · · · ϕN−1(ηk)
...

...

ϕ1(ηN−1) · · · ϕN−1(ηN−1)




dϑ1

dτ
...

dϑN−1

dτ

=

ψ1(η1) · · · ψN−1(η1)
...

...

ψ1(ηk) · · · ψN−1(ηk)
...

...

ψ1(ηN−1) · · · ψN−1(ηN−1)


 ϑ0

...

ϑN−1



−

 ϕ0(η1)
...

ϕ(ηN−1)

 · dϑ (τ )0

dτ
+

 ψ0(η1)
...

ψ(ηN−1)

 ·ψ0(τ )−

 ϕN (η1)
...

ϕ(ηN−1)

 · dϑ (τ )N

dτ
+

 ψN (η1)
...

ψ(ηN−1)

 ·ψN (τ ). (3-2)

The base functions ϕi , i = 0, 1, . . . , N , are interpolation functions with the property

ϕi (ηk)=

{
0 if i 6= k,
1 if i = k,

so the vectors dϑ0/dτ and dϑN/dτ on the right-hand side of the (3-2) disappear, and the matrix of
coefficients matching vector {dϑ/dτ } is diagonal. Equation (3-2) can be then written as

{dϑ(τ)
dτ

}
= [ψ]{ϑ(τ)}+ {ψ0} ·ϑ0(τ )+{ψN } ·ϑN (τ ). (3-3)

The solution of (3-3) is equal to (see for example [Athans and Falb 1969])

{ϑ(τ)} = e[ψ]τ · {g}+
∫ τ

0
e[ψ](τ−p)[

{ψ0}ϑ0(p)+{ψN }ϑN (p)
]

dp. (3-4)

The diagonalizable matrix e[ψ] takes the form

e[ψ] = [Z ] · [diag(eλ)][Z ]−1 (3-5)

where [diag(eλ)] is the diagonal matrix with elements eλi , i = 1, . . . , N − 1 on the main diagonal and
the numbers λi are eigenvalues of the matrix [Shen 1999]. Determining the integral in expression (3-4)
for any moment of time τ requires each time the integration over the whole interval [0, τ ]. Determining
the temperature ϑ(τ) in subsequent moments of time τ and τ +1τ based on the dependence (3-4) we
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get

{ϑ(τ +1τ)}

= e[ψ](τ+1τ) · {g}+
∫ τ+1τ

0
e[ψ](τ+1τ−p)[

{ψ0}ϑ0(p)+{ψN }ϑN (p)
]

dp

= e[ψ](1τ) ·
(

e[ψ](τ+1τ) · {g}+
∫ τ

0
e[ψ](τ−p)[

{ψ0}ϑ0(p)+{ψN }ϑN (p)
]

dp
)

+

∫ τ+1τ

τ

e[ψ](τ+1τ−p)[
{ψ0}ϑ0(p)+{ψN }ϑN (p)

]
dp

= e[ψ](1τ) · {ϑ(τ)}+
∫ τ+1τ

τ

e[ψ](τ+1τ−p)
[{ψ0}ϑ0(p)+{ψN }ϑN (p)]dp

= e[ψ](1τ) · {ϑ(τ)}+1t
∫ 1

0
e[ψ]1(1−t)

{ψ0}ϑ0(τ+1τ t)dt ·
∫ 1

0
e[ψ]1(1−t)

{ψN }ϑN (τ+1τ t) dt. (3-6)

In engineering practice the measurement of temperature is usually done with constant time steps
1τ . Taking τ = τm = n ·1τ and τ +1τ = τn+1, then ϑ0 and ϑN are known at the measured points
ϑ0(τ +1τ)= ϑ0(τn+1)= ϑ

n+1
0 , ϑ0(τ )= ϑ

n
0 and similarly for ϑN (τ ). How to calculate the integral in

(3-6) is an important problem. We propose three ways to do this:

(a) Approximate the function ϑ by its average value (depending on the parameter ξ ):

1τ ·

∫ 1

0
e[ψ]1τ(1−t)

·w(τn +1τ · t)=1τ ·
∫ 1

0
e[ψ]1τ(1−t)

· dt[wnξ +wn+1(1− ξ)]

= wn
[S(2)] +wn+1

[T (2)]. (3-7)

(b) Use the mean value theorem for definite integrals:

1τ ·

∫ 1

0
e[ψ]1τ(1−t)

·w(τn +1τ · t)=1τ ·
∫ ξ

0
e[ψ]1τ(1−t)

· dt ·wn
+1τ ·

∫ 1

ξ

e[ψ]1τ(1−t)
· dt ·wn±1

= wn
[S(ξ)] +wn+1

[T (ξ)], 0< ξ < 1, (3-8)

(c) Approximate the function ϑ by its asymptotic expansion [Ciałkowski 2008]:

1τ ·

∫ 1

0
e[ψ]1τ(1−t)

·w(τn +1τ · t)=1τ ·
∫ 1

0
e[ψ]1τ(1−t)

· [wn(1− tξ )+wn+1tξ ]dt

= wn
[S] +wn+1

[T ], 0< ξ < 1. (3-9)

The function in these equations is replaced with ϑ0 or ϑN . In the integration process the matrix
exp([ψ] ·1τ) expressed in the form (3-5) is used. The choices (3-7) and (3-9) guarantee that the solution
of the inverse problem is stable. After this operation the expressions (3-7) and (3-9) take on the form

{ϑn+1
} = e[ψ]1τ · {ϑn

}+ (ϑn
0 [S] +ϑ

n+1
0 [T ]){ψ0}+ (ϑ

n
N [S] +ϑ

n+1
N [T ]){ψN }

= e[ψ]1τ · {ϑn
}+ {S0} ·ϑn

0 +{T 0} ·ϑn+1
0 +{SN } ·ϑn

N +{T N } ·ϑn+1
N . (3-10)
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The matrix exp([ψ] ·1τ) is a matrix of stability for the direct problem with a boundary condition of the
first type at the point η = 0 and η = 1. The dependence (3-10) can be written more compactly as

{ϑn+1
} = [{S}, e[ψ]1τ , {SN }]{ϑ̄n}+ {T 0}ϑn+1

0 +{T N }ϑn+1
N

= [Sψ]{ϑ̄n}+ {T 0}ϑn+1
0 +{T N }ϑn+1

N , {ϑ̄} = {ϑ0, ϑ1, . . . ϑN }, (3-11)

where dim[Sψ] = (N −1)∗ (N +1). Supplementing the vector (ϑn+1) with the elements ϑn+1
0 and ϑn+1

N
we obtain

{ϑ̄n+1
} =

 {0}T[Sψ]
{0}T

 {ϑ̄n
}+

 1
{T 0}

0

 {ϑn+1
0 }+

 0
{T N }

1

 {ϑn+1
N }

= [ ¯Sψ]{ϑ̄n
}+ + {P0}ϑn+1

0 +{P N }ϑn+1
N = [ ¯Sψ]{ϑ̄n

}+ [T T ] · {ϑn+1
0 , ϑn+1

N }
T , (3-12)

for n = 0, 1, . . . , or, in a form which takes into account the values of temperature ϑn+1
0 , ϑn+1

N at the
boundary in the subsequent moments of time:

{ϑ̄n+1
} = [ψ]n+1

·

n−1∑
k=0

[ψ]n−1+k
· {P0}ϑn+k

0 +

n−1∑
k=0

[ψ]n−1+k
· {P N }ϑk+1

N (3-13)

This gives the solution of the direct problem with a boundary condition of the first type. This series is
convergent, if the spectral radius of matrix ψ , fulfills condition ρs[ψ]< 1. The dependence (3-13) gives
a convenient method for solving the global inverse problem [Ciałkowski and Grysa 2010].

4. The solution of the inverse problem

In many practical situations it is impossible to determine temperature ϑ at the surface η = 0. However, it
is possible to measure the temperature ϑ(η, τ ) at points η = η∗k , 0< η∗k < 1, k = 1, . . . ,Mstern, τ = τn+1,
n = 0, 1, 2, . . . . The dependence (2-9) takes the form

ϑ(η∗k , τn+1)= ϑ
n+1(η∗k )=

N∑
i=0

ϕi (η
∗

k )ϑ
n+1
i = f n+1

k , k = 1, 2, . . . ,Mstern (4-1)

or separate in (4-1) temperatures ϑn+1
0 and ϑn+1

N at the ends of a segment [0, 1] we have

ϕ0(η
∗

k )ϑ
n+1
0 +

N−1∑
i=1

ϕi (η
∗

k )ϑ
n+1
i +ϕN (η

∗

k )ϑ
n+1
N = f n+1

k

or

ϕ0(η
∗

k )ϑ
n+1
0 +{ϕ(η∗k )}

T
{ϑn+1

}+ϕN (η
∗

k )ϑ
n+1
N = f n+1

k . (4-2)

Substituting relationship (3-11) into (4-2) we obtain

ϕ0(η
∗

k )ϑ
n+1
0 +{ϕ(η∗k )}

T
· ([Sψ]{ϑ̄n}+ {T 0}ϑn+1

0 +{T N }ϑn+1
N )+ϕN (η

∗

k ))ϑ
n+1
N = f n+1

k
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or

(ϕ0(η
∗

k )+{ϕ(η
∗

k )}
T
{T 0})·ϑn+1

0 +(ϕn(η
∗

k )+{ϕ(η
∗

k )}
T
{T N })·ϑn+1

N = f n+1
k −{ϕ(η∗k )}

T
[Sψ]·{ϑ̄n

}, (4-3)

for k = 1, 2, . . . ,Mstern. The boundary condition (2-13) is simplified to a similar form:

b0 ·ϑ
n+1
0 +{b}T {ϑn+1

}+ bN ·ϑ
n+1
N = Bia ·ϑ

n+1
fa

(4-4)

and after introducing the dependence (3-11) we have:

b0 ·ϑ
n+1
0 +{b}T ([Sψ]{ϑ̄n}+ {T 0}ϑn+1

0 +{T N }ϑn+1
N )+ bN ·ϑ

n+1
N = Bia ·ϑ

n+1
fa
,

or

(b0+{b}T {T 0}) ·ϑn+1
0 + (bN +{b}T {T N }) ·ϑn+1

N = Bia ·ϑ
n+1
fa
−{b}T [Sψ] · {ϑ̄n

}. (4-5)

Equations (4-3) and (4-4) create a system of equations with the unknowns ϑn+1
0 and ϑn+1

N which can be
written as follows:
ϕ0(η

∗

1)+{ϕ(η
∗

1)}
T
{T 0} · · · ϕN (η

∗

1)+{ϕ(η
∗

1)}
T
{T N }

...
...

ϕ0(η
∗

M)+{ϕ(η
∗

M)}
T
{T 0} · · · ϕN (η

∗

M)+{ϕ(η
∗

M)}
T
{T N }

b0+{b}T {T 0} · · · bN +{b}T {T N }

 ·
ϑ

n+1
0
...

ϑn+1
N



=


f n+1
1
...

f n+1
M

Bia ·ϑ
n+1
fn

−

{ϕ(η∗1)}

T
[Sψ]

...

{ϕ(η∗M)}
T
[Sψ]

{b}T [Sψ]

 · {ϑ̄n}, M = Mstern,

or

[FIB]
[
ϑn+1

0
ϑn+1

N

]
= {FBiotn+1

}− [SB]{ϑ̄n
}, dim[FIB] = dim[SB] = 2(Mstern+ 1), (4-6)

and finally [
ϑn+1

0
ϑn+1

N

]
= [FIB]+{FBiotn+1

}− [FIB]+[SB]{ϑ̄n
}. (4-7)

The solution (3-13) takes the form:

{ϑ̄n+1
} = [ ¯Sψ]{ϑ̄n

}+ [T T ]([FIB]+{FBiotn+1
}− [FIB]+[SB]{ϑ̄n

})

= ([ ¯Sψ] − [T T ][FIB]+[SB]){ϑ̄n
}+ [T T ][FIB]+{FBiotn+1

}

= [ψint ]{ϑ̄
n
}+ [T F]{FBiotn+1

}, n = 1, 2, . . . , (4-8)

where

{FBiotn+1
} = { f n+1(η∗1), . . . , f n+1(η∗M), Bia ·ϑ

n+1
fn
}

T , f n+1
= f (τn+1).
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5. The stability of the inverse problem

For the subsequent time steps τ = τn , n = 0, 1, 2, . . . we write (4-8) as

{ϑ̄1
} = [ψinv]{ϑ̄

0
}+ [FIB]+{FBiot1

},

{ϑ̄2
} = [ψinv]{ϑ̄

1
}+ [FIB]+{FBiot2

},

{ϑ̄3
} = [ψinv]{ϑ̄

2
}+ [FIB]+{FBiot3

},

{ϑ̄n
} = [ψinv]

n
{ϑ̄0
}+

n−1∑
k=0

[ψinv]
k
· [FIB]+{FBiotn−k

}.

(5-1)

If the spectral radius ρs of the matrix [ψinv] satisfies ρs([ψinv]) < 1, the Neumann series is convergent
and the solution of the inverse Equation (4-8) is stable. For the initial temperature vector {ϑ̄0} disturbed
by {δϑ̄0} and the data vector {FBiotn

} disturbed by value {δFBiotn
}, the value of disturbance {δϑ̄ } of

temperature by {ϑ̄n
} is determined from the dependence (5-1), namely

{ϑ̄n
+ δϑ̄n

} = [ψinv]
n
{ϑ̄0
+ δϑ̄0

}+

n−1∑
k=0

[ψinv]
k
· [T F]{FBiotn−k

+ δFBiotn−k
}. (5-2)

Subtracting (5-2) from the dependence (5-1), we have:

{δϑ̄n
} = [ψinv]{δϑ̄

0
}+

n−1∑
k=0

[ψinv]
k
· [T F]{δFBiotn−k

}, n = 1, 2, . . . (5-3)

The dependence (5-3) determines the propagation of the measurement errors of the initial temperature
and of the vector of measured temperatures in points η∗1, . . . , η

∗

M , M = Mstern. The distance between the
first thermoelement and the boundary η = 0 has an essential influence on the value of the spectral radius
ρs , and so does the method of determining the integral — (3-7), (3-8), or (3-9).

6. Numerical calculation

To investigate the numerical properties of the proposed method, the calculation was carried out for a
circular ring with inner radius Ri = 0.1 m and outer radius Ra = 0.209 m. We further took r∗1 = 0.108 m
and r∗2 = 0.157 m. The thermophysical properties were chosen as c = 500 J/(kg K), ρ = 7800 kg/m3, and
λ= 47.76 W/mK. For test values, we took temperatures in cylindrical ring with different heat transfer
coefficient at inner surface of ring αi = {5000, 2500, 1000, 500, 100}W/m2K, outer surface isolation
q = 0 and the temperature T fi = 535◦C, initial temperature T0 = 0◦C. Figure 3 presents the distribution
of heat transfer coefficient αI obtained from the solution of the inverse problem for the data mentioned
above.

The distribution of heat transfer coefficient is obtained from the solution of the inverse problem by
means of a different way of calculating the integral in (3-6). Integration according to the method ex-
pressed by the formula (3-8) or (3-9) leads to a nonoscillating solution of the inverse problem.

For ζ = 0.75 and method of integration (3-7), the spectral radius of the matrix is given in Figure 4
for positions of thermoelements at s1 = 8 mm and s2 = 57 mm from the inner surface. The influence the
number of spline functions on the heat transfer coefficient is given in Figure 5. Figure 6 presents inverse
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problem solution for the data taken from the exact solution. Stability of the inverse problem depends on a
length of time interval, a way of integration and the value of heat transfer coefficient on the outer side of
cylinder. The time step was equal to 0.5 s. The use of (3-7) with parameter ζ = 0.75 in our calculations
guarantees the stability of the inverse problem while at the same time identifying the value of the heat
transfer coefficient with high precision in a large time interval. Decreasing the value of parameter ζ leads
to oscillation of the heat transfer coefficient obtained from the solution of the inverse problem, Figure 7.
The arithmetic average of the subsequent values for ζ = 0.55 brings the results very near to the values
for parameter ζ = 0.75. It can then be concluded that the interval of appropriate values for the parameter
ζ is relatively broad and allows one to obtain stable results for the solution of the inverse problem using
the arithmetic average. Figure 8 demonstrates the distribution of the measured temperature in a fluid
at two inner points of a ring with radius Ri = 0.1m placed s1 = 8 mm and s2 = 57 mm from the inner
surface.
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These distributions are used to solve the inverse problem and to determine the heat transfer coefficient
at the surface r = Ri . The values of the heat transfer coefficient are shown on Figure 9, where the time
step is equal to 1t = 4 s.

7. Conclusions

We have presented a method for solving the inverse problem for the transient linear heat transfer equation
by approximating the solution with respect to the space variable with hyperbolic spline functions. The
unknown coefficients of the linear combination of spline functions were determined by fulfilling the
differential equation in the points of the net (Figure 2).

The essence of the proposed method is based on the approximation of the solution of differential equa-
tions with respect to the space variable by a twice-differentiable function. Hyperbolic spline functions



252 M. CIAŁKOWSKI, A. MAĆKIEWICZ, J. A. KOŁODZIEJ, U. GAMPE AND A. FRĄCKOWIAK

were chosen because using a backward quotient difference for the time variable transforms the heat trans-
fer to Helmholtz’s equation with source function, the solution of which contains a hyperbolic function.
The smoothness of spline functions guarantees continuity of heat flux in each point of region which do
not have place in the finite element method (there are jumps of flux between elements). The proposed
method is appropriate for continuous temperature monitoring of casings with cylindrical or spherical
geometries. This assumption usually follows from the lack of possibility of placing a large number of
thermoelements because each hole leads to greater thermal stress.
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ANALYSIS OF STRESS-STRAIN DISTRIBUTION
WITHIN A SPINAL SEGMENT

ZDENKA SANT, MARIJA CAUCHI AND MICHELLE SPITERI

The biomechanical feedback of biological tissue is difficult to measure. A spinal segment model can be
used to obtain fundamental information by means of a computer simulation using finite element analysis.

1. Introduction

Interest in spine research has changed its focus from military-based tasks to problems related to the
treatment of various spinal disorders, degenerative diseases, or traumas. Various studies have listed pain
related to spinal structures as constituting the majority of health problems. A recent EU Commission
study [EC 2007] also suggests that 67 million people suffered pain in their lower or upper back in the
week previous to the survey.

The degenerative process accompanying aging causes changes in the form and composition of spinal
tissues. This results in back pain particularly in cases such as internal disruption of the intervertebral
disc (IVD) or stress shielding. In the case of stress shielding the damaged tissue has decreased ability to
resist loading, and tends to be protected by adjacent healthy tissue, as occurs in the lumbar spine [Adams
and Dolan 2005; Benzel 2005]. A healthy spine has nonlinear, elastic behavior and thus under lower
loads provides little resistance while under increased loads it responds with augmented resistance. The
stability of the spine provided by the IVD, the surrounding ligaments, and the muscles together with the
geometry of the vertebral body must be preserved in any situation; thus in some cases a degenerated disc
has to be replaced by an implant. Implant selection is usually based on the surgeon’s own experience with
particular implants and the results of tests carried out by the manufacturer in compliance with available
standards. Unfortunately these results do not provide information about the biomechanical feedback
which gives valuable insight for the surgeon. At the same time there is also a lack of information about the
effect of degenerated components on the mechanical behavior of the entire IVD. Once the degenerative
process alters the mechanical response, the whole complex structure of the segment is affected due to an
adjustment of the load transfer trajectory that might affect as well the process of bone remodeling. All
this might ultimately lead to undesirable performance of the IVD implant.

The goal of this work is to study the biomechanical behavior of a spinal segment under varying condi-
tions related to the deterioration of the material properties of the IVD. Decisions about the methodology
of this research and get satisfactory answers had to be made in the very early stages of the project. Since
it is very difficult, if not impossible, to obtain the complete complex data about the response of different
components of the system by means of measurements in vivo, and in the view that measurements in vitro

This research project was supported by grant ‘R29’ No. 31-329 obtained from the Research Fund Committee, University of
Malta.
Keywords: spinal segment, finite element analysis, intervertebral disc.
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are not feasible due to the lack of available spinal segments as well as economic and time constraints, the
situation called for the development of a reliable computational model. Such a model would allow the
investigation of biomechanical deficiencies within a geometrically identical pathological spinal segment
and assist the proper understanding of the role played by each anatomical structure of the system.

2. Modeling

The pathophysiology of intervertebral disc degeneration is multifactorial [Hadjipavlou et al. 2008]. Me-
chanical factors have a significant effect, as excessive mechanical loading can cause disc structural
disruption [Adams and Roughley 2006]. Disc degeneration impairs the shock-dissipating capacity of
the vertebral column, thus a greater portion of the axial load is transmitted directly to the endplates of
the lower adjacent vertebra [Norkin and Levangie 1992]. To provide a computational simulation of the
desired situation, the creation of a computational model suitable for finite element analysis (FEA) was
required.

The motion segment generated in this work consists of two adjacent vertebrae, L3 and L4, and an
IVD modeled as a two-phase structure while the cartilages at the contact regions of the facet joints
were simplified to a single-phase connective tissue. The material properties of the IVD, consisting of
the annulus fibrosus (AF) and the nucleus pulposus (NP), distinguish the three different scenarios that
simulate the physiological, the mildly degenerated IVD, and the fully degenerated IVD. Thus three spinal
segments with different material properties simulated load transfer through a healthy IVD, a mildly
degenerated IVD, and a severely degenerated IVD.

The two vertebrae were digitized using a reverse engineering approach applied to images in DICOM
format, obtained from a computer tomography (CT) helical scan at Mater Dei Hospital. Each CT scan
slide was processed by means of drawing software, capturing the real surface of the vertebrae with
all anomalies, and the recreated vertebrae were then transported into the FEA package. To create the
intervertebral disc we had to take into consideration the complexity of the real disc, the computational
power required to sustain the simulation for such a complex structure, and the material data of [Acaroglu
et al. 1995] based on an experimental investigation of the mechanical properties of anterior and posterior
segments cut from the inner and outer layers of an AF. In the median plane, the lamellae reveal the major
difference in their properties related to the posterior-anterior direction of their position. The collagenous
fibers at the anterior median location are much stiffer than the lamellae found at the posterior side of
the annulus, and both cases exhibit a nonlinear, axial stress-strain relation at low strains in “toe” region

Young’s modulus E (MPa)
Anterior Posterior

Outer Inner Outer Inner
Healthy annulus 27.2±14.6 7.6±6.6 13.6±9.4 2.4±2.5
Mild degeneration 23.3±16.6 6.1±5.2 6.6±4.0 4.3±4.9
Severe degeneration 21.2±12.2 4.8±4.5 8.2±5.5 3.4±3.9

Table 1. Young’s modulus (mean± standard deviation) in MPa for fibers at different
locations of the annulus [Acaroglu et al. 1995].
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Figure 1. Spinal segment L3-L4 with detail of IVD model.

while at the region of high strains the behavior is nearly linear. The Young’s modulus, as a result of a
cubic function fitted to the experimental data, is presented in Table 1 as continuously varying from the
posterior to the anterior side of the annulus [Acaroglu et al. 1995].

Our model of the IVD in Figure 1 represents a simplification of an IVD that in reality has 10–20
layers of collagen fibers encapsulating the nucleus. The NP was modeled as a single volume surrounded
by three lamellae divided into six segments. Further connective tissue was created at the region of the
facet joints. Considering that the loads applied to the bone would result in bone response, which can be
approximated by a linear function, the two types of bone tissue, cortical and cancellous, were modeled as
linear isotropic material even though in reality the bone is anisotropic heterogeneous viscoelastic material.
The necessity for simplification is related to the computational power and CPU time required for the
simulation, together with the available geometry/material data and modeling facility. The continuously
changing directions of trabeculae orientation within both types of bone tissue are compensated for by the
corresponding orientation of the elements within each structure. Thus, accepting these simplifications,
the verified data of the Young’s modulus for the cortical bone, the cancellous bone, and the endplates
was used as listed in Table 2. The material properties of the IVD were extrapolated from available data
[Acaroglu et al. 1995] and processed using (2-1) to evaluate the Young’s modulus/Poisson’s ratio at the
geometrical positions of the outer and inner locations of the segment. The average value of the Young’s
modulus/Poisson’s ratio was then computed using (2-2). The computation was based on the assumption
of linear variation of both quantities in the sagittal and transverse directions:

Esl =
E jo− E j i

d jl
∗ dsl, (2-1)

Material properties of vertebrae
Component Young’s modulus (MPa) Poisson’s ratio Reference
Cortical bone 16000 0.25 [Sant 2007]
Cancellous bone 120 0.25 [Sant 2007]
Endplate 500 0.25 [Teo et al. 2003]

Table 2. Material properties of vertebrae.



258 ZDENKA SANT, MARIJA CAUCHI AND MICHELLE SPITERI

Material properties of IVD
Healthy IVD Severely degenerated IVD

E (MPa) ν E (MPa) ν

NP 100 0.499 1 0.499
AF 5 6.75 0.445 2.25 0.345
AF 6 9.75 0.425 3.25 0.325
AF 7 13.5 0.4 4.5 0.3
AF 8 9.5 0.415 5 0.315
AF 9 15.5 0.395 9 0.295
AF 10 23 0.37 14 0.27
AF 11 7.575 0.436 3.075 0.336
AF 12 11.475 0.416 4.975 0.316
AF 13 16.35 0.391 7.35 0.291
AF 14 8.675 0.424 4.175 0.324
AF 15 13.775 0.404 7.275 0.304
AF 16 20.15 0.379 11.15 0.279

Table 3. Computed material properties of IVD based on data from [Acaroglu et al. 1995].

where E jo, E j i , and Esl represent the Young’s moduli at the outer j position, the inner j position, and
the position defined by dsl , respectively, and d jl and dsl represent the distances l between the outer and
inner j position and between the segment’s position and the outer j reference position, respectively. The
average value used in our simulation for segment s is computed from

Eavs =
E jo+ Esl

2
. (2-2)

The material properties characterizing the healthy and degenerated states of the IVD material are listed
in Table 3 according to the position of each AF segment.

Finally, the discretization of the virtual solid model was created by means of combination of free and
mapped meshing using an esize of two elements. The cortical bone and endplates were meshed with
shell elements having bending and membrane capabilities while the cancellous bone was meshed with
a solid element type with midside nodes. The connectivity between various meshes at the contacting
surfaces between the vertebrae and the IVD was secured through the use of contact elements, which
were set to “always bonded contact”. Another pair of contact surfaces set to “standard contact condition”
were created at the facet joints to allow for flexion/extension movement and limited torsion, as well as
to provide resistance to the sliding of the vertebrae against each other.

3. Simulation

In addition to the geometrical and material model, the FE model in Figure 2 also requires the load model.
The latter depends on the particular activity associated with the certain position on the spine, which is
in turn associated with a particular load transfer through the spinal structure. The spine undergoes a
combined motion due to the fact that simple flexion is always accompanied by coupled motions, which
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Figure 2. Finite element model of the spinal segment L3-L4.

vary in nature and magnitude according to the level of the segment within the whole spine. Thus the
applied load simulating physiological activity can be either in the form of displacement and rotation
or forces and moments. Due to the fact that the model in this study was simplified and therefore did
not include any ligamentous structures, the exact neutral range of motion for the L3-L4 segment must
be applied to simulate a real life situation without the contribution of the ligamentous structures to the
load transfer. Since this data was not available, it was decided to run the simulation based on [Arjmand
and Shirazi-Adl 2006], in which the authors measured and verified data for the lumbar spine at various
positions without contribution from ligamentous structures. Such data was deemed suitable for the sim-
ulation in the present study. The simulated load for various positions of the patient was comprised of
the compressive force, shear force, and bending moment. It was decided to simulate an upright standing
position without additional external carrying load from the hands. In this situation, the sagittal moment
M = 3.9 Nm is positive while the segment is in flexion, the axial compression N = 447 N, and the shear
force S = −63 N is positive in the anterior direction. These loads were applied by means of a pilot
node positioned at the fictitious midplane in the center of the NP of the intervertebral disc L2-L3. This
corresponds to the position where the data was measured and computed by Arjmand and Shirazi-Adl.
By having identical geometry and loading conditions, it was possible to run a comparative analysis in
order to investigate the effect of IVD degeneration on the mechanical behavior of the segment. Thus
the simulation was performed for three different conditions: physiological, mildly degenerated IVD, and
severely degenerated IVD.

4. Results

The comparative study presented here aims to investigate the effect of pathological deterioration of the
material properties on the load transfer through the IVD and the biomechanical feedback of the adjacent
structures. To be able to correctly analyze and compare the results, the necessary path passing throughout
the median plane of the segment at the center of the nucleus had to be created. The results in the
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Figure 3. Variation of displacement along the craniocaudal direction for L3-L4 segment.

craniocaudal direction for both the vertebrae and the IVD were mapped onto this path. These results
are visualized in Figure 3, from which the effect of degeneration on the mechanical behavior was then
analyzed. The gradients in Figure 3 correspond to the relative stiffness/Young’s modulus of the entity,
thus the greater gradient implies a lower Young’s modulus and therefore a higher deformation ability. It
is the IVD that always deforms the most irrespective of the state of degeneration, as confirmed by the
steeper gradients within the IVD region (region D) when compared to the gradients through the L3 and L4
vertebrae represented by regions B and F, respectively. The larger displacement of the fully degenerated
IVD consequently causes the segment to undergo larger displacement. In regions C and E the gradient
is shallower due to the stiffening effect of the vertebral endplates. The main biomechanical deficiency
of the partly and fully degenerated IVD is the inability to properly transfer the load between adjacent
vertebrae as a direct consequence of the reduced stiffness and lax behavior. Thus in the cases of the partly
and fully degenerated IVD, the inferior vertebra undergoes a smaller axial displacement than in the case
of the healthy disc since the degenerated NP within the degenerated IVD lacks the necessary mechanical
properties to bulge into the endplate of the inferior vertebra while the spinal segment is loaded, and thus
it does not transmit the load properly through the segment. The axial displacement approaches zero on
proceeding along the craniocaudal direction since the bottom surface of the inferior vertebra was fully
constrained to be able to run the computational task.

The cortical bone is the main bearer of the load, from where the load is subsequently redistributed to
the cancellous bone which fulfils the role of a shock absorber. Thus the highest compressive stresses,
represented by the third principal stress, were developed at the level of the cortical bone in the posterior
region of the vertebrae mainly around the pedicles in the case of the healthy IVD, as shown in Figure 4a,
while in the case of the severely degenerated IVD, shown in Figure 4b, the maximum compressive stress
developed at the anterior region of the epiphyseal ring. It can be noticed that the overall compressive
stresses increased from 12 MPa in the case of the healthy IVD to 22.5 MPa in the case of the degenerated
IVD. The cancellous bone functioning as a shock absorber develops the highest compressive stress just
beneath the vertebral endplates. It is clinically confirmed that the site of the most frequent failures due
to compressive loading is the region of the endplates. The cancellous bone beneath the healthy disc in
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(a) (b)

Figure 4. Variation of third principal compressive stress within the cortical bone for
L3-L4 segment.

Figure 5a is subjected to larger compressive stresses than the cancellous bone beneath the severely degen-
erated IVD in Figure 5b, which indicates that, due to reduced stiffness, the degenerated IVD undergoes
larger deformation radially, and thus reduces the load transferred through the superior endplate of the
inferior vertebra. Thus the cancellous bone is characterized by lower compressive stresses, indicating
a reduced magnitude of disc bulging into the endplate in the case of the severely degenerated disc,
which increases the compressive stress within the cancellous bone from 1.034 MPa to 1.328 MPa for
the healthy and severely degenerate IVD, respectively. The maximum tensile stress increased as well,
from 0.039 MPa for the healthy IVD to 0.117 MPa for the severely degenerated IVD. The full analysis

(a) (b)

Figure 5. Variation of third principal compressive stress within the cancellous bone for
L3-L4 segment.
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Figure 6. Variation of stress-strain along the central path in the craniocaudal direction
for L3-L4 segment. The horizontal axis represents distance in mm.

of the biomechanical feedback due to the degenerative process is summarized by the graphs in Figure 6
representing the stress and strain variation along the axial craniocaudal direction through the center of
the spinal segment.

5. Conclusion

These results, together with others in the posterior-anterior and lateral directions, were verified by the
clinician and carefully analyzed. In all cases, the importance of the endplates and the effect of the
degeneration of the nucleus were confirmed. The virtual FE model can be used for other simulations
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such as the effect of loading on the biomechanical feedback of the spinal segment, in particular the
structures forming the intervertebral disc, and the effect of different physical activities on load transfer
through the segment.
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A MESH-FREE NUMERICAL METHOD
FOR THE ESTIMATION OF THE TORSIONAL STIFFNESS OF LONG BONES

ANITA USCILOWSKA AND AGNIESZKA FRASKA

This paper considers the torsional stiffness of long bones. The phenomenon of long-bone twisting is a
boundary value problem. We propose to solve the problem by a numerical procedure based on a mesh-
free method, the method of fundamental solutions.

1. Introduction

External loads acting on long bones can cause fractures. A fracture is any break in a bone or cartilage.
It usually is a result of trauma but can be due to an acquired disease of the bone such as osteoporosis
or abnormal formation of the bone due to a congenital disease of the bone such as osteogenesis imper-
fecta. Fractures are classified by their character and location. Examples of classifications include “spiral
fracture of the femur,” “greenstick fracture of the radius,” “impacted fracture of the humerus,” “linear
fracture of the ulna,” ”oblique fracture of the metatarsal,” “compression fracture of the vertebrae,” and
“depressed fracture of the skull.” A “comminuted fracture” is a fracture in which the bone is broken into
a number of pieces, as distinguished from a “compound fracture” in which the bone sticks through the
skin. The problem addressed in this paper is the twisting of a lone bone, which can cause spiral fracture
of a long bone (Figure 1).

Figure 1. Spiral fracture [Pierce et al. 2004].
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Keywords: method of fundamental solutions, mesh-free method, torsional stiffness, long bone.
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There are some papers in the literature treating problem of the torsional stiffness of a long bone.
Comparative studies of long-bone biomechanics in primates frequently use the polar moment of inertia
as a variable reflecting overall mechanical rigidity, average bending rigidity, or resistance to torsional
shear stresses. Daegling [2002] showed that while the use of this variable for characterizing the first two
properties is appropriate, it is potentially a highly misleading measure of torsional resistance. Indeed,
theoretical and experimental research has shown that the use of the polar moment of inertia for estimating
long-bone torsional rigidity should be restricted to samples of relatively invariant or cylindrical geometry.

The open section effect in a long bone with a longitudinal defect is the subject of [Elias et al. 2000],
where it was found that a longitudinal defect dramatically alters the stress distribution within a long bone.
For applied torsion, the defect interrupts the normal shear flow around the bone. The problem is solved
by the finite element method (FEM).

Bone material properties. Bone in a living animal consists of both living tissue and nonliving substances.
Within live bone are blood vessels, nerves, collagen, and living cells, including osteoblasts (cells that help
form bone), and osteoclasts (cells that help eat away old bone). In addition, bone contains cells called
osteocytes, which are mature osteoblasts that have ended their bone-forming careers. The nonliving,
but very important, substances in bone are minerals and salts. Besides the metabolically active cellular
portion of bone tissue, bone is also made up of a matrix (a bonding of multiple fibers and chemicals)
of different materials, including primarily collagen fibers and crystalline salts. The crystalline salts
deposited in the matrix of bone are composed principally of calcium and phosphate, which are combined
to form hydroxyapatite crystals. In particular, it is the collagen fibers and calcium salts that help to
strengthen bone. In fact, the collagen fibers of bone have great tensile strength (the strength to endure
stretching forces), while the calcium salts, which are similar in physical properties to marble, have great
compressional strength (the strength to endure squeezing forces). These combined properties, plus the
degree of bondage between the collagen fibers and the crystals, provide a bony structure that has both
extreme tensile and compressional strengths. Due to such a complicated structure the bone is treated as
a object made with functionally graded material (FGM) [Pompe et al. 2003]. FGMs are materials with
continuously varying material properties designed for specific engineering and bioengineering applica-
tions. Although the torsion problem for homogeneous linearly elastic bars is a classical one in elasticity,
there has been relatively little attention paid to the case when material is inhomogeneous.

Recently, research activity on functionally graded materials has also stimulated investigation on the
torsion problem for inhomogeneous material. Chen [1964] studied the torsion of inhomogeneous bars.
He presented governing equations and boundary conditions for the torsion problem of inhomogeneous
bars in terms of a stress function. Then, he applied a semiinverse method and found a specific distribution
for the shear modulus of rigidity in a specific geometry of cross-section. By this method, he could find
simple solutions for the stress function and torsional stiffness of circular and elliptical shafts. An ana-
lytical formulation for torsional analysis of functionally graded elastic bars with circular cross-sections
was presented by Horgan and Chan [1999]. They supposed the shear modulus of rigidity to be a function
of radius. Using the axisymmetric geometry of the cross-section of the circular bar, they found an exact
analytical solution. They used governing equations and boundary conditions in terms of Prandtl’s stress
function. Saint-Venant’s torsion problem for linearly elastic, isotropic, nonhomogeneous cylindrical bars
was considered in [Ecsedi 2009].
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The novelty of this paper is that the shear modulus of the investigated nonhomogeneous bar is a given
function of the Prandtl stress function of a homogeneous bar, which has the same cross-sections as the
nonhomogeneous bar considered. The main result of the present paper is a contribution to the existing
exact benchmark solutions for functionally graded twisted elastic cylinders. Five examples (a hollow
elliptical cylinder, a solid equilateral triangle cross-section, an approximate solution for a thin-walled
tube, a rectangular cross-section, and a narrow rectangular cross-section) illustrate the application of the
proposed method. In [Arghavan and Hematiyan 2009] an analytical formulation was presented for the
torsion of functionally graded hollow tubes of arbitrary shape. The authors assumed that the thicknesses
of all segments of the cross-section were the same and the shear modulus of rigidity changed continuously
across the thickness. In this way the simple but relatively accurate formulas for the stresses and torsional
stiffness were obtained on the basis of analytical integration of the governing equation for the stress
function.

As this short review shows, the uniform torsion problem for functionally graded materials has been
solved primarily by analytical methods and traditional mesh methods such as FEM [Arghavan and
Hematiyan 2009] and FED [Ely and Zienkiewicz 1960]. The purpose of this paper is the application
of the method of fundamental solutions (MFS) to the torsion problem of functionally graded materials.
This method belongs to the so-called meshless methods which have become more and more popular in
the two last decades. The MFS was first proposed in [Kupradze and Aleksidze 1964]. Its numerical
implementation was carried out in [Mathon and Johnston 1977]. Comprehensive reviews of the MFS
for various applications can be found in [Fairweather and Karageorghis 1998; Golberg and Chen 1999].
Here, based on the Saint-Venant displacement assumption, the boundary-value linear problem for the
stress function is formulated. For isotropic materials the governing equation is linear with constant
coefficients. The torsion problem for rods made with isotropic materials is solved by the MFS. For FGM
the governing equation is a linear one with variable coefficients. The torsion problem for rods made with
FGMs is solved by means of Picard iteration. The proposed algorithm is based on the solution of a linear
Poisson equation at each iteration step. The mentioned boundary value problem is solved by the MFS
with interpolation of the right-hand side by a radial basis function.

2. Problem description

The following assumptions about bone characteristics are made:

• Nonuniform bone geometry is analyzed as a tube with a constant cross-section (circular), neglecting
lengthwise variations in bone geometry.

• The areal properties of the smallest bone section are taken into account.

• The bone material is considered as a functionally graded material (FGM) (the shear modulus is a
function of geometrical variables).

The steady-state problem of the torsion of a long bone is modeled as the torsion of a bar with circular
cross-section with a circular hollow. It is assumed that the bar is made of FGM, that is, the shear modulus
is a function of geometric variables. The cross-section of the region of the bar under consideration is
presented in Figure 2. The Oz-axis is directed parallel to the generators of the cylindrical surface. There
are no normal stresses on the end cross-section. The applied tangential forces on the end cross-section
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Figure 2. Geometry of the porous medium.

are equivalent to two couples whose magnitudes are the same and whose moments are directed along the
z-axis in opposite directions.

3. The equations of strength theory

To introduce the equations governing the torsion of a bar with circular cross-section, general strength
theory is applied. The geometry of the bar is presented in Figure 2. The displacement components in
cylindrical coordinates are

ux(x, y, z), u y(x, y, z), u y(x, y, z). (3-1)

As in homogeneous Saint-Venant theory, let us assume that all the stress components are zero except for
τxz and τyz . The assumption of strength theory allows the introduction of the Prandtl stress function ψ ,
which is defined by the stresses as follows:

τxz = ω
∂ψ

∂y
, τyz =−ω

∂ψ

∂x
, (3-2)

where ψ is the Prandtl stress function, τxz and τyz are stress tensor components, and ω is the twist angle.
The equilibrium equation is automatically satisfied by (3-2) and the resulting compatibility equations are

∂

∂x

(
1

G(x, y)
∂ψ

∂x

)
+
∂

∂y

(
1

G(x, y)
∂ψ

∂y

)
=−2ω for (x, y) ∈�, (3-3)

where � is the area of the bar cross-section and G(x, y) is a function defining the shear modulus of
the FGM which is assumed to be a continuously differentiable positive function on �. The boundary
conditions for the problem are described below.

The traction-free boundary condition on the lateral surface is fulfilled if

ψ = 0 for (x, y) ∈ 0. (3-4)

In the case of a bar with a multiconnected cross-section we get the condition

ψ = ψ0 for (x, y) ∈ 0I, (3-5)
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where ψ0 is an unknown constant on the inner contour 0I, which is determined from∮
0I

∂ψ

∂n
ds =−

∮
0I

1
f (x, y)

(x dy− y dx)−
∮
0I

1
f (x, y)

duz, (3-6)

where 0 and 0I are respectively the outer and inner boundaries of the bar cross-section, �I is the area
of the hollow, and duz is the deflection along the z-axis. The stiffness of the bar is defined by

S = 2
∫∫

�

ψ(x, y) dxdy. (3-7)

Thus the torsion problem of the inhomogeneous bar reduces to solving (3-3) on the domain � subjected
to the boundary conditions (3-4)–(3-6). The corresponding stresses are given by (3-2).

To make numerical calculations more convenient dimensionless variables are introduced:

X = x
a
, Y = y

a
, E = r

a
, 9(x, y)=

ψ(x, y)
a2G0

, f (x, y)=
G0

G(x, y)
, (3-8)

where G0 is constant which has dimension of the shear modulus and a is a characteristic dimension.
Considering the problem for dimensionless variables and using the symmetry of the region �̃ presented

in Figure 3 gives the equation

∂

∂X

(
f (X, Y )∂9

∂X

)
+
∂

∂Y

(
f (X, Y )∂9

∂Y

)
=−2 for (X, Y ) ∈ �̃. (3-9)

The boundary conditions after introducing the dimensionless variables are:

• for the outer boundary:
9 = 0 for (x, y) ∈ 0̃; (3-10)

• for the hollow boundary:
9 =90 for (x, y) ∈ 0̃I; (3-11)

Γ~I

Γ~S

Γ

y

ΩΓ~S
~

x

Figure 3. The region under consideration in dimensionless form.
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and ∮
0̃I

∂9

∂n
ds =−

∮
0̃I

1
f (X, Y )

(X dY − Y d X)−
∮
0̃I

1
f (X, Y )

dũz, (3-12)

where 0̃ is the outer boundary of the bar cross-section, 0̃I is the inner boundary of the bar cross-section,
�̃I is the area of the hollow, and ũz = uz/a is the dimensionless deflection along the z-axis. The extra
condition appears for the symmetry of the region considered:

∂9

∂n
= 0 for (x, y) ∈ 0̃S. (3-13)

4. The numerical method for solving the boundary value problem

The proposal of this paper is to solve the boundary value problem given above by a mesh-free method,
the method of fundamental solutions (MFS). The differential equation (3-9) is of the second order with
variable coefficients. A procedure based on Picard iteration is proposed to solve the problem of such an
equation. Equation (3-9) is rewritten in iterative fashion:

∂29(i)

∂X2 +
∂29(i)

∂Y 2 =−
1

f (X, Y )

(
2+ ∂ f

∂X
∂9(i−1)

∂X
+
∂ f
∂Y

∂9(i−1)

∂Y

)
for (X, Y ) ∈ �̃, (4-1)

for i = 1, 2, . . . . The boundary conditions have the form

9(i)
= 0 for (X, Y ) ∈ 0̃, (4-2)

9(i)
=90 for (X, Y ) ∈ 0̃I, (4-3)∮

0̃I

∂9(i)

∂n
ds =−

∮
0̃I

1
f (X, Y )

(X dY − Y d X)−
∮
0̃I

1
f (X, Y )

dũz, (4-4)

∂9(i)

∂n
= 0 for (X, Y ) ∈ 0̃S. (4-5)

At each iteration step, the boundary value problem with the Poisson-like equation (4-1) and the bound-
ary conditions (4-2)–(4-5) is to be solved. The governing equation is rewritten in a very general form:

L9(i)(X, X)= F
(
X, Y, 9(i−1)(X, Y )

)
for (X, Y ) ∈ 0̃S, (4-6)

where L is the Laplace operator. The function on the right-hand side of the equation is

F
(
X, Y, 9(i−1)(X, Y )

)
=−

1
f (X, Y )

(
2+ ∂ f

∂X
∂9(i−1)

∂X
+
∂ f
∂Y

∂9(i−1)

∂Y

)
. (4-7)

The boundary conditions (4-2)–(4-5) are still valid. It is assumed that the solution of the problem is a
sum of particular and homogeneous solutions:

9(i)(X, Y )=9(i)
p (X, Y )+9(i)

h (X, Y ). (4-8)
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The particular solution is related to the right-hand-side function of the inhomogeneous equation (4-6).
The function (4-7) is interpolated by means of radial basis functions (RBFs) in the following manner:

F
(
X, Y, 9(i−1)(X, Y )

)
=

Na∑
k=1

a(i)k ϕk(X, Y )+
Nl∑

l=1

b(i)l pl(X, Y ), (4-9)

where ϕk(X, Y )= ϕ
(
X, Y, X (a)

k , Y (a)k
)

is a RBF,
{

X (a)
k , Y (a)k

}Na
k=1 is the set of approximation points (see

Figure 4) in the region �̃, Na is the number of approximation points, and pl(X, Y ) for l = 1, 2, . . . , Nl

are monomials. Moreover, {a(i)k }
Na
k=1 and {b(i)l }

Nl
l=1 are sets of real numbers, which are determined in each

iterative step. The approximated particular solution has the form

9(i)(X, Y )=
Na∑

k=1

a(i)k φk(X, Y )+
Nl∑

l=1

b(i)l Pl(X, Y ), (4-10)

where φk(X, Y ) and Pl(X, Y ) functions are particular solutions of the equations

Lφk(X, X)= ϕk(X, X) for k = 1, 2, . . . , Na, (4-11)

L Pl(X, Y )= pl(X, Y ) for l = 1, 2, . . . , Nl . (4-12)

The approximation formula at the i-th iterative step (i = 1, 2, . . . ) is written for every approximation
point chosen in the domain

F
(
X (a)

j , Y (a)j , 9(i−1)(X (a)
j , Y (a)j

))
=

Na∑
k=1

a(i)k ϕk
(
X (a)

j , Y (a)j

)
+

Nl∑
l=1

b(i)l pl
(
X (a)

j , Y (a)j

)
for j = 1, 2, . . . , Na, (4-13)

Na∑
k=1

a(i)k pl
(
X (a)

k , Y (a)k

)
= 0 for l = 1, 2, . . . , Nl . (4-14)

E

1

1

Approximation point

E

Figure 4. Approximation points.
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Once the real coefficients
{
a(i)k

}Na
k=1 and

{
b(i)l

}Nl
l=1 are calculated the particular solution of form (4-10)

is obtained. In the MFS the approximate homogeneous solution is a linear combination of fundamental
solutions:

9
(i)
h (X, Y )=

Ns∑
n=1

c(i)n f sn(X, Y ), (4-15)

where f sn(X, Y ) = f s
(
X, Y, X (s)

n , Y (s)n
)

is the fundamental solution defined at the n-th source point.
Moreover,

{
X (s)

n , Y (s)n
}Ns

n=1 is a set of source points, placed outside the region considered (the set of
source points is presented in Figure 5), and Ns is the number of source points. The coefficients c(i)n for
n = 1, 2, . . . , Ns are real numbers. These coefficients are to be calculated by solving the linear algebraic
equations, which are obtained by introducing (4-8) and (4-15) into the boundary conditions (4-2)–(4-5):

Ns∑
n=1

c(i)n f sn
(
X (b)

m , Y (b)m
)
=−9(i)

p
(
X (b)

m , Y (b)m
)

for
(
X (b)

m , Y (b)m
)
∈ 0̃0, (4-16)

Ns∑
n=1

c(i)n f sn
(
X (b)

m , Y (b)m
)
=90−9

(i)
p
(
X (b)

m , Y (b)m
)

for
(
X (b)

m , Y (b)m
)
∈ 0̃I, (4-17)

Ns∑
n=1

c(i)n

∮
0̃I

∂ f sn(X,Y )
∂n

ds=−
∮
0̃I

1
f (X,Y )

(XdY−Y d X)−
∮
0̃I

1
f (X,Y )

dũz−

∮
0̃I

∂9
(i)
p (X,Y )
∂n

ds, (4-18)

Ns∑
n=1

c(i)n
∂ f sn

(
X (b)

m , Y (b)m
)

∂n
=−

∂9
(i)
p
(
X (b)

m , Y (b)m
)

∂n
for

(
X (b)

m , Y (b)m
)
∈ 0̃S, (4-19)

where
{

X (b)
m , Y (b)m

}Nb
m=1 is a set of boundary points (see Figure 5) and Nb is the number of boundary

points.

E

Source point

Boundary point

1

1E

Figure 5. The boundary and source points.
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Solution of the system of equations (4-16)–(4-19) introduced to the form of the homogeneous solution
(4-15) and to (4-8) gives the approximate solution of the problem. The iteration procedure is stopped if
the control parameter defined by the formula

di =

√∑Nt
k=1
(
9(i)(X t

k, Y t
k )−9

(i−1)(X t
k, Y t

k )
)2

Nt
for i = 1, 2, . . . (4-20)

is a small number. The formula (4-20) is written for Nt trail points (X t
k, yt

k) for k = 1, 2, . . . , Nt .

5. Numerical experiment

The numerical experiment has been performed to show the accuracy of the proposed algorithm. The
MFS has been implemented with the following parameters. The number of approximation points is 100,
the number of source points is 40, and the number of boundary points is 30. The distance between the
contour of the region under consideration and the contour with the set of source points is chosen as 0.2.

The calculations are performed for the multiquadric RBF given by

ϕ
(
X, Y, X (a)

j , Y (a)j

)
=

√
c2+ r

(
X, Y, X (a)

j , Y (a)j

)
, (5-1)

where
r
(
X, Y, X (a)

j , Y (a)j

)
=

√(
X − X (a)

j

)2
+
(
Y − Y (a)j

)2
.

The particular solution for the RBF in the form (5-1) is

φ
(
X, Y, X (a)

j , Y (a)j

)
=−

1
3 c3 ln

(
c
√

c2+ r2
(
X, Y, X (a)

j , Y (a)j

)
+ c2

)
+

1
9

(
4c2
+ r2(X, Y, X (a)

j , Y (a)j

))√
c2+ r2

(
X, Y, X (a)

j , Y (a)j

)
. (5-2)

The parameter of the chosen RBF (5-1) is c = 0.1. The monomials pl(X, Y ) and their corresponding
particular integrals Pl(X, Y ) are as follows:

l pl Pl l pl Pl

1 1 1
4 (X

2
+ Y 2) 4 XY 1

12 XY (X2
+ Y 2)

2 X 1
8 X (X2

+ Y 2) 5 X2 1
14

(
X4
+ X2 y2

−
1
6 Y 4

)
3 Y 1

8 Y (X2
+ Y 2) 6 Y2 1

14

(
Y 4
+ X2 y2

−
1
6 X4

)
In the example the torsion of a circular bar (with radius in nondimensional form equal to 1) with a

circular centered hollow of radius equal to E is considered. The function related to the shear modulus is
defined as

1
f (X, Y )

= 1+ 5.25
√

X2+ Y 2. (5-3)

The results for E = 0.4 are presented below. The Prandtl function is presented in Figure 6. The unknown
value of the Prandtl function on the inner boundary has been calculated. It should have a constant value
on the inner boundary. In Table 1 the calculated values of 90 at some trial points chosen on the inner
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1

0.0

0.5

1.0

1.0

0.0

0.5

Figure 6. The Prandtl function for a bar with hollow of radius E = 0.4.

boundary are presented. The values of 90 on the boundary are very close to each other. It is correct to
take with demanded accuracy 90 equal to 1.42605.

The accuracy of the obtained result can be confirmed by checking the boundary condition (3-12). The
value on the right-hand side of (3-12) is equal to

−

∮
0̃I

1
f (X, Y )

(X dY − Y d X)−
∮
0̃I

1
f (X, Y )

dũz =−0.5026548245743669.

X Y 90

0.398766933 0.0313836383 1.426047729150132
0.388947968 0.0933781455 1.426051497720865
0.369551813 0.153073373 1.426050691973953
0.341056066 0.208999426 1.426050690505380
0.3041623862 0.259779219 1.426050814325789
0.2597792193 0.304162386 1.426050908371237
0.208999426 0.341056066 1.426050402589498
0.153073373 0.369551813 1.426051442033329
0.0933781455 0.388947968 1.426049341092722
0.0313836383 0.398766933 1.426054977550235

Table 1. The values of the Prandtl function on the inner boundary for E = 0.4.
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E 90
∮
0I
(∂9/∂n) ds I(E)

0.1 1.931868393966856 −0.031415926344492 −0.031415926535898
0.2 1.803559095926270 −0.125663706148103 −0.125663706143592
0.3 1.632842169956845 −0.282743338761668 −0.282743338823081
0.4 1.426050772804763 −0.502654824541456 −0.502654824574367
0.5 1.195205510255710 −0.785398163408337 −0.785398163397448
0.6 0.949110141725394 −1.130973355347243 −1.130973355292326
0.7 0.698569048610646 −1.539380400193735 −1.539380400258998

Table 2. The values of the Prandtl function on the inner boundary and checking bound-
ary condition (3-12).

On the other side, the left-hand side of (3-6) is an integral of the normal derivative of the numerically
calculated Prandtl function and it equals∮

0I

∂9

∂n
ds =−0.5026548245414568.

It is easy to observe that the difference between both values is 3.29101−11. So, the calculated results are
obtained with a very high accuracy.

The problem is solved for a rod with hollow radius Ei = 0.1i for i = 1, 2, . . . , 7. The values of 90

and the fulfillment of the boundary condition (3-12) are presented in Table 2. It is observed that the
difference

I (E)=
∮
0I

∂9

∂n
ds−

(
−

∮
0̃I

1
f (X, Y )

(X dY − Y d X)−
∮
0̃I

1
f (X, Y )

dũz

)
for all cases of E presented in Table 2 are of order 10−11 or 10−10. This confirms that the numerical
method based on the proposed algorithm is of very high accuracy and gives very good results. It is a
suitable tool for solving the problem.

6. Conclusions

In this paper the torsion of a long bone is considered. The long bone is modeled as a bar with circular
cross-section with a circular hollow. The proper assumption about the material of the bone have been
made. The bone material is treated as a functionally graded material. This paper implements the method
of fundamental solutions to solve the problem of long-bone torsion modeled by a boundary value problem
with a linear partial differential equation with variable coefficients and boundary conditions. The results
of the numerical experiment show that the proposed method gives results with the demanded accuracy.
The presented algorithm is a self-validating one. It is possible to prove the high precision of the obtained
numerical results by checking the fulfillment of the boundary conditions. The analysis of the numerical
results shown in Section 5 confirms that the numerical method based on the proposed algorithm is of
very high accuracy and gives very good results. It is a suitable tool to solve the problem.
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RAYLEIGH-TYPE WAVE PROPAGATION IN AN AUXETIC DIELECTRIC

ANDRZEJ DRZEWIECKI

The propagation of Rayleigh-type waves in an elastic, isotropic, dielectric half-space for some orientation
of the external electric field is considered, with Poisson’s ratio in the range −1< ν < 0.5.

1. Introduction

Auxetics are materials that have a negative Poisson’s ratio [Stręk et al. 2008; 2009; 2010; Poźniak et al.
2010]. The earliest publications providing information on the unusual auxetic properties of certain natural
materials appeared almost a hundred years ago, but they did not arouse great interest because of the low
reproducibility of the reported experimental results. Physicists and engineers were also convinced for a
long time that there are no materials with negative Poisson’s ratio in nature, despite the fact that their
existence was known to be thermodynamically possible (see, for example, [Landau and Lifshits 1954]).
The possible applications of materials having this property were also overlooked at the time.

Contemporary studies of auxetics were started after the publication of [Lakes 1987]. Soon, numerous
possible applications of these materials were identified, such as body armor, packing material, knee and
elbow pads, robust shock absorbing material, sponge mops and many others. This is the reason for
the dynamic development of these materials research in recent years (see [Friis et al. 1988; Lakes and
Wineman 2006], for example).

A few articles have considered the dynamic behavior of auxetics materials in the framework of coupled
field theory. Here we discuss the problem of propagation of the Rayleigh-type waves in such media.
Specifically, we consider elastic, isotropic, and dielectric half-space with Poisson’s ratio in the range
(−1; 0.5), subject to an external electric field in some fixed orientation. We derive the propagation
equation and solve it numerically in special cases.

We adopt a statistical model (according to the classification by K. Hutter and A. A. F. van de Ven) for
the interaction between electromagnetic and mechanical fields. To render the basic equations amenable
to direct analysis, they are be linearized with respect to some average state, referred to as the ξ state.
The problem at hand suggests a natural definition of this state. It is assumed that ξ state is known or
at least determinable. All physical fields may be decomposed into two parts: the tensor fields in the ξ
state and tensor fields correction expressing the difference between the ξ state and the real state, in the
framework of the model. In this paper they are denoted by 0ϕ and ∗ϕ respectively, where ϕ is the tensor
field in question. Because the perturbations ∗ϕ are assumed to be small, the governing equations can be
linearized.

Partially supported by Poland’s Ministry of Science and Higher Education (MNiSzW), grant 2363/B/TO2/2010/39.
Keywords: auxetics, Rayleigh wave, dielectric.
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2. Setting up the equations

The specific version of the basic equations derived in [Hutter and van de Ven 1978] that is presented
below corresponds with the problem under consideration. This specification is confined to the choice of
free energy form and proper definition of some average state. It is assumed that the ξ state is a motionless,
rigid body state and the electric field in this state is static and homogeneous. These assumptions are not
contradictory, but in general a stress vector acting at the surface that bounds a dielectric is needed.

The free energy is postulated in the form (material description):

F =−
1

2µ0ρ0

κ ′

1+ κ ′
BαBα +

1
2ρ0ε0κ

PαPα − 1
2 n(2−20)

2

− γ (2−20)Eγ γ +
1
ρ0
µ′EαβEαβ +

1
2ρ0

λ′EααEββ, (1)

where κ ′ is the magnetic susceptibility, κ the electric susceptibility, λ′, µ′ are the elastic constants, ρ0

the mass density, Bα the magnetic induction, Pα the magnetic induction, 2 the absolute temperature, γ ,
n the material constants, Cαβ Green’s deformation tensor, Eαβ = 1

2(Cαβ − δαβ) the Lagrangian strain
tensor, ε0 the electric permeability of vacuum and µ0 the magnetic permeability of vacuum.

With this choice, the constitutive equations read:

S =−
∂F
∂2
= n(2−20)+δEαα, Eα =

∂F
∂(Pα/ρ0)

=
1
ε0κ

Pα, Mα =−ρ0
∂F
∂Bα
=

κ ′

µ0(1+ κ ′)
Bα,

Tαβ = TiαF−1
βi = 2ρ0

∂F
∂Cαβ

−
(
PαEγ − BαMγ

)
C−1
βγ −Mγ BγC−1

αβ

= 2µ′Eαβ + λ′δαβEγ γ − ρ0γ δαβ(2−20)

−

(
1
ε0κ

PαPγ −
κ ′

µ0(1+ κ ′)
BαBγ

)
C−1
βγ −

κ ′

µ0(1+ κ ′)
Bγ BγC−1

αβ , (2)

where S is the entropy density, Eα the electric field intensity, Mα the magnetization, Tiα the Piola–
Kirchhoff stress tensor, Fiα the material deformation gradient, F−1

αi the spatial deformation gradient and
C−1
αβ Cauchy’s deformation tensor.
For an adiabatic process one obtains

2−20 =−
δ

n
Eαα (3)

and the constitutive relation (2) can be replaced by

Tαβ = 2µEαβ + λδαβEγ γ −
(

1
ε0κ

PαPγ −
κ ′

µ0(1+ κ ′)
BαBγ

)
C−1
βγ −

κ ′

µ0(1+ κ ′)
Bγ BγC−1

αβ , (4)

where

λ= λ′+ ρ0
γ 2

n
, µ= µ′ (5)

are the adiabatic elastic constants.
As a result of the linearizing procedure one reaches the equations of motion

ρ0üα = µuα,ββ + (λ+µ)uβ,βα −
1
ε0κ

0Pα ∗Pβ,β (6)
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(uα stands for the displacement), the Maxwell equations

∗Bα,α = 0, ∗Ḃα +
1
ε0κ

eαβγ ∗Pγ,β = 0,
(1
κ
+ 1

)
∗Pα,α −

1
κ

0Pβuβ,αα = 0,

−

(1
κ
+ 1

)
∗Ṗα +

1
κ

0Pγ u̇γ,α +
1

µ0(1+κ ′)
eαβγ ∗Bγ,β = 0, (7)

eαβγ 0Pγ,β = 0, 0 Pα,α = 0, (8)

and the jump conditions[
ε0

0E+α −
(

1+
1
κ

)
0P−α

]
Nα = 0, eαβγ

(
0E+α −

1
ε0κ

0P−β

)
Nγ = 0,

(
∗B+α −

∗B−α
)
Nα = 0, (9a)

T+i =
1
2δiβ

0P−α
0E+β Nα −

1
2ε0κ

δiβ
0P−α

0P−β Nα, eαβγ

(
∗E+β −

1
ε0κ

∗P−β

)
Nγ = 0, (9b)[

ε0
∗E+α −

(
1+

1
κ

)
∗P−α

]
Nα + 0P−α uγ,γ Nα −

(
ε0

0E+γ −
1
κ

0P−γ
)(

uγ,α − uα,γ
)
Nα = 0, (9c)

1
µ0

eαβγ

(
∗B+β −

1
1+ κ ′

∗B−β

)
Nγ + 0P−γ u̇αNγ −

(
ε0

0E+α −
1
κ

0P−α
)
u̇γ Nγ = 0, (9d)

[
µ
(
uω,β + uβ,ω

)
− δωβλuγ,γ

]
Nβ = 1

2 uα,ω 0P−β

(
0E+α +

1
ε0κ

0P−α

)
Nβ

−
1
2

0P−β

(
∗E+ω +

1
ε0κ

∗P−ω

)
Nβ − 1

2
∗P−β

(
0E+ω +

1
ε0κ

0P−ω

)
Nβ . (9e)

The elastic dielectric is placed on the “−” side of the surface (see Figure 1). It is assumed that T+i
(needed for the mechanical equilibrium of motionless rigid body placed in the electric field) is the only
surface traction of the other than electromagnetic origin. The quantities 0 E+α , ∗E+α and ∗B+α are defined
by

0E+α = δiα
0e+i ,

∗E+α = δiα
∗e+i + δiβ

0e+i uβ,α, ∗B+α = δiα
∗b+i , (10)

where 0e+i , ∗e+i , ∗b+i are the limits to which tend the decomposed fields ei , bi on the surface. The latter
vector fields are the electric field intensity and the magnetic induction in vacuum.
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Figure 1. The geometry of the problem.



280 ANDRZEJ DRZEWIECKI

The vectors of electromagnetic field in vacuum satisfy the following equations:

ei jkek, j =−ḃi , ei,i = 0, 1
µ0

ei jkbk, j = ε0ėi , bi,i = 0, (11)

ei jk
0ek, j = 0, 0ei,i = 0, ei jk

∗ek, j =−
∗ḃi ,

∗ei,i = 0, 1
µ0

ei jk
∗bk, j = ε0

∗ėi ,
∗bi,i = 0. (12)

3. Rayleigh-type wave

The geometry of the problem is shown in Figure 1. The initial uniform electric polarization 0P has the
direction of x1 axis. Consider the propagation equations of a Rayleigh-type surface wave [Eringen and
Suhubi 1975; Nowacki 1970; Miklowitz 1978] in the same direction:

{u1, u3, P1, P3, B2} =
{
ũ1(x3), ũ3(x3), P̃1(x3), P̃3(x3), B̃2(x3)

}
exp[iγ (νt − x1)],

{e1, e3, b2} =
{
ẽ1(x3), ẽ3(x3), b̃2(x3)

}
exp[iγ (νt − x1)].

(13)

In the above equations and in the further considerations the following description (which should not lead
to failures) is introduced:

∗Pα = Pα, ∗Bα = Bα, ∗ei = ei ,
∗bi = bi ,

0Pα = δα1 P. (14)

After simply calculations one obtains the following system of the ordinary differential equations valid
in the half space x3 > 0.

c2
2ũ
′′

1+ γ
2(ν2
− c2

1)ũ1− iγ (c2
1− c2

2)ũ
′

3+ i
γ P
ρ0ε0κ

P̃1−
P

ρ0ε0κ
P̃
′

3 = 0,

c2
1ũ
′′

3+ γ
2(ν2
− c2

2)ũ3− iγ (c2
1− c2

2)ũ
′

1 = 0,

P̃
′′

1 − γ
2α P̃1− i

γ 3α

1+ κ
Pũ1+ i

γ

1+ κ
Pũ

′′

1 = 0,

P̃
′′

3 − γ
2α P̃3+

γ 2α

1+ κ
Pũ

′

1−
1

1+ κ
Pũ

′′′

1 = 0.

(15)

The amplitudeB̃2 satisfies the equation

B̃
′′

2 − γ
2α B̃2 = 0. (16)

In (15) and (16) the following notation has been introduced:

α = 1− (1+ κ)(1+ κ ′)
ν2

c2
0
, c2

1 =
λ+ 2µ
ρ0

, c2
2 =

µ

ρ0
, (17)

dφ̃
dx3
= φ̃

′

,
d2φ̃

dx2
3
= φ̃

′′

,
d3φ̃

dx3
3

= φ̃
′′′

. (18)

The characteristic equation of the system (15) is
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ε(ε2
− γ 2α)2

{
c2

1(c
2
2− v

2)ε4
+
[(
ν2
+ v2)(c2

1+ c2
2)− 2c2

1c2
2− ν

2v2]γ 2ε2

+
[
v2(ν2

− c2
2)+

(
ν2
− c2

1)(ν
2
− c2

2)
]
γ 4}
= 0, (19)

where

v2
=

P2

ρ0ε0κ(1+ κ)
. (20)

The solutions of the set of (15) have finally the form

ũ1 = S1 exp(ε1x3)+ S2 exp(ε2x3),

ũ3 =
iγ ε1(c2

1− c2
2)

c2
1ε

2
1 + γ

2(ν2− c2
2)

S1 exp(ε1x3)+
iγ ε2(c2

1− c2
2)

c2
1ε

2
2 + γ

2(ν2− c2
2)

S2 exp(ε2x3),

P̃1 = S3 exp(−γ
√
αx3)−

iγ P
1+ κ

S1 exp(ε1x3)−
iγ P
1+ κ

S2 exp(ε2x3),

P̃3 =−
i
√
α

S3 exp(−γ
√
αx3)+

ε1 P
1+ κ

S1 exp(ε1x3)+
ε2 P

1+ κ
S2 exp(ε2x3),

(21)

where S1, S2 and S3 are constants, and ε1 and ε2 are the roots of the expression in (outer) braces in (19),
which satisfy the restriction Re ε < 0. There is no physical singularity for ε1 = ε2 and ε1 = ε2 =−γ

√
α.

Similarly, the solution of the (16) is

B̃2 =
i

ε0κν

1−α
√
α

S3 exp(−γ
√
αx3). (22)

In the same way we obtain the following solution for the electromagnetic field in a vacuum:

ẽ1 = G exp(γ
√
βx3), ẽ3 =

i
√
β

G exp(γ
√
βx3), b̃2 =

i(β − 1)
ν
√
β

G exp(γ
√
βx3), (23)

where

β = 1−
ν2

c2
0
. (24)

Successive relations between S1, S2, S3 and G are the consequence of fact that jump conditions (9)
hold true. In this case they become

e+1 +
P
ε0κ

u1,1−
1
ε0κ

P−1 = 0, e+3 +
P
ε0κ

u1,3−
κ + 1
ε0κ

P−3 = 0, b+2 −
1

1+ κ ′
B−2 = 0,

u1,3+ u3,1 = 0, (c2
1− 2c2

2)u1,1+ c2
1u3,3 = 0.

(25)

After substitutions it is easy to obtain that

G =−

√
β

α

1+ κ
ε0κ

S3. (26)

This conclusion follows from the third equality in (25). The second equality in (25) is satisfied identically.
Finally the following set of equations has to be considered:

R1S1+ R2S2+ R3S3 = 0, Q1S1+ Q2S2 = 0, W1S1+W2S2 = 0, (27)
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where
R1 = R2 = iγ

√
α
κP

1+ κ
, R3 =

√
β(1+ κ)+

√
α, k = 1, 2

Qk =

[
1+

γ 2(c2
1− c2

2)

c2
1ε

2
k + γ

2(ν2− c2
2)

]
εk, Wk =

ε2
k c2

1(c
2
1− c2

2)

c2
1ε

2
k + γ

2(ν2− c2
2)
− c2

1+ 2c2
2.

(28)

Then in the case under consideration, the propagation condition of the Rayleigh-type wave has the form∣∣∣∣∣∣
R1 R2 R3

Q1 Q2 0
W1 W2 0

∣∣∣∣∣∣= 0. (29)

If the condition (29) holds true, it is possible to solve the system (27) with the respect of S1 and S2:

S1 =−
R3 Q2

R1 Q2− R2 Q1
S3, S2 =

R3 Q1

R1 Q2− R2 Q1
S3. (30)

For the analysis in the sequel it is convenient to use some dimensionless quantities

a =
c2

1

c2
2
, g =

v2

c2
2
, f =

ν2

c2
2
, ε̃ =

ε

γ
. (31)

The substitutions (31), applied to (29), yield[
a(ε̃2

1+1)+ f −2
][

a(ε̃2
2+1)+2 f −2− f a

]
ε̃1−

[
a(ε̃2

2+1)+ f −2
][

a(ε̃2
1+1)+2 f −2− f a

]
ε̃2=0. (32)

Similarly, writing explicitly the equation from which the roots ε1 and ε2 are determined (see (19)), the
following expression has been obtained:

a(1− g)ε̃4
+
[
( f + g)(a+ 1)− 2a− f g

]
ε̃2
+
[
( f − 1)(g+ f − a)

]
= 0. (33)

The root of (33) do not depend on γ . They are the functions of material constants, P and ν only. Then,
from the propagation condition follows that ν does not depend on γ , too (it is convenient to consider this
condition in the form (32)). There is no dispersion comparing to in the classical case [Stręk et al. 2010].

4. Some results for classical and auxetic materials

The propagation condition (32) can only be examined numerically. The only exception is the case a = 2
(Poisson ratio ν = 0), for which analytical analysis is possible. The results obtained in this case are
similar (though not identical) to results which are in force for auxetic materials. These results have not
been presented in the paper.

In Figure 2 the dependence of dimensionless phase velocity f on dimensionless (low) external electric
field strength g (see (20) and (31)) for conventional material is presented in two scales. In the area
bounded by the curve in the shape of a loop, the roots of (33) are complex. There is an interval of values
of parameter g for which the wave does not propagate (g ∈ (gB, gC)).

In Figure 3 the same dependence for strong external electric field is presented.
For the auxetic [Stręk et al. 2009] material and for the weak external electric field, character of ex-

amined dependence is similar to presented above (Figure 2). Significant differences become apparent
in the case of strong external electric field (g ≥ gC ). In this case two extra modes (rapidly vanishing
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Figure 4. The case a = 1.5 (auxetic, ν =−0.25), g ≥ gC ≈ 1.8925.

with increasing of g) of the wave appear. In the previously reported case, f decreased with increasing g
(Figure 3). The other situation is for the “fast”, not disappearing mode of the wave in the auxetic. The
increase in g results in an increase of f . Similar results were obtained in the previously mentioned case
ν = 0. In this case for strong external electric field only two modes of the wave appear.

In Figure 4 the dependence of dimensionless phase velocity f on dimensionless (strong) external
electric field g for the auxetic material is presented in two scales. Lowest mode fades so quickly that it
was necessary to present it choosing a different scale (Figure 4, right).
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mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 7, No. 3, 2012

dx.doi.org/10.2140/jomms.2012.7.285 msp

LOCAL GRADIENT THEORY OF DIELECTRICS WITH POLARIZATION
INERTIA AND IRREVERSIBILITY OF LOCAL MASS DISPLACEMENT

VASYL KONDRAT AND OLHA HRYTSYNA

A complete system of equations of the local gradient theory of electromagnetothermomechanics of
polarized nonferromagnetic isotropic solids is obtained with regard to polarization inertia and the irre-
versibility of the processes of local mass displacement and polarization. It is shown that in this case the
constitutive relations for specific vectors of the local mass displacement and polarization are rheological
and contain time derivatives of the first and higher orders. A corresponding key system of equations
for the isothermal approximation is obtained. This system is also written relatively to scalar and vector
potentials of the displacement vector, vectors of the electromagnetic field, and a reduced energy measure
µ′π of the effect of the mass displacement on the internal energy. The Lorentz gauge is generalized in
such a way that equations for the vector potential of the electromagnetic field and for the generalized
scalar potential are not coupled and have similar structures. The effect of polarization inertia and the
above-mentioned irreversibility of processes on the interaction of the fields is analyzed.

1. Introduction

In recent decades in the scientific literature there has been considerable interest in developing nonlocal
theories of physical and mechanical processes in condensed matter. First of all, it is related to the need
to describe some of the observed effects [Mead 1961; 1962; Ma and Cross 2003; Majdoub et al. 2009]
and to the intensive introduction of composite materials in various technologies, including nanomaterials,
[Tauchert and Guzelsu 1972; Buryachenko and Pagano 2003; Kuno 2004; Sharma et al. 2007; Majdoub
2010] where nonlocal effects are of crucial importance. These investigations also urged the development
of the principles and methods of nonlocal thermodynamics [Ván 2003; Dolfin et al. 2004; Cimmelli and
Ván 2005], thermomechanics and theories of heat conduction [Papenfuss and Forest 2006; Forest and
Amestoy 2008], wave theory [Erofeyev 2003; Yerofeyev and Sheshenina 2005; Papargyri-Beskou et al.
2009], etc.

Nonlocal theories of deformable dielectrics are constructed by defining the functional constitutive
equations of spatial type (strongly nonlocal theories) or by means of an expansion of the space of state
parameter by gradients of certain physical quantities (weakly nonlocal theories) [Maugin 1988; Yang
2006; Kondrat and Hrytsyna 2009a]. In the scientific literature theories of both the first (see for example
[Eringen 1984]) and second type are well known, the latter taking into account the dependence of the
body state on the strain gradients [Tagantsev 1986; Majdoub et al. 2008; 2009; Majdoub 2010], the
polarization gradient [Mindlin 1972], or the electric field gradients [Kafadar 1971; Yang and Yang 2004]
corresponding to internal variables and their gradients [Ciancio 1989; Dolfin et al. 2004]. Another

Keywords: coupled electromagnetothermomechanical processes, local displacement of mass, dielectrics, nonlocal theory,
irreversibility, inertia of polarization.
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approach to the construction of the nonlocal theory of dielectrics, proposed in [Burak et al. 2008; Kondrat
and Hrytsyna 2008a], is based on considering the process of local mass displacement. Burak [1987] was
the first to pay attention to this process. He assumed that a mass flux has a component ∂5m/∂t of
nonconvective and nondiffusive nature. Burak related this flux to a process referred to as the process of
local mass displacement and the vector 5m was named the vector of this displacement [Burak 1987].
Later it was shown that the equations of the local gradient electromagnetothermomechanics of polarized
nonferromagnetic solids describe surface inhomogeneity in the mechanical and electromagnetic fields
[Burak et al. 2008], a high-frequency dispersion of elastic waves [Kondrat and Hrytsyna 2009b], and
the Mead anomaly [Chapla et al. 2009]. It should be noted that the relations of the theory obtained in
[Burak et al. 2008] are based on the assumption of reversibility of the polarization process; local mass
displacement and polarization inertia is not taken into account. However, such an approximation may
be insufficient and unacceptable for the study of transitional processes of the formation of near-surface
inhomogeneities and the perturbation of electromagnetomechanical processes by shock loads, as well as
for the description of acoustic and electromagnetic emission caused by the formation of surfaces, etc.

In this article a complete system of equations of the local gradient electromagnetothermomechanics
of polarized nonferromagnetic solids is obtained taking into account the inertia of polarization and the
irreversibility the of processes of polarization and local mass displacement. In order to consider the irre-
versibility of these processes we used the approach proposed in [Hrytsyna and Kondrat 2007; Kondrat and
Hrytsyna 2008b]. Moreover, in the total energy balance equation we took into account the kinetic energy
of polarization [Maugin 1988] that enables us to describe the inertia of polarization. The key system of
equations is obtained in isothermal approximation for isotropic solids. This system is also written relative
to the scalar and vector potentials of the displacement vector and the vectors of the electromagnetic field.
In order to arrive at the potential description, the Lorentz gauge had to be generalized. Based on this, the
interaction of the electromagnetic processes, deformation, and local mass displacement is discussed.

2. The balance equations

We consider an isotropic thermoelastic polarized nonferromagnetic body that occupies the domain (V )
of Euclidean space and is bounded by the smooth surface (6) with unit exterior normal n. The body
is subjected to the action of an external load, which induces the mechanical, thermal, and electromag-
netic processes, and the process of local displacement of mass. The polarization inertia as well as the
irreversibility of processes of polarization and local mass displacement are taken into account.

Taking into account the process of local displacement of mass we represent the mass flux Jm∗ as the
sum of the convective term Jmc = ρv∗ and the term Jms = ∂5m/∂t , which is caused by structural changes
of the fixed body element, namely Jm∗ = Jmc + Jms [Burak et al. 2008]. Here v∗ is a velocity of the
convective displacement of the fixed body element and ρ is the mass density.

Let us define the vector of the velocity of the continuum center of mass v by the relation

v = v∗+
1
ρ

∂5m
∂t

.

Then, the equation of mass balance takes the standard form

∂ρ

∂t
+∇ · (ρv)= 0. (2-1)
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Let us introduce the quantity ρmπ , which has dimension of mass density. We assume that, for an arbitrary
body of finite size that occupies the domain (V ), the vector of local displacement of mass and the density
of the induced mass are such that [Burak et al. 2008]∫

(V )
5m dV =

∫
(V )
ρmπ r dV . (2-2)

Here r is the position vector. By analogy with an induced electric charge [Landau and Lifshitz 1982],
we refer to the quantity ρmπ as a density of the induced mass [Burak et al. 2008].

The consequence of relation (2-2) is [Kondrat and Hrytsyna 2008a]

ρmπ =−∇ ·5m . (2-3)

By differentiating (2-3) with respect to time and taking into account that ∂5m/∂t = Jms , we obtain the
equation

∂ρmπ

∂t
+∇ · Jms = 0,

which can be interpreted as the balance equation of induced mass.
We also write the entropy balance equation, which is of the form [de Groot and Mazur 1962]

ρT ds
dt
=−∇ · Jq +

1
T

Jq ·∇T + Tσs + ρ<, (2-4)

where s is the specific entropy, Jq is the density of heat flux, σs is the entropy production, T is the
temperature, < denotes the distributed thermal sources, and d . . . /dt = ∂ . . . /∂t + v ·∇ . . . .

From Maxwell’s equations,

∇ · B = 0, ∇ · D = ρe, ∇× E =−∂B
∂t
, ∇× H = Je+

∂D
∂t
, (2-5)

we obtain the electromagnetic field energy balance equation:

∂Ue
∂t
+∇ · Se+ Je∗ · E∗+

[
ρe E∗+

(
Je∗+

∂(ρ p)
∂t

)
× B+ ρ(∇E∗) · p

]
· v

+ ρE∗ ·
d p
dt
−∇ · [ρ(E∗ · p) Î · v] = 0. (2-6)

Here Ue = (ε0 E2
+ µ0 H2)/2 is the energy density of the electromagnetic field and Se = E × H is

the flux density of its energy, E and H are the electric and magnetic fields, D and B are the electric
and magnetic inductions, D = ε0 E + ρ p, p is the specific vector of polarization, Je is the density
of electric current (the convection and conduction currents), ρe is the density of free electric charge,
E∗ = E+ v× B, Je∗ = Je − ρev, ε0 and µ0 are the electric and magnetic constants, and Î is the unit
tensor. For nonferromagnetic media B = µ0 H .

We assume that the total energy of the system “solid-electromagnetic field” is the sum of internal
energy ρu, kinetic energy of mass center ρv2/2, energy of the electromagnetic field Ue, and polarization
kinetic energy 1

2 ρdE(d p/dt)2. Here dE is the scalar related to the inertia of the polarization process
[Maugin 1988]. The total energy of the system is changed due to the convective transport of energy
through the surface, the flux of energy related to work σ̂ · v of internal forces, the heat flux Jq , the
electromagnetic energy flux Se, the flux of energy µJm connected to the mass transport relative to the
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center of mass of the body, and the flux of energy µπ (∂5m/∂t) related to structural changes, as well as
the action of mass forces F and distributed thermal sources <. Thus, the total energy balance equation
in integral form looks like

d
dt

∫
(V )

(
ρu+Ue+

1
2ρv

2
+

1
2ρdE

(d p
dt

)2
)

dV =

−

∮
(6)

[
ρ

(
u+ 1

2
v2
+

1
2

dE

(d p
dt

)2
)
v−σ̂ ·v+Se+ Jq+µJm+µπ

∂5m

∂t

]
·nd6+

∫
(V )
(ρF · v+ ρ<)dV .

(2-7)

Here σ̂ is the Cauchy stress tensor, µ is the chemical potential, µπ is the energy measure of the effect
of the mass displacement on the internal energy [Burak et al. 2008], and Jm = ρ(v∗− v).

Taking into account the energy balance equation of the electromagnetic field (2-6), the balance equa-
tions of mass and entropy, (2-1) and (2-4), relation (2-3), and formula Jm = −∂5m/∂t [Burak et al.
2008], as well as introducing the specific quantities πm = 5m/ρ and ρm = ρmπ/ρ, we finally obtain
from (2-7) the following balance equation of internal energy in the local form:

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ ρE∗ ·

d p
dt
+ ρµ′π

dρm

dt
− ρ∇µ′π ·

dπm
dt
− ρdE

d2 p
dt2 ·

d p
dt
+

+ Je∗ · E∗− Jq ·
∇T
T
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ ρF∗+ Fe

)
. (2-8)

Here µ′π = µπ −µ, ⊗ denotes the tensor product, and

σ̂∗ = σ̂ − ρ(E∗ · p− ρmµ
′

π −πm ·∇µ
′

π ) Î, F∗ = F+ ρm∇µ′π −πm ·∇∇µ′π ,

Fe = ρe E∗+
(

Je∗+
∂(ρ p)
∂t

)
× B+ ρ(∇E∗) · p.

To take into account the irreversibility of the processes of local mass displacement and polarization we
represent the vectors E∗ and ∇µ′π as sums of a reversible component, Er

∗
or (∇µ′π )

r , and an irreversible
in, Ei

∗
or (∇µ′π )

i [Hrytsyna and Kondrat 2007; Kondrat and Hrytsyna 2008b]:

E∗ = Er
∗
+ Ei

∗
, ∇µ′π = (∇µ

′

π )
r
+ (∇µ′π )

i . (2-9)

Taking into account (2-9) we rewrite (2-8) as follows:

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ ρEr

∗
·

d p
dt
+ ρµ′π

dρm

dt
− ρ(∇µ′π )

r
·

dπm
dt
− ρdE

d2 p
dt2 ·

d p
dt
+

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ ρF∗+ Fe

)
.

Let us assume that the equilibrium part of the local electric field vector Er
L is a state parameter [Maugin

1988]. This vector differs from term Er
∗

of the macroscopic electric field E∗. Therefore we rewrite the
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balance equation of internal energy as

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ρEr

L ·
d p
dt
+ρµ′π

dρm

dt
−ρ(∇µ′π )

r
·

dπm
dt
+ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ρF∗+Fe

)
.

(2-10)Using the Legendre transformation f = u−T s−Er
L · p+(∇µ

′
π )

r
·πm we pass to a new thermodynamic

function f , which is interpreted as a generalized Helmholtz free energy. Then, from the balance equation
of internal energy (2-10) we obtain

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ : (∇⊗ v)−ρ p ·

d Er
L

dt
+ρµ′π

dρm

dt
+ρπm ·

d(∇µ′π )
r

dt
+ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·
d p
dt

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ρF∗+Fe

)
.

(2-11)

The balance equation of free energy, (2-10), should be invariant relative to spatial translation, namely, it
should not change if v→ v+ a, where a is a constant vector. As a consequence, from (2-11) we get

ρ
dv
dt
=∇ · σ̂∗+ Fe+ ρF∗ for all r ∈ (V ), (2-12)

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ : (∇⊗ v)− ρ p ·

d Er
L

dt
+ ρµ′π

dρm

dt
+ ρπm ·

d(∇µ′π )
r

dt

+ ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt
+ Je∗ · E∗− Jq ·

∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs . (2-13)

Relation (2-12) is the equation of motion. We see that the redefinition of stress tensor σ̂∗ and the
emergence of additional mass force F∗ are the result of the account of the process of the local mass
displacement. Note also that the mass F∗ and ponderomotive Fe forces have similar structure.

Equation (2-13) should remain unchanged if the body rotates with constant angular velocity �. In this
case v→ v+�× r . As a consequence, we obtain that σ̂∗ is the symmetric tensor.

Let us represent the quantity ∇⊗ v in the form ∇⊗ v = dê/dt + dω̂/dt . Here v = du/dt , u is the
displacement vector, ê is the symmetric strain tensor, and ω̂ is the antisymmetric rotation tensor. These
tensors are related to a displacement vector u by:

ê= 1
2 [∇⊗ u+ (∇⊗ u)T ], ω̂ = 1

2 [∇⊗ u− (∇⊗ u)T ]. (2-14)

Since the convolution of the symmetric and antisymmetric tensors is equal to zero, then σ̂∗ : (dω̂/dt)= 0.
Thus, the free energy balance equation (2-13) takes the form

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ :

d ê
dt
− ρ p ·

d Er
L

dt
+ ρµ′π

dρm

dt
+ ρπm ·

d(∇µ′π )
r

dt

+ ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt
+ Je∗ · E∗− Jq ·

∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs . (2-15)
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Since the summands in the second line of (2-15) do not depend on the velocities

dT
dt
,

d ê
dt
,

d Er
L

dt
,

dρm

dt
,

d(∇µ′π )
r

dt
,

we get the generalized Gibbs equation

d f =−s dT + ρ−1σ̂∗ : d ê− p · d Er
L +µ

′

π dρm +πm · d(∇µ′π )
r , (2-16)

the expression for the entropy production

σs = Je∗ ·
E∗
T
− Jq ·

∇T
T 2 + ρ

d p
dt
·

Ei
∗

T
− ρ

dπm
dt
·
(∇µ′π )

i

T
, (2-17)

and the relation

Er
∗
− Er

L = dE
d2 p
dt2 , (2-18)

which is sometimes referred to as “the equation of intramolecular force balance” [Maugin 1988].

3. The constitutive relations

Since parameters T , ρm , Er
L , (∇µ′π )

r , and ê are independent, the Gibbs equation (2-18) yields the state
equations

s =− ∂ f
∂T

∣∣∣∣
ρm ,(∇µ′π )

r ,Er
L ,ê,
, σ̂∗ = ρ

∂ f
∂ ê

∣∣∣∣
T,ρm ,(∇µ′π )

r ,Er
L

, µ′π =
∂ f
∂ρm

∣∣∣∣
T,(∇µ′π )r ,Er

L ,ê
,

p=−
∂ f
∂Er

L

∣∣∣∣
T,ρm ,(∇µ′π )

r ,ê
, πm =

∂ f
∂(∇µ′π )

r

∣∣∣∣
T,ρm ,Er

L ,ê
.

(3-1)

Let us decompose the free energy density f into a Taylor series in perturbations of the state parameters
with respect to the original state of unlimited homogeneous medium with ê = 0, σ̂∗ = 0, Er

L = 0,
(∇µ′π )

r
= 0, p= 0, πm = 0, T = T0, s = s0, ρ = ρ0, ρm = 0, and µ′π =µ

′

π0. For small perturbations, we
retain quadratic terms in this decomposition which enables us to get the linear state equations. Therefore,
the free energy density for isotropic material has the form

f = f0−s0(T−T0)+µ
′

π0ρm−
CV

2T0
(T−T0)

2
+

1
2ρ0

(
K− 2

3 G
)
I 2
1+

1
ρ0

G I2+
1
2 dρρ2

m−
1
ρ0

Kαt I1(T−T0)

−
1
ρ0

Kαρ I1ρm −βTρρm(T − T0)−
1
2
χm(∇µ

′

π )
r
· (∇µ′π )

r
−

1
2χE Er

L · E
r
L +χEm Er

L · (∇µ
′

π )
r .

Here I1 = ê : Î ≡ e and I2 = ê : ê are the first and second invariants of strain tensor, respectively, K
is the modulus of volume elasticity at constant temperature and specific density of the induced mass, G
is the shear modulus, αt is the temperature coefficient of volume dilatation at uniform specific density
of the induced mass, αρ is the coefficient of volume dilatation caused by the local displacement of
mass at uniform temperature, CV is the specific heat at constant deformation and specific density of the
induced mass, χE is the dielectric susceptibility, βTρ and dρ are the isothermal-isochoric coefficients of
dependency of entropy and potential µ′π on a specific density of the induced mass, and χm and χEm are
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the coefficients that characterize the local displacement of mass and body polarization due to the gradient
of potential µ′π , respectively.

If the potential f is known, the constitutive equations (3-1) take on the form

s = s0+
CV

T0
(T − T0)+

1
ρ0

Kαt e+βTρρm, σ̂∗ = 2G ê+
{(

K − 2
3 G
)
e− K [αt(T − T0)+αρρm]

}
Î,

µ′π = µ
′

π0+ dρρm −βTρ(T − T0)−
1
ρ0

Kαρe, (3-2)

p= χE Er
L −χEm(∇µ

′

π )
r , πm =−χm(∇µ

′

π )
r
+χEm Er

L . (3-3)

Taking into account (2-18) we rewrite the state equations (3-3) as follows:

p= χE

(
Er
− dE

d2 p
dt2

)
−χEm(∇µ

′

π )
r , πm =−χm(∇µ

′

π )
r
+χEm

(
Er
− dE

d2 p
dt2

)
. (3-4)

We obtain kinetic relations based on (2-17) for entropy production. Let us assume that thermodynamic
fluxes j1= Jq , j2= Je∗, j3= ρ(d p/dt), and j4= ρ(dπm/dt) are linear functions of the thermodynamic
forces X1 =−∇T /T 2, X2 = E∗/T , X3 = Ei

∗
/T , and X4 =−(∇µ

′
π )

i/T :

ji =
4∑

j=1

Li j X j , (i = 1, 4). (3-5)

Here Li j (i, j = 1, 4) are constant kinetic coefficients. In general, the relations (3-5) are nonlinear. If we
take into account formulas (2-9) and (3-4) and exclude irreversible terms Ei and (∇µ′π )

i and reversible
terms Er and (∇µ′π )

r of vectors E and ∇µ′π , in the linearized approximation we obtain from (3-5) the
following relations for the vectors of heat flux and electric current density:

Jq =−LT
1 ∇T + L E

1 E− Lµ1 ∇µ′π − Ld
1

d2 p
dt2 + L p

1 p+ Lπ1 πm,

Je =−LT
2 ∇T + L E

2 E− Lµ2 ∇µ′π − Ld
2

d2 p
dt2 + L p

2 p+ Lπ2 πm,

(3-6)

and the rheological constitutive relations for vectors of polarization and local mass displacement:

Ld
3

d2 p
dt2 + ρ0

d p
dt
− L p

3 p− Lπ3 πm =−LT
3 ∇T + L E

3 E− Lµ3 ∇µ′π ,

Ld
4

d2 p
dt2 + ρ0

dπm
dt
− L p

4 p− Lπ4 πm =−LT
4 ∇T + L E

4 E− Lµ4 ∇µ′π .

(3-7)

Here

Ld
i =dE

Li3

T0
, LT

i =
Li1

T 2
0
, L E

i =
Li2+Li3

T0
, Lµi =

Li4

T0
, Lπi =

χEmLi3−χE Li4

T0(χEχm−χ
2
Em)

, L p
i =

χEmLi4−χmLi3

T0(χEχm−χ
2
Em)

,

where i = 1, 4. Note that summands Ld
3(d

2 p/dt2) and Ld
4(d

2 p/dt2) in the left hand parts of (3-7)
appear due to polarization inertia being taken into account while the summands ρ0(d p/dt), ρ0(dπm/dt),
Lπ3 πm , L p

4 p, LT
3 ∇T , and LT

4 ∇T appear due to considering the irreversibility of the processes of local



292 VASYL KONDRAT AND OLHA HRYTSYNA

mass displacement and polarization. According to (3-7), a body can be theoretically polarized not only in
the electric field but also in a gradient of temperature as well as in a gradient of potential µ′π . Therefore,
the rheological relations (3-7) should describe both the surface polarization (the gradient of potential µ′π
may be significant in near-surface regions [Burak et al. 2008]) and the thermopolarization effect which
consists in the linear response of the dielectric polarization to the temperature gradient.

Due to simple transformations, we can rewrite relations (3-7) as follows:

L( p)= L pT (∇T )− L pE(E)+ L pµ(∇µ
′

π ), L(πm)= LπT (∇T )− LπE(E)+ Lπµ(∇µ′π ). (3-8)

Here we introduce the operators

L =
Lπ3
ρ0

(
L p

4 − Ld
4

d2

dt2

)
−

(
Ld

3
d2

dt2 + ρ0 L p

)
Lπ , Lπ =

d
dt
−

1
τπ
, L p =

d
dt
−

1
τp
,

L pα = Lα3 Lπ+Lπ3
Lα4
ρ0
, Lπα =

1
ρ0
(Lα3 L p2+ Lα4 L p1), L p1= Ld

3
d2

dt2 +ρ0 L p, L p2= L p
4 −Ld

4
d2

dt2 ,

where α = {T, E, µ}, τp = ρ0/L p
3 , and τπ = ρ0/Lπ4 .

The constitutive equations (3-2), (3-6), and (3-8), the linearized balance equations (2-1), (2-4), and
(2-12), Maxwell’s equations (2-5), the strain-displacement relation (2-14), and the balance equation of
induced mass, which in linearized approximation looks like

ρm =−∇ ·πm, (3-9)

comprise a fundamental system of equations of linear augmented local gradient theory of deformable
nonferromagnetic polarized isotropic solids in which account is taken of the polarization inertia and the
irreversibility of both local mass displacement and polarization.

4. The key system of equations and a potential description

We shall study the ideal dielectrics for which ρe = 0 and Je = 0 and assume the isothermal approximation.
We write the key equations in the linearized approximation for perturbations of the following functions:
u, E, B, and µ̃′π = µ

′
π −µ

′

π0. Thus, we get

ρ0
∂2u
∂t2 =

(
K + 1

3
G−

K 2α2
ρ

ρ0dρ

)
∇(∇ · u)+G1u− K

αρ

dρ
∇µ̃′π + ρ0 F, (4-1)

Lπµ(1µ̃′π )+
1
dρ

L(µ̃′π )=−
Kαρ
ρ0dρ

L(∇ · u)+ LπE(∇ · E), (4-2)

∇× E =−∂B
∂t
, ∇ · B = 0, Lε(∇ · E)+ ρ0 L pµ(1µ̃

′

π )= 0,

L(∇× B)= µ0

[
Lε
(
∂E
∂t

)
+ ρ0 L pµ

(
∂(∇µ̃′π )

∂t

)]
. (4-3)

Here, Lε = ε0 L− ρ0 L pE and 1 is the Laplace operator. As may be seen in (4-3) the electrodynamics
equations contain time derivatives of higher orders. The increase in the orders of these equations is due
to accounting for the irreversibility of processes as well as the polarization inertia. Moreover, for the
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potential µ̃′π we obtain an equation which includes dynamic terms (for comparison, see [Burak et al.
2008]).

We see that (4-1)–(4-3) are interrelated. Therefore, this theory accommodates an electromechanical
interaction even for isotropic materials.

Let us represent the displacement u and mass force F as sums of their potential and vortex components:

u =∇φu +∇×ψu, F =∇8+∇×9, ∇ ·ψu = 0, ∇ ·9 = 0, (4-4)

Similarly, we represent the electric field E and the magnetic field B in terms of the scalar (electrical)
potential φe and the vector potential A:

E =−∇φe−
∂A
∂t
, B =∇× A. (4-5)

With the relationship
φem = ε

−1
[Lεφe− ρ0 L pµµ̃

′

π ], (4-6)

we introduce the generalized potential φem , where ε is the dielectric permittivity of the medium. By
neglecting the inertia of polarization and its irreversibility we have: ε = ε0+ ρ0χE .

If the Lorentz gauge condition is modified in such a way:

L(∇ · A)+ εµ0
∂φem

∂t
= 0, (4-7)

then the electrodynamics equations (4-3) are reduced to two unrelated similar differential relations for
vector A and scalar φem potentials:

L(1A)−µ0 Lε
(
∂2 A
∂t2

)
= 0, L(1φem)−µ0 Lε

(
∂2φem

∂t2

)
= 0. (4-8)

Note that the presence of operators L and L pE in (4-8) leads to the dispersion of electromagnetic waves
in an infinite medium. This dispersion was discussed in [Kondrat and Hrytsyna 2010] for the case of
reversible processes of local mass displacement and polarization.

Substitution of (4-4) into (4-1) and (4-2) gives the equations:

G1ψu + ρ09 − ρ0
∂2ψu

∂t2 = 0, (4-9)(
K + 4

3
G−

K 2α2
ρ

ρ0dρ

)
1φu + ρ08− ρ0

∂2φu

∂t2 = K
αρ

dρ
µ̃′π , (4-10)

L
(
[LεLπµ+ρ0 LπE Lρµ](1µ̃′π )+

1
dρ

LεL(µ̃′π )+
Kαρ
ρ0dρ

LεL(1ϕu)−ε(1−LπE)(1ϕem)

)
= 0. (4-11)

The system (4-8)–(4-11) can be solved consistently. First we find the potentials A and φem from the
homogeneous equations (4-8). Then, in the next step, the functions µ̃′π and φu can be found based on
(4-10) and (4-11). If the potentials φem and µ̃′π are found, then in order to find φe we use differential equa-
tion (4-6). To determine the vector potentials ψu and A homogeneous unrelated equations are obtained,
which are also unrelated to the remaining equations of this system. However, to determine the potential
ψu we use a relation identical to the ones obtained earlier in [Kondrat and Hrytsyna 2009b], whereas
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for the potential A we get the modified equation due to accounting for the polarization inertia. Formula
(4-11), unlike its analog obtained in [Kondrat and Hrytsyna 2009b], contains the generalized potential
φem and dynamical terms, caused by accounting for the polarization inertia and the irreversibility of both
the local mass displacement and polarization. From (4-8)–(4-11) it follows that in linear approximation
the local mass displacement is not associated with the change of body shape. This process is related to
the change of the body volume (the processes of compression-tension) and the electric scalar potential.
The local displacement of mass is the cause of perturbation of the electromagnetic field.

5. Conclusions

We obtained a complete system of equations of the local gradient theory of deformable nonferromagnetic
polarized isotropic solids in which the polarization inertia and the irreversibility of local mass displace-
ment and polarization are taken into account. With the assumption that the body state is defined by the
vector of the local electric field, we obtain the so-called equation of intramolecular force balance as well
as the corresponding constitutive equations. It is shown that by accounting for the inertia of polarization
and the above-mentioned irreversibility for the specific vector of polarization and the specific vector local
mass displacement we got the rheological constitutive relations which include time derivatives of first
and higher orders. The key system of equations is obtained for an isothermal approximation. This system
is also written down relative to the scalar φu and vector ψu potentials of the vector displacement, the
potential µ̃′π , the vector potential A, and the scalar generalized potential φem . Function φem is related to
the scalar electric potential φe and the potential µ̃′π by differential relation (4-6). The Lorentz gauge is
generalized in such a way that equations for the vector potential of the electromagnetic field and for the
generalized scalar potential are not interrelated and have similar structures. The effects of the mentioned
irreversibility and polarization inertia on the interaction of the investigated fields is discussed.
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ELECTROMAGNETOELASTIC WAVES IN A VORTEX LAYER
OF A SUPERCONDUCTOR

BOGDAN T. MARUSZEWSKI, ANDRZEJ DRZEWIECKI AND ROMAN STAROSTA

Magnetic field enters the type-II superconducting body along a discrete arrangement of magnetic vortex
lines. The paper aims at investigating the dispersion and amplitude distributions of magnetoelastic waves
propagating solely in the vortex field of the superconducting layer. Our attention has been focused on
the dispersion features and amplitudes for various wave velocities. The vortex field consists only of soft
vortices (the superconducting crystal is free of lattice defects).

1. Introduction

Magnetic flux can penetrate the type-II superconductor in the form of Abrikosov vortices (also called
flux lines, flux tubes or fluxons), each carrying a quantum of magnetic flux. Since the vortices are
formed by the applied magnetic field, the supercurrent flows around of each of them. There exist also
Lorentz force interactions among them, which give rise to an additional thermomechanical (stress) field
in type-II superconductors. Near the lower critical magnetic intensity limit Hc1, this field has elastic
character. However, if the density of the supercurrent is above its critical value and/or the temperature
is sufficiently high, there occurs a flow (creep or diffusion) of vortex lines in the superconducting body.
The fluidity of the vortex array has been also observed when the applied magnetic field approaches
its upper critical limit Hc2 [Blatter et al. 1994; Brandt 1995; Cyrot and Pavuna 1992]. Following a
magnetothermomechanical model of interactions in such II-type superconductors both for the lattice-like
and fluid-like states of the vortex field, where the specific definition of the vortex field stress tensor has
been introduced [Maruszewski 1998; 2007], this paper aims at determining the dispersion and amplitude
distributions of magnetoelastic waves propagating along soft vortices in the superconducting layer.

If the crystal lattice of the layer is free of lattice defects, there is a parallel arrangement of soft vortex
cores (Figure 1, left). However, in real crystals, imperfections such as vacancies, dislocations, disclina-
tions, grain boundaries, and interstitial atoms cause that the vortex lines can be curved or even tangled
because of pinning (Figure 1, right). We have confined in the paper only to the lattice-like state. The
choice of the geometry of the vortex field (layer) was motivated by a need to check if those magnetoelastic
waves and electromagnetoelastic waves in such peculiar environment are possible to be guided.

The natural conditions where devices may use such a technological solution exist in space where
temperature is about 4K and majority of elements and materials behave as superconductors. In the paper
the particular analysis of the SH magnetoelastic and compressional and flexural electromagnetoelastic
modes has been presented.

Partially supported by Poland’s Ministry of Science and Higher Education (MNiSzW) grant 1101/T02/2006/30 and DS grant
21-320/2009.
Keywords: magnetoelastic waves, dispersion, superconductor.
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Figure 1. Vortices in a perfect crystal (left) and in a real one (right), where pinning can occur.

2. General wave equations

Let us now consider a problem which deals with the dynamics of the previously defined vortex field. Fol-
lowing the thermodynamical model of the electromagnetomechanical interactions in continuous media,
i.e., the momentum balance with Hooke’s law and the Maxwell equations in the moving frames with
the first London equation we are able to formulate proper equations describing dynamics of the vortex
field in the elastic superconductor. For the sake of simplicity thermal influences have been omitted. The
governing equations of the electromagnetoelastic vortex waves read as follows [Maruszewski et al. 2007]:

µui, j j + ηu̇i, j j + (λ+µ)u j,i j +
1
3ηu̇ j,i j −µ0(hr,i − hi,r )H 0

r − ρüi = 0,

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0,

λ2
0ei, j j − ei +µ0ei jk u̇ j H 0

k = 0,

(1)

where uk is the displacement vector of the vortex field point, H 0
r is the applied magnetic field normal to

the limiting surfaces of the layer (Figure 1), hr is the small contribution to the total magnetic field in the
layer comparing to H 0

r and describes its perturbations, because the linear form of equations (1) results
from

Hk = H 0
k + hk, |hk | � |H 0

k |. (2)

Here ek is the electric field intensity understood in the sense of (2), λ and µ are Lamé’s constants, µ0 is
the permeability of vacuum, η is the viscosity coefficient (inside each vortex core flows a normal current,
so the Ohmic resistivity occurs there [Cyrot and Pavuna 1992]), ρ is the vortex density [Maruszewski
2007; Maruszewski et al. 2007], and λ0 is the London penetration depth. Any thermal influences on the
considered waves have been omitted. The solutions of equations (1) are looked for in the form

f (x1, x3, t)= f̃ (x1) exp[i(ωt − kx3)], (3)

where f̃ (x1) are the amplitudes of signals u1, u2, u3, h1, h2, h3, e1, e2, e3 propagating in x1 direction
with the velocity v:

f̃ (x1)= {u1, u2, u3, h1, h2, h3, e1, e2, e3} (4)

if the geometry of the problem is as shown in Figure 2.
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Figure 2. Geometry of the problem.

To facilitate the analysis of the waves, all the relations will be presented in the dimensionless form,
with the help of the following substitutions, where c̃ is the speed of light:

x1 = hx, x2 = hy, x3 = hz, t = T τ, T = h
vT
, vT =

√
µ

ρ
, �= ωT,

c =
kvT

ω
=
vT

v
, λ̃0 =

λ0

h
, µ̃=

K
µ
,

K = λ+ 2
3µ, λ̃=

λ

µ
, ρ̃ =

ρv2
T

µ
= 1, H 0

= Hc1 H0, E = c̃µ0 Hc1,

c1 =
vT

c̃
, u1 = hux , u2 = hu y, u3 = huz,

η̃ = η
h
vT
, e1 = Eex , e2 = Eey, e3 = Eez, µ̄=

µ0 H 2
c1

µ
,

h1 = Hc1hx , h2 = Hc1h y, h3 = Hc1hz.

(5)

3. SH magnetoelastic waves

Let us consider at the beginning the SH magnetoelastic wave propagating along the vortex layer shown
in Figure 2. The general equations (1) in this case reduce to

µui, j j + ηu̇i, j j + (λ+µ)u j,i j +
1
3ηu̇ j,i j −µ0(hr,i − hi,r )H 0

r − ρüi = 0, (6)

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0, (7)

since the SH wave amplitudes in the layer are now looked for in the form (3) with

f̃ (x1)= {u2, h2}, (8)

because
u = [0, u2, 0], h = [0, h2, 0]. (9)

Taking (5) into account, the SH wave equations (6) and (7) become in dimensionless form

(µ̃+ i�η̃)
d2u y

dx2 +
�2

c2 (v
2ρ̃− µ̃− i�η̃)u y + µ̄H0

dh y

dx
= 0,

λ̃2
0

d2h y

dx2 − (λ̃
2
0
�2

c2 + 1)h y + H0
du y

dx
= 0.

(10)
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On using relations (5) in (8), the solutions of (10) determine the following amplitudes of the SH magne-
toelastic waves:

u y = S1ep1x
+ S2e−p1x

+ S3ep2x
+ S4e−p2x ,

h y =−M(p1, �, c)S1ep1x
+M(p1, �, c)S2e−p1x

−M(p2, �, c)S3ep2x
+M(p2, �, c)S4e−p2x ,

(11)

where
M(pk, �, c)=

pk

µ̄H0
+
�2(1− 1/c2)

µ̄H0 pk
, k = 1, 2.

The parameters p1 and p2 were determined from the characteristic equation

λ̃2
0 A(�)p4

+
[
λ̃2

0 B(�, c)− F(�, c)A(�)−µ0 H 2
0
]

p2
− F(�, c)B(�, c)= 0 (12)

where
A(�)= 1+ i�η̃, B(�, c)=

�2

c2 (c
2
− 1− i�η̃), F(�, c)= λ̃2

0
�2

c2 + 1.

A detailed analysis of the characteristic equation shows that wave propagation is possible only if

B(�, c) > 0. (13)

From (13) we get that if SH magnetoelastic wave amplitude is a function of x , then

c =
v

vr
< 1 (14)

We neglect, from now on, viscous features of the vortex field, in view of their very weak influence on
the propagation process; see [Cyrot and Pavuna 1992; Maruszewski et al. 2008].

Since the waves propagate along the layer, we should now take into account the proper boundary
conditions for solving the set of equations (10). They follow from Figure 2, and read

h y = 0 and
du y

dx
= 0 for x =−1 and x = 0. (15)

The first of these conditions expresses the continuity of the tangent component of the magnetic field
intensity, while the second follows from the equality σyz = 0 (the surfaces are free of loadings).

Substituting (11) into (15) we obtain the set of algebraic equations

−M(p1, �, c)S1e−p1 +M(p1, �, c)S2ep1 −M(p2, �, c)S3e−p2 +M(p2, �, c)S4ep2 = 0,

S1 p1e−p1 − S2 p1ep1 + S3 p2e−p2 + S4 p2ep2 = 0,

−M(p1, �, c)S1+M(p1, �, c)S2−M(p2, �, c)S3+M(p2, �, c)S4 = 0,

S1 p1− S2 p1+ S3 p2+ S4 p2 = 0,

(16)

or
W · S= 0, (17)

where
S= {S1, S2, S3, S4}

T . (18)

Hence we arrive at the dispersion relation for SH magnetoelastic wave in the form

det W = 0. (19)
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A unique solution for (19) exists if
c = 1. (20)

Thus the SH wave is nondispersive and its amplitude is independent of x . (See [Oliner 1978, Chapter
5].) So, the supposition (14) is no longer valid. But the final conclusion is such that we are dealing only
with the plane SH wave mode in the vortex layer, which propagates with constant velocity — (20).

4. Compressional (C) and flexural (F) electromagnetoelastic waves

Let us now focus on electromagnetoelastic waves propagating along the magnetic vortex field layer. Our
aim is to answer the question of whether they can be guided by such a layer. It is well known that,
besides the SH magnetoelastc waves considered in the previous section, compressional (symmetric) and
flexural (antisymmetric) waves may also propagate along waveguides in the form of a rod, plate or ribbon
[Achenbach 1976, Chapter 8; Oliner 1978, Chapter 5; Eringen and Şuhubi 1975, Chapter 7] (Figure 3).

The solutions of the C and F wave equations (1) are looked this time for in the form (3) where f̃ (x1)

now stands for
f̃ (x1)= {u1, u3, h1, h3, e2} (21)

since (see Figure 4)
u = [u1, 0, u3], h = [h1, 0, h3], e= [0, e2, 0]. (22)

On using now (21) and (5) in (1) the dimensionless F and C wave equations read( 4
3 +

1
3 G̃
)
ux,xx +�

2(1− c2)ux −
1
3 i�c(G̃+ 1)uz,x = 0,

uz,xx +�
2[1− c2( 4

3 +
1
3 G̃
)]

uz −
1
3 i�c(G̃+ 1)ux,x + iµ̃H0�chx + µ̃H0hz,x = 0,

λ̃2
0hx,xx − (1+ λ̃2

0�
2c2)hx + i�cH0uz = 0,

λ̃2
0hz,zz − (1+ λ̃2

0�
2c2)hz + H0uz,x = 0,

λ̃2
0ey,xx − (1+ λ̃2

0�
2c2)ey − i�c1 H0uz = 0.

(23)

Figure 3. Symmetry of the vortex field displacements [Eringen and Şuhubi 1975]:
symmetric-compressional wave (left pair) and antisymmetric-flexural wave (right pair).

H
x

Figure 4. Geometry of the problem for the C and F waves in the vortex layer, following (5).
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These equations should be completed by the electromagnetic field equations in vacuum:

h p
x,xx −�

2(c2
− c2

1)h
p
x = 0, h p

z,xx −�
2(c2
− c2

1)h
p
z= 0, ep

y,xx −�
2(c2
− c2

1)e
p
y = 0, (24)

where superscript p denotes fields in a vacuum.
The jump and boundary conditions for (23) and (24) at the upper and lower planes of the layer read

(see Figure 4)

σxx |x=−1 = 0=⇒
dux

dx
|x=−1 = 0; σzx |x=−1 = 0=⇒

duz

dx
|x=−1 = 0;

(hx = h p
x )|x=0 or (ey = ep

y )|x=0; (hz = h p
z )|x=0;

σxx |x=1 = 0=⇒
dux

dx
|x=1 = 0; σzx |x=1 = 0=⇒

duz

dx
|x=1 = 0;

(hx = h p
x )|x=1 or (ey = ep

y )|x=1; (hz = h p
z )|x=1.

(25)

The desired C and F wave amplitudes are (using sh and ch to denote the hyperbolic sine and cosine)

ux = P(ξ2)S4 ch(ξ2x)+ P(ξ2)S3 sh(ξ2x)+ P(ξ3)S6 ch(ξ3x)+ P(ξ3)S5 sh(ξ3x)+ P(ξ4)S8 ch(ξ4x)

+ P(ξ4)S7 exp(ξ4x),

uz = Q(ξ2)S3 ch(ξ2x)+ Q(ξ2)S4 sh(ξ2x)+ Q(ξ3)S5 ch(ξ3x)+ Q(ξ3)S6 sh(ξ3x)+ Q(ξ4)S7 ch(ξ4x)

+ Q(ξ4)S8 sh(ξ4x),

hx = S3 ch(ξ2x)+ S4 sh(ξ2x)+ S5 ch(ξ3x)+ S6 sh(ξ3x)+ S7 ch(ξ4x)+ S8 sh(ξ4x),

hz =−
i
�c
[ξ2S4 ch(ξ2x)+ ξ2S3 sh(ξ2x)+ ξ3S6 ch(ξ3x)+ ξ3S5 sh(ξ3x)+ ξ4S8 ch(ξ4x)+ ξ4S7 sh(ξ4x)],

ey =−
c1

c
[S3 ch(ξ2x)+ S4 sh(ξ2x)+ S5 ch(ξ3x)+ S6 sh(ξ3x)+ S7 ch(ξ4x)+ S8 sh(ξ4x)],

(26)

where

P(ξ)=−
ξ(G̃+ 1)(λ̃2

0ξ
2
− 1− λ̃2

0�
2c2)

H0[(4+ G̃)ξ 2+ 3�2(1− c2)]
, Q(ξ)= i

λ̃2
0ξ

2
− 1− λ̃2

0�
2c2

�cH0
.

The parameters ξm are the solutions of the characteristic equation

(Aξ 6
+ Bξ 4

+Cξ 2
+ D)(�2c2λ̃2

0− λ̃
2
0ξ

2
+ 1)= 0, (27)

whose coefficients A, B,C and D are given in the Appendix.
The amplitudes of the electromagnetic waves outside the layer read as follows:

– above the upper plane:

h p
x = S1[ch(ξ̃1x)+ sh(ξ̃1x)], h p

z =−
i ξ̃1

�c
S1[ch(ξ̃1x)+ sh(ξ̃1x)], ep

y =−
c1

c
S1[ch(ξ̃1x)+ sh(ξ̃1x)],

(28)
– below the lower plane:

h p
x = S2[ch(ξ̃1x)−sh(ξ̃1x)], h p

z =
i ξ̃1

�c
S2[ch(ξ̃1x)−sh(ξ̃1x)], ep

y =−
c1

c
S2[ch(ξ̃1x)+sh(ξ̃1x)]. (29)
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Now using solutions (26), (28) and (29) in the boundary and jump conditions (25) we get a set of eight
algebraic equations for S1 through S8. They are given in the Appendix. After laborious calculations this
set of eight equation splits into two uncoupled sets:

WC · SC = 0, (30)

WF · SF = 0, (31)

where
SC =

{1
2(S1− S2), S4, S6, S8

}T
, SC =

{1
2(S1+ S2), S3, S5, S7

}T
.

Hence the dispersion relations for the considered waves are

– for compressional modes: det WC = 0, (32)

– for flexural modes: det WF = 0. (33)

5. Numerical results

In this section we limit ourselves to the numerical analysis of the compressional and flexural electromag-
netic wave propagation conditions since the SH magnetic wave is nondispersive propagating with the
constant velocity and is amplitude independent of the thickness of the layer. All the calculations have
been made for YBa2Cu3O6+x , or YBCO, ceramics. We have restricted ourselves to the lattice-like state
of the vortex field, so the external magnetic H0 is taken slightly higher than the limiting lower magnetic
field value Hc1.

Firstly, let us take care of the existence of the C and F waves in the layer. The conditions dealing
with their existence result from characteristic equation (27). That situation is illustrated in Figure 5.

Before we start analysis of the amplitude distribution of the C and F waves in the layer we should
consider their dispersion. Figure 6 shows the dispersion of the C waves calculated from (32), and the F
waves, from (33).

Remark that both in the C and F wave cases only one single modes propagate. That feature is
anomalous and differs from that for the classical elastic body where infinite number of modes propagate
[Eringen and Şuhubi 1975, Chapter 7]. From Figure 6 it is also visible that waves C and F characterize
anomalous dispersion: they propagate with acoustic velocity having optical frequencies (C wave has

Figure 5. Area of existence of C and F waves.
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Figure 6. Dispersion of C waves (left) and of F waves (right) for h = 10−7 m. Black:
H0 = 1; red: H0 = 10.

higher frequency comparable to the frequency spectrum of the visible light then F wave has lower
frequency comparable to the frequency spectrum of the infrared rays). Moreover, for both cases the
dispersion decreases if the external magnetic field H0 increases. Now let us take care of the amplitudes.

Compressional waves. The compressional (C) wave amplitudes for hx , hz, ey, ux , uz, σxx and σxz are
presented in Figure 7. Shaded areas indicate the layer region.

Figure 7. Compressional wave amplitudes for H0 = 1 and h = 10−7 m. Top row: hx ,
hz , ey . Middle row: ux , uz . Bottom row: σxx , σxz . Green: �= 0.2. Blue: �= 0.6. Red:
�= 0.9.
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The simple look at the drawings in Figure 7 shows that in the case of the electromagnetic part of
the C waves (top row) their amplitudes reach extremal values at the lateral planes of the layer and are
continuous across them. But the mechanical part of the C waves behave differently (middle and bottom
rows). They naturally exist only between the lateral planes of the layer. Then the longitudinal ux and
shear σxz modes are symmetric with respect to the middle surface of the layer. But the general conclusion
for all modes is such that all their amplitudes decreases if the frequency � increases.

Flexural waves. The flexural (F) wave amplitudes for hx , hz, ey, ux , uz, σxx and σxz are presented in
Figure 8.

The properties of the F wave amplitudes differ from their C counterpart. For example, hx and ez

amplitudes are extremal at the middle surface of the layer and do not “feel” its lateral planes disappearing
smoothly in infinity. Then antisymmetric hz is extremal at the above planes. The mechanical mode
amplitudes behave as follows:

– ux mode is linear and antisymmetric vanishing at the middle surface; it exist solely inside the layer.

– uz is symmetric with respect to the middle surface reaching there extremum.

Figure 8. Flexural wave amplitudes for H0 = 1 and h = 10−7 m. Green: �= 0.2. Blue:
�= 0.6. Red: �= 0.9. Top row: hx , hz , ey . Middle row: ux , uz . Bottom row: σxx , σxz .
The last panel, (h), shows the same graphs as (g) but at different scales.
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– σxx (the trace part of the stress associated with the wave propagation direction) behaves like uz;
however, it vanish at the lateral planes.

– σxz is antisymmetric with respect to the middle plane vanishing at the lateral surfaces. However
it behaves anomalously; from the last two panels in the bottom row of Figure 8 we see that there
exists a frequency �cr for which σxz values are equal to zero across the layer, so the σxz stress
values change sign if they are observed for �<�cr or for �>�cr .

According to the dependence of � the electromagnetic mode amplitudes decrease if the frequency �
increases contrary to the mechanical modes behavior (Figure 8).

6. Conclusions

The considerations made in the paper show that two general types of waves can propagate in the vortex
array existing solely in the superconducting layer. The first one deals with the SH magnetoelastic modes
and the second type concerns electromagnetoelastic compressional and flexural modes. It is known that
layers can be used in some situations as waveguides. Investigations made in the paper confirmed that
guided signal transmission along the magnetic vortex field is possible. Natural conditions for such an
application exist in free space, so such a technology, which is not energy consuming, might be used in
space ships or other similar equipment.

Except for classical properties, electromagnetoelastic C and F waves involve the same anomalous
features, as seen in Figure 8(c), (g), (h). The ux mode is linearly distributed across the layer, which differs
from the classical (mechanical non-vortex) situation. But a much more interesting result is presented in
Figure 8 (g), (h). We see that there exists a definite critical frequency �cr for which the amplitude of the
F σxz mode vanishes across the entire layer. That means that for such critical frequency �crσxz mode
does not propagate.

Appendix: The coefficients of (27) and the algebraic equations encoded in (30)–(31)

The coefficients of (27) are given by

A = λ̃2
0(4+ G̃),

B =−4(3�2c2λ̃2
0+ 1)− G̃(3�2c2λ̃2

0+ 1)− 4H 2
0 µ̃+ 7�2λ̃2

0+ G̃(�2λ̃2
0− H 2

0 µ̃),

C = 4�2c2(3�2c2λ̃2
0+ 2)+�2

[G̃c2(3�2c2λ̃2
0+ 2)+ 7(H 2

0 c2µ̃− 2�2c2λ̃2
0− 1)]

+�2
[G̃(H 2

0 c2µ̃− 2�2c2λ̃2
0− 1)− 3(H 2

0 µ̃−�λ̃
2
0)],

D =−4�2c4(�2c2λ̃2
0+ 1)−�4c2

[G̃c2(�2c2λ̃2
0+ 1)+ 3H 2

0 c2µ̃− 7(�2c2λ̃2
0+ 1)]

+�4
[G̃c2(�2c2λ̃2

0+ 1)+ 3(H 2
0 c2µ̃−�2c2λ̃2

0− 1)].

We next give the algebraic equations satisfied for S1, S2, . . . , S8. Let

Y (ξ)= 1
3(4+ G̃)P(ξ)ξ − 1

3 i�c(G̃− 2)Q(ξ) and Z(ξ)= [−Q(ξ)ξ + i�cP(ξ)],
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where sh and ch denote the hyperbolic sine and cosine. Then

Y (ξ2) ch ξ2 S3− Y (ξ2) sh ξ2 S4+ Y (ξ3) ch ξ3 S5− Y (ξ3) sh ξ3 S6+ Y (ξ4) ch ξ4 S7− Y (ξ4) sh ξ4 S8 = 0,

Z(ξ2) ch ξ2 S3− Z(ξ2) sh ξ2 S4+ Z(ξ3) ch ξ3 S5− Z(ξ3) sh ξ3 S6+ Z(ξ4) ch ξ4 S7− Z(ξ4) sh ξ4 S8 = 0,

ξ̃1(ch ξ̃1− sh ξ̃1)S1+ ξ2 sh ξ2 S3− ξ2 ch ξ2 S4− ξ3 sh ξ3 S5− ξ3 ch ξ3 S6+ ξ4 sh ξ4 S7− ξ4 ch ξ4 S8 = 0,

(ch ξ̃1− sh ξ̃1)S1− ch ξ2 S3+ sh ξ2 S4− ch ξ3 S5+ sh ξ3 S6− ch ξ4 S7+ sh ξ4 S8 = 0,

Y (ξ2) ch ξ2 S3+ Y (ξ2) sh ξ2 S4+ Y (ξ3) ch ξ3 S5+ Y (ξ3) sh ξ3 S6+ Y (ξ4) ch ξ4 S7+ Y (ξ4) sh ξ4 S8 = 0,

Z(ξ2) ch ξ2 S3+ Z(ξ2) sh ξ2 S4+ Z(ξ3) ch ξ3 S5+ Z(ξ3) sh ξ3 S6+ Z(ξ4) ch ξ4 S7+ Z(ξ4) sh ξ4 S8 = 0,

ξ̃1(ch ξ̃1− sh ξ̃1)S2+ ξ2 sh ξ2 S3+ ξ2 ch ξ2 S4+ ξ3 sh ξ3 S5+ ξ3 ch ξ3 S6+ ξ4 sh ξ4 S7+ ξ4 ch ξ4 S8 = 0,

(ch ξ̃1− sh ξ̃1)S2− ch ξ2 S3− sh ξ2 S4− ch ξ3 S5− sh ξ3 S6− ch ξ4 S7− sh ξ4 S8 = 0.
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