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RAYLEIGH-TYPE WAVE PROPAGATION IN AN AUXETIC DIELECTRIC

ANDRZEJ DRZEWIECKI

The propagation of Rayleigh-type waves in an elastic, isotropic, dielectric half-space for some orientation
of the external electric field is considered, with Poisson’s ratio in the range −1< ν < 0.5.

1. Introduction

Auxetics are materials that have a negative Poisson’s ratio [Stręk et al. 2008; 2009; 2010; Poźniak et al.
2010]. The earliest publications providing information on the unusual auxetic properties of certain natural
materials appeared almost a hundred years ago, but they did not arouse great interest because of the low
reproducibility of the reported experimental results. Physicists and engineers were also convinced for a
long time that there are no materials with negative Poisson’s ratio in nature, despite the fact that their
existence was known to be thermodynamically possible (see, for example, [Landau and Lifshits 1954]).
The possible applications of materials having this property were also overlooked at the time.

Contemporary studies of auxetics were started after the publication of [Lakes 1987]. Soon, numerous
possible applications of these materials were identified, such as body armor, packing material, knee and
elbow pads, robust shock absorbing material, sponge mops and many others. This is the reason for
the dynamic development of these materials research in recent years (see [Friis et al. 1988; Lakes and
Wineman 2006], for example).

A few articles have considered the dynamic behavior of auxetics materials in the framework of coupled
field theory. Here we discuss the problem of propagation of the Rayleigh-type waves in such media.
Specifically, we consider elastic, isotropic, and dielectric half-space with Poisson’s ratio in the range
(−1; 0.5), subject to an external electric field in some fixed orientation. We derive the propagation
equation and solve it numerically in special cases.

We adopt a statistical model (according to the classification by K. Hutter and A. A. F. van de Ven) for
the interaction between electromagnetic and mechanical fields. To render the basic equations amenable
to direct analysis, they are be linearized with respect to some average state, referred to as the ξ state.
The problem at hand suggests a natural definition of this state. It is assumed that ξ state is known or
at least determinable. All physical fields may be decomposed into two parts: the tensor fields in the ξ
state and tensor fields correction expressing the difference between the ξ state and the real state, in the
framework of the model. In this paper they are denoted by 0ϕ and ∗ϕ respectively, where ϕ is the tensor
field in question. Because the perturbations ∗ϕ are assumed to be small, the governing equations can be
linearized.
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2. Setting up the equations

The specific version of the basic equations derived in [Hutter and van de Ven 1978] that is presented
below corresponds with the problem under consideration. This specification is confined to the choice of
free energy form and proper definition of some average state. It is assumed that the ξ state is a motionless,
rigid body state and the electric field in this state is static and homogeneous. These assumptions are not
contradictory, but in general a stress vector acting at the surface that bounds a dielectric is needed.

The free energy is postulated in the form (material description):

F =−
1

2µ0ρ0

κ ′

1+ κ ′
BαBα +

1
2ρ0ε0κ

PαPα − 1
2 n(2−20)

2

− γ (2−20)Eγ γ +
1
ρ0
µ′EαβEαβ +

1
2ρ0

λ′EααEββ, (1)

where κ ′ is the magnetic susceptibility, κ the electric susceptibility, λ′, µ′ are the elastic constants, ρ0

the mass density, Bα the magnetic induction, Pα the magnetic induction, 2 the absolute temperature, γ ,
n the material constants, Cαβ Green’s deformation tensor, Eαβ = 1

2(Cαβ − δαβ) the Lagrangian strain
tensor, ε0 the electric permeability of vacuum and µ0 the magnetic permeability of vacuum.

With this choice, the constitutive equations read:

S =−
∂F
∂2
= n(2−20)+δEαα, Eα =

∂F
∂(Pα/ρ0)

=
1
ε0κ

Pα, Mα =−ρ0
∂F
∂Bα
=

κ ′

µ0(1+ κ ′)
Bα,

Tαβ = TiαF−1
βi = 2ρ0

∂F
∂Cαβ

−
(
PαEγ − BαMγ

)
C−1
βγ −Mγ BγC−1

αβ

= 2µ′Eαβ + λ′δαβEγ γ − ρ0γ δαβ(2−20)

−

(
1
ε0κ

PαPγ −
κ ′

µ0(1+ κ ′)
BαBγ

)
C−1
βγ −

κ ′

µ0(1+ κ ′)
Bγ BγC−1

αβ , (2)

where S is the entropy density, Eα the electric field intensity, Mα the magnetization, Tiα the Piola–
Kirchhoff stress tensor, Fiα the material deformation gradient, F−1

αi the spatial deformation gradient and
C−1
αβ Cauchy’s deformation tensor.
For an adiabatic process one obtains

2−20 =−
δ

n
Eαα (3)

and the constitutive relation (2) can be replaced by

Tαβ = 2µEαβ + λδαβEγ γ −
(

1
ε0κ

PαPγ −
κ ′

µ0(1+ κ ′)
BαBγ

)
C−1
βγ −

κ ′

µ0(1+ κ ′)
Bγ BγC−1

αβ , (4)

where

λ= λ′+ ρ0
γ 2

n
, µ= µ′ (5)

are the adiabatic elastic constants.
As a result of the linearizing procedure one reaches the equations of motion

ρ0üα = µuα,ββ + (λ+µ)uβ,βα −
1
ε0κ

0Pα ∗Pβ,β (6)
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(uα stands for the displacement), the Maxwell equations

∗Bα,α = 0, ∗Ḃα +
1
ε0κ

eαβγ ∗Pγ,β = 0,
(1
κ
+ 1

)
∗Pα,α −

1
κ

0Pβuβ,αα = 0,

−

(1
κ
+ 1

)
∗Ṗα +

1
κ

0Pγ u̇γ,α +
1

µ0(1+κ ′)
eαβγ ∗Bγ,β = 0, (7)

eαβγ 0Pγ,β = 0, 0 Pα,α = 0, (8)

and the jump conditions[
ε0

0E+α −
(

1+
1
κ

)
0P−α

]
Nα = 0, eαβγ

(
0E+α −

1
ε0κ

0P−β

)
Nγ = 0,

(
∗B+α −

∗B−α
)
Nα = 0, (9a)

T+i =
1
2δiβ

0P−α
0E+β Nα −

1
2ε0κ

δiβ
0P−α

0P−β Nα, eαβγ

(
∗E+β −

1
ε0κ

∗P−β

)
Nγ = 0, (9b)[

ε0
∗E+α −

(
1+

1
κ

)
∗P−α

]
Nα + 0P−α uγ,γ Nα −

(
ε0

0E+γ −
1
κ

0P−γ
)(

uγ,α − uα,γ
)
Nα = 0, (9c)

1
µ0

eαβγ

(
∗B+β −

1
1+ κ ′

∗B−β

)
Nγ + 0P−γ u̇αNγ −

(
ε0

0E+α −
1
κ

0P−α
)
u̇γ Nγ = 0, (9d)

[
µ
(
uω,β + uβ,ω

)
− δωβλuγ,γ

]
Nβ = 1

2 uα,ω 0P−β

(
0E+α +

1
ε0κ

0P−α

)
Nβ

−
1
2

0P−β

(
∗E+ω +

1
ε0κ

∗P−ω

)
Nβ − 1

2
∗P−β

(
0E+ω +

1
ε0κ

0P−ω

)
Nβ . (9e)

The elastic dielectric is placed on the “−” side of the surface (see Figure 1). It is assumed that T+i
(needed for the mechanical equilibrium of motionless rigid body placed in the electric field) is the only
surface traction of the other than electromagnetic origin. The quantities 0 E+α , ∗E+α and ∗B+α are defined
by

0E+α = δiα
0e+i ,

∗E+α = δiα
∗e+i + δiβ

0e+i uβ,α, ∗B+α = δiα
∗b+i , (10)

where 0e+i , ∗e+i , ∗b+i are the limits to which tend the decomposed fields ei , bi on the surface. The latter
vector fields are the electric field intensity and the magnetic induction in vacuum.
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Figure 1. The geometry of the problem.
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The vectors of electromagnetic field in vacuum satisfy the following equations:

ei jkek, j =−ḃi , ei,i = 0, 1
µ0

ei jkbk, j = ε0ėi , bi,i = 0, (11)

ei jk
0ek, j = 0, 0ei,i = 0, ei jk

∗ek, j =−
∗ḃi ,

∗ei,i = 0, 1
µ0

ei jk
∗bk, j = ε0

∗ėi ,
∗bi,i = 0. (12)

3. Rayleigh-type wave

The geometry of the problem is shown in Figure 1. The initial uniform electric polarization 0P has the
direction of x1 axis. Consider the propagation equations of a Rayleigh-type surface wave [Eringen and
Suhubi 1975; Nowacki 1970; Miklowitz 1978] in the same direction:

{u1, u3, P1, P3, B2} =
{
ũ1(x3), ũ3(x3), P̃1(x3), P̃3(x3), B̃2(x3)

}
exp[iγ (νt − x1)],

{e1, e3, b2} =
{
ẽ1(x3), ẽ3(x3), b̃2(x3)

}
exp[iγ (νt − x1)].

(13)

In the above equations and in the further considerations the following description (which should not lead
to failures) is introduced:

∗Pα = Pα, ∗Bα = Bα, ∗ei = ei ,
∗bi = bi ,

0Pα = δα1 P. (14)

After simply calculations one obtains the following system of the ordinary differential equations valid
in the half space x3 > 0.

c2
2ũ
′′

1+ γ
2(ν2
− c2

1)ũ1− iγ (c2
1− c2

2)ũ
′

3+ i
γ P
ρ0ε0κ

P̃1−
P

ρ0ε0κ
P̃
′

3 = 0,

c2
1ũ
′′

3+ γ
2(ν2
− c2

2)ũ3− iγ (c2
1− c2

2)ũ
′

1 = 0,

P̃
′′

1 − γ
2α P̃1− i

γ 3α

1+ κ
Pũ1+ i

γ

1+ κ
Pũ

′′

1 = 0,

P̃
′′

3 − γ
2α P̃3+

γ 2α

1+ κ
Pũ

′

1−
1

1+ κ
Pũ

′′′

1 = 0.

(15)

The amplitudeB̃2 satisfies the equation

B̃
′′

2 − γ
2α B̃2 = 0. (16)

In (15) and (16) the following notation has been introduced:

α = 1− (1+ κ)(1+ κ ′)
ν2

c2
0
, c2

1 =
λ+ 2µ
ρ0

, c2
2 =

µ

ρ0
, (17)

dφ̃
dx3
= φ̃

′

,
d2φ̃

dx2
3
= φ̃

′′

,
d3φ̃

dx3
3

= φ̃
′′′

. (18)

The characteristic equation of the system (15) is
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ε(ε2
− γ 2α)2

{
c2

1(c
2
2− v

2)ε4
+
[(
ν2
+ v2)(c2

1+ c2
2)− 2c2

1c2
2− ν

2v2]γ 2ε2

+
[
v2(ν2

− c2
2)+

(
ν2
− c2

1)(ν
2
− c2

2)
]
γ 4}
= 0, (19)

where

v2
=

P2

ρ0ε0κ(1+ κ)
. (20)

The solutions of the set of (15) have finally the form

ũ1 = S1 exp(ε1x3)+ S2 exp(ε2x3),

ũ3 =
iγ ε1(c2

1− c2
2)

c2
1ε

2
1 + γ

2(ν2− c2
2)

S1 exp(ε1x3)+
iγ ε2(c2

1− c2
2)

c2
1ε

2
2 + γ

2(ν2− c2
2)

S2 exp(ε2x3),

P̃1 = S3 exp(−γ
√
αx3)−

iγ P
1+ κ

S1 exp(ε1x3)−
iγ P
1+ κ

S2 exp(ε2x3),

P̃3 =−
i
√
α

S3 exp(−γ
√
αx3)+

ε1 P
1+ κ

S1 exp(ε1x3)+
ε2 P

1+ κ
S2 exp(ε2x3),

(21)

where S1, S2 and S3 are constants, and ε1 and ε2 are the roots of the expression in (outer) braces in (19),
which satisfy the restriction Re ε < 0. There is no physical singularity for ε1 = ε2 and ε1 = ε2 =−γ

√
α.

Similarly, the solution of the (16) is

B̃2 =
i

ε0κν

1−α
√
α

S3 exp(−γ
√
αx3). (22)

In the same way we obtain the following solution for the electromagnetic field in a vacuum:

ẽ1 = G exp(γ
√
βx3), ẽ3 =

i
√
β

G exp(γ
√
βx3), b̃2 =

i(β − 1)
ν
√
β

G exp(γ
√
βx3), (23)

where

β = 1−
ν2

c2
0
. (24)

Successive relations between S1, S2, S3 and G are the consequence of fact that jump conditions (9)
hold true. In this case they become

e+1 +
P
ε0κ

u1,1−
1
ε0κ

P−1 = 0, e+3 +
P
ε0κ

u1,3−
κ + 1
ε0κ

P−3 = 0, b+2 −
1

1+ κ ′
B−2 = 0,

u1,3+ u3,1 = 0, (c2
1− 2c2

2)u1,1+ c2
1u3,3 = 0.

(25)

After substitutions it is easy to obtain that

G =−

√
β

α

1+ κ
ε0κ

S3. (26)

This conclusion follows from the third equality in (25). The second equality in (25) is satisfied identically.
Finally the following set of equations has to be considered:

R1S1+ R2S2+ R3S3 = 0, Q1S1+ Q2S2 = 0, W1S1+W2S2 = 0, (27)
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where
R1 = R2 = iγ

√
α
κP

1+ κ
, R3 =

√
β(1+ κ)+

√
α, k = 1, 2

Qk =

[
1+

γ 2(c2
1− c2

2)

c2
1ε

2
k + γ

2(ν2− c2
2)

]
εk, Wk =

ε2
k c2

1(c
2
1− c2

2)

c2
1ε

2
k + γ

2(ν2− c2
2)
− c2

1+ 2c2
2.

(28)

Then in the case under consideration, the propagation condition of the Rayleigh-type wave has the form∣∣∣∣∣∣
R1 R2 R3

Q1 Q2 0
W1 W2 0

∣∣∣∣∣∣= 0. (29)

If the condition (29) holds true, it is possible to solve the system (27) with the respect of S1 and S2:

S1 =−
R3 Q2

R1 Q2− R2 Q1
S3, S2 =

R3 Q1

R1 Q2− R2 Q1
S3. (30)

For the analysis in the sequel it is convenient to use some dimensionless quantities

a =
c2

1

c2
2
, g =

v2

c2
2
, f =

ν2

c2
2
, ε̃ =

ε

γ
. (31)

The substitutions (31), applied to (29), yield[
a(ε̃2

1+1)+ f −2
][

a(ε̃2
2+1)+2 f −2− f a

]
ε̃1−

[
a(ε̃2

2+1)+ f −2
][

a(ε̃2
1+1)+2 f −2− f a

]
ε̃2=0. (32)

Similarly, writing explicitly the equation from which the roots ε1 and ε2 are determined (see (19)), the
following expression has been obtained:

a(1− g)ε̃4
+
[
( f + g)(a+ 1)− 2a− f g

]
ε̃2
+
[
( f − 1)(g+ f − a)

]
= 0. (33)

The root of (33) do not depend on γ . They are the functions of material constants, P and ν only. Then,
from the propagation condition follows that ν does not depend on γ , too (it is convenient to consider this
condition in the form (32)). There is no dispersion comparing to in the classical case [Stręk et al. 2010].

4. Some results for classical and auxetic materials

The propagation condition (32) can only be examined numerically. The only exception is the case a = 2
(Poisson ratio ν = 0), for which analytical analysis is possible. The results obtained in this case are
similar (though not identical) to results which are in force for auxetic materials. These results have not
been presented in the paper.

In Figure 2 the dependence of dimensionless phase velocity f on dimensionless (low) external electric
field strength g (see (20) and (31)) for conventional material is presented in two scales. In the area
bounded by the curve in the shape of a loop, the roots of (33) are complex. There is an interval of values
of parameter g for which the wave does not propagate (g ∈ (gB, gC)).

In Figure 3 the same dependence for strong external electric field is presented.
For the auxetic [Stręk et al. 2009] material and for the weak external electric field, character of ex-

amined dependence is similar to presented above (Figure 2). Significant differences become apparent
in the case of strong external electric field (g ≥ gC ). In this case two extra modes (rapidly vanishing
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Figure 2. The case a = 3 (conventional material, ν = 0.25); g ≤ gB ≈ 0.8990.
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Figure 4. The case a = 1.5 (auxetic, ν =−0.25), g ≥ gC ≈ 1.8925.

with increasing of g) of the wave appear. In the previously reported case, f decreased with increasing g
(Figure 3). The other situation is for the “fast”, not disappearing mode of the wave in the auxetic. The
increase in g results in an increase of f . Similar results were obtained in the previously mentioned case
ν = 0. In this case for strong external electric field only two modes of the wave appear.

In Figure 4 the dependence of dimensionless phase velocity f on dimensionless (strong) external
electric field g for the auxetic material is presented in two scales. Lowest mode fades so quickly that it
was necessary to present it choosing a different scale (Figure 4, right).
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