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LOCAL GRADIENT THEORY OF DIELECTRICS WITH POLARIZATION
INERTIA AND IRREVERSIBILITY OF LOCAL MASS DISPLACEMENT

VASYL KONDRAT AND OLHA HRYTSYNA

A complete system of equations of the local gradient theory of electromagnetothermomechanics of
polarized nonferromagnetic isotropic solids is obtained with regard to polarization inertia and the irre-
versibility of the processes of local mass displacement and polarization. It is shown that in this case the
constitutive relations for specific vectors of the local mass displacement and polarization are rheological
and contain time derivatives of the first and higher orders. A corresponding key system of equations
for the isothermal approximation is obtained. This system is also written relatively to scalar and vector
potentials of the displacement vector, vectors of the electromagnetic field, and a reduced energy measure
µ′π of the effect of the mass displacement on the internal energy. The Lorentz gauge is generalized in
such a way that equations for the vector potential of the electromagnetic field and for the generalized
scalar potential are not coupled and have similar structures. The effect of polarization inertia and the
above-mentioned irreversibility of processes on the interaction of the fields is analyzed.

1. Introduction

In recent decades in the scientific literature there has been considerable interest in developing nonlocal
theories of physical and mechanical processes in condensed matter. First of all, it is related to the need
to describe some of the observed effects [Mead 1961; 1962; Ma and Cross 2003; Majdoub et al. 2009]
and to the intensive introduction of composite materials in various technologies, including nanomaterials,
[Tauchert and Guzelsu 1972; Buryachenko and Pagano 2003; Kuno 2004; Sharma et al. 2007; Majdoub
2010] where nonlocal effects are of crucial importance. These investigations also urged the development
of the principles and methods of nonlocal thermodynamics [Ván 2003; Dolfin et al. 2004; Cimmelli and
Ván 2005], thermomechanics and theories of heat conduction [Papenfuss and Forest 2006; Forest and
Amestoy 2008], wave theory [Erofeyev 2003; Yerofeyev and Sheshenina 2005; Papargyri-Beskou et al.
2009], etc.

Nonlocal theories of deformable dielectrics are constructed by defining the functional constitutive
equations of spatial type (strongly nonlocal theories) or by means of an expansion of the space of state
parameter by gradients of certain physical quantities (weakly nonlocal theories) [Maugin 1988; Yang
2006; Kondrat and Hrytsyna 2009a]. In the scientific literature theories of both the first (see for example
[Eringen 1984]) and second type are well known, the latter taking into account the dependence of the
body state on the strain gradients [Tagantsev 1986; Majdoub et al. 2008; 2009; Majdoub 2010], the
polarization gradient [Mindlin 1972], or the electric field gradients [Kafadar 1971; Yang and Yang 2004]
corresponding to internal variables and their gradients [Ciancio 1989; Dolfin et al. 2004]. Another
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approach to the construction of the nonlocal theory of dielectrics, proposed in [Burak et al. 2008; Kondrat
and Hrytsyna 2008a], is based on considering the process of local mass displacement. Burak [1987] was
the first to pay attention to this process. He assumed that a mass flux has a component ∂5m/∂t of
nonconvective and nondiffusive nature. Burak related this flux to a process referred to as the process of
local mass displacement and the vector 5m was named the vector of this displacement [Burak 1987].
Later it was shown that the equations of the local gradient electromagnetothermomechanics of polarized
nonferromagnetic solids describe surface inhomogeneity in the mechanical and electromagnetic fields
[Burak et al. 2008], a high-frequency dispersion of elastic waves [Kondrat and Hrytsyna 2009b], and
the Mead anomaly [Chapla et al. 2009]. It should be noted that the relations of the theory obtained in
[Burak et al. 2008] are based on the assumption of reversibility of the polarization process; local mass
displacement and polarization inertia is not taken into account. However, such an approximation may
be insufficient and unacceptable for the study of transitional processes of the formation of near-surface
inhomogeneities and the perturbation of electromagnetomechanical processes by shock loads, as well as
for the description of acoustic and electromagnetic emission caused by the formation of surfaces, etc.

In this article a complete system of equations of the local gradient electromagnetothermomechanics
of polarized nonferromagnetic solids is obtained taking into account the inertia of polarization and the
irreversibility the of processes of polarization and local mass displacement. In order to consider the irre-
versibility of these processes we used the approach proposed in [Hrytsyna and Kondrat 2007; Kondrat and
Hrytsyna 2008b]. Moreover, in the total energy balance equation we took into account the kinetic energy
of polarization [Maugin 1988] that enables us to describe the inertia of polarization. The key system of
equations is obtained in isothermal approximation for isotropic solids. This system is also written relative
to the scalar and vector potentials of the displacement vector and the vectors of the electromagnetic field.
In order to arrive at the potential description, the Lorentz gauge had to be generalized. Based on this, the
interaction of the electromagnetic processes, deformation, and local mass displacement is discussed.

2. The balance equations

We consider an isotropic thermoelastic polarized nonferromagnetic body that occupies the domain (V )
of Euclidean space and is bounded by the smooth surface (6) with unit exterior normal n. The body
is subjected to the action of an external load, which induces the mechanical, thermal, and electromag-
netic processes, and the process of local displacement of mass. The polarization inertia as well as the
irreversibility of processes of polarization and local mass displacement are taken into account.

Taking into account the process of local displacement of mass we represent the mass flux Jm∗ as the
sum of the convective term Jmc = ρv∗ and the term Jms = ∂5m/∂t , which is caused by structural changes
of the fixed body element, namely Jm∗ = Jmc + Jms [Burak et al. 2008]. Here v∗ is a velocity of the
convective displacement of the fixed body element and ρ is the mass density.

Let us define the vector of the velocity of the continuum center of mass v by the relation

v = v∗+
1
ρ

∂5m
∂t

.

Then, the equation of mass balance takes the standard form

∂ρ

∂t
+∇ · (ρv)= 0. (2-1)
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Let us introduce the quantity ρmπ , which has dimension of mass density. We assume that, for an arbitrary
body of finite size that occupies the domain (V ), the vector of local displacement of mass and the density
of the induced mass are such that [Burak et al. 2008]∫

(V )
5m dV =

∫
(V )
ρmπ r dV . (2-2)

Here r is the position vector. By analogy with an induced electric charge [Landau and Lifshitz 1982],
we refer to the quantity ρmπ as a density of the induced mass [Burak et al. 2008].

The consequence of relation (2-2) is [Kondrat and Hrytsyna 2008a]

ρmπ =−∇ ·5m . (2-3)

By differentiating (2-3) with respect to time and taking into account that ∂5m/∂t = Jms , we obtain the
equation

∂ρmπ

∂t
+∇ · Jms = 0,

which can be interpreted as the balance equation of induced mass.
We also write the entropy balance equation, which is of the form [de Groot and Mazur 1962]

ρT ds
dt
=−∇ · Jq +

1
T

Jq ·∇T + Tσs + ρ<, (2-4)

where s is the specific entropy, Jq is the density of heat flux, σs is the entropy production, T is the
temperature, < denotes the distributed thermal sources, and d . . . /dt = ∂ . . . /∂t + v ·∇ . . . .

From Maxwell’s equations,

∇ · B = 0, ∇ · D = ρe, ∇× E =−∂B
∂t
, ∇× H = Je+

∂D
∂t
, (2-5)

we obtain the electromagnetic field energy balance equation:

∂Ue
∂t
+∇ · Se+ Je∗ · E∗+

[
ρe E∗+

(
Je∗+

∂(ρ p)
∂t

)
× B+ ρ(∇E∗) · p

]
· v

+ ρE∗ ·
d p
dt
−∇ · [ρ(E∗ · p) Î · v] = 0. (2-6)

Here Ue = (ε0 E2
+ µ0 H2)/2 is the energy density of the electromagnetic field and Se = E × H is

the flux density of its energy, E and H are the electric and magnetic fields, D and B are the electric
and magnetic inductions, D = ε0 E + ρ p, p is the specific vector of polarization, Je is the density
of electric current (the convection and conduction currents), ρe is the density of free electric charge,
E∗ = E+ v× B, Je∗ = Je − ρev, ε0 and µ0 are the electric and magnetic constants, and Î is the unit
tensor. For nonferromagnetic media B = µ0 H .

We assume that the total energy of the system “solid-electromagnetic field” is the sum of internal
energy ρu, kinetic energy of mass center ρv2/2, energy of the electromagnetic field Ue, and polarization
kinetic energy 1

2 ρdE(d p/dt)2. Here dE is the scalar related to the inertia of the polarization process
[Maugin 1988]. The total energy of the system is changed due to the convective transport of energy
through the surface, the flux of energy related to work σ̂ · v of internal forces, the heat flux Jq , the
electromagnetic energy flux Se, the flux of energy µJm connected to the mass transport relative to the
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center of mass of the body, and the flux of energy µπ (∂5m/∂t) related to structural changes, as well as
the action of mass forces F and distributed thermal sources <. Thus, the total energy balance equation
in integral form looks like

d
dt

∫
(V )

(
ρu+Ue+

1
2ρv

2
+

1
2ρdE

(d p
dt

)2
)

dV =

−

∮
(6)

[
ρ

(
u+ 1

2
v2
+

1
2

dE

(d p
dt

)2
)
v−σ̂ ·v+Se+ Jq+µJm+µπ

∂5m

∂t

]
·nd6+

∫
(V )
(ρF · v+ ρ<)dV .

(2-7)

Here σ̂ is the Cauchy stress tensor, µ is the chemical potential, µπ is the energy measure of the effect
of the mass displacement on the internal energy [Burak et al. 2008], and Jm = ρ(v∗− v).

Taking into account the energy balance equation of the electromagnetic field (2-6), the balance equa-
tions of mass and entropy, (2-1) and (2-4), relation (2-3), and formula Jm = −∂5m/∂t [Burak et al.
2008], as well as introducing the specific quantities πm = 5m/ρ and ρm = ρmπ/ρ, we finally obtain
from (2-7) the following balance equation of internal energy in the local form:

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ ρE∗ ·

d p
dt
+ ρµ′π

dρm

dt
− ρ∇µ′π ·

dπm
dt
− ρdE

d2 p
dt2 ·

d p
dt
+

+ Je∗ · E∗− Jq ·
∇T
T
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ ρF∗+ Fe

)
. (2-8)

Here µ′π = µπ −µ, ⊗ denotes the tensor product, and

σ̂∗ = σ̂ − ρ(E∗ · p− ρmµ
′

π −πm ·∇µ
′

π ) Î, F∗ = F+ ρm∇µ′π −πm ·∇∇µ′π ,

Fe = ρe E∗+
(

Je∗+
∂(ρ p)
∂t

)
× B+ ρ(∇E∗) · p.

To take into account the irreversibility of the processes of local mass displacement and polarization we
represent the vectors E∗ and ∇µ′π as sums of a reversible component, Er

∗
or (∇µ′π )

r , and an irreversible
in, Ei

∗
or (∇µ′π )

i [Hrytsyna and Kondrat 2007; Kondrat and Hrytsyna 2008b]:

E∗ = Er
∗
+ Ei

∗
, ∇µ′π = (∇µ

′

π )
r
+ (∇µ′π )

i . (2-9)

Taking into account (2-9) we rewrite (2-8) as follows:

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ ρEr

∗
·

d p
dt
+ ρµ′π

dρm

dt
− ρ(∇µ′π )

r
·

dπm
dt
− ρdE

d2 p
dt2 ·

d p
dt
+

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ ρF∗+ Fe

)
.

Let us assume that the equilibrium part of the local electric field vector Er
L is a state parameter [Maugin

1988]. This vector differs from term Er
∗

of the macroscopic electric field E∗. Therefore we rewrite the
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balance equation of internal energy as

ρ
du
dt
= ρT ds

dt
+ σ̂∗ : (∇⊗ v)+ρEr

L ·
d p
dt
+ρµ′π

dρm

dt
−ρ(∇µ′π )

r
·

dπm
dt
+ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ρF∗+Fe

)
.

(2-10)Using the Legendre transformation f = u−T s−Er
L · p+(∇µ

′
π )

r
·πm we pass to a new thermodynamic

function f , which is interpreted as a generalized Helmholtz free energy. Then, from the balance equation
of internal energy (2-10) we obtain

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ : (∇⊗ v)−ρ p ·

d Er
L

dt
+ρµ′π

dρm

dt
+ρπm ·

d(∇µ′π )
r

dt
+ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·
d p
dt

+ Je∗ · E∗− Jq ·
∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs + v ·

(
−ρ

dv
dt
+∇ · σ̂∗+ρF∗+Fe

)
.

(2-11)

The balance equation of free energy, (2-10), should be invariant relative to spatial translation, namely, it
should not change if v→ v+ a, where a is a constant vector. As a consequence, from (2-11) we get

ρ
dv
dt
=∇ · σ̂∗+ Fe+ ρF∗ for all r ∈ (V ), (2-12)

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ : (∇⊗ v)− ρ p ·

d Er
L

dt
+ ρµ′π

dρm

dt
+ ρπm ·

d(∇µ′π )
r

dt

+ ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt
+ Je∗ · E∗− Jq ·

∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs . (2-13)

Relation (2-12) is the equation of motion. We see that the redefinition of stress tensor σ̂∗ and the
emergence of additional mass force F∗ are the result of the account of the process of the local mass
displacement. Note also that the mass F∗ and ponderomotive Fe forces have similar structure.

Equation (2-13) should remain unchanged if the body rotates with constant angular velocity �. In this
case v→ v+�× r . As a consequence, we obtain that σ̂∗ is the symmetric tensor.

Let us represent the quantity ∇⊗ v in the form ∇⊗ v = dê/dt + dω̂/dt . Here v = du/dt , u is the
displacement vector, ê is the symmetric strain tensor, and ω̂ is the antisymmetric rotation tensor. These
tensors are related to a displacement vector u by:

ê= 1
2 [∇⊗ u+ (∇⊗ u)T ], ω̂ = 1

2 [∇⊗ u− (∇⊗ u)T ]. (2-14)

Since the convolution of the symmetric and antisymmetric tensors is equal to zero, then σ̂∗ : (dω̂/dt)= 0.
Thus, the free energy balance equation (2-13) takes the form

ρ
d f
dt
=−ρs dT

dt
+ σ̂∗ :

d ê
dt
− ρ p ·

d Er
L

dt
+ ρµ′π

dρm

dt
+ ρπm ·

d(∇µ′π )
r

dt

+ ρ

(
Er
∗
− Er

L − dE
d2 p
dt2

)
·

d p
dt
+ Je∗ · E∗− Jq ·

∇T
T
+ ρEi

∗
·

d p
dt
− ρ(∇µ′π )

i
·

dπm
dt
− Tσs . (2-15)
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Since the summands in the second line of (2-15) do not depend on the velocities

dT
dt
,

d ê
dt
,

d Er
L

dt
,

dρm

dt
,

d(∇µ′π )
r

dt
,

we get the generalized Gibbs equation

d f =−s dT + ρ−1σ̂∗ : d ê− p · d Er
L +µ

′

π dρm +πm · d(∇µ′π )
r , (2-16)

the expression for the entropy production

σs = Je∗ ·
E∗
T
− Jq ·

∇T
T 2 + ρ

d p
dt
·

Ei
∗

T
− ρ

dπm
dt
·
(∇µ′π )

i

T
, (2-17)

and the relation

Er
∗
− Er

L = dE
d2 p
dt2 , (2-18)

which is sometimes referred to as “the equation of intramolecular force balance” [Maugin 1988].

3. The constitutive relations

Since parameters T , ρm , Er
L , (∇µ′π )

r , and ê are independent, the Gibbs equation (2-18) yields the state
equations

s =− ∂ f
∂T

∣∣∣∣
ρm ,(∇µ′π )

r ,Er
L ,ê,
, σ̂∗ = ρ

∂ f
∂ ê

∣∣∣∣
T,ρm ,(∇µ′π )

r ,Er
L

, µ′π =
∂ f
∂ρm

∣∣∣∣
T,(∇µ′π )r ,Er

L ,ê
,

p=−
∂ f
∂Er

L

∣∣∣∣
T,ρm ,(∇µ′π )

r ,ê
, πm =

∂ f
∂(∇µ′π )

r

∣∣∣∣
T,ρm ,Er

L ,ê
.

(3-1)

Let us decompose the free energy density f into a Taylor series in perturbations of the state parameters
with respect to the original state of unlimited homogeneous medium with ê = 0, σ̂∗ = 0, Er

L = 0,
(∇µ′π )

r
= 0, p= 0, πm = 0, T = T0, s = s0, ρ = ρ0, ρm = 0, and µ′π =µ

′

π0. For small perturbations, we
retain quadratic terms in this decomposition which enables us to get the linear state equations. Therefore,
the free energy density for isotropic material has the form

f = f0−s0(T−T0)+µ
′

π0ρm−
CV

2T0
(T−T0)

2
+

1
2ρ0

(
K− 2

3 G
)
I 2
1+

1
ρ0

G I2+
1
2 dρρ2

m−
1
ρ0

Kαt I1(T−T0)

−
1
ρ0

Kαρ I1ρm −βTρρm(T − T0)−
1
2
χm(∇µ

′

π )
r
· (∇µ′π )

r
−

1
2χE Er

L · E
r
L +χEm Er

L · (∇µ
′

π )
r .

Here I1 = ê : Î ≡ e and I2 = ê : ê are the first and second invariants of strain tensor, respectively, K
is the modulus of volume elasticity at constant temperature and specific density of the induced mass, G
is the shear modulus, αt is the temperature coefficient of volume dilatation at uniform specific density
of the induced mass, αρ is the coefficient of volume dilatation caused by the local displacement of
mass at uniform temperature, CV is the specific heat at constant deformation and specific density of the
induced mass, χE is the dielectric susceptibility, βTρ and dρ are the isothermal-isochoric coefficients of
dependency of entropy and potential µ′π on a specific density of the induced mass, and χm and χEm are
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the coefficients that characterize the local displacement of mass and body polarization due to the gradient
of potential µ′π , respectively.

If the potential f is known, the constitutive equations (3-1) take on the form

s = s0+
CV

T0
(T − T0)+

1
ρ0

Kαt e+βTρρm, σ̂∗ = 2G ê+
{(

K − 2
3 G
)
e− K [αt(T − T0)+αρρm]

}
Î,

µ′π = µ
′

π0+ dρρm −βTρ(T − T0)−
1
ρ0

Kαρe, (3-2)

p= χE Er
L −χEm(∇µ

′

π )
r , πm =−χm(∇µ

′

π )
r
+χEm Er

L . (3-3)

Taking into account (2-18) we rewrite the state equations (3-3) as follows:

p= χE

(
Er
− dE

d2 p
dt2

)
−χEm(∇µ

′

π )
r , πm =−χm(∇µ

′

π )
r
+χEm

(
Er
− dE

d2 p
dt2

)
. (3-4)

We obtain kinetic relations based on (2-17) for entropy production. Let us assume that thermodynamic
fluxes j1= Jq , j2= Je∗, j3= ρ(d p/dt), and j4= ρ(dπm/dt) are linear functions of the thermodynamic
forces X1 =−∇T /T 2, X2 = E∗/T , X3 = Ei

∗
/T , and X4 =−(∇µ

′
π )

i/T :

ji =
4∑

j=1

Li j X j , (i = 1, 4). (3-5)

Here Li j (i, j = 1, 4) are constant kinetic coefficients. In general, the relations (3-5) are nonlinear. If we
take into account formulas (2-9) and (3-4) and exclude irreversible terms Ei and (∇µ′π )

i and reversible
terms Er and (∇µ′π )

r of vectors E and ∇µ′π , in the linearized approximation we obtain from (3-5) the
following relations for the vectors of heat flux and electric current density:

Jq =−LT
1 ∇T + L E

1 E− Lµ1 ∇µ′π − Ld
1

d2 p
dt2 + L p

1 p+ Lπ1 πm,

Je =−LT
2 ∇T + L E

2 E− Lµ2 ∇µ′π − Ld
2

d2 p
dt2 + L p

2 p+ Lπ2 πm,

(3-6)

and the rheological constitutive relations for vectors of polarization and local mass displacement:

Ld
3

d2 p
dt2 + ρ0

d p
dt
− L p

3 p− Lπ3 πm =−LT
3 ∇T + L E

3 E− Lµ3 ∇µ′π ,

Ld
4

d2 p
dt2 + ρ0

dπm
dt
− L p

4 p− Lπ4 πm =−LT
4 ∇T + L E

4 E− Lµ4 ∇µ′π .

(3-7)

Here

Ld
i =dE

Li3

T0
, LT

i =
Li1

T 2
0
, L E

i =
Li2+Li3

T0
, Lµi =

Li4

T0
, Lπi =

χEmLi3−χE Li4

T0(χEχm−χ
2
Em)

, L p
i =

χEmLi4−χmLi3

T0(χEχm−χ
2
Em)

,

where i = 1, 4. Note that summands Ld
3(d

2 p/dt2) and Ld
4(d

2 p/dt2) in the left hand parts of (3-7)
appear due to polarization inertia being taken into account while the summands ρ0(d p/dt), ρ0(dπm/dt),
Lπ3 πm , L p

4 p, LT
3 ∇T , and LT

4 ∇T appear due to considering the irreversibility of the processes of local
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mass displacement and polarization. According to (3-7), a body can be theoretically polarized not only in
the electric field but also in a gradient of temperature as well as in a gradient of potential µ′π . Therefore,
the rheological relations (3-7) should describe both the surface polarization (the gradient of potential µ′π
may be significant in near-surface regions [Burak et al. 2008]) and the thermopolarization effect which
consists in the linear response of the dielectric polarization to the temperature gradient.

Due to simple transformations, we can rewrite relations (3-7) as follows:

L( p)= L pT (∇T )− L pE(E)+ L pµ(∇µ
′

π ), L(πm)= LπT (∇T )− LπE(E)+ Lπµ(∇µ′π ). (3-8)

Here we introduce the operators

L =
Lπ3
ρ0

(
L p

4 − Ld
4

d2

dt2

)
−

(
Ld

3
d2

dt2 + ρ0 L p

)
Lπ , Lπ =

d
dt
−

1
τπ
, L p =

d
dt
−

1
τp
,

L pα = Lα3 Lπ+Lπ3
Lα4
ρ0
, Lπα =

1
ρ0
(Lα3 L p2+ Lα4 L p1), L p1= Ld

3
d2

dt2 +ρ0 L p, L p2= L p
4 −Ld

4
d2

dt2 ,

where α = {T, E, µ}, τp = ρ0/L p
3 , and τπ = ρ0/Lπ4 .

The constitutive equations (3-2), (3-6), and (3-8), the linearized balance equations (2-1), (2-4), and
(2-12), Maxwell’s equations (2-5), the strain-displacement relation (2-14), and the balance equation of
induced mass, which in linearized approximation looks like

ρm =−∇ ·πm, (3-9)

comprise a fundamental system of equations of linear augmented local gradient theory of deformable
nonferromagnetic polarized isotropic solids in which account is taken of the polarization inertia and the
irreversibility of both local mass displacement and polarization.

4. The key system of equations and a potential description

We shall study the ideal dielectrics for which ρe = 0 and Je = 0 and assume the isothermal approximation.
We write the key equations in the linearized approximation for perturbations of the following functions:
u, E, B, and µ̃′π = µ

′
π −µ

′

π0. Thus, we get

ρ0
∂2u
∂t2 =

(
K + 1

3
G−

K 2α2
ρ

ρ0dρ

)
∇(∇ · u)+G1u− K

αρ

dρ
∇µ̃′π + ρ0 F, (4-1)

Lπµ(1µ̃′π )+
1
dρ

L(µ̃′π )=−
Kαρ
ρ0dρ

L(∇ · u)+ LπE(∇ · E), (4-2)

∇× E =−∂B
∂t
, ∇ · B = 0, Lε(∇ · E)+ ρ0 L pµ(1µ̃

′

π )= 0,

L(∇× B)= µ0

[
Lε
(
∂E
∂t

)
+ ρ0 L pµ

(
∂(∇µ̃′π )

∂t

)]
. (4-3)

Here, Lε = ε0 L− ρ0 L pE and 1 is the Laplace operator. As may be seen in (4-3) the electrodynamics
equations contain time derivatives of higher orders. The increase in the orders of these equations is due
to accounting for the irreversibility of processes as well as the polarization inertia. Moreover, for the
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potential µ̃′π we obtain an equation which includes dynamic terms (for comparison, see [Burak et al.
2008]).

We see that (4-1)–(4-3) are interrelated. Therefore, this theory accommodates an electromechanical
interaction even for isotropic materials.

Let us represent the displacement u and mass force F as sums of their potential and vortex components:

u =∇φu +∇×ψu, F =∇8+∇×9, ∇ ·ψu = 0, ∇ ·9 = 0, (4-4)

Similarly, we represent the electric field E and the magnetic field B in terms of the scalar (electrical)
potential φe and the vector potential A:

E =−∇φe−
∂A
∂t
, B =∇× A. (4-5)

With the relationship
φem = ε

−1
[Lεφe− ρ0 L pµµ̃

′

π ], (4-6)

we introduce the generalized potential φem , where ε is the dielectric permittivity of the medium. By
neglecting the inertia of polarization and its irreversibility we have: ε = ε0+ ρ0χE .

If the Lorentz gauge condition is modified in such a way:

L(∇ · A)+ εµ0
∂φem

∂t
= 0, (4-7)

then the electrodynamics equations (4-3) are reduced to two unrelated similar differential relations for
vector A and scalar φem potentials:

L(1A)−µ0 Lε
(
∂2 A
∂t2

)
= 0, L(1φem)−µ0 Lε

(
∂2φem

∂t2

)
= 0. (4-8)

Note that the presence of operators L and L pE in (4-8) leads to the dispersion of electromagnetic waves
in an infinite medium. This dispersion was discussed in [Kondrat and Hrytsyna 2010] for the case of
reversible processes of local mass displacement and polarization.

Substitution of (4-4) into (4-1) and (4-2) gives the equations:

G1ψu + ρ09 − ρ0
∂2ψu

∂t2 = 0, (4-9)(
K + 4

3
G−

K 2α2
ρ

ρ0dρ

)
1φu + ρ08− ρ0

∂2φu

∂t2 = K
αρ

dρ
µ̃′π , (4-10)

L
(
[LεLπµ+ρ0 LπE Lρµ](1µ̃′π )+

1
dρ

LεL(µ̃′π )+
Kαρ
ρ0dρ

LεL(1ϕu)−ε(1−LπE)(1ϕem)

)
= 0. (4-11)

The system (4-8)–(4-11) can be solved consistently. First we find the potentials A and φem from the
homogeneous equations (4-8). Then, in the next step, the functions µ̃′π and φu can be found based on
(4-10) and (4-11). If the potentials φem and µ̃′π are found, then in order to find φe we use differential equa-
tion (4-6). To determine the vector potentials ψu and A homogeneous unrelated equations are obtained,
which are also unrelated to the remaining equations of this system. However, to determine the potential
ψu we use a relation identical to the ones obtained earlier in [Kondrat and Hrytsyna 2009b], whereas
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for the potential A we get the modified equation due to accounting for the polarization inertia. Formula
(4-11), unlike its analog obtained in [Kondrat and Hrytsyna 2009b], contains the generalized potential
φem and dynamical terms, caused by accounting for the polarization inertia and the irreversibility of both
the local mass displacement and polarization. From (4-8)–(4-11) it follows that in linear approximation
the local mass displacement is not associated with the change of body shape. This process is related to
the change of the body volume (the processes of compression-tension) and the electric scalar potential.
The local displacement of mass is the cause of perturbation of the electromagnetic field.

5. Conclusions

We obtained a complete system of equations of the local gradient theory of deformable nonferromagnetic
polarized isotropic solids in which the polarization inertia and the irreversibility of local mass displace-
ment and polarization are taken into account. With the assumption that the body state is defined by the
vector of the local electric field, we obtain the so-called equation of intramolecular force balance as well
as the corresponding constitutive equations. It is shown that by accounting for the inertia of polarization
and the above-mentioned irreversibility for the specific vector of polarization and the specific vector local
mass displacement we got the rheological constitutive relations which include time derivatives of first
and higher orders. The key system of equations is obtained for an isothermal approximation. This system
is also written down relative to the scalar φu and vector ψu potentials of the vector displacement, the
potential µ̃′π , the vector potential A, and the scalar generalized potential φem . Function φem is related to
the scalar electric potential φe and the potential µ̃′π by differential relation (4-6). The Lorentz gauge is
generalized in such a way that equations for the vector potential of the electromagnetic field and for the
generalized scalar potential are not interrelated and have similar structures. The effects of the mentioned
irreversibility and polarization inertia on the interaction of the investigated fields is discussed.
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