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ANALYTICAL STUDY OF PLASTIC DEFORMATION OF CLAMPED CIRCULAR
PLATES SUBJECTED TO IMPULSIVE LOADING

HASHEM BABAEI AND ABOLFAZL DARVIZEH

This paper presents an analytical method for determining deflection of fully clamped thin circular plates.
The plates are made from a rigid perfectly plastic material and subjected to a transverse localized and
uniform blast loading. The essence of the model is to describe the deformation profile with the aid of
a zero-order Bessel function and to perform energy analysis. This provides a method for predicting the
plastic deformation of circular plates under impulsive loading. It can be also regarded as an attempt to
use the energy method for different impulsive loading conditions. Calculations of the cases indicate that
the proposed analytical models are based on reasonable assumptions. The solutions obtained are in very
good agreement with different sets of experimental results.

A list of symbols can be found on page 320.

1. Introduction

Circular plates are common structural elements, which may, in many applications, be subjected to impact
and blast loads. Their large deflection and dynamic response under such conditions has received great
attention [Jones 1989]. An understanding of the response of structures when subjected to dynamic loads
which produce large plastic deformations and damage is important in solving a variety of engineering
problems. Despite significant progresses which have been made in this field during the past decade,
complete theoretical analysis of the dynamic structural response is still a formidable task, even for very
simple structures such as beams and plates [Chen et al. 2005]. Recently, various simplified models have
been developed for predicting the dynamic response of circular plate structures subjected to intense blast
loads. Wen et al. [1995a] developed a quasistatic procedure to predict the deformation and failure of a
clamped beam struck transversely at any point by a mass traveling at low velocities. A similar procedure
has been proposed in [Wen et al. 1995b; 1995c] to construct failure maps for fully clamped metal beams
and circular plates under impulsive loadings using a hybrid model (i.e., r.p.p. for the bending-membrane
solution and a power law for the effects of local shear) [Wen 1998].

The present paper attempts to explain a theoretical formulation based on energy method. The major
objective is to predict high rate plastic deformation of circular plate subjected to transverse impulsive
loading and for clamped boundary condition. The shape of deformation profile was described using a
Bessel function of zero order. The key assumption employed in the method is that effects of circumferen-
tial and radial strains are dominate during deformation process and thickness strain is negligible which
in turn simplifies the formulation and reduces the mathematical complexity of the problem.

Keywords: circular plate, blast load, localized load, uniform load, deformation, Bessel function.
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Figure 1. Schematic of two explosive conditions: uniform load (left) and localized load (right).

2. Analytical analysis

Uniform and localized loads on plates are two different explosive conditions which are applied in experi-
mental work. For localized loading as in Figure 1 (left), the disc-shaped explosive is laid on a polystyrene
pad. The explosive height and diameter is based on the loading required. In this case, the distribution of
blast load is focused (localized).

For uniform loading as in Figure 1 (right), the explosive is laid out on concentric annuli. The explosive
rings are connected by a cross leader of explosive. Concentric annuli are used instead of spreading the
explosive over the entire area, because the explosive does not detonate if the charge thickness is less than
two millimeters. According to the figure, the concentric annuli are set at radii 0.41R and 0.82R. There
is a polystyrene pad between shaped explosive and plate. In this case, the distribution of blast load on
target plate is uniform.

Localized load. In the theoretical analysis, the large deflection problem of thin circular plate has been
regarded as prototype on which various modeling concepts could be conveniently employed. One is wave
form solution on the transient responses of circular membrane as proposed in [Symonds and Wierzbicki
1979; Wierzbicki and Nurick 1996]. The result obtained is the zero-order Bessel function of the first
kind for the deflected shapes of membrane. Based on this deduction and similarity of zero-order Bessel
function curve with deflection profile of circular plate, it is assumed that, a suitable mathematical function
to describe the deflection profile of a circular plate is the zero-order Bessel function of the first kind as
in [Gharababaei and Darvizeh 2010]

w(r)=W◦ J0

(a · r
R

)
, (1)
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where w(r) is the transverse displacement of the plate, W◦ is the transverse displacement at the center,
r , R are the radial coordinate and outer radius of the plate, and a is first root of J0, with approximate
value 2.4048.

The strain energy per unit area in a circular plate is

dU = σr dεr + σθ dεθ . (2)

It is assumed that radial and circumferential strains are significant and thickness strain εt is negligible.
The total strain energy during the deformation of plate is

UT =

∫
V

U · dV . (3)

The total strain energy of a deformed circular plate consists of a bending strain energy Ub and a membrane
strain energy Um :

UT =Ub+Um . (4)

For Ub, according to (1), the bending strains are

εrb =−z
∂2w

∂r2 =W◦z
a2

R2

[
J0

(ar
R

)
−

R
ra

J1

(ar
R

)]
, (5)

εθb =−z
1
r
∂w

∂r
=W◦z

a
r R

J1

(ar
R

)
, (6)

where εrb and εθb are the radial bending and circumferential bending strains, J1 is first-order Bessel
function of the first kind and z is the transverse coordinate.

Ub =

∫
V
(σrεrb+ σθεθb) dV . (7)

For materials insensitive to hydrostatic pressure, such as metals, the hydrostatic component of the
stress tensor does not have a significant influence on yielding and plastic flow. Therefore these compo-
nents can be subtracted from the stress tensor and it is common practice to employ the Tresca or von
Mises yield criteria and the von Mises flow rules. Introducing the Tresca yield criterion and the von
Mises flow relation for a rigid plastic material, one obtains for the circular plate the relation

σr = σθ = σd , (8)

where σd is the mean dynamic flow stress. Therefore, (7) can be converted to

Ub =

∫ R

0

∫ H/2

−H/2
σd(εrb+ εθb)2πr dz dr = 1

2πσd H 2a J1(a)W◦. (9)

For Um , the membrane strain is

εrm =
1
2

(∂w
∂r

)2
= 2π

( a
R

)2 W 2
◦

2
J 2

1

(ar
R

)
. (10)
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Figure 2. Initial velocity profile of circular plate subjected to localized load.

Then, the membrane energy can be obtained as

Um =

∫
V
σrεrmdV = 2πσd

( a
R

)2
[∫ R

0

∫ H/2

−H/2

W 2
◦

2
J 2

1

(ar
R

)]
r dz dr = 1

2πσd H(a J1(a)W◦)2. (11)

When the plate is under a large deformation, the bending strain energy is much lower than the mem-
brane strain energy, because the ratio between the two is

Um

Ub
=

a J1(a)W◦
H

. (12)

In large deformation, the mid point deflection of plate W◦ is approximately more than 5H . Therefore,

Um ≈ 6Ub. (13)

So, in the analysis of large deformation of circular plate, the bending strain energy can be neglected
completely. Thus

UT =Um . (14)

The total strain energy is equal to the initial kinetic energy of the plate. Initial velocity profile of circular
plate subjected to localized load is not uniformly and it can be approximated as trapezoid distribution;
see Figure 2. By conservation of momentum, the input impulse I to the plate can be calculated as

I = m1V1(r)+m2V2(r), (15)

where m1 and m2 are the plate mass in the region under the explosive and in free region, respectively,
and

V1(r)= V◦ for 0≤ r ≤ S, (16)

V2(r)= V◦
R− r
R− S

for S ≤ r ≤ R, (17)

S being the radius of the explosive disc and V◦ the initial impulsive velocity in the central region of plate.
Substituting (16) and (17) into (15) yields

I = ρH V◦

[∫ S

0
2πr dr +

∫ R

S
2πr

(
R− r
R− S

)
dr
]
. (18)



ANALYTICAL STUDY OF PLASTIC DEFORMATION OF CLAMPED CIRCULAR PLATES 313

Integrating (18) with respect to r gives
I = mV◦ψ, (19)

where

m = ρπR2 H, (20)

ψ =
( S

R

)2
+

1
R− S

(
2S3

3R2 +
R
3
−

S2

R

)
, (21)

with ρ the density and m is the mass of the plate.
The kinetic energy imparted by an input impulse I to the plate can be calculated as

EK =
1
2

mV 2
◦
=

I 2

2mψ2 . (22)

Equating (14) and (22) gives

[a J1(a)]2W 2
◦
=

I 2

ρσd(πRH)2ψ2 . (23)

The mean dynamic flow (yield) stress σd can be determined by the well known Cowper–Symonds em-
pirical equation

σd = σy

[
1+

( ε̇m

D

)1/q
]
, (24)

where ε̇m is the mean strain rate, D and q are material constants with typical values for mild steel of
D = 40.4 s−1 and q = 5[1], and σy is the quasistatic yield stress.

Equation (24) can be estimated by (see [Symonds 1973; Wojno and Wierzbicki 1979])

σd = βσy

(
ε̇m

D

)1/βq

, (25)

where β is a constant with value 2.5.
According to (10), the strain rate ε̇ is obtained

ε̇ =
dεrm

dt
=W◦Ẇ◦

(
a
R
· J1

(ar
R

))2

. (26)

The mean strain rate at r = R may be expressed as

ε̇m =W◦Ẇ◦

(
a · J1(a)

R

)2

, (27)

where Ẇ◦ is the mean velocity that is estimated as

Ẇ◦ =
V◦
2
. (28)

Finally, (25) can be rewritten as
σd = βσyζ(W◦)1/βq , (29)
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where

ζ =

(
I (a · J1(a))2

2πρR4ψD

)1/βq

. (30)

Introducing φ as a dimensionless impulsive parameter

φ =
I

πRH 2ψ
√
βρσy

, (31)

one can rewrite (30) as

ζ =

(√
βσy

ρ
·
(a · J (a))2

2D
·

H 2φ

R3

)1/(βq)

. (32)

By substituting (29) into (23), one reaches the expression for the relationship between the dimensionless
displacement (ratio between midpoint deflection and thickness) and the dimensionless impulse parameter.

W◦
H
=

[
1
ζ

( φ

a J1(a)

)2
]βq/(1+2βq)

. (33)

Uniform load. In the case of a uniform load, the deflection profile is also described using the zero-order
Bessel function of the first kind, but the initial velocity profile of circular plate is uniform; see Figure 3.
So, by conservation of momentum, the initial velocity induced by the impulsive load is

V̄◦ =
I
m
, (34)

ĒK =
1
2

mV̄ 2
◦
=

I 2

2m
, (35)

where V̄◦ is the initial impulsive velocity and ĒK is kinetic energy imparted by an input impulse I to the
plate. Equating (35) and (14) gives

[a J1(a)]2W 2
◦
=

I 2

ρσd(πRH)2
. (36)

r
R

V0

Figure 3. Initial velocity profile of circular plate subjected to uniform load.
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Similarly to the preceding section, the mean dynamic flow (yield) stress σd can be determined as follows:

σd = βσy ζ̄
(W◦

H

)1/βq
, (37)

where

ζ̄ =

(
I (a · J1(a))2

2πρR4 D

)1/βq

. (38)

Introducing φ̄ as a dimensionless impulsive parameter

φ̄ =
I

πRH 2
√
βρσy

. (39)

Equation (38) also can be rewritten as

ζ̄ =

(√
βσy

ρ
·
(a · J (a))2

2D
·

H 2φ̄

R3

)1/βq

. (40)

Similar to the procedure employed in previous section, by substituting (37) into (36), it leads to expression
for the relationship between the midpoint-deflection-to-thickness ratio (dimensionless displacement) and
dimensionless impulse parameter.

W◦
H
=

[
1
ζ̄

( φ̄

a J1(a)

)2
]βq/(1+2βq)

. (41)

3. Results of experimental tests

The different experimental results used in this paper have been obtained through similar procedures.
The experimental method consisted of creating an impulsive load with the aid of plastic explosive and
measuring the impulse using a blast pendulum. The test plates are made from mild steel material with
various thicknesses and radii. The test plates were sandwiched securely by support plates as shown in
Figure 4 which were in turn fixed to ballistic pendulum [Jacob et al. 2007].

Figure 4. Experimental set-up [Jacob et al. 2007].
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Experiment number Data 2R H Load Load ratio σy W◦,min W◦,max Imin Imax
and source points (mm) (mm) type S/R (MPa) (mm) (mm) (N s) (N s)

1. [Chung Kim Yuen
and Nurick 2000] 20 100 1.6, 3.6 loc. 0.25, 0.33

0.4 252 16 31.3 6.6 31.3

2. [Bodner and Symonds 1979] 21 64 1.9 loc. 0.33, 0.5 223 2.5 11.4 0.85 4.

3. [Nurick and Radford 1997] 42 100 1.6 loc. 0.18, 0.25
0.33, 0.4 194 5.4 29.9 2.7 12.4

4. [Nurick 1989] 21 100 1.6 unif. — 282 6.14 19.8 5.6 15.6

5. [Nurick and Teeling-Smith 1994] 143 100 1.6 unif. — 270 4.62 27.9 4.55 22.04

6. [Nurick and Lumpp 1996] 7 100 1.6 unif. — 255 7.26 20.43 5.21 16.47

7. [Nurick et al. 1996] 113 60, 80
100, 120 1.6 unif. — 290 2.7 34.3 1.4 30.9

8. [Bodner and Symonds 1979] 8 64 1.9 unif. — 223 0.86 12.34 0.91 7.15

9. [Thomas and Nurick 1995] 20 100 3–3.9 unif. — 262 5.6 20.9 4.6 16.3

Table 1. Summary of circular plate experimental conditions. Density ρ = 7860 kg/m3

in all cases. For the meaning of the variables see the text or the list on page 320.

The impulsive load is provided by a shaped plastic explosive charge placed over the test plate. The
shape of charge adjusts localized or uniform according to Figure 1. The explosive charge is placed on a
12–16 mm thick polystyrene pad mounted directly onto the plate. The reason for using a polystyrene
pad is to prevent spalling. A detonator taped with 1 gram of explosive was attached to the center
of the explosive disk. Table 1 summarizes different load conditions and plate geometries for various
experimental reports for clamped circular mild steel plates subjected to localized and uniform blast loads
[Chung Kim Yuen and Nurick 2000; Bodner and Symonds 1979; Nurick and Radford 1997; Nurick 1989;
Nurick and Teeling-Smith 1994; Nurick and Lumpp 1996; Nurick et al. 1996; Thomas and Nurick 1995].

4. Comparison of the experimental and analytical results

Comparison with experimental results. The results obtained from analytical models in the preceding
section — (33) and (41) — are now compared with various sets of experimental results reported in the
literature (Table 1).

Figure 5 compares the theoretical values of the midpoint-deflection-to-thickness ratio obtained using
(33) with the experimental values for different series of experiments from the literature, performed using
a localized load. The ratio is shown as a function of the dimensionless impulse (φ). The results of the
present model are generally in good agreement with the experimental ones. In three cases — parts (a2),
(b1), (c1) of the figure — the agreement is not so good, but even then the experimental values still fall
within a range of ±1 from the confidence line of (33) with confidence level of 83%, 100% and 52%,
respectively.

Similarly, Figure 6 compares the theoretical values of the midpoint-deflection-to-thickness ratio ob-
tained using (41) with the experimental values from the literature, in the case of a uniform load. Again
we see generally good agreement, suggesting that the model can successfully predict central deflection.
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In parts (b), (d1), (d3), and (d4) some experimental points do not fit with values of model; these points
fall within the ±1 confidence line of (41) with confidence level of 94%, 99%, 78% and 42%, respectively.

Thus the proposed model can be used in most cases to predict midpoint deflection thickness ratio for
different conditions of uniform and localized loads. Some experimental results obtained from literature
as shown in Figures 5(c1) and 6(d4) do show a big difference with the results obtained from the present
model. This could be due to incorrect impulse measurement or anisotropy in material properties.

Comparison with other formulas. There have been many research efforts for theoretical modeling the
dynamic response and deformation of thin plates to predict the relationship of deflection-thickness ratio as
a function of impulse, plate geometry and material properties. These models predict maximum midpoint
deflection of circular plates for localized and uniform loads: we mention in particular [Nurick and Martin
1989], which supplies the equation

W◦
H
=

0.318I
H 2 R√ρσy

(
1+ ln

R
S

)
(42)

for the ratio between midpoint deflection and thickness, and [Gharababaei et al. 2010], which supplies

W◦
H
=

0.12I
H 2 R√ρσy

R
S
. (43)

Both of these apply to the case of localized loads. For case of uniform loads we have from [Nurick and
Martin 1989]

W◦
H
=

f I
H 2 R√ρσy

(44)

where the factor f is given by those authors as 0.135; values from other authors (cited in [Nurick and
Martin 1989]) include 0.318 (Hudson), 0.212 (Symonds and Wierzbicki), 0.132 (Lipman), 0.260 (Jones),
and 0.382 (Batra and Dubey).

The table below compares the RMSE obtained with the literature equations (42)–(44) and with the
equations from our model, (33) and (41)). It can be observed that the models introduced in this paper
have much less RMSE compared with those reported in (42)–(44).

model RMSE model RMSE

(42) [Nurick and Martin 1989] 0.042 (44) [Nurick and Martin 1989] 1.055
(43) [Gharababaei et al. 2010] 0.045 (44) (Hudson) 12.914
(33) (present) 0.037 (44) (Symonds and Wierzbicki) 2.318

(44) (Lipman) 1.136
(44) (Jones) 8.439
(44) (Batra and Dubey) 28.064
(41) (present) 0.052

5. Conclusion

The models developed in the present work account for energy dissipation through plastic work. Two dif-
ferent analytical models were presented, for localized and uniform blast loads. The solution is determined



320 HASHEM BABAEI AND ABOLFAZL DARVIZEH

completely through material and geometrical parameters. A zero Bessel function was used to determine
the deflection profile for different types of impulsive loading (localized and uniform). Subsequent cal-
culation indicated that the accuracy of quantities such as central deflection is sensitive to the function
describing the exact shape of deflection profile. Analytical predictions of present models for central
deflection of fully clamped impulsively loaded circular plates are in good agreement with numerous
experimental data. This is despite of fact that calculation based on the analytical solution of present
model involved only values of radial and circumferential strains, the values of thickness strain considered
being relatively small and negligible.

Although the models in (33) and (41) indicate a nonlinear relationship between deflection and im-
pulsive load, Figures 2 and 3 show an almost linear relationship between these parameters. In fact, the
linearity or nonlinearity of the models depends on material properties (q) of the plates.

In summary, the models presented in this paper can predict central deflection of the plate subjected
to impulsive loading accurately. The values obtained for central deflection from analytical models de-
veloped here show less error, in comparison with experimental results, than those obtained from other
models already reported in literature. It is intended that this analytical approach will be complementary
to the existing ones. However, the current establishment of equations in the present models is more
straightforward.
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List of symbols

w Transverse displacement of plate
W◦ Transverse displacement of plate at center
r Radial coordinate
z Transverse coordinate
R Radius of plate
H Thickness of plate
J0 Zero-order Bessel function
a First root of J0

J1 First-order Bessel function
εr Radial strain
εθ Circumferential strain
εt Thickness strain
σr Radial stress
σθ Circumferential stress
σd Mean dynamic stress
σy Quasistatic yield stress
V◦,V̄◦ Initial impulsive velocity

m Mass of plate
ρ Density of plate
Ek Kinetic energy for localized load
Ēk Kinetic energy for uniform load
I Input impulse
ψ Coefficient of load (geometric)
φ Dimensionless impulsive for localized load
φ̄ Dimensionless impulsive for uniform load
ε̇m Mean strain rate
D Material constant, defined in (24)
q Material constant, defined in (24)
V volume of plate
ζ Dimensionless parameter for localized load
ζ̄ Dimensionless parameter for uniform load
UT Total strain energy
Um Membrane strain energy
Ub Bending strain energy
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THEREOTICAL SOLUTIONS OF ADHESIVE STRESSES
IN BONDED COMPOSITE BUTT JOINTS

GANG LI

In this paper, closed-form solutions for the adhesive stresses in bonded composite single-strap butt joints
have been obtained. Two strategies were used for deriving the adhesive peel stress. The solutions are
applicable to a butt joint made from different adherend and doubler laminates, as well as the unbalanced
single-lap joints. In addition, three-dimensional finite element models of the unit-width composite joints
were created for analyzing the adhesive stresses under a plane strain condition. A total of six joint
conditions, three joint configurations and each with two layup sequences, were studied. Consistency
in the peel stress predictions was obtained from the two theoretical strategies. Good agreement has
been achieved between the theoretical and finite element results. The effects of the doubler thickness
and laminate layup sequence on the adhesive stress variation can be displayed. The theoretical solution
would provide a solid foundation for supporting the practical composite joint assessment.

A list of symbols can be found on page 345.

1. Introduction

With the recent advances in automated fiber placement equipment, composites can be effectively and
extensively used in various aircraft structures. A recent example is the fuselage structure being fabricated
for the Boeing 787, where large composite barrel sections are assembled. To this end, the composite
joints used are critical. One possible joint option for these types of structures is the single-strap butt joint
configuration. Typical attachments considered could be bonding, bolting, bonded-bolted joining, etc.

Bonded joints using adhesives with high moduli and strength would have much higher joint static
strength than bolted joints [Li et al. 2012]. To improve the structural integrity, mechanical fasteners can
be introduced using a hybrid (bonded-bolted) attachment approach [Kelly 2006; Li et al. 2012]. For
the bonded single-strap butt joint configuration, high peak adhesive stresses exist at the bonded overlap
edges, especially at the inner overlap edges [Hart-Smith 1985]. To evaluate the joint performance, the
adhesive stress profiles are crucial and need to be fully understood first for further joint improvement.
This is the subject of the current study.

The single-strap butt joint is actually fabricated by attaching two single-lap joints end-to-end, as shown
in Figure 1. The same adhesive stress equilibrium equations exist between the single-strap and single-lap
joints. Therefore, theoretical progress in the bonded single-lap joint can be applied to the single-strap butt
joint. The elastic analysis of the bonded joints can be first traced back to [Volkersen 1938]. To date, elastic
closed-form adhesive stress solution of the balanced single-lap joint has been well established [Goland

MSC2010: 00A05.
Keywords: adhesive stresses, closed-form solutions, composite single-strap butt joint, finite element analysis.
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Figure 1. Schematic diagrams for a single-strap butt (top) and a single-lap joint (bottom).

and Reissner 1944; Hart-Smith 1973; Chen and Cheng 1983; Oplinger 1994; Li and Lee-Sullivan 2006a;
Li and Lee-Sullivan 2006b]. When the two adherends have different geometries and/or mechanical
properties, the single-lap joints are referred to as unbalanced. Due to the coupling relationship between
the adhesive peel and shear stresses in the unbalance single-lap joint, the complexity of the analysis of
this joint configuration is much higher than that of the balanced case. The corresponding closed-form
adhesive stress solutions have not been provided by previous researchers [Hart-Smith 1973; Bigwood
and Crocombe 1989; Cheng et al. 1991].

Coupling relationship between the adhesive shear and peel stresses is present in a general butt joint
configuration with different doubler and adherends. Delale et al. [1981] reported their theoretical study
on a bonded panel-to-substrate joint structure, a kind of butt joint configuration. The uncoupled seven-
order differential equation for adhesive shear stress was provided. They gave general expressions of the
closed-form solutions for adhesive shear and peel stresses using complex terms with non-zero imaginary
terms. The associated integral constants and the final solutions of the adhesive stresses were not further
investigated. Bigwood and Crocombe [1989] obtained the uncoupled sixth-order differential equation
for the adhesive peel stress. The final closed-form stress solutions were not fully provided.

To obtain the closed-form adhesive stress solutions using explicit expressions in bonded composite
butt joints, the following theoretical preparations were made in [Li 2008; 2010; Li et al. 2011]:

(1) This kind of closed-form stress solutions was obtained for the butt joint using isotropic materials.

(2) The effective Young’s modulus and bending stiffness were identified for laminate beam panels.

(3) Expressions were provided for the four coefficients arising from the coupled adhesive stress differ-
ential equations in composite butt joint.

(4) A theoretical strategy for exploring adhesive peel and shear stresses was presented.

Closed-form stress solutions were successfully obtained and are presented in the current paper. Two
strategies were used to derive the adhesive peel stress solutions. To effectively demonstrate the theoretical
solution, three-dimensional finite element models using twenty-node brick elements were created for
analyzing the unit-width joints under a plane strain condition. A total of six joint conditions, three joint
configurations with two layup sequences each, were studied. One joint configuration, case 1, was a
special butt joint case made of identical laminates. The other two, cases 2 and 3, were general butt joints
with different adherends and doubler in bending stiffness. For the sake of brevity, only the adhesive
stress solutions and the associated comparisons are present. A quantitative study of the effect of various
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factors on the adhesive stress magnitude can be carried out using the obtained solutions, which is not
included in the paper. The theoretical solutions would make a sound basis for practical composite butt
joint applications in the aerospace industry.

2. Theoretical formulation

Joint deformation and its loading condition. A typical configuration for a bonded composite single-
strap butt joint is shown in Figure 2. The two adherends are made from identical laminates, which can
be different from the doubler laminate. Due to load path eccentricity, secondary bending occurs when
the joint is loaded in tension. Solutions of the joint deflection, elongation, bending moment, and strain
at the overlap edge region were given in [Li et al. 2011]. For a thin adhesive layer, the equations relating
the adhesive stress to the joint deformation are

σa

Ea
=
wu −wd

η
,

τa

Ga
=

uu − ud

η
, (1a)

where Ea and Ga are adhesive Young’s and shear moduli; η is the adhesive thickness, wu and wd are
deflections in the upper adherend and doubler and uu and ud are displacements in the adherend at the
adherend-adhesive interface and in the doubler at the adhesive-doubler interface.
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Figure 2. Top: a bonded composite butt joint in tension. Bottom left: forces at the over-
lap edges. Bottom right: the loading state in infinitesimal elements for upper adherend
(denoted by u) and doubler (d) in the overlap section.
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The axial strains of the adherend-adhesive and adhesive-doubler interfaces are

εx,adh =
duu

dx
= ε0

x,adh+
1
2 t1κx,adh = k11,adhTu + k12,adh Mu +

1
2 t1κx,adh

= k11,adhTu + k12,adh Mu +
1
2 t1(k12,adhTu + k22,adh Mu), (1b)

εx,doub =
dud

dx
= ε0

x,doub−
1
2 t2κx,doub = k11,doubTd + k12,doub Md −

1
2 t2κx,doub

= k11,doubTd + k12,doub Md −
1
2 t2(k12,doubTd + k22,doub Md), (1c)

where the ki j terms are compliances in the associated laminate in-plane constitutive equation [Li et al.
2011], as defined by (A.1a) in the Appendix.

Governing differential equations for adhesive stresses. The coupled adhesive stress differential equa-
tions for a single-strap butt joint are identical to those of a single-lap joint, except for the loading boundary
conditions at the overlap edges. Through equilibrium analysis in the bonded overlap section, the adhesive
stress equations can be derived (see [Cheng et al. 1991; Li 2008; 2010; Li et al. 2011]:

d3τa

dx3 + a1
dτa

dx
+ a2σa = 0,

d4σa

dx4 + b1σa + b2
dτa

dx
= 0, (2a)

where a1, a2, b1, and b2, are four basic parameters to be determined prior to the exploration of the
adhesive peel and shear stresses, σa and τa . The coupling parameters a2 and b2 vanish when dealing
with identical materials having the same thickness for the adherends and doubler. The four parameters
are determined in [Li et al. 2011] to be

a1 =−
Ga
η
(k11,adh+ k11,doub+

1
2 t1k12,adh−

1
2 t2k12,doub)

−
Ga
η

( 1
2(t1+ η)(k12,adh+

1
2 t1k22,adh)−

1
2(t2+ η)(k12,doub−

1
2 t2k22,doub)

)
, (2b)

a2 =
Ga
η
(k12,adh+ k12,doub+

1
2 t1k22,adh−

1
2 t2k22,doub), (2c)

b1 =
Ea
η
(k22,adh+ k22,doub), (2d)

b2 =−
Ea
η

(
k12,adh+ k12,doub+ k22,adh

1
2(t1+ η)− k22,doub

1
2(t2+ η)

)
, (2e)

where the ki j terms are presented in the Appendix.

3. Solutions for the adhesive stresses

Definitions of the butt joints in general and special cases. The general case refers to joints with different
adherends and doubler in materials and/or thicknesses. The special case refers to joints with the coupling
parameters a2 = b2 = 0. For this situation, the adhesive peel and shear stresses can be decoupled as in
the balanced single-lap joints and it is easy to obtain the closed-form solutions [Bigwood and Crocombe
1989; Cheng et al. 1991; Hart-Smith 1973; Li and Lee-Sullivan 2006a; Li and Lee-Sullivan 2006b].

Efforts to explore the closed-form solutions are carried out for the general butt joint case in the fol-
lowing.
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A special joint case: a2 = b2 = 0. The special joints are made from identical, symmetric and balanced
laminates. In this case, the parameters are k12 = 0, t1 = t2 = t , and k22,adh = k22,doub = k22. For thin
adhesive layer, the other two parameters are

a1 ≈−
Ga
η
(2k11+

t2

2 k22) and b1 =
2Ea

η
(k22). (3a)

The decoupled shear and peel stress equations would be

d3τa

dx3 + a1
dτa

dx
= 0,

d4σa

dx4 + b1σa = 0. (3b)

Adhesive shear stress in the special joint case. The general solution for the adhesive shear stress is then

τa = C0S +C1S cosh
(
x
√
−a1

)
+C2S sinh

(
x
√
−a1

)
. (3c)

The expressions for the three constants C0S , C1S and C2S , given in the Appendix, are determined using
the following three boundary conditions:∫ c

−c
τa dx =−T,

dτa

dx

∣∣∣∣
x=−c
=

Ga
η
(k11T + 1

2 tk22 M0),
dτa

dx

∣∣∣∣
x=c
=

Ga
η
(−k11T + 1

2 tk22 M1). (3d)

The first boundary condition is the equilibrium relationship in the adherend between the applied tensile
load and the integral of the resulting shear stress in the adhesive layer. The second and third boundary
conditions relate the first derivative of shear stress to the loads at two overlap edges, which are obtained
by combining the first derivative of the adhesive shear stress in (1a)2 and the expressions of axial strains
at the adherend-adhesive and adhesive-doubler interfaces in (1b) and (1c).

Adhesive peel stress in the special joint case. The general solution for the adhesive peel stress is

σa = C3S cosh x
(

4
√

b1/4
)

cos x
(

4
√

b1/4
)
+C4S sinh x

(
4
√

b1/4
)

cos x
(

4
√

b1/4
)

+C5S cosh x
(

4
√

b1/4
)

sin x
(

4
√

b1/4
)
+C6S sinh x

(
4
√

b1/4
)

sin x
(

4
√

b1/4
)
. (3e)

The four constants C3S, . . . ,C6S , given in the Appendix, are determined using the boundary conditions

d2σa

dx2

∣∣∣∣
x=−c
=

Ea
η

k22 M0,
d2σa

dx2

∣∣∣∣
x=c
=−

Ea
η

k22 M1,
d3σa

dx3

∣∣∣∣
x=−c
=

Ea
η

k22V0,
d3σa

dx3

∣∣∣∣
x=c
=−

Ea
η

k22V1.

These four boundary conditions relate the derivatives of adhesive peel stress with the applied loads at
the outer and inner overlap edges of the balanced butt joint.

The general joint case: a2 6= 0, b2 6= 0.

Adhesive shear stress in the general joint case. The uncoupled equation for the adhesive shear stress can
be obtained by eliminating the peel stress in (2a)1:

d7τa

dx7 + a1
d5τa

dx5 + b1
d3τa

dx3 + (a1b1− a2b2)
dτa

dx
= 0 (4a)

The corresponding characteristic equation becomes (see [Derrick and Grossman 1987; Kreyszig 1993]):

λ
(
λ6
+ a1λ

4
+ b1λ

2
+ (a1b1− a2b2)

)
= 0. (4b)
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The seven roots were previously obtained through complicated mathematical analyses in [Li 2010; Li
et al. 2011]. The seven λ roots are given in the Appendix. Provided φ1 = γ1 − a1/3 ≥ 0, the general
solution for the adhesive shear stress can be established as

τa = C0+C1 cosh
(
x
√
γ1− a1/3

)
+C2 sinh

(
x
√
γ1− a1/3

)
+C3 cosh

(
x(|φ|

1
2 cos β2 )

)
cos
(
x(|φ|

1
2 sin β

2 )
)
+C4 sinh

(
x(|φ|

1
2 cos β2 )

)
cos
(
x(|φ|

1
2 sin β

2 )
)

+C5 cosh
(
x(|φ|

1
2 cos β2 )

)
sin
(
x(|φ|

1
2 sin β

2 )
)
+C6 sinh

(
x(|φ|

1
2 cos β2 )

)
sin
(
x(|φ|

1
2 sin β

2 )
)
, (5a)

where the augment symbols φ and β have the same expression as in [Li 2010; Li et al. 2011] and are not
spelled out here. The seven integral constants C0, . . . ,C6, given in the Appendix, are determined using
the seven boundary conditions∫ c

−c
τa dx =−T,

dτa

dx

∣∣∣∣
x=−c
=

Ga
η

(
(k11,adh+

1
2 t1k12,adh)T+(k12,adh+

1
2 t1k22,adh)M0

)
,

dτa

dx

∣∣∣∣
x=c
=

Ga
η

(
(−k11,doub+

1
2 t2k12,doub)T+(−k12,doub+

1
2 t2k22,doub)M1

)
,

d2τa

dx2 +a1τa

∣∣∣∣
x=−c
=

Ga
η
(k12,adh+

1
2 t1k22,adh)V0,

d5τa

dx5 +a1
d3τa

dx3

∣∣∣∣
x=−c
=−a2

Ea
η
(k12,adhT+k22,adh M0),

d2τa

dx2 +a1τa

∣∣∣∣
x=c
=

Ga
η
(1

2 t2k22,doub−k12,doub)V1,
d5τa

dx5 +a1
d3τa

dx3

∣∣∣∣
x=c
= a2

Ea
η
(k12,doubT+k22,doub M1),

(5b)

where M0 and V0 are the bending moment and shear force at the outer overlap edge on the adherend,
while M1 and V1 are the bending moment and shear force at the inner overlap edge on the doubler.

The first boundary condition in (5b) is obtained through the equilibrium relationship between joint
adherend tensile load and the integral of the resulting shear stress in the adhesive layer. The other six
boundary conditions relate different derivatives of adhesive shear stress at the outer and inner overlap
edges with the applied loads at the same positions. Assuming continuity of strains at the adherend-
adhesive and doubler-adhesive interfaces, as well as the continuity in the adhesive stress, the second
and third boundary conditions at the two overlap edges are obtained by combining the first derivative of
adhesive shear stress in (1a)2 and the expressions of axial strains at the adherend-adhesive and adhesive-
doubler interfaces in (1b) and (1c). Adhesive shear stress in (1a)2 is differentiated twice and using
the equilibrium equations of moment and tensile force to substitute for the fourth and fifth boundary
conditions. To obtain the sixth and seventh boundary conditions for the uncoupled adhesive shear stress,
two differentiations are applied to the adhesive stress equation in (2a)1 with the aid of the peel stress
expression in (1a)1 and the moment-curvature relationship defined in the beam theory.

Current boundary conditions led to good agreement between the closed-form solutions of the proposed
first strategy and FE results for the butt joints made of isotropic materials [Li 2010; Li et al. 2011], as
well as the composite joints in the following section of the current paper.
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First strategy: adhesive peel stress in the general joint case. Two strategies are presented to explore the
closed-form adhesive peel stress solutions in bonded composite single-strap joints, provided the adhesive
shear stress solution is known. The first is the one used in [Li 2010; Li et al. 2011], and good agreement
was achieved between the theoretical and finite element results. The second was initially proposed in
[Bigwood and Crocombe 1989].

The general solution of the adhesive peel stress can be explored using its fundamental equation, (2a)2:

d4σa

dx4 + b1σa =−b2
dτa

dx
.

This nonhomogeneous equation can be investigated using variation of constants or Lagrange’s method
[Derrick and Grossman 1987; Kreyszig 1993]. The general solution is established by combining the
solution of its homogeneous equation and any one particular solution of its nonhomogeneous equation.
This strategy was successfully undertaken in [Li 2010; Li et al. 2011] and a detailed derivation of adhesive
stresses in a bonded isotropic butt joint, where the general adhesive stress solutions were determined and
good agreement was shown between closed-form solutions and finite element predictions.

The general solution of its homogeneous equation is

σaH = C1H cosh x
(

4
√

b1/4
)

cos x
(

4
√

b1/4
)
+C2H sinh x

(
4
√

b1/4
)

cos x
(

4
√

b1/4
)

+C3H cosh x
(

4
√

b1/4
)

sin x
(

4
√

b1/4
)
+C4H sinh x

(
4
√

b1/4
)

sin x
(

4
√

b1/4
)
. (6a)

One particular solution for its nonhomogeneous equation can be expressed in the form

σap = G1p(x) cosh x
(

4
√

b1/4
)

cos x
(

4
√

b1/4
)
+G2p(x) sinh x

(
4
√

b1/4
)

cos x
(

4
√

b1/4
)

+G3p(x) cosh x
(

4
√

b1/4
)

sin x
(

4
√

b1/4
)
+G4p(x) sinh x

(
4
√

b1/4
)

sin x
(

4
√

b1/4
)
, (6b)

where the functions G1p, . . . ,G4p are determined using the following simultaneous equations [Derrick
and Grossman 1987; Kreyszig 1993], where we have set Q = 4

√
b1/4:

G ′1p(x) cosh x Q cos x Q+G ′2p(x) sinh x Q cos x Q

+G ′3p(x) cosh x Q sin x Q+G ′4p(x) sinh x Q sin x Q = 0,

G ′1p(x)
d

dx
(cosh x Q cos x Q)+G ′2p(x)

d
dx
(sinh x Q cos x Q)

+G ′3p(x)
d

dx
(cosh x Q sin x Q)+G ′4p(x)

d
dx
(sinh x Q sin x Q)= 0,

G ′1p(x)
d2

dx2 (cosh x Q cos x Q)+G ′2p(x)
d2

dx2 (sinh x Q cos x Q)

+G ′3p(x)
d2

dx2 (cosh x Q sin x Q)+G ′4p(x)
d2

dx2 (sinh x Q sin x Q)= 0,

G ′1p(x)
d3

dx3 (cosh x Q cos x Q)+G ′2p(x)
d3

dx3 (sinh x Q cos x Q)

+G ′3p(x)
d3

dx3 (cosh x Q sin x Q)+G ′4p(x)
d3

dx3 (sinh x Q sin x Q)=−b2
dτa

dx
.

(6c)
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The expressions for G1p(x), . . . ,G4p(x) are very lengthy and can be found in [Li 2010], and thus are
not included here. The solution for the adhesive peel stress in the general butt joint case is given by
(again with Q = 4

√
b1/4)

σa = σaH + σap

= C1H cosh x Q cos x Q+C2H sinh x Q cos x Q

+C3H cosh x Q sin x Q+C4H sinh x Q sin x Q

+G1p(x) cosh x Q cos x Q+G2p(x) sinh x Q cos x Q

+G3p(x) cosh x Q sin x Q+G4p(x) sinh x Q sin x Q.

(6d)

The expressions for the four constants C1H , . . . ,C4H , given in the Appendix, are determined using the
boundary conditions

d2σa

dx2

∣∣∣
x=−c
=

Ea
η
(k12,adhT + k22,adh M0),

d3σa

dx3 + b2τa

∣∣∣
x=−c
=

Ea
η

k22,adhV0,

d2σa

dx2

∣∣∣
x=c
=−

Ea
η
(k12,doubT + k22,doub M1),

d3σa

dx3 + b2τa

∣∣∣
x=c
=−

Ea
η

k22,doubV1.

(6e)

The above four boundary conditions relate the derivatives of adhesive peel stress with the applied loads
at the outer and inner overlap edges. Two differentiations are conducted to the peel stress expression in
(1a)1 with the aid of the moment-curvature relationship to obtain the first two boundary conditions. One
more differentiation is applied to the second derivative of the peel stress expression in (1a)1 with the aid
of moment equilibrium relationship to obtain the third and fourth boundary conditions.

Second strategy: adhesive peel stress in the general joint case. As mentioned before, this strategy was
initially suggested by Bigwood and Crocombe in 1989. They did not present the associated boundary
conditions for exploring the peel stress. To assess the possibility and difficulty in using this strategy,
further adhesive stress exploration is conducted in the following.

The uncoupled sixth-order differential equation [Bigwood and Crocombe 1989] for adhesive peel
stress can be derived by eliminating adhesive shear stress in (2a)2 as

d6σa

dx6 + a1
d4σa

dx4 + b1
d2σa

dx2 + (a1b1− a2b2)σa = 0. (7a)

The corresponding characteristic equation becomes

λ6
+ a1λ

4
+ b1λ

2
+ (a1b1− a2b2)= 0. (7b)

Note from the two uncoupled adhesive stress differential equations in (4a) and (7a), that their character-
istic equations would have up to six common roots, λi (i = 1 to 6). One more characteristic root of λ= 0
exists for the adhesive shear stress.
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The general solution for the adhesive peel stress can be established as:

σa = C p1 cosh
(

x
√
γ1− a1/3

)
+C p2 sinh

(
x
√
γ1− a1/3

)
+C p3 cosh

(
x(|φ|

1
2 cos β2 )

)
cos
(
x(|φ|

1
2 sin β

2 )
)
+C p4 sinh

(
x(|φ|

1
2 cos β2 )

)
cos
(
x(|φ|

1
2 sin β

2 )
)

+C p5 cosh
(
x(|φ|

1
2 cos β2 )

)
sin
(
x(|φ|

1
2 sin β

2 )
)
+C p6 sinh

(
x(|φ|

1
2 cos β2 )

)
sin
(
x(|φ|

1
2 sin β

2 )
)
. (7c)

The six integral constants C p1, . . . ,C p6 in the general peel stress solution expression may be determined
using the following boundary conditions:∫ c

−c
σa dx = Vu|x=−c− Vu|x=c = V0,

∫ c

−c
σax dx =−(V0c+M0),

d2σa

dx2

∣∣∣
x=−c
=

Ea
η
(k12,adhT + k22,adh M0),

d3σa

dx3 + b2τa

∣∣∣
x=−c
=

Ea
η

k22,adhV0,

d2σa

dx2

∣∣∣
x=c
=−

Ea
η
(k12,doubT + k22,doub M1),

d3σa

dx3 + b2τa

∣∣∣
x=c
=−

Ea
η

k22,doubV1.

(7d)

Similarly to the explanations of the boundary conditions (5b), the boundary conditions (7d) reflect
the joint equilibrium state and internal relationship between the adhesive stresses and the associated
laminate moment-curvature at different differentiation levels. The derived six integral constants are
given in the Appendix. It can be seen from the derivations that the second strategy would avoid the
complex derivations and long expressions required for determining the adhesive peel stress used in the
first strategy.

Consistency of the adhesive stresses from the general to special joint cases. The derivations in the
closed-form stress solutions were carried out based on their fundamental equations, thus, when the gen-
eral case approaches the special butt joint case, both the adhesive peel and shear stresses will converge
to their corresponding adhesive stresses in the special joint case, which have been validated elsewhere
[Li 2010].

Consistency of the adhesive peel stresses between the two solution strategies in general joint case. For
clarity and simplicity, numerical examples in Section 4 will be used to demonstrate the consistency.

4. Numerical examples and discussion

A total of six joint conditions were studied: three joint configurations and each with two layup sequences.
Each of the selected joints have two identical 50 mm long unbonded outer adherends, a 101.6 mm long
doubler including a 0.5 mm long inner section, and two identical 50.55 mm long adhesive layers of
0.17 mm in thickness. A 100 MPa remote tensile stress was applied to the joint adherend.

The 16-ply laminates were used for all the joint adherends. The only difference was the doubler
laminates in the three joint configurations. The case 1 joint had identical 16-ply laminates for both the
adherend and doubler, which makes it the special joint without a coupling effect between the adhesive
peel and shear stresses. The doublers of the case 2 joint were made from 24-ply laminates, and the case 3
joint doublers were made from 32-ply laminates. The two layup sequences were [45/−45/0/90]ns and
[0/90/45/−45]ns referred to as S1 and S2, respectively. The same layup sequence was used in each joint
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laminates. For instance, C1S1 refers the case 1 joint made from the 16-ply [45/−45/0/90]2s laminates;
and C2S2 refers the case 2 joint made from the 16-ply [0/90/45/−45]2s laminate adherend and 24-ply
[0/90/45/−45]3s laminate doubler, etc. The laminates were generated using 0.14 mm thick carbon fiber
laminae, and the lamina material properties were: E11 = 145 GPa, E22 = 8.9 GPa, v12 = 0.31, and G12 =

4.5 GPa based on our tests.

Determination of the adhesive stresses using the closed-form solutions. The first step is to determine
the bending moments and shear forces at the bonded overlap edges as explained in [Li et al. 2011]. Then,
according to the laminate layup condition and material properties, the four coefficients, a1, a2, b1, and
b2 from (2b)–(2e) are calculated. Finally, the adhesive stresses are determined using the solutions given
in Section 3.

Finite element modeling. To properly set up the lamina orientation in each ply, three-dimensional finite
element (FE) models with unit width (1 mm in the y-direction) were generated using MSC.Patran and
MSC.Marc version 2010r1. Geometrically nonlinear behavior in the joint deformation under a two-
dimensional plane strain condition was analyzed by applying the zero displacement condition, Uy = 0,
at the two joint side edges over the entire joint length (x-direction). The joint width was in the y-axis
direction, and thickness was in the z-direction. As shown in Figure 3, a fine mesh was applied to the
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Figure 3. Schematic diagrams for the two simulated butt joints with a 0.5 mm inner
gap section for both adherends and adhesive. Case 1: a joint made of identical 16-ply
laminates. Case 2: a joint with 16-ply adherend and 24-ply doubler laminates. Case 3:
a joint with 16-ply adherend and 32-ply doubler laminates.
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overlap edge areas. Two elements were used through the adhesive thickness, while one element was
used along the joint unit width as well as in each lamina in the thickness direction. A total of 2,404
twenty-node hexahedron brick elements with 17,561 nodes were created for the special case 1 joint. A
total of 2,820 twenty-node hexahedron brick elements with 20,513 nodes were generated for the case 2
joint with the 24-ply doubler. A total of 3,236 twenty-node hexahedron brick elements with 23,465
nodes were generated for the case 3 joint with the 32-ply doubler. The convergence of the adhesive
stress value was obtained using the current meshes in the FE models. The left edge was clamped without
any displacement in both the horizontal and vertical directions, while the right adherend far end edge
was uniformly loaded with a tensile stress of 100 MPa. Multi-point-constrain (MPC) conditions were
applied to the right edge nodes ensuring the same displacement during the tensile loading stage. FE
analysis results for each pair of nodes, located at the [x, 0, z] and [x, 1, z] positions on the two width
side surfaces, were almost identical.

Comparison of the adhesive stresses between the closed-form solutions and FE results. Five nodes
were used through the thickness of the adhesive layer. Adhesive stresses at the upper element mid-node
(near adherend), adhesive centerline, and lower elements mid-node (near doubler) were extracted and
analyzed.

Comparison of the adhesive peel stresses. Variations in the adhesive peel stresses obtained from closed-
form solutions and finite element results are presented in Figures 4 to 9 for the three joint cases with two
layups. For clarity, close views of the peak stress profiles at the inner bonded overlap edges are plotted.
Good correlations were obtained between the theoretical and FE results for all the cases. The following
details can be observed:

(1) high stresses are present in the vicinity of the overlap edges, the highest being at the inner overlap
edge position;
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Figure 4. Comparison of the adhesive peel stresses obtained from closed-form solu-
tions and FE results for a special butt C1S1 joint with the identical 16-ply laminates in
[45/−45/0/90]2s layup condition. Left: adhesive peel stress profile through the bonded
overlap. Right: Peak adhesive peel stress at the inner overlap edge region Here FE:
C1S1_near doubler refers to the path along the mid-nodes of the adhesive layer elements
adjacent to the doubler. Similar labels apply to the remaining figures.
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Figure 5. Comparison of the adhesive peel stresses obtained from closed-form solu-
tions and FE results for a special butt C1S2 joint with the identical 16-ply laminates in
[0/90/45/−45]2s layup condition.
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Figure 6. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a special butt C2S1 joint with the 16-ply adherend in [45/−45/0/90]2s

layup and 24-ply doubler in [45/−45/0/90]3s layup condition.
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Figure 7. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a special butt C2S2 joint with the 16-ply adherend in [0/90/45/−45]2s

layup and 24-ply doubler in [0/90/45/−45]3s layup condition.
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Figure 8. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a special butt C3S1 joint with the 16-ply adherend in [45/−45/0/90]2s

layup and 32-ply doubler in [45/−45/0/90]4s layup condition.
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Figure 9. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a special butt C3S2 joint with the 16-ply adherend in [0/90/45/−45]2s

layup and 32-ply doubler in [0/90/45/−45]4s layup condition.

(2) the stress magnitudes are lower using the thicker doubler, as well as the S2 layup condition;

(3) consistency in the adhesive peel stress magnitude obtained from the two theoretical strategies is
demonstrated;

(4) the theoretical results are approximately the same as the FE results, except at the edge positions;
and

(5) at the overlap edge position, the peel stress singularity can be obtained from both the theoretical
and FE results with correlated peak stresses.

Comparison of the adhesive shear stresses. Figures 10 to 15 show the adhesive shear stress profiles
for the six joint conditions. Both theoretical and FE results show that both the peel and shear stress
magnitudes are affected by the doubler thickness and laminate layup condition. The direct reason could
be the effective bending stiffness value. The S2 layup laminates have a higher bending stiffness than
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Figure 10. Comparison of the adhesive shear stresses obtained from closed-form solu-
tions and FE results for a special butt C1S1 joint with the identical 16-ply laminates in
[45/−45/0/90]2s layup condition.
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Figure 11. Comparison of the adhesive shear stresses obtained from closed-form solu-
tions and FE results for a special butt C1S2 joint with the identical 16-ply laminates in
[0/90/45/−45]2s layup condition.

-80

-60

-40

-20

0

20

40

60

80

-60 -40 -20 0 20 40 60

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Overlap position (mm)

Theory: C2S1 joint

FE: C2S1_centre

FE: C2S1_near doubler

FE: C2S1_near adherend

0

10

20

30

40

50

60

70

80

0 2 4 6 8

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Inner overlap position (mm)

Theory: C2S1 joint

FE: C2S1_centre

FE: C2S1_near doubler

FE: C2S1_near adherend

Figure 12. Comparison of the adhesive shear stresses obtained from closed-form so-
lutions and FE results for a special butt C2S1 joint with the 16-ply adherend in
[45/−45/0/90]2s layup and 24-ply doubler in [45/−45/0/90]3s layup condition.
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Figure 13. Comparison of the adhesive shear stresses obtained from closed-form so-
lutions and FE results for a special butt C2S2 joint with the 16-ply adherend in
[0/90/45/−45]2s layup and 24-ply doubler in [0/90/45/−45]3s layup condition.

-80

-60

-40

-20

0

20

40

60

80

-60 -40 -20 0 20 40 60

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Overlap position (mm)

Theory: C3S1 joint

FE: C3S1_centre

FE: C3S1_near doubler

FE: C3S1_near adherend

0

10

20

30

40

50

60

70

0 2 4 6 8

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Overlap position (mm)

Theory: C3S1 joint

FE: C3S1_centre

FE: C3S1_near doubler

FE: C3S1_near adherend

Figure 14. Comparison of the adhesive shear stresses obtained from closed-form so-
lutions and FE results for a special butt C3S1 joint with the 16-ply adherend in
[45/−45/0/90]2s layup and 32-ply doubler in [45/−45/0/90]4s layup condition.

-80

-60

-40

-20

0

20

40

60

80

-60 -40 -20 0 20 40 60

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Overlap position (mm)

Theory: C3S2 joint

FE: C3S2_centre

FE: C3S2_near doubler

FE: C3S2_near adherend

0

10

20

30

40

50

60

70

0 2 4 6 8

A
d

h
e

s
iv

e
 s

h
e

a
r 

s
tr

e
s

s
 (

M
P

a
)

Inner overlap position (mm)

Theory: C3S2 joint

FE: C3S2_centre

FE: C3S2_near doubler

FE: C3S2_near adherend

Figure 15. Comparison of the adhesive shear stresses obtained from closed-form so-
lutions and FE results for a special butt C3S2 joint with the 16-ply adherend in
[0/90/45/−45]2s layup and 32-ply doubler in [0/90/45/−45]4s layup condition.
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the S1 laminates. Small bending deformations would be found in the joint using stiff laminates, and the
resulting adhesive stresses magnitude should be small. Due to the shear stress free condition at the two
inner adherend edges, the FE results for the adhesive shear stresses at the upper nodes near to the adhesive-
adherend interface dropped at the edge positions, as shown in the right-hand portions of Figures 10
through 15. This drop cannot be obtained from the theoretical solutions due to the approximations used
in (1a). A study of the correlation between the stress drop and the associated bending stiffness and/or
doubler thickness could be carried out using the theoretical solutions, but is not covered in this paper.

The comparisons above clearly show that the closed-form stress solutions are reliable and accurate.
The obtained results demonstrate that the current used boundary conditions are adequate. The closed-
form stress solutions could be used to analyze the Mode I and Mode II strain energy release rate for
cohesive crack propagation behavior or associated delamination in a generic situation of butt joints using
the approach as in [Hu 1995; Li et al. 1999]. The adhesive stress profile clearly shows the high stressed
area where further appropriate reinforcement work should be made to improve the joint structural in-
tegrity.

Factors affecting the adhesive stress magnitude. Typical factors affecting the adhesive stress include
the thicknesses in the adherend, doubler, and adhesive, the inner doubler section length (a kind of
cohesive crack length at the bonded butt joint mid-position area), the adhesive modulus, the laminate
layup condition, etc. The impact of these factors could be investigated using the closed-form solutions,
but this is not pursued in this report. To avoid tedious calculations in the adhesive peel stress, strategy 2
is recommended, since both strategies give almost identical peel stress results.

5. Conclusions

(1) Closed-form adhesive stress solutions were obtained for the bonded composite single-strap butt joint.
Strategy 2 would lead to a relative concise peel stress expression, as compared to the strategy 1.
Generally, the integration constants in the closed-form adhesive stress solutions are quite long and
complex, which is acceptable for such a complicated analysis of high order differential equations.
The theoretical solution can be applied to the unbalanced composite single-lap joints, because the
single-strap butt joint actually consists of two unbalanced single-lap joints. The complete theoret-
ical solution can be the solid base for further development of simplified stress solutions for better
practical applications of composite joint in the near future.

(2) A total of six joint conditions: three joint configurations, each having two different layup sequences
in laminates, were studied theoretically and numerically for demonstrating the theoretical correct-
ness. Three-dimensional finite element models using twenty-node brick elements were created for
the unit-width joints deformation analysis under plane strain condition.

(3) Consistency in the predicted adhesive peel stresses were demonstrated using the two theoretical
strategies; the small difference observed could be attributed to numerical error in the lengthy, com-
plex, and sensitive terms in the closed-form solutions.

(4) Good agreement was obtained in all the associated stress comparisons obtained from the theoretical
and numerical results. High peak stress exists at the bonded overlap edges, with higher magnitude
at the inner overlap edge.
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(5) Effects of doubler bending stiffness (e.g., thickness) and laminate layup sequence on the adhesive
stress magnitude were revealed by both theoretical and numerical results. The thicker doubler led to
the smaller peak stress magnitudes. Similarly, two used layup sequences, which had different lami-
nate bending stiffness, also had different adhesive stress magnitudes. For instance, the bending stiff-
ness of the S1 [45/−45/0/90]ns laminates would be approximately 80% of the S2 [0/90/45/−45]ns

laminates, and the corresponding stress magnitudes for both peel and shear stresses are smaller in
the S1 joints than the S2 joints, at a lesser degree. A practical evaluation of the adhesive stress
profile under the influence of each joint component can be easily carried out using the obtained
closed-form solutions, with the aid of an Excel spreadsheet tool.

(6) The closed-form solutions would provide the insightful assessment to identify the proper hole posi-
tions for introducing extra fasteners to fabricate a strong hybrid attached, bonded-bolted, composite
joint. In addition, extra strengthening should be applied to the geometrical transition areas, espe-
cially the inner overlap edge region to ensure structural integrity.
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Appendix: Expressions for relevant parameters in adhesive stresses

Effective parameters in laminated composite beam analysis [Li et al. 2011]. For the classic Euler–
Bernoulli beam with no transverse loads, the in-plane laminate constitutive relationship simplifies to[

ε0
x
κx

]
=

[
k11 k12

k12 k22

][
Nx

Mx

]
. (A.1a)

Under the cylindrical bending laminate condition (the plane strain condition), the deformation of the
laminate is a function of its axial position x , with the terms, ε0

x , κy , and κxy equal to zero. Thus, the
in-plane mid-plane strain and curvature can be determined as:

 ε0
x
γ 0

xy
κx

=
A11 A16 B11

A16 A66 B16

B11 B16 D11

−1 Nx

Nxy

Mx

 , (A.1b)

where Ai j , Bi j , and Di j are elements in the stiffness (ABD) matrix of the laminate constitutive equation;
Nx , Nxy , and Mx are unit-width in-plane forces and moments.

The in-plane shear force Nxy is equal to zero in this bending situation; hence, (A.1b) becomes

[
ε0

x
κx

]
=

[
A66 D11− B2

16 A16 B16− A66 B11

A16 B16− A66 B11 A11 A66− A2
16

][
Nx

Mx

]
A11(A66 D11− B2

16)+ 2A16 B11 B16− D11 A2
16− A66 B2

11
. (A.1c)
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The corresponding ki j term can be determined by comparing (A.1a) and (A.1b). The effective Young’s
modulus and bending stiffness are

Exx =
1

t (A66 D11− B2
16)

(
A11(A66 D11− B2

16)+ 2A16 B11 B16− D11 A2
16− A66 B2

11
)
, (A.1d)

Dx = (E I )xx =
1

(A11 A66− A2
16)

(
D11(A11 A66− A2

16)+ 2A16 B11 B16− A11 B2
16− A66 B2

11
)
, (A.1e)

where t is the laminate thickness. When the laminate is symmetrical and balanced, Bi j = 0 and A16 =

A26 = 0. The effective parameters, Exx and Dx , can be further simplified as:

Exx =
1

tk11
=

A11

t
, Dx = (E I )xx =

Mx

κx
= D11. (A.1f)

Integral constants for adhesive shear stresses (3c) and adhesive peel stresses (3e) in the special joint
case. Let Q = 4

√
b1/4. Then

C0S =
1
c

(
−

T
2
+

k11T + 1
4 tk22(M0−M1)

2k11+
1
2 t2k22

)
,

C1S =

Ga
η
(−k11T + 1

4 tk22(M1−M0))

√
−a1 sinh(c

√
−a1)

, C2S =

Ga
η

1
4 tk22(M0+M1)

√
−a1 cosh(c

√
−a1)
;

(A.2a)

C3S =

Ea
2η

k22 cosh c Q cos c Q
(

V0+V1
Q3 +

M0−M1
Q2 (tanh c Q− tan c Q)

)
sinh 2c Q+ sin 2c Q

,

C4S =

Ea
2η

k22 sinh c Q cos c Q
(

V0−V1
Q3 +

M0+M1
Q2

( 1
tanh c Q

− tan c Q
))

sin 2c Q− sinh 2c Q
, (A.2b)

C5S =

Ea
2η

k22 cosh c Q sin c Q
(

V0−V1
Q3 +

M0+M1
Q2

(
tanh c Q+ 1

tan c Q

))
sin 2c Q− sinh 2c Q

,

C6S =

Ea
2η

k22 sinh c Q sin c Q
(

V0+V1
Q3 +

M0−M1
Q2

( 1
tanh c Q

+
1

tan c Q

))
sin 2c Q+ sinh 2c Q

.

Adhesive shear stress solution in the general joint case. The details on the derivation of the seven λ
roots can be found from the [Li 2010]. They are

λ0= 0, λ1,2=±

√
γ1−

a1
3 , λ3,4=±|φ|

1
2
(
cos β2 + i sin β

2

)
, λ5,6=±|φ|

1
2
(
cos β2 − i sin β

2

)
, (A.3a)

where

γ1 =
3
√
−

q
2 +

√(q
2

)2
+
( p

3

)3
+

3
√
−

q
2 −

√(q
2

)2
+
( p

3

)3, p = b1−
a2

1

3
, q =

2a3
1

27
+

2a1b1

3
− a2b2
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|φ| =

√(
−
γ1
2 −

a1
3

)2
+

3
4

(
3
√
−

q
2 +

√(q
2

)2
+
( p

3

)3
+

3
√

q
2 +

√(q
2

)2
+
( p

3

)3
)2

, β =min{β1, β2}.

The angles β1 and β2 are defined within the 0 to 2π range. The sum of the two angles is 2π . The
angles are measured in radians and positive in the counterclockwise sense. For instance, if the angle β1

is within the range 0 to π/2, the angles can be calculated to be

β1 = arctan

√
3

2

(
3
√
−

q
2 +
√(q

2

)
2
+
( p

3

)
3
+

3
√

q
2 +
√(q

2

)
2
+
( p

3

)
3
)

−
γ1
2
−

a1
3

, β2 = 2π −β1. (A.3b)

Expression of the adhesive shear stress in (5a). Details on the derivation of the following parameters,
integral constants and functions can be found in [Li 2010]. Only the final expressions are provided in
the following.

Submitting the shear stress from (5a) into the boundary conditions (5b), seven simultaneous equations
written in terms of the seven constants C0, . . . ,C6 are obtained:

C0c+C1C10+C3C30+C6C60 = f0,

−C1C11+C2C21−C3C31+C4C41+C5C51−C6C61 = f1,

C1C11+C2C21+C3C31+C4C41+C5C51+C6C61 = f2,

a1C0+C1C12−C2C22+C3C32−C4C42−C5C52+C6C62 = f3,

a1C0+C1C12+C2C22+C3C32+C4C42+C5C52+C6C62 = f4,

−C1C13+C2C23−C3C33+C4C43+C5C53−C6C63 = f5,

C1C13+C2C23+C3C33+C4C43+C5C53+C6C63 = f6.

(A.3c)

The coefficients Ci j in (A.3c) are presented in [Li 2010]; they are omitted here for brevity. The final
expressions for the seven constants are

C6=

f3+ f4

2
− f0

a1

c
+

f1− f2

2

C12−C10
a1
c

C11
−

(
f6− f5

2
+

f1− f2

2
C13

C11

)C32−
a1
c

C30−
C31
C11

(
C12−C10

a1
c

)
C33−C31C13/C11

C62−
a1
c

C60−C61

C12−C10
a1
c

C11
−

(
C63−C61

C13

C11

)C32−
a1
c

C30−
C31
C11

(
C12−C10

a1
c

)
C33−C31C13/C11

,

C5=

f5+ f6

2
−

f1+ f2

2
C23
C21
−

(
f4− f3

2
−

f1+ f2

2
C22
C21

)
C43−C41C23/C21

C42−C41C22/C21

C53−C51
C23
C21
−

(
C52−C51

C22
C21

)
C43−C41C23/C21

C42−C41C22/C21

,

C4=
1

C42−C41C22/C21

( f4− f3

2
−

f1+ f2

2
C22

C21
−C5

(
C52−C51

C22

C21

))
,

C3=
1

C33−C31C13/C11

( f6− f5

2
+

f1− f2

2
C13

C11
−C6

(
C63−C61

C13

C11

))
,



342 GANG LI

C2 =
1

C21

( f1+ f2

2
−C41C4−C51C5

)
,

C1 =−
1

C11

( f1− f2

2
+C31C3+C61C6

)
,

C0 =
1
c
( f0−C10C1−C30C3−C60C6),

where

f0 =−T/2,

f1 =
Ga
η

(
(k11,adh+

1
2 t1k12,adh)T + (k12,adh+

1
2 t1k22,adh)M0

)
,

f2 =
Ga
η

(
(−k11,doub+

1
2 t2k12,doub)T + (−k12,doub+

1
2 t2k22,doub)M1

)
,

f3 =
Ga
η
(k12,adh+

1
2 t1k22,adh)V0, f4 =

Ga
η
(−k12,doub+

1
2 t2k22,doub)V1,

f5 =−a2
Ea
η
(k12,adhT + k22,adh M0), f6 = a2

Ea
η
(k12,doubT + k22,doub M1).

Expression of the adhesive peel stress using the first strategy. Let Q = 4
√

b1/4. The four constants in
(6a) and (6d) are

C1H =

Ea

2η
cosh c Q cos c Q

(
k22,adhV0+ k22,doubV1

Q3 +
k−12T + k22,adh M0− k22,doub M1

Q2 (tanh c Q− tan c Q)
)

sinh 2c Q+ sin 2c Q

−
cosh c Q cos c Q

2(sinh 2c Q+ sin 2c Q)
b2(τa(−c)− τa(c))

Q3 + H1,

C2H =

Ea

2η
sinh c Q cos c Q

(
k22,adhV0− k22,doubV1

Q3 +
k+12T + k22,adh M0+ k22,doub M1

Q2

(
1

tanh c Q
− tan c Q

))
sin 2c Q− sinh 2c Q

+
sinh c Q cos c Q

2(sin 2c Q− sinh 2c Q)
b2(τa(−c)+ τa(c))

Q3 + H2,

C3H =

Ea

2η
cosh c Q sin c Q

(
k22,adhV0− k22,doubV1

Q3 +
k+12T + k22,adh M0+ k22,doub M1

Q2

(
tanh c Q+

1
tan c Q

))
sin 2c Q− sinh 2c Q

+
cosh c Q sin c Q

2(sinh 2c Q− sin 2c Q)
b2(τa(−c)+ τa(c))

Q3 + H3,

C4H =

Ea

2η
sinh c Q sin c Q

(
k22,adhV0+ k22,doubV1

Q3 +
k−12T + k22,adh M0− k22,doub M1

Q2

(
1

tanh c Q
+

1
tan c Q

))
sin 2c Q+ sinh 2c Q

−
sinh c Q sin c Q

(sin 2c Q+ sinh 2c Q)
b2(τa(−c)− τa(c))

Q3 + H4,

(A.4)
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where

k+12 = k12,adh+ k12,doub, k−12 = k12,adh− k12,doub,

H1 =−
1
2

(
G1p(−c)+G1p(c)

)
+

cosh2 c Q
(
G2p(−c)−G2p(c)

)
sinh 2c Q+ sin 2c Q

−
cos2 c Q

(
G3p(−c)−G3p(c)

)
sinh 2c Q+ sin 2c Q

,

H2 =
sinh2 c Q

(
G1p(−c)−G1p(c)

)
sinh 2c Q− sin 2c Q

−
1
2

(
G2p(−c)+G2p(c)

)
+

cos2 c Q
(
G4p(−c)−G4p(c)

)
sinh 2c Q− sin 2c Q

,

H3 =
sin2 c Q

(
G1p(−c)−G1p(c)

)
sinh 2c Q− sin 2c Q

−
1
2

(
G3p(−c)+G3p(c)

)
+

cosh2 c Q
(
G4p(−c)−G4p(c)

)
sinh 2c Q− sin 2c Q

,

H4 =−
sin2 c Q

(
G2p(−c)−G2p(c)

)
sinh 2c Q+ sin 2c Q

+
sinh2 c Q

(
G3p(−c)−G3p(c)

)
sinh 2c Q+ sin 2c Q

−
1
2

(
G4p(−c)+G4p(c)

)
.

The six integral constants in the adhesive peel stress expression using the second strategy. Submitting
the peel stress from (7c) into the boundary conditions Equation (7d), six simultaneous equations written
in terms of the six constants C p1, . . . ,C p6 can be obtained:

C p1 I11+C p3 I31+C p6 I61 = g1,

C p2 I22+C p4 I42+C p5 I52 = g2,

C p1 I13−C p2 I23+C p3 I33−C p4 I43−C p5 I53+C p6 I63 = g3,

C p1 I13+C p2 I23+C p3 I33+C p4 I43+C p5 I53+C p6 I63 = g4,

−C p1 I14+C p2 I24−C p3 I34+C p4 I44+C p5 I54−C p6 I64 = g5,

C p1 I14+C p2 I24+C p3 I34+C p4 I44+C p5 I54+C p6 I64 = g6.

(A.5a)

The final expressions for the six constants are

C p6 =

g5− g6

2
+ g1

I14

I11
+
(g3+ g4

2
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I13

I11

) I11 I34− I31 I14
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−I64+ I61
I14
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(
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I11
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,
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2
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I24
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(g4− g3

2
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I23

I22

) I22 I44− I42 I24
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I54− I52
I24

I22
−
(
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I23

I22

) I22 I44− I42 I24

I22 I43− I42 I23

,

C p4 =

g4− g3

2
− g2

I23

I22
−C p5

(
I53− I52

I23

I22

)
I43− I42

I23

I22

,
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C p3 =

g3+ g4

2
− g1

I13

I11
−C p6

(
I63− I61

I13

I11

)
I33− I31

I13

I11

,

C p2 =
1

I22
(g2−C p4 I42−C p5 I52), C p1 =

1
I11
(g1−C p3 I31−C p6 I61).

where

g1 =
V0

2
, g2 =−
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2
, g3 =

Ea
η
(k12,adhT + k22,adh M0), g4 =−

Ea
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√
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.



THEREOTICAL SOLUTIONS OF ADHESIVE STRESSES IN BONDED COMPOSITE BUTT JOINTS 345

List of symbols

Only important symbols are listed. Unlisted symbols are explained in the text.

2c bonded overlap length on one adherend side
L the length of the outer unbonded adherend
2L0 the length of the inner unbonded doubler
t1 adherend laminate thickness
t2 doubler laminate thickness
M0, M1 unit-width bending moments at the outer and inner bonded overlap edges
ki j compliance terms (i, j = 1 and 2) defined in (A.1a)
T joint remote unit-width tensile force
V0, V1 unit-width shear forces at the outer and inner bonded overlap edges
η adhesive layer thickness
σa , τa adhesive peel and shear stresses
Ea , Ga adhesive Young’s and shear moduli
a1, a2, b1, b2 joint parameters defined in (2b), (2c), (2d), and (2e)
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MICROMECHANICAL STUDY OF DISPERSION AND DAMPING
CHARACTERISTICS OF GRANULAR MATERIALS

NIELS P. KRUYT

The wave-propagation characteristics of dense granular materials have been studied from the microme-
chanical viewpoint, in which relationships are sought between properties at the micro-scale of particles
and interparticle contacts and properties at the continuum, macro-scale. The dispersion and damping
characteristics have been determined from a three-dimensional lattice analysis in which the particle
interaction is modeled with linear elastic springs and linear viscous dashpots.

Due the presence of rotational degrees of freedom of the particles, optical branches are observed
in the dispersion and damping characteristics, besides the acoustical branches. The influence of the
micromechanical characteristics on the macroscopic dispersion and damping characteristics has been
determined for a face-centered cubic lattice and a body-centered cubic lattice. For small wave numbers
(large wave lengths) the damping of the optical branches is very large. This means that the optical
branches will not be observed in conditions where a continuum-mechanical description is appropriate.

1. Introduction

In many disciplines of engineering, the propagation of waves is important. For example, wave propa-
gation in granular materials is important in oil exploration. Granular materials are special materials in
the sense that they possess a clear, discrete structure of particles with rotational degrees of freedom and
interparticle contacts. In micromechanics of granular materials, relationships are investigated between
properties at the micro-scale of particles and interparticle contacts and properties at the continuum, macro-
scale.

Here the characteristics of wave propagation, dispersion and damping, are studied from the microme-
chanical viewpoint. In this approach the three-dimensional granular assembly is modeled as a large set of
spherical particles that only interact at contacts through linear elastic springs and linear viscous dampers
in directions normal and tangential to contacts.

The focus is on isotropic, dense or cemented granular materials where the particle displacements are
small and the number of interparticle contacts does not change. Particle dampers (see for example [Els
2011]), where damping through particle collisions is important, are not considered.

The wave-propagation characteristics consist of the dispersion and damping characteristics. These
characteristics give the complex circular frequencies ω = ω(k) that are compatible with plane-wave
solutions of the governing equations with a periodic spatial variation that is characterized by the wave
vector k, i.e., solutions for the unknowns u of the form

u(x, t)= V exp[ j (ωt − k · x)]

= V exp[− j k · x] exp[ jRe(ω)t] exp[−Im(ω)t], (1-1)

Keywords: wave propagation, granular materials, dispersion, damping.
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where x is the position vector, t is time, j is the imaginary unit, V is an amplitude vector, Re(ω) and
Im(ω) are the real part and the imaginary part of the complex circular frequency, respectively. The disper-
sion characteristics are given by Re(ω) and the damping characteristics by Im(ω). Note that Im(ω) > 0
for actual damping (reduction of the amplitude of u with time t).

The magnitude of the wave vector k is the wave number k. The wave number k is related to the wave
length 3 by

3=
2π
k
. (1-2)

Wave speeds for small wave numbers (large wave lengths) have been studied experimentally (see for
example [Jia et al. 1999] and the references given in [Magnanimo et al. 2008]), theoretically (for example
[Goddard 1990]), and numerically (for example [Makse et al. 2004; Agnolin and Roux 2007; Mouraille
2009]), showing a clear dependence on confining pressure. The pressure dependence is not studied here.
This dependence can be incorporated by a proper choice for the dependence of the micromechanical
parameters (interparticle stiffnesses and the coordination number, i.e., the average number of contacts
per particle, as described in detail in Section 3) on confining pressure.

Suiker et al. [2001] and Suiker and de Borst [2005] derived dispersion relations for granular materials,
based on a two-dimensional elastic lattice model of granular material (without damping). Schwartz et al.
[1984] considered the dispersion relation of a three-dimensional face-centered cubic elastic lattice (FCC
lattice for short), while Kruyt [2010] studied the dispersion relation for general three-dimensional elastic
lattices (including the FCC lattice studied in [Schwartz et al. 1984]) and determined the influence of the
micromechanical parameters on the dispersion characteristics. In all these lattice models the rotational
degrees of freedom are explicitly accounted for. This leads to the presence of so-called optical branches
in the dispersion relation, with nonzero circular frequency ω for small wave number k. Such optical
branches also arise in solid state physics (see for example [Kittel 1953; Dekker 1962; Ashcroft and
Mermin 1976; Myers 1997]) in the presence of atoms with varying properties, where the optical branches
correspond to movement of the atoms relative to that of the center of mass of the unit cell.

Previous analyses are extended here by also taking viscous damping into account in the microme-
chanical model. Thus, dispersion and damping characteristics are obtained here, in terms of particle and
interparticle characteristics, using three-dimensional lattice-based approaches. These results will be used
to investigate what the (regularising) influence is of (small) viscous damping at the micro-scale on the
macro-scale damping of the optical branches with their high circular frequencies for small wave number.

The outline of this study is as follows. Firstly, (classical) continuum-mechanical dispersion and damp-
ing characteristics are formulated for a viscoelastic material model in Section 2 in order to establish
the continuum-mechanical framework. The relevant micromechanics of granular materials is described
in Section 3. This is followed by the three-dimensional lattice formulation in Section 4. Results for
the dispersion and damping characteristics are given in Section 5. Finally, findings from this study are
summarized in Section 6.

2. Continuum-mechanical dispersion and damping characteristics

Dispersion characteristics for elastic materials are derived in many textbooks, based on classical con-
tinuum mechanics. For extended continua, such as Cosserat continua and micropolar continua that
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incorporate couple stresses and (independent) rotational degrees of freedom, respectively, such dispersion
characteristics for purely elastic materials have also been obtained [Eringen 1999].

For a viscoelastic material the continuum-mechanical dispersion and damping characteristics are anal-
ysed here, based on classical continuum mechanics. For small deformations u the governing conservation
equation of momentum is

ρ ü =∇ · σ , (2-1)

where ρ is the density, the two superimposed dots denote the second derivative of u with respect to time
t and σ is the stress increment (with respect to an equilibrium state). The stress increment is described
by a (Kelvin–Voigt) viscoelastic model

σ = {λ tr(ε)I + 2Gε}+ {κ tr(ε̇)I + 2ηε̇}, (2-2)

with the strain increment tensor ε given by

ε = 1
2 [∇u+ (∇u)T ]. (2-3)

The parameters λ and G are the elastic Lamé constants and the parameters κ and η are corresponding
viscosities. The parameter λ is related to the bulk modulus K by

K = λ+ 2
3 G. (2-4)

With a plane-wave solution for the displacement vector u according to (1-1), it follows from (2-1),
(2-2) and (2-3), after some algebra, that the circular frequency ω must satisfy the following quadratic
eigenvalue problem

[{(λ+ jκω)+ (G+ jηω)}kk+ (G+ jηω)k2 I] · V − ρω2V = 0, (2-5)

where I is the 3-by-3 identity matrix.
After some further algebra we find the solutions:

• a longitudinal branch where the eigenvector V is in the direction of the wave vector k:

Re(ω)∼=
√
λ+2G
ρ

k, Im(ω)∼= κ+2η
2ρ

k2
; (2-6)

• a transverse branch where the eigenvector V is perpendicular to the wave vector k:

Re(ω)∼=
√

G
ρ

k, Im(ω)∼= η

2ρ
k2. (2-7)

The multiplicity of the eigenvalue of the longitudinal branch equals one, while that of the transverse
branch equals two. The longitudinal and transverse branches are called acoustical, as the dispersion
characteristics Re(ω) are proportional to the wave number k and hence cross the origin (contrary to the
optical branches). Their damping characteristics Im(ω) are proportional to k2.

This continuum-mechanical approach is valid in the large wave-length case, that is, for small wave
number k.
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3. Micromechanics

Three-dimensional assemblies consisting of spherical particles are considered here. The radius of particle
p is denoted by R p and the position of the center of mass of particle p is given by X p. For two particles
p and q in contact, r pq is the vector directed from the center of particle p to the contact point between
particles p and q, with an analogous definition for rqp. For very stiff particles where the “overlap”
(elastic deformation) at contacts is small, the unit normal vector npq at the contact is obtained from

r pq
= R pnpq . (3-1)

The direction of the normal vector npq determines the orientation of the contact.
The (small) displacement vector of the center of particle p, relative to the selected reference equilib-

rium configuration, is denoted by up, while the (small) particle rotation vector is indicated by θ p. The
equations of motion governing the evolution with time t of the displacement up and rotation θ p of the
spherical particle p are

m p üp
=

∑
q

f pq , I p θ̈ p
=

∑
q

r pq
× f pq , (3-2)

where the two superimposed dots denote the second derivative of the quantity involved with respect to
time t , m p and I p are the mass and moment of inertia of the particle p, respectively, f pq is the force
exerted on particle p by particle q and the sum is over particles q that are in contact with particle p. The
moment of inertia I p for a sphere with radius R p and mass m p is given by

I p
= Qm p R p2

, (3-3)

where Q = 2
5 for a solid sphere and Q = 2

3 for a hollow sphere. In the following, solid spheres with
Q = 2

5 are considered when numerical results are presented. Note that body forces, like gravitational
forces, have been excluded in (3-2).

The relative displacement vector 1pq at the contact point between two particles in contact p and q is
given by

1pq
= [up

+ θ p
× r pq

] − [uq
+ θq
× rqp

]. (3-4)

Note that the relative displacement vector involves contributions due to particle translations up and due
to particle rotations θ p.

The (increment of the) contact force f c at contact c is related to the relative displacement 1c and
the relative velocity 1̇c (i.e., the time derivative of the relative displacement) at the contact through the
contact constitutive relation. Since small displacements are considered, the contact constitutive relation
can be formulated in a linearized form that considers two mechanisms: elastic deformation and viscous
damping.

Coulomb frictional damping is not considered here, since the focus is on isotropic states where the
number of contacts where Coulomb friction is fully mobilized is small. Because of the assumption of
small displacements, contacts that are in an elastic state will remain to do so.

Hertz–Mindlin theory (see for example [Johnson 1985]) gives a nonlinear dependence of the elastic
interparticle forces on the relative displacements. In the adopted small-displacement approach, the lin-
earized form of this relation is described by two (linear) elastic springs in normal and tangential directions
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at the contact, with spring stiffnesses kn and kt , respectively. The spring stiffnesses kn and kt then depend
on the normal force in the equilibrium state, and hence on the (average) confining pressure.

As with the elastic interaction, the relation between the viscous force and the relative velocity is
described by two linear viscous dashpots in normal and tangential directions at the contact, with viscous
damping coefficients dn and dt , respectively.

The employed contact constitutive relation then can be written as

f c
=−Sc

·1c
− Dc

· 1̇c, (3-5)

where the (elastic) contact stiffness matrix Sc and the (viscous) contact damping matrix Dc are given by

Sc
= (kn − kt)ncnc

+ kt I, Dc
= (dn − dt)ncnc

+ dt I . (3-6)

Here I is the 3-by-3 identity matrix. Note that these expressions satisfy Newton’s third law, f qp
=− f pq ,

since 1qp
=−1pq and the contact stiffness and damping matrices are symmetrical.

The normal and tangential viscous damping coefficients, dn and dt , can also be expressed in terms of
normal and tangential coefficients of restitution [Wu et al. 2003; Kruggel-Emden et al. 2007; Schwager
and Pöschel 2007; Schwager et al. 2008; O’Sullivan 2011].

The equations of motion, Equations (3-2), can be expressed concisely in terms of a generalized dis-
placement vector U p, a generalized force vector F pq and a generalized mass matrix M p by

M p
· Ü p
=

∑
q

F pq , U p
=

[
up

R pθ p

]
, M p

= m p
[

I 0
0 Q I

]
, F pq

=

[
f pq

npq
× f pq

]
. (3-7)

Note that the terms in U p and F pq have the same dimension (or unit), through the inclusion and exclu-
sion, respectively, of the particle radius R p. For compactness in notation, the generalized force F pq is
expressed as

F pq
=

[
I

N×pq

]
· f pq , (3-8)

where the operator N×pq is defined by the equality N×pq
· v = npq

× v for all v. Thus

N×pq
=−P · npq , (3-9)

with P the three-dimensional permutation symbol.

4. Lattice formulation

The regular lattice geometry is described as follows (see Figure 1). A central particle ‘0’ at position
X0 is in contact with Z other particles. All particles have the same properties, such as identical particle
radius R, mass m and coordination number Z , i.e., the number of contacts per particle. The unit normal
vector at the contact c is denoted by nc. The set of normal vectors {nc

} determines the lattice directions.
The position of the center Xc of the other particles in contact with the central particle ‘0’ is given by
Xc
= X0+ 2Rnc. Two different three-dimensional lattices will be considered in detail in the following.

These are the face-centered cubic (FCC) and body-centered cubic (BCC) lattices, as shown in Figure 2.
The fabric tensor [Horne 1965], based on the contact normals, is isotropic for these lattices.
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Figure 1. Example of a two-dimensional lattice with coordination number Z = 6. Also
indicated are the contact normal vector nc and the vector rc from the center of the particle
to the point of contact.
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Figure 2. Lattice geometry. Left: FCC lattice, with coordination number Z = 12. Right:
BCC lattice, with coordination number Z = 8. The central sphere of each lattice is shown
in black, while the other spheres that are in contact with the central one are shown in
gray. The radius of the spheres has been reduced for visual clarity: therefore the spheres
in contact appear as if they were not in contact. Contacts between spheres are indicated
by black lines connecting particle centers. The direction of the wave vector is indicated
by the upward arrow.

For the spatial variation of the generalized displacement vector U(x, t), a periodic variation is assumed

U(x, t)= U0(t) exp[− j k · (x− X0)] =

[
u0(t)
Rθ0(t)

]
exp[− j k · (x− X0)], (4-1)

where u0(t) and θ0(t) are the time-dependent amplitude vectors for the displacements and rotations,
respectively.

Employing the assumed solution according to (4-1), the relative displacement vector 1c at contact c
becomes, from (3-4) with r0c

= Rnc and rc0
=−Rnc for spherical particles with equal radius R,

1c
= (1− ξ c)u0+ (1+ ξ c)Rθ0× nc, ξ c

= exp[− j (2R)k · nc
]. (4-2)
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Note that the scalar factor ξ c (also) depends on the wave vector k. The relative displacement vector can
be expressed in terms of the amplitude vector U0 and the operator N×c defined in (3-9) by

1c
=
[
(1− ξ c)I −(1+ ξ c)N×c]

·U0, (4-3)

where the term inside the square brackets is a 3 by 6 matrix, which does not involve a subtraction.
It then follows that the amplitude vector U0 satisfies the second-order ordinary differential equation

M · Ü0+ D̄ · U̇0+ K̄ ·U0 = 0, (4-4)

where the effective damping matrix D̄ and the effective stiffness matrix K̄ are given by

D̄ =
C∑

c=1

[
I

N×c

]
· Dc
·
[
(1− ξ c)I −(1+ ξ c)N×c],

K̄ =
C∑

c=1

[
I

N×c

]
· Sc
·
[
(1− ξ c)I −(1+ ξ c)N×c]. (4-5)

The size of the matrices D̄ and K̄ is 6 by 6. It can be shown, after some algebra, that the matrices D̄ and
K̄ are Hermitian, using the fact that for every lattice direction nc there is a corresponding direction −nc,
S(−nc)= S(nc), D(−nc)= D(nc), N×(−nc)=−N×(nc) and ξ(−nc)= ξ∗(nc). Here ξ∗ denotes the
complex conjugate of ξ .

For an harmonic variation in time for the amplitude vector U0(t)

U0(t)= Ua exp jωt, (4-6)

we obtain the following quadratic eigenvalue problem for the (complex) eigenfrequencies ω = ω(k)

[−ω2 M + jω D̄+ K̄ ] ·Ua = 0. (4-7)

The eigenfrequencies of this quadratic eigenvalue problem can be computed numerically from (4-7)
or they can be obtained from the solution of a (larger) generalized eigenvalue problem that is obtained
from the so-called linearisation approach (see for example, [Tisseur and Meerbergen 2001]). When
considering analytical solutions, it is more convenient to consider the generalized eigenvalue problem.
The linearisation approach is outlined in the next Section.

4A. Linearisation approach. The system (4-4) of second-order equations of motion can be rewritten as
a larger system of first-order ordinary differential equations by introducing the variable (see for example
[Tisseur and Meerbergen 2001])

P0 =

[
U̇0

U0

]
. (4-8)

The resulting system of first-order ordinary differential equations is[
M 0
0 Î

]
· Ṗ0+

[
D̄ K̄
− Î 0

]
· P0 = 0, (4-9)
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where Î is the 6 by 6 identity matrix. With an harmonic time-dependence of P0(t) = Pa exp[ jωt], a
generalized eigenvalue problem is obtained for the circular frequency ω[

D̄ K̄
− Î 0

]
· Pa = ω(− j)

[
M 0
0 Î

]
· Pa. (4-10)

4B. Branches in the dispersion and damping characteristics. From the numerical results for the eigen-
vectors corresponding to the eigenfrequencies, the dominant mode of motion has been identified for each
eigenfrequency. This leads to the distinction of the following branches in the dispersion and damping
characteristics (see also Section 2):

LA (longitudinal acoustical): the dominant motion is longitudinal displacement, i.e., in the direction
of the wave vector k; the multiplicity of the eigenfrequency is one;

TA (transverse acoustical): the dominant motion is transverse displacement, relative to the direction
of the wave vector k; the multiplicity of the eigenfrequency is two;

LO (longitudinal optical): the dominant motion is longitudinal rotation, i.e., in the direction of the
wave vector k; the multiplicity of the eigenfrequency is one;

TO (transverse optical): the dominant motion is transverse rotation, relative to in the direction of the
wave vector k; the multiplicity of the eigenfrequency is two.

The acoustical branches also resulted from the classical continuum-mechanical analysis of Section 2.
Extended continuum-mechanical theories (see for example, [Mindlin 1972; Kunin 1982; 1983; Eringen
1999; Suiker et al. 2001; Suiker and de Borst 2005]) also give optical branches in the dispersion charac-
teristics. In the lattice-based micromechanical analysis the optical branches arise due to the presence of
rotational degrees of freedom [Schwartz et al. 1984; Suiker et al. 2001; Suiker and de Borst 2005; Kruyt
2010].

For future reference, non-dimensional micromechanical parameters are introduced that relate

(1) the tangential elastic stiffness to the normal elastic stiffness,

(2) the tangential viscous damping coefficient to the normal viscous damping coefficient and

(3) the normal viscous damping coefficient to the normal elastic stiffness and the particle mass.

The stiffness ratio rK , the damping ratio rD and the damping factor ζ (often called the damping ratio)
are defined by

rK =
kt

kn
, rD =

dt

dn
, ζ =

dn

2
√

knm
. (4-11)

The nondimensional wave number k̂ and nondimensional frequency ω̂ are defined by

k̂ =
(

2R
π

)
k, ω̂ =

√
m
kn
ω. (4-12)

4C. Analytical solution for FCC lattice for small wave number. For small wave number k, analytical
solutions for the eigenfrequencies ω have been found by factoring the characteristic polynomial cor-
responding to (4-10). From a Taylor expansion in wave number k, the solutions for an FCC lattice
are obtained after some lengthy algebra (using a symbolic mathematics package). The results for the
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non-dimensional real and the imaginary parts of the non-dimensional eigenfrequencies ω̂ are given in
Table 1.

Longitudinal Re(ω̂)∼= 2
√

1+ rK (Rk) Im(ω̂)∼= 4(1+ 4rD)ζ(Rk)2

Transverse Re(ω̂)∼=
√

2
√

1+ rK (Rk) Im(ω̂)∼= 2(1+ rD)ζ(Rk)2

Optical Re(ω̂)∼= 4
Q

√
QrK − 16r2

Dζ
2 Im(ω̂)∼= 16rDζ

Q

Table 1. Real and imaginary parts of the nondimensional eigenfrequencies ω̂ in the three
situations considered.

The multiplicity of the eigenfrequency for the longitudinal branch equals one, that for the transverse
equals two and for the optical branch three (both longitudinal and transverse optical).

The dispersion characteristics show branches where Re(ω) is proportional to k and the damping char-
acteristics show branches where Im(ω) is proportional to k2. These results are consistent with the results
of the classical continuum-mechanical analysis of Section 2 that is based on a viscoelastic continuum
material model.

The reduction in time t of the amplitude of the generalized displacement vector U is given by

‖U(x, t)‖
‖U(x, 0)‖

= e−Im(ω)t . (4-13)

With a characteristic time τ based on a single cycle, τ = (2π)/Re(ω), for the lowest frequency according
to Table 1, the reduction of the amplitude of the optical branches becomes

‖U(x, τ )‖
‖U(x, 0)‖

= exp
(
−

16
√

2π(rDζ )

Q
√

1+ rK

1
Rk

)
, (4-14)

and the reduction of the amplitude of the transverse acoustical branch becomes

‖U(x, τ )‖
‖U(x, 0)‖

= exp
(
−

4
√

2π(1+ 4rD)ζ
√

1+ rK
Rk
)
. (4-15)

For small wave number k, the reduction in amplitude of the optical branches is very large (the argument of
the exponent is inversely proportional to the wave number k), contrary to that of the acoustical branches
(the argument of the exponent is proportional to the wave number k). This means that the optical branches
are dampened out very rapidly, and will not be observed in situations where a continuum-mechanical
description is appropriate.

5. Results

The dispersion and damping characteristics, Re(ω) and Im(ω), respectively, that have been obtained from
the solution to the quadratic eigenvalue problem (4-7), are shown for the FCC lattice and the BCC lattice.
This is done for various values of the damping factor ζ , the stiffness ratio rK and the damping ratio rD

to show the influence of these micromechanical material characteristics on the macro-scale, continuum
characteristics.
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Figure 3. Dispersion characteristics (top row) and damping characteristics (bottom row).
Left: BCC lattice with ζ = 0.05. Middle: FCC lattice with ζ = 0.05. Right: FCC lattice
with ζ = 0.025. In all cases rK = 1; rD = 1.

The middle column of Figure 3 shows typical results for the dispersion relation, Re(ω) as a function
of wave number k (top graph) and for the damping characteristics Im(ω) as a function of wave number
k (bottom graph).

In each of those plots four curves are shown, two acoustical branches that go through the origin
and two other, optical branches. Two curves correspond to eigenfrequencies with multiplicity of one,
the longitudinal branches, and two curves correspond to eigenfrequencies with multiplicity of two, the
transverse branches. The total number of eigenfrequencies is six.

The two acoustical dispersion curves show an approximately linear dependence of the eigenfrequency
Re(ω) on wave number k, consistent with the continuum-mechanical analysis of Section 2. The slope of
the longitudinal branch is higher than that of the transverse branch. These slopes are related to the bulk
modulus K and shear modulus G; see (2-6) and (2-7).

The two optical dispersion curves show a relatively weak dependence of eigenfrequency on wave
number. The difference between the frequencies for the longitudinal and the transverse branches is not
very large, especially for small wave numbers.

The damping characteristics of the acoustical branches show a dependence of Im(ω) on k2, consistent
with the continuum-mechanical analysis of Section 2 and with the analytical solution for the FCC lattice
in Table 1. Note that the damping characteristics are presented in a log-log plot in order to show this
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dependence. The damping of the optical branches is very high and is only (relatively) weakly dependent
on wave number.

The results for the dispersion and the damping characteristics for the FCC lattice for small wave
numbers are in agreement with the analytical expressions in Table 1.

As shown in [Suiker and de Borst 2005] for two-dimensional lattices, the direction of the wave vector
k influences the dispersion relation at higher wave numbers k (small wave length), since the inherent
anisotropic structure of the lattices is then apparent. For small wave number k, however, it was noted in
[Suiker and de Borst 2005] that the dispersion relation is independent of the direction of the wave vector
k. The same is found for the three-dimensional lattices considered here (results not shown).

5A. Influence of lattice. The influence of the type of lattice on the dispersion and damping charac-
teristics has been investigated by comparing the results for the BCC lattice (left column in Figure 3)
with coordination number Z = 8 and for the FCC lattice (middle column) with Z = 12. The other
micromechanical parameters are the same: ζ = 0.05, rK = 1 and rD = 1.

Qualitatively, the dispersion and the damping characteristics for the FCC lattice and the BCC lattice
are very similar. The slopes of the acoustical dispersion curves for the FCC lattice (top row, middle
column in Figure 3) are larger than those for the BCC lattice (top left). This is expected, since these
slopes are related to the continuum bulk and shear moduli; see Section 2. These moduli are dependent on
the coordination number Z (see for example [Bathurst and Rothenburg 1988; Kruyt et al. 2010]), which
is higher for the FCC lattice than for the BCC lattice. The frequency for small wave numbers of the
optical branches is higher for the FCC lattice than for the BCC lattice.

The damping is higher for the FCC lattice with its higher coordination number than for the BCC
lattice. A high coordination number means that a large number of contact areas (represented by the
elastic springs and the viscous dashpots) is present where energy dissipation occurs.

5B. Influence of damping factor. The influence of the damping factor ζ on the dispersion and damping
characteristics has been investigated by comparing the results for the FCC lattice for ζ = 0.05 (middle
column in Figure 3) with those for ζ = 0.025 (right column). The other micromechanical parameters are
the same: rK = 1 and rD = 1.

For small wave numbers the dispersion characteristics, Re(ω), of the acoustical branches are not
affected by the value of the damping factor ζ . This also follows from the analytical solution in Table 1.
The frequency of the optical dispersion branches increases with decreasing damping factor ζ ; see also
Table 1.

As expected, a lower value of the damping factor ζ results in lower damping characteristics, Im(ω),
of all branches; see also Table 1.

5C. Influence of stiffness ratio. The influence of the stiffness ratio rK on the dispersion and damping
characteristics has been investigated by comparing the results with rK = 1 (middle column of Figure 4)
with those with rK = 0.5 (left column). In this comparison the BCC lattice is considered with the other
micromechanical parameters ζ = 0.05 and rD = 1.

For the dispersion characteristics, the slope of the acoustical branches for small wave number increases
with increasing stiffness ratio rK , since a higher value for rK corresponds to a higher value for the
shear modulus; the bulk modulus is only weakly affected by the value of the stiffness ratio when the
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Figure 4. Dispersion characteristics (top row) and damping characteristics (bottom row).
Left: rK = 0.5, rD = 1. Middle: rK = 1, rD = 1. Right: rK = 1, rD = 0.5. In all cases
the BCC lattice is considered, with ζ = 0.05.

coordination number is not low. See [Bathurst and Rothenburg 1988; Kruyt et al. 2010]. The optical
branches show a higher frequency for a higher stiffness ratio. These trends for the BCC lattice are the
same as for the FCC lattice; see the analytical solution in Table 1.

The damping characteristics are hardly affected by the value of the stiffness ratio. This trend is also
shown by the analytical solution for the FCC lattice; see Table 1.

5D. Influence of damping ratio. The influence of the damping ratio rD on the dispersion and damping
characteristics has been investigated by comparing the results with rD = 1 (middle column of Figure 4)
with those with rD = 0.5 (right column). In this comparison the BCC lattice is considered with the
micromechanical parameters ζ = 0.05 and rK = 1.

The dispersion characteristics are hardly affected by the value of the damping ratio rD . Only a small
increase in the frequency of the optical branch is observed for the lower value of the damping ratio.

The damping characteristics are directly affected by the value of the damping ratio. A higher value of
the damping ratio rD gives higher damping characteristics.

These observations on the dispersion and the damping characteristics for the BCC lattice correspond
to the analytical results for the FCC lattice; see Table 1.
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6. Conclusions

Dispersion and damping characteristics of granular materials have been studied using a three-dimensional
lattice-based approach in which the particle interaction is modeled with linear elastic springs and linear
viscous dashpots. The lattice analysis leads to a quadratic eigenvalue problem for the complex eigenfre-
quencies.

The analysis yields acoustical and optical branches, as noted in previous studies [Schwartz et al. 1984;
Suiker et al. 2001; Suiker and de Borst 2005; Kruyt 2010]. The present analysis allows for a study of the
influence of the micromechanical characteristics on the continuum-mechanical dispersion and damping
characteristics:

• The effect of the type of lattice is primarily through the coordination number. A high coordination
number gives high bulk and shear moduli, and thus large slopes of the dispersion characteristics of
the acoustical branches. Similarly, a high coordination number results in high damping.

• The damping factor has only a small effect on the dispersion characteristics of the acoustical
branches. The damping increases with increasing damping factor.

• A high value of the stiffness ratio results in high bulk and shear moduli, and thus large slopes of the
dispersion characteristics of the acoustical branches. The influence on the damping characteristics
is small.

• A high value of the damping ratio does not affect the dispersion characteristics of the acoustical
branches. A high damping ratio leads to high damping.

An important result is that the damping of the optical branches is very high. Therefore it is expected
that these branches will not be observed under conditions where a continuum-mechanical description is
appropriate.

The present lattice-based analysis is effectively based on the uniform-strain assumption (or mean-
field assumption) for the relative displacement at contacts; see (1-1). It is well-known (see for instance
[Makse et al. 1999; Kruyt and Rothenburg 2001; Kruyt and Rothenburg 2002; Kruyt et al. 2010]) that this
assumption leads to an inaccurate prediction of the elastic moduli in the static case for random packings,
especially for lower coordination numbers. It is expected that the dispersion and damping characteristics
of a random packing agree qualitatively with the present results for lattices, but may show quantitative
discrepancies. The quantitative study of these characteristics of random packings is a subject of further
investigation.
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BUCKLING INSTABILITIES OF ELASTICALLY CONNECTED TIMOSHENKO
BEAMS ON AN ELASTIC LAYER SUBJECTED TO AXIAL FORCES

VLADIMIR STOJANOVIĆ, PREDRAG KOZIĆ AND GORAN JANEVSKI

We study the buckling instability of a system of three simply supported elastic Timoshenko beams, joined
together by Winkler elastic layers, and each subjected to the same compressive axial load. The model
of the Timoshenko beam includes the effects of axial loading, shear deformation, and rotary inertia.
Explicit analytical expressions are derived for the critical buckling load of single, double, and triple-
beam systems. It can be observed from these expressions that the critical buckling load depends on
the Winkler elastic layer stiffness modulus K , and that the instability of the system increases with an
increase in the numbers of beams and elastic layers. These results are of considerable practical interest
and have wide application in engineering practice.

1. Introduction

Vibration and buckling problems of beams and beam-columns on elastic layers occupy an important place
in many fields of structural and layer engineering, occurring often in mechanical and civil engineering
applications. Their solution demands modeling of the mechanical behavior of the beam, the mechanical
behavior of the soil, and the form of the interaction between the beam and the soil.

As far as the beam is concerned, most engineering analyses are based on classical Bernoulli–Euler
beam theory, in which straight lines or planes normal to the neutral beam axis remain straight and normal
after deformation. This theory thus neglects the effect of transverse shear deformations, a condition that
holds only in the case of slender beams. To confront this problem, the well-known Timoshenko beam
model, in which the effect of transverse shear deflections is considered, can be used.

Matsunaga [1996] studied the buckling instabilities of a simply supported thick elastic beam subjected
to axial stresses. Taking into account the effects of shear deformations and thickness changes, the buck-
ling loads and buckling displacement modes of thick beams were obtained. Based on the power series
expansion of displacement components, a set of fundamental equations of a one-dimensional higher-
order beam theory was derived through the principle of virtual displacement. Several sets of truncated
approximate theories were applied to solve the eigenvalue problems for a thick beam. The convergence
properties of the buckling loads of a simply supported thick beam were examined in detail and comparison
of the results with previously published ones was made.

On the basis of the Bernoulli–Euler beam theory, the properties of free transverse vibration and buck-
ling of a double-beam system under compressive axial loading were investigated in [Zhang et al. 2008].
Explicit expressions were derived for the natural frequencies and the associated amplitude ratios of the
two beams, and analytical solutions for the critical buckling load were obtained. The influence of the

Research supported by the Ministry of Science and Environmental Protection of the Republic of Serbia, grant No. ON 174011.
Keywords: Timoshenko beam, Winkler elastic layer, shear deformation, rotary inertia, boundary conditions.
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compressive axial loading on the response of the double-beam system was discussed. It was shown that
the critical buckling load of the system was related to the axial compression ratio of the two beams
and the Winkler elastic layer, and that the properties of free transverse vibration of the system greatly
depended on the axial compressions.

Kelly and Srinivas [2009] investigated the problem concerning free vibration of a set of n axially loaded
stretched Bernoulli–Euler beams connected by elastic layers and connected to a Winkler type layer. A
normal-mode solution was applied to the governing partial differential equations to derive a set of coupled
ordinary differential equations which were used to determine the natural frequencies and mode shapes. It
was shown that the set of differential equations could be written in self-adjoint form with an appropriate
inner product. An exact solution for the general case was obtained, but numerical procedures had to be
used to determine the natural frequencies and mode shapes. The numerical procedure was difficult to
apply, especially in determining higher frequencies. For the special case of identical beams, an exact
expression for the natural frequencies was obtained in terms of the natural frequencies of a corresponding
set of unstretched beams and the eigenvalues of the coupling matrix.

Stojanović et al. [2011] studied the influence of rotary inertia and shear on the free vibration and
buckling of a double-beam system under axial loading. It was assumed that the system under consider-
ation was composed of two parallel and homogeneous simply supported beams continuously joined by
a Winkler elastic layer. Both beams had the same length. It was also supposed that the buckling could
only occur in the plane where the double-beam system lay. Explicit expressions were derived for the
natural frequencies and the associated amplitude ratio of the two beams, and the analytical solution of
the critical buckling was obtained. The influence of the characteristics of the Winkler elastic layer on
the natural frequencies and the critical buckling force was determined.

Li et al. [2008] analyzed an exact dynamic stiffness matrix which was established for an elastically
connected three-beam system, composed of three parallel beams of uniform properties with uniformly
distributed springs connecting them. The formulation included the effects of shear deformation and
rotary inertia of the beams. The dynamic stiffness matrix was derived by rigorous use of the analytical
solutions of the governing differential equations of motion of the three-beam system in free vibration.
The use of the dynamic stiffness matrix to study the three vibration characteristics of the three-beam
system was demonstrated by applying the Muller root-search algorithm.

De Rosa [1995] studied the free vibration frequencies of Timoshenko beams on a two-parameter elastic
layer. Two variants of the equation of motion were deduced, in which the second-layer parameter was a
function of the total rotation of the beam or a function of the rotation due to bending only.

Lazopoulos and Lazopoulos [2011], considering the influence of the microstructure, revisited the Tim-
oshenko beam model, invoking Mindlin’s strain gradient strain energy density function. The equations
of motion were derived and the bending equilibrium equations were discussed. The solution of the static
problem, for a simply supported beam loaded by a force at the middle of the beam, was defined and the
first (least) eigenfrequency was found.

Miranda and Taghavi [2005] presented an approximate procedure to estimate floor acceleration de-
mands in multistory buildings with the use of only a small number of parameters. Floor acceleration
demands were computed using approximations of the first three modes of vibration of the building based
on those of a continuum model consisting of a cantilever flexural beam connected laterally to a cantilever
shear beam. The models had uniform stiffness along the height.
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In this paper, the buckling instability of simply supported elastic Timoshenko beams, continuously
joined by Winkler elastic layers, subjected to the same compressive axial load is studied. The beams
have the same length l, and it is also supposed that the buckling can only occur in the plane where
the system beams lie. The model of the Timoshenko beams includes the effects of axial loading, shear
deformation, and rotary inertia. Explicit analytical expressions are determined for the critical buckling
load of single, double, and triple-beam models. The critical buckling load for the triple-beam model
is also determined using the trigonometric method. It can be observed from these expressions that the
critical buckling load depends on the Winkler elastic layer stiffness modulus K , and that the instability
of the system increases with an increase in the numbers of beams and elastic layers.

2. Formulation of the differential equations of the dynamic equilibrium and structural model

It can be seen that the literature on the dynamic analysis of elastically parallel-beam systems is concen-
trated primarily on the case of a double-beam system of two parallel simply supported beams continuously
joined by a Winkler elastic layer. Very few research papers can be found that deal with the problem related
to the elastically connected three-beam system. Those studies of this region are limited to the particular
cases of identical beams with some prescribed boundary conditions. In most of these references, the
simple Bernoulli–Euler beam theory has been used in deriving the necessary equation. Here, the basic
differential equations of motion for the analysis will be deduced by considering a Timoshenko beam of
length l (Figure 1a) subjected to an axial compressive force F , and to distributed lateral loads of intensity
q1 and q2 which vary with the distance z along the beam. This will be applied on the basis of several
assumptions:

• The behavior of the beam material is linear elastic.

• The cross-section is rigid and constant throughout the length of the beam and has one plane of
symmetry.

l

O A z

dz
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y

x z

q (z)
2

1

a)

F

F

b)

z

y

z
+

2y

F

FT

q (z)

q (z)
2

1
q (z)

dz

M

z

y dz
z

M +
M

z
F

T
F
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Figure 1. The physical model Timoshenko beam subjected to an axial compressive force
F and to distributed lateral loads of intensity q1 and q2.
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• Shear deformations of the cross-section of the beam are taken into account while elastic axial de-
formations are ignored.

• The equations are derived bearing in mind the geometric axial deformations.

• The axial forces F acting on the ends of the beam are not changed with time.

Consider the element of length dz between two cross-sections normal to the deflected axis of the beam
(Figure 1b). Since the slope of the beam is small, the normal forces acting on the sides of the element
can be taken as equal to the axial compressive force F . The shearing force FT is related to the following
relationship:

FT = kG A
(
∂w

∂z
−ψ

)
, (1)

where w = w(z, t) is the displacement of a cross-section in the y-direction, ∂w/∂z is the global rotation
of the cross-section, ψ is the bending rotation, G is the shear modulus, A is the area of the beam cross-
section, and k is the shear factor. Analogously the relationship between bending moments M and bending
angles ψ = ψ(z, t) is given by

M =−E Ix
∂ψ

∂z
, (2)

where E is the Young’s modulus and Ix is the second moment of the area of the cross-section. Finally,
the forces and moments of inertia are given by

f I =−ρA
∂2w

∂t2 , JI =−ρ Ix
∂2ψ

∂t2 , (3)

respectively, where ρ is the mass density.
The forces acting on a differential layered-beam element are shown in Figure 1b. The dynamic-force

equilibrium conditions of these forces are given by the following equations:

ρA
∂2w

∂t2 − kG A
(
∂2w

∂z2 −
∂ψ

∂z

)
+ F

∂2w

∂z2 − q1(z)+ q2(z)= 0, (4a)

ρ Ix
∂2ψ

∂t2 − E Ix
∂2ψ

∂z2 − kG A
(
∂w

∂z
−ψ

)
= 0. (4b)

The development and solution of the differential equations of motion governing the free flexural vi-
brations of a system of three identical elastically connected beams, considering the effects of shear
deformation and rotary inertia (Figure 2).

Each beam is made of material with a Young’s modulus E and mass density ρ, and has a uniform
cross-section of area A and moment of inertia I = Ix . Each beam is subjected to the same compressive
axial loading. The first beam is connected to a Winkler layer of stiffness modulus K , and the second and
third beams are also connected by a continuous linear elastic layer of Winkler type of the same stiffness
modulus K . The transverse displacement of the beams is wi = wi (z, t), i = 1, 2, 3, and ψi = ψi (z, t),
i = 1, 2, 3, are the bending rotations. If we apply the abovementioned procedure to a differential element
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Figure 2. Three identical Timoshenko beams supported on a Winkler elastic layer.

of each beam, the following set of coupled differential equations will be obtained:

ρA
∂2w1

∂t2 − kG A
(
∂2w1

∂z2 −
∂ψ1

∂z

)
+ F

∂2w1

∂z2 + 2Kw1− Kw2 = 0,

ρ I
∂2ψ1

∂t2 − E I
∂2ψ1

∂z2 − kG A
(
∂w1

∂z
−ψ1

)
= 0,

(5)

ρA
∂2w2

∂t2 − kG A
(
∂2w2

∂z2 −
∂ψ2

∂z

)
+ F

∂2w2

∂z2 − Kw1+ 2Kw2− Kw3 = 0,

ρ I
∂2ψ2

∂t2 − E I
∂2ψ2

∂z2 − kG A
(
∂w2

∂z
−ψ2

)
= 0,

(6)

ρA
∂2w3

∂t2 − kG A
(
∂2w3

∂z2 −
∂ψ3

∂z

)
+ F

∂2w3

∂z2 − Kw2+ Kw3 = 0,

ρ I
∂2ψ3

∂t2 − E I
∂2ψ3

∂z2 − kG A
(
∂w3

∂z
−ψ3

)
= 0.

(7)

3. The axial buckling load of the elastically connected identical three Timoshenko beams

The stability behavior of simply supported Timoshenko-beam systems on a Winkler elastic layer is of
great interest to both practicing engineers and researchers. The usual approach to formulating this prob-
lem is to include the layer reaction in the corresponding differential equation of the beam. The buckling
of an elastically connected simply supported Timoshenko beam under some static compressive axial
load is investigated. The analytical solution for the critical buckling load of the system is derived. The
second-order partial differential equations (5), (6), and (7) can be further reduced, by eliminating ψ1, ψ2,
and ψ3, respectively, to the following system of fourth-order partial differential equations:

E I
(

1− F
k AG

)∂4w1

∂z4 +

(
ρA+ 2 Kρ I

k AG

)∂2w1

∂t2 −
Kρ I
k AG

∂2w2

∂t2 +

(
F − 2 K E I

k AG

)∂2w1

∂z2

+
K E I
k AG

∂2w2

∂z2 −

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w1

∂z2∂t2 +
ρ2 I
kG

∂4w1

∂t4 + 2Kw1− Kw2 = 0, (8a)
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E I
(
1− F

k AG

)∂4w2

∂z4 −
Kρ I
k AG

∂2w1

∂t2 +

(
ρA+2 Kρ I

k AG

)∂2w2

∂t2 −
Kρ I
k AG

∂2w3

∂t2 +
KE I
k AG

∂2w1

∂z2 +

(
F−KE I

k AG

)∂2w2

∂z2

+
K E I
k AG

∂2w3

∂z2 −

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w2

∂z2∂t2 +
ρ2 I
kG

∂4w2

∂t4 − Kw1+ 2Kw2− Kw3 = 0, (8b)

E I
(

1− F
k AG

)∂4w3

∂z4 −
Kρ I
k AG

∂2w2

∂t2 +

(
ρA+ Kρ I

k AG

)∂2w3

∂t2 +
K E I
k AG

∂2w2

∂z2 +

(
F − K E I

k AG

)∂2w3

∂z2

−

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w3

∂z2∂t2 +
ρ2 I
kG

∂4w3

∂t4 − Kw2+ Kw3 = 0. (8c)

The initial conditions in general form and the boundary conditions for simply supported beams of the
same length l are assumed as follows:

wi (z, 0)= wi0(z), ẇi (z, 0)= vi0(z), ψi (z, 0)= ψi0(z), ψ̇i (z, 0)= ωi0(z), (9)

wi (z, 0)= w′′i (0, t)= wi (l, 0)= w′′i (l, t)= 0, i = 1, 2, 3. (10)

Assuming time-harmonic motion and using the separation of variables and the solutions of (8), the
governing boundary conditions (10) can be written in the form

wi (z, t)=
∞∑

n=1

Xn(z)Tin(t), i = 1, 2, 3, (11)

where Tin(t), i = 1, 2, 3, is the unknown time function and Xn(z) is the known mode shape function for
a simply supported single beam, which is defined as

Xn(x)= sin(knz), kn = nπ/ l, n = 1, 2, 3, . . . . (12)

Introducing the general solutions (11) into (8) one gets the system of ordinary differential equations

∞∑
n=1

{
1

C2
s

d4T1n

dt4 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
d2T1n

dt2

−
H
C2

s

d2T2n

dt2 +

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T1n − H

(
1+

C2
b

C2
s C2

r
k2

n

)
T2n

}
= 0, (13a)

∞∑
n=1

{
1

C2
s

d4T2n

dt4 −
H
C2

s

d2T1n

dt2 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
d2T2n

dt2 −
H
C2

s

d2T3n

dt2

−H
(

1+
C2

b

C2
s C2

r
k2

n

)
T1n+

[
C2

bk4
n+(2H−Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T2n−H

(
1+

C2
b

C2
s C2

r
k2

n

)
T3n

}
= 0, (13b)

∞∑
n=1

{
1

C2
s

d4T3n

dt4 −
H
C2

s

d2T2n

dt2 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(H − Fη)

]
d2T3n

dt2

− H
(

1+
C2

b

C2
s C2

r
k2

n

)
T2n +

[
C2

bk4
n + (H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T3n

}
= 0, (13c)
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where

H = K
ρA

, η =
k2

n

ρA
.

The coefficients

Cb =

√
E I
ρA

, Cs =

√
G Ak
ρ I

, Cr =

√
I
A
,

related to the bending stiffness, shear stiffness, and rotational effects, respectively, are now introduced.
The shear beam model, the Rayleigh beam model, and the simple Euler beam model can be obtained
from the Timoshenko beam model by setting Cr to zero (that is, ignoring the rotational effect), Cs to
infinity (ignoring the shear effect), and setting both Cr to zero and Cs to infinity, respectively.

The solutions of (13a), (13b), and (13c) can be assumed to have the following forms:

T1n = A1ne jωn t , T2n = A2ne jωn t , T3n = A3ne jωn t , j =
√
−1, (14)

where ωn denotes the natural frequency of the system. Substituting (14) into (13) results in the following
system of homogeneous algebraic equations for the unknown constants A1n , A2n , and A3n:{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
ω2

n +

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A1n

+ H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A2n = 0, (15a)

H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A1n +

{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
ω2

n

+

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A2n + H

[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A3n = 0, (15b)

H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A2n +

{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(H − Fη)

]
ω2

n

+

[
C2

bk4
n + (H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A3n = 0. (15c)

Equations (15) have nontrivial solutions when the determinant of the system matrix coefficients of A1n ,
A2n , and A3n is zero. This yields the following frequency (characteristic) equation, which is a twelfth-
order polynomial in ωn . When the natural frequency of the system vanishes under the axial loading, the
system begins to buckle. By introducing ωn = 0 into (15) expressed in matrix form one getsx + 2RH −H R 0

−H R x + 2RH −H R
0 −H R x + RH


A1n

A2n

A3n

= 0, (16)

where

R = 1+
C2

b

C2
s C2

r
k2

n, x = C2
bk4

n − RFη. (17)
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The existence of nontrivial solutions for A1n , A2n , and A3n requires that the determinant of the coefficient
matrix vanish. This gives the cubic characteristic equation x3

+ 5RH x2
+ 6(RH)2x + (RH)3 = 0, or( x

RH

)3
+ 5

( x
RH

)2
+ 6

( x
RH

)
+ 1= 0. (18)

Solution of the characteristic equation. We solve (18) using a standard method. Denote the coefficients
by a0 = 1, a1 = 5, a2 = 6, and a3 = 1, and set

p =
a2

a0
−

a2
1

3a2
0

and q =
a3

a0
−

a1a2

3a2
0
+

2a3
1

27a3
0

. (19)

The discriminant D = 1
4q2
+

1
27 p3 is negative, so there are three roots for x/(RH), given by

−
a1

3a0
+ 2

√
−

p
3

cos θ+2kπ
3

, with θ = cos−1
[
−

q
2

(
−

p
3

)− 3
2
]

and k = 0, 1, 2.

Thus the roots are
x1

RH
=−0.19806,

x2

RH
=−1.55496,

x3

RH
=−3.24698. (20)

Substituting into (17), we obtain the buckling loads for different vibration modes n:

F I
b =

0.198062H
η

+
C2

bk4
n

Rη
, F II

b =
1.554962H

η
+

C2
bk4

n

Rη
, F III

b =
3.24698H

η
+

C2
bk4

n

Rη
. (21)

As can be seen, the values of the buckling loads F I
b, F II

b , and F III
b are positive and F I

b < F II
b < F III

b . Thus
F I

b is the critical buckling load:

Fcr
b =

0.198062Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (22)

For K = 0 from (22) we obtain

Pn =
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

),
which is the critical buckling load corresponding to the number n of the Timoshenko beams as shown in
[Timoshenko and Gere 1964, p. 134]. Setting n = 1 in the preceding equation we obtain

P =
E Iπ2

l2

(
1+ E I

G Ak
π2

l2

).
This is the smallest load at which the beam ceases to be in stable equilibrium.

Remark. An alternative, but equivalent, method of solution is given in [Rašković 1965, pp. 157–166].
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Figure 3. Left: system with two identical Timoshenko beams supported on a Winkler
elastic layer. Right: analogous system with a single Timoshenko beam.

Critical buckling load for system with fewer Timoshenko beams. The preceding analysis was also ap-
plied to a system with two beams instead of three (Figure 3, left) and a system with a single beam
resting on a Winkler elastic layer (Figure 3, right). The computation is easier in these cases, in that the
characteristic equation is quadratic or linear, respectively. For the case of two beams we get

F I
b =

0.382H
η
+

C2
bk4

n

Rη
, F II

b =
2.618H
η
+

C2
bk4

n

Rη
;

thus F I
b is the critical buckling load corresponding to vibration mode n for this system:

Fcr
b =

0.382Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (23)

For the case of a single beam we have

Fcr
b =

Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (23a)

4. Numerical results

We ran numerical calculations for the system with parameters

E = 1× 1010 Nm−2, G = 0.417× 1010 Nm−2, k = 5/6, K0 = 2× 105 Nm−2,

ρ = 2× 103 kgm−3, l = 10 m, A = 5× 10−2 m2, I = 4× 10−4 m4,
(24)

as in [Zhang et al. 2008]. If we introduce a nondimensional value ξ = h/ l, the ratio of the cross-sectional
height h to the beam length l, we can write the surface and moment of inertia of the cross-section of the
beam as a function of the nondimensional value ξ as

A = h2
= (ξ l)2, I = h4

12
=
(ξ l)4

12
. (25)

The change in the critical buckling load in the function of the nondimensional value ξ is given in Figures 4
and 5. These diagrams represent the variation of the critical buckling load for systems with triple, double,
and single Timoshenko beams obtained by analytical expressions (22), (23), and (23a) for the different
parameters of the system (24). Figure 4 shows the diagrams obtained for different values of the stiffness
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Figure 4. Effect of the nondimensional value ξ on the critical buckling load Fcr
b for

different values of K and n = 1.

modulus K = 0.5K0, K0, and 1.5K0 and for vibration mode n = 1. It can be seen that the critical
buckling load increases with an increase in the stiffness modulus K . Figure 5 shows diagrams of the
critical buckling load for different values of the vibration mode n = 1, 2, 3, and for stiffness modulus
K = K0. It can be seen that the critical buckling load decreases with an increase in the vibration mode n.

In Figure 6, the static stability regions for the first vibration mode n = 1 are represented for systems
with triple, double, and single Timoshenko beams supported on a Winkler elastic layer. It can be seen
that the static stability region is largest in the case of a single beam. For the system with two beams, the
static stability region is reduced, and even more so for three beams.
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Figure 5. Effect of the nondimensional value ξ on the critical buckling load Fcr
b for

different values of n and K = K0.



BUCKLING INSTABILITIES OF ELASTICALLY. . . 373

F

P

Stability region

K

b

n

kr

0 10 10 10 102 3 4. . .5 5 5 5

0

1

2

3

4

5

6

7

8

9

Using equation (22)

Using equation (23a)

Using equation (23)

Figure 6. Influence of the stiffness modulus K on the static stability region for n = 1.

Conclusions

In the present paper, the equations of dynamic equilibrium and the equations of natural vibration of
a triple Timoshenko beam elastically connected to a Winkler elastic layer are formulated. In order to
derive these equations, the influence of constant axial forces at the ends of the same beams (second-
order theory), as well as the influence of the elastic layer on the beams, are taken into account. Using the
classical Bernoulli–Fourier method, the solutions of the differential equations of motion for the system
are formulated. The explicit expressions for the critical buckling loads of the systems with triple, double,
and single Timoshenko beams are obtained. The critical buckling load for the triple-beam model is also
determined using the trigonometric method. The thus determined values for the critical buckling load are
only slightly different from the values determined by the numerical solution of the characteristic equation.
It is observed from the numerical results that the static stability region is influenced by the Winkler layer
of stiffness modulus K and the number of Timoshenko beams. The static stability region of the triple
and double-Timoshenko-beam systems is always smaller than that of the single-beam system. It can be
concluded that an increase in the number of elastically connected Timoshenko beams leads to a reduction
of the static stability region for the same system parameters.
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THE EFFECTIVE THICKNESS OF LAMINATED GLASS PLATES

LAURA GALUPPI AND GIANNI ROYER-CARFAGNI

The flexural performance of laminated glass, a composite of two or more glass plies bonded together by
polymeric interlayers, depends upon shear coupling between the glass components through the polymer.
This effect is usually taken into account, in the design practice, through the definition of the effective
thickness, i.e., the thickness of a monolith with equivalent bending properties in terms of stress and
deflection. The traditional formulas à la Bennison–Wölfel are accurate only when the deformed bending
shape of the plate is cylindrical and the plate response is similar to that of a beam under uniformly
distributed load. Here, assuming approximating shape function for the deformation of laminated plates
variously constrained at the edges, minimization of the corresponding strain energy furnishes new simple
expressions for the effective thickness, which can be readily used in the design. Comparisons with
accurate numerical simulations confirm the accuracy of the proposed simple method for laminated plates.

1. Introduction

Laminated glass is a sandwich structure where two or more glass plies are bonded together by thin
polymeric interlayers with a process at high temperature and pressure in autoclave. Because of the shear
deformability of the polymer, there is not a perfectly coupling between any two consecutive glass plies
[Behr et al. 1993], and the degree of coupling depends upon the shear stiffness of the polymeric interlayer
[Hooper 1973]. Consequently, the flexural response is somehow intermediate between the two borderline
cases [Norville et al. 1998] of layered limit, i.e., frictionless relative sliding of the plies, and monolithic
limit, i.e., perfect bonding of the plies. This problem has close similarities with the case of composite
beams with partial interaction. The most classical contribution, conceived of for a concrete slab and
a steel beam bonded by shear connectors, is associated with the name of Newmark et al. [1951], who
considered a linear and continuous relationship between the relative interface slip and the corresponding
shear stress. More recently Murakami [1984] introduced the usual hypotheses of Timoshenko beam to
model the interlayer in the analysis of composite beams. In a recent paper, Xu and Wu [2007] presented
a very comprehensive approach for static, dynamic and buckling behavior of composite beams with
partial interaction, accounting for the influence of rotary inertia and shear deformation. Approximate
formulations of this kind are particularly important for studying the problem of buckling of composite
columns (e.g., [Le Grognec et al. 2012; Schnabl and Planinc 2011]), applicable to various materials,
including lamellar wood [Cas et al. 2007].

Geometric nonlinearities are usually important because of the slenderness of the laminated panel [Aşik
2003], but are usually negligible when the loads are orthogonal to the panel surface and no in-plane forces
are present. From an analytical point of view, it is often very difficult to obtain a closed-form solution for
the strain and stress field in a laminated glass plate. An analytical approach has been recently proposed

Keywords: structural glass, laminated glass, composite structure, laminated plate, effective thickness, energy minimization.
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by Foraboschi [2012] for the case of rectangular plates made of laminated glass, simply supported on
four sides. The precise calculation of the resulting state of stress and strain is quite difficult and usually
requires numerical analysis, complicated by the fact that response of the polymer is nonlinear, viscoelastic
and temperature dependent [Behr et al. 1993; Bennison et al. 2005; Louter et al. 2010].

This is why simplified methods are becoming more and more popular in the design practice , and much
of current research is directed towards their definition and verification [Foraboschi 2007]. Reference is
made to [Ivanov 2006] for an updated list of the most relevant current literature.

A commonly accepted simplification is to assume that the polymer is linear elastic, with proper secant
elastic moduli that account for environmental temperature and load duration. There are various com-
mercial polymeric films: polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), and sentry glass (SG)
[Bennison et al. 2008; Bennison et al. 2001]. Depending upon the polymer type, temperature T and
characteristic load-duration t0, the secant shear modulus of the interlayer may vary from 0.01 MPa (PVB
at T =+60◦C under permanent load) up to 300 MPa (SG at T = 0◦C and t0 = 1 s). On the other hand,
glass remains linear elastic up to failure (Young’s modulus E ' 70 GPa and Poisson ratio ν ' 0.2).

A simplified method of very practical value makes use the notion of “effective” thickness. This
method has been introduced starting from the analysis for sandwich beams with linear elastic components
originally developed by Wölfel [1987] and later transferred to the case of laminated glass [Bennison 2009;
Calderone et al. 2009]. To illustrate, consider (as in Figure 1) a beam of length l and width b composed
of two external glass plies of thickness h1 and h2 and Young’s modulus E , bonded by a soft polymeric
interlayer of thickness t and elastic shear modulus G. The latter has negligible axial and bending strength,
but nevertheless it can transfer shear coupling stresses between the external layers. Let

Ai = hi b, Ii =
1

12 bh3
i (i = 1, 2), H = t + 1

2(h1+ h2), A∗ =
A1 A2

A1+ A2
,

Itot = I1+ I2+ A∗H 2, A = bt, Bs = E A∗H 2. (1-1)

Clearly, Itot is the cross sectional inertia of the composing glass layers properly spaced of the interlayer
gaps, associated with the case of perfect bonding of the glass plies as in Bennison et al. [1999] (monolithic
limit). Besides, Bs is the bending stiffness when the external layers have negligible inertia, while the
mid-layer can only bear shear stress. When, as in the case of laminated glass, the external layers have

p(x)

x

y

E, A , D1 1

H
G

h1

h2

t

b

l
E, A , D2 2

Figure 1. Beam composed of two glass plies bonded by a polymeric interlayer. Longi-
tudinal and cross sectional view (not in the same scale).
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nonnegligible inertia, Wölfel proposed the expression B∗s defined as

B∗s = E I1+ E I2+
1

1+K
Bs, (1-2)

where the coefficient (1+K) indicates the degradation of the bending properties of the composite due
to the incomplete interaction between the external layers. Using the principle of virtual work one finds
that the coefficient K is of the form

K= β Bs
χ

Gbtl2 , (1-3)

where, as explained in [Galuppi and Royer-Carfagni 2012], the shear coefficient of the intermediate
layer χ is evaluated as χ = t2/H 2 and β is another parameter that depends upon the load condition.
For simply supported beams, the corresponding values of β are recorded in [Wölfel 1987] for various
loadings. Notice from (1-3) that G → ∞ ⇒ K → 0, so that from (1-2) also B∗s → E Itot, i.e., the
monolithic limit; moreover, G→ 0⇒ K→∞ and B∗s → E(I1+ I2), i.e., the layered limit.

Bennison [2009] and Calderone et al. [2009] have referred specifically to Wölfel’s approach for the
case of laminated glass. More precisely, they define the nondimensional coefficient 0 = 1/(1+K),
0 ∈ (0, 1), introduce the equivalent moment of inertia of the cross section in the form

Ieq = I1+ I2+0
A1 A2

A1+ A2
H 2, (1-4)

and consider for 0 the expression

0 =
1

1+β
χBs

G bt l2

=
1

1+ 9.6
t Bs

GbH 2l2

. (1-5)

This is equivalent to using in (1-3) the value β = 9.6, which corresponds to Wölfel’s analysis for the
particular case of a simply supported beam under uniformly distributed load. Consequently, recalling
(1-4), for calculating the laminate deflection one can consider a monolithic beam with deflection-effective
thickness hef;w given by

hef;w =
3

√
h3

1+ h3
2+ 120

h1h2

h1+ h2
H 2. (1-6)

Once the deflection of the laminate is established, one can estimate the degree of connection offered
by the deformable interlayer and, from this, the maximum stress in the glass can be easily estimated. The
result [Bennison 2009; Calderone et al. 2009] is that the maximum bending stress in the i-th glass plies,
i = 1, 2, is the same of that in a fictitious monolithic beam with analogous constraint and load conditions,
with respectively stress-effective thickness

h1;ef;σ =

√√√√√ h3
ef;w

h1+ 20 Hh2
h1+h2

, h2;ef;σ =

√√√√√ h3
ef;w

h2+ 20 Hh1
h1+h2

. (1-7)
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It is important to notice that this method relies upon the particular form of 0 given by (1-5), which
assumes the coefficient β = 9.6, i.e., the one proposed by Wölfel for the very particular case of sim-
ply supported beams under uniformly distributed loading. Moreover, according to [Wölfel 1987], the
validity of the method is limited because its simplifying assumptions are valid for statically determined
composite beams, where the bending stiffness of the composite plies is considerably small. Nevertheless,
this approach is widely used. In the design practice, the calculations for laminated glass panels are
usually performed on an equivalent monolithic plate whose thickness is assumed to be given by (1-6),
to determine maximum deflection, or by (1-7), where it is the bending stress to be calculated. This
effective thickness is usually adopted in place of the actual thickness in analytic equations and simplified
finite-element analysis; sometimes the method is abused in very delicate conditions, for example when
calculating the stress concentrations around holes and contact regions in a neighborhood of the point-wise
fixing of frameless glazing. In general, no approach based upon the definition of the effective thickness
can be used to evaluate local effects. In any case, the Bennison–Wölfel method may lead to inaccurate
results also when calculating maximum stress and deflection at the center of a laminated plate, especially
when load and boundary conditions are different from that of a rectangular plate simply supported at two
opposite side (cylindrical deformed shape) under uniformly distributed load.

In [Galuppi and Royer-Carfagni 2012] we treated the classical problem of a composite laminated
glass beam under flexure using a variational approach similar in type to that proposed in [Aşik and
Tezcan 2005] for numerical purposes. Using convenient shape functions for the beam deflection, simple
formulas for the effective thickness were obtained which, for the one-dimensional case of beams with
various constraint and load conditions, fitted with numerical experiments much better than the classical
expressions (1-6) and (1-7). Our aim now is to extend this approach to the two-dimensional case of
a rectangular laminated glass plate under uniform pressure, variously supported at the borders. For the
cases considered in [Galuppi and Royer-Carfagni 2012] the problem is certainly much more complicated,
but we show that by assuming again proper shape functions for the plate deflection, simple expressions
of the effective thickness can be found. Comparisons with careful numerical experiments on full three-
dimensional models, show the proposed formulation furnishes results more reliable than those obtainable
with the classical Bennison–Wölfel approach. The method can be readily extended to plates of various
shape, under diverse load conditions.

2. The variational problem

As indicated in Figure 2, with notation analogous to (1-1), consider a laminated plate composed of two
glass layers of thickness h1 and h2 with Young’s modulus E and Poisson’s ratio ν, connected by a
polymeric interlayer of thickness t and shear modulus G. Let

Di =
Eh3

i

12(1− ν2)

represent the flexural stiffness of the i-th glass plate, i = 1, 2, while H is the distance between their
middle planes. Upon introduction of a reference system as indicated in Figure 2, the plate is identified
by the x − y domain � with border ∂�, and is loaded by a pressure per unit area p(x, y), not necessarily
uniformly distributed.
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Figure 2. Plate composed of two glass plies bonded by a polymeric interlayer. Isometric
and cross sectional view (not in the same scale).

No slippage is supposed to occur between glass and polymer (case of perfect bonding). Under the
hypotheses that strains are small and rotations moderate, the kinematics is completely described by the
out-of-plane displacement w(x, y) in the z direction that, by neglecting the interlayer strain along z, is
the same for the two glass layers, and the in-plane displacements of the i-th glass layers, i = 1, 2, for
which the x and y components are denoted by ui (x, y) and vi (x, y), respectively (Figure 3).

2.1. The minimization problem. As represented Figure 3, let us denote with usup(x, y) and vsup(x, y),
uinf(x, y) and vinf(x, y), the x and y displacement components of those faces of the superior and inferior
glass plies, respectively, in contact with the polymer. Then, the shear strain in the interlayer, constant
through its thickness, is characterized by the components

γ̃zx =
1
t
[usup(x, y)− uinf(x, y)+w,x (x, y)t] = 1

t
[u1(x, y)− u2(x, y)+w,x (x, y)H ],

γ̃zy =
1
t
[vsup(x, y)− vinf(x, y)+w,y (x, y)t] = 1

t
[v1(x, y)− v2(x, y)+w,y (x, y)H ],

(2-1)

where subscript commas denote partial differentiation with respect to the indicated variable. The strain
energy E of the laminated glass plate is provided by the flexural and extensional contributions of the

u1

u2

w,x (x,y)

supu

uinf

v1

v2

supv

vinf

x
y

z

x

z

w,y (x,y)

y

z

Figure 3. Relevant displacement components and corresponding deformation in the
composite plate.
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two glass layers, by the part corresponding to the shear deformation of the interlayer, and by the work
associated with the external loads p(x, y). We have, suppressing from the notation the dependence of
w, ui , vi on x , y (see [Timoshenko and Woinowsky-Krieger 1971]):

E[w, u1, u2, v1, v2] =

∫
�

1
2

{
(D1+ D2)[(w,xx +w,yy)

2
− 2(1− ν)(w,xxw,yy −w,

2
xy)]

+ 12
D1

h2
1

[
(u1,x+ v1,y)

2
− 2(1− ν)

(
u1,xv1,y −

1
4(u1,y + v1,x)

2)]
+ 12

D2

h2
2

[
(u2,x+ v2,y)

2
− 2(1− ν)

(
u2,xv2,y −

1
4(u2,y + v2,x)

2)]
+

G
t

[
(u1−u2+w,x H)2+(v1−v2+w,y H)2

]
+2p(x, y)w

}
dx dy. (2-2)

The analysis of the first variation of the functional with respect to w(x, y), ui (x, y) and vi (x, y), i = 1, 2,
gives respectively the following Euler–Lagrange equations:

(D1+ D2)44w−
G H

t
[(u1− u2+w,x H),x +(v1− v2+w,y H),y ] − p(x, y)= 0, (2-3)

12D1

h2
1

(
u1,xx +

1− ν
2

u1,yy +
1+ ν

2
v1,xy

)
−

G
t
(u1− u2+w,x H)= 0, (2-4)

12D2

h2
2

(
u2,xx +

1− ν
2

u2,yy +
1+ ν

2
v2,xy

)
+

G
t
(u1− u2+w,x H)= 0, (2-5)

12D1

h2
1

(
v1,yy +

1− ν
2

v1,xx +
1+ ν

2
u1,xy

)
−

G
t
(v1− v2+w,y H)= 0, (2-6)

12D2

h2
2

(
v2,yy +

1− ν
2

v2,xx +
1+ ν

2
u2,xy

)
+

G
t
(v1− v2+w,y H)= 0, (2-7)

with conditions at the boundary ∂�∮
∂�

{
(D1+ D2)

∂

∂n
4w−

G H
t

[
(u1− u2+w,x H), xnx + (v1− v2+w,y H), yny

]}
δw ds

−

∮
∂�

(D1+ D2)
[
(w,xx +νw,yy )nx +w,xy ny

]
δw,x ds

−

∮
∂�

(D1+ D2)2(1− ν)
[
w,xy nx + (w,xx +νw,yy )ny

]
δw,y ds = 0, (2-8)∮

δ�

[
(ui ,x +νvi ,y )nx +

1− ν
2

(ui ,y +vi ,x )ny

]
δui ds = 0, i = 1..2, (2-9)∮

∂�

[1− ν
2

(ui ,y +vi ,x )nx + (vi ,y +νui ,x )ny

]
δvi ds = 0, i = 1..2, (2-10)

where δw(x, y), δui (x, y) and δvi (x, y) are the variations of w(x, y), ui (x, y) and vi (x, y), i = 1, 2,
respectively. As customary in the calculus of variations [Sagan 1969], the geometric constraints at the
border furnish restriction on the possible variations of the displacement components. Then, (2-8), (2-9)
and (2-10) give the boundary conditions for the problem at hand.
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2.2. Interpretation of the Euler–Lagrange Equation and boundary conditions. With standard notation
from plate theory [Timoshenko and Woinowsky-Krieger 1971], the x- and y-components of the in-plane
forces-per-unit-length in the i-th glass ply are of the form

Ni x =
12Di

h2
i
(ui ,x +νvi ,y ), Niy =

12Di

h2
i
(vi ,y +νui ,x ), Ni xy =

12Di

h2
1

1− ν
2

(ui ,y +vi ,x ). (2-11)

As shown in Figure 4, imagine cutting the interlayer of the laminated plate with a plane parallel to x
and y at an arbitrary height t∗. The tangential stress component on the resulting surfaces are τ̃zx = Gγ̃zx

and τ̃zy = Gγ̃zy , where the shear strains γ̃zx and γ̃zy have been defined in (2-1). Since γ̃zx and γ̃zy do not
depend on z, τ̃zx and τ̃zy are independent of t∗. It is then easily verified that (2-4), (2-5), (2-6) and (2-7)
are the equilibrium equations in the x and y directions of the composing glass plies, that is,

N1x ,x +N1xy,y +τ̃zx = 0, N2x ,x +N2xy,y −τ̃zx = 0,

N1y,y +N1xy,x +τ̃zy = 0, N2y,y +N2xy,x −τ̃zy = 0.
(2-12)

Moreover, from the moment-curvature relationships [Timoshenko and Woinowsky-Krieger 1971] for
the i-th glass plate,

Mi x =−Di (w,xx +νw,yy ), Miy =−Di (w,yy +νw,xx ), Mi xy = Di (1− ν)(w,xy ), (2-13)

one finds that Equation (2-3) can be rewritten as

(M1x +M2x),xx +(M1y +M2y),yy −2 (M1xy +M2xy),xy −(τ̃zx ,x +τ̃zy,y )H − p = 0. (2-14)

Notice from Figure 4 that the shear stress at the surfaces resulting after the horizontal cut of the
interlayer are statically equivalent, for each one of the component glass plies, to distributed torques per
unit length. In particular, τ̃zx generates m1zx(x, y)=−τ̃zx(

1
2 h1+ t− t∗) and m2zx(x, y)=−τ̃zx(

1
2 h2+ t∗)

in the upper and lower glass plate, respectively. Then, the overall torque per unit length on the two glass
plates is mzx(x, y) = m1zx(x, y) + m2zx(x, y) = −τ̃zx(

1
2(h1 + h2) + t) = −Gγ̃zx H . Similarly, τ̃zy

y

z

x

tyz

txzt*
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m1xz

m1yz
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Nxy
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m2yz
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Figure 4. Equilibrium of portions of the laminated plate.
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generates mzy(x, y) = −τ̃zy(
1
2(h1+ h2)+ t) = −Gγ̃zy H . Henceforth, condition (2-3), or equivalently

(2-14), represents the flexural equilibrium of the package glass + polymer under bending, in the form
(D1+ D2)44w− p+mzx ,x +mzy,y = 0.

For what the border is concerned, (2-11) allows to write (2-9) and (2-10) in the form∮
∂�

(Ni x nx + Ni xyny)δui ds = 0,
∮
∂�

(Ni xynx + Niyny)δvi ds = 0 (i = 1, 2), (2-15)

these being the standard in-plane boundary conditions for the i-th glass layers [Timoshenko and Woinow-
sky-Krieger 1971]. Moreover, using (2-13) and defining Mx = (M1x + M2x), My = (M1y + M2y),
Mxy = (M1xy +M2xy), condition (2-8) may be rearranged as∮
∂�

[(Mx ,x −Mxy,y −H τ̃zx ,x )nx + (My,y −Mxy,x −H τ̃zy,y )ny] δw ds+∮
∂�

[Mx nx +Mxyny] δw,x ds+
∮
∂�

[Myny +Mxynx ] δw,y ds = 0. (2-16)

This is readily interpretable because Qx = Mx ,x −Mxy,y and Q y = My,y −Mxy,x represent the sum of
the transversal shearing forces per unit length acting on the two glass plies. As in classical Kirchhoff
plate theory [Timoshenko and Woinowsky-Krieger 1971], (2-16) gives the boundary condition in terms
of bending couples and transversal shear.

2.3. Correlation between the displacements of the external layers. There are noteworthy identities, im-
portant for the forthcoming considerations, that correlate the displacements of the two constituent glass
plies. In fact, we will prove that the (weighted) average displacement fields, defined as

U (x, y)= u1(x, y)+
h2

h1
u2(x, y), V (x, y)= v1(x, y)+

h2

h1
v2(x, y), (2-17)

are identically zero.
To illustrate, notice first that equations (2-4), (2-5), (2-6) and (2-7) may be rearranged in the form

12D1

h2
1

(
u1,xx +

1− ν
2

u1,yy +
1+ ν

2
v1,xy

)
=−

12D2

h2
2

(
u2,xx +

1− ν
2

u2,yy +
1+ ν

2
v2,xy

)
, (2-18)

12D1

h2
1

(
v1,yy +

1− ν
2

v1,xx +
1+ ν

2
u1,xy

)
=−

12D2

h2
2

(
v2,yy +

1− ν
2

v2,xx +
1+ ν

2
u2,xy

)
. (2-19)

In terms of U (x, y) and V (x, y), these can be rewritten as

U,xx +
1
2(1− ν)U,yy +

1
2(1+ ν)V,xy = 0,

V,yy +
1
2(1− ν)V,xx +

1
2(1+ ν)U,xy = 0,

(2-20)

which is a system of partial differential equations defined on a connected domain �. If the glass plies
are constrained so that ui = vi = 0, i = 1..2, on the boundary ∂�, then from (2-17) also U = V = 0 on
∂�. In general, however, the in-plane displacements of laminated glass are not constrained; in this case,
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from (2-9) and (2-10) one finds the boundary conditions

(U,x +νV,y )nx +
1
2(1− ν)(U,y +V,x )ny = 0 on ∂�,

1
2(1− ν)(U,y +V,x )nx + (V,y +νV,x )ny = 0 on ∂�.

(2-21)

We can prove that the system of partial differential equations (2-20) with boundary condition U = V =
0 on ∂� or, equivalently, with boundary condition given by (2-21), implies U = V ≡ 0 in �. Indeed, this
is a standard argument in PDEs, because the system (2-20) can be proved to be strongly elliptic. Here,
however, we use a more practical argument, by showing that this problem is equivalent to a classical
boundary value problem in linear elasticity, for which well-known results hold. To this aim, we imagine
that U (x, y) and V (x, y) represents the displacement field of a fictitious two-dimensional linear-elastic
body �, with Young’s modulus E and Poisson’s ration ν, for which the (fictitious) stress components
read

σ̂x =
E

1− ν2 (U,x +νV,y ), σ̂y =
E

1− ν2 (V,y +νU,x ), σ̂xy =
E

2(1+ ν)
(U,y +V,x ). (2-22)

It can then be shown that equations (2-20) with boundary conditions (2-21) can be rewritten as{
σ̂x ,x +σ̂xy,y = 0
σ̂xy,x +σ̂y,y = 0

in �, (2-23){
σ̂x nx + σ̂xyny = 0
σ̂xynx + σ̂yny = 0

on ∂�. (2-24)

In the language of linear elasticity, these represent the equilibrium of a body in generalized plane stress
with null boundary traction. Kirchhoff’s theorem [Knops and Payne 1971] states that there is at most
one solution to the Dirichlet boundary value problems in plane elasticity provided −∞< ν < 1

2 , ν 6= −1,
E 6= 0; in the traction boundary value problem there is uniqueness to within a rigid body displacement.
In the considered case of null body forces and null boundary traction, since E > 0 and −1< ν < 1

2 , the
solution is unique and it consist in a null stress field, leading to a displacement field of the form(

U (x, y)
V (x, y)

)
=

(
−ωy
ωx

)
+

(
c1

c2

)
, (2-25)

with constants c1, c2 and ω, that represents an infinitesimal rigid body displacement. It is easy to show
that such constants are null for the case at hand if the laminated glass package is properly constraint in
order to prevent its rigid displacements. In conclusion, one finds U (x, y)≡ 0 and V (x, y)≡ 0, for which
the expected identities

u2(x, y)=−
h1

h2
u1(x, y), v2(x, y)=−

h1

h2
v1(x, y). (2-26)

This is because the in-plane forces in the two glass plies, which are due to the mutual shear forces
transmitted by the interlayer, must balance one another.
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2.4. Layered and monolithic limits. When the shear modulus of the interlayer vanishes, i.e., G→ 0,
conditions (2-3), (2-4), (2-5), (2-6) and (2-7) take the form (i = 1, 2)

(D1+ D2)44w− p(x, y)= 0,

12Di

h2
i

(
ui ,xx +

1−ν
2

ui ,yy +
1+ν

2
vi ,xy

)
= 0,

12Di

h2
i

(
vi ,yy +

1−ν
2
vi ,xx +

1+ν
2

ui ,xy

)
= 0.

(2-27)

The first equation clearly corresponds to the flexural equilibrium of two frictionless sliding glass plates,
with flexural bending D1+ D2, subject to a distributed load p(x, y), while the others are the equilibrium
conditions for the in-plane forces in x and y direction of the upper and lower glass plies, respectively.
This is the layered limit, i.e., the laminated glass plate behaves as two free-sliding glass plies.

When G→+∞, then the shear strain in the interlayer tends to zero, i.e., γ̃zx = 0, γ̃zy = 0 in (2-1).
Using the relationships (2-26), such conditions give:

γ̃zx = [u1− u2+w,x H ]/t = 0 ⇒ u1 =−
D2h2

1

D1h2
2+ D2h2

1
H w,x =−

h2

h1+ h2
H w,x ,

γ̃zy = [v1− v2+w,y H ]/t = 0 ⇒ v1 =−
D2h2

1

D1h2
2+ D2h2

1
H w,y =−

h2

h1+ h2
H w,y .

(2-28)

Substituting in the Euler–Lagrange equations, one finds

Dtot44w− p(x, y)= 0,

12D1

h2
1

(
u1,xx +

1−ν
2

u1,yy +
1+ν

2
v1,xy

)
=−

12D2

h2
2

(
u2,xx +

1−ν
2

u2,yy +
1+ν

2
v2,xy

)
,

12D1

h2
1

(
v1,yy +

1−ν
2
v1,xx +

1+ν
2

u1,xy

)
=−

12D2

h2
2

(
v2,yy +

1−ν
2
v2,xx +

1+ν
2

u2,xy

)
,

Gγ̃zx =
12D1

h2
1

(
u1,xx +

1−ν
2

u1,yy +
1+ν

2
v1,xy

)
,

Gγ̃zy =
12D1

h2
1

(
v1,yy +

1−ν
2
v1,xx +

1+ν
2

u1,xy

)
,

(2-29)

where the quantity Dtot, defined as

Dtot = D1+ D2+
12D1 D2

D1h2
2+ D2h2

1
H 2
= D1+ D2+

E
1− ν2

h1h2

h1+ h2
H 2, (2-30)

represents the flexural stiffness of a monolithic plate, whose flexural inertia is that of the two glass plies
properly spaced of the gap given by the thickness of the interlayer. This is indeed the monolithic limit of
laminated glass [Bennison et al. 1999].

3. The enhanced effective thickness approach

It is not possible to solve the system of differential equations (2-3), (2-4), (2-5), (2-6) and (2-7) in closed
form, but an approximation can be found by choosing an appropriate class of shape functions for the
unknown fields w(x, y), u1(x, y), u2(x, y), v1(x, y) and v2(x, y) defined up to parameters that will be
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determined from energy minimization. The shape functions must be compatible with the qualitative
properties of the exact solution and, in particular, must comprehend the monolithic-limit solution, when
G→∞, and the layered-limit solution, when G→ 0. In terms of the field w(x, y), such borderline cases
correspond, respectively, to the fields wM(x, y) and wL(x, y) that, being the solutions of the differential
equations

Dtot44wM(x, y)− p(x, y)= 0, (D1+ D2)44wL(x, y)− p(x, y)= 0, (3-1)

are of the form
wM(x, y)≡

g(x, y)
Dtot

, wL(x, y)≡
g(x, y)

D1+ D2
, (3-2)

where g(x, y) is a function that depends upon the boundary conditions of the problem at hand. Hence-
forth, we may define the equivalent (reduced) flexural rigidity of the laminate plate

1
DR
=

η

Dtot
+

1− η
D1+ D2

, (3-3)

being the parameter η a nondimensional quantity, tuning the plate response from the layered limit (η = 0)
to the monolithic limit (η = 1). An approximating class of solutions can thus be sought in the form

w(x, y)=
g(x, y)

DR
, (3-4)

where g(x, y) is the shape function for the vertical displacement, uniquely determined by the shape of
the laminated glass plate in x − y plane, by the external load p(x, y) and by the geometric boundary
conditions.

The shape functions for the in-plane displacements should also guarantee that γ̃zx = 0, γ̃zy = 0 in the
borderline monolithic case. Recalling (2-18) and (2-19), we select the form

u1(x, y)=−β 1
Dtot

h2
h1+h2

Hg,x (x, y), u2(x, y)= β 1
Dtot

h1
h1+h2

Hg,x (x, y),

v1(x, y)=−β 1
Dtot

h2
h1+h2

Hg,y (x, y), v2(x, y)= β 1
Dtot

h1
h1+h2

Hg,y (x, y),
(3-5)

where β is another nondimensional parameter, again tuning the response from the layered limit (β = 0,
implying null in-plane force in the glass layers) to the monolithic limit (β = 1, leading to γ̃zx = γ̃zy = 0).

The corresponding total strain energy (2-2) can thus be rewritten as a function of the parameters η and
β to give

E[w, u1, u2, v1, v2] = Ẽ[η, β] =

1
2

∫
�

{(
D1+D2

D2
R
+β2 12D1 D2 H 2

D1h2
2+D2h2

1

1
Dtot

)[
(g,xx +g,yy )

2
− 2(1− ν)(g,xx g,yy −g,2xy )

]
+

G H 2

t

( 1
DR
−

β

Dtot

)
[g,2x +g,2y ] + 2

p(x, y)
DR

g
}

dx dy. (3-6)

This expression can be simplified by observing from (3-1) and (3-2) that w(x, y) = g(x, y)/DR of
(3-4) is the exact solution of the elastic bending of a plate with constant flexural rigidity DR under the
load p(x, y), with the same domain � and the geometric boundary condition of the problem at hand.
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Consider the virtual work equality for this elastic body, in which the aforementioned w(x, y) is selected
as the strain/displacement field, whereas the stress/force field in equilibrium with p(x, y) is given by

Mx =−DR(w,xx +νw,yy )=−(g,xx +νg,yy ),

My =−DR(w,yy +νw,xx )=−(g,yy +νg,xx ),

Mxy = DR(1− ν)w,xy = (1− ν)g,xy .

(3-7)

The external and internal virtual works, Lve and Lvi , can be written as

Lve =−
1

DR

∫
�

p(x, y) g dx dy,

Lvi =

∫
�

[Mxw,x +Myw,y +Mxyγxy] dx dy

=−
1

DR

∫
�

[
(g,xx +g,yy )

2
− 2(1− ν)(g,xx g,yy −g,2xy )

]
dx dy.

(3-8)

Equality of external and internal virtual work then gives∫
�

p(x, y)g dx dy =
∫
�

[
(g,xx +g,yy )

2
− 2(1− ν)(g,xx g,yy −g,2xy )

]
dx dy. (3-9)

This condition allows a drastic simplification of the energy (3-6). In fact, substituting (3-9) into (3-6),
the following expression for the strain energy can be found:

E[w, u1, u2, v1, v2] = Ẽ[η, β] =

1
2

∫
�

{(
D1+D2

D2
R
+β2 12D1 D2 H 2

D1h2
2+D2h2

1

1
Dtot

)
p(x, y) g

+
G H 2

t

( 1
DR
−

β

Dtot

)
[g,2x +g,2y ] +

p(x, y) g
DR

}
dx dy. (3-10)

Since g(x, y) is supposed to have been determined from (3-1), the integral in (3-10) depends upon the
free parameters η and β only, whose optimal value, say η∗ and β∗, is obtained by direct minimization.
The final result is that

η∗ = β∗ =
1

1+
D1+ D2

(G/t)Dtot

12D1 D2

D1h1
2+ D2h2

1
9

, (3-11)

where the coefficient

9 =

∫
�

p(x, y) g dx dy∫
�
[g,2x +g,2y ] dx dy

(3-12)

depends upon the geometry of the plate and on its boundary and loading condition.

Deflection-effective thickness. The coefficient η, appearing in the definition of DR (3-3), is in some
sense analogous to the parameter 0 of (1-5) in the Bennison–Wölfel model [Wölfel 1987; Bennison
2009; Calderone et al. 2009], because the layered limit corresponds to 0 = η = 0 and the monolithic
limit to 0 = η = 1. From (3-3), the deflection-effective thickness ĥef;w, associated with the value η∗, can
be written in the form
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ĥw =

(
η∗

h3
1+ h3

2+ 12 h1h2
h1+h2

H 2
+

1− η∗

h3
1+ h3

2

)−1/3

. (3-13)

Stress-effective thickness. The stress-effective thickness may be defined as the (constant) thickness ĥi;ef;σ

of a monolithic plate for which the maximum bending stress is equal to the maximum stresses in the i-th
glass layer of the laminated plate. The stresses in a monolithic plate are associated with the moments
per-unit-length Mx , My, Mxy , defined by (3-7). On the other hand, the i-th glass ply of the laminated
plate is subjected to moments and in-plane forces per unit length given by (2-13) and (2-11), respectively.
Then, ĥi;ef;σ can be found by equating the two contributions, i.e.,

|σxx |max =max

∣∣∣∣∣ Ni x(x, y)
hi

±
6Mi x(x, y)

h2
i

∣∣∣∣∣= max |Mx(x, y)|
1
6 ĥ2

i;ef;σ

,

|σyy|max =max

∣∣∣∣∣ Niy(x, y)
hi

±
6Miy(x, y)

h2
i

∣∣∣∣∣= max |My(x, y)|
1
6 ĥ2

i;ef;σ

,

|σxy|max =max

∣∣∣∣∣ Ni xy(x, y)
hi

±
6Mi xy(x, y)

h2
i

∣∣∣∣∣= max |Mxy(x, y)|
1
6 ĥ2

i;ef;σ

.

(3-14)

Recalling (3-4) and (3-5), the moments and in-plane forces per unit length can be rewritten as a function
of the shape function g(x, y) in the form

Mi x =−
Di

DR
(g,xx +νg,yy ), Ni x =−(−1)i η∗

12 D1 D2

D2h2
1+ D1h2

2

H
Dtot

(g,xx +νg,yy ),

Miy =−
Di

DR
(g,yy +νg,xx ), Niy =−(−1)i η∗

12 D1 D2

D2h2
1+ D1h2

2

H
Dtot

(g,yy +νg,xx ), (3-15)

Mi xy = (1− ν)
Di

DR
g,xy , Ni xy =−(−1)i η∗ (1− ν)

12 D1 D2

D2h2
1+ D1h2

2

H
Dtot

g,xy .

After defining, as in [Bennison 2009],

hs;1 =
h1 H

h1+ h2
, hs;2 =

h2 H
h1+ h2

, (3-16)

one finds from (3-14) expressions analogous to that defined in (1-7) in the form

1

ĥ2
1;σ

=
2η∗ hs;2

h3
1+ h3

2+ 12 h1 h2
h1+h2

H
+

h1

ĥ3
w

,
1

ĥ2
2;σ

=
2η∗ hs;1

h3
1+ h3

2+ 12 h1 h2
h1+h2

H
+

h2

ĥ3
w

. (3-17)

Notice that the expressions for the effective thickness (3-13) and (3-17) are of the same type obtained
in [Galuppi and Royer-Carfagni 2012] for the one dimensional case.

In the following, the method based upon formulas (3-13) and (3-17) will be referred to as the enhanced
effective thickness (EET) approach.
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4. Examples

The four paradigmatic cases of rectangular laminated plates {0≤ x ≤ a; 0≤ y ≤ b} with various boundary
conditions, as shown in Figure 5, are now examined. We set b = 2000 mm, while for a the three values
a= 2000 mm, a= 3000 mm and a= 6000 mm are considered. Parameters for glass plates are E = 70 GPa,
ν = 0.22, h1 = h2 = 10 mm, the thickness of the interlayer is t = 0.76 mm while its shear modulus G is
continuously varied from 0.01 MPa to 10 MPa, in order to evaluate its influence on the shear-coupling of
the glass plies. All the laminates are subjected to a uniformly distributed pressure p = 0.75 kN/m2, but
since all materials are linear elastic, stress and strain depend linearly upon p. The results obtained with
the approximate methods will in each case be compared with an accurate numerical analysis performed
with ABAQUS, using a 3-D mesh with 110000 solid 20-node quadratic bricks with reduced integration,
available in the ABAQUS program library.

The shape function g(x, y) of (3-4) is assumed according to the form (uniform distribution) of the
external load p(x, y) and the geometric boundary conditions. The coefficient η∗, which allows to calcu-
late the stress and deflection-effective thickness, as per (3-13) and (3-17), is calculated by using (3-11),
evaluating the parameter 9 through (3-12). But since for the case at hand h1 = h2 = h, as customary in
the design practice, the expression for η∗ can be simplified:

η∗ =
1

1+
t
G

E
1− ν2

h3

2(h2+ 3H 2)
9

. (4-1)

To facilitate the analysis of rectangular plates of any size, the values of 9 are recorded in tables as a
function of the length a and of the aspect ratio λ= b/a.

4.1. Simply supported rectangular plates. Consider a rectangular laminated glass under a uniformly
distributed load p with four simply supported edges (Figure 5a). The classical Navier solution [Timo-
shenko and Woinowsky-Krieger 1971] gives the elastic deflection of a monolithic plate with flexural
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Figure 5. Representative examples of laminated glass plates under various boundary
and load conditions.
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39.8732 10.2644 4.7813 2.8622 1.9739 1.4914 1.2005 1.0116 0.8822 0.7896

9.9683 2.5661 1.1953 0.7155 0.4935 0.3729 0.3001 0.2529 0.2205 0.1974

4.4304 1.1405 0.5313 0.3180 0.2193 0.1657 0.1334 0.1124 0.0980 0.0877

2.4921 0.6415 0.2988 0.1789 0.1234 0.0932 0.0750 0.0632 0.0551 0.0493

1.5949 0.4106 0.1913 0.1145 0.0790 0.0597 0.0480 0.0405 0.0353 0.0316

1.1076 0.2851 0.1328 0.0795 0.0548 0.0414 0.0333 0.0281 0.0245 0.0219

l
a[mm] . . . . . . . . .

Table 1. Coefficient 9 (in mm−2
× 104) for rectangular plates with four edges simply supported.

rigidity DR in the form

w(x, y)=
16p
π6 DR

∞∑
m=1

∞∑
n=1

sin mπx
a

sin nπy
b

nm
(m2

a2 +
n2

b2

)2
. (4-2)

Partial sums of a finite number of terms of the series can be used as approximations of the entire
function. By taking just the first term in the series (first-order approximation), the shape function g(x, y)
of (3-4) is

g(x, y)=
16p
π6

1( 1
a2 +

1
b2

)2 sin
πx
a

sin
πy
b
, (4-3)

and the corresponding graph is drawn in Figure 6.
From this, the coefficient η∗, evaluated through (3-11) or (4-1), reads

η∗ =
1

1+
D1+ D2

(G/t)Dtot

12D1 D2

D1h1
2+ D2h2

1

π2(a2
+ b2)

a2b2

. (4-4)

It has been directly verified that higher-order approximations, obtained by considering more terms
of the series (4-2), do not substantially increase the level of accuracy. The coefficient 9[mm−2

] that
appears in (3-11) and (4-1) is tabulated in Table 1 as a function of the length a [mm] and of the aspect
ratio λ= b/a.

For the case a= 3000 mm, b= 2000 mm and for a shear modulus of the polymeric interlayer G varying
from 0, 01 MPa to 10 MPa, the graphs in Figure 7 compare the deflection- and stress-effective thickness
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Figure 6. Shape function for simply supported rectangular laminated plates. Case a =
3000 mm, b = 2000 mm.
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Figure 7. Simply supported rectangular plate, case a = 3000 mm, b = 2000 mm. Com-
parison of the effective thicknesses obtained with the Bennison–Wölfel approach (B-W),
the enhanced effective thickness approach (ETT), and numerical simulations.

calculated according to the proposed approach of Section 3, here referred to as EET (enhanced effective
thickness), with the effective thicknesses calculated through (1-6) and (1-7) for the Bennison–Wölfel
model, recalled in the Introduction.

It is evident here that the proposed enhanced effective-thickness (ETT) approach and the Bennison–
Wölfel (B-W) formulation give qualitatively different results. However, B-W is on the side of safeness,
because it predicts deflection and stress values higher than those predicted by the EET approach. The
numerical simulations show that the EET approach provides a better approximation than B-W, but the
difference is not substantial, at least for the case at hand. The analytical approach recently proposed in
[Foraboschi 2012] for the particular case at hand gives results in good agreement with the EET results.

The case of Figure 8 corresponds to a = 6000 mm and b = 2000 mm, that is, the plate is a long
rectangle whose deformation tends to be cylindrical in a neighborhood of the center. In such a case, the
behavior predicted by the EET approach is close to Bennison–Wölfel’s. This is not surprising because the
aspect ratio is such that plate response is similar to the response of a beam (λ= b/a� 1), and Bennison–
Wölfel’s model is calibrated on the case of simply supported beams under uniformly distributed load
[Galuppi and Royer-Carfagni 2012]. Numerical simulations confirm the accuracy.

On the contrary, the greatest differences between the EET and B-W approaches are obtained when
the plate is square, i.e., when the deflections of beam and plate differ the most. This case is illustrated
in Figure 9 for a plate with a = 2000 mm and b = 2000 mm. It is evident, here, that the results achieved
through the ETT approach are closer to the numerical data.

4.2. Rectangular plates with two opposite simply supported sides. For the case of rectangular plates
with two opposite simply supported sides (Figure 5b), following [Timoshenko and Woinowsky-Krieger
1971] and reasoning as in the previous case, the shape function g(x, y) may be chosen in the form

g(x, y)= pa4
∞∑

m=1,3,5,...

[
4

π5m5 + Am cosh
mπy

a
+ Bm

mπy
a

sinh
mπy

a

]
sin

mπx
a
, (4-5)
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Figure 8. Simply supported rectangular plate, case a = 6000 mm, b = 2000 mm (see
Figure 7 for legend).
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Figure 9. Simply supported square plate, case a= 2000 mm, b= 2000 mm (see Figure 7
for legend).

where

Am =
4

π5m5

ν(1+ν) sinh mπb
2a
−ν(1−ν)mπb

2a
cosh mπb

2a

(3+ν)(1−ν) sinh mπb
2a

cosh mπb
2a
−(1−ν)2 mπb

2a

,

Bm =
4

π5m5

ν(1−ν) sinh mπb
2a

(3+ν)(1−ν) sinh mπb
2a

cosh mπb
2a
−(1−ν)2 mπb

2a

.

(4-6)

We take a first-order approximation just keeping the first term of the series, whose graph is plotted in
Figure 10.
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Figure 10. Shape function for rectangular plate with two opposite edges simply sup-
ported. Case a = 3000 mm, b = 2000 mm.

The coefficient η∗ is given by (4-1), where 9, when evaluated by taking the first term only in the
series, is of the form

9 =
8π2

(
4b+ B1π

5bC + 2aSπ4(A1− B1)
)

a
(
B2

1π
11b2SC+32ab+abB1(−B1+4A1S2)π10

+2a2SC(2A2
1+ B2

1 )π
9
+16B1π

5abC+32a2Sπ4(A1− B1)
) ,(4-7)

with C = cosh mπb
2a

and S = sinh mπb
2a

. The value of 9 is reported in Table 2 as a function of a and
λ= b/a.

Figure 11 shows the comparison between the deflection- and stress-effective thicknesses, calculated
according to the enhanced effective thickness approach and to Bennison–Wölfel model as a function
of G.

In this case the EET and B-W approaches give results that in practice coincide. A plate under these
particular boundary conditions presents in fact a cylindrical deformed shape very similar to that of a
beam with equivalent cross-sectional inertia. The good approximation that can be achieved is evidenced
by the comparison with the numerical results.

4.3. Rectangular plates with three simply supported sides. For the case of rectangular plates with three
simply supported sides under uniform pressure (Figure 5c), Timoshenko and Woinowsky-Krieger [1971]
furnishes the general form for the elastic deflection of a monolith. Then, the shape function can be

0.4233 0.3908 0.3816 0.3770 0.3742 0.3718 0.3690 0.3653 0.3579

0.1058 0.0977 0.0954 0.0943 0.0935 0.0929 0.0922 0.0913 0.0895

0.0470 0.0434 0.0424 0.0419 0.0416 0.0413 0.0410 0.0406 0.0398

0.0265 0.0244 0.0238 0.0236 0.0234 0.0232 0.0231 0.0228 0.0224

0.0169 0.0156 0.0153 0.0151 0.0150 0.0149 0.0148 0.0146 0.0143

0.0118 0.0109 0.0106 0.0105 0.0104 0.0103 0.0102 0.0101 0.0099

0.2 0.4 0.6 0.8 1 1.25 1.667 2.5 5

500

1000

1500

2000

2500

3000

l
a[mm]

Table 2. Coefficient 9 (in mm−2
× 104) for rectangular plates with two opposite edges

simply supported.
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Figure 11. Rectangular plates with two opposite edges simply supported, case a =
3000 mm, b = 2000 mm. Comparison of the effective thicknesses obtained with:
Bennison–Wölfel approach (B-W); the enhanced effective thickness approach (EET);
the numerical simulations.

written as

g(x, y)= p a4

×

∞∑
m=1,3,5,...

[
4

π5m5+Am cosh
mπy

a
+Bm

mπy
a

sinh
mπy

a
+Cm sinh

mπy
a
+Dm

mπy
a

cosh
mπy

a

]
sin

mπx
a

(4-8)

By imposing the relevant boundary conditions, one finds with some effort the values of the constants
appearing in (4-8) in the form

Am =−
4

π5m5 , Bm =
2

π5m5 , Dm =
(2((3− ν)S2

+ 2νC(C − 1)))a
((3+ ν)C Sa+ (1− ν)πbm)π5m5 ,

Cm =
2(π2m2(1− ν)2b2

+ 2ν(1− ν)mπ Sab+ (2νC(C − 1)(1+ ν)− 2S2(3− ν))a2)

(1− ν)((3+ ν)C Sa+ (1− ν)πbm)π5m5a
,

(4-9)

where C = cosh(mπb/a) and S = sinh(mπb/a). Figure 12 shows the graph of the first-order approxi-
mation of the shape function. The coefficient 9 to calculate η∗ from (3-12) is tabulated in Table 3 again
as a function of a and λ= b/a.

It is evident, from Figure 13, that the enhanced effective thickness approach and the Bennison–Wölfel
model give, in the case at hands, slightly different results; the data obtained numerically are in favor of
the approach proposed here.

4.4. Rectangular plates resting on corner points. The case of rectangular plates point-wise supported at
the corners under uniform pressure (Figure 5d) is of particular interest for frameless glazing, but presents
some difficulty because even the elastic solution for the monolith is not simple. The first attempts of
analytical solutions were given by Galerkin [1915] and Nádai [1922]. Then Wang et al. [2002] proved



394 LAURA GALUPPI AND GIANNI ROYER-CARFAGNI

0

500

1000

1500

2000

0
500

1000
1500

2000
2500

3000

-2

-1.5

-1

-0.5

0

x 10
8

Figure 12. Shape function for rectangular plates with three simply supported sides.
Case a = 3000 mm, b = 2000 mm.

0.5982 0.5578 0.5168 0.4855 0.4640 0.4465 0.4300 0.4156 0.4166

0.1495 0.1394 0.1292 0.1214 0.1160 0.1116 0.1075 0.1039 0.1041

0.0665 0.0620 0.0574 0.0539 0.0516 0.0496 0.0478 0.0462 0.0441

0.0374 0.0349 0.0323 0.0303 0.0290 0.0279 0.0269 0.0260 0.0260

0.0239 0.0223 0.0207 0.0194 0.0186 0.0179 0.0172 0.0166 0.0171

0.0166 0.0155 0.0144 0.0135 0.0129 0.0124 0.0119 0.0115 0.0110
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Table 3. Coefficient 9 (in mm−2
× 104) for rectangular plates with three edges simply supported.

10
-2

10
-1

10
0

10
1

12

13

14

15

16

17

18

19

20

21

22
Deflection-effective thickness

G[MPa]

[m
m

]

MONOLITHIC LIMIT

LAYERED LIMIT

EET

B-W

Numerical

10
-2

10
-1

10
0

10
1

12

13

14

15

16

17

18

19

20

21

22
Stress-effective thickness

G[MPa]

[m
m

]

MONOLITHIC LIMIT

LAYERED LIMIT

EET

B-W

Numerical

Figure 13. Rectangular plates with three simply supported edges, case a = 3000 mm,
b = 2000 mm. Comparison of the effective thicknesses obtained with: Bennison–Wölfel
approach (B-W); the enhanced effective thickness approach (EET); the numerical simu-
lations.

that such works, focused on determining the deflection, produce rather inaccurate results in terms of
stress. Batista [2010] presented a solution in form of trigonometric series , where the coefficients of the
series form a regular infinite system of linear equations, providing accurate results for deflection, moment
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and shear forces. Therefore, following Batista, the deflection of a monolith of flexural stiffness D is here
expressed in the form

w(x, y)=
p

48(1− ν)D

[
5(a4
+ b4)− 6νa2b2

− 6(a2
− νb2)x2

− 6(b2
− νa2)y2

+ x4
− 6νx2 y2

+ y4]
+

p
D

∞∑
n=0

(−1)n Bn

[( sinh(αnb)
cosh(αnb)

+
2

(1− ν)αnb

)
b cosh(αn y)− y sinh(αn y)

] cos(αnx)
a cosh(αnb)

+
p
D

∞∑
n=0

(−1)n Dn

[( sinh(βna)
cosh(βna)

+
2

(1−ν)βna

)
a cosh(βn y)− x sinh(βn y)

] cos(βn y)
b cosh(βna)

, (4-10)

where αn = (2n + 1)π/(2a) and βn = (2n + 1)π/(2b). The coefficients Bn and Dn can be found by
expanding into a trigonometric series the boundary condition of null vertical forces on the free edges.
By taking, as in the previous cases, just the first-order approximation, the shape function g(x, y) reads

g(x, y)=
p

48(1− ν)

[
5(a4
+ b4)− 6νa2b2

− 6(a2
− νb2)x2

− 6(b2
− νa2)y2

+ x4
− 6νx2 y2

+ y4]
+ pB0

[( sinh(α0b)
cosh(α0b)

+
2

(1− ν)α0b

)
b cosh(α0 y)− y sinh(α0 y)

] cos(α0x)
a cosh(α0b)

+ pD0

[( sinh(β0a)
cosh(β0a)

+
2

(1−ν)β0a

)
a cosh(β0 y)− x sinh(β0 y)

] cos(β0 y)
b cosh(β0a)

, (4-11)

where the coefficients B0 and D0 are given by

B0 = 16a4b C2
ba(1− ν)

[
−a(1− ν)π2

+ 2b SabCab(3+ ν)π +
16ab4

(b2+ a2)2
C2

ab(1− ν)
]/

Q,

D0 = 16a4b C2
ba(1− ν)

[
−b(1− ν)π2

+ 2a SbaCba(3+ ν)π +
16a4b

(b2+ a2)2
C2

ba(1− ν)
]/

Q,

(4-12)

with

Q = π2(ab(1− ν)2π4
− 2(3+ ν)(1− ν)(Cba Sba a2

+ SabCab b2)π3

+ 4ab Sab SbaCbaCab(3+ ν)2π2
−

256a5b5

(b2+ a2)4
C2

abC2
ba(1− ν)

2),

Cab = cosh2(α0b), Sab = sinh2(α0b), Cba = cosh(β0a), Sba = sinh(β0a). (4-13)

The shape function thus obtained is plotted in Figure 14.
The coefficient η∗ may be determined through (3-11) or (4-1) as a function of the material properties

and of the coefficient 9 of (3-12), tabulated in Table 4.
Figure 15 shows the comparison between the deflection- and stress-effective thickness calculated

according to EET and B-W approaches, for the case a = 3000 mm, b = 2000 mm. From this, it is
evident that the EET and B-W give substantially different results. For what concerns the stress-effective
thickness, numerical experiments are in favor of our present proposal.
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Figure 14. Shape function for rectangular plates resting on corner points. Case a =
3000 mm, b = 2000 mm.
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Table 4. Coefficient 9 (in mm−2
× 104) for rectangular plates resting on corner points.
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Figure 15. Rectangular plates supported at corner points, case a = 3000 mm, b =
2000 mm. Comparison of the effective thicknesses obtained with: Bennison–Wölfel
approach (B-W); the enhanced effective thickness approach (EET); the numerical simu-
lations.

Figure 16 shows the deflection- and stress-effective thickness for a 2000 mm ×2000 mm square plate
supported on corner points. Once again, in this case experimental results are better fitted through the
EET approach.

Whenever b� a, the plate deformed shape tends to be cylindrical and, consequently, the behavior
close to that of a beam. This is why for the case a = 6000 mm and b = 2000 mm, recorded in Figure 17,
B-W and EET give results that in practice coincide, in agreement with the numerical simulations.
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Figure 16. Square plates supported at corner points, case a = 2000 mm, b = 2000 mm.
Comparison of the effective thicknesses obtained with: Bennison–Wölfel approach (B-
W); the enhanced effective thickness approach (EET); the numerical simulations.

10
-2

10
-1

10
0

10
1

12

13

14

15

16

17

18

19

20

21

22
Deflection-effective thickness

G[MPa]

[m
m

]

EET

B-W

Numerical

10
-2

10
-1

10
0

10
1

12

13

14

15

16

17

18

19

20

21

22
Stress-effective thickness

G[MPa]

[m
m

]

EET

B-W

Numerical

MONOLITHIC LIMIT MONOLITHIC LIMIT

LAYERED LIMIT

LAYERED LIMIT

Figure 17. Rectangular plates supported at corner points, case a = 6000 mm, b =
2000 mm. Comparison of the effective thicknesses obtained with: Bennison–Wölfel
approach (B-W); the enhanced effective thickness approach (EET); the numerical simu-
lations.

5. Discussion and conclusions

Although it is possible to calculate numerically, and with excellent precision, the state of strain and
stress in laminated glass of any composition, size and shape, under the most various boundary and load
conditions, nevertheless simplified methods based upon the notion of effective thickness still remain
a very powerful tool, especially in the first preliminary phases of the design procedure. The designers
need simple expressions that allow to readily determine the structural response of laminated glass, leaving
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more sophisticated computer methods to the final verifications. The most important result of this study
has been the definition of simple formulas for the effective thickness that can be applied, in principle, to
the two-dimensional problems of plates of any shape and size, under any boundary and load conditions.
This method is not recommended to evaluate local effects, such as stress concentrations around holes
and/or at contact points, but can be conveniently used to calculate maximum deflection and stress with
good accuracy, as confirmed by numerical and analytical approaches [Foraboschi 2012].

The key point is the assumption of a shape-function g(x, y) for the flexural-deformation surface of the
laminate, which, in accord with (3-4), is taken equal to the deflection of a monolithic plate of arbitrary
thickness with equal boundary and load conditions. Such a shape function may be estimated analytically,
when an analytical though approximate solution is available, or even numerically, when this is not the
case. From this, one can define the deflection- and stress-effective thicknesses of the laminate, by using
the simple formulas (3-13) and (3-17). These are defined by a parameter η∗, indicating the shear coupling
offered by the polymeric interlayer, whose form can be calculated from expression (3-11), which in turn
is defined by the parameter 9, given by (3-12) as a function of the pressure distribution on the plate,
p(x, y), and of the shape function g(x, y). Indeed, the only “difficulty” of the proposed method, here
referred to as the enhanced effective thickness approach (EET), consists in calculating 9 from (3-12),
which involves integration of p(x, y) and g(x, y) over the referential domain of the plate, in accord with
(3-12). Here, we have exemplified this procedure for the case, very important in the design practice, of
a rectangular laminated glass plates under uniformly distributed pressure.

The shape function g(x, y) has been approximated by the first term of the series expansion for the
deflection surface of a monolithic plate, arriving at simple expressions for 9, whose values have been
recorded in the tables of figures 1, 2, 3 and 4 for various boundary conditions at the borders. Comparisons
with the results obtained with the classical formulas for the effective thickness à la Bennison–Wölfel (B-
W), in accordance with (1-5), (1-6) and (1-7), and with the results from accurate numerical models,
highlight the better accuracy that is obtained with the proposed EET approach. Indeed, the B-W ap-
proach assumes that laminated glass is a simply supported beam under uniformly distributed load; it
then turns out to be reliable only when the flexural deformation of the plate is cylindrical, i.e., in the
case of rectangular plates simply supported at two opposite sides. We have also shown that the use of
B-W formulation is not always on the side of safeness because they are cases, like that of a laminated
plate point-wise supported at the corners, where B-W gives effective thicknesses that underestimate both
deflection and stress.

A more general and comprehensive treatment of other relevant problems for laminated glass design
has been recorded in [Galuppi et al. 2012]. Here, the EET method is applied to the most common cases of
the design practice including plates under pseudoconcentrated loads, providing synthetic tables for ease
of reference and immediate applicability. The extension of the enhanced effective thickness approach to
other cases, like that of curved plates and shells, presents in principle no further conceptual difficulty,
and it will be the subject of future work.
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ster�neĭ i plastinok”, Vestn. Inzh. Tekh. (USSR) 1:19 (1915), 897–908. In Russian; translated as Rods and plates:
series in some questions of elastic equilibrium of rods and plates, National Technical Information Service, Springfield, VA,
1968.

[Galuppi and Royer-Carfagni 2012] L. Galuppi and G. F. Royer-Carfagni, “Effective thickness of laminated glass beams: new
expressions via a variational approach”, Eng. Struct. 38 (2012), 53–67.

[Galuppi et al. 2012] L. Galuppi, G. Manara, and G. F. Royer-Carfagni, “Practical expressions for the design of laminated
glass”, 2012, available at http://hdl.handle.net/1889/1720.

[Hooper 1973] J. A. Hooper, “On the bending of architectural laminated glass”, Int. J. Mech. Sci. 15:4 (1973), 309–323.

[Ivanov 2006] I. V. Ivanov, “Analysis, modelling, and optimization of laminated glasses as plane beam”, Int. J. Solids Struct.
43:22-23 (2006), 6887–6907.

[Knops and Payne 1971] R. J. Knops and L. E. Payne, Uniqueness theorems in linear elasticity, Springer, New York, 1971.

[Le Grognec et al. 2012] P. Le Grognec, Q.-H. Nguyen, and M. Hjiaj, “Exact buckling solution for two-layer Timoshenko
beams with interlayer slip”, Int. J. Solids Struct. 49:1 (2012), 143–150.

[Louter et al. 2010] C. Louter, J. Belis, F. Bos, D. Callewaert, and F. Veer, “Experimental investigation of the temperature effect
on the structural response of SG-laminated reinforced glass beams”, Eng. Struct. 32:6 (2010), 1590–1599.

[Murakami 1984] H. Murakami, “A laminated beam theory with interlayer slip”, J. Appl. Mech. (ASME) 51:3 (1984), 551–559.



400 LAURA GALUPPI AND GIANNI ROYER-CARFAGNI

[Nádai 1922] A. Nádai, “Über die Biegung durchlaufender Platten und der rechteckigen Platte mit freien Rändern”, Z. Angew.
Math. Mech. 2:1 (1922), 1–26.

[Newmark et al. 1951] N. M. Newmark, C. P. Siess, and I. M. Viest, “Test and analysis of composite beams with incomplete
interaction”, Proc. Soc. Exp. Stress Anal. 9:1 (1951), 75–92.

[Norville et al. 1998] H. S. Norville, K. W. King, and J. L. Swofford, “Behavior and strength of laminated glass”, J. Eng. Mech.
(ASCE) 124:1 (1998), 46–53.

[Sagan 1969] H. Sagan, Introduction to the calculus of variations, McGraw-Hill, New York, 1969. Reprinted Dover, New York,
1992.

[Schnabl and Planinc 2011] S. Schnabl and I. Planinc, “The effect of transverse shear deformation on the buckling of two-layer
composite columns with interlayer slip”, Int. J. Non-Linear Mech. 46:3 (2011), 543–553.

[Timoshenko and Woinowsky-Krieger 1971] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, Mc-
Graw-Hill, New York, 1971.

[Wang et al. 2002] C. M. Wang, Y. C. Wang, and J. N. Reddy, “Problems and remedy for the Ritz method in determining stress
resultants of corner supported rectangular plates”, Comput. Struct. 80:2 (2002), 145–154.

[Wölfel 1987] E. Wölfel, “Nachgiebiger Verbund: eine Näherungslösung und deren Anwendungsmöglichkeiten”, Stahlbau
56:6 (1987), 173–180.

[Xu and Wu 2007] R. Xu and Y. Wu, “Static, dynamic, and buckling analysis of partial interaction composite members using
Timoshenko’s beam theory”, Int. J. Mech. Sci. 49:10 (2007), 1139–1155.

Received 30 Nov 2011. Revised 1 Mar 2012. Accepted 16 Mar 2012.

LAURA GALUPPI: laura.galuppi@unipr.it
Civil-Environmental Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, I, 43124 Parma,
Italy

GIANNI ROYER-CARFAGNI: gianni.royer@unipr.it
Civil-Environmental Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, I, 43124 Parma,
Italy

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 7, No. 4, 2012

msp

ELASTIC SOLUTION IN A FUNCTIONALLY GRADED COATING
SUBJECTED TO A CONCENTRATED FORCE

ROBERTA SBURLATI

Functionally graded materials are currently being actively explored in coating design to reduce the mis-
match of thermomechanical properties at the interface and thus increase the resistance of coatings to
fracture mechanisms. Many established and potential applications of graded materials involve contact or
impact problems that are primarily load transfer problems; consequently, the goal is to study basic elastic-
ity problems for graded inhomogeneous solids. Here we study the three-dimensional elastic deformation
of a graded coating subjected to a point load on the free surface, deposited on a homogeneous elastic
half-space. By assuming an isotropic coating for which Young’s modulus depends exponentially on the
thickness and Poisson’s ratio is constant, the elastic solution is obtained using Plevako’s representation,
which reduces the problem to the construction of a potential function satisfying a linear fourth-order par-
tial differential equation. We explicitly obtain the elastic solution for the coating and the substrate for two
different interface conditions: the frictionless case and the perfectly bonded case. A comparative study of
FGMs and homogeneous coatings is presented to investigate the effect of the graded coating properties.

1. Introduction

Functionally graded materials (FGMs) are two-phase composites with continuously varying volume frac-
tions. Owing to the importance of the engineering applications of these materials, the thermomechanical
behavior of FGM coatings has been investigated by many researchers [Suresh 2001]. The concept of
grading the thermomechanical properties of materials provides an important tool to design new materials
for certain specific functions. To take full advantage of this new tool, research is needed for developing
efficient processing methods and material characterization techniques. If FGMs are used as coatings
or in interfacial zones, they can reduce the thermally and mechanically induced stresses resulting from
material property mismatches and, consequently, the risk of cracks and debonding of the coating or layer.
Most studies of FGM coatings on substrates have focused on their fracture mechanisms, contact and
impact response, and vibrational and thermoelastic behavior [Erdogan 1995; Birman and Byrd 2007].

The problem of a concentrated force acting normally to the free surface of a semi-infinite solid is of
interest in contact mechanics. For example, Martin et al. [2002] studied it for a functional exponentially
graded unbonded elastic solid subjected to a point force by assuming that the Lamé moduli vary exponen-
tially in a given fixed direction, and obtained solutions that allow the development of boundary-integral
methods for graded materials.

Various studies have considered the elastic response of a functionally graded coating deposited on
a substrate. Kashtalyan and Menshykova [2008] determined a three-dimensional elastic solution of a

Work financed by the Italian Ministry of Education, University, and Research (MIUR), Project No. 2009XWLFKW: “Multi-
scale modeling of materials and structures”.
Keywords: elasticity, coating, functionally graded materials.
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functionally graded coating on a homogeneous finite thickness elastic substrate subjected to mechanical
loading. By assuming that the elasticity modulus varies exponentially through the thickness of the coating,
the solution allows the authors to analyze the effects of the coating type on the stress and displacement
fields. [Liu and Wang 2008] studied the problem of a functionally graded coating half-space indented
by an axisymmetric smooth rigid punch by using the Hankel integral transform technique to reduce the
contact problem to a Cauchy singular equation to be solved numerically.

The aim of this paper is to study the three-dimensional elastic deformation of a functionally graded
coating deposited on a homogeneous substrate subjected to a point load. We investigate the interface
between the coating and the substrate in order to describe the difference in behavior due to localized
damage. For this reason, we consider two ideal interface conditions: the perfectly bonded case and the
frictionless contact case. (Real interface conditions lie in between: the contact is neither frictionless nor
perfectly bonded.) In the isotropic coating, the Young’s modulus depends exponentially on the position
along the thickness, while the Poisson ratio is assumed to be constant and equal to the homogeneous
substrate. Similar investigations have been performed to describe the elastic response in indentation
tests on homogeneous films [Sburlati 2009a].

The solution is obtained in the framework of three-dimensional elasticity using Plevako’s represen-
tation form [1971], which reduces the problem to determining a potential function satisfying a linear
fourth-order partial differential equation. We explicitly obtain the solution by writing the potential func-
tion in terms of a Bessel expansion with respect to the radial coordinate [Sneddon 1966]. We investigate
the stresses and displacements with respect to the corresponding homogeneous coating, and show that
there is an increase of the radial stress on the free surface and a reduction on the interface zone due to
the graded properties. Furthermore, the different interface conditions permit us to study the effects of
localized interface damage in order to provide useful suggestions for the design of graded coatings.

2. Formulation of the problem

We consider a functionally graded material coating of thickness h deposited on a homogeneous substrate
subjected to a point load on the upper face (see Figure 1). We introduce a cylindrical coordinate system

FGM Coating

P

h

z

r
E   ,v(c)

E   ,v(s)

0

Homogeneous Substrate

Figure 1. Sketch of the problem.
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and assume that in the coating, the Young’s modulus varies exponentially in the z-direction and that it is
homogeneous and isotropic in the substrate:

E (c)(z)= E0 e2 kz, E (s)(z)= Eh = E0 e2 kh, (2-1)

while the Poisson ratios νc = νs = ν are uniform.
We denote the quantities in the coating by (i) = (c) and the quantities in the substrate by (i) = (s).

Assuming a null body force, the elasticity equations are [Love 1927]:

∇
2u(i)−

u(i)

r2 +
1

1− 2ν
∂2(i)

∂r
+

(
∂u(i)

∂z
+
∂w(i)

∂r

)
1

E (i)(z)
d
dz

E (i)(z)= 0, (2-2)

∇
2w(i)+

1
1− 2ν

∂2

∂z
+

(
∂w(i)

∂z
+

ν

1− 2ν
2(i)

)
2

E (i)(z)
d
dz

E (i)(z)= 0,

where

2(i) =
∂u(i)

∂r
+

u(i)

r
+
∂w(i)

∂z
.

The load conditions on the free surface of the coating are

σ (c)z (r, 0)=−Pδ(r)=−
Pδ(r)
πr

, τ (c)r z (r, 0)= 0, (2-3)

where δ denotes the Dirac function. We study the problem for perfectly bonded and frictionless contact
interface conditions.

In the perfectly bonded case we assume continuity of the displacement and stress components:

w(c)(r, h)= w(s)(r, h), u(c)(r, h)= u(s)(r, h),

σ (c)z (r, h)= σ (s)z (r, h), τ (c)r z (r, h)= τ (s)r z (r, h).
(2-4)

In the frictionless contact case, we assume

w(c)(r, h)= w(s)(r, h), σ (c)z (r, h)= σ (s)z (r, h), τ (c)r z (r, h)= τ (s)r z (r, h)= 0. (2-5)

In both cases, in the substrate, we set

lim
z→∞

σ (s)z (r, z)= 0, lim
z→∞

τ (s)r z (r, z)= 0. (2-6)

3. Solution technique

In order to find the elastic solution we adopt Plevako’s approach [1971] for an axisymmetric problem.
To this end, the displacement field is expressed in terms of a potential function L(r, z), in the form

u(i)(r, z)=−
1+ ν

E (i)(z)
∂

∂r

(
ν∇2

r L(i)− (1− ν)
∂ 2

∂z2 L(i)
)
, (3-1)

w(i)(r, z)=−
2(1+ ν)
E (i)(z)

∂

∂z
∇

2
r L(i)+ (1+ ν)

∂

∂z

[
1

E (i)(z)

(
ν∇2

r L(i)− (1− ν)
∂ 2

∂z2 L(i)
)]
, (3-2)



404 ROBERTA SBURLATI

where ∇2
r is the radial Laplace operator. The function L(i)(r, z) is required to satisfy the Plevako equation

∇
2
(

1
E (i)(z)

∇
2L(i)

)
−

1
1− ν

∇
2
r L(i)

d 2

d z2

1
E (i)(z)

= 0. (3-3)

The stress field components assume the form

σ (i)r (r, z)=
ν

r
∂

∂r
∇

2
r L(i)+

∂ 2

∂ z2∇
2
r L(i)−

1− ν
r

∂ 3

∂r∂z2 L(i),
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ν
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r L(i)+

1− ν
r

∂ 3
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τ (i)r z (r, z)=−
∂ 2

∂r∂z
∇

2
r L(i), σ (i)z (r, z)=∇4

r L(i).

By using (2-1), we obtain from (3-3)

∇
4
r L(c)+ 2

(
∂ 2

∂ z2 − 2k
∂

∂z
− 2k2 ω2

)
∇

2
r L(c)+

(
∂ 2

∂ z2 − 4k
∂

∂z
+ 4k2

)
∂ 2

∂ z2 L(c) = 0 (3-5)

and

∇
4
r L(s)+ 2

∂ 2

∂ z2∇
2
r L(s)+

∂ 4

∂ z4 L(s) = 0, (3-6)

where ω2
= ν/(1− ν).

In this work, we assume that the elastic deformation is contained within a cylindrical region of some
radius b > h; in other words, the displacement field and the Plevako function are null for r ≥ b.

Now, we write the Plevako function with the following Fourier–Bessel expansion [Sneddon 1966;
Watson 1922]:

L(i)(r, z)=
∞∑
j=1

L(i)j (z) J0(φ j r), where φ j =
z (0)j

b
(3-7)

and where the z (0)j , for j = 1, 2, . . . , are the positive roots of J0(x), Bessel function of order zero, and

L(i)j (z)=
2

b2 J 2
1 (φ j b)

∫ b

0
L(i)(ρ, z) J0(φ j ρ) ρ dρ.

We remark that this expansion, which assumes L(i)(b, z)= 0, can be generalized to the case for which
this assumption is not made. This requires the introduction of two suitable functions β(z)= L(b, z), and
α(z)= ∇2

r L(r, z)|r=b which, in turn, give rise to a different componentwise expression of the Plevako
equation [Sburlati 2009b; Sburlati and Bardella 2011].

Returning to the present case, we substitute the expansion (3-7) into (3-5) and (3-6), obtaining

L(c)j
′′′′
(z)− 4 k L(c)j

′′′
(z)+

(
4 k2
− 2φ2

j

)
L(c)j

′′
(z)+ 4φ2

j k L(c)j
′
(z)+φ2

j (4 k2ω2
+φ2

j )L
(c)
j (z)= 0 (3-8)

and
L(s)j

′′′′
(z)− 2φ2

j L(s)j
′′
(z)+φ4

j L(s)j (z)= 0. (3-9)
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The solution of (3-8) is

L(c)j (z)= ekz[eβ j z(A j cos(αj z)+ B j sin(αj z)
)
+ e−β j z(C j cos(αj z)+ D j sin(αj z)

)]
, (3-10)

where

αj =

√
2

2

√√
k4
+φ4

j + 2 k2 φ2
j (2ω

2
+ 1)− k2−φ2

j and β j =
k ω φ j

αj
,

while the solution of (3-9) is

L(s)j (z)= eφ j z(T j + z Q j )+ e−φ j z(F j + z G j ). (3-11)

4. Explicit solution

Now we substitute the expansions of the Plevako functions L(c)(r, z) and L(s)(r, z) into (3-1), (3-2) and
(3-4). Denoting the Heaviside step function by H(x), we write

u(r, z)=
∞∑
j=1

(
H(h− z)u(c)j (z)+ H(z− h)u(s)j (z)

)
J1(φ jr) (4-1)

and

w(r, z)=
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j=1

(
H(h− z)w(c)j (z)+ H(z− h)w(s)j (z)

)
J0(φ jr), (4-2)

where
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)
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(1+ ν)φ j e−2kh
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νφ2
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w
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j L(c)j (z)
)
, (4-5)

w
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The stress field is given by

σz(r, z)=
∞∑
j=1
φ4

j
(
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σθ (r, z)=−ν
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j=1
φ2
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Plevako’s functions L(c)j (z) and L(s)j (z) are now obtained by taking into account the values of the four
series of coefficients A j , B j ,C j , D j and T j , Q j , F j ,G j determined by imposing the interface conditions.
In both cases, we write the point load applied on the upper face as a Bessel expansion:

p(r)=−P
δ(r)
rπ
=

∞∑
j=1

p j J0(φ j r), where p j =
P

πb2 J 2
1 (φ j b)

. (4-7)

Then the boundary conditions (2-3) and (2-6) give

C j =−A j −
p j

φ4
j
, D j =

p j (k−β j )−φ
4
j (2β j A j +αj B j )

φ4
j α

4
j

, T j = 0, Q j = 0, (4-8)

and the interface conditions allow us to obtain the remaining coefficients (see Appendix).

5. Numerical results

The numerical example presented here highlights the effects of material inhomogeneity using the analytic
solution obtained in the previous section. We conduct a comparative study of FGM versus homogeneous
coatings to examine the different behaviors with attention to the effects of the interface conditions be-
tween the coating and the substrate.

We choose a hardened coating (k < 0) where E0 = 200 GPa, Eh = 20 GPa and ν = 0.3. For the
comparative analysis, we consider a homogeneous coating with Ec = E0, deposited on a soft homogenous
substrate with Es = Eh . In addition, for all cases we assume h = 500µm, P = 2000 N and b = 20h.
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Figure 2. Normalized transversal displacements in the thickness for b/h = 5, 10, 20, 30.
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We adopted this value for b because, according to a numerical sensitivity analysis, greater values of b
do not affect the final results in these cases. To this end, in Figure 2 we plot the normalized transversal
displacement for the case of a perfectly bonded interface condition, for the ratios b/h = 5, 10, 20, 30.
Similar results can be obtained for radial displacement and stresses. We stress that the chosen value does
not represent a specific material, but is used to better show the effect of the graded properties.

We now present some plots of normalized displacements and stresses throughout the thickness for
two systems: a functionally graded coating on a homogeneous substrate (FGC) and a homogeneous
coating on a homogeneous substrate (HC). For both systems, we consider the perfectly bonded (PB) and
frictionless contact (FC) interface conditions.

In Figure 3, the normalized transversal displacement w/h at r = 1/10h reveals, on the free surface,
an increase of the order of 15% in the graded coating case compared to the homogeneous coating, The
variation through the thickness of the normalized radial displacement, near the interface for r = 1/10h,
is shown in Figure 4. It reveals very different behaviors for the two interface conditions. We observe that
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Figure 3. Normalized transversal displacements in the thickness for r = 1/10 h.
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in the graded coating, the radial displacement (FGC-PB) is about twice the corresponding value of the
corresponding displacement for the homogeneous coating (HC-PB). In the frictionless contact case, the
value is about three times as much. In Figure 5, we show the variations of the normalized shear stress.
For FGM-PB, it has a smooth behavior at the interface, unlike the other cases. Furthermore, the FGC-PB
stress is about twice the corresponding value for HC-PB. Finally, in Figure 6, we present the normalized
radial stress near the interface. We observe that only the FGC-PB case is continuous, and its interface
value is about 1/20 times the corresponding value of the HC-PB in the coating.

An analysis of the radial stress solution, calculated in r = 0 and z = h and for the HC-PB case, shows
that

σ (HC-PB)
r (0, h−)=

f (E0/Eh)

h2 , σ (FGC-PB)
r (0, h)=

g(E0/Eh)

h2

for suitable functions f and g. To better understand this we recall Boussinesq’s half-space solution for



ELASTIC SOLUTION IN A FUNCTIONALLY GRADED COATING SUBJECTED TO A CONCENTRATED FORCE 409

30

25

20

15

10

5

2 4 6 8 10 12 14 16 18 20

(HC)

rσ  (0,h)
(HS)

rσ  (0,h)

E
E

0

h
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Figure 8. Radial stress ratios at the interface of the graded coating.

r = 0 and z = h, given by

σ (HS)
r (0, h)=

P(1− 2ν)
4πh2 ,

and plot in Figures 7 and 8 the ratios

σ
(HC-PB)
r (0, h−)

σ
(HS)
r (0, h)

,
σ
(FGC-PB)
r (0, h)

σ
(HS)
r (0, h)

as functions of E0/Eh . These plots show that the value at the interface of the radial stress for FGC is near
the corresponding value of Boussinesq’s solution. In contrast, this value for HC is quickly increasing
with the ratio between the elastic properties.
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6. Concluding remarks

We have determined an exact three-dimensional axisymmetric elastic solution for a functionally graded
coating subjected to a point-force load. We assumed inhomogeneity governed by exponential gradation
along the coating thickness, and considered two different interface conditions (perfectly bonded and
frictionless contact). We compared the solution to the case of a homogeneous coating on a homogeneous
substrate with different elastic properties. The analytical solution, obtained in terms of Bessel expansions,
highlighted the effects of inhomogeneity on the behavior of the displacement and stress fields at the
interface.

Appendix

We explicitly write the coefficients A j , B j , F j ,G j of Section 4 in the case of perfectly bonded interface
conditions. We first introduce the quantity

3= φ4
j k
(
d1 cos(αj h) sin(αj h)+ d2 cos2(αj h)+ d3+ d4 e2 hβ j + d5 e−2 hβ j

)
,

where

d1 =−8αjφ j kν+ 4 (β2
j − 2 k2ν)αj ,

d2 = 8φ2
j kν+ 4 (2 k2ν−β2

j )φ j + 8 ν k(k−β j )(k+β j ),

d3 =−2φ3
j − 4φ2

j kν+ (6β2
j − 2 (1+ 2 ν)k2)φ j + 4 kβ2

j ν− 4 k3ν,

d4 = φ
3
j +β jφ

2
j − (β

2
j + 2 kν β j − (1− 2 ν)k2)φ j −β

3
j − 2 kβ2

j ν+ (1− 2 ν)k2β j ,

d5 = φ
3
j −β jφ

2
j − (β

2
j − 2 kν β j − (1− 2 ν)k2)φ j +β

3
j − 2 kβ2

j ν+ (2 ν− 1)k2β j .

The constants of integration are

A j = (p j/3)
(
a1 cos(αj h) sin(αj h)+ a2 cos2(αj h)+ a3 e−2 hβ j + a4

)
,

B j = (p j/3)
(
b1 cos(αj h) sin(αj h)+ b2 cos2(αj h)+ b3 e−2 hβ j + b4

)
,

where

a1 = 4αj k3ν+ (4φ jν− 2β j )αj k2
− 2β j (β j +φ j )αj k− 4β j (β

2
j −φ

2
j )(ν− 1)αj ,

a2 =−4 k4ν+ (2β j − 4φ jν)k3
+ (4β2

j ν− 4φ2
j ν+ 2φ jβ j )k2

− 2β j (β
2
j −φ

2
j −φ jβ j )k
+ 4φ jβ j (ν− 1)(β2

j −φ
2
j ),

a3 = (β j −φ j )
(
(1− 2 ν)k3

+ 2β jν k2
− (β2

j −φ
2
j )k
)
,

a4 =−2 ν k2(β2
j −φ

2
j )+ 2 k4ν+ ((1+ 2 ν)φ j −β j )k3

− 2φ jβ j (β
2
j −φ

2
j )(ν− 1)
+ (φ3

j +β
3
j − 3φ jβ

2
j −β jφ

2
j )k
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and

b1 =−4k4ν+(2β j−4φ jν)k3
+(4β2

j ν−4φ2
j ν+2φ jβ j )k2

+2β j (φ
2
j+φ jβ j−β

2
j )k+4φ jβ j (ν−1)(β2

j−φ
2
j ),

b2 =−4αj k3ν+ (2β j − 4φ jν)αj k2
+ 2β j (β j +φ j )αj k+ 4β j (β

2
j −φ

2
j )(ν− 1)αj ,

b3 = αj (β j −φ j )(k−β j )(k− 2kν+ 2β j − 2β jν),

b4 = 2αj k3ν− (β j −φ j − 2φ jν)αj k2
−β j (β j +φ j )αj k− 2β j (β

2
j −φ

2
j )(ν− 1)αj .

The remaining coefficients are

F j = eh(k+φ j )
[

p j f1e−hβ j + A j
(

f2 sin(αj h)+ f3 cos(αj h)
)
+ B j

(
f4 sin(αj h)+ f5 cos(αj h)

)]
,

G j = eh(k+φ j )
[

p j g1e−hβ j + A j
(
g2 sin(αj h)+ g3 cos(αj h)

)
+ B j

(
g4 sin(αj h)+ g5 cos(αj h)

)]
,

where

f1 =
(
(1−hφ j )(k−β j )−(α

2
j +β

2
j +k2

−2β j k)h
)

sin(αj h)/(α jφ
4
j )−(1−hφ j ) cos(αj h)/φ4

j ,

f2 =
(
−2β j + (2φ jβ j + 2β j k− 2β2

j −α
2
j )h
)
e−hβ j/αj + ehβ jαj h,

f3 = 2 sinh(hβ j )(1− hβ j − hk− hφ j ),

f4 = 2 sinh(hβ j )(1− hk− hφ j )− 2 cosh(hβ j )β j h,

f5 =−2 sinh(hβ j )αj h,

g1 = (α
2
j +β

2
j + k2

− 2β j k+φ j k−φ jβ j ) sin(αj h)/(αjφ
4
j )−αj cos(αj h)φ j ,

g2 =−ehβ jαj − (2φ jβ j + 2β j k− 2β2
j −α

2
j )e
−hβ j/αj ,

g3 = 2 sinh(hβ j )(β j + k+φ j ),

g4 = 2 cosh(hβ j )β j + 2 sinh(hβ j )(k+φ j ),

g5 = 2 sinh(hβ j )αj .
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