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MICROMECHANICAL STUDY OF DISPERSION AND DAMPING
CHARACTERISTICS OF GRANULAR MATERIALS

NIELS P. KRUYT

The wave-propagation characteristics of dense granular materials have been studied from the microme-
chanical viewpoint, in which relationships are sought between properties at the micro-scale of particles
and interparticle contacts and properties at the continuum, macro-scale. The dispersion and damping
characteristics have been determined from a three-dimensional lattice analysis in which the particle
interaction is modeled with linear elastic springs and linear viscous dashpots.

Due the presence of rotational degrees of freedom of the particles, optical branches are observed
in the dispersion and damping characteristics, besides the acoustical branches. The influence of the
micromechanical characteristics on the macroscopic dispersion and damping characteristics has been
determined for a face-centered cubic lattice and a body-centered cubic lattice. For small wave numbers
(large wave lengths) the damping of the optical branches is very large. This means that the optical
branches will not be observed in conditions where a continuum-mechanical description is appropriate.

1. Introduction

In many disciplines of engineering, the propagation of waves is important. For example, wave propa-
gation in granular materials is important in oil exploration. Granular materials are special materials in
the sense that they possess a clear, discrete structure of particles with rotational degrees of freedom and
interparticle contacts. In micromechanics of granular materials, relationships are investigated between
properties at the micro-scale of particles and interparticle contacts and properties at the continuum, macro-
scale.

Here the characteristics of wave propagation, dispersion and damping, are studied from the microme-
chanical viewpoint. In this approach the three-dimensional granular assembly is modeled as a large set of
spherical particles that only interact at contacts through linear elastic springs and linear viscous dampers
in directions normal and tangential to contacts.

The focus is on isotropic, dense or cemented granular materials where the particle displacements are
small and the number of interparticle contacts does not change. Particle dampers (see for example [Els
2011]), where damping through particle collisions is important, are not considered.

The wave-propagation characteristics consist of the dispersion and damping characteristics. These
characteristics give the complex circular frequencies ω = ω(k) that are compatible with plane-wave
solutions of the governing equations with a periodic spatial variation that is characterized by the wave
vector k, i.e., solutions for the unknowns u of the form

u(x, t)= V exp[ j (ωt − k · x)]

= V exp[− j k · x] exp[ jRe(ω)t] exp[−Im(ω)t], (1-1)
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where x is the position vector, t is time, j is the imaginary unit, V is an amplitude vector, Re(ω) and
Im(ω) are the real part and the imaginary part of the complex circular frequency, respectively. The disper-
sion characteristics are given by Re(ω) and the damping characteristics by Im(ω). Note that Im(ω) > 0
for actual damping (reduction of the amplitude of u with time t).

The magnitude of the wave vector k is the wave number k. The wave number k is related to the wave
length 3 by

3=
2π
k
. (1-2)

Wave speeds for small wave numbers (large wave lengths) have been studied experimentally (see for
example [Jia et al. 1999] and the references given in [Magnanimo et al. 2008]), theoretically (for example
[Goddard 1990]), and numerically (for example [Makse et al. 2004; Agnolin and Roux 2007; Mouraille
2009]), showing a clear dependence on confining pressure. The pressure dependence is not studied here.
This dependence can be incorporated by a proper choice for the dependence of the micromechanical
parameters (interparticle stiffnesses and the coordination number, i.e., the average number of contacts
per particle, as described in detail in Section 3) on confining pressure.

Suiker et al. [2001] and Suiker and de Borst [2005] derived dispersion relations for granular materials,
based on a two-dimensional elastic lattice model of granular material (without damping). Schwartz et al.
[1984] considered the dispersion relation of a three-dimensional face-centered cubic elastic lattice (FCC
lattice for short), while Kruyt [2010] studied the dispersion relation for general three-dimensional elastic
lattices (including the FCC lattice studied in [Schwartz et al. 1984]) and determined the influence of the
micromechanical parameters on the dispersion characteristics. In all these lattice models the rotational
degrees of freedom are explicitly accounted for. This leads to the presence of so-called optical branches
in the dispersion relation, with nonzero circular frequency ω for small wave number k. Such optical
branches also arise in solid state physics (see for example [Kittel 1953; Dekker 1962; Ashcroft and
Mermin 1976; Myers 1997]) in the presence of atoms with varying properties, where the optical branches
correspond to movement of the atoms relative to that of the center of mass of the unit cell.

Previous analyses are extended here by also taking viscous damping into account in the microme-
chanical model. Thus, dispersion and damping characteristics are obtained here, in terms of particle and
interparticle characteristics, using three-dimensional lattice-based approaches. These results will be used
to investigate what the (regularising) influence is of (small) viscous damping at the micro-scale on the
macro-scale damping of the optical branches with their high circular frequencies for small wave number.

The outline of this study is as follows. Firstly, (classical) continuum-mechanical dispersion and damp-
ing characteristics are formulated for a viscoelastic material model in Section 2 in order to establish
the continuum-mechanical framework. The relevant micromechanics of granular materials is described
in Section 3. This is followed by the three-dimensional lattice formulation in Section 4. Results for
the dispersion and damping characteristics are given in Section 5. Finally, findings from this study are
summarized in Section 6.

2. Continuum-mechanical dispersion and damping characteristics

Dispersion characteristics for elastic materials are derived in many textbooks, based on classical con-
tinuum mechanics. For extended continua, such as Cosserat continua and micropolar continua that
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incorporate couple stresses and (independent) rotational degrees of freedom, respectively, such dispersion
characteristics for purely elastic materials have also been obtained [Eringen 1999].

For a viscoelastic material the continuum-mechanical dispersion and damping characteristics are anal-
ysed here, based on classical continuum mechanics. For small deformations u the governing conservation
equation of momentum is

ρ ü =∇ · σ , (2-1)

where ρ is the density, the two superimposed dots denote the second derivative of u with respect to time
t and σ is the stress increment (with respect to an equilibrium state). The stress increment is described
by a (Kelvin–Voigt) viscoelastic model

σ = {λ tr(ε)I + 2Gε}+ {κ tr(ε̇)I + 2ηε̇}, (2-2)

with the strain increment tensor ε given by

ε = 1
2 [∇u+ (∇u)T ]. (2-3)

The parameters λ and G are the elastic Lamé constants and the parameters κ and η are corresponding
viscosities. The parameter λ is related to the bulk modulus K by

K = λ+ 2
3 G. (2-4)

With a plane-wave solution for the displacement vector u according to (1-1), it follows from (2-1),
(2-2) and (2-3), after some algebra, that the circular frequency ω must satisfy the following quadratic
eigenvalue problem

[{(λ+ jκω)+ (G+ jηω)}kk+ (G+ jηω)k2 I] · V − ρω2V = 0, (2-5)

where I is the 3-by-3 identity matrix.
After some further algebra we find the solutions:

• a longitudinal branch where the eigenvector V is in the direction of the wave vector k:

Re(ω)∼=
√
λ+2G
ρ

k, Im(ω)∼= κ+2η
2ρ

k2
; (2-6)

• a transverse branch where the eigenvector V is perpendicular to the wave vector k:

Re(ω)∼=
√

G
ρ

k, Im(ω)∼= η

2ρ
k2. (2-7)

The multiplicity of the eigenvalue of the longitudinal branch equals one, while that of the transverse
branch equals two. The longitudinal and transverse branches are called acoustical, as the dispersion
characteristics Re(ω) are proportional to the wave number k and hence cross the origin (contrary to the
optical branches). Their damping characteristics Im(ω) are proportional to k2.

This continuum-mechanical approach is valid in the large wave-length case, that is, for small wave
number k.



350 NIELS P. KRUYT

3. Micromechanics

Three-dimensional assemblies consisting of spherical particles are considered here. The radius of particle
p is denoted by R p and the position of the center of mass of particle p is given by X p. For two particles
p and q in contact, r pq is the vector directed from the center of particle p to the contact point between
particles p and q, with an analogous definition for rqp. For very stiff particles where the “overlap”
(elastic deformation) at contacts is small, the unit normal vector npq at the contact is obtained from

r pq
= R pnpq . (3-1)

The direction of the normal vector npq determines the orientation of the contact.
The (small) displacement vector of the center of particle p, relative to the selected reference equilib-

rium configuration, is denoted by up, while the (small) particle rotation vector is indicated by θ p. The
equations of motion governing the evolution with time t of the displacement up and rotation θ p of the
spherical particle p are

m p üp
=

∑
q

f pq , I p θ̈ p
=

∑
q

r pq
× f pq , (3-2)

where the two superimposed dots denote the second derivative of the quantity involved with respect to
time t , m p and I p are the mass and moment of inertia of the particle p, respectively, f pq is the force
exerted on particle p by particle q and the sum is over particles q that are in contact with particle p. The
moment of inertia I p for a sphere with radius R p and mass m p is given by

I p
= Qm p R p2

, (3-3)

where Q = 2
5 for a solid sphere and Q = 2

3 for a hollow sphere. In the following, solid spheres with
Q = 2

5 are considered when numerical results are presented. Note that body forces, like gravitational
forces, have been excluded in (3-2).

The relative displacement vector 1pq at the contact point between two particles in contact p and q is
given by

1pq
= [up

+ θ p
× r pq

] − [uq
+ θq
× rqp

]. (3-4)

Note that the relative displacement vector involves contributions due to particle translations up and due
to particle rotations θ p.

The (increment of the) contact force f c at contact c is related to the relative displacement 1c and
the relative velocity 1̇c (i.e., the time derivative of the relative displacement) at the contact through the
contact constitutive relation. Since small displacements are considered, the contact constitutive relation
can be formulated in a linearized form that considers two mechanisms: elastic deformation and viscous
damping.

Coulomb frictional damping is not considered here, since the focus is on isotropic states where the
number of contacts where Coulomb friction is fully mobilized is small. Because of the assumption of
small displacements, contacts that are in an elastic state will remain to do so.

Hertz–Mindlin theory (see for example [Johnson 1985]) gives a nonlinear dependence of the elastic
interparticle forces on the relative displacements. In the adopted small-displacement approach, the lin-
earized form of this relation is described by two (linear) elastic springs in normal and tangential directions
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at the contact, with spring stiffnesses kn and kt , respectively. The spring stiffnesses kn and kt then depend
on the normal force in the equilibrium state, and hence on the (average) confining pressure.

As with the elastic interaction, the relation between the viscous force and the relative velocity is
described by two linear viscous dashpots in normal and tangential directions at the contact, with viscous
damping coefficients dn and dt , respectively.

The employed contact constitutive relation then can be written as

f c
=−Sc

·1c
− Dc

· 1̇c, (3-5)

where the (elastic) contact stiffness matrix Sc and the (viscous) contact damping matrix Dc are given by

Sc
= (kn − kt)ncnc

+ kt I, Dc
= (dn − dt)ncnc

+ dt I . (3-6)

Here I is the 3-by-3 identity matrix. Note that these expressions satisfy Newton’s third law, f qp
=− f pq ,

since 1qp
=−1pq and the contact stiffness and damping matrices are symmetrical.

The normal and tangential viscous damping coefficients, dn and dt , can also be expressed in terms of
normal and tangential coefficients of restitution [Wu et al. 2003; Kruggel-Emden et al. 2007; Schwager
and Pöschel 2007; Schwager et al. 2008; O’Sullivan 2011].

The equations of motion, Equations (3-2), can be expressed concisely in terms of a generalized dis-
placement vector U p, a generalized force vector F pq and a generalized mass matrix M p by

M p
· Ü p
=

∑
q

F pq , U p
=

[
up

R pθ p

]
, M p

= m p
[

I 0
0 Q I

]
, F pq

=

[
f pq

npq
× f pq

]
. (3-7)

Note that the terms in U p and F pq have the same dimension (or unit), through the inclusion and exclu-
sion, respectively, of the particle radius R p. For compactness in notation, the generalized force F pq is
expressed as

F pq
=

[
I

N×pq

]
· f pq , (3-8)

where the operator N×pq is defined by the equality N×pq
· v = npq

× v for all v. Thus

N×pq
=−P · npq , (3-9)

with P the three-dimensional permutation symbol.

4. Lattice formulation

The regular lattice geometry is described as follows (see Figure 1). A central particle ‘0’ at position
X0 is in contact with Z other particles. All particles have the same properties, such as identical particle
radius R, mass m and coordination number Z , i.e., the number of contacts per particle. The unit normal
vector at the contact c is denoted by nc. The set of normal vectors {nc

} determines the lattice directions.
The position of the center Xc of the other particles in contact with the central particle ‘0’ is given by
Xc
= X0+ 2Rnc. Two different three-dimensional lattices will be considered in detail in the following.

These are the face-centered cubic (FCC) and body-centered cubic (BCC) lattices, as shown in Figure 2.
The fabric tensor [Horne 1965], based on the contact normals, is isotropic for these lattices.
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Figure 1. Example of a two-dimensional lattice with coordination number Z = 6. Also
indicated are the contact normal vector nc and the vector rc from the center of the particle
to the point of contact.
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Figure 2. Lattice geometry. Left: FCC lattice, with coordination number Z = 12. Right:
BCC lattice, with coordination number Z = 8. The central sphere of each lattice is shown
in black, while the other spheres that are in contact with the central one are shown in
gray. The radius of the spheres has been reduced for visual clarity: therefore the spheres
in contact appear as if they were not in contact. Contacts between spheres are indicated
by black lines connecting particle centers. The direction of the wave vector is indicated
by the upward arrow.

For the spatial variation of the generalized displacement vector U(x, t), a periodic variation is assumed

U(x, t)= U0(t) exp[− j k · (x− X0)] =

[
u0(t)
Rθ0(t)

]
exp[− j k · (x− X0)], (4-1)

where u0(t) and θ0(t) are the time-dependent amplitude vectors for the displacements and rotations,
respectively.

Employing the assumed solution according to (4-1), the relative displacement vector 1c at contact c
becomes, from (3-4) with r0c

= Rnc and rc0
=−Rnc for spherical particles with equal radius R,

1c
= (1− ξ c)u0+ (1+ ξ c)Rθ0× nc, ξ c

= exp[− j (2R)k · nc
]. (4-2)
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Note that the scalar factor ξ c (also) depends on the wave vector k. The relative displacement vector can
be expressed in terms of the amplitude vector U0 and the operator N×c defined in (3-9) by

1c
=
[
(1− ξ c)I −(1+ ξ c)N×c]

·U0, (4-3)

where the term inside the square brackets is a 3 by 6 matrix, which does not involve a subtraction.
It then follows that the amplitude vector U0 satisfies the second-order ordinary differential equation

M · Ü0+ D̄ · U̇0+ K̄ ·U0 = 0, (4-4)

where the effective damping matrix D̄ and the effective stiffness matrix K̄ are given by

D̄ =
C∑

c=1

[
I

N×c

]
· Dc
·
[
(1− ξ c)I −(1+ ξ c)N×c],

K̄ =
C∑

c=1

[
I

N×c

]
· Sc
·
[
(1− ξ c)I −(1+ ξ c)N×c]. (4-5)

The size of the matrices D̄ and K̄ is 6 by 6. It can be shown, after some algebra, that the matrices D̄ and
K̄ are Hermitian, using the fact that for every lattice direction nc there is a corresponding direction −nc,
S(−nc)= S(nc), D(−nc)= D(nc), N×(−nc)=−N×(nc) and ξ(−nc)= ξ∗(nc). Here ξ∗ denotes the
complex conjugate of ξ .

For an harmonic variation in time for the amplitude vector U0(t)

U0(t)= Ua exp jωt, (4-6)

we obtain the following quadratic eigenvalue problem for the (complex) eigenfrequencies ω = ω(k)

[−ω2 M + jω D̄+ K̄ ] ·Ua = 0. (4-7)

The eigenfrequencies of this quadratic eigenvalue problem can be computed numerically from (4-7)
or they can be obtained from the solution of a (larger) generalized eigenvalue problem that is obtained
from the so-called linearisation approach (see for example, [Tisseur and Meerbergen 2001]). When
considering analytical solutions, it is more convenient to consider the generalized eigenvalue problem.
The linearisation approach is outlined in the next Section.

4A. Linearisation approach. The system (4-4) of second-order equations of motion can be rewritten as
a larger system of first-order ordinary differential equations by introducing the variable (see for example
[Tisseur and Meerbergen 2001])

P0 =

[
U̇0

U0

]
. (4-8)

The resulting system of first-order ordinary differential equations is[
M 0
0 Î

]
· Ṗ0+

[
D̄ K̄
− Î 0

]
· P0 = 0, (4-9)
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where Î is the 6 by 6 identity matrix. With an harmonic time-dependence of P0(t) = Pa exp[ jωt], a
generalized eigenvalue problem is obtained for the circular frequency ω[

D̄ K̄
− Î 0

]
· Pa = ω(− j)

[
M 0
0 Î

]
· Pa. (4-10)

4B. Branches in the dispersion and damping characteristics. From the numerical results for the eigen-
vectors corresponding to the eigenfrequencies, the dominant mode of motion has been identified for each
eigenfrequency. This leads to the distinction of the following branches in the dispersion and damping
characteristics (see also Section 2):

LA (longitudinal acoustical): the dominant motion is longitudinal displacement, i.e., in the direction
of the wave vector k; the multiplicity of the eigenfrequency is one;

TA (transverse acoustical): the dominant motion is transverse displacement, relative to the direction
of the wave vector k; the multiplicity of the eigenfrequency is two;

LO (longitudinal optical): the dominant motion is longitudinal rotation, i.e., in the direction of the
wave vector k; the multiplicity of the eigenfrequency is one;

TO (transverse optical): the dominant motion is transverse rotation, relative to in the direction of the
wave vector k; the multiplicity of the eigenfrequency is two.

The acoustical branches also resulted from the classical continuum-mechanical analysis of Section 2.
Extended continuum-mechanical theories (see for example, [Mindlin 1972; Kunin 1982; 1983; Eringen
1999; Suiker et al. 2001; Suiker and de Borst 2005]) also give optical branches in the dispersion charac-
teristics. In the lattice-based micromechanical analysis the optical branches arise due to the presence of
rotational degrees of freedom [Schwartz et al. 1984; Suiker et al. 2001; Suiker and de Borst 2005; Kruyt
2010].

For future reference, non-dimensional micromechanical parameters are introduced that relate

(1) the tangential elastic stiffness to the normal elastic stiffness,

(2) the tangential viscous damping coefficient to the normal viscous damping coefficient and

(3) the normal viscous damping coefficient to the normal elastic stiffness and the particle mass.

The stiffness ratio rK , the damping ratio rD and the damping factor ζ (often called the damping ratio)
are defined by

rK =
kt

kn
, rD =

dt

dn
, ζ =

dn

2
√

knm
. (4-11)

The nondimensional wave number k̂ and nondimensional frequency ω̂ are defined by

k̂ =
(

2R
π

)
k, ω̂ =

√
m
kn
ω. (4-12)

4C. Analytical solution for FCC lattice for small wave number. For small wave number k, analytical
solutions for the eigenfrequencies ω have been found by factoring the characteristic polynomial cor-
responding to (4-10). From a Taylor expansion in wave number k, the solutions for an FCC lattice
are obtained after some lengthy algebra (using a symbolic mathematics package). The results for the
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non-dimensional real and the imaginary parts of the non-dimensional eigenfrequencies ω̂ are given in
Table 1.

Longitudinal Re(ω̂)∼= 2
√

1+ rK (Rk) Im(ω̂)∼= 4(1+ 4rD)ζ(Rk)2

Transverse Re(ω̂)∼=
√

2
√

1+ rK (Rk) Im(ω̂)∼= 2(1+ rD)ζ(Rk)2

Optical Re(ω̂)∼= 4
Q

√
QrK − 16r2

Dζ
2 Im(ω̂)∼= 16rDζ

Q

Table 1. Real and imaginary parts of the nondimensional eigenfrequencies ω̂ in the three
situations considered.

The multiplicity of the eigenfrequency for the longitudinal branch equals one, that for the transverse
equals two and for the optical branch three (both longitudinal and transverse optical).

The dispersion characteristics show branches where Re(ω) is proportional to k and the damping char-
acteristics show branches where Im(ω) is proportional to k2. These results are consistent with the results
of the classical continuum-mechanical analysis of Section 2 that is based on a viscoelastic continuum
material model.

The reduction in time t of the amplitude of the generalized displacement vector U is given by

‖U(x, t)‖
‖U(x, 0)‖

= e−Im(ω)t . (4-13)

With a characteristic time τ based on a single cycle, τ = (2π)/Re(ω), for the lowest frequency according
to Table 1, the reduction of the amplitude of the optical branches becomes

‖U(x, τ )‖
‖U(x, 0)‖

= exp
(
−

16
√

2π(rDζ )

Q
√

1+ rK

1
Rk

)
, (4-14)

and the reduction of the amplitude of the transverse acoustical branch becomes

‖U(x, τ )‖
‖U(x, 0)‖

= exp
(
−

4
√

2π(1+ 4rD)ζ
√

1+ rK
Rk
)
. (4-15)

For small wave number k, the reduction in amplitude of the optical branches is very large (the argument of
the exponent is inversely proportional to the wave number k), contrary to that of the acoustical branches
(the argument of the exponent is proportional to the wave number k). This means that the optical branches
are dampened out very rapidly, and will not be observed in situations where a continuum-mechanical
description is appropriate.

5. Results

The dispersion and damping characteristics, Re(ω) and Im(ω), respectively, that have been obtained from
the solution to the quadratic eigenvalue problem (4-7), are shown for the FCC lattice and the BCC lattice.
This is done for various values of the damping factor ζ , the stiffness ratio rK and the damping ratio rD

to show the influence of these micromechanical material characteristics on the macro-scale, continuum
characteristics.
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Figure 3. Dispersion characteristics (top row) and damping characteristics (bottom row).
Left: BCC lattice with ζ = 0.05. Middle: FCC lattice with ζ = 0.05. Right: FCC lattice
with ζ = 0.025. In all cases rK = 1; rD = 1.

The middle column of Figure 3 shows typical results for the dispersion relation, Re(ω) as a function
of wave number k (top graph) and for the damping characteristics Im(ω) as a function of wave number
k (bottom graph).

In each of those plots four curves are shown, two acoustical branches that go through the origin
and two other, optical branches. Two curves correspond to eigenfrequencies with multiplicity of one,
the longitudinal branches, and two curves correspond to eigenfrequencies with multiplicity of two, the
transverse branches. The total number of eigenfrequencies is six.

The two acoustical dispersion curves show an approximately linear dependence of the eigenfrequency
Re(ω) on wave number k, consistent with the continuum-mechanical analysis of Section 2. The slope of
the longitudinal branch is higher than that of the transverse branch. These slopes are related to the bulk
modulus K and shear modulus G; see (2-6) and (2-7).

The two optical dispersion curves show a relatively weak dependence of eigenfrequency on wave
number. The difference between the frequencies for the longitudinal and the transverse branches is not
very large, especially for small wave numbers.

The damping characteristics of the acoustical branches show a dependence of Im(ω) on k2, consistent
with the continuum-mechanical analysis of Section 2 and with the analytical solution for the FCC lattice
in Table 1. Note that the damping characteristics are presented in a log-log plot in order to show this
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dependence. The damping of the optical branches is very high and is only (relatively) weakly dependent
on wave number.

The results for the dispersion and the damping characteristics for the FCC lattice for small wave
numbers are in agreement with the analytical expressions in Table 1.

As shown in [Suiker and de Borst 2005] for two-dimensional lattices, the direction of the wave vector
k influences the dispersion relation at higher wave numbers k (small wave length), since the inherent
anisotropic structure of the lattices is then apparent. For small wave number k, however, it was noted in
[Suiker and de Borst 2005] that the dispersion relation is independent of the direction of the wave vector
k. The same is found for the three-dimensional lattices considered here (results not shown).

5A. Influence of lattice. The influence of the type of lattice on the dispersion and damping charac-
teristics has been investigated by comparing the results for the BCC lattice (left column in Figure 3)
with coordination number Z = 8 and for the FCC lattice (middle column) with Z = 12. The other
micromechanical parameters are the same: ζ = 0.05, rK = 1 and rD = 1.

Qualitatively, the dispersion and the damping characteristics for the FCC lattice and the BCC lattice
are very similar. The slopes of the acoustical dispersion curves for the FCC lattice (top row, middle
column in Figure 3) are larger than those for the BCC lattice (top left). This is expected, since these
slopes are related to the continuum bulk and shear moduli; see Section 2. These moduli are dependent on
the coordination number Z (see for example [Bathurst and Rothenburg 1988; Kruyt et al. 2010]), which
is higher for the FCC lattice than for the BCC lattice. The frequency for small wave numbers of the
optical branches is higher for the FCC lattice than for the BCC lattice.

The damping is higher for the FCC lattice with its higher coordination number than for the BCC
lattice. A high coordination number means that a large number of contact areas (represented by the
elastic springs and the viscous dashpots) is present where energy dissipation occurs.

5B. Influence of damping factor. The influence of the damping factor ζ on the dispersion and damping
characteristics has been investigated by comparing the results for the FCC lattice for ζ = 0.05 (middle
column in Figure 3) with those for ζ = 0.025 (right column). The other micromechanical parameters are
the same: rK = 1 and rD = 1.

For small wave numbers the dispersion characteristics, Re(ω), of the acoustical branches are not
affected by the value of the damping factor ζ . This also follows from the analytical solution in Table 1.
The frequency of the optical dispersion branches increases with decreasing damping factor ζ ; see also
Table 1.

As expected, a lower value of the damping factor ζ results in lower damping characteristics, Im(ω),
of all branches; see also Table 1.

5C. Influence of stiffness ratio. The influence of the stiffness ratio rK on the dispersion and damping
characteristics has been investigated by comparing the results with rK = 1 (middle column of Figure 4)
with those with rK = 0.5 (left column). In this comparison the BCC lattice is considered with the other
micromechanical parameters ζ = 0.05 and rD = 1.

For the dispersion characteristics, the slope of the acoustical branches for small wave number increases
with increasing stiffness ratio rK , since a higher value for rK corresponds to a higher value for the
shear modulus; the bulk modulus is only weakly affected by the value of the stiffness ratio when the
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Figure 4. Dispersion characteristics (top row) and damping characteristics (bottom row).
Left: rK = 0.5, rD = 1. Middle: rK = 1, rD = 1. Right: rK = 1, rD = 0.5. In all cases
the BCC lattice is considered, with ζ = 0.05.

coordination number is not low. See [Bathurst and Rothenburg 1988; Kruyt et al. 2010]. The optical
branches show a higher frequency for a higher stiffness ratio. These trends for the BCC lattice are the
same as for the FCC lattice; see the analytical solution in Table 1.

The damping characteristics are hardly affected by the value of the stiffness ratio. This trend is also
shown by the analytical solution for the FCC lattice; see Table 1.

5D. Influence of damping ratio. The influence of the damping ratio rD on the dispersion and damping
characteristics has been investigated by comparing the results with rD = 1 (middle column of Figure 4)
with those with rD = 0.5 (right column). In this comparison the BCC lattice is considered with the
micromechanical parameters ζ = 0.05 and rK = 1.

The dispersion characteristics are hardly affected by the value of the damping ratio rD . Only a small
increase in the frequency of the optical branch is observed for the lower value of the damping ratio.

The damping characteristics are directly affected by the value of the damping ratio. A higher value of
the damping ratio rD gives higher damping characteristics.

These observations on the dispersion and the damping characteristics for the BCC lattice correspond
to the analytical results for the FCC lattice; see Table 1.
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6. Conclusions

Dispersion and damping characteristics of granular materials have been studied using a three-dimensional
lattice-based approach in which the particle interaction is modeled with linear elastic springs and linear
viscous dashpots. The lattice analysis leads to a quadratic eigenvalue problem for the complex eigenfre-
quencies.

The analysis yields acoustical and optical branches, as noted in previous studies [Schwartz et al. 1984;
Suiker et al. 2001; Suiker and de Borst 2005; Kruyt 2010]. The present analysis allows for a study of the
influence of the micromechanical characteristics on the continuum-mechanical dispersion and damping
characteristics:

• The effect of the type of lattice is primarily through the coordination number. A high coordination
number gives high bulk and shear moduli, and thus large slopes of the dispersion characteristics of
the acoustical branches. Similarly, a high coordination number results in high damping.

• The damping factor has only a small effect on the dispersion characteristics of the acoustical
branches. The damping increases with increasing damping factor.

• A high value of the stiffness ratio results in high bulk and shear moduli, and thus large slopes of the
dispersion characteristics of the acoustical branches. The influence on the damping characteristics
is small.

• A high value of the damping ratio does not affect the dispersion characteristics of the acoustical
branches. A high damping ratio leads to high damping.

An important result is that the damping of the optical branches is very high. Therefore it is expected
that these branches will not be observed under conditions where a continuum-mechanical description is
appropriate.

The present lattice-based analysis is effectively based on the uniform-strain assumption (or mean-
field assumption) for the relative displacement at contacts; see (1-1). It is well-known (see for instance
[Makse et al. 1999; Kruyt and Rothenburg 2001; Kruyt and Rothenburg 2002; Kruyt et al. 2010]) that this
assumption leads to an inaccurate prediction of the elastic moduli in the static case for random packings,
especially for lower coordination numbers. It is expected that the dispersion and damping characteristics
of a random packing agree qualitatively with the present results for lattices, but may show quantitative
discrepancies. The quantitative study of these characteristics of random packings is a subject of further
investigation.
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