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SCALE EFFECTS ON ULTRASONIC WAVE DISPERSION
CHARACTERISTICS OF MONOLAYER GRAPHENE

EMBEDDED IN AN ELASTIC MEDIUM

SAGGAM NARENDAR AND SRINIVASAN GOPALAKRISHNAN

Ultrasonic wave propagation in a graphene sheet, which is embedded in an elastic medium, is studied
using nonlocal elasticity theory incorporating small-scale effects. The graphene sheet is modeled as an
one-atom thick isotropic plate and the elastic medium/substrate is modeled as distributed springs. For
this model, the nonlocal governing differential equations of motion are derived from the minimization of
the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model
is also derived. The explicit expressions for the cut-off frequencies are also obtained as functions of the
nonlocal scaling parameter and the y-directional wavenumber. Local elasticity shows that the wave will
propagate even at higher frequencies. But nonlocal elasticity predicts that the waves can propagate only
up to certain frequencies (called escape frequencies), after which the wave velocity becomes zero. The
results also show that the escape frequencies are purely a function of the nonlocal scaling parameter. The
effect of the elastic medium is captured in the wave dispersion analysis and this analysis is explained with
respect to both local and nonlocal elasticity. The simulations show that the elastic medium affects only
the flexural wave mode in the graphene sheet. The presence of the elastic matrix increases the band gap
of the flexural mode. The present results can provide useful guidance for the design of next-generation
nanodevices in which graphene-based composites act as a major element.

1. Introduction

Graphene [Geim and Novoselov 2007], the two-dimensional (2D) counterpart of three-dimensional (3D)
graphite, has attracted vast interest in solid-state physics, materials science, and nanoelectronics since
it was discovered in 2004 as the first free-standing 2D crystal. Graphene is considered a promising
electronic material in postsilicon electronics. However, large-scale synthesis of high-quality graphene
represents a bottleneck for next-generation graphene devices. Existing routes for graphene synthesis
include mechanical exfoliation of highly ordered pyrolytic graphite [Novoselov et al. 2004], eliminating
Si from the surface of single-crystal SiC [Ohta et al. 2006], depositing graphene at the surface of single-
crystal [Oshima and Nagashima 1997] or polycrystalline metals [Obraztsov et al. 2007], and various
wet-chemistry-based approaches [Gómez-Navarro et al. 2007; Li et al. 2008]. However, up to now
no methods have delivered high quality graphene with the large area required for applications such as
practical electronic materials. In recent years, these nanostructured materials have spurred considerable
interest in the materials community because of their potential for large gains in mechanical and physical
properties as compared to standard structural materials. Since controlled experiments in nanoscale are

Keywords: monolayer graphene, nonlocal elasticity theory, wavenumber, spectrum, dispersion, phase velocity, escape
frequency, cut-off frequency.
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difficult and molecular dynamics simulations are expensive and formidable, especially for large scale
systems, modified continuum models have been widely and successfully used to study the mechanical
behavior of nanostructures like carbon nanotubes (CNTs), graphene sheets (GSs), nanofibers/wires, etc.
[Tomanek and Enbody 2000].

A nanostructure is defined as a material system or object where at least one of the dimensions is
below 100 nm. Oxide nanostructures can be classified into three categories: zero-dimensional (0D);
one-dimensional (1D); and two-dimensional (2D). 0D nanostructures are materials in which all three
dimensions are at the nanoscale. Good examples of these materials are buckminsterfullerenes [Kroto
et al. 1985] and quantum dots [Dabbousi et al. 1997]. 1D nanostructures are materials that have two
physical dimensions in the nanometer range while the third dimension can be large, such as in CNTs
[Vossen and Kern 1978]. 2D nanostructures, or thin films, only have one dimension in the nanometer
range and can be used readily in the processing of complimentary metal-oxide semiconductor transistors
[Senturia 2001] and microelectromechanical systems [Martin 1996]. Since the focus of this work is
on 2D nanostructures, the others will not be discussed from this point forward. 2D nanostructures (here
graphene sheets) have stimulated a great deal of interest due to their importance in fundamental scientific
research and potential technological applications in the development of GS-based nanodevices such as
strain sensors, mass and pressure sensors, atomic dust detectors, enhancers of surface image resolution,
etc.

In contrast to the investigations of CNTs, it is surprising to find that very few studies have been
reported in the literature on the theoretical modeling of GSs, even though graphene possesses many
superior properties [Luo and Chung 2000], such as good electrical and thermal conductivities parallel to
the sheets and poor conductivities normal to the sheets, which makes it suitable for gasket material in high-
temperature or chemical environments; good flexibility, which suggests its use as a vibration damping
material; and a high strength-to-weight ratio, which makes it an ideal material for sports equipment.
Recently, Behfar and Naghdabadi [2005] investigated the nanoscale vibration of a multilayered graphene
sheet (MLGS) embedded in an elastic medium, in which the natural frequencies as well as the associated
modes were determined using a continuum-based model. The influence of carbon-carbon and carbon-
polymer van der Waals (VDW) forces are considered in their work. They further studied the bending
modulus of a MLGS using a geometrically based analytical approach [Behfar et al. 2006]. The bending
energy in their analysis is based on the VDW interactions of atoms belonging to two neighboring sheets.
Their calculations are performed for a double-layered GS, but the derived bending modulus is generalized
to a MLGS composed of many double-layered GSs along its thickness, in which the double-layered GSs
are alternately the same in configuration. In addition, it should be mentioned that graphite is composed
of multilayered sheets, but it was recently reported [Horiuchi et al. 2004] that single-layered sheets are
detectable in carbon nanofilms. Sakhaee-Pour et al. [2008a] have studied the free vibrational behavior
of single-layer graphene sheets (SLGS) while considering the effects of chirality and aspect ratio as well
as boundary conditions, and have developed predictive models for computing the natural frequencies.
The potential applications of SLGSs as mass sensors and atomistic dust detectors have further been
investigated [Sakhaee-Pour et al. 2008b]. Also, the promising usage of SLGSs as strain sensors has been
examined [Sakhaee-Pour and Ahmadian 2008].

The small scale of nanotechnology makes the applicability of classical and local continuum models,
such as beam and shell models, questionable. Classical continuum models do not admit intrinsic size
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dependence in the elastic solutions of inclusions and inhomogeneities. At nanometer scales, however,
size effects often become prominent, the cause of which needs to be explicitly addressed due to an
increasing interest in the general area of nanotechnology [Li et al. 2008]. Sun and Zhang (see [Tomanek
and Enbody 2000]) indicated the importance of semicontinuum models in analyzing nanomaterials after
pointing out the limitations of the applicability of classical continuum models to nanotechnology. In their
semicontinuum model for nanostructured materials with plate-like geometry, the material properties were
found to be completely dependent on the thickness of the plate structure, contrary to classical continuum
models. The modeling of such a size-dependent phenomenon has become an interesting research subject
in this field [Vossen and Kern 1978; Kroto et al. 1985; Dabbousi et al. 1997]. It is thus concluded that
the applicability of classical continuum models at very small scales is questionable, since the material
microstructure, such as the lattice spacing between individual atoms, becomes increasingly important at
small sizes and the discrete structure of the material can no longer be homogenized into a continuum.
Therefore, continuum models need to be extended to consider the scale effect in nanomaterial studies.

At nanometer scales, size effects often become prominent. Both experimental and atomistic simulation
results have shown a significant size-effect in the mechanical properties when the dimensions of these
structures become small. As the length scales are reduced, the influences of long-range interatomic and
intermolecular cohesive forces on the static and dynamic properties tend to be significant and cannot
be neglected. The classical theory of elasticity, being the long wave limit of atomic theory, excludes
these effects. Thus traditional classical continuum mechanics would fail to capture small-scale effects
when dealing in nanostructures. Small-size analysis using local theory over predicts the results. Thus the
consideration of small effects is necessary for correct prediction of micro/nanostructures. Various size-
dependent continuum theories which capture the small scale parameter such as couple-stress elasticity
theory [Zhou and Li 2001], strain gradient theory [Fleck and Hutchinson 1997], and modified couple-
stress theory [Yang et al. 2002] have been reported. These modified continuum theories are being used
for the analysis of small-scale structures. However, the most used continuum theory for analyzing small-
scale structures is Eringen’s nonlocal elasticity theory [Eringen 1972; 1976; 1983; Eringen and Edelen
1972]. The essence of nonlocal elasticity theory is that the small-scale effects are captured by assuming
that the stress at a point is a function of the strains at all the other points in the domain. Nonlocal theory
considers long-range interatomic interaction and yields results dependent on the size of a body. It is also
reported in [Chen et al. 2004] that nonlocal continuum theory-based models are physically reasonable
from the atomistic viewpoint of lattice dynamics and molecular dynamics simulations. Understanding
the importance of employing nonlocal elasticity theory in small-scale structures, a number of research
works have conducted static, dynamic, and stability analyses of micro/nanostructures [Yakobson et al.
1997; Peddieson et al. 2003; Wang 2005; Wang and Hu 2005; Lu et al. 2006; 2007; Duan and Wang 2007;
Duan et al. 2007; Ece and Aydoydu 2007; Lim and Wang 2007; Lu 2007; Reddy 2007; Wang and Liew
2007; Adali 2008; Kumar et al. 2008; Reddy and Pang 2008; Tounsi et al. 2008; Wang and Duan 2008;
Yang et al. 2008; Aydogdu 2009a; 2009b; Murmu and Pradhan 2009; Narendar and Gopalakrishnan
2009a; 2009b; 2010a; 2010b; 2010c; 2010d; Narendar et al. 2010].

All engineering materials possess intrinsic length scales in terms of their repetitive atomic or molecular
structures. The classical theory of elasticity, which is commonly used to explain the behavior of these
materials, however, does not accommodate any such scale. The absence of the length scale creates several
discrepancies in the predictions of mechanical responses, for example, infinite stress fields near crack tips
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or nondispersive wave behavior (constant wave speed, independent of frequency). This occurs in classical
elasticity, according to which Rayleigh waves propagating on the surface of a semiinfinite isotropic elastic
space are nondispersive in nature [Love 1944], whereas experiments and the atomic theory of lattices
predict otherwise. These anomalies indicate the limitations of the classical theory of elasticity and stress
the need for molecular dynamics (MD)-based simulations. However, modern practical problems are still
intractable for MD-based analysis, even if the highest computing capabilities are at disposal. Hence,
refinement of the existing continuum theory for the purpose of more realistic predictions seems to be
the only viable alternative. Several attempts have been made so far in this direction, for example, the
nonlocal theory of elasticity [Eringen 1972; 1976; 1983; Eringen and Edelen 1972], where the objective
is always to modify the stress gradient term in the governing momentum equilibrium equations so that
the long-range effects are taken into account. The nonlocal theory generates a singular perturbed partial
differential equation. In this work, the nonlocal theory of Eringen is used to develop wave solutions for
2D nanostructures such as graphene. However, in this work, the main concern is the issues involved in
wave propagation analysis in the domain of nonlocal elasticity.

One important outcome of the nonlocal elasticity is the realistic prediction of the dispersion curve, that
is, the frequency-wavenumber/wavevector relation. As shown in [Eringen 1983], the dispersion relation

ω

C1k
=
(
1+ (e0a)2k2)−1/2

, (1)

where e0a is the nonlocality parameter, closely matches with the Born–Karman model dispersion

ωa
C1
= 2 sin

(ka
2

)
(2)

when e0 = 0.39 is considered. However, among the two natural conditions at the midpoint and end of
the first Brillouin zone:

dω
dk

∣∣∣∣
k=0
= C1,

dω
dk

∣∣∣∣
k=πa

= 0, (3)

these relations satisfy only the first one. It has been suggested that two-parameter approximation of the
kernel function will give better results. This is reiterated in [Lazar et al. 2006], that a one-parameter (only
e0a) nonlocal kernel will never be able to model the lattice dynamics relation and it is necessary to use
the bi-Helmholtz type equation with two different coefficients of nonlocality to satisfy all the boundary
conditions.

The simple forms of the group and phase velocities that exist for isotropic materials allow us to tune
the nonlocality parameters so that the lattice dispersion relation is matched. Further, by virtue of the
Helmholtz decomposition, only the 1D Brillouin zone needs to be handled. Although the general form
of the boundary conditions, that is, group speed is equal to phase speed (at k = 0) or zero (at k = π/a),
is still applicable, the expressions are difficult to handle. This is because the Brillouin zone is really a
2D region where four boundary conditions are involved.

Wave propagation in GSs has been a topic of great interest in the nanomechanics of GSs, where the
equivalent continuum models are widely used. In this manuscript, we examine this issue by incorporat-
ing the nonlocal theory into the classical beam model. The influence of the nonlocal effects has been
investigated in detail. The results are qualitatively different from those obtained based on the local beam
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theory and thus are important for the development of GS-based nanodevices. The present work is an
extension of [Sakhaee-Pour and Ahmadian 2008], in which we studied ultrasonic wave propagation in
GS using nonlocal elasticity theory incorporating small-scale effects. The graphene was considered as
free standing. In the present work, the unstable graphene is made stable by resting it on substrate. The
substrate is assumed and modeled as an elastic medium. The present modeling and results can provide
useful guidance for the design of next-generation nanodevices where graphene-based composites act
as major elements. For a given nanostructure, the nonlocal small scale coefficient can be obtained by
matching the results from MD simulations and the nonlocal elasticity calculations. At that value of the
nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the
present paper, different values of e0a are used. One can get the exact e0a for a given GS by matching
the MD simulation results of graphene with the results presented in this paper.

In the literature, there is no work on ultrasonic wave propagation in GSs with or without the effects
of an elastic matrix. In the present paper, a nonlocal elasticity theory is used for analyzing ultrasonic
wave propagation in GSs embedded in an elastic matrix. The present paper is organized as follows. In
Section 2, Eringen’s nonlocal elasticity theory is explained. In Section 3, the nonlocal governing partial
differential equations are given for the graphene-elastic matrix system. Then ultrasonic wave propagation
in graphene is carried out. Explicit expressions for the wavenumbers and group/phase speeds for the first
three modes (in-plane-longitudinal, lateral, and flexural) of the wave are derived. The wave dispersion
results are shown with and without elastic matrix effects. We also show that the flexural wave in graphene
is highly affected by the presence of the elastic matrix. In Section 4, some important results are discussed
in the context of the effects of nonlocality and the substrate. Finally, the paper ends with some important
observations and conclusions.

2. Mathematical formulation

2.1. A review of the theory of nonlocal elasticity. The theory of nonlocal elasticity [Eringen 1972; 1976;
1983; Eringen and Edelen 1972] accommodates an equivalent effect due to nearest neighbor interaction
and beyond the single lattice in the sense of lattice average stress and strain. This model considers that
the stress state at a reference point x in the body is regarded to be dependent not only on the strain state
at x but also on the strain states at all other points x′ of the body. This is in accordance with the atomic
theory of lattice dynamics and experimental observations on phonon dispersion. The most general form
of the constitutive relation in the nonlocal elasticity-type representation involves an integral over the
entire region of interest. The integral contains a nonlocal kernel function, which describes the relative
influences of the strains at various locations on the stress at a given location. For nonlocal linear elastic
solids, the equations of motion have the form

ti j, j + fi = ρüi , (4)

where ρ and fi are, respectively, the mass density and the body (and/or applied) forces; ui is the dis-
placement vector; and ti j is the stress tensor of the nonlocal elasticity defined by

ti j (X)=
∫

V
α(|X′−X|)σi j (X′)dv(X′), (5)
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in which X is a reference point in the body; α(|X′−X|) is the nonlocal kernel function; and σi j is the
local stress tensor of classical elasticity theory at any point X′ in the body and satisfies the constitutive
relations

σi j = ci jklεkl, εkl = 0.5(uk,l + ul,k), (6)

for a general elastic material, in which ci jkl are the elastic modulus components with the symmetry
properties ci jkl = c j ikl = ci jlk = ckli j , and εkl is the strain tensor. We stress that the boundary conditions
involving tractions are based on the nonlocal stress tensor ti j and not on the local stress tensor σi j .

The properties of the nonlocal kernel α(|X′ −X|) have been discussed in detail in [Eringen 1983].
When α(|X|) takes on a Green’s function of a linear differential operator L, that is,

Lα(|X′−X|)= δ(|X′−X|), (7)

the nonlocal constitutive relation (5) is reduced to the differential equation

Lti j = σi j (8)

and the integro-partial differential equation (4) is correspondingly reduced to the partial differential equa-
tion

σi j +L( fi − ρüi )= 0. (9)

By matching the dispersion curves with lattice models, Eringen [1972; 1983; Eringen and Edelen 1972]
proposed a nonlocal model with the linear differential operator L defined by

L= 1− (e0a)2∇2, (10)

where a is an internal characteristic length (lattice parameter, granular size, or molecular diameter) and
e0 is a constant appropriate to each material for adjusting the model to match some reliable results by
experiments or other theories. Therefore, according to (6), (8), and (10), the constitutive relations may
be simplified to (

1− (e0a)2∇2)ti j = σi j = ci jklεkl . (11)

For simplicity and to avoid solving integro-partial differential equations, the nonlocal elasticity model,
defined by the relations (8)–(11), has been widely adopted for tackling various problems of linear elas-
ticity and micro/nanostructural mechanics.

Generally used 3D and 2D nonlocal kernel functions are given the following equations, respectively,

α(|X|)=
1

4π`2τ 2|X|
e−|X|/`τ , α(|X|)=

1
2π`2τ 2 K0

(
|X|
`τ

)
, (12)

where τ = g/` , K0 is the modified Bessel function, and ` is a characteristic length of the considered
structure.

Eringen [1983] proposed e0 = 0.39 by the matching of the dispersion curves via nonlocal theory for
plane waves and the Born-Karman model of lattice dynamics applied at the Brillouin zone boundary
(k = π/a), where a is the distance between atoms and k is the wavenumber in the phonon analysis. On
the other hand, Eringen and Edelen [1972] proposed e0 = 0.31 for Rayleigh surface waves via nonlocal
continuum mechanics and lattice dynamics. In the present paper, we assume that e0 = 0.39 for analyzing
ultrasonic wave propagation in an embedded monolayer graphene.
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3. Ultrasonic wave characteristics of graphene embedded in an elastic matrix

3.1. Derivation of nonlocal governing partial differential equations of motion. In this section, we will
derive the nonlocal governing differential equations of motion of the graphene-elastic substrate system.

For the present analysis we consider a single graphene layer resting on an elastic substrate (see
Figure 1). This system is modeled as an one-atom thick nanoplate on distributed elastic springs. The
displacement field is assumed as

u(x, y, z, t)= uo(x, y, t)− z ∂w
∂x
,

v(x, y, z, t)= vo(x, y, t)− z ∂w
∂y
,

w(x, y, z, t)= w(x, y, t),

(13)

where uo(x, y, t), vo(x, y, t), and w(x, y, t) are the axial (in-plane-longitudinal and lateral) and trans-
verse displacements, respectively, along the midplane as shown in Figure 1. The midplane of the plate
is at z = 0. The associated nonzero strains are obtained as


εxx

εyy

εxy

=


∂uo

∂x
∂vo

∂y
∂uo

∂y
+
∂vo

∂x


+



−
∂2w

∂x2

−
∂2w

∂y2

−2 ∂
2w

∂x∂y


, (14)

where εxx and εyy are the normal strains in the x and y directions, respectively, while, εxy is the in-plane
shear strain.

The nonlocal constitutive relation for isotropic materials is given as
σxx

σyy

σxy

− (e0a)2
(
∂2

∂x2 +
∂2

∂y2

)
σxx

σyy

σxy

=
 C11 νC11 0
νC22 C22 0

0 0 C66


εxx

εyy

εxy

 , (15)

where σxx and σyy are the normal stresses in the x and y directions, respectively, and σxy is the in-plane
shear stress. For the case of an isotropic plate, the expressions for Ci j in terms of the Young’s modulus
E and Poisson’s ratio ν are given as C11 = C22 = E/(1− ν2) and C66 = E/(2(1+ ν)).

The total strain energy (5) and kinetic energy (0) are calculated as

5=
1
2

∫
+h/2

−h/2

∫
A
(σxxεxx + σyyεyy + σxyεxy + 2K elasticw2) dz d A, (16)

0 =
1
2

∫
+h/2

−h/2

∫
A
ρ(u̇2
+ v̇2
+ ẇ2) dz d A. (17)

Substituting (14) and (15) in (16) and (17) and using Hamilton’s principle,∫ t2

t1
(δ5− δ0) dt = 0, (18)
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Figure 1. Single-layered GS: (a) discrete model (a monolayer graphene of 40 Å× 40 Å,
consisting of 680 carbon atoms arranged in hexagonal array), (b) equivalent continuum
model, and (c) continuum equivalent model of monolayer graphene embedded in an
elastic medium, where K elastic denotes the modulus parameter of the surrounding
medium.

the minimization of the strain and kinetic energies with respect to the three degrees of freedom (uo, vo, w)

will give three governing partial differential equations for the assumed system (graphene embedded in
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matrix) as

δuo
: −J0

∂2uo

∂t2 + J0(e0a)2
(
∂4uo

∂x2∂t2 +
∂4uo

∂y2∂t2

)
− I0

(
C11

∂2uo

∂x2 +C66
∂2uo

∂y2

)
+ I0(C12+C66)

∂2vo

∂x∂y

+ J1
∂3w

∂x∂t2 − J1(e0a)2
(
∂5w

∂x3∂t2 +
∂5w

∂x∂y2∂t2

)
−C11 I1

∂3w

∂x3 − I1(C12+ 2C66)
∂3w

∂x∂y2 = 0, (19)

δvo
: −J0

∂2vo

∂t2 + J0(e0a)2
(
∂4vo

∂x2∂t2 +
∂4vo

∂y2∂t2

)
− I0

(
C22

∂2vo

∂y2 +C66
∂2vo

∂x2

)
+ I0(C12+C66)

∂2uo

∂x∂y

+ J1
∂3w

∂y∂t2 − J1(e0a)2
(

∂5w

∂x2∂y∂t2 +
∂5w

∂y3∂t2

)
−C22 I1

∂3w

∂y3 − I1(C12+ 2C66)
∂3w

∂x2∂y
= 0, (20)

δw : −J0
∂2w

∂t2 + J2

(
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)
+ J0(e0a)2

(
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)
− J2(e0a)2

(
∂6w

∂x4∂t2 + 2
∂6w

∂x2∂y2∂t2 +
∂6w

∂y4∂t2

)
+ 2K elastic(e0a)2

(
∂2w

∂x2 +
∂2w

∂y2

)
− 2K elasticw− I2

(
C11

∂4w

∂x4 +C22
∂4w

∂y4

)
− 2I2(C11+ 2C66)

∂4w

∂x2∂y2 − J1
∂3uo

∂x∂t2

+ J1(e0a)2
(
∂5uo

∂x3∂t2 +
∂5uo

∂x∂y2∂t2

)
+C11 I1

∂3uo

∂x3 + I1(C12+ 2C66)
∂3uo

∂x∂y2

− J1
∂3vo

∂y∂t2 + J1(e0a)2
(

∂5vo

∂x2∂y∂t2 +
∂5vo

∂y3∂t2

)
+ I1(C12+ 2C66)

∂3vo

∂x2∂y
+C22 I1

∂3vo

∂y3 = 0, (21)

where K elastic is the force constant of the bond between the GS and the elastic matrix and

Ip =

∫ h/2

−h/2
z p dz, Jp =

∫ h/2

−h/2
ρz p dz, p = 0, 1, 2. (22)

If the nonlocal scaling parameter e0a is zero, then the above three governing differential equations of
motion become classical governing equations.

3.2. Ultrasonic wave dispersion and band gap analysis. For harmonic wave propagation in a GS, the
displacement field can be written in complex form as [Zhou and Li 2001]

uo(x, y, t)= ûe− jkx x e− jky ye jωt ,

vo(x, y, t)= v̂e− jkx x e− jky ye jωt ,

wo(x, y, t)= ŵe− jkx x e− jky ye jωt ,

(23)

where û, v̂, and ŵ are the frequency amplitudes, kx and ky are the wavenumbers in the x and y-directions,
respectively, ω is the frequency of the wave motion, and j =

√
−1.

The nonlocal governing partial differential equations of the graphene embedded in an elastic matrix
model are given in (19)–(21). The next step is to analyze the ultrasonic type of wave propagation in these
GSs. For this, substitute the displacement assumed as a harmonic type given in (23) in the governing
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partial differential equations of the graphene and write the resultant equations in matrix form as (for
nontrivial solutions of û, v̂, and ŵ)

S4k4
x +S3k3

x +S2k2
x +S1kx +S0 = 0, (24)

where

S4 =

0 0 0
0 0 0
0 0 J2(e0a)2ω2

−C11 I2

 ,
S3 =

 0 0 j J1ω
2(e0a)2− jC11 I1

0 0 0
− j J1ω

2(e0a)2+ jC11 I1 0 0

 ,
S2 =

J0ω
2(e0a)2−C11 I0 0 0

0 J0ω
2(e0a)2−C66 I0 S(23)

2

0 S(32)
2 S(33)

2

 ,
S1 =

 0 −(C11+C66)I0ky S(13)
1

−(C11+C66)I0ky 0 0

S(31)
1 0 0

 ,

S0 =

S(11)
0 0 0
0 S(22)

0 S(23)
0

0 S(32)
0 S(33)

0

 ,

(25)

where the elements S(pq)
r (p, q = 1, 2, 3 and r = 0, 1, 2) are given in the Appendix.

Equation (24) is in the form of polynomial eigenvalue problem in wavenumber kx and is solved for the
wavenumbers. This method is very generalized and efficient. The resulting wavenumbers are functions
of wave frequency and are shown in Figures 2 and 3, obtained from both local and nonlocal elasticities,
with and without the effect of the elastic matrix, respectively. The figures also show the effect of the
substrate on the ultrasonic wave characteristics of graphene at ky = 0, 2, and 5 nm−1. In the wavenumber
dispersion curves, the frequency at which the imaginary part of the wavenumber becomes real is called
the frequency band gap region (0 to ωc). The expressions for the frequency band gap are obtained by
setting kx = 0 in dispersion relation, (24). For the present case of a polynomial eigenvalue problem (PEP)
one can solve Det(S0)= 0 as

ωin-plane
c = ky

√
I0C66

J0(1+ (e0a)2k2
y)
, ωflexural

c =

√
1

2H0

√
H1+ H2, (26)

where H0, H1, and H2 are given in the Appendix.
The frequency band gap (0− ωc, cut-off frequency) for all the fundamental modes (longitudinal,

lateral, and flexural) for ky 6= 0 in graphene with and without substrate effect. These cut-off frequencies
are functions of the material properties of graphene, the y-direction wavenumber ky , and the nonlocal
scaling parameter e0a.
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Figure 2. Wavenumber dispersion with wave frequency in the GS without considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 0 and the nonlocal scaling parameter is e0a = 0.5 nm.

Figure 3. Wavenumber dispersion with wave frequency in the GS with considering the
elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 0 and the nonlocal scaling parameter is e0a = 0.5 nm.
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In the present work, it has been observed that the nonlocal scale parameter introduces a certain band
gap region in the in-plane and flexural wave modes where no wave propagation occurs. This is manifest
in the wavenumber plots as the region where the wavenumber tends to infinity or the wave speed tends
to zero. The frequency at which this phenomenon occurs is called the escape frequency. The escape
frequencies are obtained by solving Det(S4)= 0. It can be noticed that S4 is singular, thus the lambda
matrix 8(kx)= S4k4

x + S3k3
x + S2k2

x + S1kx + S0 is not regular [Fleck and Hutchinson 1997] and admits
infinite eigenvalues [Yang et al. 2002]. So, the escape frequencies of these fundamental wavemodes can
also obtained by substituting kx →∞ in the expanded dispersion relation, (24), that is, a polynomial in
kx , and solving for the frequencies. The obtained escape frequencies of these three fundamental wave
modes are

ωlongitudinal
e =

1
e0a

√
C11 I2

J2
, ωlateral

e =
1

e0a

√
C66 I0

J0
, ωflexural

e =
1

e0a

√
C11 I0

J0
. (27)

Here the suffix e represents the escape frequency. It can be seen that the escape frequencies are purely
functions of the nonlocal scaling parameter and are not affected by the dimensions of the GS. Also, the
escape frequencies are independent of the effect of the elastic matrix.

The wave speeds (phase speed C p = ω/kx and group speed Cg = ∂ω/∂kx ) can be computed from
(24).

We differentiate the PEP with respect to wave frequency, to get a PEP in terms of group speed as

G1Cg +G0 = 0, (28)

where

G1 =

[
k4

x
∂S4

∂ω
+ k3

x
∂S3

∂ω
+ k2

x
∂S2

∂ω
+ kx

∂S1

∂ω
+
∂S0

∂ω

]
,

G0 = 4S4k3
x + 3S3k2

x + 2S2kx +S1,

(29)

where Cg = (∂ω/∂kx) is the group speed of waves in the graphene and the matrices S4, S3, S2, S1, and
S0 are given in (25). This is also a PEP, and one can solve it for the group speeds (as a function of wave
frequency, wavenumbers, and nonlocal scaling parameter) of respective modes (that is, for in-plane-u, v,
and flexural-w) of the graphene.

We will discuss the phase speed dispersion with wave frequency, as shown in Figures 4–7, obtained
from both local and nonlocal elasticity and taken with and without the effect of the elastic matrix. The
phase speed dispersion shown is for both with and without the elastic matrix effects at ky = 0 and 2 nm−1.

3.3. Numerical experiments, results and discussion. For the present analysis, the Young’s modulus of
the graphene is taken as 1.06 TPa, the density is 2300 kg/m3, and the size 40× 40 Å. The stiffness of the
bond between the graphene and the matrix is 0.2694 N/m and this has to be divided by the number of
atoms per unit area of the graphene (38× 1018).

The wavenumber dispersion with wave frequency in the graphene without and with the elastic matrix,
respectively, are shown in Figures 2 and 3, obtained from both the local and nonlocal elasticity. Figure 2
shows the wavenumber dispersion obtained from the local and nonlocal elasticity theory (where e0a = 0
and e0a = 0.5 nm). Figures 2 and 3 are shown for ky = 0 (which represents 1D wave propagation).
In Figures 8 and 9 were have ky = 2 nm−1. The frequency band gap of the flexural waves is small
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Figure 4. Phase velocity dispersion with wave frequency in the GS without considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 0 and the nonlocal scaling parameter is e0a = 0.5 nm.

Figure 5. Phase velocity dispersion with wave frequency in the GS with considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 0 and the nonlocal scaling parameter is e0a = 0.5 nm.
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Figure 6. Phase velocity dispersion with wave frequency in the GS without considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 2 nm−1 and the nonlocal scaling parameter is e0a = 0.5 nm.

Figure 7. Phase velocity dispersion with wave frequency in the GS with considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 2 nm−1 and the nonlocal scaling parameter is e0a = 0.5 nm.
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Figure 8. Wavenumber dispersion with wave frequency in the GS without considering
the elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 2 nm−1 and the nonlocal scaling parameter is e0a = 0.5 nm.

as compared to that of the longitudinal and lateral (in-plane) waves for the case without the elastic
matrix effect. As the y-directional wavenumber ky increases the frequency band gap of all the three
fundamental modes increases. If we consider the elastic matrix effect, then the flexural wave starts
propagating after a high-frequency band gap as compared to that of no matrix effect. The local elasticity
shows a linear variation of the axial wavenumbers with frequency for ky = 0, that is, the longitudinal and
lateral wavenumbers are nondispersive in nature. For ky = 0 the flexural wavenumber shows a nonlinear
variation at low values of wave frequency; at higher values of wave frequency it varies linearly as shown
in Figure 2. As ky increases all the wavenumbers are dispersive in nature. In Figures 3 and 9 one can
observe the matrix effect on flexural waves.

Wavenumber dispersion with frequency for nonlocal elasticity (e0a = 0.5 nm) is shown in Figures 2–9.
The observations made for local elasticity are still valid for nonlocal elasticity. The only difference is that
because of nonlocal elasticity the wavenumbers (for both in-plane and flexural) become highly nonlinear
at higher wave frequencies. The frequency band gap variation is the same as we move from local to
nonlocal elasticity with and without the elastic matrix effects.

Local elasticity shows that the wave will propagate even at higher frequencies. But nonlocal elasticity
predicts that the waves can only propagate up to certain frequencies (called escape frequencies), after
which it will stand, that is, there will be no propagation. The wavenumber dispersion curves obtained for
nonlocal elasticity are shown up to the nonlocal limit only. The phenomena discussed at the beginning
of this paragraph occurs above the nonlocal limit.

Phase speed dispersion with the wave frequency is shown in Figures 4–7 for local and nonlocal elas-
ticity, for y-directional wavenumbers of ky = 0 and ky = 2 nm−1. Figure 4 shows that (for ky = 0) the
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Figure 9. Wavenumber dispersion with wave frequency in the GS with considering the
elastic matrix obtained from the local and nonlocal elasticity; here the y-directional
wavenumber ky = 2 nm−1 and the nonlocal scaling parameter is e0a = 0.5 nm.

in-plane (u, v) wave speeds are constant with wave frequency, while flexural wave speeds increase from
low frequency, after which they are constant for higher values of wave frequency. The magnitudes of
the flexural phase speeds are higher compared to the axial wave group speeds. As ky increases from 0
to 2 nm−1 the axial/in-plane wave speeds also show a dispersive nature. We can also observe the effect
of the elastic matrix on the flexural wave phase speeds.

As we move to nonlocality, the phase speeds of the in-plane and flexural waves stop propagating at
certain frequencies as shown in Figures 4–7. The phase speeds of the in-plane waves are the same for with
or without the elastic matrix effect. The effect is only on the flexural wave speeds. There are two cut-off
frequencies for the flexural waves with substrate effects from nonlocal elasticity. As ky increases the flexu-
ral wave speeds retain the shape shown for local elasticity and the extra frequency band gap also vanishes.

From these results we can observe that only flexural waves are affected by the elastic matrix whether
under local or nonlocal elasticity.

The variation of the cut-off frequencies of in-plane and flexural waves is shown in Figures 10 and 11,
without and with the elastic matrix effect, respectively, and with y-directional wavenumbers of ky = 0, 2
and 5 nm−1. The figures show that as we increase the nonlocal scaling parameter the cut-off frequencies
of all the fundamental wave modes will decrease. For a given e0a, as we increase the y-directional
wavenumber, the cut-off frequencies will increase. Because of the matrix, only the flexural wave mode
cut-off frequencies are affected, as can be clearly seen from Figures 10 and 11.

The variation of the escape frequency with the nonlocal scaling parameter is shown in Figure 12. It
can be seen that the escape frequencies of the longitudinal and flexural wave modes have equal values,
and the latter wave has lower escape frequencies compared to that of longitudinal/flexural waves.
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Figure 10. Cut-off frequency variation of longitudinal, lateral, and flexural waves ob-
tained from the local and nonlocal elasticity without considering the effect of the matrix;
ky are in 1/nm.
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4. Conclusion

Ultrasonic wave propagation in a graphene sheet (GS), which is embedded in an elastic medium, was
studied using a nonlocal elasticity theory incorporating small-scale effects. The GS was modeled as an
one-atom thick isotropic plate and the elastic medium/substrate was modeled as distributed springs. For
this model, the nonlocal governing differential equations of motion were derived from the minimization
of the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model
was also derived. The explicit expressions for the cut-off and escape frequencies were also obtained as
functions of the nonlocal scaling parameter and the y-directional wavenumber (ky). The results of the
wave dispersion analysis were shown for both local and nonlocal elasticity. From this analysis we showed
that the elastic medium affected only the flexural wave mode in the GS. The present results can provide
useful guidance for the design of next-generation nanodevices in which graphene-based composites act
as major elements.

Appendix

Some of the elements of the matrices [S2], [S1], and [S0] are given in the following:

S(23)
2 = j J1ky(e0a)2ω2

− j (C11+ 2C66)I1ky,

S(32)
2 =− j J1ky(e0a)2ω2

+ j (C11+ 2C66)I1ky,

S(33)
2 = J2ω

2(1+ (e0a)2k2
y
)
− J0ω

2(e0a)2− (C11+ 2C66)I2k2
y − K elastic(e0a)2;
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S(13)
1 = j J1ω

2(1+ (e0a)2k2
y
)
− j (C11+ 2C66)I1k2

y,

S(31)
1 =− j J1ω

2(1+ (e0a)2k2
y
)
+ j (C11+ 2C66)I1k2

y;

S(11)
0 = J0ω

2(1+ (e0a)2k2
y
)
−C66 I0k2

y,

S(22)
0 = J0ω

2(1+ (e0a)2k2
y
)
−C22 I0k2

y,

S(23)
0 = j J1kyω

2(1+ (e0a)2k2
y
)
− jC22 I1k3

y,

S(32)
0 =− j J1kyω

2(1+ (e0a)2k2
y
)
+ jC22 I1k3

y,

S(33)
0 = J2ω

2k2
y
(
1+ (e0a)2k2

y
)
+ J0ω

2(1+ (e0a)2k2
y
)
−C22 I2k4

y − K sub(1+ (e0a)2k2
y
)
;

H0 = (J0 J2− J 2
1 )k

4
y(e0a)2+ J 2

0
(
1+ (e0a)2k2

y
)
+ (J0 J2− J 2

1 )k
2
y,

H1 = J0K elastic(1+ (e0a)2k2
y
)
+ (J0+ J2)C22 I2k4

y + (I0 J0− 2I1 J2)C22k4
y;

H2 = [J 2
0 (e0a)4k4

y + 2J 2
0 (e0a)2k2

y + J 2
0 ]K

elastic2[
(2J 2

0 I2− 2J0 I0 J2− 4J0 J1 I1+ 4J 2
1 I0)C22(e0a)2k6

y

−
(
2J 2

0 (e0a)2 I0+ 2J 2
0 I2− 2J0 I0 J2− 4J0 J1 I1+ 4J 2

1 I0
)
C22k4

y − 2C22 I0 J 2
0 k2

y
]
K elastic

+[J 2
0 I 2

2 + I 2
0 J 2

2 − 4J0 I2 J1 I1− 2J0 I2 I0 J2− 4J1 I1 I0 J2+ 4J0 J2 I 2
1 + 4J 2

1 I0 I2]C2
22k8

y

+[4J 2
0 I 2

1 − 2J 2
0 I2 I0− 4I0 J0 J1 I1+ 2I 2

0 J0 J2]C2
22k6

y + I 2
0 J 2

0 C2
22k4

y .
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NONLINEAR CREEP RESPONSE
OF REINFORCED CONCRETE BEAMS

EHAB HAMED

The nonlinear viscoelastic behavior of reinforced concrete beams under sustained loading is investigated
in this paper. A theoretical model is developed, which is based on the viscoelastic modified principle of
superposition, and accounts for cracking, nonlinear behavior in compression, shrinkage, aging, and the
creep rupture phenomenon of concrete. A nonlinear form of the relaxation modulus is presented, which
is introduced into the constitutive relations and the corresponding nonlinear rheological Maxwell model,
to account for damage. The governing equations are solved through time-stepping numerical integration,
which yields an exponential algorithm following the expansion of the relaxation modulus into a Dirichlet
series. The determination of the section-equivalent rigidities and creep strains along the cracked and
uncracked regions is achieved through an iterative procedure at each time step. The capabilities of the
model are demonstrated through numerical examples and parametric studies including comparison with
test results available in the literature. The results show that creep has various and different influences on
the structural response, and in some cases it may lead to a reduction of the load-carrying capacity of the
member by creep rupture-type of failures.

1. Introduction

The creep behavior of reinforced concrete (RC) members in general and RC beams in particular has been
intensively studied. Normally, the long-term effects of creep and shrinkage lead to a progressive increase
in the deformations and a change of the cracking pattern over time, which are assumed to only affect the
serviceability of RC members. Nevertheless, in some cases, structural members may be subjected to high
levels of sustained loads, as is the case with dams, retaining walls, beam-columns, arches, containment
vessels, cooling towers, and others. In such cases, the creep and shrinkage effects may put the structure
out of service, may reduce the residual load-carrying capacity of the member over time (and hence
reduce the factor of safety for failure), or may even lead to premature failures. This paper deals with the
nonlinear viscoelastic behavior of RC members including the phenomenon of creep rupture, with special
focus on RC beams.

The nonlinear viscoelastic response of RC beams exhibits a number of physical phenomena that require
special attention. Among those is the time-dependent variation of the internal stresses with time, which
results from the linear brittle behavior of concrete in tension and the nonlinear behavior in compression,
and also from the restraint of the long-term effects by the steel reinforcement. This stress redistribution is
combined with the shifting of the neutral axis with time. The prediction of these two effects becomes very

The work reported in this paper was supported by the Australian Research Council (ARC) through a Discovery Project
(DP0987939).
Keywords: cracking, creep, long-term, nonlinear, reinforced concrete, viscoelasticity.
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challenging under high levels of sustained loads due to the nonlinearity of stresses and their influence on
the creep response, which cannot be described using the well-known linear viscoelastic models [Neville
and Dilger 1970; Gilbert 1988]. Another phenomenon that results from the long-term effects is the
propagation and widening of flexural cracks with time, as a result of the combined effects of creep,
restrained shrinkage, and creep rupture in tension, in which the tensile capacity of concrete decreases
over time. As a result of the latter effect, long-term cracking of points that are under sustained tensile
stresses greater than about 70% of the tensile strength may occur [Zhou 1994]. Similar response occurs
also in compression, where creep rupture of material points under sustained stress that is greater than
about 80% of the compressive strength may occur [Carol and Murcia 1989; CEB-FIP 1990; Mazzotti
and Savoia 2003], reducing the load-carrying capacity and the factor of safety of RC flexural members.
Some experimental results regarding creep rupture in flexural plain concrete beams with notches were
reported in [Omar et al. 2009], and it was revealed that tertiary creep and rupture occurred at load levels
greater than 70% of the maximum load-carrying capacity. Understanding and clarifying these aspects,
as well as the development of suitable and reliable theoretical models for their prediction, are essential
for the safety assessment of existing structures and the design of new ones.

Bažant and Asghari [1977] combined the endochronic theory with a linear Maxwell chain model for
investigating the nonlinear creep response of plain concrete under compression, but without considering
the behavior of flexural members. In another study, Bažant and Chern [1985] developed a model suitable
for finite element analysis of plain concrete using a strain softening element connected in series to a gen-
eralized Maxwell chain that describes the uncracked response. Yet, the response of RC flexural members
and the incorporation of the material nonlinearity in compression were not considered. Papa et al. [1998]
proposed an approach to model the progressive microcracking and creep acceleration of plain concrete
under tension and compression, by gradually varying the Maxwell constants based on a damage variable.
Mazzotti and Savoia [2003] combined the solidification theory of [Bažant and Prasannan 1989] with a
damage model for the description of the nonlinear creep response of plain concrete under compression.
Fernández Ruiz et al. [2007] proposed a simplified plasticity-damage model for plain concrete under
compression. The nonlinear relation between creep strains and the stress level was introduced in their
study through a stress-dependent creep coefficient (see also [CEB-FIP 1990]).

The studies mentioned above and many others [Carol and Murcia 1989; Santhikumar et al. 1998;
Di Luzio 2009] focused on the creep response of plain concrete, while the nonlinear creep behavior of
RC members has received less attention. The only studies that could be found in the literature regarding
the nonlinear creep response of RC beams are those of [Bažant and Oh 1984; Li and Qian 1989]. The
former was based on the effective elastic modulus approach and the linear principle of superposition,
which are more appropriate for linear material response, and it did not include the effects of creep rupture
and shrinkage-induced deformations. The latter included only a section analysis based on a creep damage
model that depends on a number of parameters determined empirically. Limited results that include the
time variation of the curvature were presented in [Li and Qian 1989], without the description of stresses,
their relaxation and redistribution with time, propagation of cracking, creep rupture, and other effects.

In this paper, the nonlinear viscoelastic response of RC beams is investigated through a full nonlinear
viscoelastic model that is based on the modified principle of superposition [Leaderman 1943]. This
modeling approach also provides a potential alternative to most existing nonlinear creep models for
plain concrete, which are based on combinations of linear viscoelastic rheological models with nonlinear
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sliders, to model either cracking or material softening. The single-integral nonlinear viscoelastic model
used here is converted into a differential-type relation after the expansion of the nonlinear relaxation
modulus into a Dirichlet series. This yields a nonlinear generalized Maxwell model with the damage
being modeled as strain-dependent spring and dashpot constants. The model uses beam theory with
first-order shear deformations (Timoshenko beam), and it accounts for creep rupture under both tension
and compression, shrinkage, aging, and yielding of the steel reinforcement, through an incremental
time-stepping analysis. The mathematical model is applicable for any stress loading history, and any
geometry, boundary conditions, and material properties. The assumptions made in the material and
structural modeling are included in the mathematical formulation, which is followed by a numerical
study and a comparison of the proposed model with experimental results.

2. Mathematical formulation

The mathematical formulation presented here focuses on RC beams, but it provides a basis for modeling
further related structural members. The constitutive relations at the concrete material level and at the
section level are presented first. They are followed by the formulation of the governing incremental
equations and a description of the solution procedure. A smeared cracking modeling approach with full
bonding between the concrete and the steel reinforcement is adopted, along with a distinction between
the cracked and uncracked regions along the beam. It has been shown in many research studies [Rots
and Blaauwendraad 1989] that the smeared cracking model, which assumes that stresses and strains are
averaged over a representative length to span several cracks and microcracks, is an effective approach
for predicting the cracking and post-cracking response of RC flexural members. This is mainly because
it describes an integrated effect of the localized flexural cracks and microcracks, which are characterized
by some levels of uncertainty regarding their real distribution. There is no doubt, however, that a discrete
cracking model with a bond-slip law between the concrete and the steel will present a more comprehen-
sive and accurate description of the localized structural behavior, but this effect is not described here.
The sign conventions for the coordinates, deformations, loads, stresses, and stress resultants of a typical
RC beam appear in Figure 1.

2.1. Constitutive relations at the material level. The constitutive relations are assumed to be indepen-
dent of temperature and other environmental effects in order to clarify and highlight the time-dependent
effects of creep and shrinkage. A superposition between the nonlinear viscoelastic strain εv

xx (equal to
the instantaneous strain εins

xx plus the creep strain εcp
xx ) and the stress-independent shrinkage strain εsh is

assumed, that is, εxx = ε
v
xx + εsh, with εxx being the total strain. The instantaneous strain is related to

the applied stress via a nonlinear short-term constitutive relation that accounts for cracking and material
softening in compression, and it can refer to the elastic, inelastic, or cracking strains. The short-term
constitutive relation provides the basis for developing the nonlinear relaxation function (as discussed in
Section 3.1), which is used in the nonlinear viscoelastic model to describe the effects of cracking and
damage produced by the creep strain as well. The formulation presented here is used to describe the
creep and the short-term response; whereas the latter is obtained by choosing a number of fairly small
time steps between t = 10−9 to t = 10−8 days, for example.

As mentioned earlier, the modified principle of superposition is adopted here for the nonlinear vis-
coelastic constitutive relations of concrete, which was first developed in [Leaderman 1943], and has been
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Figure 1. Geometry, loads, and sign conventions.

widely used for studying the nonlinear viscoelastic response of polymers and other materials [Pipkin and
Rogers 1968; Findley et al. 1976], but with no reported application for reinforced concrete (to the best
of the author’s knowledge). Among other nonlinear viscoelastic models, it is chosen here as it skips over
the difficulties associated with multiple integral representations (that is, evaluation of a large number of
kernel functions) while still predicting the response of many materials with sufficient accuracy [Findley
et al. 1976]. Following this principle, and assuming a differentiable strain history, the normal stress in
concrete (σxx ) takes the form

σxx(t)=
∫ t

0

∂ f (εv
xx(t
′), t − t ′)

∂εv
xx(t ′)

dεv
xx(t
′)

dt ′
dt ′, (1)

where f is a nonlinear function of strain, which represents the time-dependent stress relaxation under
constant strain. Equation (1) can be rewritten in the form

σxx(t)=
∫ t

0
Rxx(ε

v
xx(t
′), t − t ′)

dεv
xx(t
′)

dt ′
dt ′, (2)

with Rxx as the nonlinear relaxation modulus of concrete under normal strains, which introduces the
effects of time-dependent cracking and material softening into the model. Under short-term loading with
no creep (t = t ′), f corresponds to the instantaneous stress as a function of the strain level, while Rxx

actually refers to the tangent elastic modulus. Due to the lack of data on the creep behavior of concrete in
shear, the formulation focuses on the concrete response under normal stresses (tension and compression),
from which the response in shear is estimated. To avoid storing the entire strain history, a differential-type
constitutive relation is developed, following the same concepts presented in [Taylor et al. 1970; Bažant
and Wu 1974], which are further extended to the nonlinear case. To do so, the relaxation modulus needs
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to be expanded into a Dirichlet series including the effect of aging of the concrete, as follows:

Rxx(ε
v
xx , t, t ′)≈ Rxx(ε

v
xx , t, t ′)=

N∑
µ=1

Eµ(εv
xx , t ′)e−(t−t ′)/Tµ + EN+1(ε

v
xx , t ′), (3)

where Rxx is the approximated relaxation modulus, Eµ(εxx , t ′) is the modulus of the µ-th term in the
series, N is the number of terms, and Tµ is the relaxation time of the µ-th term. Note that the moduli
depend on the level of strain and the age of the concrete.

Following the Dirichlet series expansion, the total stress becomes the sum of the stresses of each term
in the series as follows:

σxx(t)=
N∑
µ=1

σµ(t)+ EN+1(ε
v
xx , t)εv

xx(t). (4)

Substitution of (3) into (2) for each term leads to

σµ(t)=
∫ t

0
Eµ(εv

xx , t ′)e−(t−t ′)/Tµ dεv
xx(t
′)

dt ′
dt ′. (5)

Differentiation of (5) with respect to t and rearranging the result leads to the differential equation

dσµ
dt
+
σµ

Tµ
= Eµ(εv

xx , t)
dεv

xx

dt
. (6)

Equation (6) actually describes the stress-strain relation in a Maxwell unit with age and strain-dependent
spring modulus Eµ(εv

xx , t) and a dashpot constant η(εv
xx , t)= Eµ(εv

xx , t)Tµ, while the entire nonlinear
viscoelastic response is described by a nonlinear rheological generalized Maxwell model following (4).
This formulation means that with the evolution of damage, the effects of cracking and material nonlinear-
ity are introduced via the dependent of the spring and dashpot constants at each point through the depth
of the RC section on the corresponding strain level, with unchanged relaxation times. Mathematically,
it means that the concepts used for the development of the incremental algorithms in [Bažant and Wu
1974; Sorvari and Hämäläinen 2010] and other studies for linear cases can basically be applied here with
special consideration of the strain and age dependency of the constants.

However, it was shown in many studies [Bažant and Prasannan 1989] that the calculation of the
time-dependent (due to aging) spring constants is associated with numerical difficulties that may lead to
results that violate basic thermodynamic laws (negative spring constants). For this, Bažant and Prasannan
[1989] have developed a solidification theory for creep to overcome these difficulties. Nevertheless, it was
shown in [Carol and Bažant 1993] that the solidification model is equivalent to the well-known rheologic
Maxwell or Kelvin models but with spring constants that increase proportionally to the same function
v(t), which actually describes the increase in the macroscopic elastic modulus over time, and guarantees
continuously increasing positive values for the spring constants. In the linear (strain-independent) case
considered in [Carol and Bažant 1993], the age-dependent spring moduli are defined by Eµ(t)= v(t)Eµ.
However, in the nonlinear case considered here, the aging function represents the time variation of the
macroscopic tangent modulus; apart from its normal variation with time due to aging, it depends on
the level of stress or its corresponding instantaneous strain. The spring moduli in this case are given
by Eµ(εv

xx , t) = v(εins
xx , t)Eµ(εv

xx) for any given pair of instantaneous and viscoelastic strains which
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varies with time due to creep and stress redistribution. The derivation of the aging function is given
in Section 3.3. For completeness of the formulation and for clarity, the basic steps undertaken in the
derivation of the incremental procedure, which follow [Bažant and Wu 1974; Sorvari and Hämäläinen
2010], are presented here.

Assuming that the time of concern is subdivided into nt discrete times with1t = tr− tr−1 (r = 1, 2, nt ),
the exact solution of (6) with initial condition σµ(t)= σµ(tr−1) at t = tr−1 is given by

σµ(tr )= e−1t/Tµσµ(tr−1)+

∫ tr

tr−1

e−(tr−t ′)/Tµv(εins
xx (t

′), t ′)Eµ(εv
xx(t
′))

dεv
xx(t
′)

dt ′
dt ′. (7)

In order to evaluate the integral in (7), the strain rate, the aging function, and the spring modulus are
assumed constant within the time interval provided that sufficiently small time steps that guarantee small
changes of these parameters within the time interval are used. Equation (7) then becomes

σµ(tr )= e−1t/Tµσµ(tr−1)+ Eµ(εv
xx(tr ))v(ε

ins
xx (tr ), tr )

1εv
xx

1t
Tµ[1− e−1t/Tµ]. (8)

Using (4) and (8), the following incremental constitutive relation can be obtained for the response at
t = tr :

1εxx =
1σxx

E ′′c (εv
xx(tr ))

+1ε′′c (ε
v
xx(tr )), (9)

where E ′′c is the pseudonormal modulus, and 1ε′′c is the incremental prescribed normal strain that includes
both the effects of creep and shrinkage. These are given as follows:

E ′′c (ε
v
xx(tr ))= v(ε

ins
xx (tr ), tr )

[ N∑
µ=1

[1− e−1t/Tµ]
Tµ
1t

Eµ(εv
xx(tr ))+ EN+1(ε

v
xx(tr ))

]
, (10)

1ε′′c (ε
v
xx(tr ))=

1
E ′′c (εv

xx(tr ))

N∑
µ=1

[1− e−1t/Tµ]σµ(tr−1)+1εsh. (11)

For brevity, the incremental constitutive relation in shear is not given here, but it follows the same
procedure outlined above with G ′′c as the pseudoshear modulus and γ ′′c as the prescribed creep engineering
shear strain. The next section describes the constitutive relations at the section level of the RC beam,
while the determination of the spring constants and other parameters appears in Section 3.

2.2. Constitutive relations at the section level. Following Timoshenko beam theory, the incremental
kinematic relations are given as follows assuming small displacements:

1εxx(x, z)= d
dx
(1u)− z d

dx
(1φ), (12)

1γxz(x)=
d

dx
(1w)−1φ, (13)

where γxz is the engineering shear strain and w, u, and φ are the vertical displacement, the in-plane
displacement at the reference line, and the rotation of the cross section, respectively.
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The constitutive relations at the cross-section level are determined using the classical definition of the
stress resultants and (9) as follows:

1Nxx =

∫ Yc

Yc−dc

bE ′′c [1εxx −1ε
′′

c ] dz+ Es1εs As + E ′s1ε
′

s A′s, (14)

1Mxx =

∫ Yc

Yc−dc

bE ′′c [1εxx −1ε
′′

c ] z dz+ Es1εs Aszs + E ′s1ε
′

s A′sz′s, (15)

1Vxx = κ

∫ Yc

Yc−dc

bG ′′c [1γxz −1γ
′′

c ] dz, (16)

where b, Yc, and dc are the width, centroid, and depth of the RC beam, respectively (see Figure 1); Es , εs ,
and As are the tangent modulus of elasticity, strain, and area of the tensioned reinforcement, respectively;
E ′s , ε′s , and A′s are the tangent modulus of elasticity, strain, and area of the compressed reinforcement; zs

and z′s are the distances of the steel reinforcement from the centroid of the uncracked beam (see Figure 1);
and κ is the shear correction factor. E ′′c , G ′′c , 1ε′′c , and 1γ ′′c actually depend on the strain level at each
material point based on (10) and (11); hence, they vary through the depth and length of the RC beam and
introduce the effects of cracking and material nonlinearity at the section level. For brevity, the notation
of the dependency of these parameters on the strain level is omitted. Also Es and E ′s depend on the strain
level and introduce the effect of yielding of the steel reinforcement into the model.

Substitution of the kinematic relations, (12) and (13), into (14)–(16) yields

1Nxx

1Mxx

1Vxx

=
A11 B11 0

B11 D11 0
0 0 κA55




d
dx
(1u)

−
d

dx
(1φ)

d
dx
(1w)−1φ

−
1N
1M
1V

 , (17)

where A11, B11, D11, and A55 are the extensional, extensional-bending, flexural, and shear viscoelastic
rigidities of the RC beam, and N , V , and M are incremental effective forces and bending moment due
to creep and shrinkage. The viscoelastic rigidities take the form

A11 =

∫ Yc

Yc−dc

bE ′′c dz+ Es As + E ′s A′s, B11 =

∫ Yc

Yc−dc

bE ′′c z dz+ Es Aszs + E ′s A′sz′s,

D11 =

∫ Yc

Yc−dc

bE ′′c z2 dz+ Es Asz2
s + E ′s A′s(z

′

s)
2, A55 =

∫ Yc

Yc−dc

bG ′′c dz.

(18)

The incremental effective forces due to creep and shrinkage are obtained by substitution of (11) into
(14)–(16) and by assuming a constant shrinkage strain profile over the depth of the RC section as follows:

1N =
∫ Yc

Yc−dc

b
N∑
µ=1

[1− e−1t/Tµ]σ c
µ(tr−1) dz+ [A11− Es As − E ′s A′s]1εsh, (19)

1M =
∫ Yc

Yc−dc

b
N∑
µ=1

[1− e−1t/Tµ]σ c
µ(tr−1)z dz+ [B11− Es Aszs − E ′s A′sz′s]1εsh, (20)
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1V = κ
∫ Yc

Yc−dc

b
N∑
µ=1

[1− e−1t/Tµ]τ c
µ(tr−1) dz. (21)

2.3. Incremental governing equations. The incremental equilibrium equations of the RC beam, which
can be found in any textbook of structural mechanics, take the form

d
dx
(1Nxx)=−1nx ,

d
dx
(1Vxx)=−1qz,

d
dx
(1Mxx)−1Vxx =1mx , (22)

where Nxx , Vxx , and Mxx are the axial force, shear force, and bending moment, respectively, and qz , nx ,
and mx are external distributed loads and bending moments, respectively. Substitution of the constitu-
tive relations, (17), into the incremental equilibrium equations, (22), leads to the following first-order
incremental governing differential equations in terms of the unknown deformations and internal forces:

d
dx
(1w)= (A551φ+1V +1Vxx)/A55, (23)

d
dx
(1φ)= [B11(1Nxx +1N )− A11(1Mxx +1M)]/(A11 D11− B2

11), (24)

d
dx
(1Mxx)=1mx +1Vxx ,

d
dx
(1Vxx)=−1qz,

d
dx
(1Nxx)=−1nx , (25)

d
dx
(1u)= [D11(1Nxx +1N )− B11(1Mxx +1M)]/(A11 D11− B2

11). (26)

2.4. Solution procedure. At each time step, (23)–(26) present a spatial set of nonlinear differential
equations due to the dependency of the rigidities on the unknown deformations via (18). In general,
these rigidities may vary along the uncracked and cracked regions due to the material nonlinearity. Here,
a piecewise uniform distribution of the rigidities is assumed along the cracked (smeared cracking) and
uncracked regions. Thus, the rigidities along the cracked region are determined based on analysis of the
critical cross section, while the rigidities at the uncracked region are assumed strain-independent. This
defines two types of parameters that need to be determined at each time step, namely: the rigidities at
the critical section, and the start and end locations of the cracked region (Xcr1 and Xcr2; see Figure 1).
An iterative procedure is used for the determination of these parameters at each time step, while due to
the piecewise variation of the rigidities and the continuous variation along the beam of the incremental
effective forces due to creep and shrinkage, a numerical technique that is based on the multiple shooting
method [Stoer and Bulirsch 2002] is adopted for the solution of the equations at each iteration. The
iterative procedure basically follows [Rabinovitch and Frostig 2001; Hamed and Rabinovitch 2008] but
it is slightly modified here to account for the viscoelastic response, as follows:

Step 1. Initial guess. At the first iteration of the first increment of instantaneous loading, the beam is
assumed uncracked. However, for the progressive time steps (load increment), the solution from the
previous time step is used as the initial guess for the current step.

Step 2. Analysis of the structure. Using the rigidities calculated in the initial guess or in the previous
iteration (Step 3.3), as well as the calculated locations of the start and end points of the cracked region,
the incremental governing equations become linear ones with variable coefficients in space, which are
solved numerically.
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Step 3. Analysis of the critical section (at the location of maximum moment). Based on the solution
obtained in Step 2, the equivalent rigidities of the critical section are determined as follows:

3.1 A linear distribution of the incremental total strain is assumed:

1εxx =
1ε1+1ε2

2
−
1ε1−1ε2

dc
z, (27)

where 1ε1 and 1ε2 are the incremental strains at the upper and lower faces of the RC beam, as
shown in Figure 1.

3.2 Based on the incremental internal forces obtained in Step 2, two nonlinear algebraic equations are
stated in terms of the two unknowns 1ε1 and 1ε2, which are based on equilibrium of forces and
moments at the current time step, as follows:

1Nxx =

∫ Yc

Yc−dc

b1σxx dz+ Es1εs As + E ′s1ε
′

s A′s, (28)

1Mxx =

∫ Yc

Yc−dc

b1σxx z dz+ Es1εs Aszs + E ′s1ε
′

s A′sz′s, (29)

where 1σxx is defined via (9). As creep in RC beams tends to shift the neutral axis downwards
[Gilbert 1988], the tensile capacity of already-cracked material points under instantaneous loading
is set to zero in solving (28) and (29) with time.

3.3 Once the normal strain distribution is determined in Step 3.2, as well as the corresponding normal
and shear stresses, the spring moduli of each point through the depth of the RC beam are deter-
mined. Consequently, the viscoelastic rigidities and the incremental effective forces due to creep
and shrinkage are determined through (18) and (19)–(21), respectively.

Step 4. Convergence criterion. If the norm of the relative difference between the magnitudes of the vis-
coelastic rigidities, as well as Xcr1 and Xcr2, in two successive iterations is sufficiently small, the iterative
procedure stops. Otherwise, the procedure returns to Step 2 with the updated rigidities of Step 3.3.

3. Material properties and model parameters

The incremental mathematical model developed in Section 2 is valid for any desired creep model and
material properties provided that the strain-dependent relaxation modulus and the corresponding spring
moduli of the Maxwell model are known. Here, the specific viscoelastic models that are adopted in the
numerical study, and which can be used for the analysis of most RC structures, are discussed, along with
the determination of the model parameters (that is, relaxation modulus and spring and dashpot constants).

3.1. Nonlinear relaxation modulus of concrete. Before the characterization of the nonlinear relaxation
modulus, the instantaneous stress-strain law, from which the viscoelastic constitutive relations are derived,
is presented. The material properties and material models are taken from [CEB-FIP 1990; 1999] with
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the following instantaneous stress-strain relation that is also shown in Figure 2:

σxx =



E0ε
ins
xx + fcm

(εins
xx )

2

ε2
c

1−
(E0εc

fcm
+ 2

)
εins

xx
εc

for εc
lim ≤ ε

ins
xx ≤ εcr,

fctm+ Ed(ε
ins
xx − εcr) for εcr < ε

ins
xx ≤ ε

t
lim,

0 for εt
lim < ε

ins
xx ,

(30)

where fcm is the mean compressive strength that equals fck+8 (in MPa) with fck being the characteristic
strength, E0 is the modulus of elasticity, εc is the strain at peak compressive stress, εcr is the cracking
strain (determined based on the mean tensile strength as fctm/E0), and εc

lim is the strain that corresponds
to a stress of 0.5 fcm at the descending part of the diagram; further, Ed = −0.483E0/(0.393+ fctm)

describes the tension-softening effect [Bažant and Oh 1984], and εt
lim = εcr− fctm/Ed .

The stress-strain curve of the steel is based on a linear elastic-perfectly plastic behavior with εy as the
yielding strain as follows:

σs =

{
Esεs for − εy ≤ εs ≤ εy,

Esεy otherwise.
(31)

The failure criteria in tension and compression are based on limit strains in order to account for the
creep rupture effects. Under instantaneous loading, cracking occurs once εins

xx becomes greater than εcr.
For simplicity, the strain-softening effect is ignored and the stresses are assumed to drop immediately
to zero upon cracking. Many studies show that the effects of tension-softening and tension-stiffening
are mostly dominant in lightly reinforced structures, which is not the case in most RC beams [Gilbert
2007]. Under sustained loading, on the other hand, it is assumed that creep rupture in tension occurs
when the viscoelastic strain (creep curve) intersects the descending part of the stress-strain curve [Zhou
1994], allowing εv

xx to exceed εcr without immediate failure as observed in some experimental studies
and shown in Figure 2. In other words, it is assumed that the instantaneous stress-strain curve serves

εxx

σ
xx
c

εcr

fctm

E0

Ed

Tension

Creep
strain

Creep
rupture

σ
xx
c

fcm

εxx

εc

Creep
rupture

Creep  strain

Compression

εlim

E0

c

εlim
t

Instantaneous

strain

Figure 2. Stress-strain curves of concrete under tension and compression.
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as an envelope failure criterion. Following this procedure, the failure strain envelope in tension εt
f is

given by

εt
f =

σ c
xx − fctm

Ed
+ εcr. (32)

Thus, the relaxation modulus of any point through the depth of the RC beam, for which its viscoelastic
strain exceeds its corresponding failure strain, is set to zero to simulate the creep rupture effect. Note
that due to aging, the failure envelope changes with time.

As the paper focuses on the nonlinear creep response rather than the behavior under short-term loading,
which is well known, failure in compression under instantaneous loading is not accounted for. Thus, it
is assumed that the level of instantaneous compressive strains is smaller than εc (in absolute value). Nev-
ertheless, in order to account for the creep rupture failure in compression, a limit strain failure criterion
should be used. In general, the creep rupture failure envelope in compression is a descending curve from
the peak static strength to a horizontal line at about (0.7–0.8) fcm [Carol and Murcia 1989; Omar et al.
2009]. Here, it is assumed that this descending curve is similar to the descending (strain softening) part
of the stress-strain curve given in (30), indicating that also under compression, creep rupture occurs once
the viscoelastic strain intersects the stress-strain diagram as shown in Figure 2 [Fernández Ruiz et al.
2007]. Such similarity between the modeling of damage due to creep and material nonlinearity under
short term loading is owned to the similarities in their sources, which correspond to interfacial bond
microcracks between the aggregates and the mortar, and microcracking of the mortar material itself
[Bažant and Asghari 1977; Li and Qian 1989]. Using the strain-softening part of (30) in compression,
the failure strain envelope in compression εc

f takes the form

εc
f =

− E0−
E0σxx

fcm
−

2σxx
εc
−

[(
E0+

E0σxx
fcm
+

2σxx
εc

)2
+ 4 fcmσxx

ε2
c

]1/2

2 fcm/ε2
c

. (33)

Based on these assumptions, the nonlinear relaxation functions should be defined for the uncracked
material points with εc ≤ ε

ins
xx ≤ εcr while εv

xx can be greater than εcr or εc (in absolute value) as shown
in Figure 2.

The determination of the relaxation modulus is based on the compliance modulus because of the
limited experimental data available for its calibration. Nevertheless, the well-known convolution integral
relation between the relaxation and compliance moduli is not valid for nonlinear materials [Findley et al.
1976]. This introduces some difficulties in the determination of the nonlinear relaxation modulus, also
because, as shown in [Oza et al. 2003], a separable nonlinear compliance (between time and stress)
normally leads to a nonseparable form of a relaxation modulus. Oza et al. [2003] provided closed-
form expressions of the nonlinear relaxation modulus for some specific compliance moduli of ligaments
and metals based on a single integral nonlinear superposition method. Other numerical approaches
for obtaining the nonlinear relaxation modulus from the compliance modulus at each time step were
developed in [Brueller and Steiner 1993; Touati and Cederbaum 1997]. Here, the relaxation modulus
is estimated based on a trial and error method seeking a closed-form expression. This is based on the
physical meaning of the kernels in (1) and the corresponding creep equation given below (see [Findley
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et al. 1976]):

εv
xx(t)=

∫ t

0

∂g(σxx(t ′), t − t ′)
∂σxx(t ′)

dσxx(t ′)
dt ′

dt ′, (34)

where g is a nonlinear function of stress, which represents the time-dependent viscoelastic strain under
constant stress, and ∂g/∂σxx is the nonlinear compliance modulus. The problem actually reduces to
finding a general stress history σxx(t) = σh(t), such that when inserted into (34), then the obtained
viscoelastic strain εv

xx(t) becomes constant with time and equals to a desired value (ε0
xx ). In other words,

since creep and relaxation are two aspects of the same viscoelastic material behavior, then the time-
dependent stress (function f in (1)) that will be obtained in a relaxation test under a certain value of
strain is exactly the same one that needs to be used in a stress-varying creep test (σxx(t)= σh(t) in (34))
to obtain the same constant strain value.

Using the ascending part (in absolute value) of the short-term stress-strain relation of the concrete,
(30), the function g in (34) takes the following separable form for fcm ≤ σxx ≤ fctm:

g =
− E0−

E0σxx
fcm
−

2σxx
εc
+

[(
E0+

E0σxx
fcm
+

2σxx
εc

)2
+ 4 fcmσxx

ε2
c

]1/2

2 fcm/ε2
c

(1+ϕ(t)), (35)

where ϕ(t) is the creep coefficient that is evaluated based on [CEB-FIP 1990]. Note that in this simplified
formulation, the nonlinearity between stresses and creep strains is modeled through the constitutive law
only [Bockhold and Petryna 2008] and not through a stress-dependent creep coefficient [CEB-FIP 1990;
Fernández Ruiz et al. 2007].

Following the procedure outlined above, different potential stress histories (σxx(t)= σh(t)) need to be
introduced into (34). The one that leads to constant strain values with time at different levels of initial
strain is the one that corresponds to the function f in (1), which will be used for the derivation of the
relaxation modulus. The basis for choosing such stress histories is that they should actually be decreasing
functions with time and have to fulfill the instantaneous stress-strain relation at t = 0. The following
general form is proposed with ε0

xx being the desired constant strain value:

σh(t)=

1
(1+ϕ(t))α

(
E0ε

0
xx +

fcm
(1+ϕ(t))ζ

(ε0
xx)

2

ε2
c

)
1−

(E0εc
fcm
+ 2

)
ε0

xx
εc

. (36)

Figure 3 shows the normalized time variation of the strain at different levels obtained from different
stress histories with different values of α and ζ (see (36)). For this illustration, fcm is taken as 38 MPa,
εc = −0.224%, and E0 = 33.5 GPa. The creep coefficient is assumed to follow [CEB-FIP 1990] as
ϕ(t) = ϕu t0.3/(t + βH )

0.3 with ϕu = 2.11 and βH = 459. The integration of (34) is achieved using
an incremental time-stepping numerical integration, assuming a constant compliance function (averaged
over two consecutive times) during each time interval following a nonlinear superposition approach [Oza
et al. 2003; Hamed et al. 2011]. It can be seen that at the low level of initial strain (0.05εc), all stress
histories reveal a very small change of the normalized strain with time (a deviation of less than 2%).
However, under higher levels of initial strains where material nonlinearity becomes significant (0.25εc

and 0.45εc, that correspond to stresses of 0.43 fcm and 0.7 fcm, respectively), only the stress history with
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Figure 3. Variation of strain in time under different decreasing stress histories at differ-
ent levels of initial strain (the solid line indicates α = 1, ζ = 1; the dashed α = 1, ζ = 0;
and the dotted α = 1, ζ = 2).

α = ζ = 1 still yields a very small change, while stress histories achieved with other values of α and ζ
reveal significantly varying strains with time. Hence, the function f is assumed to take the form of (36)
with α = ζ = 1 and replacing ε0

xx with εv
xx . It has to be mentioned that the exercise outlined in Figure 3

has been implemented at various material properties to verify the validity of the chosen function f . No
doubt a more accurate method to evaluate the function f would be one based on minimization of the
error at each time step [Brueller and Steiner 1993; Touati and Cederbaum 1997], but the method outlined
above is chosen as it provides a closed-form solution with an acceptable accuracy.

Once the function f is defined, the nonlinear strain-dependent relaxation modulus can be obtained by
differentiating f with respect to εv

xx (see (1) and (2)) to yield a closed nonseparable form of the nonlinear
relaxation modulus of concrete as follows:

Rxx =
E0

ā(1+ϕ(t))
+

E0ε
v
xx

ā(1+ϕ(t))

[
2 fcm

E0ε2
c
+

E0

ā fcm
+

2
āεc

]
+

E0(ε
v
xx)

2

[ā(1+ϕ(t))]2

[
1
εc
+

2 fcm

E0ε3
c

]
, (37)

where ā = 1− E0ε
v
xx/ fcm− 2εv

xx/εc. For relatively small strains (that is, 0.15εc ≤ ε
v
xx ≤ εcr), the second

and third terms are relatively small and ā ≈ 1; thus, (37) yields the classical approximated form of the
relaxation modulus of a linear viscoelastic material as ≈ 1/Jxx (with Jxx as the compliance function).
Also note that for ϕ(t)= 0, (37) yields the strain-dependent tangent modulus of concrete.

The effect of aging on the nonlinear relaxation modulus is introduced through the development of fcm,
E0, and εc with time as follows [CEB-FIP 1990; 1999]:

fcm(t)= ( fck+ 8) exp
{

0.25
[
1−

(28
t

)1/2 ]}
, (38)

E0(t)=

√
fcm(t)

fcm(28)
E0(28), (39)

εc(t)=−0.0017− 0.001( fcm(t))/70, (40)

where t refers to the age of concrete in days, and fck and fcm are in MPa. The development of the tensile
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strength fctm with time is assumed to follow that of the compressive strength, which is given by

fctm =
fcm(t)

fcm(28)
1.4
(

fck

10

)2/3

. (41)

3.2. Springs and dashpot constants in Maxwell model. Given the strain and age-dependent relaxation
modulus appears in (37) and the relation Eµ(εv

xx , t) = v(εins
xx , t)Eµ(εv

xx) described earlier, the strain-
dependent spring and dashpot constants of the Maxwell model can be obtained by a least squares or
other curve-fitting method following (3). Thus, for any given strain level, the relaxation function given
in (37) is expanded into a Dirichlet series, (3), and the Maxwell constants are determined. For this, the
relaxation times and the number of units are chosen in advance considering the time of interest [Bažant
and Wu 1974], and the moduli of the springs become the only unknowns in the generalized Maxwell chain.
A least squares method that was proposed in [Bažant and Wu 1974] is used here for the determination
of the spring moduli, which is based on minimization the following expression (d8/d Eu):

8=

Nt∑
i

[Rxx(ε
v
xx , ti )− Rxx(ε

v
xx , ti )]2+ω1

N−1∑
µ=1

[Eµ+1(ε
v
xx)− Eµ(εv

xx)]
2

+ω2

N−2∑
µ=1

[Eµ+2(ε
v
xx)− 2Eµ+1(ε

v
xx)+ Eµ(εv

xx)]
2

+ω3

N−3∑
µ=1

[Eµ+3(ε
v
xx)− 3Eµ+2(ε

v
xx)+ 3Eµ+1(ε

v
xx)− Eµ(εv

xx)]
2, (42)

where Nt is the number of selected times for which minimization of the error is conducted, and ω1, ω2,
and ω3 are weight functions that are determined to achieve best fitting.

Nevertheless, in order to avoid calculation of the spring moduli via minimization of (42) at each
strain level, the calculation is made here at a number of selected strain levels (Nε) along with the use
of an interpolation function for each spring modulus to obtain a continuous variation. The following
interpolation function is used for the µ-th spring modulus:

Eµ(εv
xx)≈ Eµ(εv

xx)= c1µ+ c2µε
v
xx + c3µ(ε

v
xx)

2
+ c4µ(ε

v
xx)

3
+ c5µ(ε

v
xx)

4. (43)

Note that after the minimization of (42) at Nε strain levels, a series of Nε values is obtained for every
spring modulus, from which the interpolation function that appears in (43) is determined. Also here, the
constants c1µ to c5µ are determined by traditional least squares or other curve-fitting methods.

However, due to the creep rupture phenomenon of concrete, the spring moduli actually follow (43)
up to certain levels of strains. The final expression for the spring moduli under normal stresses takes the
form

Ec
µ(ε

v
xx)=

{
Eµ(εv

xx) for εc
f ≤ ε

v
xx ≤ ε

t
f ,

0 otherwise.
(44)

Thus, the spring moduli of any point through the depth of the RC beam, for which its viscoelastic strain
exceeds its corresponding failure strain, is set to zero to simulate the creep rupture failure.
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The spring moduli in shear are estimated from (44) assuming that Poisson’s ratio ν and the shear
retention factor β, which simulates the shear resistance at the cracked interfaces owing to the aggregate
interlock and dowel action [Rots and de Borst 1987], are constant with time and independent upon the
stress level. Thus, using the same relaxation times and number of units as in the normal direction, the
spring moduli in shear take the form

Gc
µ(ε

v
xx)=



Eµ(εv
xx)

2(1+ ν)
for εc

f ≤ ε
v
xx ≤ ε

t
f ,

βEµ(εt
f )

2(1+ ν)
for εt

f < ε
v
xx ,

0 otherwise.

(45)

3.3. Aging function. As mentioned earlier, the effect of aging is introduced through the function v(εins
xx , t),

which is evaluated based on the time-variation of the tangent elastic modulus with respect to its magnitude
at the time of initial loading. Setting ϕ(t)= 0 in (37) along with replacing the viscoelastic strain (εv

xx ) by
the instantaneous one (εins

xx ) as a result, and the use of (38)–(40), lead to a closed-form expression for the
time-dependent tangent elastic modulus Et(ε

ins
xx , t)= Rxx , which for brevity is not presented here. Then

v(εins
xx , t) can be evaluated as Et(ε

ins
xx , t)/Et(ε

ins
xx , t0), where t0 corresponds to the age of the concrete at

the time of initial loading.

4. Numerical study

The numerical study includes two numerical examples and parametric studies that highlight and clar-
ify the nonlinear creep response of RC beams, and exhibit the capabilities of the proposed model. A
comparison of the model with test results available in the literature is also included.

4.1. First example: Beam under bending only. A simply supported RC beam, 4.0 m long and with a
rectangular cross-section 200 mm wide and 400 mm high is used for the investigation. The beam includes
two bars of 24 mm diameter (a reinforcement ratio of ρs = 1.2%) located at 30 mm from the bottom
(zs = 170 mm) with Es = 200 GPa, and is subjected to a uniformly distributed sustained load of 60 kN/m.
The modulus of elasticity and mean compressive strength of the concrete are taken as E0 = 33.5 GPa
and fcm = 38 MPa, while the tensile strength and peak compressive strain are fctm = 2.91 MPa and
εc =−0.22% following (40) and (41). The development in time of the creep coefficient and shrinkage
strain follows [CEB-FIP 1990] with ultimate values of ϕu = 2.11 and εsh(t = ∞) = −0.042%. The
Poisson’s ratio, the shear retention factor, and the shear correction factor are taken as 0.17, 0.2, and 0.833,
respectively. In order to highlight the effect of creep only, the effects of shrinkage and compressive
reinforcement are not considered at this stage, but are separately investigated in the subsequent. The
analysis is conducted up to 3 years from first loading where the creep coefficient reaches a magnitude
of 1.9. Seven Maxwell units are used in the material model along with the use of (43) to account for the
nonlinear variation of the Maxwell constants with the strain level. The relaxation times are chosen as
Tµ = 0.1× 5µ−1 days, for µ= 1, . . . , 6, and the spring moduli take the following strain-dependent form
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(in GPa) following (43):

E1

E2

E3

E4

E5

E6

E7


=



5.337 9.962 −0.295 −0.757 −0.505
1.881 −2.916 −0.863 −0.289 0.75
3.346 0.026 −0.149 −0.32 −0.104
4.03 −4.88 −0.145 −0.388 0.283
3.843 −3.736 −0.11 −0.446 0.103
3.607 −2.491 −0.745 −0.282 −0.142

11.483 −3.509 −0.104 −0.308 0.232
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Figure 4 shows the distribution of the instantaneous and long-term normal strains and stresses at
midspan through the depth of the beam. The results show the nonlinear stress distribution at t = 0, with a
maximum compressive stress of −26.8 MPa (≈ 0.7 fcm). Due to creep, an increase in the tension force of
the elastic reinforcement occurs as it tends to restrain the creep deformations. As a result, a compressive
force in the concrete of equal magnitude has to develop to maintain equilibrium. Yet, because the bending
moment is unchanged, the lever arm between the steel and concrete must decrease by a shifting down
of the neutral axis from z0 =−68.9 mm to z0 =−17.6 mm as shown in Figure 4. Due to this significant
shifting, the loaded area of the concrete is increased resulting in a release and redistribution of the stresses
with time. Note that as this shifting occurs, the neutral axis passes through points, which were already
cracked under instantaneous loading, and for which their tensile capacity is set to zero, as can be seen in
the distribution of stresses 3 years after loading. These stress and strain redistributions with time, which
also occur in the linear case [Gilbert 1988], are well captured and explained by the proposed model in
the nonlinear range of stresses.

The time variation of the central deflection, peak curvature (defined as χ = dφ/dx), peak force in
the reinforcement, and peak compressive stress in the concrete appear in Figure 5 with and without the
inclusion of the aging effect in the analysis. The results are normalized with respect to the instantaneous
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Figure 4. Normal stress and strain distributions at midspan (example 1): (a) strains and
(b) stresses (the solid line is t = 0 and the dashed is t = 3 years).
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Figure 5. Normalized creep response at midspan: (a) vertical deflection, (b) curvature,
(c) axial force in the reinforcement, and (d) maximum compressive stress in the concrete
(the solid line indicates no aging and the dashed with aging).

response which reveal a central deflection of w(t = 0)= 13.19 mm, a curvature of χ(t = 0)= 0.0082 1/m
and a peak steel force of Ns(t = 0) = 354.6 kN. The results show that the normalized increase of the
deflection is larger than that of the curvature, which in turn is much larger than the increase in the
reinforcement force. Thus, creep has different effects on the structural response, which requires careful
attention especially when material nonlinearity is included. Nevertheless, due to cracking and the restrain
of creep by the steel reinforcement, the creep amplification of the deformations and forces is much less
than 2.9, which is the case in a linear homogeneous material (other than reinforced concrete) with a creep
coefficient of 1.9 after 3 years. The results also show that aging has a small effect on the deformations,
along with a negligible effect on the forces and stresses. In both cases, the cracked region slightly
propagates along the beam due to tensile creep rupture, and its left edge moves from Xcr1 = 166.7 mm
to Xcr1 = 150 mm after 3 years.

To further clarify the structural response, the effects of the load level as well as the shrinkage strains are
examined in Figure 6. Aging is accounted for, and all other reference parameters including the loading
and material properties are kept unchanged. The instantaneous failure load of the beam is calculated as
qu

z = 76 kN/m, for which yielding of the steel reinforcement occurs. The results show that increasing
the load level leads to a decrease in the normalized peak deflection and steel force, and consequently
to a smaller release of the peak compressive stresses. A similar conclusion was also reported in [Tan
and Saha 2006], yet mainly for RC beams strengthened with composite materials. No creep rupture in
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Figure 6. Effect of (a) load level and (b) shrinkage strain on the long-term response.

compression is observed in all cases examined here due to the rapid release of the peak compressive
stresses a short time after loading as can be seen in Figure 5d. This is believed to be the case in most
RC beams under bending only.

On the other hand, shrinkage seems to significantly increase the deflections but with much smaller
effect on the axial force and stresses. The normalized long-term deflection is increased due to shrinkage
from 1.47 the instantaneous deflection for εsh = 0 to about 1.76 the instantaneous deflection for εsh =

−0.08%; this is a significant increase of 62% in the long-term effects. Shrinkage also leads to further
shifting down of the neutral axis and to a smaller increase of the reinforcement axial force and less
release of the stresses as the magnitude of the shrinkage strain increases. In addition, the long-term
cracking length is also affected by shrinkage, and its left edge decreases from Xcr1 = 150 mm for εsh = 0
to Xcr1 = 0 for εsh ≤−0.06%.

The effect of the reinforcement ratio of both the compressed and tensioned steel is investigated in
Figure 7. Also here, aging is accounted for, and all other reference parameters are kept unchanged; z′s is
taken as −170 mm. As indicated in many studies [Washa and Fluck 1952; Neville and Dilger 1970], the
results show that the compressed steel reinforcement significantly restrains the creep effects and leads to
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Figure 8. Normalized creep response at midspan with yielding of the reinforcement:
(a) vertical deflection and (b) maximum compressive stress in the concrete.

smaller long-term deflections. The proposed model, which is able to quantitatively predict this effect for
the nonlinear case, also shows that this is associated with a slight decrease of the normalized axial force,
as well as a considerable release of the peak compressive stresses in the concrete.

Figure 7b shows that for 1.2%≤ ρs , increasing the tensioned reinforcement ratio leads to an increase
in the normalized deflection and axial forces, and a further release of the stresses. The reason for that
is the increase in the area of the cross-section under compression with the increase of the reinforcement
ratio. As creep is proportional to the level of stresses, which are much larger in compression than in
tension, the larger the area under compression the more creep deformations develop. The relatively
high normalized deflection observed with ρs = 1.0% is a result of yielding with time of the tensioned
reinforcement. To clarify this, the time variation of the central deflection and peak compressive stress
in the concrete appear in Figure 8 for this case. After yielding of the steel reinforcement at t = 14 days
after loading, the concrete starts to creep freely without the restrain of the reinforcement. As a result,
the neutral axis remains unchanged and no further stress relaxation occurs; hence we have the relatively
high peak normalized deflection, which is about 2.12.

4.2. Second example: Beam under bending and compression. The RC beam examined in Section 4.1
is investigated here under a combination of both vertical and axial compression loadings (which may
simulate a beam-column or a prestressed beam). The vertical load is as earlier while the axial compression
load equals 1200 kN. Aging is accounted for while no compressed reinforcement and no shrinkage effects
are included in the analysis. The distributions of the instantaneous and long-term normal strains and
stresses are shown in Figure 9. The results show that in this case there is a relatively small shifting of the
neutral axis down as most of the beam cross-section is under compression. Consequently only a slight
change in the stress distribution is observed over time. However, it can be seen that creep rupture in
compression occurred at some points that were under high levels of instantaneous stresses. Although the
model provides a description of the response beyond first creep rupture, unlike creep rupture in tension,
the time for which first creep rupture in compression occurs can be defined as a critical time (tcr) as it
may initiate total failure of the structure. In this example it equals 155 days.

The time variations of the central deflection and peak force in the reinforcement are shown in Figure 10.
The results are normalized with respect to the instantaneous response which reveals a central deflection of
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Figure 9. Normal stress and strain distributions at midspan (example 2): (a) strains and
(b) stresses (the solid line is t = 0 and the dashed t = 3 years).

0 1 2 3
1

1.25

1.5

1.75

2

2.25

2.5

2.75

 t[years]

 w
(t

)/
w

(t
=

0
)

(a) 

0 1 2 3
1

1.25

1.5

1.75

2

2.25

2.5

2.75

 t[years]

 N
s
(t

)/
N

s
(t

=
0

)

(b) 

Figure 10. Normalized creep response at midspan (example 2): (a) vertical deflection
and (b) axial force in the reinforcement.

w(t = 0)= 7.5 mm and a peak steel force of Ns(t = 0)= 40.3 kN. It can be seen that the normalized long-
term amplifications of the deflection and reinforcement force due to creep are much larger than the ones
obtained in Figure 5, due to the fact that the majority of the beam cross-section is under compression.

The dependence of the critical time to cause first creep rupture in compression on the level of the
applied vertical load is shown in Figure 11. As expected, the critical time significantly decreases with
the increase of the applied load. However, it is interesting to see that the logarithm of the critical time
is almost linearly proportional to the level of the applied load. For qz < 0.7qu

z , no creep rupture is
observed even 50 years after first loading. These observations are important for the design and the safety
assessment of RC beams under high levels of sustained lateral and axial loadings, as creep may actually
reduce the design life of such structures.

4.3. Comparison with test results. Only few detailed test results are available on the creep behavior of
RC beams in general, and their nonlinear creep behavior in particular. Here, the test results reported in
[Washa and Fluck 1952; Bakoss et al. 1982; Tan and Saha 2006] are used. Although the first two studies
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Figure 11. Variation of the critical time versus the initially applied vertical load.

focus on the creep behavior under linear stress levels, they provide a level of verification to the proposed
model.

Bakoss et al. [1982] describe creep testing of a RC beam including experimental characterization of
the creep and shrinkage material properties. The beam is simply supported with a span of 3504 mm,
and is loaded in four points bending with sustained loads of 2.6 kN each applied at the third-points
of the span. The beam has a rectangular cross section of 100/150 mm, and includes two 12 mm di-
ameter deformed bars located at 20 mm from the bottom face of the beam. The reported compressive
strength and modulus of elasticity are 39 MPa and 31.2 GPa, respectively, while following [CEB-FIP
1990], fctm and εc are taken as 3.47 MPa and −0.237%, respectively. The reported creep coefficient
at t = 560 days and the shrinkage strain at t = 775 days that were measured from separate small
specimens are 2.5 and −700× 10−6, respectively. It is assumed here that their development with time
follows [CEB-FIP 1990]. Also here, seven Maxwell units are used with Tµ = 0.1× 5µ−1 days, for
µ= 1, . . . , 6. For brevity, only the strain-independent parts of the spring moduli are reported here, as
they are also the dominant parts due to the low level of sustained loading with linear stresses. Thus,
Eµ =

[
7.088 2.132 3.726 3.947 3.417 2.877 7.982

]
GPa.

Figure 12 shows the predicted and the measured time variation of the central deflection. Despite the
unexpected sharp increase of the experimental deflection around t = 250 days, which can be due to
environmental or other effects, the comparison reveals a reasonably good correlation between the results.
The instantaneous deflection reported in the test is 8.94 mm, while the predicted one is 9.07 mm. The
differences in the long-term deflections can be due to many factors including the different creep behavior
of concrete in tension, compression, and bending, the use of a smeared cracking model, temperature and
humidity changes, and other related factors.

Six beams (three pairs: A1, A4; A2, A5; and A3, A6) from the experimental investigation [Washa
and Fluck 1952] are selected for the comparison. The beams were simply supported with a span of
6100 mm, and were loaded by concrete blocks to simulate a uniformly distributed load of 5.512 kN/m.
All beams (A1–A6) have a rectangular cross section of 203/305 mm and include three bars of 19 mm
diameter in tension. In addition, beams A2 and A5 include two 16 mm bars in compression, while
beams A1 and A4 have symmetric reinforcement with three bars of 19 mm in compression. The reported
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Figure 12. Theoretical versus experimental [Bakoss et al. 1982] results (the solid line
is the proposed model and the squares the experimental results).

compressive strengths and moduli of elasticity vary between the different specimens in the range of
fck = 20.7–29.3 MPa and E0 = 20.7–23.8 GPa. For the numerical comparison, average values of fck =

25.82 MPa and E0 = 22.17 GPa are chosen due to the low level of sustained loading where material
nonlinearity has small influence. The creep coefficient and the shrinkage strain are estimated from the
measured gross and net plastic flow in a cylinder prisms as 5 and −757× 10−6, respectively. Based on
[CEB-FIP 1990], the following parameters are determined: fctm = 3.15 MPa and εc = −0.218%. For
brevity, only the strain-independent part of the spring moduli are reported with relaxation times taken as
in the previous example. Thus, Eµ =

[
7.44 1.671 2.945 2.639 2.046 1.768 3.63

]
GPa.

Table 1 shows the predicted wth versus the measured wexp instantaneous and long-term deflections
2.5 years after first loading. The experimental results are the average between the two similar beams.
A good correlation between the results with a maximum difference of less than 16% can be observed.
Additionally, it can be seen from the experimental results that the ratio between the long-term deflection
and the instantaneous one significantly decreases with the addition of compressive reinforcement (2.63
for A3 and 1.75 for A1), as was discussed earlier (Figure 7). The predicted ratios are 3.18 for A3 and
1.57 for A1.

The experimental study reported in [Tan and Saha 2006] included testing of RC beams under high lev-
els of sustained loads, that is, 70% and 80% of the ultimate load (Pu = 26.8 kN), which introduces a level
of nonlinearity into the behavior. The beams were simply supported with a span of 1800 mm, and were
symmetrically loaded by four point loads. The beams were 100/125 mm in cross-section and included

Beam wexp (t = 0) wth (t = 0) wexp (t = 2.5 years) wth (t = 2.5 years)
A1, A4 13.46 12.84 23.62 20.18
A2, A5 15.75 13.7 32.26 27.32
A3, A6 17 14.7 44.7 46.86

Table 1. Predicted versus measured [Washa and Fluck 1952] central deflection in mm.
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two bars of 10 mm diameter in tension and two bars of 6 mm in compression. The reported compressive
strength, tensile strength, and modulus of elasticity are 40 MPa, 4.67 MPa, and 27.2 GPa, respectively,
while εc was taken as -0.238%. The relaxation times were chosen as in the previous examples, while the
spring moduli took the following strain-dependent form (in GPa) following (43):

E1

E2

E3

E4

E5

E6

E7


=



5.094 −7.642 −5.382 −2.307 −3.649
1.677 −1.719 −1.211 −0.519 −0.82
2.98 −2.847 −2.005 −0.859 −1.36
3.365 −1.896 −1.335 −0.572 −0.904
3.098 −0.742 −0.522 −0.223 −0.356
2.358 0.134 0.943 0.396 0.652
8.607 4.311 3.036 1.302 2.058
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The comparison between the theoretical and experimental results is shown in Figure 13, and reveals
a reasonable agreement between the results (a maximum difference of less than 15%). It is not clearly
seen in the figure, but the first day after loading is associated with a significant increase of the deflections
of up to 14% of the instantaneous deflection, which is also predicted by the model. Additionally, the
experimental observations confirm the results appearing in Figure 6 to some extent, where the ratio
between the long-term deflection and the instantaneous one decreases with the increase of the level of
the applied load (1.57 for 0.7Pu and 1.46 for 0.85Pu).

5. Conclusions

The nonlinear creep response and the time-dependent cracking and creep rupture behavior of reinforced
concrete (RC) beams have been discussed and investigated. A theoretical model has been developed,
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which highlights the challenges associated with nonlinear creep modeling, and takes into account the ef-
fects of time-dependent cracking, creep rupture in compression, yielding of the reinforcement, shrinkage,
and aging of the concrete material, via the nonlinear modified principle of superposition. The interaction
between these parameters and their influence on the nonlinear creep response of RC beams have been
highlighted through numerical and parametric studies.

The results have shown that due to the rapid release of the stresses after first loading, creep rupture in
compression of flexural RC beams can rarely happen. However, with the existence of an axial compres-
sion force, creep rupture may dominate the structural behavior and reduce the load-carrying capacity of
the member. In other words, under some circumstances, creep may continuously decrease the strength
of RC beams. It has been shown that the critical time to cause creep rupture failure is very sensitive
to the magnitude of the applied load, and it exponentially decreases with the increase of the load level.
In addition, it has been observed that the amplifications due to creep of the deflection, curvature, and
axial force in the reinforcement are different, and require detailed analysis for their assessment. Shrink-
age and compressed reinforcement have been shown to play important roles in the long-term response,
where the former tends to significantly increase the deformation and the cracked region, while the latter
restrain these effects. A comparison with experimental results has been presented, which has revealed a
reasonably good agreement between the results, and has provided a level of validation for the proposed
model. Some of the test results observed in other studies have also been explained and clarified using
the model.

Finally, it can be concluded that the nonlinear creep response of RC beams exhibits various physical
phenomena that need to be fully understood and clarified. The analytical model developed in this paper
explains some of these aspects, and provides a numerical tool and a theoretical basis for the nonlinear
creep analysis of other RC members.
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NEW INVARIANTS IN THE MECHANICS OF DEFORMABLE SOLIDS

VIKTOR V. KUZNETSOV AND STANISLAV V. LEVYAKOV

A system of invariants of symmetric three-dimensional tensors of second order is proposed in a new
form. The system contains three classical invariants of a tensor and three new invariants which depend
on the components of two or three tensors. The system proposed allows one to express the strain energy
density of a linear elastic anisotropic body and virtual work done by internal stresses in terms of the
invariants for any constitutive law of the material. Application of the invariants to the derivation of the
tetrahedron finite element of anisotropic solids is discussed.

1. Introduction

Invariants of the strain and stress tensors known as frame-indifferent (or objective) measures are con-
sidered in almost every book on the theory of elasticity (see, for example, [Sneddon and Berry 1958;
Timoshenko and Goodier 1970; Antman 1995]). In contrast to the tensorial components whose values
depend on the coordinate system chosen, the values of invariants remain unchanged regardless of the
coordinate system used to evaluate them. In the theory of elasticity, invariants are introduced as coeffi-
cients of the characteristic polynomial equation of the standard eigenvalue problem to find the principal
directions of the strain and stress tensors. Alternatively, the invariants can be obtained by decomposing
the ratio of an elementary volume in a deformed state to that in the undeformed state into linear, quadratic,
and cubic forms in the tensor components [Kuznetsov and Levyakov 2009].

In theoretical studies, invariants provide a convenient tool for a compact representation of constitution
relations and strain energy density of a deformable solid. Since the strain energy is a scalar, it must be
represented as a function of invariants of the tensors governing the stress-strain state of the solid. For
an isotropic homogeneous material, this expression in terms of the stress or strain tensor invariants is
known [Timoshenko and Goodier 1970]. But to the authors’ best knowledge, no similar expression is
available in the literature for anisotropic or even orthotropic materials.

In the present paper, the question of determining the strain energy density of an anisotropic solid in
terms of invariants in the form different from [Timoshenko and Goodier 1970] is studied. Symmetric
three-dimensional tensors of second order are considered and a system of invariants of the tensors is
proposed. The system comprises three traditional invariants of the tensor and three new quantities called
the combined invariants. It is shown that the strain energy density of a linear elastic anisotropic body
can be represented as a function of these invariants.

The property of the invariants can be valuable in formulating computationally effective numerical
algorithms for analysis of stresses and strain of deformable solids. In the finite element method, the
stiffness equations are formulated in a local coordinate system introduced for each finite element of

Keywords: tensors, invariants, anisotropic material, strain, stress, tetrahedral finite element.
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the structure. To construct the finite-element assemblage, these equations are transformed to global
coordinate axes. The coordinate transformations can be eliminated using invariants, which can reduce
computer time. The time reduction can be pronounced in the nonlinear analysis based on the Newton-
Raphson type techniques where stiffness relations of each element are updated at each iteration. Below,
application of the invariant based approach to the finite-element analysis of solids is briefly discussed.

2. Invariants of three-dimensional tensors

We consider a second-order three-dimensional tensor S with covariant components Sij (i; j D 1; 2; 3)
determined in a convective coordinate system ˛1; ˛2; ˛3 characterized by metric tensor A with covariant
components

Aij D
@R

@˛i

@R

@˛j
;

where R is the position vector. The first, second, and third invariants of the tensor S in the metric A are
given by

IS D
1

2�
"ijk"pqr SipAjqAkr ; (2-1)

IS2 D
1

2�
"ijk"pqr SipSjqAkr ; (2-2)

IS3 D
1

6�
"ijk"pqr SipSjqSkr ; (2-3)

where
"ijk D

1
2
.i � j /.j � k/.k � i/ (2-4)

is the Levi-Civita symbol and

�D det kAijk D
1
6
"ijk"pqr AipAjqAkr (2-5)

is the discriminant of the metric tensor.
In these equations and below, summation is performed over repeated indices which run from 1 to 3.

Formulas (2-1)–(2-3) are based on the results of [Kuznetsov and Levyakov 2009] and written here in a
new unified manner to show the rule according to which the invariants are formed. Writing the invariants
of the tensor S in terms of its principal values Si , we obtain the well-known expressions [Timoshenko
and Goodier 1970]

IS D S1CS2CS3; IS2 D S1S2CS2S3CS3S1; IS3 D S1S2S3: (2-6)

Let the tensor S be decomposed into three symmetric tensors U , V , and W such that S DU CV CW .
In this case, (2-1)–(2-3) become

IS D IU C IV C IW ; (2-7)

IS2 D IU 2 C IV 2 C IW 2 C 2.IU V C IU W C IV W /; (2-8)

IS3 D IU 3 C IV 3 C IW 3 C 3.IU V 2 C IU W 2 C IV U 2 C IV W 2 C IW U 2 C IW V 2/C 6IU V W : (2-9)
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These expressions contain three known invariants determined by (2-1)–(2-3) and three new invariants
given by

IU V D
1

2�
"ijk"pqr UipVjqAkr ; (2-10)

IU V 2 D
1

6�
"ijk"pqr UipVjqVkr ; (2-11)

IU V W D
1

6�
"ijk"pqr UipVjqWkr : (2-12)

We call these expressions, which depend on the components of two or three tensors, the combined
invariants. One can easily show that decomposition of S into more than three symmetric tensors does
not lead to any new invariants. Obviously, expressions (2-1)–(2-3) and (2-10)–(2-12) are valid for any
symmetric three-dimensional tensors of second order. For this reason, we refer to them as templates.

The invariants determined by formulas (2-1)–(2-3) and (2-10)–(2-12) constitute a complete system
that allows one to obtain invariant forms of the first, second, and third degrees containing components
of any number of symmetric tensors. The invariant IU V is the bilinear invariant of two tensors, IU V 2

is the linear-quadratic invariant of two tensors, and IU V W is the trilinear invariant of three tensors. It
should be noted that the invariant IU V W is of general character: all the invariants mentioned above fall
out as particular cases from (2-12), namely

IS D 3ISAA; IS2 D 3ISSA; IS3 D ISSS ; IU V D 3IU VA; IU V 2 D IU V V : (2-13)

In Cartesian coordinates, where Aij D ıij (the Kronecker symbol) and �D 1, the invariants considered
above become

IU D ıij Uij ; IU 2 D
1
2
"ijk"iqr UjqUkr ; IU 3 D

1
6
"ijk"pqr UipUjqUkr ; (2-14)

IU V D
1
2
"ijk"iqr UjqVkr ; IU V 2 D

1
6
"ijk"pqr UipVjqVkr ; IU V W D

1
6
"ijk"pqr UipVjqWkr : (2-15)

Let ˛01, ˛02, ˛03 denote new convective curvilinear coordinates and assume that they are related to the
coordinates ˛1, ˛2, ˛3 by

˛i
D ˛i.˛01; ˛02; ˛03/ .i D 1; 2; 3/: (2-16)

Now we show that the expressions (2-1)–(2-3) and (2-10)–(2-12) retain their form under general
coordinate transformations (2-16). To this end, it suffices to prove the invariance of the expression for
the trilinear invariant of three tensors

IU 0V 0W 0 D IU V W (2-17)

or
1

6�0
"ijk"pqr U 0

ipV 0
jqW 0

kr D
1

6�
"ijk"pqr UipVjqWkr : (2-18)

Here the primed quantities are evaluated in the coordinates ˛0i . The components of any tensor considered
above are transformed according to the well-known rule

U 0
ij D Upq

@˛p

@˛0i

@˛q

@˛0j
: (2-19)
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We write the useful relation

"ijk

@˛p

@˛0i

@˛q

@˛0j

@˛r

@˛0k
D "pqr det J ; (2-20)

where J D @.˛1; ˛2; ˛3/=@.˛01; ˛02; ˛03/ is the Jacobian matrix of coordinate transformation.
Following (2-5), we write the discriminant of the metric tensor on the left side of (2-18) as

�0
D

1
6
"ijk"pqr A0

ipA0
jqA0

kr : (2-21)

Expressing the components of the metric tensor A0
ij in terms of unprimed components according to the

rule (2-19) and using relation (2-20), we obtain

�0
D .det J /2�: (2-22)

Performing similar manipulations for the nominator on the left side of (2-18), we find that

"ijk"pqr U 0
ipV 0

jqW 0
kr D "ijk"pqr UipVjqWkr .det J /2: (2-23)

Substituting (2-22) and (2-23) into the left side of (2-18), we prove the validity of (2-18).

3. Strain energy density

Now we use the results obtained above to express the stress energy density …V of a linear elastic
anisotropic solid. In Cartesian coordinates referred to anisotropy axes of the material, we obtain

…V D
1
2
�ij Sij ; (3-1)

where �ij and Sij are the stress and strain tensors, respectively, which in general are related through 21
elastic constants. We note that the strain tensor components can be related to the displacements by linear
or geometrically nonlinear relations. Expression (3-1) can be written in the invariant form as

…V D
1
2
.I�IS � 2I�S /; (3-2)

where I� and IS are the first invariants of the stress and strain tensors, respectively, and I�S is the
combined invariant of these two tensors. These quantities can be calculated using (2-14)1 and (2-14)4,
in which U and V are replaced with � and S . To prove the equivalence of (3-1) and (3-2), it suffices to
employ the relation

"ijk"iqr D ıjqıkr � ıjrıkq: (3-3)

The invariants on the right side of (3-2) imply that the strain energy density retains its value for any
coordinate system. We note that the invariants appearing in (3-2) can be calculated in arbitrary curvilinear
coordinates ˛i .i D 1; 2; 3/ using templates (2-1) and (2-10).

In a similar manner, one can easily show that the virtual work ıW done by the internal stresses is
invariant for any constitutive law:

ıW D I�IıS � 2I�.ıS/; (3-4)

where invariants on the right side can be evaluated using templates (2-14) and (2-15) in Cartesian coor-
dinates or (2-1) and (2-10) in curvilinear coordinates.
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Figure 1. Tetrahedral finite element and notation.

4. Finite-element application

Let us determine the strain and stress invariants and the strain energy density for a tetrahedron finite
element of a three-dimensional solid (Figure 1). The components of the metric tensor are expressed in
terms of the squared lengths li of the elemental edges:

A11 D l2
1 ; A22 D l2

2 ; A33 D l2
3 ; A12 DA21 D

1
2
.l2

1 C l2
2 � l2

4 /;

A13 DA31 D
1
2
.l2

1 C l2
3 � l2

5 /; A23 DA32 D
1
2
.l2

2 C l2
3 � l2

6 /:
(4-1)

As the physical strains and stresses, we use the normal strains Si and stresses �i (i D 1; : : : ; 6) in the
direction of the elemental edges. Covariant components of the strain tensor are related to the physical
strains by the expressions

S11 D l2
1 S1; S22 D l2

2 S2; S33 D l2
3 S3; S12 D S21 D

1
2
.l2

1 S1C l2
2 S2� l2

4 S4/;

S13 D S31 D
1
2
.l2

1 S1C l2
3 S3� l2

5 S5/; S23 D S32 D
1
2
.l2

2 S2C l2
3 S3� l2

6 S6/:
(4-2)

Similar relations can be written for the stress components.
Thus, the stress and strain invariants and the strain energy density can be determined by the normal

components of the tensors. According to the terminology of [Argyris et al. 1979], these components are
referred to as natural components which are in harmony with the tetrahedron geometry. The strain energy
of the element can be evaluated by approximating the natural strains in terms of the nodal parameters
and integrating over the element volume V D

p
�=6.

Once the equilibrium state has been determined and the natural strains have been obtained, one can
compute the principal values of the strain tensor as roots of the cubic equation

S3
� ISS2

C ISSS � ISSS D 0: (4-3)

The principal stresses can be obtained in a similar manner.
A complete system of invariants of two-dimensional tensors defined on a plane or a surface is given

in the Appendix.
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5. Concluding remarks

A system of invariants of symmetric three-dimensional tensors of second order has been proposed. The
invariants have been determined by ratios of certain third-order determinants depending on the covariant
components of the tensors. The system comprises the well-known three invariants of one tensor and
three new combined invariants which depend on the components of two or three tensors. The first new
invariant is a bilinear invariant of two tensors, the second is a linear-quadratic invariant of two tensors,
and the third is a trilinear invariant of three tensors. These invariants have been expressed in a unified
manner to show the rule according to which they are formed. The trilinear invariant of three tensors is of
general structure in the sense that the other invariants considered in the paper fall out as particular cases.
This implies that the system of invariants is complete. It can be used to form any invariant forms of the
first, second, and third degrees which depend on the components of any number of tensors and also to
prove the invariance of other expressions. It has been shown that the strain-energy density and virtual
work of an anisotropic solid can be expressed in terms of invariants where the bilinear invariant of the
strain and stress tensors plays a key role.

As an example of application of the invariants, relations have been given to evaluate the strain energy
of a tetrahedron finite element of an anisotropic solid in terms of natural physical components of the
strains and stresses in the direction of the element edges.

Appendix. Invariants of two-dimensional tensors

Let a symmetric two-dimensional tensor E with covariant components Eij .i; j D 1; 2/ be determined
in a convective curvilinear coordinate system ˛1, ˛2 on a plane or surface characterized by the metric
tensor a with covariant components aij . The first and second invariants of the tensor E in metrics a are
given by

IE D
1

�
empenqapqEmn; IE2 D

1

2�
empenqEpqEmn; �D

1

2
empenqapqamn; (A-1)

where emp is the permutation tensor whose components are given by e11 D e22 D 0 and e12 D�e21 D 1

and � is the discriminant of the metric tensor. In (A-1) and below, summation is performed over repeated
indices running from 1 to 2.

We assume that the tensor E is a sum of two tensors U and V . In this case, the invariants in (A-1)
become

IE D IU C IV ; IE2 D IU 2 C IV 2 C 2IU V : (A-2)

Here IU V is the combined invariant of two tensors written as

IU V D
1

2�
empenqUpqVmn: (A-3)

This invariant is of general nature since the first and second invariants can be obtained from (A-3) as
particular cases:

IE D 2IEa; IE2 D IEE : (A-4)
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In Cartesian coordinates, where aij D ıij and �D 1, the complete system of two-dimensional invari-
ants becomes

IE D ımnEmn; IE2 D
1
2
empenqEpqEmn; IU V D

1
2
empenqUpqVmn; (A-5)

where U and V are symmetric two-dimensional tensors.
Now we consider an anisotropic linear elastic body under plane-stress conditions and denote the co-

variant components of the strain and stress tensors by Sij and �ij , respectively. In this case, the strain
energy density …V and the virtual work of stresses ıW for any constitutive law of the material is written
in Cartesian coordinates as

…V D
1
2
�ij Sij ; ıW D �ijıSij : (A-6)

Using (A-4), one can easily show that (A-6) is equivalent to

…V D
1
2
.I�IS � 2I�S /; ıW D I�I.ıS/� 2I�.ıS/: (A-7)

As can be seen, relations (A-7) are invariants and retain their form in any coordinates. In curvilinear
coordinates, the invariants in (A-7) can be determined by (A-1) and (A-3).

It is worth noting that in the theory of shells, the bending strain tensor � and transverse shear strain
tensor � are introduced. As a result, one obtains combined invariants like IS� , IS� , I�� , and so on, which
can be determined by the template relation (A-3). Invariants of two-dimensional tensors for triangular
shell finite elements are discussed in [Kuznetsov and Levyakov 2009].
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TWO CASES OF RAPID CONTACT ON AN ELASTIC HALF-SPACE:
SLIDING ELLIPSOIDAL DIE, ROLLING SPHERE

LOUIS MILTON BROCK

In one case a rigid ellipsoidal die translates over the surface of a half-space. Because of friction, both
compression and shear force are required. In the other, a rigid sphere rolls on the surface under a
compressive force. Both motions occur along a straight path at constant subcritical speed. A dynamic
steady state is treated, that is, the contact zone and its traction remain constant in the frame of the die
or sphere. Exact solutions for contact zone traction are derived in analytic form, as well as formulas for
the contact zone shape. Axial symmetry is not required in the solution process. Cartesian coordinates
are used, but a system of quasipolar coordinates is introduced that allows problem reduction to singular
integral equations similar in form to those found in 2D contact.

1. Introduction

Sliding and rolling contact arises in machining, mechanism operation, and vehicle travel [Barwell 1979;
Bayer 1994; Blau 1996]. The literature on the mechanics of contact is vast, for example, [Ahmadi et al.
1983; Barber 1983; Johnson 1985; Kalker 1990; Hills et al. 1993]. An important category — e.g., [Craggs
and Roberts 1967; Churilov 1978; Rahman 1996] — treats indentation of an elastic surface by a rigid die
that also translates over the surface. If speed and resultant forces are constant, then a dynamic steady
state may be achieved. In that instance, contact zone geometry and surface traction do not vary in the
frame of the moving die. For the thermoelastic solid, Brock and Georgiadis [2000] treat sliding contact
opposed by friction and Brock [2004] treats rolling contact without slip by a rigid cylinder. Sliding and
rolling speeds are constant, and robust asymptotic solutions in analytic form are given for the dynamic
steady state in 2D.

The aforementioned studies are adopted here for 3D isothermal problems of sliding by a rigid ellipsoid
and rolling by a rigid sphere. Again sliding is resisted by friction, and rolling without slipping is assumed.
Sliding and rolling speeds are constant and subcritical, that is, below the Rayleigh wave speed. Ignoring
slipping in rolling is an idealization [Johnson 1985], and one that gives rise to rapid oscillations in thin
strips along the contact zone edge. It is noted, however, that strip widths in [Brock 2004] prove to be
orders of magnitude smaller than the contact zone radius.

The solution process is standard, e.g., [Hills et al. 1993]: a solution to the unmixed boundary value
problem of specified surface traction reduces the mixed contact problem to the solution of integral equa-
tions. To this end, the governing equations for the elastic half-space, subjected to a translating zone of
(somewhat) arbitrary traction over its surface, are given in the next section. Translation speed is constant
and subcritical, and zone geometry and traction do not change during translation. Therefore, as in [Brock
and Georgiadis 2000; Brock 2004], a dynamic steady state is assumed. Cartesian coordinates are used,

Keywords: sliding contact, ellipsoid, rolling contact sphere, quasipolar.
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and an exact transform solution in the half-space surface spatial variables is obtained. In view of the
3D nature of the problem and the lack of axial symmetry for the ellipsoidal die, quasipolar coordinates,
both in transform and spatial planes, are employed during the inversion process. These are defined by
a polar angle that sweeps through 180◦ (π radians) and a radial coordinate that has both positive and
negative directions. For points in the contact zone, the resulting displacement expressions reduce to
double integrals whose limits are independent of the points. The imposed displacement conditions are
then satisfied by requiring the integrands to be solutions of Cauchy singular integral equations that are
similar in form to those in the 2D studies [Brock and Georgiadis 2000; Brock 2004]. The contact zone
traction is then extracted as analytic functions of the quasipolar coordinates. The normal traction is
required to vanish continuously on the contact zone boundary, and to render the resultant compression
force as a stationary value for a given sliding/rolling speed. These requirements lead to expressions that
define the contact zone geometry.

2. General equations

In terms of Cartesian coordinates x(xk), an undisturbed, linear isotropic, homogeneous half-space occu-
pies region x3 > 0. A traction distribution is then applied to a finite, simply connected area C of the
surface x3 = 0. Boundary contour =(x1, x2) = 0 defines a continuous closed curve, with continuously
varying tangent and normal directions and radius of curvature. The lattermost is always directed to the
interior of C and the x1-direction is an axis of symmetry. Area C is then translated in the positive
x1-direction at constant subcritical speed v. It does not change, and the traction distribution remains
invariant with respect to it. A dynamic steady state ensues for which half-space response is invariant in
the frame of translating C . It is therefore convenient to translate the Cartesian system with C , so that
displacement u(uk) and traction T(σik) vary only with x(xk), where time differentiation becomes −v∂1

and ∂k signifies xk-differentiation. For x3 > 0 the governing equations can be extracted from [Achenbach
1973] and modified for the dynamic steady state as

u= uD +uS, (1)

(∇2
− c2∂2

1 )uS = 0, ∇ ·uS = 0, (2)

(c2
D∇

2
− c2∂2

1 )uD = 0, ∇ ×uD = 0, (3)

1
µ

T= (c2
D − 2)(∇ ·uD)1+ 2(∇u+u∇). (4)

Here (∇, 1,∇2) are the gradient, identity tensor, and Laplacian. Quantities (c, cD) are, respectively, the
contact area speed and dilatational wave speed (v, vD) that are made dimensionless with respect to the
isothermal shear (rotational) wave speed vS , where

cD =
√

m+ 1, m = 1
1−2ν

, vS =

√
µ

ρ
. (5)

Here (ν, µ, ρ) are the Poisson’s ratio, shear modulus, and mass density. The boundary conditions for
x3 = 0 are that surface traction vanishes for (x1, x2) /∈ C , but

σ13 = τ1, σ23 = τ2, σ33 = σ, (x1, x2) ∈ C. (6)
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Here (τ1, τ2, σ ) are bounded and continuous functions of (x1, x2) ∈ C but can be integrably singular on
the contour =(x1, x2)= 0. In addition (u,T) should remain finite for |x| →∞, x3 > 0.

3. General transform solution

After [van der Pol and Bremmer 1950; Sneddon 1972] the double bilateral Laplace transform is defined
as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1dx2. (7)

Integration is along the entire Re(x1) and Re(x2)-axes. Application of (7) to (1)–(6) gives for x3 > 0

ûD = (p1, p2,−λ±)D exp(−λ±x3), (8a)

ûS = (S1, S2, S3) exp(−λSx3), λS S3 = p1S1+ p2S2. (8b)

Here coefficients (S1, S2, D) are given by

µQ R S1 =
p2

λS
QN (p2τ̂1− p1τ̂2)− λS(QK τ̂1+ 2p1λDσ̂ ), (9a)

µQ R S2 =
p1

λS
QN (p1τ̂2− p2τ̂1)− λS(QK τ̂2+ 2p2λDσ̂ ), (9b)

µQ R D = QK σ̂ − 2λS(p1τ̂1+ p2τ̂2). (9c)

In (8) and (9) quantities

QN = QK − 2λDλS, Q R = 4(p2
1 + p2

2)λDλS + Q2
K , QK = (c2

− 2)p2
1 − 2p2

2, (10a)

λS =

√
(c2− 1)p2

1 − p2
2, λD =

√
(s2

Dc2− 1)p2
1 − p2

2, sD =
1

cD
. (10b)

Equation (8) is bounded for x3 > 0 only when Re(λS, λD)> 0, so that branch cuts in the (p1, p2)-plane
is required.

4. Inversion scheme

In view of (8)–(10) and [van der Pol and Bremmer 1950; Sneddon 1972], transform inversion for, say
the contribution of σ to u3, involves the operation

−
1

2π i

∫
dp1

1
2π i

∫
dp2

λD

µ1
U
∫∫

dξ1 dξ2 σ exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (11)

In (11), σ = σ(ξ1, ξ2) and U =U (p1, p2), where

U (p1, p2)= 2(p2
1 + p2

2) exp(−λSx3)+ QK exp(−λDx3). (12)

Double integration is over C , and single integration is along the entire Im(p1)- and Im(p2)-axes. This
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suggests definitions and transformations

p1 = p cosψ, p2 = p sinψ, (13a)

x = x1 cosψ + x2 sinψ, y = x2 cosψ − x1 sinψ, (13b)

ξ = ξ1 cosψ + ξ2 sinψ, η = ξ2 cosψ − ξ1 sinψ. (13c)

In (13), Re(p) = 0+, −∞ < [Im(p), x, y, ξ, η, ξ1, ξ2] < ∞ and |ψ | < π/2. Parameters (p, ψ),
(x, ψ; y = 0), and (ξ, ψ; η = 0) constitute quasipolar coordinate systems, that is,

dx1 dx2 = |x | dx dψ, dξ1 dξ2 = |ξ | dξdψ, dp1 dp2 = |p| dp dψ. (14)

Thus (11) can be written as

1
iπ

∫
9

dψ 1
2π i

∫
|p| dp

ωD

µR

√
−p

p
√

p
U (p, ψ)

∫
N

dη
∫
4

dξ σ (ξ, η) exp p(x − ξ), (15a)

U (p, ψ)= 2 exp(−ωSx3
√
−p
√

p )+ K exp(−ωDx3
√
−p
√

p ). (15b)

Integration with respect to p is along the positive side of the entire imaginary axis. Subscripts (9,N, 4)
signify integration over, respectively, the ranges −π/2<ψ <π/2, η−(ψ) < η < η+(ψ), and x−(η, ψ) <
ξ < x+(η, ψ). Limits η±(ψ) are points on the contour =[ξ1(ξ, η), ξ2(ξ, η)] = 0 where dη/dξ = 0, and
limits x±(η, ψ) locate the ends of a line parallel to the ξ -axis that spans C for a given η. The restrictions
on (C,=) imply that (x±, η±) exist and are continuous in ψ . In (15) we also have

ωS =
√

1− c2 cos2 ψ, ωD =
√

1− s2
Dc2 cos2 ψ, (16a)

N = K + 2ωSωD, R = 4ωSωD − K 2, K = c2 cos2 ψ − 2. (16b)

The exponential terms in (15b) are made bounded for x3>0 by requiring that Re(
√
±p)> 0 in the p-plane

with, respectively, branch cuts Im(p) = 0,Re(p) < 0 and Im(p) = 0,Re(p) > 0. The p-integration is
(15a) and can be obtained from Appendix A. The result is that (15a) and counterparts for (τ1, τ2) give
u3 for x3 > 0:

u3 =−
1
π2

∫
9

dψ
ωD

µR

∫
N

dη
∫
4

dξ σ (ξ, η)
K (x − ξ)

(x − ξ)2+ω2
Dx2

3
+

2ωS(x − ξ)
(x − ξ)2+ω2

Sx2
3

−
1
π2

∫
9

dψ
ωS

µR

∫
N

dη
∫
4

dξ [τ1(ξ, η) cosψ + τ2(ξ, η) sinψ]
2ω2

Dx3

(x − ξ)2+ω2
Dx2

3
+

K x3

(x − ξ)2+ω2
Sx2

3
.

(17)

Here x = x1 cosψ + x2 sinψ , and for x3 = 0, (x1, x2) ∈ C , (17) gives (see Appendix A):

u3 =
1
π

∫
9

dψ
µR

∫
N

dη
[

c2ωD cos2 ψ
(vp)
π

∫
4

σ(ξ, η)
dξ
ξ−x

− NT(x, η)
]
, (18a)

T(x, η)= τ1(x, η) cosψ + τ2(x, η) sinψ. (18b)

Here (vp) signifies principal value integration. Similar results can be obtained for (u1, u2). When ψ = 0,
the term R in (16b) is the 2D Rayleigh function. It can be shown that R > 0 (0 6 c2 < c2

R) and R 6 0
(c2

R < c2 < 1), where root c2
R defines the Rayleigh wave speed v = cRvS . Vanishing R can be associated

with critical behavior [Georgiadis and Barber 1993]. Here of course R = 0 when v = vR only for ψ = 0.
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5. Sliding contact with friction

Consider that (σ, τ1, τ2) result from the sliding of a rigid die at subcritical speed v in the positive
x1-direction. The die is an ellipsoid that, when it touches but does not indent the surface x3 = 0, can be
described in the translating x-coordinate by

C1x2
1 +C2x2

2 +C3

(
x3+

1
√

C3

)2

= 1. (19)

Here (C1,C2,C3) are positive constants, their inverses have dimensions of length squared, and (19) is
consistent with the symmetry assumed for C , which of course is now a contact zone. If a rigid body
motion U3 into the surface accompanies translation, indentation occurs. This requires compressive force
F3 in the x3-direction. For small deformations indentation is defined by u3 = uC

3 , (x1, x2) ∈ C , where

uC
3 =U3−

1
2
√

C3
(C1x2

1 +C2x2
2). (20)

It is noted that |x| is now the distance from the surface point in the contact zone that undergoes the largest
normal displacement. That is, the validity of the asymptotic expressions increases with this distance. If
sliding is resisted by friction with kinetic coefficient γ , die translation also requires a shear force F1= γ F3

in the positive x1-direction. It is assumed that die translation and die/surface slip essentially coincide,
that is, (τ2 ≈ 0, τ1 = γ σ). In view of (18) the contact problem must then satisfy for (x1, x2) ∈ C the
equation

1
π

∫
9

dη
∫

N
dη
[

c2ωD cos2 ψ

πµR
(vp)

∫
4

σ(ξ, η)
dξ
ξ−x

−
N
µR

0σ(x, η)
]
= uC

3 , 0 = γ cosψ. (21)

In light of (7), (20), and Appendix A, uC
3 can be written as

uC
3 =−

1
π

∫
9

dη
∫

N
dη
∫
4

dξ d
dx
δ(x − ξ)uC

3 (ξ, η), (22a)

uC
3 (ξ, η)=U3−

C1

2
√

C3
(ξ cosψ − η sinψ)2−

C2

2
√

C3
(η cosψ + ξ sinψ)2. (22b)

Here δ is the Dirac function. Equation (21) thereby reduces to matching the integrands of double inte-
gration in (ψ, η). Parameter ξ in σ(ξ, η) is an integration variable representing parameter x that itself
depends on coordinate (x1, x2) and integration variable ψ . However, as noted in light of (13) for y = 0,
(x1, x2) can be replaced by quasipolar coordinates (x, ψ). Thus traction σ itself can be found by dropping
η, and (21) and (22) are reduced to

−c2ωD cos2 ψ
(vp)
π

∫
4

σ(ξ, ψ)
dξ
ξ−x

+0Nσ(x, ψ)= µRG(x, ψ), (23a)

G(x, ψ)=
−Ax
√

C3
, A = C1 cos2 ψ +C2 sin2 ψ. (23b)

In view of Appendix B we introduce unknowns g(x) and � in the representation

1
µ
σ(x)= g(x) cosπ�+ I(g; x) sinπ� (x− < x < x+). (24)
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Experience [Brock and Georgiadis 2000; Brock 2004] with 2D analysis indicates that � 6= �(x). De-
pendence of (σ, g, �, x±) on ψ is implicit in (25). Use of (25), (B3a), (B3b), and (B4) in (24) gives a
classical [Erdogan 1985] linear relation in (g, I):

[0N sinπ�− c2ωD cos2 ψ cosπ�]I(g; x)+ [0N cosπ�+ c2ωD cos2 ψ sinπ�]g(x)
= RG(x, ψ). (25)

Eigenvalue � is chosen to make the coefficient of I(g; x) vanish, and g(x) follows:

�=−
1
2
+

1
π

tan−1
(
−γ N

c2ωD cosψ

)
, g(x)= R

1

Ax
√

C3
, (26a)

1=

√
02
9N 2+ (c2ωD cos2 ψ)2 = cosψ

√
γ 2 N 2+ (c2ωD cosψ)2, (26b)

sinπ�=−
c2ωD

1
cos2 ψ, cosπ�=−γ N

1
cos2 ψ. (26c)

In (26a), − 1
2 < � < 0 for 0 < v < vS . The polynomial form of g(x) allows the use of (B6) (second

equation) to evaluate (24):

σ(x, ψ)= µR
1

A
√

C3

(
x+− x
x − x−

)�
(x +�L), L = x+− x−(x− < x < x+). (27)

Dependence on ψ is now more explicit. The negative � gives σ an integrable singularity as x → x+.
Signorini conditions for contact [Georgiadis and Barber 1993] prohibit singular gradients at the contact
zone boundary. Therefore (27) leads to

σ(x, ψ)=−
µA
√

C3

R
1
(x+− x)1+�(x − x−)−�, (28a)

x+ =−�L , x− =−(1+�)L . (28b)

For 0 6 v < vR , R > 0 for |ψ |6 π/2, and (28a) satisfies the Signorini condition that nonwelded contact
cannot not involve tensile stress. It is also noted that the (R,1)-ratio in (28a) is finite for |ψ |6 π/2.

6. Contour of C

Equation (28b) defines in part contour = and, because �(−ψ)=�(ψ) and �(±π/2)=−1
2 , does not

violate the symmetry of C . The unknown contact zone span L depends on c and is an even function of ψ .
It is determined by requiring that (τ1, τ2, σ ) be consistent with the resultant force system acting on the
die. Here (x±, σ ) and therefore τ1 are even functions of ψ , and τ2 ≈ 0. Thus the condition that there is
no resultant force in the x2-direction and no resultant torque about the x3-axis is automatically satisfied.
The condition that resultant force in the (x1, x3)-directions is F1 = γ F3 and −F3, respectively, is met if∫

9

dψ
∫
4

σ(ξ, ψ)|ξ | dξ =−F3. (29)

Equation (29) is an integral equation for L(c, ψ). One solution approach is based on the observation
that, for a given value x3 > 0, projection of die (19) onto the x1x2-plane is an elliptical area bounded by
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contour C1x2
1 +C2x2

2 = constant. In terms of (x, ψ), if the span of C along the x1-axis (ψ = 0) is L1,
then the span L for a given |ψ |< π/2 is

L =

√
C1

A1
L1. (30)

A simple assumption is that (30) also holds in (28b) for (C,=), where L1 is an unknown function of
c. Here, however, it is argued that, for a given speed (c), F3 should be stationary with respect to (28a).
That is, ∫

9

dψ
∫
4

δσ (ξ, ψ)|ξ | dξ = 0. (31)

This requirement is satisfied when at every x− < x < x+, |ψ |< π/2,

δσ =
∂σ

∂x
δx + ∂σ

∂ψ
δψ = 0. (32)

Here ψ and x are held constant in the first and second coefficients, respectively, and (δx, δψ) are arbitrary.
Differentiation of (28a) shows that

x =−(1+ 2�)L : ∂σ

∂x
= 0,

∂2σ

∂x2 > 0. (33a)

The second term then vanishes for x =−(1+ 2�)L if

−
∂

∂ψ

(
R A

1
√

C3
QL

)
= 0, Q = (1+�)1+�(−�)−�. (33b)

Separation of variables and integration leads to

L =
C1

A
R11

R11

Q1

Q
L1, Q1 = (1+�1)

1+�1(−�1)
−�1, (34a)

R1 = 4ω1Dω1S − K 2
1 , 11 =

√
γ 2 N 2

1 + (c
2ω1D)2, (34b)

N1 = 2ω1Dω1S + K1, �1 =−
1
2
+

1
π

tan−1
(
−γ N1

c2ω1D

)
, (34c)

ω1S =
√

1− c2, ω1D =

√
1−

c2

c2
D
, K1 = c2

− 2. (34d)

For L = L2, that is, |ψ | = π/2, (34a) and its static (c = 0) and smooth sliding (c 6= 0, γ = 0) limit cases
give, respectively,

L2 =
C1

C2

√
c4

D + γ
2

c2
D − 1

R1 Q1

11
L1, L2 =

C1

C2
L1, L2 =

C1

C2

c2
D

2(c2
D − 1)

R1

c2ω1D
L1. (35)

Equations (30), (34a) and (35) in light of (28b) allow several observations:

(I) Except for a circular projection profile and smooth contact (C1 = C2, γ = 0), the ratio of spans
along the axes of symmetry is not maintained in C .
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γ c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6

0.1 0.9938 0.9712 0.9330 0.8781 0.8034 0.7049
0.2 0.9948 0.9721 0.9339 0.8789 0.8042 0.7055
0.3 0.9963 0.9736 0.9354 0.8803 0.8045 0.7066

Table 1. Values of the dimensionless ratio C2L2/C1L1 for pairs of (γ, c).

(II) In the static case with an elliptic projection profile, the difference between spans is enhanced in C .

(III) Die translation speed (c 6= 0) accentuates this effect.

(IV) Friction leaves C with symmetry only with respect to the x1-axis, whether die translation occurs
(c 6= 0) or not (c = 0).

Results in [Rahman 1996] also exhibit a sliding speed effect on span ratio. Moreover, stationary principles
are features of static smooth contact [Barber 1992]. The effect noted in (III) is illustrated in Table 1 with
values of ratio C2L2/C1L1 for values of (γ, c).

Substituting (28) and (34a) in (29), and applying integration results from Appendix B along with an
integration variable change, gives, finally, an equation for L1 as a function of c:

F3 =

(
R1 Q1

11

)3

(C1L1)
3 µ
√

C3

∫
9

dψ
Q3

(
1

AR

)2
∫
−�

−(1+�)
(−�− t)1+�(t + 1+�)−�|t | dt. (36)

In view of (28b) and the monotonic variation of � with ψ and its range
(
−

1
2 <�< 0

)
, span L does not

cross =.

7. Rolling without slipping

Consider that rolling without slipping by a rigid sphere of radius r0 is what produces the translating C .
Rolling at constant speed requires no force in the x1-direction, but indentation needs a compressive force,
which we call F3, to be imposed. Thus (19) and (20) are replaced by

x2
1 + x2

2 + (x3+ r0)
2
= r2

0 , uC
3 =U3−

1
2r0

(x2
1 + x2

2). (37)

In view of (18) and its counterparts for (u1, u2), the contact problem in this case gives coupled equations:

−c2ωD cos2 ψ
(vp)
π

∫
4

dξ
σ (ξ, ψ)

ξ − x
+ NT(x, ψ)= µRG3(x, ψ), (38a)

−Nσ(x, ψ) cosψ +
(vp)
πωS

∫
4

dξ
ξ − x

[N1τ1(ξ, ψ)+ N12τ2(ξ, ψ)] = µRG1(x, ψ), (38b)

−Nσ(x, ψ) sinψ +
(vp)
πωS

∫
4

dξ
ξ − x

[N12τ1(ξ, ψ)+ N2τ2(ξ, ψ)] = µRG2(x, ψ). (38c)
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Coefficients (N1, N2, N12) are

(N1, N2)= M(cos2 ψ, sin2 ψ)−M, N12 = M sinψ cosψ, (39a)

M = K + 4ωSωD − 2ω2
S = 2N + c2 cos2 ψ, Gk(x, ψ)=

∂

∂x
uC

k (x, 0). (39b)

Linear analysis [Johnson 1985] of contact surface kinematics and experience with the 2D rolling cylinder
[Brock 2004] suggests in view of (37) that (uC

1 , uC
2 ) are such that

[G1(x, ψ),G2(x, ψ)] = G(x, ψ)(cosψ, sinψ), G3(x, ψ)=−
x
r0
, G(x, ψ)=−V0+

x2

2r2
0
. (40)

In light of Appendix B, we write

1
µ
(σ, τk)= (g, gk) cosπ�+ [I(g; x), I(gk; x)] sinπ�. (41)

Here k = (1, 2) and, as in (26), dependence of (σ, τ1, τ2, �) and (g, g1, g2) on ψ is implicit. Use of
Appendix B then gives the set of equations

K

 I(g; x)
I(g1; x)
I(g2; x)

+M

 g(x)
g1(x)
g2(x)

= R

 G3

G cosψ
G sinψ

 , (42a)

K=


−c2ωD cos2 ψ cosπ� N cosψ sinπ� N sinψ sinπ�

−N cosψ sinπ� N1
ωS

cosπ� N12
ωS

cosπ�

−N sinψ sinπ� N12
ωS

cosπ� N2
ωS

cosπ�

 , (42b)

M=


c2ωD cos2 ψ sinπ� N cosψ cosπ� N sinψ cosπ�

−N cosψ cosπ� −
N1
ωS

sinπ� −
N12
ωS

sinπ�

−N sinψ cosπ� −
N12
ωS

sinπ� −
N2
ωS

sinπ�

 . (42c)

In (42b) |K| vanishes for eigenvalues �= (�±, �0) given by

�± =�0∓ iP, �0 =−
1
2 , (43a)

P= 1
π

ln
√

1+q
1−q

, q =
−N

√
ωSωDc2 cos2 ψ

. (43b)

Quantity q > 0 for |ψ | 6 π/2 when 0 < v < vR , and (�0, �±) is associated with eigenfunction sets
(g0, g±) and (g0

k , g±k ), k = (1, 2). Given that |K| = 0, the first term in (42a) disappears by choosing

g±1 (x)= H±(x) cosψ, g±2 (x)= H±(x) sinψ, (44a)

N sinπ�±H±(x)= c2ωF cos2 ψ cosπ�±g±(x), (44b)

g0
1(x)= g0(x) sinψ, g0

2(x)=−g0(x) cosψ. (44c)
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Substitution into the remaining term in (42a) gives three equations for (g0, g±). From (43) it follows
that

sinπ�± =− coshπP=−
√
ωSωDc2 cos2 ψ
√
(1−ωSωD)R

, cosπ�± =∓i sinhπP=
±i N

√
(1−ωSωD)R

. (45a)

Their use in the three equations then leads to the expressions

g0(x)= 0, g±(x)=

√
R

2
√

1−ωSωD

[√
ωS

ωD
G3(x, ψ)± iG(x, ψ)

]
. (46)

Use of (41) and polynomial integration results from Appendix B lead to closed-form expressions for
(σ, τ1, τ2). In light of (43a) these are singular as x→ x+, and enforcement of the Signorini conditions
leads to requirements [

P L
r0
+

√
ωS

ωD

](
x+−

L
2

)
= 0, L = x+− x−, (47a)

V0+
L
r0

√
ωS

ωD
−

1
2r2

0

[(
x+−

L
2

)2
+

L2

8
(1− 4P2)

]
= 0. (47b)

Expressions for (V0, x+) follow as

V0 =
L
r0

[
L

16r0
(1− 4P2)−P

√
ωS

ωD

]
, x± =±

L
2
. (48)

Use of (48) in the closed-form expressions for (σ, τ1, τ2) gives

σ(x, ψ)= −µBQ
2r0 cos8

√
L2− 4x2 cos

[
P ln L−2x

L+2x
−8

]
, (49a)[

τ1(x, ψ)
τ2(x, ψ)

]
=
−µBQ

2r0 cos8

√
ωD

ωS

[
cosψ
sinψ

]√
L2− 4x2 sin

[
P ln L−2x

L+2x
−8

]
, (49b)

Q =

√
R

√
1−ωSωD

, 8= tan−1 xP
2Br0

, B= PL
2r0
+

√
ωS

ωD
. (49c)

Equation (49) is integrable in x but the rapid oscillatory behavior due to the logarithmic term implies
that compression is guaranteed only in a region |x |< rC < L/2 of C . Under the reasonable assumption
that (L , rC)� r0 it can be shown that

rC =
L
2

1− exp(−π/2P)
1+ exp(−π/2P)

. (50)

For a steel solid (ν = 1/3, µ= 75 GPa) calculations of (43) for various combinations of |ψ |< π/2 and
0< c < cR give exp(−π/2P)≈ O(10−9). As in [Brock 2004], therefore, the boundary strip is orders of
magnitude smaller than the contact zone span L . In (49) (σ, τ1) and τ2 are, respectively, even and odd
functions of ψ . It follows that shear traction on C produces neither resultant force in the (x1, x2)-direction
nor resultant moment about the x3-axis. Compressive force F3 is the resultant of σ so that (29) again
provides an integral equation for span L in (49). Application of the stationary principle in (33) for this
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c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6

0.994 0.9733 0.9384 0.8882 0.8204 0.7318

Table 2. Values of the dimensionless ratio L2/L1 for values of c.

case gives for |ψ |< π/2

x = 0 : ∂σ

∂x
= 0,

∂2σ

∂x2 > 0. (51)

It can then be shown that L is given by

L =
B1 Q1

BQ
L1, Q1 =

√
R1

√
1− (ωSωD)1

, B1 =

√
ω1S

ω1D
+

P1L1

2r0
. (52)

Equation (52) is transcendental in (L , L1), but becomes a linear relation under the assumption that
(L , L1)� r0:

L =
√
ωDω1S

ωSω1D

Q1

Q
L1, (53a)

L2 = L1 (c = 0), L2 =
1
2

√
c2

D + 1
c2

D − 1

√
cDω1S

ω1D
Q1L1 (c 6= 0). (53b)

In light of the same assumption (29) reduces to the relation for unknown span L1 along the x1-axis of C :

1
µr2

0
F3 = 2

[
Q1

√
ω1S

ω1D

L1

2r0

]3 ∫
9

ωD

ωS Q2 dψ
∫ 1

0
t dt

√
1− t2 cos P ln 1−t

1+t
. (54)

Study of (53) shows that in this case, contact zone C does not preserve the circular profile of the projected
die area except in the static limit (c = 0). Values of the span ratio L2/L1 are given in Table 2 for c 6= 0,
and show that increasing speed tends to “squeeze” C onto the x1-axis. Equation (53a) does not define an
ellipse. However, an elliptical approximation for C can use (53b) to define the ratio of semimajor and
semiminor dimensions.

8. Comment on supercritical/subseismic behavior

As noted above sliding contact solutions for speeds vR < v < vS violate Signorini conditions [Georgiadis
and Barber 1993]. In particular, in the sliding die problem here (28a) for normal stress in C still holds
for this speed range, and is still both bounded and continuous on zone boundary =. However, R = 0
along spans defined by |ψ | =9R , and R < 0 for |ψ |<9R , where

9R = tan−1

√
c2

c2
R
− 1. (55)

That is, contact zone traction changes in a continuous fashion from compression in two fan-shaped
regions 9R < |ψ | < π/2 to tension in two fan-shaped regions |ψ | < 9R . The situation for the rolling
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sphere case is more complicated: For |ψ |<9R , R < 0 and eigenvalues are now

�0 =−
1
2
, �± =∓

i
π

ln
√

q+1
q−1

. (56)

Equation (56) and behavior of R show that traction is continuous as |ψ | →9R but, because �± have no
real part, traction on = in fan-shaped regions |ψ |<9R is both oscillatory in nature and not continuous.
These two results suggest that contact actually does not occur for |ψ | < 9R . Such a consideration is
beyond the scope of this paper. Careful study of die/sphere-contact zone separation for |ψ | < 9R is
required. Moreover, 9R→ 21.25◦ as v→ vS for a typical [Achenbach 1973] value cR = 0.932. That is,
separation would involve a substantial portion of the projection area in the subseismic limit.

9. Summary comments

Combining quasipolar coordinates with an analysis defined in terms of Cartesian coordinates produces
solutions that can be seen as awkward hybrids. However, analytical expressions for contact zone traction
in the quasipolar system are readily extracted. In any event, the approach was adopted in order to address
problems without axial symmetry. Indeed no degree of symmetry is required. That imposed on contact
zone C served to guarantee that a simple resultant force system could produce die sliding and rolling
in the specified direction. Rolling contact by a sphere was considered because its 2D counterpart, the
cylinder, is a standard rolling problem.

The assumption that key geometric features of the area projected by the rigid die onto the contact
surface are preserved in the contact zone shape, or that the zone is essentially elliptical, is often accurate
[Johnson 1985; Hills et al. 1993; Bayer 1994; Blau 1996]. It also avoids an iteration process based on,
for example, maintenance of compression everywhere in the zone. Here, in addition to the Signorini
requirement of bounded traction on the zone boundary, a requirement that resultant compressive force
be stationary with respect to the traction was imposed. This gave expressions that defined the contact
zone geometry. These indicated that the contact zone is often a distortion of the projected area. In
particular, sliding/rolling speed tends to “flatten” the contact zone onto the line of travel, see [Rahman
1996]. Friction in sliding destroys any projection area symmetry, save that with respect to the line of
travel. It is hoped that these results afford some insight into problems of 3D dynamic contact.

Appendix A

Consider integrals involving real parameters (X, Y ) over the entire Im(p)-axis P:

1
2π i

∫
P
|p|
(

1,
√
−p
√

p

)
exp[pX − Y

√
−p
√

p ]dp
p

(Y > 0). (A1)

Re(
√
±p ) > 0 in the p-plane with, respectively, branch cuts Im(p) = 0, Re(p) < 0 and Im(p) = 0,

Re(p) > 0. Specifically, for Re(p)= 0+ and, respectively, Im(p)= q > 0 and Im(p)= q < 0:

√
−p =

∣∣∣q2 ∣∣∣1/2(1∓ i),
√

p =
∣∣∣q2 ∣∣∣1/2(1± i). (A2)
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Use of (A2) reduces (A1) to

1
iπ

∫
∞

0
(cos q X, sin q X) exp(−Y q) dq. (A3)

From standard [Peirce and Foster 1956] tables (A3) is evaluated as

1
iπ

(
Y

X2+ Y 2 ,
X

X2+ Y 2

)
. (A4)

It is noted that the X -derivative of (A4) gives the evaluation for integrals

1
2π i

∫
P
|p|
(

1,
√
−p
√

p

)
exp(−pX − Y

√
−p
√

p ) dp (Y > 0). (A5)

It is also noted [Stakgold 1967] that

1
π

Y
X2+ Y 2 → δ(X) (Y → 0). (A6)

Here δ is the Dirac function.

Appendix B

Consider region 4 of the Re(t)-axis defined as x− < t < x+ and function

W (x)=
∫
4

�(t) dt
t − x

, |Re�(t)|< 1. (B1)

For x ∈4, W (x ± i0)= w(x)± iπ�(x), where w(x) is the principal value

w(x)= (vp)
∫
4

�(t) dt
t − x

. (B2)

For a function g(t) that is bounded and piecewise continuous in 4 the following relations hold for x ∈4:

G(x)= g(x) cosπ�(x)+ I(g; x) sinπ�(x), (B3a)

1
π
(vp)

∫
4

G(t)
t − x

dt =−g(x) sinπ�(x)+ I(g; x) cosπ�(x), (B3b)∫
4

G(t) dt =
∫
4

g(t) exp[−w(t)] dt. (B3c)

In (B3a) and (B3b) the functional

I(g; x)= 1
π

expw(x)(vp)
∫
4

g(t)
t − x

exp[−w(t)] dt. (B4)

For x /∈4 (B3b) is replaced with

1
π

∫
4

G(t)
t − x

dt = 1
π

exp W (x)
∫
4

g(t)
t − x

exp[−w(t)] dt . (B5)

For �(t) = � < 0 (constant), polynomial forms of g(t) give explicit results, for example, for g(t) =
(t0, t, t2) the right-hand sides of (B3a) are
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x+− x
x − x−

)�
, (x +�L)

(
x+− x
x − x−

)�
,

[
x2
+�(x + x+)−

�

2
(1−�)L2

]( x+− x
x − x−

)�
. (B6)

Similarly, the right-hand sides of (B5) are, respectively,

1
sinπ�

[(
x − x+
x − x−

)�
− 1

]
, (B7a)

1
sinπ�

[
x
(

x − x+
x − x−

)�
− x −�L

]
, (B7b)

1
sinπ�

[
x2
(

x − x+
x − x−

)�
− x2
−�(x + x+)+

�

2
(1−�)L2

]
. (B7c)

Here L = x+− x− is the width of 4. The results in (B1)–(B7) are standard, and in this case, taken from
[Brock and Georgiadis 2000; Brock 2004].
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BUCKLING ANALYSIS OF NONUNIFORM COLUMNS
WITH ELASTIC END RESTRAINTS

SEVAL PINARBASI

Since compression members, such as columns in a multistory building, are mostly the key elements
in a structure, even a small decrease in their load carrying capacity can lead to catastrophic failure of
the structure. A compression member has to be designed to satisfy not only the strength and service-
ability requirements, but also the stability requirements. In fact, the behavior of a slender column is
mostly governed by the stability limit states. In an attempt to construct ever-stronger and ever-lighter
structures, many engineers currently design slender high strength columns with variable cross sections
and various end conditions. Even though buckling behavior of uniform columns with ideal boundary
conditions have extensively been studied, there are limited studies in the literature on buckling analysis
of nonuniform columns with elastic end restraints since such an analysis requires the solution of more
complex differential equations for which it is usually impractical or sometimes even impossible to obtain
exact solutions. This paper shows that variational iteration method (VIM) can successfully be used for
this purpose. VIM results obtained for columns of constant cross sections, for which exact results are
available in the literature, agree with the exact results perfectly, verifying the efficiency of VIM in the
analysis of this special type of buckling problem. It is also shown that unlike exact solution procedures,
variational iteration algorithms can easily be used even when the variation of column stiffness along its
length and/or the end conditions are rather complex.

1. Introduction

Compression members subjected to uniform axial loads are commonly used in many engineering appli-
cations. Columns in a multistory building, for example, are the key structural elements which support
the heavy weight of the structure. Even a small decrease in their load carrying capacity can lead to
catastrophic failure of the structure. Compression members differ from tension members in that the
design of the former has to consider not only the strength and serviceability requirements but also the
stability requirements. In fact, the behavior of a slender column is mostly governed by the stability limit
states. For this reason, many international design specifications include specific provisions on stability
of compression members.

Since 1744, when the Swiss mathematician Leonhard Euler published his famous buckling formula,
research on stability of slender columns has increasingly continued. This continuous interest on stability
problems is based mainly on the desire of constructing “ever-stronger” and “ever-lighter” structures. This
“optimum structure” approach has led most engineers to design columns with higher strength and lighter
weight. Unfortunately, design engineers are lack of sufficient guidance on design of nonuniform columns
since most of the provisions on compression members are developed for uniform columns.

Keywords: variational iteration method, elastic buckling, stability, nonuniform column, elastic end restraints.
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Elastic buckling behavior of uniform columns has extensively been investigated by many researchers.
For fully developed buckling theory and the related exact solutions, one can refer to one of the classical
textbooks on structural stability (e.g., [Timoshenko 1961; Chajes 1974; Wang et al. 2005; Simitses and
Hodges 2006]). On the other hand, there are very few studies in the literature on columns with variable
flexural stiffness since such an analysis requires the solution of more complex differential equations. In
many cases, it is impractical and sometimes even impossible to obtain closed-form solutions to these
problems.

When the buckling studies in the literature are examined, it is also seen that most of the studies on
column buckling assume ideal end conditions. Such ideal boundary conditions can realistically model
the real end conditions in some special structures, such as columns in one-story buildings, vertical and
diagonal elements in truss structures and bracing elements in braced frames. However, in a general
multistory building, the ends of the columns are neither hinged nor fully fixed or free. Instead, they
are commonly connected to beams and the restraining effect of the beams on the column ends strongly
depends on the type of the beam-to-column connection. In addition, the behavior of a column in a frame
is significantly influenced from the existence and amount of the bracing members in the frame. For this
reason, the buckling solutions obtained for columns of ideal end conditions cannot always be safely used
for columns with elastic end restraints.

However, as in the case of buckling analysis of nonuniform columns, buckling analysis of columns
with elastic end restraints is difficult to handle due to the complex boundary conditions and studies in
the literature on this subject are also very limited (e.g., [Eisenberger and Clastornik 1987; Li 2000; 2001;
2003; Ozturk and Sabuncu 2005; Atanackovic and Novakovic 2006; Tan and Yuan 2008; Singh and
Li 2009; Atanackovic et al. 2010]). For this reason, most design specifications offer engineers design
charts, instead of design formulas, for the design of such framed columns. These “alignment” charts are
drawn from the buckling (characteristic) equation derived for uniform columns with elastic end springs,
which needs special techniques to solve due to its high nonlinearity, by making some assumptions on
the stiffnesses of the restraints (e.g., the assumption of identical slopes at the ends of the beam). Thus,
even these charts do not provide exact values. Moreover, they are applicable only to uniform columns.
However, as mentioned previously, due to economical and esthetic issues, nowadays, many columns are
designed with variable stiffness.

Consequently, there is a need for a practical tool to solve buckling problems of nonuniform columns
with elastic end restraints. In recent years, many analytical approaches; such as, variational iteration
method (VIM), homotopy perturbation method (HPM), differential quadrature method (DQM) are pro-
posed for the solution of nonlinear equations and many researchers (e.g., [Arbabi and Li 1991; Du et al.
1996; Rosa and Franciosi 1996; Cailo and Elishakoff 2004; Civalek 2004; Aydogdu 2008; Malekzadeh
and Karami 2008; Atay 2009; Coşkun 2009; 2010; Huang and Luo 2011; Ozturk and Coşkun 2011; Serna
et al. 2011; Yuan and Wang 2011]) have shown that complex engineering problems, such as buckling and
vibration problems, can easily be solved using these techniques. A kind of nonlinear analytical technique
which was proposed by He [1999], variational iteration method (VIM) has many successful applications
to various kinds of nonlinear engineering problems [Abulwafa et al. 2007; Batiha et al. 2007; Coşkun
and Atay 2007; Ganji and Sadighi 2007; Ganji et al. 2007; 2008; Sweilam and Khader 2007; Coşkun
and Atay 2008; Miansari et al. 2008; Shou and He 2008; Ozturk 2009; Liu and Gurram 2009; Atay
2010; Coşkun et al. 2011; Geng 2011; Yang and Chen 2011]. As shown in [Coşkun and Atay 2009;
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Atay and Coşkun 2009; Okay et al. 2010; Pinarbasi 2011], VIM is an effective and powerful technique
that can successfully be used in the analysis of elastic stability of compression and flexural members
with variable cross sections under different loading and boundary conditions. In this paper, this powerful
technique is used to determine the buckling loads of slender columns with elastic end restraints. To
the best knowledge of authors, exact solutions to this problem are available only for some particular
cases of uniform columns. For this reason, before analyzing the columns with variable cross sections,
the buckling loads of columns with constant cross sections are determined using classical variational
iteration algorithm and VIM results are compared with the exact results. After verifying the efficiency of
VIM in the analysis of this special type of buckling problem, stability of columns with variable flexural
stiffness is studied. In the analyses, columns with two different types of stiffness variations along their
lengths; linear and exponential variations, and with various end conditions are considered. Buckling loads
obtained for these nonuniform columns are computed using classical variational iteration algorithm and
compared with those obtained for uniform columns.

2. Elastic buckling of columns with elastic end restraints

General buckling equation and related boundary conditions. Consider an axially loaded column of
variable flexural rigidity E I along its length L with elastic end restraints as shown in Figure 1, left.
Assume that the lateral displacement and rotation of the top end of the column are restrained, respectively,
by an extensional spring with elastic spring constant α0 and a rotational spring with elastic spring constant
β0. Further assume that similar springs with spring constants αL and βL restrain the bottom end of the
column.

Figure 1, middle, shows the buckled shape of such a column under a uniaxial load of P . In the figure,
MA, MB and V show support reactions. As can be seen from that figure, the origin of x-y coordinate
system is located at the top end of the column. The equilibrium equation at an arbitrary section of the
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Figure 1. An axially loaded column with elastic end restraints. Left: undeformed shape.
Middle: deformed (buckled) shape. Right: free body diagram for internal forces.
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column can be written from the free body diagram shown in Figure 1, right as

M(x)+ Pw(x)− V x −MA = 0, (1)

where w(x), or simply w, is the displacement component in y direction. Using the well-known moment-
curvature relation

M(x)= E I (x)
d2w

dx2 , (2)

Equation (1) can be rewritten as

E I (x)
d2w

dx2 + Pw = V x +MA. (3)

Differentiation of (3) with respect to x gives shear force in the column at any section:

V = E I (x)
d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx
. (4)

Further differentiation of (4) with respect to x yields the governing equation of the buckling problem:

d4w

dx4 +
2

E I (x)
d[E I (x)]

dx
d3w

dx3 +
1

E I (x)

(
P +

d2
[E I (x)]
dx2

)
d2w

dx2 = 0. (5)

It is to be noted that the governing equation (5) is applicable to all columns regardless of their end
conditions.

Using (2) and (3), the boundary conditions at the top and bottom end of the column can be written as

at x = 0; β0
dw
dx
= E I (x)

d2w

dx2 and α0w =−

(
E I (x)

d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx

)
(6)

and

at x = L; βL
dw
dx
=−E I (x)

d2w

dx2 and αLw = E I (x)
d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx
. (7)

Columns with constant stiffness. When flexural stiffness of the column does not change along its length,
in other words, when E I (x)= E I , the governing equation (5) and the related boundary conditions (6)
and (7) reduce to the simpler forms

d4w

dx4 +
P

E I
d2w

dx2 = 0 (8)

with
d2w

dx2 −
β0

E I
dw
dx
= 0 and

d3w

dx3 +
P

E I
dw
dx
+
α0

E I
w = 0 at x = 0, (9)

and
d2w

dx2 +
βL

E I
dw
dx
= 0 and

d3w

dx3 +
P

E I
dw
dx
−
αL

E I
w = 0 at x = L . (10)

For easier computations, these equations can be written in nondimensional form as

(w̄)′′′′+ λ(w̄)′′ = 0 (11)
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with
(w̄)′′− β̄0(w̄)

′
= 0 and (w̄)′′′+ λ(w̄)′+ ᾱ0w̄ = 0 at x̄ = 0, (12)

(w̄)′′+ β̄L(w̄)
′
= 0 and (w̄)′′′+ λ(w̄)′− ᾱLw̄ = 0 at x̄ = 1, (13)

where w̄ = w/L and x̄ = x/L , primes denote differentiation with respect to x̄ , the normalized spring
stiffnesses are

β̄0 =
β0L
E I

, β̄L =
βL L
E I

, ᾱ0 =
α0L3

E I
and ᾱL =

αL L3

E I
(14)

and the normalized critical load is

λ=
P L2

E I
. (15)

Since exact solutions are available in the literature for uniform columns and since these solutions cor-
respond to limiting conditions for variable stiffness cases, before studying the buckling problems of
nonuniform columns, the buckling loads of uniform columns are to be determined and compared with
the exact solutions available in the literature.

Columns with variable stiffness.

Columns with linearly varying stiffness. When flexural stiffness of the column decrease along its length
linearly, i.e., when

E I (x)= E I (1− b x
L ), (16)

where b is a constant determining the “sharpness” of the stiffness change along the column length, the
governing equation becomes

d4w

dx4 −
2b/L

(1− bx/L)
d3w

dx3 +
P

E I (1− bx/L)
d2w

dx2 = 0, (17)

which can be written in nondimensionalized form as follows:

(w̄)′′′′−
2b

(1− bx̄)
(w̄)′′′+

λ

(1− bx̄)
(w̄)′′ = 0. (18)

Similarly, the related boundary conditions can be expressed in nondimensional form:

at x̄ = 0; (w̄)′′− β̄0(w̄)
′
= 0, (w̄)′′′− b(w̄)′′+ λ(w̄)′+ ᾱ0w̄ = 0, (19)

at x̄ = 1; (w̄)′′+
β̄L

(1− b)
(w̄)′ = 0, (w̄)′′′−

b
(1− b)

(w̄)′′+
λ

(1− b)
(w̄)′−

ᾱL

(1− b)
w̄= 0. (20)

Columns with exponentially varying stiffness. If the bending stiffness of the column changes exponen-
tially along its length, i.e., if

E I (x)= E I e−a(x/L), (21)

where a is a positive constant determining the “sharpness” of the stiffness change, the governing equation
becomes

d4w

dx4 −
2a
L

d3w

dx3 +

(
P

E I e−a(x/L) +
a2

L2

)
d2w

dx2 = 0, (22)
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which, when written in nondimensionalized form, becomes

(w̄)′′′′− 2a(w̄)′′′+ (λeax̄
+ a2)(w̄)′′ = 0. (23)

Similarly, the related boundary conditions can be expressed in nondimensional form as

(w̄)′′− β̄0(w̄)
′
= 0 and (w̄)′′′− a(w̄)′′+ λ(w̄)′+ ᾱ0w̄ = 0, at x̄ = 0, (24)

(w̄)′′+ β̄Lea(w̄)′ = 0 and (w̄)′′′− a(w̄)′′+ λea(w̄)′− ᾱLeaw̄ = 0 at x̄ = 1. (25)

3. VIM formulations for the studied buckling problems

According to the variational iteration method (VIM) [He 1999], a general homogeneous nonlinear dif-
ferential equation can be written in the form

Lw(x)+ Nw(x)= 0, (26)

where L is a linear operator and N is a nonlinear operator, and the “correction functional” is

wn+1(x)= wn(x)+
∫ x

0
λ(ξ)

(
Lwn(ξ)+ N w̃n(ξ)

)
dξ. (27)

In (27), λ(ξ) is a general Lagrange multiplier that can be identified optimally via variational theory, wn

is the n-th approximate solution and w̃n denotes a restricted variation, i.e., δw̃n = 0. As summarized in
[He et al. 2010] for a fourth order differential equation such as the equations of the problem considered
in this paper, λ(ξ) equals to

λ(ξ)=
(ξ − x)3

6
. (28)

The original variational iteration algorithm proposed in [He 1999] has the iteration formula

wn+1(x)= wn(x)+
∫ x

0
λ(ξ)

(
Lwn(ξ)+ Nwn(ξ)

)
dξ. (29)

In a recent paper, He et al. [2010] proposed two additional variational iteration algorithms for solving
various types of differential equations. These algorithms can be expressed as follows:

wn+1(x)= w0(x)+
∫ x

0
λ(ξ)

(
Nwn(ξ)

)
dξ, (30)

wn+2(x)= wn+1(x)+
∫ x

0
λ(ξ)

(
Nwn+1(ξ)− Nwn(ξ)

)
dξ. (31)

Thus, the three VIM iteration algorithms for (18), as an example, can be written as

w̄n+1(x)= w̄n(x) +

∫ x

0

(ξ − x)3

6

(
w̄′′′′n (ξ)−

2b
1−bξ

w̄′′′n (ξ)+
λ

1−bξ
w̄′′n(ξ)

)
dξ,

w̄n+1(x)= w̄0(x) +

∫ x

0

(ξ − x)3

6

(
−

2b
1−bξ

w̄′′′n (ξ)+
λ

1−bξ
w̄′′n(ξ)

)
dξ,

w̄n+2(x)= w̄n+1(x) +
∫ x

0

(ξ − x)3

6

(
−

2b
1−bξ

(w̄′′′n+1(ξ)− w̄
′′′

n (ξ))+
λ

1−bξ
(w̄′′n+1(ξ)− w̄

′′

n(ξ))

)
dξ.
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Similar algorithms can easily be written for (11) and (23). In order to determine the most effective VIM
algorithm to be used in the current study, one single case of a buckling equation (linearly varying stiffness
case with b = 0.3) is solved using all three algorithms. Parallel to the findings of Pinarbasi [2011], all
iteration algorithms yield exactly the same results. For this reason, the classical VIM algorithm is decided
to be used throughout the study.

4. Buckling loads for columns with elastic restraints

The general buckling problems formulated in Section 2 are specialized to three different end conditions
shown in Figure 2. In Case I (left), the bottom end of the column which is free to rotate (βL →0)
is laterally restrained with an extensional spring (with αL ) while the top end of the column is fixed
(α0 → ∞, β0 → ∞). Such a column can exist in a single story frame where the beam-to-column
connections are simple shear connections. Case II (Figure 2, middle) investigates an interior column in a
multistory building whose lateral stiffness is provided by laterally stiff elements such as lateral bracings
or reinforced concrete walls. In such a “sway-prevented structure”, the relative lateral displacement of
one end of the column with respect to the other end is so small that it is neglected. For this reason, in
Case II, the stiffnesses of linear springs are assumed to approach infinity (α0→∞, αL →∞) while
rotational spring stiffnesses (β0 and βL ) are let have any value. In Case III (Figure 2, right), the relative
lateral displacement of one end of the column with respect to the other end is not small so it cannot be
neglected. Such columns can be seen in a “sway-permitted” structure whose lateral stiffness is provided
only by flexural stiffnesses of frame members. For simplicity, the lateral stiffness of the extensional
spring at the top end of the column is taken zero, while rotational spring stiffnesses (β0 and βL ) can have
any value.

Columns with constant stiffness. The exact solution to the differential equation (11) has the form

w̄ = C1 sin
√
λx̄ +C2 cos

√
λx̄ +C3 x̄ +C4, (32)

Case I Case II Case III   
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Figure 2. The three cases (boundary conditions) studied in the paper. Case I: α0→∞,
β0→∞, βL → 0. Case II: α0→∞, αL →∞. Case III: α0→ 0, αL →∞.
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Figure 3. Case I — columns with constant stiffness — variation of normalized buckling
load with normalized linear spring stiffness.

where Ci (i=1,2,3,4) are evaluated from the related boundary conditions. In Case I, the boundary condi-
tions are

[(w̄)′]x̄=0 = 0, [w̄]x̄=0 = 0, [(w̄)′′]x̄=1 = 0 and [(w̄)′′′+ λ(w̄)′− ᾱLw̄]x̄=1 = 0. (33)

By substituting (32) into these boundary conditions, four homogeneous equations are obtained. These
equations can be put into matrix form:

[M(λ)]{C} = {0}, (34)

where {C} = {C1 C2 C3 C4}
T . Thus, the problem reduces to an eigenvalue problem. For a nontrivial

solution, the determinant of the coefficient matrix has to be zero. The smallest possible real root of the
characteristic equation, which is obtained by equating the determinant of the coefficient matrix to zero,
gives the nondimensional buckling load in the first buckling mode. For some particular values of αL , the
exact values are calculated and plotted in Figure 3, in a semilogarithmic scale.

Even though the differential equation to be solved in this case is relatively simple, when the exact
solution is tried to be obtained, finding the smallest root of the resulting characteristic equation which
contains trigonometric functions can be somewhat difficult. It is observed that the result is very sensitive
to the initial guess. So, one should be aware of that a couple of trials may be required to find the correct
root of the characteristic equation.

The same problem is also studied using VIM. The initial approximation is selected as a third degree
polynomial with four unknown coefficients Ai (i=1,2,3,4):

w̄0 = A1(x̄)3+ A2(x̄)2+ A3 x̄ + A4. (35)

Using the first iteration algorithm and conducting nine iterations, w̄9 is obtained. Through substitution
in the boundary conditions (33), four homogeneous equations are obtained. Similar to the exact solution
procedure, by making the determinant of the coefficient matrix of these equations equal to zero, the char-
acteristic equation for the related bucking problem is obtained. The roots of the characteristic equation
give the normalized buckling loads. Since the characteristic equation is a polynomial, one can easily
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λ

β0L/E I βL = β0 βL = 0 βL →∞

Exact VIM VIM Exact VIM VIM Exact VIM VIM
(9 iter) (17 iter) (9 iter) (17 iter) (9 iter) (17 iter)

0 9.870 9.8696 9.8696 9.870 9.8696 9.8696 20.191 20.1907 20.1907
0.5 11.772 11.7719 11.7719 10.798 10.7978 10.7978 21.659 21.6594 21.6594
1 13.492 13.4924 13.4924 11.598 11.5982 11.5982 22.969 22.9688 22.9688
2 16.463 16.4634 16.4634 12.894 12.8944 12.8944 25.182 25.1822 25.1822
4 20.957 20.9568 20.9568 14.660 14.6602 14.6602 28.397 28.3971 28.3969
10 28.168 28.1683 28.1677 17.076 17.0763 17.0763 33.153 33.1546 33.1532
20 30.355 32.7846 32.7819 18.417 18.4173 18.4173 35.902 35.9059 35.9019
∞ 39.478 39.4916 39.4784 20.191 20.1908 20.1907 39.478 39.4916 39.4784

Table 1. Case II — columns with constant stiffness — comparison of VIM solutions
with exact solutions [Wang et al. 2005].

λ

β0L/E I βL = β0 βL = 0 βL →∞

Exact VIM VIM Exact VIM VIM Exact VIM VIM
(9 iter) (17 iter) (9 iter) (17 iter) (9 iter) (17 iter)

0 0.000 0.0000 0.0000 0.000 0.0000 0.0000 2.4674 2.46740 2.46740
0.5 0.922 0.9220 0.9220 0.4268 0.42676 0.42676 3.3731 3.37309 3.37309
1 1.7071 1.7071 1.7071 0.7402 0.74017 0.74017 4.1159 4.11586 4.11586
2 2.9607 2.9607 2.9607 1.1597 1.15966 1.15966 5.2392 5.23920 5.23920
4 4.6386 4.6386 4.6386 1.5992 1.59919 1.59919 6.6071 6.60712 6.60712
10 6.9047 6.9047 6.9047 2.0517 2.04167 2.04167 8.1955 8.19547 8.19547
20 8.1667 8.1667 8.1667 2.2384 2.23840 2.23840 8.9583 8.95831 8.95831
∞ 9.8696 9.8696 9.8696 2.4674 2.46740 2.46740 9.8696 9.86960 9.86960

Table 2. Case III — columns with constant stiffness — comparison of VIM solutions
with exact solutions [Wang et al. 2005].

compute its all roots. Selecting the smallest root is no more tedious. For comparison, VIM results are
also plotted in Figure 3, which shows perfect agreement with the exact results.

For Case II and Case III, the characteristic equations of the buckling problems were derived by Wang
et al. [2005]. They also tabulated exact results for some particular values of spring stiffnesses. In order
to evaluate the efficiency of VIM, approximate solutions are obtained for the same values of spring
stiffnesses using classical iteration algorithm and VIM results are compared with the exact results given
in [Wang et al. 2005] in Tables 1 and 2. The same initial approximation chosen in Case I, namely,
Equation (35), is used also in these two cases. Normalized buckling loads are computed for two different
number of iterations; nine and seventeen.
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From (12) and (13), for uniform columns, the boundary conditions for Case II become

[(w̄)′′− β̄0(w̄)
′
]x̄=0 = 0, [w̄]x̄=0 = 0, [(w̄)′′+ β̄L(w̄)

′
]x̄=1 = 0 and [w̄]x̄=1 = 0 (36)

and the boundary conditions for Case III become

[(w̄)′′− β̄0(w̄)
′
]x̄=0 = 0, [(w̄)′′′+ λ(w̄)′]x̄=0 = 0, [(w̄)′′+ β̄L(w̄)

′
]x̄=1 = 0, [w̄]x̄=1 = 0. (37)

From Tables 1 and 2, it can be seen that even the VIM results obtained with nine iterations are sufficiently
close to the exact results. Still, by increasing the number of iterations, the exact results can be obtained
even when spring stiffnesses converge infinity. One can see that only one result in Table 1, shown in bold,
does not match. This corresponds to the case when β0= βL= 20. Considering that all other results match
perfectly, this discrepancy may be due to a misprint in the reference. A similar, but smaller, mismatch
occurs in Table 2, when β0= 10 and βL= 0.

Figure 3 and Tables 1 and 2 clearly show that VIM is a powerful technique in predicting buckling
loads of uniform columns with elastic restraints. The excellent match of VIM solutions with exact results
also encourages the use of this practical technique in buckling problems of nonuniform columns, whose
exact solutions are impractical or sometimes even impossible to derive.

Columns with variable stiffness. Although it is somewhat easy to derive closed form solutions for buck-
ling problems of uniform columns, which has a fourth order homogenous differential equation with
constant coefficients, it may be relatively difficult to obtain exact results for buckling of nonuniform
columns. To the best knowledge of author, there are no such solutions available in the literature. For
this reason, in this section of the paper, only the VIM results obtained using the classical VIM iteration
algorithm will be presented.

Similar to the constant stiffness cases studied in the previous section, the iterations in variable stiffness
cases are initiated with the simple approximation given in (35). To simplify the integration processes, the
variable coefficients in the iteration integrals are expanded in series using nine terms and the normalized
buckling loads are obtained from ninth approximate solution.

For each case illustrated in Figure 2, the normalized buckling loads of columns with variable (lin-
early/exponentially varying) stiffness are computed using classical VIM iteration algorithm for various
values of normalized spring stiffness(es) (i.e., for various values of αL for Case I and of β0 and βL for
Case II and Case III) and for various degrees of stiffness changes (i.e., for various values of b or a).
The numerical results are presented in Tables 3 and 4 for Case I, Tables 5–10 for Case II, and Tables
11–16 for Case III. The tabulated results can be used directly by structural engineers designing columns
with linearly or exponentially varying stiffness along their lengths restrained with nonclassical elastic
end supports.

It can be valuable to investigate the effect of the degree of stiffness nonlinearity on buckling loads
of nonuniform columns by plotting some representative graphs from the above tabulated results. In
the following plots, four particular cases of linear (b={0, 0.3, 0.5, 0.7}) and exponential (a={0, 0.5, 1.0,
2.0}) stiffness changes are studied for each end conditions illustrated in Figure 2. As can be inferred from
Figure 4, whose two parts plot the variation of bending stiffness of a column with the selected stiffness
changes through its length, the cases for b=0 and a=0 actually correspond to the uniform stiffness cases.



BUCKLING ANALYSIS OF NONUNIFORM COLUMNS WITH ELASTIC END RESTRAINTS 495

αL L3/E I
b 0 0.1 0.25 0.5 1 2.5 5 10 100

0.0 2.4674 2.5484 2.6698 2.8716 3.2735 4.4644 6.3921 9.9563 19.7035
0.1 2.3928 2.4734 2.5940 2.7946 3.1940 4.3761 6.2843 9.7821 18.7228
0.2 2.3155 2.3956 2.5154 2.7147 3.1112 4.2835 6.1696 9.5904 17.7134
0.3 2.2351 2.3145 2.4335 2.6313 3.0246 4.1857 6.0464 9.3767 16.6704
0.4 2.1511 2.2299 2.3479 2.5440 2.9337 4.0819 5.9128 9.1353 15.5871
0.5 2.0643 2.1424 2.2593 2.4534 2.8389 3.9723 5.7681 8.8606 14.4553
0.6 1.9801 2.0574 2.1730 2.3650 2.7460 3.8630 5.6184 8.5544 13.2674
0.7 1.9170 1.9936 2.1083 2.2985 2.6757 3.7777 5.4922 8.2475 12.0251
0.8 1.8623 1.9384 2.0522 2.2410 2.6147 3.7020 5.3692 7.8866 10.6673

Table 3. Case I — columns with linearly varying stiffness.

αL L3/E I
a 0 0.1 0.25 0.5 1 2.5 5 10 100

0.00 2.4674 2.5484 2.6698 2.8716 3.2735 4.4644 6.3921 9.9563 19.7035
0.25 2.2868 2.3667 2.4863 2.6851 3.0807 4.2499 6.1288 9.5241 17.4010
0.50 2.1121 2.1121 2.3085 2.5041 2.8929 4.0380 5.8616 9.0572 15.3231
0.75 1.9438 2.0211 2.1369 2.3290 2.7104 3.8290 5.5895 8.5514 13.4555
1.00 1.7821 1.8581 1.9717 2.1601 2.5335 3.6230 5.3114 8.0046 11.7834
1.50 1.4803 1.5532 1.6622 1.8424 2.1980 3.2199 4.7329 6.8056 8.9663
2.00 1.2105 1.2800 1.3837 1.5546 1.8894 2.8285 4.1188 5.5513 6.7559
2.50 0.9780 1.0435 1.1409 1.3005 1.6097 2.4465 3.4737 4.3719 5.0448
3.00 0.7850 0.8451 0.9340 1.0789 1.3559 2.0716 2.8276 3.3552 3.7360

Table 4. Case I — columns with exponentially varying stiffness.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 9.8696 10.0666 10.3511 10.7978 11.5982 12.8944 14.6602 17.0763 19.7970
0.1 9.3716 9.5634 9.8402 10.2741 11.0493 12.2985 13.9866 16.2690 18.8042
0.2 8.8635 9.0498 9.3183 9.7384 10.4868 11.6860 13.2922 15.4364 17.7834
0.3 8.3434 8.5237 8.7832 9.1885 9.9079 11.0537 12.5733 14.5737 16.7298
0.4 7.8087 7.9824 8.2321 8.6213 9.3093 10.3974 11.8247 13.6751 15.6365
0.5 7.2560 7.4224 7.6614 8.0327 8.6863 9.7116 11.0399 12.7326 14.4948
0.6 6.6812 6.8396 7.0665 7.4180 8.0334 8.9897 10.2107 11.7371 13.2950
0.7 6.0825 6.2318 6.4451 6.7745 7.3475 8.2278 9.3329 10.6842 12.0333
0.8 5.4696 5.6090 5.8077 6.1131 6.6402 7.4393 8.4228 9.5952 10.7371

Table 5. Case II — columns with linearly varying stiffness, βL=0.
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β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 9.8696 10.2656 10.8447 11.7719 13.4924 16.4634 20.9568 28.1683 37.9572
0.1 9.3716 9.7676 10.3458 11.2696 12.9768 15.9024 20.2681 27.1131 36.0973
0.2 8.8635 9.2599 9.8377 10.7582 12.4511 15.3254 19.5477 25.9988 34.1762
0.3 8.3434 8.7407 9.3187 10.2362 11.9131 14.7283 20.2726 24.8132 32.1791
0.4 7.8087 8.2078 8.7867 9.7015 11.3601 14.1053 17.9768 23.5401 30.0877
0.5 7.2560 7.6579 8.2386 9.1507 10.7869 13.4462 17.0968 22.1551 27.8773
0.6 6.6812 7.0870 7.6700 8.5778 10.1829 12.7305 16.1153 20.6196 25.5111
0.7 6.0825 6.4914 7.0740 7.9702 9.5239 11.9159 14.9736 18.8703 22.9324
0.8 5.4696 5.8740 6.4438 7.3060 8.7630 10.9259 13.5782 16.8166 20.0636

Table 6. Case II — columns with linearly varying stiffness, βL = β0.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 20.1907 20.4982 20.9462 21.6594 22.9688 25.1822 28.3971 33.1546 38.7118
0.1 19.1685 19.4679 19.9039 20.5971 21.8669 24.0044 27.0859 31.5885 36.7606
0.2 18.1179 18.4087 18.8318 19.5035 20.7310 22.7876 25.7281 29.9663 34.7519
0.3 17.0330 17.3144 17.7236 18.3722 19.5541 21.5237 24.3143 28.2765 32.6709
0.4 15.9057 16.1770 16.5709 17.1942 18.3265 20.2020 22.8317 26.5041 30.4993
0.5 14.7245 14.9845 15.3615 15.9569 17.0343 18.8066 21.2619 24.6272 28.2130
0.6 13.4714 13.7186 14.0766 14.6405 15.6564 17.3134 19.5769 22.6134 25.7757
0.7 12.1185 12.3509 12.6868 13.2143 14.1593 15.6846 17.7327 20.4122 23.1324
0.8 10.6238 10.8384 11.1478 11.6318 12.4924 13.8631 15.6644 17.9511 20.2078

Table 7. Case II — columns with linearly varying stiffness, βL →∞.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 9.8696 10.0666 10.3511 10.7978 11.5982 12.8944 14.6602 17.0763 19.7970
0.25 8.6951 8.8800 9.1463 9.5628 10.3039 11.4894 13.0723 15.1763 17.4678
0.50 7.6345 7.8078 8.0570 8.4449 9.1301 10.2115 11.6253 13.4490 15.3706
0.75 6.6807 6.8432 7.0761 7.4371 8.0696 9.0535 10.3113 11.8848 13.4891
1.00 5.8266 5.9789 6.1965 6.5322 7.1152 8.0080 9.1226 10.4735 11.8071
1.50 4.3885 4.5224 4.7123 5.0019 5.4948 6.2237 7.0879 8.0690 8.9779
2.00 3.2634 3.3813 3.5470 3.7962 4.2104 4.7983 5.4560 6.1537 6.7615
2.50 2.3955 2.4998 2.6448 2.8592 3.2054 3.6734 4.1640 4.6491 5.0474
3.00 1.7329 1.8261 1.9540 2.1391 2.4273 2.7948 3.1528 3.4818 3.7373

Table 8. Case II — columns with exponentially varying stiffness, βL=0.
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β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 9.8696 10.2656 10.8447 11.7719 13.4924 16.4634 20.9568 28.1683 37.9572
0.25 8.6951 9.0912 9.6684 10.5871 12.2742 15.1312 19.3093 25.6463 33.6012
0.50 7.6345 8.0318 8.6080 9.5184 11.1681 13.8959 17.7352 23.2317 29.6633
0.75 6.6807 7.0803 7.6563 8.5575 10.1638 12.7453 16.2284 20.9375 26.1113
1.00 5.8266 6.2294 6.8054 7.6958 9.2507 11.6682 14.7864 18.7760 22.9202
1.50 4.3885 4.8003 5.3753 6.2343 7.6558 9.6994 12.1029 14.8873 17.5178
2.00 3.2634 3.6860 4.2546 5.0617 6.3049 7.9434 9.7142 11.6021 13.2518
2.50 2.3955 2.8297 3.3810 4.1094 5.1398 6.3912 7.6528 8.9047 9.9273
3.00 1.7329 2.1777 2.6960 3.3199 4.1300 5.0524 5.9299 6.7435 7.3689

Table 9. Case II — columns with exponentially varying stiffness, βL = β0.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 20.1907 20.4982 20.9462 21.6594 22.9688 25.1822 28.3971 33.1546 38.7118
0.25 17.7938 18.0823 18.5020 19.1681 20.3842 22.4186 25.3196 29.4819 34.1545
0.50 15.6379 15.9085 16.3014 16.9228 18.0507 19.9163 22.5250 26.1504 30.0674
0.75 13.7046 13.9583 14.3258 14.9051 15.9497 17.6565 19.9937 23.1361 26.4052
1.00 11.9763 12.2141 12.5577 13.0972 14.0633 15.6210 17.7068 20.4171 23.1330
1.50 9.0679 9.2767 9.5767 10.0436 10.8665 12.1541 13.7950 15.7797 17.6281
2.00 6.7879 6.9712 7.2329 7.6360 8.3327 9.3851 10.6528 12.0744 13.3081
2.50 5.0249 5.1861 5.4144 5.7615 6.3477 7.1965 8.1554 9.1490 9.9556
3.00 3.6800 3.8224 4.0220 4.3206 4.8104 5.4843 6.1918 6.8675 7.3829

Table 10. Case II — columns with exponentially varying stiffness, βL →∞.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 0.0000 0.0968 0.2305 0.4268 0.7402 1.1597 1.5992 2.0417 2.4188
0.1 0.0000 0.0967 0.2300 0.4250 0.7347 1.1453 1.5703 1.9922 2.3473
0.2 0.0000 0.0966 0.2295 0.4232 0.7288 1.1300 1.5395 1.9403 2.2732
0.3 0.0000 0.0965 0.2289 0.4211 0.7224 1.1133 1.5067 1.8856 2.1959
0.4 0.0000 0.0964 0.2283 0.4189 0.7153 1.0953 1.4714 1.8276 2.1148
0.5 0.0000 0.0963 0.2276 0.4164 0.7075 1.0754 1.4331 1.7655 2.0293
0.6 0.0000 0.0961 0.2268 0.4136 0.6987 1.0534 1.3912 1.6987 1.9384
0.7 0.0000 0.0960 0.2260 0.4106 0.6891 1.0291 1.3455 1.6269 1.8420
0.8 0.0000 0.0961 0.2255 0.4079 0.6795 1.0041 1.2981 1.5528 1.7433

Table 11. Case III — columns with linearly varying stiffness, βL=0.
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β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 0.0000 0.1967 0.4798 0.9220 1.7071 2.9607 4.6386 6.9047 9.4865
0.1 0.0000 0.1965 0.4788 0.9180 1.6933 2.9182 4.5311 6.6604 9.0232
0.2 0.0000 0.1963 0.4775 0.9134 1.6773 2.8698 4.4121 6.3987 8.5430
0.3 0.0000 0.1961 0.4760 0.9078 1.6585 2.8142 4.2791 6.1165 8.0429
0.4 0.0000 0.1957 0.4741 0.9010 1.6358 2.7492 4.1288 5.8099 7.5185
0.5 0.0000 0.1952 0.4715 0.8921 1.6075 2.6713 3.9561 5.4726 6.9637
0.6 0.0000 0.1942 0.4673 0.8791 1.5695 2.5738 3.7520 5.0946 6.3687
0.7 0.0000 0.1916 0.4587 0.8569 1.5131 2.4437 3.5003 4.6591 5.7178
0.8 0.0000 0.1845 0.4392 0.8142 1.4207 2.2575 3.1740 4.1383 4.9853

Table 12. Case III — columns with linearly varying stiffness, βL = β0.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 2.4674 2.6634 2.9430 3.3731 4.1159 5.2392 6.6071 8.1955 9.6752
0.1 2.2928 2.4857 2.7604 3.1821 3.9076 4.9969 6.3089 7.8103 9.1890
0.2 2.1154 2.3048 2.5743 2.9869 3.6937 4.7466 5.9993 7.4106 8.6869
0.3 1.9346 2.1203 2.3839 2.7866 3.4729 4.4864 5.6760 6.9935 8.1658
0.4 1.7495 1.9310 2.1883 2.5800 3.2437 4.2140 5.3359 6.5553 7.6214
0.5 1.5589 1.7357 1.9857 2.3650 3.0036 3.9262 4.9746 6.0903 7.0476
0.6 1.3608 1.5323 1.7740 2.1390 2.7488 3.6176 4.5850 5.5902 6.4348
0.7 1.1522 1.3172 1.5490 1.8972 2.4732 3.2797 4.1559 5.0413 5.7679
0.8 0.9276 1.0846 1.3042 1.6316 2.1661 2.8978 3.6682 4.4207 5.0217

Table 13. Case III — columns with linearly varying stiffness, βL →∞.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 0.0000 0.0968 0.2305 0.4268 0.7402 1.1597 1.5992 2.0417 2.4188
0.25 0.0000 0.0965 0.2293 0.4224 0.7265 1.1240 1.5278 1.9208 2.2456
0.50 0.0000 0.0963 0.2279 0.4177 0.7117 1.0862 1.4542 1.8001 2.0774
0.75 0.0000 0.0961 0.2265 0.4125 0.6957 1.0462 1.3787 1.6803 1.9148
1.00 0.0000 0.0958 0.2248 0.4068 0.6783 1.0041 1.3015 1.5617 1.7582
1.50 0.0000 0.0951 0.2210 0.3936 0.6392 0.9132 1.1436 1.3307 1.4644
2.00 0.0000 0.0943 0.2162 0.3775 0.5934 0.8141 0.9835 1.1115 1.1986
2.50 0.0000 0.0931 0.2098 0.3569 0.5390 0.7067 0.8237 0.9064 0.9603
3.00 0.0000 0.0908 0.1999 0.3285 0.4722 0.5896 0.6643 0.7142 0.7457

Table 14. Case III — columns with exponentially varying stiffness, βL=0.
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β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 0.0000 0.1967 0.4798 0.9220 1.7071 2.9607 4.6386 6.9047 9.4865
0.25 0.0000 0.1963 0.4772 0.9120 1.6727 2.8559 4.3782 6.3250 8.4094
0.50 0.0000 0.1957 0.4740 0.9004 1.6335 2.7421 4.1111 5.7711 7.4488
0.75 0.0000 0.1951 0.4701 0.8867 1.5895 2.6202 3.8410 5.2466 6.5926
1.00 0.0000 0.1943 0.4656 0.8709 1.5404 2.4917 3.5716 4.7537 5.8301
1.50 0.0000 0.1921 0.4538 0.8323 1.4289 2.2214 3.0468 3.8658 4.5463
2.00 0.0000 0.1892 0.4382 0.7845 1.3033 1.9450 2.5555 3.1061 3.5282
2.50 0.0000 0.1852 0.4184 0.7288 1.1695 1.6731 2.1077 2.4651 2.7204
3.00 0.0000 0.1799 0.3942 0.6669 1.0314 1.4111 1.7059 1.9282 2.0780

Table 15. Case III — columns with exponentially varying stiffness, βL = β0.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 2.4674 2.6634 2.9430 3.3731 4.1159 5.2392 6.6071 8.1955 9.6752
0.25 2.0666 2.2553 2.5237 2.9344 3.6366 4.6801 5.9165 7.3018 8.5478
0.50 1.7254 1.9076 2.1656 2.5580 3.2220 4.1898 5.3033 6.5057 7.5498
0.75 1.4364 1.6124 1.8608 2.2361 2.8638 3.7595 4.7581 5.7959 6.6662
1.00 1.1924 1.3628 1.6022 1.9614 2.5545 3.3812 4.2723 5.1623 5.8834
1.50 0.8153 0.9759 1.1990 1.5284 2.0559 2.7527 3.4489 4.0890 4.5742
2.00 0.5525 0.7047 0.9134 1.2152 1.6803 2.2555 2.7820 3.2263 3.5426
2.50 0.3722 0.5171 0.7127 0.9880 1.3919 1.8521 2.2336 2.5290 2.7278
3.00 0.2507 0.3891 0.5720 0.8203 1.1621 1.5137 1.7751 1.9618 2.0818

Table 16. Case III — columns with exponentially varying stiffness, βL →∞.
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Figure 4. Stiffness variations studied in the paper in more detail. Left: linear variation
in stiffness. Right: exponential variation in stiffness.
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Figure 5. Case I — columns with variable stiffness: variation of normalized buckling
load with normalized linear spring stiffness. Left: linear variation in stiffness. Right:
exponential variation in stiffness.

Figure 5 shows the variation of normalized buckling load with normalized linear spring stiffness for
columns of variable stiffness with the end conditions considered in Case I. Recalling that the cases for
b=0 and a=0 correspond to uniform columns, it can be seen from these graphs that as the sharpness of the
stiffness variation (a or b) increases, the buckling load of the column decreases considerably especially
if the spring stiffness is large. Figure 5 also shows that there is no need to increase the spring stiffness
beyond a critical value because further increases will result in no change in buckling load. For a particular
case, this “critical” value of the spring stiffness can easily be determined using VIM.

Figures 6 and 7 show the variation of normalized buckling load with normalized rotational spring
stiffnesses for columns of, respectively, linearly and exponentially variable flexural stiffness with the
boundary conditions considered in Case II. Similarly, Figures 8 and 9 show the effect of rotational
spring stiffnesses on normalized buckling load for columns of, respectively, linearly and exponentially
variable flexural stiffness with the boundary conditions considered in Case III. Comparison of the graphs
presented in Figures 6 and 7 with those given in Figures 8 and 9 clearly shows the importance of the
lateral bracing of the columns. Case II columns with lateral bracing have much larger elastic buckling
loads compared to Case III columns which are free to displace in lateral direction.

5. Conclusions

In an attempt to construct ever-stronger and ever-lighter structures, many engineers currently design
slender high strength columns with variable cross sections and various end conditions. Even though
buckling behavior of uniform columns with ideal boundary conditions are extensively studied, there are
limited studies in the literature on buckling analysis of nonuniform columns with elastic end restraints.
This is due to the fact that such an analysis requires the solution of more complex differential equations
for which it is usually impractical or sometimes even impossible to obtain exact solutions.
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Figure 6. Case II — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with linearly varying stiffness.
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Figure 7. Case II — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with exponentially varying stiffness.
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Figure 8. Case III — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with linearly varying stiffness.
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Figure 9. Case III — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with exponentially varying stiffness.
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This paper shows that the variational iteration method (VIM) can successfully be used to determine
the buckling loads of slender columns with elastic end restraints. To the best knowledge of author, exact
solutions to this problem are available only for some particular cases of uniform columns. For this reason,
before analyzing the columns with variable cross sections, the buckling loads of columns with constant
cross sections are determined using classical variational iteration algorithm and VIM results are compared
to the exact results, which show perfect match. After verifying the efficiency of VIM in the analysis of
this special type of buckling problem, the columns with variable flexural stiffness are analyzed using this
practical technique. It is shown that unlike exact solution procedures, variational iteration algorithms can
easily be used even when the column stiffness change along its length exponentially or linearly and/or
the end conditions are rather complex.
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