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ON THE CHOICE OF FUNCTIONS SPACES IN THE LIMIT ANALYSIS FOR
MASONRY BODIES

MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

The kinematic and static problems of limit analysis of no-tension bodies are formulated. The kinematic
problem involves the infimum of kinematically admissible multipliers, and the static problem the supre-
mum of statically admissible multipliers. The central question of the paper is under which conditions
these two numbers coincide. This involves choices of function spaces for the competitor displacements
and competitor stresses. A whole ordered scale of these spaces is presented. These problems are
formulated as convex variational problems considered by Ekeland and Témam. The static problem is
unconditionally shown to be the dual problem (in the sense of the mentioned reference) of the kinematic
problem. A necessary and sufficient condition, the normality, guarantees that the kinematic and static
problems give the same result. The normality is not always satisfied, as examples show (one of which
is presented here). The qualification hypothesis of Ekeland and Témam, sufficient for the equality of the
static and kinematic problems, is never satisfied in the spaces of admissible displacements of bounded
deformation or of functions integrable together with the gradient in the power p, 1≤ p<∞. In the cases
of lipschitzian displacements and of smooth displacements, the qualification hypothesis is equivalent to
simple conditions that can be satisfied in the case of the pure traction problem. However, it is shown that
then the space of admissible stresses must be enlarged to contain stress fields represented by finitely or
countably additive tensor-valued measures.

1. Introduction

No-tension (masonry-like) materials [Anzellotti 1985; Giaquinta and Giusti 1985; Del Piero 1989; Di Pas-
quale 1992; Lucchesi et al. 2008a] cannot support all stresses: only negative semidefinite stresses are
possible. Therefore, bodies made of no-tension materials cannot support all loads, certain loads lead
to the collapse of the body. The goal of limit analysis is to determine the limit load, i.e., the largest
possible load prior to collapse. It is customary to assume that the loads depend affinely on a scalar
parameter λ, the loading multiplier, as described in Section 2A, and the problem reduces to determining
the collapse multiplier, i.e., the value of λ corresponding to the limit load. Limit analysis is tradition-
ally based on the static and kinematic theorems, which determine the limit load as the supremum of
statically admissible multipliers and the infimum of kinematically admissible multipliers, respectively.
The traditional definition identifies the collapse multiplier as one with the collapse mechanism (called
strong mechanism in Section 2C below). Under this assumption the supremum of statically admissible
multipliers and the infimum of kinematically admissible multipliers are the same and coincide with the
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collapse multiplier. The reader is referred to [Del Piero 1998] for the proofs of the static and kinematic
theorems under this definition. There is no definition of the collapse multiplier in the present paper since
the strong mechanism need not exist (see Example 7.6), and the supremum and infimum can be different,
depending of the choice of the function spaces, as discussed in Example 7.12.

In this paper we call the definitions of the infimum and of the supremum mentioned above the kine-
matic and static problems of limit analysis of no-tension bodies. The kinematic problem involves the
choice of the function space for admissible displacements. The static problem involves the choice of the
function space for admissible stress fields. The central question of the paper is under which conditions
these two numbers coincide. Various choices of the spaces are discussed in detail: for the space of
displacements we consider the subspaces satisfying the null boundary condition on the fixed part of the
boundary of (a) functions of bounded deformation, (b) the Sobolev spaces W 1,p, 1 ≤ p <∞, (c) the
Sobolev space W 1,∞ of lipschitzian displacements, and (d) the space C1 of all smooth displacements on
the closure of the body. Corresponding to these choices we are led to stress spaces which consist, respec-
tively, of (a′) the space of continuous functions, (b′) the space Lq of stress fields that are integrable with
the power q where q is the Hölder conjugate exponent of p, (c′) the stress fields represented by finitely
additive measures on the body that are absolutely continuous with respect to the Lebesgue measure, and
(d′) the stress fields represented by countably additive Borel measures on the closure of the body.

The problems mentioned are formulated as convex variational problems considered in [Ekeland and
Témam 1999, Chapter III]. Following the similar application of the duality theory to the deformation
(Hencky) theory of plasticity in [Témam and Strang 1980] and [Témam 1983], the static problem of the
limit analysis is unconditionally shown to be the dual problem (in the sense of [Ekeland and Témam
1999]) of the kinematic problem. The theory provides a necessary and sufficient condition for the primal
and dual variational problems giving the same result, the normality. This is particularized to the static
and kinematic problems of no-tension bodies. The condition can be applied with any choice of function
spaces, and different choices lead to different results. Another condition, called qualification hypothesis
in [Ekeland and Témam 1999, Chapter III, Remark 2.4], provides a sufficient condition. However, normal-
ity is difficult to verify. The qualification hypothesis even cannot be satisfied, with some function spaces,
by the no-tension material, at variance with the deformation theory of plasticity. This failure occurs in
the spaces of admissible displacements as in (a) and (b), no matter how tame the loads. An example is
presented in which the static and kinematic problems give different results. The necessary and sufficient
condition and the qualification hypothesis can be satisfied with the choices (c) and (d). However, then
the space of admissible stresses must be enlarged to contain measures as mentioned above.

Another application of the duality theory, different from the one employed in [Témam 1983], is used
to derive a simple condition for the static admissibility of a given multiplier.

In the introductions to the subsequent sections we give brief outlines of the material presented. We
also refer to the summary in Section 8 for a more detailed discussion of the results of the paper.

Throughout, we use the conventions for vectors and second order tensors identical with those in [Gurtin
1981]. Thus Lin denotes the set of all second order tensors on Rn , i.e., linear transformations from Rn

into itself, Sym is the subspace of symmetric tensors, Sym+ the set of all positive semidefinite elements
of Sym; additionally Sym− is the set of all negative semidefinite elements of Sym. The scalar product
of A, B ∈ Lin is defined by A · B = tr(ABT) and | · | denotes the associated euclidean norm on Lin. If
A, B ∈ Sym, we write A≥ B to say that A− B ∈ Sym+. We denote by 1 the unit tensor in Sym.
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2. Abstract setting of the limit analysis for no-tension materials

We start this section with an informal introduction to the no-tension body and applied loads, i.e., surface
tractions and body forces. Section 2B formulates the problem abstractly, with the energy of the loads
as linear functionals on displacements and stresses as linear functionals on strains. Section 2C gives
definitions of kinematically and statically admissible multipliers, of the infima and suprema thereof,
of the collapse mechanism, and strong collapse mechanism. Section 2D reviews the duality theory
of Ekeland and Témam. It presents the normality condition, which is equivalent to the equality of
the results of the primal and dual problems, and a sufficient condition, the qualification hypothesis.
Section 2E particularizes Section 2D to the kinematic and static problems of limit analysis of no-tension
bodies. Proposition 2.5 gives a necessary condition for the equality of the results of the kinematic and
static problems (i.e., for the normality) and Proposition 2.6 a sufficient condition (i.e., the qualification
hypothesis). Finally Proposition 2.8 gives a necessary and sufficient condition for a multiplier to be
statically admissible.

2A. Loads and potential energy. Let � be a reference configuration of a continuous body made of a
no-tension material; it is assumed that � is a bounded connected open set in Rn (typically n = 2 or n = 3)
with Lipschitz boundary ∂� in the sense of [Ekeland and Témam 1999, Chapter X, Section 2.2], of outer
normal n. The body is fixed on an area measurable subset D of ∂� while on S := ∂� \D the body
is subjected to surface tractions depending on the loading multiplier as specified below. We consider
displacements v : �→ Rn from a Banach space of displacements V . Several choices of V are given
below, and in all these choices it is meaningful to speak about the values of v on the boundary ∂�, and
in particular it is meaningful to require that

v = 0 on D, (2-1)

either in the classical or in some generalized sense. We denote by W the set of all displacements from
V which satisfy (2-1).

We assume that the body is subjected to loads consisting of a surface traction on S and a body force in
�; both the surface traction and the body force depend affinely on a real parameter λ called the loading
multiplier. Thus if λ ∈ R, the surface tractions s(λ) : S→ Rn and the body force b(λ) : �→ Rn are
given by

s(λ)= s◦+ λs̄, b(λ)= b◦+ λb̄,

where s◦ and s̄ are vector-valued functions on S and b◦ and b̄ are vector-valued functions on �. The
functions s◦, s̄, b◦, b̄ have to belong to appropriate spaces to make the discussion that follows meaningful.
We call the pair (s(λ), b(λ)) the loads corresponding to λ, the pair (s◦, b◦) the permanent loads and the
pair (s̄, b̄) the variable loads. We define the potential energy 〈l(λ), v〉 of the loads corresponding to λ
on a displacement v by

〈l(λ), v〉 = 〈l◦, v〉+ λ〈l̄, v〉 (2-2)

where

〈l◦, v〉 =
∫
�

b◦ · v d Ln
+

∫
S

s◦ · v d Hn−1, (2-3)
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and

〈l̄, v〉 =
∫
�

b̄ · v d Ln
+

∫
S

s̄ · v d Hn−1, (2-4)

for v ∈W , with Ln and Hn−1 the volume and area measures, i.e., the Lebesgue measure and the (n−1)-
dimensional Hausdorff measure in Rn . Here the integrals are interpreted either classically or in an
appropriate generalized sense to be precisely specified below.

We further define the infinitesimal strain tensor Ê(v) of the displacement v ∈W by

Ê(v)= 1
2(∇v+∇vT), (2-5)

which will be either a function defined for almost all points of �, taking the values in the space Sym, or
a Sym-valued measure. Throughout, “almost all”, “almost every” and “almost everywhere” mean with
respect to the Lebesgue measure. It is then meaningful to consider the space W+ of all displacements
v ∈W for which Ê(v) is either a positive semidefinite tensor for almost every point of � or a measure
taking values in the set of positive semidefinite tensors. This is a convex cone in W , i.e., we have the
following implications:

v,w ∈W+ ⇒ v+w ∈W+,

v ∈W+ and t ∈ R, t ≥ 0 ⇒ tv ∈W+.

We assume that for the selected space W , the strain tensors Ê(v) : �→ Sym belong to some Banach
space Y , which will form either an appropriately chosen class of functions F : �→ Sym, possibly
defined only almost everywhere in �, or the space of Sym valued measures. We furthermore denote
by Y+ the convex cone of all F ∈ Y such that either F is positive semidefinite almost everywhere or a
measure with values in the space of positive semidefinite tensors. Thus if v ∈W+, then Ê(v) ∈ Y+.

Next, we consider the stress fields T . In the classical cases, this will be a function from � to Sym,
possibly defined only almost everywhere. We shall also consider stress fields T represented by a more
general object, viz., a finitely additive or countably additive measure to be specified in the subsequent
formal treatment. We denote by Y ∗ the linear space of all stress fields, which we assume to form a
closed subspace of the Banach space Y ′ of all continuous linear functionals on Y , i.e., the dual of Y . We
denote by (T , F) the pairing between elements T ∈ Y ∗ and elements F ∈ Y , i.e., the value of the linear
functional T on an element F. In the classical case we have

(T , F)=
∫
�

T · F d Ln
; (2-6)

the integral has to be interpreted in a generalized sense in the more general cases of Y and Y ∗. The stress
fields in the masonry bodies take negative semidefinite values. If T :�→ Sym is a negative semidefinite
classical function, we have

(T , F)≤ 0 for all F ∈ Y+. (2-7)

In the classical case we denote by Y ∗− the set of all stress fields on � which take negative semidefinite
values almost everywhere on �. When the stress field T ∈ Y ∗ is not represented by a function, we define
Y ∗− as the set of all elements of Y ∗ which satisfy (2-7). (In the classical case this leads to the requirement
posed previously.) We say that a stress field T is Y ∗ admissible if T ∈ Y ∗−.
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2B. Abstract setting of the problem. We summarize the essential features of the discussion in the pre-
ceding section. We consider general objects

W, l, l◦, Y, Y ∗, Ê, Y+, Y ∗− (2-8)

of the following nature:

(i) W is a Banach space;

(ii) l◦ and l̄ are elements in the dual W ∗ of W ;

(iii) Y is a Banach space and Y ∗ is a closed subspace of the dual Y ′ of Y ;

(iv) Ê is a continuous linear transformation from W to Y ;

(v) Y+ and Y ∗− are closed convex cones in Y and in the dual Y ∗ of Y , respectively, which are dual to
each other in the sense that

{F ∈ Y : (T , F)≤ 0 for every T ∈ Y ∗−} = Y+,

{T ∈ Y ∗ : (T , F)≤ 0 for every F ∈ Y+} = Y ∗−.

We interpret W as the set of displacement fields over � satisfying the kinematical constraint (2-1), and
l◦ and l̄ as the energy functionals of the permanent and variable loads. We then define l(λ) by (2-2) for
any λ ∈ R. We denote by 〈 · , · 〉 the dual pairing between W ∗ and W ; i.e., 〈m, v〉 ∈ R denotes the value
of the linear functional m ∈ W ∗ on an element v ∈ W . The transformation Ê( · ) associates with any
displacement v ∈W an element Ê(v) ∈ Y , which we interpret as the strain field of v. We define W+ by

W+ = {v ∈W : Ê(v) ∈ Y+}

and view W+ as the set of all displacements with positive semidefinite strain tensor over �. We denote
by ( · , · ) the dual pairing between Y ∗ and Y , i.e., (T , F) ∈ R denotes the value of the linear functional
T ∈ Y ∗ on the element F ∈ Y . The stress fields are interpreted as the elements of Y ∗, and Y ∗− is
interpreted as the set of all negative semidefinite stress fields. We say that T ∈ Y ∗ is an admissible stress
field if T ∈ Y ∗−; to emphasize the space of stresses, we sometimes say that T is Y ∗ admissible. We say
that a stress field T ∈ Y ∗ equilibrates the loads corresponding to λ if

(T , Ê(v))= 〈l(λ), v〉

for every v ∈W .
In Sections 2C and 2E, we will use the abstract setting described above. In subsequent sections we

make concrete choices for the objects introduced here.

2C. Kinematically and statically admissible multipliers. We say that a multiplier λ is kinematically
admissible if

there exists a v ∈W+ such that 〈l̄, v〉 = 1 and 〈l(λ), v〉 = 0. (2-9)

The last notion depends on the choice of the space W , and to emphasize this, we will sometimes say that
λ is W -kinematically admissible. We denote the set of all kinematically admissible multipliers by 3̄. If
λ is given, we call the element v as in (2-9) a mechanism corresponding to λ.
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We say that a multiplier λ ∈ R is statically admissible if there exists an admissible stress field T which
equilibrates the loads corresponding to λ. We shall sometimes say that λ is Y ∗-statically admissible. We
denote by 3 the set of all statically admissible multipliers.

The sets 3̄ and 3 are intervals, possibly empty, singletons, bounded, unbounded, open, or semiopen.
To see, e.g., that 3̄ is an interval, we note that if λ,µ∈ 3̄ and s≥ 0, t ≥ 0, s+t = 1, then also sλ+tµ∈ 3̄
since if v,w ∈W+ denote mechanisms corresponding to λ and µ, respectively, then sv+ tw ∈W+ is a
mechanism corresponding to sλ+ tµ ∈ 3̄. That 3 is an interval is proved similarly.

The interval 3 is situated to the left of the interval 3̄ in the sense that

if λ ∈3 and µ ∈ 3̄ then λ≤ µ. (2-10)

Hence the intersection of 3 and 3̄ can contain at most one point. To prove (2-10), we note that if µ
is kinematically admissible and v is a mechanism corresponding to it, then µ = −〈l◦, v〉 while if λ is
statically admissible and T ∈ Y ∗− a corresponding stress field, then 0≥ (T , Ê(v))= 〈l(λ), v〉 and hence
λ≤−〈l◦, v〉, which gives (2-10).

Central to our considerations are the numbers (or the symbols∞ and −∞)

λ̄W := inf{λ ∈ R : λ is W kinematically admissible} (2-11)

and

λY ∗ := sup{λ ∈ R : λ is Y ∗ statically admissible}. (2-12)

We call (2-11) the kinematic problem and (2-12) the static problem. We furthermore call λ̄W the critical
multiplier of the kinematic problem and λY ∗ the critical multiplier of the static problem. The implication
in (2-10) gives

λY ∗ ≤ λ̄W . (2-13)

We examine conditions under which we have the equality in (2-13). Example 7.12, below, shows that
under common choices of function spaces and under bounded and piecewise continuous loads we have
the strict inequality sign. In the following section we treat the equality in (2-13) by applying the duality
theory of [Ekeland and Témam 1999].

We close this section with a simple sufficient condition for the equality in (2-13). We say that the
multiplier λc ∈ R admits a strong mechanism if there exists a statically admissible stress field Tc ∈ Y ∗−

corresponding to λc and a vc ∈W such that

〈l̄, vc〉 = 1 and (T − Tc, Ê(vc))≤ 0 for every T ∈ Y ∗−.

Proposition 2.1. If λc admits a strong mechanism vc, then

λY ∗ = λ̄W = λc (2-14)

and vc is a corresponding mechanism.

Proof. The definition requires that λc be statically admissible and hence

λc ≤ λY ∗ . (2-15)
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We have (T − Tc, Ê(vc)) ≤ 0 for every T ∈ Y ∗−; replacing T by tT where t > 0, we obtain another
element of Y ∗− and hence (tT − Tc, Ê(vc)) ≤ 0; dividing by t and letting t → ∞ we thus obtain
(T , Ê(vc))≤ 0, which by the assumed duality of the cones Y+ and Y ∗− stated in the preceding section
implies that Ê(vc) ∈ Y+, and hence vc ∈ W+. Setting T = 0 in the inequality (T − Tc, Ê(vc)) ≤ 0
we obtain (Tc, Ê(vc)) ≥ 0 and as also Tc ∈ Y ∗− and Ê(v) ∈ Y+, we have (Tc, Ê(vc)) ≤ 0 and hence
(Tc, Ê(vc))= 0. Since Tc balances the loads corresponding to λc, we have

0= (Tc, Ê(vc))= 〈l(λc), vc〉

and since 〈l̄, vc〉 = 1 as part of the definition of the strong mechanism, we see that λc is kinematically
admissible and vc a mechanism corresponding to it. Thus

λ̄W ≤ λc. (2-16)

Combining inequalities (2-15) and (2-16) with (2-13) we obtain (2-14). Then vc is a corresponding
mechanism. �

Remark 2.2. In [Del Piero 1998, IV.1], a definition is given of collapse mechanism for the general case
of a normal linear material (of which the no-tension material is a special case) which eventually leads
to the properties embodied in the present definition of strong mechanism. Indeed, as a consequence of
Del Piero’s definition and of the assumptions of his kinematic theorem in the same work, the collapse
mechanism in the sense of [Del Piero 1998] is assumed to exist. If we denote it by v̄c, it satisfies

〈l̄, v̄c〉> 0,

(T − Tc, Ê(v̄c))≤ 0 for every T ∈ Y ∗−.

(Cf. the text between Equations (42) and (43), and the second sentence after Equation (37), respectively.)
It then follows that vc := v̄c/〈l̄, v̄c〉 is a strong mechanism in the present sense. Thus Del Piero’s definition
of collapse mechanism is more restrictive than the present definition of strong mechanism and, hence
Proposition 2.1 covers all cases treated in the version of the kinematic theorem in [Del Piero 1998].

We consider the assumption of the existence of collapse mechanism as too restrictive. Indeed, in
Example 7.6 (below) we present loads which satisfy (2-14) and yet there is no collapse mechanism in
the sense of [Del Piero 1998, Definition IV.1] or strong mechanism in the present sense. In the subsequent
treatment we seek to prove (2-14) under more general assumptions.

2D. Primal and dual variational problems of convex analysis. We here outline the duality theory for
convex variational problems developed in [Ekeland and Témam 1999, Chapter III].

Consider the variational problem [loc. cit., Remark 4.2]

J̄ = inf{C(v)+ D(Ê(v)) : v ∈W }, (2-17)

where C :W → R∪ {∞}, D : Y → R∪ {∞} are general convex functions on Banach spaces W , Y and
Ê( · ) :W → Y is a general bounded linear transformation. We call (2-17) the primal problem.

The dual problem is defined by

J = sup{−C∗(−Ê∗T )− D∗(T ) : T ∈ Y ∗}, (2-18)
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where W ∗ is the dual of W and Y ∗ is a closed subspace of the dual space Y ′ of Y , C∗ :W ∗→ R∪ {∞},
D∗ : Y ∗→ R∪ {∞} are the convex conjugates of C , D, respectively, and Ê∗ : Y ∗→W ∗ is the adjoint
transformation of Ê. The convex conjugate functions are defined by

C∗(m)= sup{〈m, v〉−C(v) : v ∈W },

D∗(T )= sup{(T , F)− D(F) : F ∈ Y },

for each m ∈W ∗, T ∈ Y ∗, and the adjoint Ê∗ is a linear transformation defined by the relation

(T , Ê(v))= 〈Ê∗T , v〉

for each v ∈W , T ∈ Y ∗.
We assume that the functions C and D are proper, i.e., each of them is less than∞ somewhere and

bigger than −∞ everywhere. One has generally

−∞≤ J ≤ J̄ ≤∞.

Let H : Y → R∪ {−∞,∞} be defined by

H(F)= inf{C(v)+ D(Ê(v)− F) : v ∈W }, (2-19)

for F ∈ Y , so that H(0) = J̄ . The function H is convex. The problem (2-17) is said to be normal if
H(0) is finite and H is lower semicontinuous at 0.

Proposition 2.3. The following conditions are equivalent:

(i) The problem (2-17) is normal.

(ii) One has

J = J̄ (2-20)

and this number is finite.

The problem (2-17) is said to satisfy the qualification hypothesis if there exists a v◦ ∈W such that

C(v◦) <∞, D(Ê(v◦)) <∞ and D is continuous at Ê(v◦). (2-21)

See [Ekeland and Témam 1999, Chapter III, Remark 2.4].

Proposition 2.4. Suppose the problem (2-17) satisfies the qualification hypothesis. Then:

(i) Equation (2-20) holds.

(ii) If the number J = J̄ is finite, the dual problem has a solution, i.e., there exists a T ∈ Y ∗ such that

J =−C∗(−Ê∗T )− D∗(T ).

We emphasize that the qualification hypothesis is sufficient for (2-20) but not necessary, the necessary
and sufficient condition is the normality.
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2E. Primal and dual variational problems of limit analysis. The definition (2-11) of λ̄W is easily seen
to be equivalent to

λ̄W = inf{−〈l◦, v〉 : v ∈W+, 〈l̄, v〉 = 1}. (2-22)

Proposition 2.5. Let H : Y → R∪ {−∞,∞} be given by

H(F)= inf{−〈l◦, v〉 : v ∈W, Ê(v)− F ∈ Y+, 〈l̄, v〉 = 1}, (2-23)

F ∈ Y . Then:

(i) H is convex and nondecreasing in the sense that H(F)≤ H(G) whenever G− F ∈ Y+.

(ii) We have
λY ∗ = λ̄W ∈ R

if and only if H(0) is finite and H is lower semicontinuous at 0.

Here the finiteness of H(0) and the lower semicontinuity of H at 0 is the normality condition for (2-22).

Proof. The problem (2-22) can be rewritten as

λ̄W = inf{C(v)+ D(Ê(v)) : v ∈W } (2-24)

where
C :W → R∪ {∞}, D : Y → R∪ {∞}

are the functions defined by

C(v)=
{
−〈l◦, v〉 if v ∈W and 〈l̄, v〉 = 1,
∞ if v ∈W and 〈l̄, v〉 6= 1,

(2-25)

D(F)=
{

0 if F ∈ Y+,
∞ if F ∈ Y \ Y+.

(2-26)

The dual problem reads

λY ∗ = sup{λ ∈ R : λ is statically admissible}. (2-27)

To prove the last statement, calculate C∗ and D∗. If m ∈W ∗, then

C∗(m)= sup{〈m+ l◦, v〉 : v ∈W, 〈l̄, v〉 = 1}

and since this supremum is finite if and only if m+ l◦ and l̄ are parallel, say m+ l◦ = −λl̄ for some
λ ∈ R, and then 〈m+ l◦, v〉 = −λ, we have

C∗(m)=
{
−λ if there exists a λ ∈ R such that 〈m, v〉+ 〈l(λ), v〉 = 0 for every v ∈W,
∞ otherwise,

(2-28)

m ∈W ∗. Letting T ∈ Y ∗, setting m=−Ê∗T and noting that the finite regime in (2-28) occurs if and only
if T equilibrates the loads corresponding to λ, in the sense that

(
T , Ê(v)

)
= 〈l(λ), v〉 for each v ∈ W ,

we obtain

C∗(−Ê∗T )=
{
−λ if T equilibrates the loads corresponding to λ,
∞ otherwise.
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Furthermore, the definition (2-26) of D∗ and the fact that Y+ is a cone implies that

D∗(T )=
{

0 if T ∈ Y ∗−

∞ if T ∈ Y ∗ \ Y ∗−

T ∈ Y ∗. Thus the right-hand side of the dual variational problem (2-18) is

−C∗(−Ê∗T )− D∗(T )=
{
λ if T equilibrates the loads corresponding to λ and T ∈ Y ∗−,
−∞ otherwise,

and (2-27) follows.
The function H of (2-19) is given by (2-23).

(i) H is convex (as stated generally in Section 2D). To prove the nondecreasing character of H , it suffices
to note that if G− F ∈ Y+ then

{v ∈W, Ê(v)− G ∈ Y+, 〈l̄, v〉 = 1} ⊂ {v ∈W, Ê(v)− F ∈ Y+, 〈l̄, v〉 = 1}.

(ii) This follows from Proposition 2.3. �

Proposition 2.6. Assume that

there exists a v̄◦ in W+ satisfying 〈l̄, v̄◦〉> 0 such that Ê(v̄◦) is an interior point of Y+. (2-29)

Then
λY ∗ = λ̄W ; (2-30)

if , additionally, the number λY ∗ = λ̄W is finite, then λ̄W is statically admissible.

Condition (2-29) is the qualification hypothesis for Problem (2-22).

Proof. Consider the problem (2-24) with C and D given by (2-25) and (2-26). This problem satisfies
the qualification hypothesis if and only if there exists a v̄◦ as in (2-29). Indeed, assume that the problem
satisfies the qualification hypothesis. Then there exists a point v̄◦ such that (2-21) hold; the first of these
three conditions and the definition of C gives that 〈l̄, v̄◦〉 = 1; the second of these conditions and the
definition of D gives v̄◦ ∈ W+, and the third condition gives that D is finite in some neighborhood of
Ê(v̄◦). Then v̄◦ is as in (2-29). Conversely, if (2-29) holds, then the point v◦ := v̄◦/〈l̄, v̄◦〉 satisfies (2-21).

Then the assertion of the proposition follows from Proposition 2.4. �

Remark 2.7. Condition (2-29) is never satisfied if one uses displacements from the space BD of func-
tions of bounded deformation or if one uses displacements from the Sobolev space W 1,p of functions
integrable together with the gradient in the power p where 1 ≤ p < ∞. Indeed, we shall see that
then the cone Y+ has empty interior; see Sections 3 and 4. The cone Y+ has nonempty interior if one
uses lipschitzian displacements or continuously differentiable displacements on the closure of �, see
Sections 5 and 6. However, we shall see that in the case of continuously differentiable displacements,
(2-29) can be satisfied essentially only in the pure traction problem, when D=∅. Condition (2-29) is
only sufficient for (2-30); a necessary and sufficient condition is provided by 2.5: the finiteness of H(0)
and lower semicontinuity of H at 0. The last condition is difficult to verify in concrete cases. Only
in the cases of lipschitzian displacements or of continuously differentiable displacements, the lower
semicontinuity of H at 0 reduces to verifying lower semicontinuity of a real function of real variable.
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Lower semicontinuity frequently holds even when (2-29) fails to hold, because in concrete cases of loads
we often have the equality (2-30).

We now address the problem of statical admissibility of a given multiplier λ ∈ R.

Proposition 2.8. A multiplier λ is Y ∗-statically admissible if and only if there exists a c <∞ such that

sup{〈l(λ), v〉 : v ∈W, Ê(v)− F ∈ Y+} ≤ c|F| (2-31)

for every F ∈ Y , where | · | denotes the norm on Y .

Condition (2-31) is the normality of the problem of static admissibility of a given λ. This condition
will be employed in Example 7.6. Clearly (2-31) implies that

〈l(λ), v〉 ≤ 0 (2-32)

for every v ∈W+. However, (2-32) does not suffice for the static admissibility of λ; see Example 7.12
and Remark 7.15, below. Inequality (2-31) says, roughly, that if we allow displacements with slightly
negative strain, then 〈l(λ), v〉 can become positive, but not too much.

Proof. Consider the problem
Ī = inf{−〈l(λ), v〉 : v ∈W+}. (2-33)

This problem takes the form
Ī = inf{C(v)+ D(Ê(v)) : v ∈W } (2-34)

with

C(v)=−〈l(λ), v〉 and D(F)=
{

0 if F ∈ Y+,
∞ otherwise,

for v ∈W , F ∈ Y , and with Ê( · ) the small strain mapping. Problem (2-34) reads explicitly

Ī =
{

0 if 〈l(λ), v〉 ≤ 0 for every v ∈W+,
−∞ otherwise.

(2-35)

Indeed, if 〈l(λ), v〉 ≤ 0 for every v ∈W+ then the infimum in (2-33) is taken over the set of nonnegative
numbers and thus Ī ≥ 0; on the other hand, setting v = 0 in (2-33) we obtain Ī ≤ 0 and thus we have
the first regime in (2-35). In the second regime we have 〈l(λ), v̄〉> 0 for some v̄ ∈W+; setting v = sv̄
where s > 0 in (2-33) we obtain

Ī ≤−s〈l(λ), v̄〉;

as this must be satisfied for all s > 0; we have the value asserted by the second regime in (2-35).
We determine the dual of (2-34). We have

C∗(m)=
{

0 if m =−l(λ),
∞ otherwise,

(2-36)

m ∈W ∗, and

D∗(T )=
{

0 if T ∈ Y ∗−,
∞ otherwise,
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T ∈ Y ∗. Setting m =−Ê∗T in (2-36), we obtain

C∗(−Ê∗T )=
{

0 if Ê∗T = l(λ),
∞ otherwise,

T ∈ Y ∗. Then

−C∗(−Ê∗T )− D∗(T )=
{

0 if Ê∗T = l(λ) and T ∈ Y ∗−,
−∞ otherwise,

T ∈ Y ∗. Noting that the conditions Ê∗T = l(λ) and T ∈ Y ∗− mean exactly that λ is Y ∗-statically
admissible, we have the following: the dual problem of (2-34) reads

I =
{

0 if λ is Y ∗ statically admissible,
−∞ otherwise.

(2-37)

The function H : Y → R∪ {−∞,∞} of (2-19) corresponding to Problem (2-34) is given by

H(F)= inf{−〈l(λ), v〉 : v ∈W, Ê(v)− F ∈ Y+};

the function H has the following properties:

(i) H is convex.

(ii) H is nondecreasing in the sense that H(F)≤ H(G) whenever G− F ∈ Y+.

(iii) H(F)≤ 0 if −F ∈ Y+.

(iv) H(s F)= s H(F) for every F ∈ Y and s > 0.

(v) either H(0)= 0 or H(0)=−∞.

Indeed, (i) follows from the convexity of the general H stated in Section 2D. (ii) follows from the fact
that if G− F ∈ Y+ then

{v ∈W, Ê(v)−G ∈ Y+} ⊂ {v ∈W, Ê(v)− F ∈ Y+}.

(iii) follows from the fact that if −F ∈ Y+ then

0 ∈ {v ∈W, Ê(v)− F ∈ Y+}.

(iv) follows from the equation

{v ∈W, Ê(v)− s F ∈ Y+} = s{v ∈W, Ê(v)− F ∈ Y+}.

(v) is proved by noting that H(0)≤ 0 by (iii) and H(0)= s H(0) for every s > 0 by (iv).
By definition, the problem (2-34) is normal if and only if H(0)= 0 and H is lower semicontinuous at

0. By Proposition 2.3 the normality is equivalent to I = Ī ∈ R and this in turn is equivalent to the statical
admissibility of λ. Thus, to prove that (2-31) is equivalent to the statical admissibility of λ, we have to
show that the conditions H(0)= 0 and H is lower semicontinuous at 0 are equivalent to (2-31).

Indeed, let H(0)= 0 and let H be lower semicontinuous at 0. Then H is bounded from below on the
unit ball in Y in the sense that there exists a c > 0 such that

H(F)≥−c for all F ∈ Y with |F| ≤ 1.
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The positive homogeneity of H asserted in (iv) then implies

H(F)≥−c|F| for all F ∈ Y, (2-38)

and the definition of H gives (2-31). Conversely, if (2-31) holds then we have (2-38) and this in turn
implies that H(0)≥ 0. As by (v) we have H(0)≤ 0, this implies H(0)= 0, and (2-38) gives that H is
lower semicontinuous at 0. �

Proposition 2.9. Let λ ∈ R. If there exists a v◦ ∈ W+ such that Ê(v◦) is an interior point of Y+ then λ
is Y ∗ statically admissible if and only if 〈l(λ), v〉 ≤ 0 for all v ∈W+.

The hypothesis of this proposition is the qualification condition for the problem of the static admissi-
bility of λ.

Proof. Problem (2-33) satisfies the qualification hypothesis if and only if there exists a v◦ ∈ W+ such
that Ê(v◦) is an interior point of Y+. This is proved in the same way as in Proposition 2.6. Under the
qualification hypothesis we have the equality I = Ī by Proposition 2.4 and the explicit forms (2-35) and
(2-37) of the primal and dual problems show that λ is Y ∗-statically admissible if and only if 〈l(λ), v〉 ≤ 0
for all v ∈W+. �

3. Displacements in BD and continuous stresses

This section presents the kinematic and static problems with the choice of displacements of bounded
deformation and with the choice of continuous tensor fields as the space of stresses. The qualification
hypothesis as a sufficient condition for the equality of the results of the kinematic and static problems
can never be satisfied with this choice.

3A. Displacements, loads, and energies in the setting of BD. We define the objects (2-8) as follows.
We put

W =WBD := {v ∈ BD(�) : v = 0 in the sense of trace on D},

Y =M(�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from WBD to M(�,Sym). (We refer to
the Appendix for an outline of the notation for the functions spaces employed here and in the subsequent
treatment.) Furthermore, we put

Y+ =M(�,Sym+) := {F ∈M(�,Sym) : F(A)≥ 0 for every Borel subset of �},

W+ =W+BD := {v ∈WBD : Ê(v) ∈M(�,Sym+)}.

Finally, we set
Y ∗ = C0(cl�,Sym)

and the duality pairing is given by

(T , F)=
∫
�

T · d F

for every T ∈ C0(cl�,Sym) and every F ∈M(�,Sym). The cone Y ∗− is given by

Y ∗− = C0(cl�,Sym−)= {T ∈ C0(cl�,Sym) : T ≤ 0 on �}.
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Remark 3.1. It is possible to introduce a duality between stresses and strains under different hypotheses
on these objects. Namely the duality theory in [Dal Maso et al. 2007, Section 3] gives the following
result (see also [Anzellotti 1983] and [Kohn and Témam 1983]): if T is a stress field in the set

S := {T ∈ L∞(�,Sym) : div T ∈ Ln(�,Rn)}

and v ∈ BD(�) then there exists a measure [T , Ê(v)] ∈M(�,R) which behaves well under the weak
convergence of T and such that [T , Ê(v)] = T · Ê(v) if T is continuous on cl�. The measure thus plays
the role of the product T · Ê(v) if T is not continuous on cl� and the value [T , Ê(v)](�) the role of∫
�

T · d Ê(v). We can define the duality pairing between any T ∈ S and F in the space

Z := {F = Ê(v)+G : v ∈ BD(�), G ∈ L1(�,Sym)}

by

(T , F)= [T , Ê(v)](�)+
∫
�

T · G d Ln.

It is easily shown that the value of (T , F) is independent of the choice of v and G. We do not follow
this possibility here, as the results under this duality are analogous to the results presented below.

To ensure that the energies of the loads, interpreted as functionals of displacements, are in W ∗, we
assume that the loads are represented by functions

s◦, s̄ ∈ L∞(S,Rn), b◦, b̄ ∈ Ln(�,Rn),

and define l◦ and l̄ classically by the integrals in (2-3) and (2-4).

3B. Limit analysis in the B D setting. We define λ̄W and λY ∗ by

λ̄W = λ̄BD := inf{λ ∈ R : λ is WBD kinematically admissible},

λ∗Y = λ◦ := sup{λ ∈ R : λ is C0(cl�,Sym) statically admissible}.
(3-1)

The sufficient condition of Proposition 2.6 for the equality λ◦ = λ̄BD (i.e., the qualification hypothesis)
is never satisfied in the present case since M(�,Sym+) has empty interior. To see the last, let F be any
element of M(�,Sym+), let � j ⊂� be a decreasing sequence of Borel sets such that Ln(� j ) > 0 for
all j and

⋂
∞

j=1� j =∅, and let the sequence Fj be defined by

Fj (A)= F(A∩ (� \� j ))−Ln(A∩� j )1

for every Borel subset A of Rn . Then Fj /∈M(�,Sym+) for all j and Fj→ F in M(�,Sym) as j→∞.
Thus every point of M(�,Sym+) is on the boundary of M(�,Sym+).

4. Displacements in W1, p, 1≤ p <∞, and stresses in Lq ,∞≥ q > 1

In Section 4A we consider the Sobolev spaces with finite exponent as the space of displacements and the
space of power integrable tensor fields as stresses. Section 4B defines the corresponding multipliers for
the kinematic and static problems, and shows that the qualification hypothesis can never be satisfied with
this choice. Finally, in Section 4C a density condition is formulated to guarantee that the infimum of the
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kinematic problem with the space of displacements of bounded deformation equals the infimum of the
kinematic problem with the Sobolev space. Section 7B gives a sufficient condition for this density.

4A. Displacements, loads, and energies in the setting of power integrable functions. We assume that
1≤ p <∞ is a given number and denote by

q :=
{

p/(p− 1) if p > 1,
∞ if p = 1,

the Hölder conjugate exponent. We define the objects (2-8) as follows. We put

W =Wp := {v ∈W 1,p(�,Rn) : v = 0 in the sense of trace on D},

Y = L p(�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from Wp to L p(�,Sym). We also put

Y+ = L p(�,Sym+) := {F ∈ Y : F ≥ 0 almost everywhere on �},

W+ =W+p := {v ∈Wp : Ê(v) ∈ L p(�,Sym+)}.

Finally, Y ∗ is set equal to the dual of Y , i.e.,

Y ∗ = Lq(�,Sym),

and the duality pairing (T , F) is given by (2-6), as is well known. The cone Y ∗− is given by

Y ∗− = Lq(�,Sym−)= {T ∈ Lq(�,Sym) : T ≤ 0 almost everywhere on �}.

To ensure that the energies of the loads, interpreted as functionals of displacements, are in W ∗, we
distinguish the cases p < n, p = n and p > n. If p < n, we assume that the loads are represented by
functions

s◦, s̄ ∈ Ls(S,Rn), b◦, b̄ ∈ L t(�,Rn), (4-1)

where

s =
(n− 1)p
n(p− 1)

, t =
np

np− n+ p
,

and define l◦ and l̄ classically by the integrals in (2-3) and (2-4). If p = n, we assume that the loads are
represented by functions as in (4-1), with some s, t satisfying

1< s ≤∞, 1< t ≤∞

and again define l◦ and l̄ classically by the integrals in Equations (2-3) and (2-4). The Sobolev imbedding
theorem [Adams and Fournier 2003, Theorem 4.12, Case C] and the trace theorem [ibid., Theorem 5.36]
imply that these definitions are well posed. If p > n, then the elements of Wp represent continuous
functions on the closure cl� of �. In this case the loads can be more general. Namely, the surface
tractions can be represented by vector-valued measures s◦ and s̄ in M(S,Rn) and the body forces by
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vector-valued measures b◦ and b̄ in M(�,Rn). For this we assume that S is a Borel set. Then l◦ and l̄
are given by

〈l◦, v〉 =
∫
�

v · d b◦+
∫

S
v · d s◦, (4-2)

〈l̄, v〉 =
∫
�

v · d b̄+
∫

S
v · d s̄, (4-3)

for each v ∈Wp. This formalism includes concentrated loads. The distributed case, when the loads are
represented by ordinary functions, is included by setting

s◦ = s◦Hn−1 S, s̄ = s̄Hn−1 S, b◦ = b◦Ln �, b̄= b̄Ln �,

where now the functions can belong to the spaces as follows:

s◦, s̄ ∈ L1(S,Rn), b◦, b̄ ∈ L1(�,Rn)

and the notation of the Appendix has been employed. Then (4-2) and (4-3) reduce to (2-3) and (2-4).

4B. Limit analysis in the setting of power integrable functions. We define λ̄W and λY ∗ by

λ̄W = λ̄p := inf{λ ∈ R : λ is Wp kinematically admissible},

λY ∗ = λq := sup{λ ∈ R : λ is Lq(�,Sym) statically admissible}.
(4-4)

The sufficient condition of Proposition 2.6 for the equality λq = λ̄p (i.e., the qualification hypothesis) is
never satisfied in the present case, since L p(�,Sym+) has empty interior for all p ∈ [1,∞). To see the
last, let F be any element of L p(�,Sym+), let � j ⊂ � be a decreasing sequence of measurable sets
such that Ln(� j ) > 0 for all j and

⋂
∞

j=1� j =∅, and let the sequence Fj be defined by

Fj =

{
F on � \� j ,

−1 on � j .

Then Fj /∈ L p(�,Sym+) for all j and Fj → F in L p(�,Sym) as j → ∞. Thus every point of
L p(�,Sym+) is on the boundary of L p(�,Sym+).

Remark 4.1. Example 7.12 (below) shows that under very tame loads of a panel in the plane one can
have λq < λ̄p.

Remark 4.2. The choice of Wp and Lq(�,Sym) with p = q = 2 plays a special role. The square
integrable admissible equilibrating stress fields have a dynamical motivation in terms of the behavior of
processes of masonry bodies with dissipation for large times [Padovani et al. 2008]: if λ < λ2, then under
the loads corresponding to λ, the processes starting from arbitrary initial data stabilize and converge to
the set of equilibrium states; on the other hand, if λ> λ2, the processes blow up in the sense of norms, i.e.,
the collapse occurs. Further, in [Lucchesi et al. 2010] it was shown that the existence of admissible square
integrable stress fields balancing the loads is a necessary and sufficient condition for the total energy of
a masonry body to be bounded from below. In [Lucchesi et al. 2011] the equilibrium of panels subjected
both to distributed loads and concentrated forces is studied, and equilibrated tensor-valued measures are
determined. Then, by using an integration procedure for parametric measures, equilibrated stress fields
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that are represented by integrable functions are explicitly determined. Note also that L2(�,Sym) is also
the space of stress fields employed in [Del Piero 1998].

4C. Comparison of the critical multipliers in the B D and W1, p settings. Let 1 ≤ p < ∞, and let
q ∈ (1,∞] be the Hölder conjugate exponent, and assume that the energies l◦ and l̄ are continuous
functionals on WBD . (See the conditions in Section 3.) Since Wp ⊂WBD and the inclusion is continuous,
the restriction of l◦ and l̄ to Wp are continuous linear functionals on Wp as well (we denote these
restrictions by the original symbols). Then in general we have

λ̄BD ≤ λ̄p

because the infimum in the definition of λ̄p is taken over a smaller set than in the definition of λ̄BD.
Similarly, we have

λ◦ ≤ λq ,

since the supremum for λq is taken over a larger set than that for λ◦. Under the condition that

for each v̄ ∈W+BD such that 〈l̄, v̄〉> 0, there exists a sequence v̄ j ∈W+p
such that v̄ j → v̄ in Ln/(n−1)(�,Rn) and v̄ j → v̄ in L1(∂�,Rn), (4-5)

we have

λ̄BD = λ̄p.

Indeed, one takes the infimum in (4-4) over a dense subset of the set in the infimum in (3-1). In particular,
if (4-5) holds for every p ∈ [1,∞), then λ̄p is independent of p and equal to λ̄BD .

It does not seem that there exists a relatively easily verifiable condition to guarantee the equality
λq = λ◦. In Section 7D, below, the function q 7→ λq is not constant and hence the equality λq = λ◦

cannot hold for all q ∈ (1,∞].

5. Lipschitzian displacements and finitely additive measures representing stresses

Sections 5A and 5B formulate the kinematic and static problems for lipschitzian displacements and for
stresses modeled as finitely additive bounded measures that are absolutely continuous with respect to
the Lebesgue measure. A necessary and sufficient condition of Section 2 is particularized to the present
choice of spaces in Theorem 5.1 and results in an examination of a real-valued function of the real variable.
The qualification hypothesis is derived in Theorem 5.2. Theorem 5.3 gives a very simple necessary and
sufficient condition for the static admissibility of a general multiplier. Finally, Section 5C gives a density
condition for the equality of the kinematic multipliers in the lipschitzian and Sobolev spaces settings.

5A. Lipschitzian displacements and the representation of stresses. We define the objects (2-8) as fol-
lows. We put

W =W∞ := {v ∈W 1,∞(�,Rn) : v = 0 in the classical sense on D},

Y = L∞(�,Sym),
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so that Ê( · ), defined by (2-5), is a bounded linear transformation from W to Y . Furthermore, we put

Y+ = L∞(�,Sym+) := {F ∈ Y : F ≥ 0 almost everywhere on �},

W+ =W+
∞
:= {v ∈W∞ : Ê(v) ∈ L∞(�,Sym+)}.

Under our assumption on �, the elements of W 1,∞(�,Rn) are represented by lipschitzian functions on
the closure cl� of �, i.e., by functions v : cl�→ Rn satisfying

|v(x)− v( y)| ≤ k|x− y|

for all x, y ∈ cl� and some k; see [Ekeland and Témam 1999, Chapter X, Section 2.2].
The loads can be represented by measures, as in the case p > n in the preceding section, and l◦ and l̄

are given by (4-2) and (4-3), respectively.
We denote by Y ∗ = Xba the dual of L∞(�,Sym). We say that T ∈ Xba is negative semidefinite if

(T , F)≤ 0 for each F ∈ L∞(�,Sym+) and denote by X−ba the set of all negative semidefinite T ∈ Xba.
We interpret X−ba as the set of admissible stress fields. The elements T of Xba are in general no longer
representable by ordinary functions. Rather, the space Xba is isomorphic to the space ba(�,M,Ln

;Sym)
of bounded finitely additive Sym valued measures that are absolutely continuous with respect to the
Lebesgue measure. Thus to each element T ∈ Xba there exists a unique element T ∈ ba(�,M,Ln

;Sym)
such that we have

(T , F)=
∫
�

F · dT (5-1)

for each F ∈ L∞(�,Sym), and conversely. We refer to [Fonseca and Leoni 2007, Sections 1.3.2 and
Theorem 2.44] for details in the scalar case (in particular to the definition of the integral in (5-1)) and to
an outline of the tensorial case in the Appendix. An important subset of ba(�,M,Ln

;Sym) consists of
measures of the form

T= TLn �

where T ∈ L1(�,Sym). In this case the measure T is actually countably additive.

5B. Limit analysis in the setting of lipschitzian displacements. We define λ̄W and λY ∗ by

λ̄W = λ̄∞ := inf{λ ∈ R : λ is W∞ kinematically admissible},

λY ∗ = λba := sup{λ ∈ R : λ is Xba statically admissible}.
(5-2)

Theorem 5.1. Let h : R→ R∪ {−∞,∞} be defined by

h(t)= inf{−〈l◦, v〉 : v ∈W∞, Ê(v)≥ t1 almost everywhere on �, 〈l̄, v〉 = 1},

t ∈ R. Then:

(i) h is nondecreasing, convex and h(0)= λ̄∞.

(ii) h(0) is finite and lim
t→0,
t<0

h(t)= h(0) if and only if λba = λ̄∞ ∈ R.

Proof. The function H defined generally in (2-23) provides h(t) = H(t1). The convexity and the
nondecreasing character of H , asserted by Proposition 2.5(i) gives the same properties of h. Furthermore,
clearly h(0)= H(0)= λ̄∞, which completes the proof of (i).
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(ii) By Proposition 2.5(ii) then λba = λ̄∞ ∈ R if and only if H(0) = h(0) is finite and H is lower
semicontinuous at 0. If the last holds, then h(0) ∈ R and h is lower semicontinuous at 0 and as h is
nondecreasing, this in turn implies that

lim
t→0
t<0

h(t)= h(0). (5-3)

Conversely, let h(0) be finite and let (5-3) hold. If |F| denotes the L∞ norm of a general F ∈ L∞(�,Sym)
then −|F|1≤ F and hence the monotonicity of H implies

h(−|F|)≡ H(−|F|1)≤ H(F)

and thus
H(0)≡ h(0)= lim

F→0
h(−|F|)≡ lim

F→0
H(−|F|1)≤ lim inf

F→0
H(F).

Thus H is lower semicontinuous at 0. �

Theorem 5.2. Assume that

there exists a v̄◦ in W+
∞

satisfying 〈l̄, v̄◦〉> 0

such that Ê(v̄◦)≥ α1 for some α > 0 and almost every point of �. (5-4)

Then λba = λ̄∞; if additionally λba = λ̄∞ ∈ R then λ̄∞ is statically admissible, i.e., there exists a bounded
finitely additive negative semidefinite measure T that is absolutely continuous with respect to Ln such
that ∫

�

Ê(v) · dT= 〈l(λ̄∞), v〉

for all v ∈W∞.

Paroni [2012], dealing with inextensible nets with slack, and applying the duality theory of Ekeland &
Témam, obtained balancing stresses represented by bounded finitely additive measures that are “almost
absolutely continuous” with respect to the Lebesgue measure (see the cited paper for a precise statement).

Proof. If (5-4) holds, Ê(v̄◦) is an interior point of L∞(�,Sym+). Indeed, the interior of L∞(�,Sym+)
consists of all F ∈ L∞(�,Sym) which satisfy F(x) ≥ α1 for some positive α and almost every point
x of �. To see the sufficiency of this condition, note that if G ∈ L∞(�,Sym) satisfies |F−G|< α/2,
where | · | is the L∞ norm on L∞(�,Sym), then G(x)≥ 1

2α1 for almost every x ∈�. The necessity is
proved similarly.

Thus v̄◦ satisfies (2-29) and Proposition 2.6 implies the present proposition. �

Next we consider the statical admissibility of a general multiplier λ ∈ R.

Theorem 5.3. A multiplier λ ∈ R is Xba-statically admissible if and only if

sup{〈l(λ), v〉 : v ∈W∞, Ê(v)≥−1 almost everywhere on �}<∞. (5-5)

The proof will show that (5-5) implies that 〈l(λ), v〉 ≤ 0 for every v ∈W+
∞

.
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Proof. Assume that λ is Xba-statically admissible and denote by T ∈ X−ba an admissible equilibrating
stress field. If v ∈W∞ is such that Ê(v)≥−1 almost everywhere on � then

〈l(λ), v〉 = (T , Ê(v))≤ (T ,−1)=−(T , 1)

and thus the value of the supremum in (5-5) is less than or equal to −(T , 1). This completes the proof
of the direct implication.

Conversely, let (5-5) hold. We must prove that (2-31) also holds. We prove first that (5-5) implies

〈l(λ), v〉 ≤ 0 (5-6)

for every v ∈W+
∞

. Indeed, (5-5) asserts that there exists a c ∈ R such that

〈l(λ), v〉< c (5-7)

for every v ∈ W∞ with Ê(v) ≥ −1. Assume that v ∈ W+
∞

. Then for every t > 0 we have Ê(tv) ≥ −1
and thus (5-7) gives

〈l(λ), tv〉< c.

Fixing v, dividing by t > 0 and letting t→∞ we obtain the desired conclusion 〈l(λ), v〉 ≤ 0.
Let us now prove that (2-31) holds. Let F ∈ L∞(�,Sym), F 6= 0, and let v ∈W∞ satisfy Ê(v)≥ F

almost everywhere on �. Then Ê(v/|F|) ≥ −1 almost everywhere on �, where |F| denotes the L∞

norm of F. Thus (5-5) implies
〈l(λ), v〉 ≤ c|F|,

i.e., (2-31). If F = 0, this argument does not hold but then Ê(v)≥ 0 almost everywhere on � and (2-31)
holds again by (5-6). �

5C. Comparison of the critical multipliers in the lipschitzian and p integrable settings. Let 1≤ p<∞,
and let q ∈ (1,∞] be the Hölder conjugate exponent, and assume that the energies l◦ and l̄ are continuous
functionals on Wp. (See the conditions in Section 4.) Since W∞ ⊂Wp and the inclusion is continuous,
the restriction of l◦ and l̄ to W∞ are continuous linear functionals on W∞ as well. Then in general we
have

λ̄p ≤ λ̄∞

because the infimum in the definition of λ̄∞ is taken over a smaller set than in the definition of λ̄p.
Similarly, we have

λq ≤ λba,

since the supremum for λba is taken over a larger set than that for λq . Under the condition that

for each v̄ ∈W+p such that 〈l̄, v̄〉> 0 there exists a sequence v̄ j ∈W+
∞

such that v̄ j → v̄ in Wp, (5-8)

we have
λ̄p = λ̄∞.

Indeed, one takes the infimum in (5-2) over a dense subset of the set in the infimum in (4-4). In particular,
if (5-8) holds for every p ∈ [1,∞), then λ̄p is independent of p and equal to λ̄∞.
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As in the preceding choices of function spaces, it does not seem that there exists a condition to
guarantee the equality λq = λba.

6. Smooth displacements and countably additive measures representing stresses

Sections 6A and 6B formulate the kinematic and static problems within the context of smooth displace-
ments and stress fields modeled as countably additive measures. The qualification hypothesis specialized
in Theorem 6.1 is shown to hold only in the case of the pure traction problem. Theorem 6.3 provides
a necessary and sufficient condition for the equality of the results of the kinematic and static problems
and Theorem 6.4 a necessary and sufficient condition for the static admissibility of a general multiplier.
Sections 6C and 6D provide sufficient conditions for the equality of the kinematic multiplier as defined
here with those defined in the preceding sections.

6A. Smooth displacements and the representation of stresses. We define the objects (2-8) as follows.
We put

W = C1 := {v ∈ C1(cl�,Rn) : v = 0 in the classical sense on D},

Y = C0(cl�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from C1 to C0(cl�,Sym). Further-
more, we put

Y+ = C0(cl�,Sym+) := {F ∈ C0(cl�,Sym) : F ≥ 0 on cl�},

W+ = C+1 := {v ∈ C1 : Ê(v) ∈ C0(cl�,Sym+)}.

The loads can be represented by measures as in the case p > n in Section 4; l◦ and l̄ are given by
(4-2) and (4-3), respectively.

We denote by Y ∗ = XM the dual of C0(cl�,Sym). We say that T ∈ XM is negative semidefinite if
(T , F)≤ 0 for each F ∈ C0(cl�,Sym+), and denote by X−M the set of all negative semidefinite T ∈ YM.
We interpret the elements T of X−M as admissible stress fields. The elements T of XM are in general not
representable by ordinary functions. Rather, the space XM is isomorphic with the space M(cl�,Sym) of
bounded countably additive Sym-valued Borel measures on cl�. Thus for each element T ∈ XM there
exists a unique element T ∈M(cl�,Sym) such that

(T , F)=
∫
�

F · d T

for each F ∈ C0(cl�,Sym), and conversely. We refer to [Fonseca and Leoni 2007, Theorem 1.196]
for details in the scalar case and to the Appendix. for the tensorial case. Recalling Section 5, we note
that neither of the sets ba(�,M,Ln

;Sym) and M(cl�,Sym) is a subset of the other, since the measures
from XM need not be absolutely continuous with respect to the Lebesgue measure and the measures from
ba(�,M,Ln

;Sym) need not be countably additive. With general elements of M(cl�,Sym) there may
be stresses concentrated on sets of dimension strictly less than n. An important subset of M(cl�,Sym)
consists of measures of the form

T = TLn �
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where T ∈ L1(�,Sym).
The set X−M is just the set of all Borel measures on cl� which take negative semidefinite values on

every Borel subset of cl�.

6B. Limit analysis in the setting of smooth displacements. We define λ̄W and λY ∗ by

λ̄W = λ̄◦ := inf{λ ∈ R : λ is C1 kinematically admissible},

λY ∗ = λM := sup{λ ∈ R : λ is XM statically admissible}.

Theorem 6.1. Assume that

there is v̄◦ in C+1 such that 〈l̄, v̄◦〉> 0 and Ê(v̄◦)≥ α1 for some α > 0 and every point of cl�. (6-1)

Then we have λM = λ̄◦; if , additionally, this number is finite, then λ̄◦ is statically admissible, i.e., there
exists a bounded countably additive negative semidefinite Borel measure T such that∫

�

Ê(v) · d T = 〈l(λ̄◦), v〉

for all v ∈ C1.

Proof. The interior of C0(cl�,Sym+) consists of all F ∈ C◦ such that there exists a positive α satisfying
F ≥ α1 for all points of cl�. We thus see that the displacement v̄◦ as in (6-1) satisfies the hypothesis of
Proposition 2.6. The same proposition then gives the assertions of the present proposition. �

Remark 6.2. Let v ∈ C1, and let x be a point in D and t a vector that is tangent to D in the sense that
there is a smooth curve γ contained in D and containing x with the tangent vector t at x. Differentiating
the equation v = 0 along γ at x we obtain ∇v(x)t = 0. Thus Ê(v)(x)t · t = 0 and (6-1) cannot hold.
This applies also to points of D at the corners or edges. Thus (6-1) can be effective essentially only in
the case of the pure traction problem, when D=∅.

Negative semidefinite measures with nonzero singular part equilibrating the loads in no-tension ma-
terials were proposed in [Lucchesi et al. 2006]. The general theory of stresses represented by Borel
measures is given in [Šilhavý 2008].

The following two results are proved in essentially the same way as Theorems 5.1 and 5.3. The proofs
are therefore omitted.

Theorem 6.3. Let h : R→ R∪ {−∞,∞} be defined by

h(t)= inf{−〈l◦, v〉 : v ∈ C1, Ê(v)≥ t1 on cl�, 〈l̄, v〉 = 1},

t ∈ R. Then:

(i) h is nondecreasing, convex and h(0)= λ̄◦.

(ii) h(0) is finite and lim
t→0
t<0

h(t)= h(0) if and only if λM = λ̄◦ ∈ R.

Theorem 6.4. A multiplier λ ∈ R is XM-statically admissible if and only if

sup{〈l(λ), v〉 : v ∈ C1, Ê(v)≥−1 on �<∞} (6-2)

This condition implies that 〈l(λ), v〉 ≤ 0 for every v ∈ C1, but it is stronger.
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6C. Comparison of the critical multipliers in the smooth and p integrable settings. Let 1 ≤ p <∞,
and let q ∈ (1,∞] be the Hölder conjugate exponent, and assume that l◦ and l̄ are continuous functionals
on Wp and hence also on C1. Then in general we have

λ̄p ≤ λ̄◦,

because the infimum in the definition of λ̄◦ is taken over a smaller set than in the definition of λ̄p.
Similarly, we have

λq ≤ λM.

Under the condition that

for each v̄ ∈W+p such that 〈l̄, v̄〉> 0 there is a sequence v̄ j ∈ C+1 such that and v̄ j → v̄ in Wp, (6-3)

we have
λ̄p = λ̄◦.

This is completely analogous to (5-8).
Lucchesi et al. [2008b; 2011] have given conditions and examples under which the loads equilibrated

by measures from a certain class can be also equilibrated by stress fields represented by ordinary functions
from L∞(�,Sym+).

6D. Comparison of the critical multipliers in the smooth and lipschitzian settings. Assume that l◦ and
l̄ are continuous functionals on W∞ and hence also on C1. Then in general we have

λ̄∞ ≤ λ̄◦

because the infimum in the definition of λ̄◦ is taken over a smaller set than that in the definition of λ̄∞.
Under the condition that

for each v̄ ∈W+
∞

such that 〈l̄, v̄〉> 0 there is a sequence v̄ j ∈C+1 such that v̄ j→ v̄ in L∞(�,Rn), (6-4)

we have
λ̄∞ = λ̄◦.

This is completely analogous to (5-8) and (6-3).
We have

λba ≤ λM

Indeed, each Xba-statically admissible multiplier is also XM-statically admissible, because if an admissi-
ble stress field T ∈ X−ba balances the loads corresponding to λ then the restriction T̃ of T to C0(cl�,Sym)
is XM statically admissible and balances the same loads.

Remark 6.5. Returning to the functionals T and T̃ from the preceding paragraph, we note that cor-
responding to T there exists a bounded finitely additive Sym-valued measure T on the class M of all
Lebesgue measurable subsets of �, absolutely continuous with respect to the Lebesgue measure, such
that

(T , F)=
∫
�

F · dT
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for all F ∈ L∞(�,Sym). It appears that generally T need not be countably additive, despite the extra
information of balancing. At the same time there exists a finite, countably additive measure T on the
class B of all Borel subsets of cl�, such that

(T̃ , F)≡ (T , F)=
∫

cl�
F · d T

for all F ∈ C0(cl�,Sym). It appears that generally T need not be absolutely continuous with respect
to the Lebesgue measure. A natural question arises of what is the relationship between T and T . Easy
examples based on the extension of T̃ by using the Hahn Banach theorem show that without the conditions
of negative semidefiniteness and of balancing, there need not be any immediate relationship. However,
with the two extra conditions just mentioned, the situation does not seem to be clear.

7. Monotonicity, density, and examples

Section 7A first shows that the displacements from the Sobolev spaces with positive semidefinite strain
are monotone. Next, the same section shows that each displacement with positive semidefinite strain
has to vanish, roughly speaking, on the interior of the convex hull of the set D. Section 7B proves the
density of the smooth displacements with positive semidefinite strain in the wider spaces of displacements
considered above. Some of the results of these two sections are employed in Sections 7C and 7D which
present two examples: a collapse without a corresponding mechanism, and loads for which the kinematic
and static problems give different results.

7A. Monotonicity and the convex hull. If v lies in BD(�) (in particular, if v ∈ W 1,p(�,Rn), where
1≤ p ≤∞), we define the precise representative ṽ of v on � by setting, for every x ∈ cl�,

ṽ(x)=
{

limr→0
1

Ln(B(x,r)∩�)
∫

B(x,r)∩� v d Ln if the limit exists,
0 otherwise,

(7-1)

where B(x, r) is the open ball of center x and radius r . Denote by G(v) the set of all points x ∈ cl� for
which the limit in (7-1) exists and, moreover, if x ∈ ∂�, it satisfies

lim
r→0

1
Ln(B(x, r)∩�)

∫
B(x,r)∩�

|v− ṽ(x)| d Ln
= 0. (7-2)

If v∈ BD(�) then Ln(�\G(v))=0 and Hn−1(∂�\G(v))=0. The first assertion is the standard assertion
about Lebesgue points (and actually holds for any v ∈ L1(�,Rn)); for the second assertion, see the trace
theorem in [Témam 1983, Chapter II]. If v ∈W 1,p(�,Rn) where 1≤ p≤∞ then Hn−1(cl�\G(v))= 0.
Indeed, Hn−1(� \ G(v)) = 0 by [Evans and Gariepy 1992, Theorem 1 in Section 4.8, Theorem 2 in
Section 5.6.3, and Theorem 4 in Section 4.7.2] and Hn−1(∂� \ G(v)) = 0 by [ibid., Definition and
Remark, p. 133]. For every direction t ∈ Sn−1

:= {t ∈ Rn
: |t| = 1}, and for almost every line l parallel to

t , ṽ is absolutely continuous on s := l∩ cl� (cf. [ibid., Theorem 2, Subsection 4.9.2] for lines parallel
to the coordinate axes).

Remark 7.1. Let �⊂Rn be a bounded convex set with Lipschitz boundary and v ∈ BD(�) (respectively,
v ∈W 1,p(�,Rn) where 1≤ p≤∞), and let ṽ be the precise representative. Then the following conditions
are equivalent:
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(i) Ê(v)(B)≥ 0 for every Borel subset B of � (respectively, Ê(v)≥ 0 almost everywhere on �).

(ii) We have
(ṽ(x)− ṽ( y)) · (x− y)≥ 0 (7-3)

for every x, y ∈ G(v).

Note that condition (ii) can be formulated even for nondifferentiable displacements.

Proof. Let σ be a smooth mollifier, i.e., a nonnegative class∞ function on Rn with the support in the
open ball with center 0 and radius 1, and

∫
Rn σ d Ln

= 1. For each ε > 0, let vε be the ε mollification of
v, i.e., a map vε :�ε→ Rn given by

vε(x)= ε−n
∫
�

v( y)σ ((x− y)/ε) d Ln( y)

for every x from the set
�ε := {x ∈� : B(x, ε)⊂�}.

(i)⇒ (ii) The tensor Ê(vε) is an ε mollification of Ê(v) on �ε (under either assumptions on v) and
hence Ê(vε)≥ 0 on �ε . We have

d
ds

vε(a+ s t) · t =∇vε(a+ s t)t · t = Ê(vε)(a+ s t)t · t ≥ 0

for every a ∈ Rn , every s ∈ R, and every t ∈ Sn−1 for which a+ s t ∈ int�ε . Thus the integration gives

(vε(x)− vε( y)) · (x− y)≥ 0

for every x, y ∈ int�ε . If x, y ∈�, then x, y ∈ int�ε for all sufficiently small ε. We have vε(x)→ ṽ(x)
as ε→ 0 for every x ∈ G(v)∩�. This limit gives (7-3) for every x, y ∈ G(v)∩�. Next assume that
x ∈ G(v)∩ ∂� and y ∈ G(v)∩�. By the preceding case, we have

(ṽ(x′)− ṽ( y)) · (x′− y)≥ 0

for every x′ ∈ G(v)∩�. Hence, if r > 0, we have

1
Ln(B(x, r)∩�)

∫
B(x,r)∩�

(ṽ(x′)− ṽ( y)) · (x′− y) d Ln(x′)≥ 0

and the limit r → 0 using (7-1) and (7-2) gives (7-3). Finally, if x, y ∈ G(v)∩ ∂�, we proceed in the
same way as above to establish (7-3) generally.

(ii)⇒ (i) Condition (ii) implies that if t ∈ Sn−1, and if l is a line parallel to t then the function ṽ · t ,
defined on l̃ := l∩G(v), is nondecreasing. By Fubini’s theorem we have H1((l∩�) \ l̃)= 0 for Hn−1

almost every line parallel to t . Then vε · t is nondecreasing on every closed line segment parallel to t in
�ε . Thus

0≤
d
ds

vε(a+ s t)
∣∣∣
s=0
· t = Ê(vε)(a)t · t

for every point a of �ε . We now let ε→ 0 and obtain (i) under either assumption on v. �
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Proposition 7.2. Assume that � ⊂ Rn is open and convex, let D ⊂ ∂�, denote by int D the relative
interior of D in ∂� and assume that int D is a class 1 surface. Define the sets Zi , i = 1, . . . , by

Z1 = {z ∈� : z = (1− t)x+ t y for some x, y ∈ int D, x 6= y, 0< t < 1}

and
Zi = {(1− t)x+ t y : x, y ∈ Zi−1, 0≤ t ≤ 1}

if i ≥ 2. Then:

(a) The sequence Zi is nondecreasing.

(b) Zi is open for every i = 1, . . . .

(c) Zi ⊂� for every i = 1, . . . .

(d) Zi = co Z1 for every i ≥ n+ 1, where co Z1 denotes the convex hull of Z1.

Here by the relative interior of D we mean the interior with respect to the relative topology on ∂�,
defined by intersections of ∂� with open subsets of Rn .

Proof. (a) The nondecreasing character of the sequence Zi is immediate.

(b), (c) We work by induction on i . We have Z1 ⊂ �. To prove that Z1 is open, let z ∈ Z1 and
z = (1− t)x+ t y for some x, y ∈ int D, x 6= y, 0< t < 1. Define the map 8 : int D× (0, 1)→� by

8( y′, t ′)= (1− t ′)x+ t ′ y′, (7-4)

y′ ∈ int D, t ′ ∈ (0, 1); hence
8( y, t)= z.

Then the continuity implies that 8 maps some neighborhood N of ( y, t) in int D× (0, 1) into some
neighborhood M of z that is contained in �. One then has M ⊂ Z1 by the definition of Z1. We now
employ the implicit function theorem to show that there exists a neighborhood M′ ⊂ M of z and a
class 1 map 9 : M′→ N such that 8(9(z′)) = z′ for all z′ ∈ M′. Indeed, the map 8 is continuously
differentiable. To apply the implicit function theorem, we have to prove that the derivative D8( y, t) :
Tan(int D, y)× R→ Rn is nonsingular, where Tan(int D, y) is the tangent space to int D at y. If the
local description of int D near y is ϕ( y′) = 0 where ϕ is a class 1 function with ∇ϕ( y) 6= 0, then
Tan(int D, y)= { ẏ ∈ Rn

: ∇ϕ( y) · ẏ = 0}. The equation D8( y, t)( ẏ, ṫ)= 0 reads

ṫ( y− x)+ t ẏ = 0. (7-5)

Multiplying scalarly by ∇ϕ( y) and using ∇ϕ( y) · ẏ = 0 we obtain

∇ϕ( y) · ( y− x)ṫ = 0. (7-6)

Let us now show that
∇ϕ( y) · ( y− x) 6= 0. (7-7)

Indeed, the equation ∇ϕ( y) · ( y− x)= 0 means that the vector x− y belongs to the tangent space of ∂�
at y or equivalently that x belongs to the affine space y+Tan(int D, y). Since � is convex and x ∈ ∂�,
it follows that the line segment with endpoints x and y belongs to ∂� and hence in particular z ∈ ∂�.
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However, this is a contradiction as we assume that z ∈�. This contradiction shows that we have (7-7).
Equation (7-6) then implies ṫ = 0 and (7-5) that ẏ = 0. Thus D8( y, t) is nonsingular and the implicit
function theorem gives a class 1 map 9 :M′→ N such that 8(9(z′))= z′ for all z′ ∈M′. This in turn
means that 9 maps some neighborhood of ( y, t) in int D× (0, 1) onto some neighborhood of z. Thus
Z1 is open.

Let i ≥ 2. Then (c) follows from the induction hypothesis and the convexity of �. To prove (b), let
z = (1− t)x + t y for some x, y ∈ Zi−1 and 0 ≤ t ≤ 1. To prove that there exist a neighborhood of z
that is contained in Zi , note that if x = y or t ∈ {0, 1} then z ∈ Zi−1 and the induction hypothesis says
that there exists a neighborhood of z that is contained in Zi−1 ⊂ Zi . Thus we can assume that x 6= y and
0< t < 1. Defining 0 : Zi−1→ Rn by

0( y′)= (1− t)x+ t y′

for every y′ ∈ Zi−1 we find that 0 has the inverse 1 given by

1(z′)= (z′− (1− t)x)/t,

for z′ ∈ Rn . Hence 0 maps some neighborhood N⊂ Zi−1 of y onto some neighborhood of z that is in
Zi . This completes the proof of (b) and (c).

(d) This follows from Carathéodory’s theorem on the convex hull [Rockafellar 1970, Theorem 17.1]. �

Proposition 7.3. Let 1≤ p ≤∞, let � be convex, let D⊂ ∂� and assume that int D is a class 1 surface.
Let Zi be the sequence defined in Proposition 7.2. If v ∈W+p then its precise representative ṽ satisfies

ṽ = 0 everywhere on co Z1. (7-8)

Proof. We shall prove that
ṽ = 0 everywhere on Zi (7-9)

for every i = 1, . . . by induction on i . Then (7-8) will follow from Proposition 7.2(d).
We prove (7-9) for i = 1. Note that if x ∈�∩G(v) and if y ∈ int D then

ṽ(x) · (x− y)≥ 0. (7-10)

Inequality (7-10) follows from Remark 7.1 if y∈ int D∩G(v) since then ṽ( y)= 0. Finally, if x ∈�∩G(v)
and y in D is arbitrary, we make a limit in ṽ(x) · (x− y′)≥ 0 as y′→ y and y′ ∈ int D∩G(v).

Let now z ∈ Z1 ∩G(v) and write z = (1− t)x + t y for some x, y ∈ int D, x 6= y, 0 < t < 1. Then
(7-10) implies

ṽ(z) · (z− x)≥ 0 and ṽ(z) · (z− y)≥ 0.

This reads
t ṽ(z) · ( y− x)≥ 0 and (1− t)ṽ(z) · (x− y)≥ 0,

and hence
ṽ(z) · t = 0, (7-11)

where t = ( y− x)/| y− x|. Define now a map 2 from Sn−1 to ∂�× ∂� by the requirement that for
each t ′ ∈ Sn−1 we put 2(t ′) = (x′, y′) where x′, y′ ∈ ∂� are uniquely determined by the conditions
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that t ′ = ( y′ − x′)/| y′ − x′| and that the point z is on the (closed) line segment with endpoints x′, y′.
Since int D× int D is a relatively open subset of ∂�× ∂�, the continuity of 2 yields that there exists
a neighborhood N of t in Sn−1 such that 2 maps N onto some subset of int D× int D. For all t ′ ∈ N

we have ṽ(z) · t ′ = 0, which is possible only if ṽ(z) = 0. Thus ṽ = 0 on Z1 ∩G(v) and hence ṽ = 0
everywhere on Z1.

Let i ≥ 2. Let z ∈ Zi and let z = (1− t)x+ t y where x, y ∈ Zi−1, 0≤ t ≤ 1. To prove that ṽ(z)= 0,
we can assume that x 6= y and 0 < t < 1 since otherwise z ∈ Zi−1 and the equation ṽ(z) = 0 follows
from the induction hypothesis. Let x′, y′ ∈ Zi−1 ∩G(v) be such that z = (1− t)x′+ t y′. The induction
hypothesis says that ṽ(x′)= ṽ( y′)= 0 and using this, we obtain ṽ(z) · t ′= 0 where t ′= ( y′−x′)/| y′−x′|;
varying x′ ∈ Zi−1 ∩G(v) and y′ ∈ Zi−1 ∩G(v) in such a way that z := (1− t)x′+ t y′ remains fixed,
we obtain the validity of ṽ(z) · t ′ = 0 for almost every t ′ from a nonempty open subset of Sn−1, which
is possible only if ṽ(z)= 0. �

7B. Density of monotone displacements satisfying boundary condition. Let M ⊂ C1(cl�,Rn) and
M+ ⊂ M be defined by

M := {v ∈ C1(cl�,Rn) : v = 0 in a neighborhood of D},

M+ := {v ∈ M : Ê(v)≥ 0 on cl�}.

We indicate here situations when

(α) M is dense in WBD or in Wp, 1≤ p ≤∞, in an appropriate sense, and

(β) M+ is dense in W+BD or in W+p . The following result deals with Problem (α).

Proposition 7.4. Suppose that D is relatively open in ∂�. Let 1 ≤ p ≤∞, and let u ∈ Wp. Then there
exists a sequence uk ∈ M such that

(i) if p <∞ then uk→ u in W 1,p(�,Rn);

(ii) if p =∞ then uk→ u uniformly on cl�, Ê(uk)→ Ê(u) almost everywhere on � and

sup
k=1,...

|∇uk |∞ <∞,

where | · |∞ is the L∞ norm.

This is proved in a way similar to [Témam 1977, Theorem I.1 and I.3].
Problem (β) is more difficult. The standard results for the density of C∞(cl�,Rn) in BD(�) or in

W 1,p(�,Rn), employ constructions based on the multiplication of the function v by members θi of a
suitable partition of unity. This operation does not preserve the positive semidefinite character of the
strain tensor: One has

Ê(θiv)= θi Ê(v)+ 1
2(v⊗∇θi +∇θi ⊗ v),

and the expression in the bracket is not positive semidefinite in general. It is essentially only the ho-
mothetic extension that preserves positive semidefiniteness. We are therefore forced to impose strong
hypotheses on � and D to be able to apply homothety to prove the density of M+ in W+p .

Proposition 7.5. Let �⊂ Rn be an open bounded convex set with Lipschitz boundary and let D⊂ ∂�.
Assume that one of the following conditions is satisfied:
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m
�

D

C

(1) (See figure above.) The set D is nonempty, convex, is contained in some hyperplane H of normal m,
is open in H , and

�⊂ C := {x ∈ Rn
: x = a+ sm for some a ∈ D and some s > 0}.

(2) int D is a class 1 surface and the set Z1 defined in Proposition 7.2 is nonempty.

(3) D=∅.

Let 1 ≤ p ≤∞. Let u ∈ W+p . Then there exists a sequence uk ∈ M+ such that assertions (i) and (ii) of
Proposition 7.4 are satisfied.

Proof. Suppose that (a) holds. We can assume that 0 ∈ D. For each ε > 0 let

�ε := (1+ ε)�∪ {a+ sm ∈ Rn
: a ∈ (1+ ε)D,−ε < s ≤ 0}.

We have cl�⊂�ε and �ε is convex. Let vε :�ε→ Rn be defined by

vε(x)=
{

u(x/(1+ ε)) if x ∈ (1+ ε)�,
0 if x ∈�ε \ (1+ ε)�.

Since u = 0 on D, we have vε ∈ BD(�ε) or vε ∈ W 1,p(�ε,Rn) for each ε > 0; moreover, Ê(vε) is
positive semidefinite. Let wε be an ε/4 mollification of vε , i.e., a map on �3ε/4 with values in Rn given
by

wε( y)= (ε/4)−n
∫
�ε

vε(x)σ
( y−x
ε/4

)
d Ln(x)

for every y ∈ cl�3ε/4. Here σ is a mollifier (see the proof of Remark 7.1). Then wε ∈ C∞(cl�ε/2,Rn),
wε( y)= 0 for every y from the set { y ∈Rn

: y= a+ sm : a ∈ (1+ε/2)D, −ε/2< s <−ε/4}. Moreover,
Ê(wε)≥ 0 on cl�3ε/4 since Ê(wε) is the ε/4 mollification of Ê(vε). Let uε :�→ Rn be defined by

uε(x)= wε(x− εm)

for every x ∈�. Then uε ∈ M+ and an argument similar to that of [Adams and Fournier 2003, proof of
Proposition 3.22, pp. 69–70] shows that uε→ u in the sense of assertions (i)–(iii) of Proposition 7.4 as
ε→ 0. This completes the proof under hypothesis (a).

Suppose that (b) takes place. We may suppose that 0 ∈ Z1 ⊂ co Z1. For each ε > 0, let

�ε := (1+ ε)�
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so that the convexity implies that cl�⊂�ε . Let vε :�ε→ Rn be defined by

vε(x)= u(x/(1+ ε)), x ∈�ε .

Since u = 0 on co Z1 by Proposition 7.3, we have

vε = 0 on Aε := (1+ ε) co Z1.

Let vε be the ε/4 mollification of vε , so that

vε ∈ C∞(�3ε/4,Rn), Ê(vε)≥ 0 on �3ε/4, vε = 0 on A3ε/4.

Then the restriction uε of vε to � satisfies uε ∈ M+ and uε→ u in the sense of assertions (i) and (ii) of
Proposition 7.4.

If (c) holds, one proceeds similarly, but the proof is easier, as no boundary condition has to be satisfied.
�

7C. Example of collapse without collapse mechanism. In the example to be given here, the value λ= 1
4

corresponds to the collapse, and yet there is no corresponding mechanism.

Example 7.6. (See figure below.) Let �= (0, 1)2 and let D= [0, 1]× {0},

s◦(r)=
{
− j if r ∈ St := (0, 1)×{1},
0 if r ∈ S \St ,

s̄(r)=
{
(4(x − 1/2)2− 1)i if r ∈ St := (0, 1)×{1},
0 if r ∈ S \St ,

and b◦ = b̄= 0 on �. (Here i = (1, 0) and j = (0, 1).) Then:

(i) λq = λ̄p =
1
4 for all p, q ∈ [1,∞].

(ii) If |λ|< 1
4 then λ is Lq(�,Sym)-statically admissible for any q ∈ [1,∞].

(iii) If |λ| = 1
4 then λ is Lq(�,Sym)-statically admissible for any q ∈ [1, 3).

(iv) If q ∈ [1,∞] then there is no Lq(�,Sym) mechanism corresponding to λ= 1
4 .

�

D

s◦

s̄

0
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Remarks. (a) We do not know if λ=± 1
4 is Lq(�,Sym)-statically admissible for q ≥ 3.

(b) The case p = q = 2 has been treated in [Lucchesi et al. 2010, Example 2.3]. It was shown that
λ2 = λ̄2 =

1
4 , and an admissible stress field T (λ) determined in [Lucchesi and Zani 2003] was shown to

balance the loads for all λ ∈ [− 1
4 ,

1
4 ]. The stress field T (λ) was shown to be bounded if |λ|< 1

4 and to
belong to L2(�,Sym) if |λ| = 1

4 . Furthermore, it was shown that no corresponding mechanism exists
in W2. Actually, T

( 1
4

)
∈ Lq(�,Sym) for all q ∈ [1, 3), as a closer examination shows, and thus (ii),

(iii) above follow from the construction in the cited references. Here we shall prove the existence of
T balancing the loads for multipliers as in (ii), (iii), without giving an explicit formula for it, by using
Proposition 2.8.

Lemma 7.7. Let either 0 ≤ λ < 1
4 and q ∈ [1,∞] or let λ = 1

4 and q ∈ [1, 3). Then λ is Lq(�,Sym)-
statically admissible.

Proof. We employ Proposition 2.8. Hence we seek to show that corresponding to λ and q there exists a
constant c such that

sup{〈l(λ), v〉 : v ∈Wp, Ê(v)≥ F almost everywhere on �} ≤ c|F|p

for every F ∈ L p(�,Sym), where p is the Hölder conjugate exponent to q and |F|p is the L p norm of
F.

Thus let F ∈ L p(�,Sym) and let v ∈Wp satisfy

Ê(v)≥ F almost everywhere on � (7-12)

and prove that
〈l(λ), v〉 ≤ c|F|p. (7-13)

Write m(α) := s(λ)(α, 1) for every α ∈ [0, 1]. For any α ∈ [0, 1] let

l(α) := {a(α)+ zm(α) : z ∈ R}

be the line through the point a(α) := (α, 1) ∈ St and of direction parallel to m(α). The line l(α) always
intersects the x-axis because m(α) is never horizontal, viz., at the point

b(α)= (β(α), 0)

where
β(α)= α+ λ(4(α− 1/2)2− 1).

One has
β(0)= 0, β(1)= 1.

If 0≤ λ≤ 1
4 , then β is a nondecreasing function on the interval [0, 1] thus

0≤ β(α)≤ 1 for every α ∈ [0, 1];

in other words, the line l(α) intersects the x-axis at some point b(α) of the base D, where the panel is fixed.
We now consider the segment s(α)= l(α)∩ cl� with endpoint a(α), b(α). The precise representative
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ṽ of v is absolutely continuous on the segment s(α) and F(α) is defined for H1-almost every point of
s(α) and F is H1 integrable on s(α). Equation (7-12) then gives

d
dz

v(a(α)+ z t) · t = Ê(v)(a(α)+ z t)t · t ≥ F(a(α)+ z t)t · t

for L1-almost every z ∈ [0, 1], where we write t = m(α) for brevity. Thus integrating with respect to z
over the interval [0, 1] and using v(a(α)+ t)≡ v(b(α))= 0, we find that

v(a(α)) · t ≤−
∫ 1

0
F(a(α)+ z t)t · t d z ≤

∫ 1

0
|F(a(α)+ z t)||t|2 d z.

We have |t| = |m(α)| ≤ d <∞ for all a(α) ∈ St and thus we obtain that

v(a(α)) ·m(α)≤ d2
∫ 1

0
|F(a(α)+ zm(α))| d z (7-14)

and hence, integrating (7-14) over Tt and using m(α) := s(λ)(α, 1) we obtain

〈l(λ), v〉 ≤ d2
∫ 1

0

∫ 1

0
|F(a(α)+ zm(α))| d z dα. (7-15)

Let us now estimate the integral

I :=
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))| d z dα.

Consider a change of variables 8 from (z, α) to (x, y)= (α, 1)+ zm(α)), i.e.,

x = α+ zλ(4(α− 1/2)2− 1), y = 1− z.

The Jacobian of this transformation J := | det D8| is

J = 1+ 8λαz− 4λz.

Applying Hölder’s inequality to the measure J dz dα we obtain

I =
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))|J−1 J d z dα ≤ K 1/p L1/q

where

K =
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))|p J d z dα ≡

∫ 1

0

∫ 1

0
|F(x, y)|p d x dy ≡ |F|pp,

and

L =
∫ 1

0

∫ 1

0
J 1−q d z dα =

∫ 1

0

∫ 1

0
(1+ 8λαz− 4λz)1−q d z dα.

We now distinguish two cases.

Case (a): Let 0≤ λ < 1
4 . Then 1+ 8λαz− 4λz ≥ 1− 4λ and thus

I ≤ (1− 4λ)(1−q)/q
|F|p.
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Inequality (7-15) then yields
〈l(λ), v〉 ≤ d2(1− 4λ)(1−q)/q

|F|p

and thus we have (7-13) with c = d2(1− 4λ)(1−q)/q . Consequently, the conclusion of Proposition 7.3
holds and thus λ is Lq(�,Sym)-statically admissible for every q ∈ [1,∞].

Case (b): λ= 1
4 . Then

L =
∫ 1

0

∫ 1

0
(1+ 2zα− z)1−q d z dα (7-16)

and hence

L = (2− q)−1
∫ 1

0
(2α− 1)−1(1+ 2zα− z)2−q

∣∣z=1
z=0 dα

= (2− q)−1
∫ 1

0
(2α− 1)−1((2α)2−q

− 1) dα,

provided q 6= 2. Under this assumption, it is easily found that the integrand of the last integral has the
only singularity at α = 0, where it behaves as a constant multiple of α2−q . The apparent singularity at
α = 1/2 does not occur as

lim
α→1/2

(2α− 1)−1((2α)2−q
− 1)= 1− q/2.

Thus, if 2− q >−1, i.e., if 1≤ q < 3, and q 6= 2, the integral in (7-16) thus converges. It is easily found
that the integral in (7-16) converges also if q = 2. Thus (7-15) yields〈

l
( 1

4

)
, v
〉
≤ d2L1/q

|F|p

for every F ∈ L p(�,Sym) and we have (7-13) with c = d2L1/q . �

Remark 7.8. Assertions (ii) and (iii) follow from Lemma 7.7 by noting that any λ ∈ R is Lq(�,Sym)-
statically admissible if and only if −λ is too (it suffices to change the orientation of the x-axis). It also
follows from (ii) (or from Lemma 7.7) that λq ≤

1
4 for each q ∈ [1,∞].

Lemma 7.9. For each λ > 1
4 and p ∈ [1,∞] there exists a Wp mechanism corresponding to λ.

Proof. Let p ∈ [1,∞] be arbitrary. If ω : R→ R is any nonincreasing C1 function vanishing on (1,∞)
that does not vanish identically on (0, 1) then v :�→ R2, given by

v(r)= ω(x/y)r⊥, (7-17)

r = (x, y) ∈ �, r⊥ := (−y, x) satisfies v ∈ Wp and Ê(v) ∈ L p(�,Sym+). Indeed, one finds that
v ∈W 1,p(�,R2) and since ω vanishes on (1,∞), v vanishes on

�− := {r ∈� : x/y > 1}

and thus in particular on D (in the sense of trace). Hence v ∈Wp. Furthermore,

Ê(v)(r)=−y−2ω′(x/y)r⊥⊗ r⊥
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r ∈�, and as ω′ ≤ 0 we have Ê(v) ∈ L p(�,Sym+). One has

〈l◦, v〉 = −
∫

T
ω(x/y)x d H1(r)=−

∫ 1

0
ω(x)x d x

〈l̄, v〉 = 4
∫

T
ω(x/y)yx(1− x) d H1(r)= 4

∫ 1

0
ω(x)x(1− x) d x;

noting that the last expression and the hypotheses on ω imply that 〈l̄, v〉 > 0, we thus deduce that the
value

λ=−
〈l◦, v〉
〈l̄, v〉

= 4−1
∫ 1

0
ω(x)x d x

/∫ 1

0
ω(x)x(1− x) d x (7-18)

is a kinematically admissible multiplier. Fixing ε ∈ (0, 1) and taking a sequence of functions of the type
of ω that converges to the function ωε given by

ωε(t)=
{

1 if t ≤ ε,
0 otherwise,

t ∈ R, we deduce from (7-18) by evaluating the integrals that the value

λ= 1
4(1− 2ε/3)

is kinematically admissible. Varying ε ∈ (0, 1) we obtain the interval
( 1

4 ,
3
4

)
. �

Remark 7.10. It follows from Lemma 7.9 that λ̄p ≤
1
4 for each p ∈ [1,∞]. Combining 1

4 ≤ λ̄p ≤ λq ≤
1
4

we obtain (i).

Lemma 7.11. If λ= 1
4 and p ∈ [1,∞] then there is no corresponding Wp mechanism.

Proof. We prove that if v ∈W+p and 〈l
(1

4

)
, v〉 = 0 then v = 0 almost everywhere on �. For any α ∈ [0, 1]

let a(α) ∈ St and b(α) ∈ D be as in the proof of Lemma 7.7. Then for L1-almost every α ∈ [0, 1] we
have (

v(a(α))− v(b(α))
)
·
(
a(α)− b(α)

)
≥ 0;

using that v(b(α))= 0, we obtain
v(a(α)) · s

( 1
4

)
(α, 1)≤ 0.

Comparing this with 〈
l
( 1

4

)
, v
〉
=

∫ 1

0
v · s

( 1
4

)
(α, 1) dα = 0

we obtain
v(a(α)) · s

(1
4

)
(α, 1)= 0 (7-19)

for L1-almost every α ∈ (0, 1). Furthermore, for almost every α ∈ (0, 1) we have(
v(a(α))− v(0)

)
· a(α)≥ 0,

(
v(a(α))− v(i)

)
·
(
a(α)− i

)
≥ 0,

which reduces to
v(a(α)) · a(α)≥ 0, v(a(α)) ·

(
a(α)− i

)
≥ 0 (7-20)
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for L1-almost every α ∈ (0, 1). It is now easily seen that (7-19) and (7-20) imply that v(a(α))= 0 for
L1-almost every α ∈ (0, 1). We thus have v = 0 on St and on D and thus Proposition 7.3 implies that
v = 0 on co Z1 which is �. �

7D. Example of the violation of the kinematic theorem. We here give an example in which the supre-
mum of statically admissible multipliers depends dramatically on the choice of function spaces.

Example 7.12. (See figure below.) Let �= (0, 1)2, D= (0, 1)×{0}, S= ∂� \D,

s(λ)(r)=


(1− λ)r if r ∈ St := (0, 1)×{1},
(λ/2− 1)(i + j) if r ∈ Sr := {1}× (0, 1),
0 if r ∈ Sl := {0}× (0, 1),

b(λ)= 0 on �,

for λ ∈ R. Then
λ̄p = 2 for all p ∈ [1,∞], (7-21)

λq =

{
2 if q ∈ [1, 2),
1 if q ∈ [2,∞].

(7-22)

λq , λ̄p

2

1

1 2 q

λ̄p = 2

Lemma 7.13. For any λ ∈ R, let T (λ) :�→ Sym be defined by

T (λ)(r)=
{
(1− λ)r ⊗ r/y3 if r ∈�+ := {r ∈� : y/x > 1},
(λ/2− 1)(i + j)⊗ (i + j) if r ∈�− := {r ∈� : y/x < 1}.

Then T (λ) equilibrates the loads in the sense that

(T (λ), v)= 〈l(λ), v〉 (7-23)

for each v from the set

M := {v ∈ C1(cl�,R2) : v = 0 near D};

moreover,

T (λ) ∈ Lq(�,Sym) for all q ∈ [1, 2) and all λ ∈ R,
T (1) ∈ Lq(�,Sym) for all q ∈ [1,∞],
T (λ) /∈ Lq(�+,Sym) for all q ∈ [2,∞] and all λ ∈ R, λ 6= 1,

 (7-24)
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and
T (λ)≤ 0 L2-almost everywhere on � ⇐⇒ 1≤ λ≤ 2. (7-25)

Proof. One finds that (a) T (λ) can be continuously extended to ∂�+ \ {0} and also to ∂�−; (b) T (λ)
satisfies the boundary condition

T (λ)n= s(λ) on S \ {0},

in the classical sense; (c) T (λ) is discontinuous across the segment l := {r ∈� : y = x}, but the normal
component of T (λ) is continuous across l; (d) T (λ) is of class ∞ on �+ and �− with the classical
divergence vanishing on each of these two regions:

div T (λ)= 0 on �±.

If v ∈ M then there exists an ε > 0 such that v vanishes on the line segment {r ∈� : y = ε}. Applying of
the classical divergence theorem to �+ε = {r ∈�+ : y > ε} and �−ε = {r ∈�− : y > ε} separately (using
of the properties (a)–(d)), and adding the results gives (7-23).

To prove the properties (7-24), we note that T (λ) is bounded on �− while T (λ) has a singularity on
�+ at 0. Thus we have T (λ) ∈ Lq(�,Sym) if and only if T (λ) ∈ Lq(�+,Sym). We have

|1− λ|/y ≤ |T (λ)(r)| ≤
√

2|1− λ|/y

for each r ∈�+. Thus

|1− λ|q Iq ≤

∫
�+
|T (λ)|q d L2

≤ (
√

2)q |1− λ|q Iq

where

Iq =

∫
�+

y−q d L2.

One has Iq <∞ if and only if q ∈ [1, 2) and (7-24) follows.
Assertion (7-25) is immediate. �

Lemma 7.14. All λ satisfying 1≤ λ < 2 are Wp-kinematically inadmissible for all p ∈ [1,∞], and every
λ ∈ (2, 7) is Wp-kinematically admissible. In particular, we have (7-21).

Proof. Let 1≤ λ < 2. By (7-23) and (7-25) we have

0≥ (T (λ), Ê(v))= 〈l(λ), v〉

for all v ∈M+ := {v ∈M : Ê(v)≥ 0 on cl�}. The continuity of the loads on Wp for every p ∈ [1,∞] and
the density of M+ in W+p (Proposition 7.5(a)) then imply that the inequality 〈l(λ), v〉 ≤ 0 can be extended
to W+p , i.e., we have 〈l(λ), v〉 ≤ 0 for all v ∈ W+p , and all λ ∈ [1, 2). This implies that no λ ∈ [1, 2) is
kinematically admissible, as we now show. Indeed, one easily verifies from the definition that if λ ∈ R

is kinematically admissible then for every µ > λ there exists a v ∈ W+p such that 〈l(µ), v〉 > 0. Thus
the hypothesis that some λ ∈ [1, 2) is kinematically admissible would imply that for every µ > λ there
is a v ∈W+p such that 〈l(µ), v〉> 0. However, we have shown that 〈l(λ), v〉 ≤ 0 for all v ∈W+p , and all
λ ∈ [1, 2); in particular 〈l(µ), v〉 ≤ 0 for all v ∈W+p , and all µ ∈ (λ, 2). Thus λ cannot be kinematically
admissible.
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Next we prove that every λ ∈ (2, 7) is Wp-kinematically admissible for every p ∈ [1,∞] by exhibiting
a mechanism corresponding to λ which is in all Wp. Let s be a number satisfying 0< s < 1, put

m = (1, s),

denote by �s the set

�s = {r : y ≥ 1− sx},

and define vs by

vs(r)=
{
(r ·m− 1)m if r ∈�s,

0 if r ∈� \�s .

Then vs ∈W+p for all p ∈ [1,∞] with

Ê(vs)=

{
m⊗m on �s,

0 on � \�s .

Calculations give

〈l(λ), vs〉 =
1
6

(
(−2s3

− 3s2
+ 3+ 3s)λ+ 2s3

+ 3s2
− 6s− 6

)
,

〈l◦, vs〉 =
1
6(−2s3

− 3s2
+ 3+ 3s).

If s ∈ (0, 1) then one finds that

〈l(λs), vs〉 = 0

for

λs =
2s3
+ 3s2

− 6s− 6
2s3+ 3s2− 3s− 3

.

The function s 7→ λs is increasing and maps the interval (0, 1) onto the interval (2, 7), as one easily finds.
Moreover,

〈l◦, vs〉> 0

for all s ∈ (0, 1). It therefore follows that for every λ ∈ (2, 7) there exist a sλ such that vsλ is a mechanism
corresponding to λ. This proves that every λ ∈ (2, 7) is kinematically admissible. �

Remark 7.15. The proof of Lemma 7.14 shows that if 1≤ λ≤ 2 and p ∈ [1,∞] then 〈l(λ), v〉 ≤ 0 for
each v ∈W+p . Despite of this, for q ∈ [2,∞] the multiplier λ is not statically admissible, which shows
that the condition that 〈l(λ), v〉 ≤ 0 for each v ∈ W+p is only necessary, but not sufficient for the static
admissibility. Cf. the discussion following Proposition 2.8.

Lemma 7.16. A λ ∈ R is Lq(�,Sym)-statically admissible if and only if

λ ∈3q :=

{
[1, 2] if 1≤ p < 2,
{1} if 2≤ p ≤∞.

In particular, we have (7-22).
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Proof. All λ < 1 are Lq(�,Sym)-statically inadmissible for all q ∈ [1,∞]. Indeed, if they were to be
statically admissible, then we would have s(λ) · n ≤ 0 on St by [Lucchesi et al. 2010, Proposition 2.1(i)],
where n is the outer normal to � on St , while we have s(λ) · n> 0 everywhere on St for λ < 1.

Further, λ= 1 is Lq(�,Sym)-statically admissible for all q ∈ [1,∞]. Indeed, the stress field T (1) is
bounded on �, is admissible, and equilibrates the loads l(1).

If 1≤ q < 2, then every λ ∈ [1, 2] is Lq(�,Sym)-statically admissible. Indeed, the stress field T (λ) is
admissible, is in Lq(�,Sym), and equilibrates the loads in the sense that (7-23) holds for every v ∈Wp

where p is the Hölder conjugate of q . This is proved by using (7-23) for v ∈ M and applying the density
of M in Wp (Proposition 7.4) and the continuity of loads on Wp.

If 2≤ q ≤∞, then every λ∈ (1, 2) is Lq(�,Sym) statically inadmissible. Let 1<λ≤ 2 and prove that
there is no admissible stress field in Lq(�,Sym) equilibrating the loads l(λ). Assume, on the contrary,
that T is an admissible stress field equilibrating the loads. If ω : R→ R is any nonincreasing C1 function
vanishing on (1,∞) and with ω′ < 0 on (0, 1), let v : �→ R2, defined by (7-17). As in the proof of
Lemma 7.9, we have v ∈W+p . Furthermore, one finds that

〈l(λ), v〉 = 0.

From 〈l(λ), v〉 = (T , Ê(v))= 0 and T ≤ 0, Ê(v)≥ 0 on � we derive that T · Ê(v)= 0 for L2 a.e. point
of �. We have ω′(x/y) 6= 0 for every point of �+. Then T (r) · (r⊥⊗ r⊥)= 0 for a.e. point of �+ and
must be proportional to r ⊗ r and hence we write

T (r)= η(r)r ⊗ r/y3

for L2 a.e. r = (x, y) ∈�+ where η :�+→ R is a L2 measurable function.
As in [Lucchesi et al. 2010, proof of Example 2.4], we deduce from div T = 0 in �+ and T n= s(λ)

on St that

T (r)= T (λ) on �+ . (7-26)

Indeed, the equation div T = 0 gives r(r · ∇η)+ 3rη = 0 which gives

r · ∇η+ 3η = 0.

The substitution η = η̂/y3 then provides

r · ∇η̂ = 0.

Thus the directional derivative of η̂ along any segment {r ∈�+ : r = cd, 0< c < d} is constant for any
d ∈ St . The segment is completely characterized by the slope y/x and thus there exists a function η̃ on
(1,∞) such that η̂(r)= η̃(y/x) for every r ∈�+. Thus

T (λ)(r)= η̃(y/x)r ⊗ r/y3 on �+.

The boundary condition T n = s(λ) on St then leads to η̃(d) = (λ− 1) for any d ∈ St and we obtain
finally (7-26). The argument above applies to the case when T is continuously differentiable. The general
argument in case T is only measurable is given in [Lucchesi et al. 2010, proof of Example 2.4]. This
part of the proof is omitted.
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To complete the proof, we note that T (λ) /∈ Lq(�+,Sym) and thus we arrive at a contradiction:
Starting from arbitrary balancing stress field in Lq(�,Sym) we obtain that T /∈ Lq(�,Sym). Thus λ is
not Lq(�,Sym)-statically admissible. �

8. Summary

(i) A decreasing continuous sequence of function spaces

WBD ⊃ · · · ⊃Wp1 ⊃Wp2 ⊃ · · · ⊃W∞ ⊃ C1

(1≤ p1 < p2 <∞) has been presented. The kinematic problem with this decreasing sequence is more
and more restrictive in the competitors space which results in apriori inequalities for the corresponding
critical multipliers of the kinematic problems

λ̄BD ≤ λ̄p1 ≤ λ̄p2 ≤ · · · ≤ λ̄∞ ≤ λ̄◦. (8-1)

Density conditions have been given which guarantee that the sequence (8-1) is constant.
(ii) A continuous sequence of function spaces C0(cl�,Sym), Lq(�,Sym), Xba, XM for static prob-

lems has been given. This sequence is better wieved as increasing if the parameter q is decreasing:

C0(cl�,Sym)⊂ · · · ⊂ Lq1(�,Sym)⊂ Lq2(�,Sym)⊂ · · · ⊂ Xba ⊂ XM (8-2)

(∞≥ q1 > q2 > 1). (With this way of ordering of the set of all q’s, we can consider q1 and q2 as the
Hölder conjugates of p1 and p2 above, respectively.) The static problem with the sequence (8-2) admits
wider and wider competitors space which results in apriori inequalities for the corresponding critical
multipliers of the static problems

λ◦ ≤ · · · ≤ λq1 ≤ λq2 ≤ · · · ≤ λba ≤ λM. (8-3)

In the case of the choice of the spaces W∞ or C1 in the kinematic problem, the set of all admissible
stresses has to be enlarged to contain stresses represented by either finitely or countably additive tensor-
valued measures. No condition is currently available to the authors that would guarantee that the sequence
(8-3) is constant. We also note in passing that all the multipliers in (8-1) and (8-3) coincide if

λ◦ = λ̄◦ (8-4)

that is, if the supremum of the statically admissible multipliers over the continuous stress fields coincides
with the infimum of the kinematically admissible multipliers over the smooth displacement fields. In this
case, the critical multipliers become independent of the choice of the function spaces. However, we do
not know any condition guaranteeing (8-4).

(iii) A necessary and sufficient condition has been given under which the supremum of statically
admissible multipliers equals the infimum of kinematically admissible multipliers. Two sufficient condi-
tions for the last equality have been given. A simple sufficient condition involves the assumption of the
existence of the strong mechanism. An example is given to show that this is not always satisfied, even
with very regular loads.

(iv) An example has been given of loads in which the function q 7→ λq (∞≥ q > 1) has an increasing
jump at q = 2 as q moves along [1,∞] from right to left. Moreover, λq < λ̄p for q ∈ [1, 2).
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The above shows that the limit analysis problems are sensitive to the choice of function spaces.

Appendix: Notation for function spaces

We here describe briefly and somewhat informally the function spaces used in the main text. All spaces
below are Banach spaces but we do not specify the corresponding norms.

If Z is a finite dimensional real inner product space and 1 ≤ p ≤∞ then L p(�, Z) is the set of all
Lebesgue measurable functions β :�→ Z such that{∫

�
|β|p d Ln <∞ if p <∞,

ess sup{|β(x)| : x ∈�}<∞ if p =∞.

The spaces L p(S, Z) are defined analogously, with the Lebesgue measure replaced by the Hausdorff
measure Hn−1. See, e.g., [Fonseca and Leoni 2007, Chapter 2] for the scalar-valued case. In the general
case the space Z is isometrically isomorphic to Rk for a suitable k, and one employs the procedures of
the scalar case to components. The same applies also to the other objects with values in Z , Rn or Sym
to be considered below, without mentioning it. (The references we give below deal exclusively with the
scalar case.)

If 1≤ p≤∞ then W 1,p(�,Rn) denotes the Sobolev space of all v :�→Rn such that v ∈ L p(�,Rn)

and ∇v ∈ L p(�,Lin). See e.g., [Adams and Fournier 2003, Chapter 3].
If Z is as above and A a Borel subset of cl� then M(A, Z) denotes the space of all countably additive

Z -valued measures, i.e., functions µ :B→ Z , where B is the set of all Borel subsets of Rn , such that

µ

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

µ(Bi )

for each disjoint sequence of Borel subsets of Rn , and

µ(B)= 0

if B is a Borel subset of Rn such that A ∩ B = ∅. The elements µ ∈ M(A, Z) are called Z -valued
countably additive measures on A. See, e.g., [Fonseca and Leoni 2007, Section 1.3.1]. Furthermore, if
µ stands for the Lebesgue measure in Rn or for the n− 1 dimensional Hausdorff measure and A is a µ
measurable subset of Rn , then µ A denotes the restriction of µ to A, defined as the measure on Rn by

(µ A)(B)= µ(A∩ B)

for every µ measurable set B. In this context, if β is a µ A integrable function with values in Z then
βµ A denote the multiple of µ A by β, defined as an element of M(A, Z), by

(βµ A)(B)=
∫

A∩B
β dµ

for all µ measurable sets B.
The space ba(�,M,Ln

;Sym) of bounded finitely additive Sym-valued measures that are absolutely
continuous with respect to the Lebesgue measure is the set of all T :M→ Sym, where M is the system
of all Lebesgue measurable subsets of Rn , such that
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(a) T(A∪ B)= T(A)+T(B) for every A, B ∈M with A∩ B =∅;

(b) sup
{∑ j

i=1 |T(Ai )| : {Ai } ⊂M is a finite partition of Rn
}
<∞;

(c) T(A)= 0 for each A ∈M with Ln(A)= 0;

(d) T(A)= 0 for each A ∈M with A∩�=∅.

See, e.g., [Fonseca and Leoni 2007, pp. 169–171].
BD(�) is the set of all v ∈ L1(�,Rn) such that Ê(v), interpreted as a distribution, is in M(�,Sym).

See [Témam 1983, Chapter II].
C1(cl�,Rn) is the set of all continuously differentiable functions v :�→ Rn such that both v and
∇v have continuous extensions from � to the closure cl� of �. We often identify v and ∇v with these
extensions.

C0(cl�,Sym) is the space of all continuous functions F : cl�→ Sym. See, e.g., [Fonseca and Leoni
2007, p. 126].
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