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NUMERICAL AND EXPERIMENTAL INVESTIGATION
OF THE DYNAMIC CHARACTERISTICS

OF CABLE-SUPPORTED BARREL VAULT STRUCTURES

SUN GUO-JUN, CHEN ZHI-HUA AND RICHARD W. LONGMAN

The cable-supported barrel vault (CSBV) structure system is a new style hybrid spatial steel structure,
based on beam string structures (or truss string structures) and cylindrical latticed shell structures. A
numerical investigation of the dynamic characteristics of a CSBV structure is presented, and an experi-
mental test was created to validate the model’s ability to obtain good predictions of the dynamic behavior.
In order to simulate the construction process of a CSBV structure, the numerical investigation progresses
in three phases: the first phase models the barrel vault without struts and cables, the second includes the
influence of the cables, and the third introduces the added mass of a roof. The first nine vibration modes
were obtained. The cables and struts in the CSBV improve the seismic behavior. The experimental
results validate the numerical model, allowing us to study the influence of the rise-span and sag-span
ratios.

1. Introduction

The cable-supported barrel vault (CSBV) is a new type of space structure that introduces tensegrity into
thick double-layer or multilayer barrel vaults [Chen et al. 2008], as shown in Figure 1. It is composed of
a single-layer or thin double-layer barrel vault, with struts and cables. On the one hand, due to the action
of struts and cables, the rigidity of the whole structure is improved, as is the out-of-plane stability of the
structure. Therefore, producing large spans is facilitated. On the other hand, by adopting the single-layer
or the thin double-layer barrel vault, less steel is used, reducing costs. The difficulty of construction is
also reduced, and the horizontal arch thrust is effectively reduced by the prestressed cables, so the heavy
burden on the lower structures supporting the barrel vault is substantially reduced.

At present, the static and dynamic performance of barrel vault structures has been studied [Dong and
Yao 1994; Wang and Li 1999; Langbecker and Albermani 2001; He et al. 2004; Cao et al. 2009; Kumagai
et al. 2009], but only the static performance has been addressed [Chen et al. 2010]. The dynamic response
of a cable-supported structure under dynamic loads, such as wind, earthquakes, or traffic, is very complex
and requires special study. The dynamic characteristics of cable-supported spherical shells have been
studied experimentally in [Tatemichi et al. 1997; Chen et al. 2004; Zhang et al. 2007]. The structural
response under dynamic loads not only depends on the load, but also on the dynamic characteristics of
the structure. The natural frequency of vibration is extremely significant, as it influences directly the
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Figure 1. Cable-supported barrel vault (CSBV) structure.

dynamic response of the structure. Therefore, for CSBV structures, the natural frequencies of vibration
and the mode shapes need further study. In this paper, a model of a CSBV structure was designed, and
the natural frequencies of vibration and the mode shapes were found by numerical analysis followed
by experiments on a test facility created for this purpose. The results of the numerical analysis and
experiments are analyzed and compared. A parametric study of the dynamic characteristics of the CSBV
structure was also conducted. From the numerical and experimental results, some conclusions are drawn
for practical engineering applications.

2. Numerical model

For this paper, the cable-supported barrel vault (CSBV) structure shown in Figure 2 was designed. It
has a span of 3.333 m, length of 3.587 m, rise of 0.3 m, and sag of 0.05 m. The upper barrel vault model
is composed of three kinds of steel tube sections, ∅8× 1, ∅10× 1, and ∅12× 1. The sections of all
struts are steel tube ∅12× 1. The cables are all steel bar ∅6. The sections of the columns are all steel
tube �50× 2 with a length of 2.1 m. All the steel tubes are Q235B and the steel bar’s ultimate strength
is 1860 MPa. The design of the cable-supported structure is different from other steel structures not
only in that the sections are modified, but also because of the need to determine the cable force. Some
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Figure 2. Elevation drawing and plane graph.
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 Iteration flow chart. 
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Figure 3. Cable numbering. Figure 4. Iteration flow chart.

design principles and optimizations of cable-supported structures have been presented in the literature
[Kawaguchi et al. 1999; Kang et al. 2003; Chen and Li 2005; Xue and Liu 2009].

In this paper, the cable prestress design principle for CSBV structures, in which the peripheral restric-
tion is usually the spatial pin, is that the horizontal arch thrust is zero. Figure 3 labels the seven cables
in the CSBV, and the cable prestress is set to zero, T p = {T p1, T p2, T p3, T p4, T p5, T p6, T p7} = {0}.
Being subjected to the dead weight of the structure, the horizontal arch thrusts can be calculated, and
are denoted by N = {N1, N2, N3, N4, N5, N6, N7}. Then, the structure is reanalyzed; this time N is
considered to be the cable force, and is applied on each cable correspondingly, and the horizontal arch
thrust is recalculated. This process is repeated until the horizontal arch thrust is zero or close to zero,
resulting in the target values of the cable prestress, T = {T1, T2, T3, T4, T5, T6, T7}. It should be noted
that the nonlinearity of the geometry of the structure must be considered in the calculation process above.
The computation can be accomplished using general finite element analysis software such as ANSYS.
The iteration calculation flow chart is shown in Figure 4. The iterative process for the research model
(see Figure 2) converged within three iteration steps; see Figure 5.

3. Numerical analysis

Following the finite element software package ANSYS 12.0 user manual [ANSYS 2010], the element
BEAM188 was adopted to simulate the steel members in the upper vault structure, while the struts and
the cables were simulated by LINK8 and LINK10, respectively. The finite element model of the CSBV
is shown in Figure 6. The subspace iteration method [Jung et al. 1999] for the dynamic characteristic
was used. The research process can be divided into three phases: in the first phase the barrel vault
without struts and cables is modeled; in the second, the CSBV structure is modeled; and in the third,
the CSBV structure is modeled, with an added mass of 15 kg to simulate the case with a roof. The
added mass distribution is shown in Figure 7. The difference in rigidity between the barrel vault and
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Figure 5. Values of cable forces: three iterations to convergence (left), and final values (right).

CSBV structures can be obtained from the first and second phases. The difference in rigidity between
the construction and operational phases can be obtained from the second and third phases.

The first nine mode frequencies for each phase of the above numerical analysis are shown in Table 1
and the corresponding mode shapes for each phase are shown in Figures 8–10. Comparing the first and
second phases, the frequencies of the CSBV are higher than those of the barrel vault structure, that is,
the rigidity of the CSBV structure is greater than that of the barrel vault structure. Comparing the second

from the 2nd phase and the 3rd phase. 

            

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The finite element model of CSBV.   odel of CSBV.    Figure 8. Added-mass distribution. 

15kg added-mass 

Figure 6. Finite element model of the CSBV. Figure 7. Added mass distribution.

Mode number 1 2 3 4 5 6 7 8 9

First phase 6.33 7.24 8.88 10.10 10.98 13.01 14.21 25.25 26.81
Second phase 8.72 11.27 13.62 14.35 15.83 24.82 26.05 28.43 33.26
Third phase 2.44 3.03 3.41 3.81 4.76 4.94 5.68 7.04 7.38

Table 1. The first nine mode frequencies, in Hz, for each phase of the analysis.
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Figure 8. Mode shapes of the first nine mode frequencies for the first phase.

and third phases, with the CSBV having added mass, the frequency of the CSBV is reduced. It can be
observed from the mode shapes for each phase that each mode involves vibration of the whole structure,
and is not a local mode. The barrel vault structure vibrates with smaller wave numbers than the CSBV,
because of the cables and struts. In the first phase, the natural vibration property of the barrel vault is
not only related to the roof, but also the stiffness of the bottom structure, as illustrated in the 3rd to 5th
modes in Figure 8, marked with ∗ . The same conclusion applies to the parts of Figures 9 and 10 marked
with ∗ . This indicates that global analysis is necessary for the CSBV.

4. Experimental work

Test model. In order to validate the above numerical modeling of CSBV structures, an experimental test
facility was created. All the bars of the upper barrel vault in Figure 1 were connected with welded hollow
pipe joints. The ends of the upper barrel vault were welded to the tops of the columns. The tops of the
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∗ 1st ∗ 2nd ∗ 3rd
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Figure 9. Mode shapes of the first nine mode frequencies for the second phase. (See
page 7 for the asterisks.)

struts were connected to the upper barrel vault with one-way hinge bolt joints. The cable groove was
used as a connection at the bottom end of the struts while bolts were adopted to link the end of the cable
with the top of column. By twisting the bolts, the cable forces could be adjusted to the design values
mentioned above. Then the cables were fixed by cable buttons on each side of the struts to avoid slipping.

Test program. The purpose of the test was to obtain the fundamental natural frequencies and vibration
modes. In order to avoid wind disturbances, the model was tested in a tent. Vibration data was generated
by applying impacts to the structure to obtain the frequency response function. Piezoelectric acceleration
sensors were used to collect data at chosen measurement points. There were three phases of experimental
tests. In the first phase, 35 measurement locations were chosen on the structure so that accurate mode
parameters could be obtained. In the second and third phases, 56 measurement points were chosen to
obtain accurate mode parameters. The chosen locations are shown in Figure 11. Because the stiffness
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Figure 10. Mode shapes of the first nine mode frequencies for the third phase. (See
page 7 for the asterisks.)

at different locations can differ greatly, impulses were applied at one corner of the structure, and the
responses at multiple locations were recorded. The force applied by the force hammer was recorded
using the piezoelectric force sensor in the hammer. The piezoelectric acceleration sensors gave three-
axis acceleration information at each measurement point. The piezoelectric force and acceleration signals
were amplified and passed through an antialiasing low-pass filter, and were stored in a data acquisition
and signal processing (DASP) system. Figure 12 shows the signal-collection process.

To ensure that the test data were accurate and reliable, pretests were conducted as follows:

(1) The linearity of the test object was evaluated by applying different impacts.

(2) Appropriate sample rates were chosen for the impact force signal and for the accelerometer sensor
signals in order to obtain good-fidelity information.
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Figure 11. Accelerometer sensor locations (measurement points) on the barrel vault
(left) and along the cables (right).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Data collection hardware configuration. 
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Figure 12. Data-collection hardware configuration.

(3) The symmetry of the matrix of frequency response functions was tested by interchanging the points
of the input impact and the resulting response.

(4) Tests were conducted to determine the best location for applying the impulse input. It was deter-
mined that a top corner of the structure gave the best excitation of modes, amplitude responses, and
signal-to-noise ratio, as shown in Figure 13.
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 The location of impact using the force hammer. 

Figure 13. Location of impact using the force hammer (circled).

The bandwidth of the formal test is 100 Hz. Fast Fourier transforms were used on the impact force
signal and acceleration response signals to obtain the frequency response functions. The “set total
average” and “point spread function” in the DASP modal analysis software were used to identify the
mode frequencies and shapes. By comparing the modal fits, the mode of vibration was obtained by the
mass-normalized method.

Test results. The test research contents can be divided into three phases: first, the barrel vault (without
struts and cables); second, the CSBV structure; and third, the CSBV structure with added masses of
15 kg to simulate the roof. Experimental and numerical values of the natural frequencies for each phase
can be compared in Table 2.

The vibration mode shapes of the CSBV are close to each other and their vibration directions are
mainly in the vertical direction. The mode shapes are mostly symmetric or antisymmetric. The vibration
mode shows a trend of the symmetry number increasing as the modal order increases. The frequency
spectrum is very concentrated, making the dynamic characteristics of the CSBV extremely complex.
Furthermore, the rigidity of the CSBV is greater than that of the traditional shell structure. Due to the
existence of the cable and strut, the vibration modes of the CSBV are changed and the seismic behavior
is improved. The dynamic analysis models, used during the process of seismic analysis of the three
stages of construction and forming, have greater differences. The changes in the dynamic response of
the structure in the construction process cannot be neglected.

5. Parameters research

The finite element model of the CSBV from before is used in the following subsections to study the
influence of rise-span ratio and sag-span ratio.

Influence of rise-span ratio. The rise-span ratio used above was 1/100. The influence of the rise-span
ratio on the mode frequencies of the structure was analyzed by considering two additional ratios, 1/50
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First phase

Mode Test Numerical
number result result

1 6.78 6.33
2 7.42 7.24
3 8.97 8.88
4 10.68 10.1
5 11.26 10.98
6 13.36 13.01
7 14.53 14.21
8 25.49 25.25
9 27.28 26.81

Second phase

Mode Test Numerical
number result result

1 8.87 8.72
2 12.12 11.27
3 14.02 13.62
4 14.29 14.35
5 15.62 15.83
6 23.43 24.82
7 25.42 26.05
8 27.43 28.43
9 32.14 33.26

Third phase

Mode Test Numerical
number result result

1 3.12 2.44
2 3.68 3.03
3 4.24 3.41
4 4.67 3.81
5 5.28 4.76
6 5.93 4.94
7 6.79 5.68
8 8.11 7.04
9 8.45 7.38

Table 2. Comparison between the experimental and numerical values, in Hz, for natural
frequencies. “First phase” refers to the barrel vault without struts and cables; “second
phase” to the CSBV structure; and “third phase” to, the CSBV structure with added
masses of 15 kg to simulate the roof.

are shown graphically in Figure 15.  
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Figure 14. Influence of rise-span ratio on the natural frequency of the CSBV.

and 1/200. The modified models were subjected to an added mass to simulate the third phase. The
natural frequency results are shown in Figure 14.

The natural frequency of the CSBV decreases as the rise-span ratio decreases, while the period in-
creases as the rise-span ratio decreases. The variation in the natural frequency is small for small order
numbers and becomes larger as the order number increases.
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 16. Influence of sag-span ratio on natural frequencies of the CSBV
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Figure 15. Influence of sag-span ratio on the natural frequencies of the CSBV.

Influence of sag-span ratio. The sag-span ratio used above was 1/600. The influence of the sag-span
ratio on the mode frequencies of the structure was analyzed by considering two additional ratios, 1/300
and 1/1200. The modified models were subjected to an added mass to simulate the third phase. The
natural frequency results are shown in Figure 15.

The natural frequency of the CSBV increases as the sag-span ratio decreases, while the period de-
creases as the sag-span ratio decreases. However, the natural frequency does not change significantly as
the sag-span ratio changes.

6. Conclusions

The cable-supported barrel vault (CSBV) structure, based on beam string structures (or truss string struc-
tures) and cylindrical latticed shell structures, is a new-style hybrid spatial steel structure. The design
of the cable-supported structure is different from other steel structures. The process of designing the
cable-supported structure is complicated and includes section design and cable-force determination. In
this paper, a finite element model of the CSBV with the cable force determined by an iterative calculation
was created. In order to simulate the construction process of a CSBV structure, the research was divided
into three phases: the first phase considered the barrel vault without struts and cables, the second the
CSBV structure, and the third the CSBV structure with added mass to simulate the influence of a roof,
considered here to consist of 30 added masses of 15 kg each. Research was conducted using numerical
investigation by generating a finite element model, and a CSBV structure was created for experimental
verification of the finite element results.

The mode shapes of the CSBV structure are similar, mostly symmetric and antisymmetric, and their
vibrations are mostly in the vertical direction. The frequency spectrum is concentrated, creating dy-
namic characteristics that are very complex. The vibration modes show a trend of the symmetry number
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increasing as the modal order increasing. The rigidity of the CSBV is greater than that of the traditional
shell structure, and the cables and struts change the vibration modes and improve the seismic behavior.
The changes in the dynamic response of the structure in the construction process cannot be neglected.
The vibration modes of the CSBV are influenced by the roof, as well as by the stiffness of the bottom
structure, indicating that global analysis is necessary.

From investigation of the influence of rise-span and sag-span ratios we make the following conclusions:
the natural frequencies of the CSBV decrease with the increase of the rise-span ratio, while the period
increases with the increase of the rise-span ratio. The variation in the natural frequency is small for small
order numbers and becomes larger as the order number increases. The natural frequency of the CSBV
increases as the sag-span ratio decreases, while the period decreases as the sag-span ratio decreases.
However, the natural frequency is not significantly changed as the sag-span ratio changes.
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WHEN BEAM THEORIES FAIL

PAUL R. HEYLIGER

The free vibration of completely unrestrained prismatic rectangular parallelepipeds and the static re-
sponse of planar elastic rectangles under transverse loads are examined to determine the relative accu-
racy of several widely used beam theories. The Euler–Bernoulli, Rayleigh, and Timoshenko theories
are applied to both isotropic and orthotropic beams and compared with elasticity-based solutions. The
resulting frequencies, energies, displacements, and stresses are compared with solutions to the linear the-
ory of elasticity for solids with the same geometries and material constitutions. Sources of the resulting
differences in response are identified, and guidelines are suggested.

Introduction

The vibrating beam is one of the most studied problems in mechanics, having an extremely large number
of practical applications [Timoshenko 1921; 1922; 1953; Love 1927; Anderson 1953; Traill-Nash and
Collar 1953; Dolph 1954; Herrmann 1955; Huang 1961; Cooper 1966; Thomas and Abbas 1975; Abbas
and Thomas 1977; Stephen 1978; 2001; Levinson 1981; King 1985; Schramm et al. 1994; Han et al.
1999; Gruttmann and Wagner 2001; Hutchinson 2001; Puchegger et al. 2003; 2005]. One of the key
issues encountered when considering this problem is the loss in relative accuracy when moving from a
fully three-dimensional elasticity theory to the simpler one-dimensional beam theories commonly used
by most engineers. In general, the complexity of the displacement field in the beam increases as the
slenderness ratio (s) of the beam decreases, where s = L

√
A/I , and L , A, and I represent the beam

length, area of the cross-section, and second moment of the cross-sectional area, respectively. Similar
behavior is found in static response for beams under a variety of loading and boundary conditions.

The most widely used beam theories in modern applications were all developed by 1921. These are
the Euler–Bernoulli, Rayleigh, and Timoshenko beam theories. The excellent review of these theories
(along with a rarely used shear beam model) in [Han et al. 1999] completely describes these basic theories
and their behaviors under a variety of boundary conditions. There is fairly broad consensus that if the
slenderness ratio is large, with the value of s ≥ 100 used by Han and coworkers being typical, that Euler–
Bernoulli theory can be used but when the slenderness ratio is “small”, shear deformation models may
give more accuracy.

One issue that has seen little exploration during these investigations is at what point the beam ceases
to behave as such and the estimates provided by one-dimensional beam theories begin to fail. To take
an extreme case, a rectangular parallelepiped with a square cross-section of sides a and length L has
a slenderness ratio of

√
12(L/a). For larger L/a ratios, the parallelepiped deforms according to the

kinematic hypothesis consistent with Euler–Bernoulli theory, then transitions into deformation patterns
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consistent with shear deformation models well represented by Timoshenko theory. But at some point,
even the Timoshenko model has limitations, as L approaches and eventually takes a value less than a.
What was once a beam becomes a thin square plate with thickness L and side edge lengths of a, with
completely different behavior.

In this study, elasticity theory is used to determine the limits of beam-theory accuracy as the slender-
ness ratio decreases for both dynamic and static responses. This is accomplished first by comparing the
frequency and modal displacement results from three commonly used beam theories (Euler–Bernoulli,
Rayleigh, and Timoshenko) with those of approximate solutions to the equations of motion for linear
elasticity for the same solid. Specific attention is paid to the simplest possible set of boundary conditions
(from an elasticity perspective): the free-free beam. This translates to the problem of zero end shear
and moment for the beam theories and traction-free vibration for a three-dimensional solid, and allows a
direct comparison for determining, at least in part, when beam theories fail to capture the mechanics of
deformation in these solids. Second, the static response of a beam under transverse sinusoidal loading is
considered using beam theories and an exact linear elasticity solution. In both cases, the objective is to
provide estimates of the errors induced by various beam theory approximations as the slenderness ratio
decreases.

Theoretical foundation

Governing equations. For a three-dimensional solid, there are three displacement components: u1(x1, x2,

x3), u2(x1, x2, x3), and u3(x1, x2, x3). They are linked to components of infinitesimal strain via the
relations

εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (1)

Here εi j are the components of the infinitesimal stain tensor and ui represent the displacement compo-
nents in indicial form. These strains are related to the components of Cauchy stress via the generalized
Hooke’s law, given by

σi j = Ci jklεkl, (2)

where Ci jkl represent the components of the elastic stiffness tensor. Substituting these stresses into the
equations of motion

σi j, j = ρ
∂2ui

∂t2 (3)

allows for a direct representation of these equations in terms of the three displacement variables.
An alternative to a direct solution of the equations of equilibrium uses Hamilton’s principle as a starting

point for approximate solutions to the equations of motion. For the case of zero body force, this can be
written

0=−
∫ t

0

∫
V
{σ11δε11+ σ22δε22+ σ33δε33+ 2σ23δε23+ 2σ13δε13+ 2σ12δε12} dV dt

+ δ

∫ t

0

∫
S

tiδui d S+ 1
2
δ

∫ t

0

∫
V
ρ(u̇2

1+ u̇2
2+ u̇2

3) dV dt. (4)
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Here V is the volume of the solid, u̇ = ∂u/∂t , t represents time, ρ is the density of the material, ti are
the specified surface tractions, and δ is the variational operator.

Beam theory displacement fields. The general procedure for simplifying computational models in the
field of solid mechanics is to restrict the way that a general particle within the solid can deform by
imposing kinematic constraints through an assumed displacement field. This can take a variety of forms,
but the general intent in beam, plate, and shell theories is to reduce the dimensions of the problem
and thereby simplify the subsequent analysis. In this study, each of the models used (the three beam
theories and the three-dimensional elasticity solution) imposes a sequence of constraints represented in
the resulting displacement fields. In the discussion that follows, the standard notations of u1 = u, u2 = v,
and u3 =w and x1 = x , x2 = y, and x3 = z are both used because of clarity and common usage. The long
axis of the beam is given by x and the cross-section coordinates are y in the out-of-plane direction and z
in the transverse direction of the beam. Additionally, only displacement fields corresponding to bending
action are considered in this study. There are of course types of beams in which the axial, torsional, and
bending action are coupled [Hodges 2006; Marigo and Meunier 2006], but those cases are not considered
here.

Euler–Bernoulli and Rayleigh beam theories. The Euler–Bernoulli beam is represented by a single un-
known variable: the transverse displacement of the beam centroid u3 = w. By further assuming that the
Poisson’s ratio is zero, the displacement field can be given by

u1(x1, x2, x3)= u(x, y, z)=−z dw/dx, (5)

u2(x1, x2, x3)= v(x, y, z)= 0, (6)

u3(x1, x2, x3)= w(x, y, z)= w(x). (7)

The only difference between the Euler–Bernoulli and Rayleigh beam theories is that in Euler–Bernoulli
theory the kinetic energy associated with the u displacement component is neglected since u̇2 along the
axis of the beam is generally much smaller in magnitude than ẇ2 transverse to the beam axis. The
equation of motion for the Euler–Bernoulli model with density ρ, elastic modulus E , moment of inertia
I , and transverse loading q(x, t) can be expressed in terms of w as

∂2

∂x2

(
E I
∂2w

∂x2

)
+ ρ

∂2w

∂t2 = q(x, t). (8)

Timoshenko beam theory. Timoshenko beam theory [Timoshenko 1921; 1922], also sometimes referred
to as a first-order shear deformation theory because it allows for nonzero transverse shear strain, is
represented by two unknown functions that represent the transverse displacement (w) and the total section
rotation (9) of the beam cross-section:

u1(x1, x2, x3)= u(x, y, z)= z9(x), (9)

u2(x1, x2, x3)= v(x, y, z)= 0, (10)

u3(x1, x2, x3)= w(x, y, z)= w(x). (11)

Here again the Poisson’s ratio is assumed to be zero. There is a fourth beam theory, rarely used, termed
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the shear theory, in which the kinetic energy associated with the displacement u is neglected. This theory
is not considered in this study.

The respective displacement fields can be substituted into the strain-displacement relations and ap-
propriate constitutive law, then the resulting displacement variables can be used in the equation(s) of
motion

ρA
∂2w

∂t2 − q(x, t)= ∂

∂x

[
κAG

(
∂w

∂x
−9

)]
, (12)

ρ I
∂29

∂t2 =
∂

∂x

(
E I ∂9

∂x

)
+ κAG

(
∂w

∂x
−9

)
, (13)

where A is the cross-sectional area, κ is the shear correction coefficient, and G is the shear modulus. For
the isotropic beam, the shear and elastic modulus are related. For the orthotropic beam, these constants
are independent. In either case, these governing equations can then be solved using usual methods [Han
et al. 1999].

Application and results

In this section, the displacement fields associated with beam theories and elasticity theory are applied to
two fundamental problems: the free vibration of the completely unrestrained rectangular parallelepiped,
and the static response of a simply supported rectangular strip under transverse load. The results obtained
by various beam theories can be compared with three-dimensional elasticity theory in the first case and
an exact plane elasticity solution in the second case.

Traction-free vibration of the free-free beam. Most of the analyses that use beam theory require use
of dimensionless variables. For a beam of length L∗, area A∗, moment of inertia I ∗, we can compute
the dimensionless area A = A∗/L∗2, moment of inertia I = I ∗/L∗4, density ρ = ρ∗L∗6ω∗21 /(E I ∗), and
frequency ωi = ω

∗

i /ω
∗

1 , where ωi represents the i-th natural frequency of the beam in radians/second.
In terms of the three beam theories, the solution reduces to satisfaction of the equation(s) of motion

along with the boundary conditions associated with zero resultant transverse shear and bending moment
at the two ends. For the elasticity model, the weak form of the three equations of motion embedded
within (4) must be solved for the case where the boundary conditions over the entire surface must be
traction-free.

Euler–Bernoulli theory. The Euler–Bernoulli beam includes strain energy terms from axial strain and
kinetic energy terms only from the transverse displacement component w(x). The solution for the beam
transverse displacement is given as [Han et al. 1999]

w(x)= C1 sin ax +C2 cos ax +C3 sinh ax +C4 cosh ax . (14)

Here a is the dimensionless wave number that is related to the dimensionless density, area, and frequen-
cies by

a4
= ρAω2. (15)

The end conditions consistent with the free-free beam for this theory are

d3w

dx3 = 0,
d2w

dx2 = 0. (16)
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Substitution of the displacement field into these four conditions yields the 4× 4 linear system whose
zero determinant provides the resulting frequencies, while the values of Ci define the mode shape of the
deformed beam.

Rayleigh theory. Rayleigh theory is identical to the Euler–Bernoulli model with the exception of the
addition of the kinetic energy along the beam axis. This term is often referred to as the rotary inertia,
and generally results in a lowering of the frequencies compared with the Euler–Bernoulli model. The
solution for the transverse displacement is now

w(x)= C1 sin a1x +C2 cos a1x +C3 sinh a2x +C4 cosh b2x, (17)

where the dispersion relations identify a and b as

a1 =

√
ρ Iω2/2+

√
(ρ Iω2/2)2+ ρAω2, (18)

a2 =

√
−ρ Iω2/2+

√
(ρ Iω2/2)2+ ρAω2. (19)

The boundary conditions at each free end are given as

d3w

dx3 + ρ Iω2 dw
dx
= 0,

d2w

dx2 = 0. (20)

As before, this yields a 4× 4 linear system that can be solved for the respective ω and corresponding
mode shapes.

Timoshenko theory. In the Timoshenko model, the strain energy and kinetic energy consistent with the
full displacement fields are considered where the spatial forms of the transverse displacement w(x) and
the section rotation 9(x) are given as{

w(x)
9(x)

}
=

{
C1

D1

}
sin ax +

{
C2

D2

}
cos ax +

{
C3

D3

}
sinh ax +

{
C4

D4

}
cosh ax, (21)

where the parameters a and the relations between the Ci and Di are given in [Han et al. 1999]. The end
conditions consistent with the free-free beam are

d39

dx3 = 0, dw
dx
−9 = 0. (22)

Substitution of the displacement field into these four conditions yields the 4× 4 linear system whose zero
determinant provides the resulting frequencies and whose values for Ci and Di define the mode shape
of the deformed beam.

Linear elasticity theory. The problem of traction-free vibration of solids of general shape cannot usually
be solved using exact methods. Instead, solutions to Hamilton’s principle are sought using Ritz-based
approximations for the three displacement components. The displacement fields using this form of ap-
proximation where first used in [Demarest 1971], expanded in [Ohno 1976], and refined in perhaps their
most efficient form in [Visscher et al. 1991; Migliori and Sarrao 1997]. Their general form can be
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expressed as

u1(x1, x2, x3, t)= u(x, y, z, t)=
n∑

j=1

c j (t)φu
j (x, y, z), (23)

u2(x1, x2, x3, t)= v(x, y, z, t)=
n∑

j=1

d j (t)φvj (x, y, z),

u3(x1, x2, x3, t)= w(x, y, z, t)=
n∑

j=1

e j (t)φwj (x, y, z). (24)

Here c, d , and e are unknown constants that depend on time, and the functions φ are known functions of
position. This form of approximation is general, and in fact can be used for a variety of models including
those functions that have only local nonzero behavior (such as finite element approximation functions)
along with those that exist over the entire domain of the solid. It is the latter class that is of interest in
this work. In either case, substitution of these approximations into Hamilton’s principle and invocation
of the assumption of harmonic motion allows the problem to be reduced into the generalized eigenvalue
problem given as K11 K12 K13

K21 K22 K23

K31 K23 K33


c
d
e

= ω2

M11 0 0
0 M22 0
0 0 M33


c
d
e

 . (25)

The elements of these matrices are given in the Appendix.
The form of the approximation functions as used in this work is taken as

φi = x j ykzl . (26)

These functions have the appealing property of being very simple to evaluate over the domain of the
parallelepiped while providing a very accurate basis to represent the various displacement components of
the beam. It is also possible to use group theory to split the resulting eigenvalue problem into eight smaller
problems that separate the vibrational modes according to spatial dependence of the three displacements.
This topic has been extensively discussed in [Ohno 1976]. The eight groups are defined in Table 1.
Similar to the displacement fields of the beam theories, this class of model confines the solution to a

Grp Disp x y z Grp Disp x y z Grp Disp x y z Grp Disp x y z

u O E E u O O O u O O E u O E O
OD v E O E OX v E E O EY v E E E EZ v E O O

w E E O w E O E w E O O w E E E

u E E E u E O O u E E O u E O E
EX v O O E EV v O E O OY v O O O OZ v O E E

w O E O w O O E w O E E w O O O

Table 1. Groupings of approximation functions. (Grp: group; Disp: displacement.)
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specific combination of polynomial forms, but in general the accuracy of this model increases rapidly as
the number of terms in the series increases.

The generalized eigenvalue problem for the three-dimensional solid defined earlier gives the general
form of solution for the elasticity solution of the free-free beam. Of the eight groups that represent the
total beam vibration of an elastic parallelepiped with either isotropic or orthorhombic symmetry, there
are four that contain what can be categorized as flexural modes, as the resulting displacement patterns
reflect this class of deformation. As one of the beam dimensions grows (for example, the length in the x
or axial direction, defined as L in the usual beam theories), the flexural modes become easier to excite
and are among the lowest of the frequencies described by the eight symmetry groups. But in all cases
used in this study, only those symmetry groupings that are associated with flexure are used to compare
with the results from beam theory. Modes having to do with longitudinal shear or torsion about the beam
axis, for example, are eliminated from consideration when comparing with results from one-dimensional
beam theories.

As the number of terms in the series used to describe the three displacement components is increased,
the accuracy in the frequencies improves. To demonstrate this behavior, we consider a beam of length
0.2 m with a square cross-section of 0.01× 0.01 m. The elastic constants are taken to be those of steel,
with C11 = 269.231 GPa and C44 = 76.923 GPa along with a density of 7830 kg/m3. In Table 2, the
lowest five flexural frequencies are shown as a function of the parameter j + k+ l, which is the summed
total of all powers in (26). The results indicate an accuracy, at least for these first five modes, that is
adequate to at least five figures. Similar results were found for beams with other aspect ratios.

From a full analysis of this rectangular parallelepiped, there are six zero eigenvalues corresponding
to the rigid body modes of the solid, then a sequence of seven repeated frequencies that represent what
are usually classified as the bending modes of the beam. The first, third, fifth, and seventh frequencies
are from the groups (EY,EZ), and the second, fourth, and sixth are from the groups (OY,OZ). These
frequencies are repeated since they represent bending about the y and z-axes, and are identical since the
beam cross-section is square. It is not until the eighth frequency where a single mode from the group
EV makes an appearance. But in general, the focus here is on the bending modes so they can be directly
compared with the class of frequency derived from the beam theories.

Frequencies. The mechanics of deformation for beams changes as the slenderness ratio begins to de-
crease. To demonstrate the limits of beam theory, the lowest five flexural modes are computed for the
three main beam theories (Euler–Bernoulli (EB), Rayleigh, and Timoshenko) and compared with the

Sum of terms in series
Mode 8 10 12 14 16 18

1 8088.47 8088.47 8088.47 8088.47 8088.47 8088.47
2 21949.9 21943.9 21943.8 21943.8 21943.8 21943.8
3 42147.0 42073.6 42072.7 42072.7 42072.6 42072.6
4 75581.3 68056.1 67652.5 67642.7 67642.5 67642.5
5 115478. 99316.0 97915.6 97855.6 97854.2 97854.1

Table 2. Convergence of frequencies (in radians per second) of isotropic bar with L = 0.20 m.
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same frequencies as computed using elasticity theory for zero and nonzero Poisson’s ratios. This is
completed for the isotropic beam using the elastic constants of steel as listed earlier, and for the or-
thotropic elastic constants of graphite-magnesium given as C11 = C22 = 28.18 (all in GPa), C33 = 174.3,
C12 = 10.67, C13 = C23 = 12.20, and C66 = 8.76, with a density of 1738 kg/m3 [Ledbetter et al. 1989].
The results are given in radians/second and are all computed using a fixed cross-sectional dimension
(0.01× 0.01) with the length varying to give the specified slenderness ratio. The results are shown in
Table 3 for the isotropic beam and Table 4 for the orthotropic beam.

EB Rayleigh Timoshenko ν = 0 Full

816033. 570862. 515972. 514674. 516233.
2249460. 1243978. 865076. 858577. 862774.

L = 0.02 m 4409820. 2024066. 1220600. 1245000. 1227690.
(s = 6.928) 7289660. 2839420. 1226500. 1266740. 1238280.

10889500. 3666503. 1623750. 1297740. 1383700.

130565. 120943. 115643. 115547. 115773.
359914. 308040. 270703. 270111. 271519.

L = 0.05 m 705571. 553822. 450802. 449397. 452726.
(s = 17.32) 1166350. 836851. 635424. 633014. 638419.

1742330. 1143697. 816534. 813070. 819523.

32641.3 31988.3 31534.8 31526.1 31546.3
89978.5 86145.8 82081.1 82008.3 82180.9

L = 0.10 m 176393. 164062. 149833. 149599. 150167.
(s = 34.64) 291586. 262124. 228803. 228303. 229548.

435581. 376983. 314906. 314056. 316225.

8160.33 8188.69 8087.68 8087.07 8088.47
22494.6 22243.4 21396.1 21930.1 21943.8

L = 0.20 m 44098.2 43263.8 42042.2 42019.3 42072.6
(s = 69.28) 72896.6 70825.6 67562.6 67504.0 67642.5

108895. 104599. 97688.3 97569.4 97854.1

2040.08 2037.48 2035.50 2035.46 2035.55
5623.65 5607.75 5587.49 5587.09 5588.01

L = 0.40 m 11024.5 10971.3 10887.3 10885.7 10889.5
(s = 138.56) 18224.1 18090.5 17854.5 17849.9 17860.4

27223.8 26943.0 26413.3 26403.2 26426.6

326.413 326.350 326.299 326.298 326.300
899.785 899.373 898.847 898.837 898.861

L = 1.0 m 1763.93 1762.56 1760.35 1760.31 1760.41
(s = 346.4) 2915.86 2912.42 2906.10 2905.97 2906.26

4355.81 4348.52 4334.06 4333.77 4334.42

Table 3. Frequencies for isotropic bar with rectangular cross-section.
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Several broad observations can be made. The widely used assumption of zero Poisson’s ratio as used
within an isotropic elasticity model results in frequencies that are nearly always below the exact values
with the full elastic constants. This difference is less than one percent for the lowest five modes for
slenderness ratios at or above 17 for both the isotropic and orthotropic beams. For slenderness ratios
less than about 10, this behavior transitions to less consistent behavior with the differences in frequency
rapidly increasing to over 10 percent for some values. However, for most cases, the assumption of no
Poisson’s effect has a very small influence on the resulting frequency spectra.

EB Rayleigh Timoshenko ν = 0 Full

1581020. 1106017. 674806. 769102. 769967.
4358220. 2410141. 801592. 944903. 957027.

L = 0.02 m 8543800. 3921528. 1155010. 961637. 959906.
(s = 6.928) 14123400. 5501235. 1416310. 1039640. 1051190.

21097900. 7103668. 1750170. 1283550. 1281090.

252964. 234321. 189850. 201500. 201793.
697315. 596813. 359106. 405631. 406741.

L = 0.05 m 1367010. 1073002. 532576. 617063. 618665.
(s = 17.32) 2259740. 1621357. 677543. 804311. 805812.

3375670. 2215856. 857382. 944903. 953822.

63240.9 61975.8 57667.4 58930.7 58963.2
174329. 166903. 133924. 142312. 142532.

L = 0.1 m 341752. 317862. 219221. 240694. 241250.
(s = 34.64) 564934. 507852. 304759. 343250. 344205.

843917. 730385. 389128. 446464. 447792.

15810.2 15729.6 15417.8 15513.5 15516.0
43582.2 43095.6 40177.8 41031.6 41053.8

L = 0.2 m 85438.0 83821.4 73087.0 76023.5 76100.9
(s = 69.28) 141234. 137221. 110850. 117535. 117713.

210979. 202655. 151253. 163291. 163610.

3952.56 3947.52 3927.23 3933.52 3933.71
10895.6 10864.7 10660.9 10723.5 10725.1

L = 0.4 m 21359.5 21256.4 20431.9 20680.0 20686.4
(s = 138.56) 35308.4 35049.5 32803.4 33461.6 33478.8

52744.8 52200.7 47342.1 48721.7 48758.0

632.409 632.287 631.761 631.926 631.930
1743.29 1742.49 1737.09 1738.78 1738.82

L = 1.0 m 3417.52 3414.87 3392.30 3399.31 3399.45
(s = 346.4) 5649.34 5642.66 5578.50 5598.35 5598.86

8439.17 8425.05 8279.24 8324.08 8325.23

Table 4. Frequencies for anisotropic bar with rectangular cross-section.
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The decision to use an Euler–Bernoulli beam theory versus Rayleigh theory is, at least for modern
practical applications, rarely an issue. Most analysts will use finite element models in which the rotary
inertia is incorporated into the mass matrix of the finite element equations. In general the Rayleigh
results are lower than those of Euler–Bernoulli theory since the additional kinetic energy terms from the
rotary inertia effectively appear on the same side as the frequency in the eigenvalue equation. For the
beams considered in this study, the differences in frequency obtained from these two theories is quite
small when the beam is very slender (s over 100), with changes that increase with mode number that also
dramatically differ when the beam becomes thick (with s under 50). There is not a significant difference
between the isotropic and anisotropic beam behavior in this regard. However, the higher-mode Rayleigh
frequencies are larger than the elasticity values by up to several percent even when the beam is very
slender (s over 100). For a beam of dimensions 1× 1× 20 (s = 69.28), the errors in the lowest five
frequencies range from 0.7 to 8 percent for the isotropic beam and 1.6 to 25 percent for the orthotropic
beam, with the higher modes having the larger errors. When the beam is 1× 1× 10 (s = 34.64), the
errors range from 2.55 to 23 percent for the isotropic case and 6.3 to 69 percent for the orthotropic beam.
Hence although the fundamental frequency of the Rayleigh beam yields good agreement with elasticity
results, the decision to use either of these two theories to predict higher modes is of questionable merit.
This would of course be even more true if these elements are used to consider assemblies of beams into
a planar or spatial frame.

The Timoshenko beam model provides excellent agreement with elasticity results for the case of the
isotropic beam. For this study, the shear correction coefficient was taken to be 0.85 [Han et al. 1999],
which is a well-established value for isotropic and rectangular cross-sections. The fundamental bending
mode is well within a single percent of the full elasticity results for virtually all cases, even when the
beam becomes very thick. For more realistic slenderness ratios, the first five modes match very well even
for relatively stocky beams. For larger slenderness ratios, the frequencies provided by the Timoshenko
model are in between the elasticity solutions for zero and nonzero Poisson’s ratio results, and this appears
to hold for all of the five lowest bending frequencies. It is only when the slenderness ratio is less than
about 10 that the higher modes become less accurate.

For the orthotropic beam, the Timoshenko model appears to be significantly less robust. The shear
correction coefficient value was taken to be 0.8406 in the case of these material properties, and was
computed according to the method of [Puchegger et al. 2003; 2005]. There have been far fewer studies
of shear correction coefficients for orthotropic beams than for the isotropic case, in part because of the
wide variability that can exist between the longitudinal and shear moduli for some materials. Once again,
the assumption of zero Poisson’s ratio has negligible influence on the results. Most of the frequencies
computed using the full stiffness tensor are only slightly (far less than one percent) higher than the
frequencies computed using the assumption of zero Poisson’s ratio. The anisotropic Timoshenko theory
also does a reasonable job predicting the fundamental bending frequency for moderately stocky beams.
However, unlike the isotropic theory, the errors become significant when the slenderness ratio reaches
lower double digits (roughly s = 20). Additionally, Timoshenko theory does not do as well with higher
modes even when the beam is quite thin. Errors between the elasticity and Timoshenko theory for the
first five modes are 0.17, 0.60, 1.2, 2.1, and 3.0 percent when the beam dimensions are 1× 1× 40,
with the Timoshenko model underpredicting the frequencies. When the beam is 1× 1× 20, these errors
jump to 0.64, 2.2, 4.1, 6.2, and 8.2 percent. For a 1× 1× 10 beam, they are 2.2, 6.4, 10.0, 12.9, and
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15.1 percent. These differences are far more significant than for the isotropic case, suggesting that a
single shear coefficient has difficulty capturing the total energy contribution from higher modes when
the material is anisotropic.

Mode shapes. The mode shapes for the beam theories and the elasticity theory are easily computed using
the solution of the respective eigenvalue problems. The distorted shapes of the lowest five modes are
shown in Figure 1 for slenderness ratios of 69.28 (a 1× 1× 20 beam) and 6.928 (a 1× 1× 2 beam) for

Figure 1. The first five mode shapes for the isotropic beam change in character as the
slenderness ratio decreases, shown here as computed by elasticity theory. On the left, the
modes for relative dimensions of 1×1×20 (s = 69.28) are well represented by the beam
theories, and plots of the transverse displacement are virtually identical to those for all
three beam theories and elasticity theory. On the right, with a geometry of 1× 1× 2
(s = 6.928), significant changes are apparent, with curved lines through the thickness
and surfaces that possess significant warping.
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isotropic material properties. Usually these modes are plotted using only the transverse displacement
w for the beam theories (along with the section rotation for Timoshenko theory) but in this case we
have plotted the entire solid. For the slender beam, there is no visible difference between the transverse
displacement pattern between the elasticity and beam theory results, and the deformation field is sig-
nificant in that the entire surfaces of the beam remain relatively smooth. In fact, one can see that the
plane sections of the beam are remaining flat and are deforming very close to the assumptions of the
Euler–Bernoulli and Rayleigh theories.

For the thicker beam, there are significant changes in behavior for these modes. The lowest mode
shape is very similar to that of the thin beam, but as the modes progress in order there is an increasingly
large deviation from the smooth-faced behavior of the slender beam. There is not only distortion of
the vertical lines representing the plane deformation, but there are indications of warping across the top
surfaces along with a total deformation field that is difficult to capture using only one or two variables.
The case of s = 6.928 is somewhat extreme, but the transition from slender beam behavior to vibrating
solid behavior is the crucial aspect of this work.

These plots give an indication of the visual difference between behaviors, but other metrics can be used
to reinforce the sources of the changes in frequency. Because so much of the deformation is comprised
of the axial stretch along the length of the beam, it is useful to consider the changes in the deformation
pattern as the modes increase and the slenderness ratio decreases. Figure 2 shows the contours of the axial
displacement for the upper right quadrant of the beam for the lowest five modes of the isotropic beam
with stocky geometry (1×1×5 and 1×1×2). The contours associated with all three beam theories are not
shown but they are easy to visualize: they would be perfectly straight horizontal lines spaced an equal dis-
tance in the vertical direction (see the form of the axial displacement component u for the beam theories,
which all linearly depend on z but have no spatial dependence on the other cross-sectional component).

Figure 2. These contour plots show the upper right quadrant of the axial displacement
for the isotropic beam computed using elasticity theory for lengths of 0.05 (top) and
0.02 (bottom). The lowest modes are on the left. They demonstrate the breakdown of
beam theory approximations which assume that these components are linear in z.
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These figures clearly show how the assumption of single-power displacement fields can be adequate
for low-mode, high-s vibrations. In fact, even the fundamental mode for s = 17.32 is well captured by
such an assumption. But as the mode number increases, the displacement field becomes nonlinear in the
horizontal coordinate direction of the beam cross-section, and the displacement fields for the low-s beams
diverge even more strongly. They indicate that a slightly more inclusive displacement field, perhaps with
a small number of additional terms dependent on the x2 = y coordinate, could better capture this basic
behavior.

Kinetic and strain energy. The goal of most beam theories is to be able to mimic the actual behavior of a
solid using as few variables as possible. Since the natural frequencies of a vibrating solid are dependent
on the ability of these theories to capture both the kinetic and strain energies corresponding to each mode
shape, the sources of error when compared with elasticity solutions can be determined and potentially
eliminated using more sophisticated kinematic assumptions.

The strain energy density Uo at any point in the solid can be expressed as

Uo=U 11
o +U 22

o +U 33
o +U 23

o +U 13
o +U 12

o =
1
2 σ11ε11+

1
2 σ22ε22+

1
2 σ33ε33+σ23ε23+σ13ε13+σ12ε12, (27)

and the kinetic energy density can be expressed as

K = K 11
o + K 22

o + K 33
o =

1
2 ρu̇2

1+
1
2 ρu̇2

2+
1
2 ρu̇2

3. (28)

These scalar functions of position can be integrated over the domain of the beam to give the strain energy
and kinetic energy associated with any displaced shape of the beam. For example, we can define

K 11
=

∫
V

K 11
o dV . (29)

Hence K 11 is simply the size of the kinetic energy term along the axis of the beam for a specific modal
deformation pattern. Using this separation and the modal displacement patterns that result from the
solution of the eigenvalue problem, it is a simple matter to separate the relative contribution of each
displacement component and stress-strain contribution to the total kinetic and strain energies for each
mode. This allows an assessment of the sources of error between elasticity theory and the beam theories.

The influence of each term is shown by computing the relative size of the contribution of each of the
terms from the kinetic and strain energy terms for the first five modes considered in the earlier examples.
Since the amplitude of each mode is arbitrary, the values are normalized with respect to the dominant
terms in the kinetic (K 33) and strain (U11) energies. These terms are selected as the reference values
since for flexural modes most of the energy associated with the motion is transverse for the kinetic term
and axial for the strain term. Hence for each mode the amplitudes of motion are scaled so that the other
terms are relative to the dominant values.

Results are shown in Figure 3 for the case of strain energy and Figure 4 for the case of kinetic energy.
In Figure 3, the results are given in terms of the transverse shear strain energy scaled by the axial strain
energy as a function of beam length for the isotropic and orthotropic cases. In Figure 4, the results are
given in terms of the axial kinetic energy scaled by the transverse kinetic energy as a function of beam
length. The contributions of all other terms are consistently several orders of magnitude lower than those
of these two dominant terms and it would make little sense to modify existing beam theories to better
capture these terms. They were not plotted here. The transverse kinetic energy (K 33) and axial strain
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Figure 3. The ratio of the transverse shear energy to the axial energy is shown for the
0.01× 0.01 beam as a function of beam length for the first five modes of the isotropic
(solid lines) and orthotropic (dashed) beams. This ratio increases with mode number
and is significantly more pronounced for the orthotropic beam.
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Figure 4. The ratio of the axial kinetic energy to the transverse kinetic energy is shown
for the 0.01× 0.01 beam as a function of beam length for the first five modes of the
isotropic beam. This ratio generally increases with mode number but for most reasonably
sized beams is less than five percent of the total contribution.
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energy (U 11) dominate the total kinetic and strain energies for all thin beams. The shear strain energy
contribution is larger than the rotary kinetic contribution by a factor of roughly 2–5 for the isotropic case
and roughly 5–10 times higher for the orthotropic beam.

In addition to the tabulated results, the ratios of the energies as computed using elasticity theories
to those of Timoshenko theory were also computed. The ratios of the transverse kinetic energy of the
isotropic beam computed by elasticity theory to that of Timoshenko theory when the maximum displace-
ments are the same are given by 0.9996, 0.9996, 0.9997, 1.00001, and 1.0013 for beams of length 1,
0.4, 0.2, 0.1, and 0.05, respectively. For the orthotropic beam, these ratios are 0.99914, 1.0013, 1.0061,
1.0234, and 1.079. The ratios of the axial strain energies for the lowest modes of the isotropic beam (again
with L = 1.0, 0.4, 0.2, 0.1, and 0.05) are 1.000004, 1.000024, 1.000099, 1.0004, and 1.0018, respectively.
The axial kinetic energy ratios (elasticity over Timoshenko) are 0.99983, 0.99986, 0.999993, 1.0005, and
1.0025. However, for the orthotropic beam the axial strain energy ratios are 1.00079, 1.0049, 1.0194,
1.0737, and 1.256. For the axial kinetic energy, the ratios are 1.00115, 1.0081, 1.0322, 1.122, and 1.417.

Static response. The static response of a simply supported beam of length L under sinusoidal transverse
loading q(x) = qo sin(πx/L) is an extremely well-known problem that can also be used to compare
beam theories with elasticity solutions. A beam under plane stress has the elastic constants E1, E3, G13,
and ν13 and has a base width of b and a height of h, with the area and second moment of area being
given by A = bh and I = bh3/12.

Euler–Bernoulli theory. The governing equation (8) can be readily solved under the boundary conditions
of w = 0 and d2w/dx2

= 0 at x = 0 and x = L to give

w(x)=
qo L4

π4 E I
sin πx

L
. (30)

Here E = E1, which is simply the elastic modulus along the beam axis. The other elastic constants play
no role in the one-dimensional response for this theory.

Timoshenko theory. An exact Timoshenko solution can be obtained by substituting the assumed solution

w(x)= C1 sin πx
L
, 9(x)= C2 cos πx

L
, (31)

into the governing equations (12) and (13). This results in the solution of the linear systemkG Aπ
2

L2 kG Aπ
L

kG Aπ
L

kG A+ E I π
2

L2

{C1

C2

}
=

{
qo

0

}
. (32)

Here G = G13, where now the beam response is a function of the two elastic constants E and G. This
is true for both the isotropic and anisotropic cases.

Plane elasticity solution. A solution that is exact within the constraints of plane stress can also be ob-
tained for this problem. This is in fact a special case of the exact solution obtained in [Pagano 1969].
The equilibrium equations in the x and z directions for a beam/strip along the x-axis of length L and
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height in z of h can be expressed as

C11
∂2u
∂x2 +C13

∂2w

∂x∂z
+C55

∂2u
∂z2 +C55

∂2w

∂x∂z
= 0, (33)

C55
∂2w

∂x2 +C55
∂2w

∂x∂z
+C33

∂2u
∂z2 +C13

∂2w

∂x∂z
= 0. (34)

Here the elastic constants are obtained by inverting the compliance matrix under plane stress conditions
(which contains E1, E3, G13, and ν13) to obtain the reduced stiffnesses C11, C33, C13, and C55.

The displacement field can be assumed as

u(x, z)= A cos πx
L

exp λz, w(x, z)= B sin πx
L

exp λz. (35)

Substituting these into equilibrium yields the matrix expressionC55λ
2
−C11

(
π

L

)2
λ
π

L
(C13+C55)

−λ
π

L
(C13+C55) C33λ

2
−C55

(
π

L

)2

{A
B

}
=

{
0
0

}
. (36)

The values for λ can be obtained by taking the determinant of the 2× 2 matrix for given elastic constants
and beam length and setting the result to zero.

For isotropic beams, the four Ci j are reduced to two independent constants, and there are two repeated
roots for λ. The solutions are given by

u(x, z)= cos πx
L
[(A1+ A2z) expπ z/L + (A3+ A4z) exp−π z/L], (37)

w(x, z)= sin πx
L
[(B1+ B2z) expπ z/L + (B3+ B4z) exp−π z/L]. (38)

Here the constants Bi are related to the constants Ai via

B1 = A1−
3C11−C13

C11+C13

L
π

A2, B2 = A2, (39)

B3 =−A3−
3C11−C13

C11+C13

L
π

A4, B4 =−A4. (40)

For the orthotropic beam, the four roots for λi are generally distinct and depend on the specific set of
elastic constants. The displacements can be expressed as

u(x, z)= cos πx
L
[A1 exp λ1z+ A2 exp λ2z+ A3 exp λ3z+ A4 exp λ4z], (41)

w(x, z)= sin πx
L
[B1 exp λ1z+ B2 exp λ2z+ B3 exp λ3z+ B4 exp λ4z], (42)

where now the constants are related via

Bi =
C11(π/L)2−C55λ

2

λ(π/L)(C13+C55)
Ai . (43)

In either case, the four constants are evaluated using the four boundary conditions on the tractions at the
lower and upper surfaces of the beam. The bottom surface is traction free, and the condition at the upper
surface is σzz = q(x). The stresses can be readily computed using the appropriate constitutive law.
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Displacements. In the discussion that follows, both isotropic and orthotropic constitutive laws are used.
In the case of isotropic beams, the Poisson’s ratio is assumed to be equal to 0.3 and the resulting displace-
ments and stresses are compared relative to the results determined by Euler–Bernoulli theory that depend
only on the elastic modulus. For the orthotropic case, the material properties used are taken as E1 = 155,
E3 = 12.1, G13 = 4.40 (all in GPa), and ν13 = 0.248. These values are typical of a graphite-polymer
composite [Hyer 1998].

The maximum displacement at the center of the beam can be used as a single point of comparison to
determine relative levels of error in beam theory assumptions. This is shown in Figure 5 for the isotropic
and orthotropic beams. Only the Timoshenko and elasticity solutions are plotted since the dimensionless
displacement from the Euler–Bernoulli model does not depend on length. The results are shown over
the key region from L/h = 4 to L/h = 12, which corresponds to a range of slenderness ratio of roughly
14–40.

As was the case for free vibration, there is again excellent agreement between the elasticity and
Timoshenko models for this fundamental behavior. The isotropic Timoshenko beam has displacements
that are slightly above those of the elasticity results, while the orthotropic Timoshenko beam varies
from being slightly below elasticity for larger lengths to slightly above for shorter beams. The more
dramatic leap is the distinction between Euler–Bernoulli theory for isotropic versus orthotropic beams.
For slenderness ratios in the low double-digits, Euler–Bernoulli theory underpredicts the displacement
by a factor of between 1.5 and 3. For the isotropic beam, there is not nearly this level of discrepancy,
with a maximum difference of less than 20 percent.

L
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Figure 5. The ratio of the maximum transverse displacement at the beam center as com-
puted by Timoshenko (solid) and elasticity (dashed) theories over the Euler–Bernoulli
prediction is shown for the isotropic (lower curves) and orthotropic (upper curves) beams
under static loading for a 1× 1 beam as a function of beam length.
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Figure 6. The ratio of the through-thickness distribution of axial stress σxx is shown
over the upper half of the isotropic beam using the elasticity solution for L = 4 (solid)
and the orthotropic beam for L = 4 (long dash), L = 8 (medium dash), and L = 20 (long
dash). The response of the Timoshenko beam is essentially identical to the isotropic
case even when the beam is short.

The longitudinal modulus is larger than the shear modulus by a factor of 2.6 for the isotropic beam but
by a factor of over 35 for the orthotropic beam. As the beam becomes shorter and shear deformations
accumulate, a softer shear modulus will yield much larger levels of shear deformation that cannot be
captured by purely axial stiffness.

Stress. The distribution of the bending stress σxx for several cases is shown in Figure 6 for the upper
half of the beam (here a beam of unit depth h = 1 was used). Both Euler–Bernoulli and Timoshenko
theories give a distribution that is linear in z, and the question becomes how much the exact elasticity
solution varies from this behavior. This figure shows that the assumption of linear variation is quite
sound except for in the case of thick beams (s less than about 30), where the distribution begins to go
nonlinear. For lengths of 20, 8, and 4 the elementary theory underpredicts this stress by 6, 10, and 35
percent in the orthotropic case. The isotropic beam has much smaller error, with a length of 4 giving
only 2 percent error at the extreme locations of the beam cross-section. The Timoshenko beam does a
very good job of capturing the maximum values of transverse shear stress regardless of aspect ratio or
material constitution.

Conclusions

For the small number of cases considered here, we conclude the following:

(1) For both the isotropic and orthotropic beams, the assumption of zero Poisson’s ratio has an extremely
small influence. This is true for all modes and nearly all slenderness ratios explored using elasticity
theory.
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(2) When s is less than 100, Euler–Bernoulli theory is not competitive. For orthotropic beams, signifi-
cant errors (over a single percent) appear, especially for higher modes, even when this ratio is over
100.

(3) The inclusion of the rotary inertia terms in the kinetic energy within Rayleigh theory offers only
marginal improvement over the Euler–Bernoulli model. These differences are consistent with errors
that are small (several percent at s = 100 for the isotropic case) but rapidly increase to over ten
percent when s drops to low double digits and the mode number increases. For the orthotropic case,
the errors are significant even at s = 50.

(4) For an isotropic beam with a relatively small ratio (under 3 in this case) between the axial mod-
ulus and the shear modulus, Timoshenko theory is extremely robust even as the slenderness ratio
approaches single digits. For s = 7 (which represents a beam that is 1× 1× 2), the lowest four
frequencies are within a single percent error.

(5) For the orthotropic beam with a relatively large ratio (approximately 13 in this case) between the
axial modulus and the shear modulus, Timoshenko theory generates significant errors even for beams
that are relatively slender (s = 50), with even the fundamental frequency having an error well over
a percent and even larger errors (up to 8 percent) for the higher modes. For stocky beams (s = 10
or so), errors are well into double digits for most of the frequencies.

(6) Rayleigh theory overpredicts the contribution of axial kinetic energy, but the lack of shear deforma-
tion restricts the relative motion and the resulting frequencies are above those of elasticity theory
even for relatively high values (mid double-digit) of s.

(7) The isotropic Timoshenko beam is extremely accurate in capturing the relative axial kinetic en-
ergy contribution but underpredicts the contribution to transverse shear strain energy, leading to
frequencies that are slightly below those of elasticity theory. For orthotropic Timoshenko beams,
the axial kinetic energy is underpredicted and the strain energy contributions are overpredicted, with
frequencies below those of elasticity theory.

(8) Under static response, isotropic beams modeled using Euler–Bernoulli theory underpredict maxi-
mum displacements by up to 20 percent for relatively thick beams but by a factor of about 3 for the
orthotropic case.

(9) Static axial stress fields for isotropic beams are captured well by both Euler–Bernoulli and Timo-
shenko theories, even when the beam is relatively thick. Orthotropic beams generate an axial stress
that goes nonlinear over the cross-section at a much higher aspect ratio, with errors of over 25
percent for L/h = 4.

Returning to the title, when, in fact, do beam theories fail? For isotropic materials, one potential
answer is this: earlier (that is, at larger values of s) than one might expect for Euler–Bernoulli and Raleigh
theories, and later (that is, at smaller values of s) than one might expect for Timoshenko theory. Given
that many studies use these beam theories to predict the resonant modes for assemblies of beam/frame
elements for beam geometries that possess moderately low values of s, these errors could accumulate to
cast doubt on the overall accuracy of such approaches.

For orthotropic beams with high ratios of elastic to shear moduli, the answer is even more dire: one-
dimensional theories generate significant errors in vibrational response even at high values (over 100)
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of s. This is true even to the point that there appears to be room for adjustments or wholesale revisions of
these basic theories when the material is anisotropic. Given the discrepancy between the axial kinetic and
strain energy values between elasticity and Timoshenko theories, it would not be unreasonable to modify
the axial displacement component as a next step in applying beam theory to the class of orthotropic
beams. But one result is clear: caution should be applied in interpreting results obtained by applying
beam theories to problems where higher modes, energy, or stresses are of significant interest.

Appendix

Elasticity theory. The elements of the coefficient matrices are a function of the elastic constants Ci j

and the Ritz approximation functions φ, for which the superscripts indicate the variable to which that
function is linked. These entries are given as

K 11
i j =

∫
V

(
C11

∂φu
i

∂x

∂φu
j

∂x
+C55

∂φu
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∂y
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TRANSIENT 3D SINGULAR SOLUTIONS FOR USE
IN PROBLEMS OF PRESTRESSED HIGHLY ELASTIC SOLIDS

LOUIS MILTON BROCK

The dynamic perturbation of a neo-Hookean solid in an initial equilibrium state of finite deformation
can be viewed as the superposition of infinitesimal strains upon large ones. Three transient 3D singular
problems whose solutions are useful in generating the former are studied. The first and second concern,
respectively, a concentrated force and a point displacement discontinuity in an unbounded solid; the
third problem involves a concentrated force applied at a point on the surface of a half-space. The
governing equations resemble those for a linear anisotropic solid. Analytic solutions are obtained, as
well as formulas and calculations for anisotropic wave speeds. Formulation of the problems is in terms
of Cartesian coordinates, but expressions for the solutions and wave speeds make use of a quasipolar
coordinate system.

1. Introduction

Loading of a prestressed highly elastic solid may produce incremental deformations that are infinitesimal
in nature. Equations for infinitesimal deformation superimposed upon large can be developed [Green
and Zerna 1968; Beatty and Usmani 1975] to describe this perturbation response. These equations
are generally similar in form to those for anisotropic, linear elastic solids [Ting 1996], with elastic
constants that depend on constitutive equations for the highly elastic solid and the prestress. As in
isotropic elasticity, whether classical [Love 1944] or transient [Achenbach 1973], quasistatic [Willis
1965; Ting 1996] and transient [Wang and Achenbach 1992] singular solutions can serve as the basis
for treating general dynamic loading. Moreover, the singular solutions themselves give insight into
anisotropic behavior.

To illustrate the construction of such solutions this article considers a simple, neo-Hookean isotropic
solid. The principal stress and principal material axes coincide, and the former is uniform. The anisotropic
3D equations of small deformation in an unbounded solid are solved for the cases of a concentrated force
and a displacement discontinuity at a point. The 3D equations for the half-space subject to a concentrated
surface force are then considered. Analytic solutions and formulas for body-wave and Rayleigh-wave
speeds are provided. Sample calculations for the latter are also presented. The solution process involves
integral transforms in Cartesian coordinates, coupled with inversions based on quasipolar and quasispher-
ical coordinates [Brock 2012; 2013] and a standard method of de Hoop [1960]. The solution expressions
are, therefore, in a hybrid but uncomplicated form.

Keywords: neo-Hookean, dynamic perturbation, 3D singular solution, transient.
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2. Field equations

An elastic body < is homogeneous and isotropic relative to an undisturbed reference configuration ℵ0.
Smooth motion x = x(X) takes < to deformed equilibrium configuration ℵ. Cauchy stress T in ℵ is
[Green and Zerna 1968; Beatty and Usmani 1975]

T = α01+α1 B+α2 B2, B = F FT , F = ∂x
∂X . (1)

Here 1 is the identity tensor, (α0, α1, α2) are scalar functions of the principal invariant (I, II, J ) of B,
and body forces are neglected. Inequalities based on the experiment [Truesdell and Noll 1965] support
restrictions

α0− IIα2 ≤ 0, α1+ Iα2 > 0, α2 ≤ 0. (2)

An adjacent nonequilibrium deformed configuration ℵ∗ arises upon superposition of an infinitesimal
displacement u that depends on X and time. This requires perturbation Cauchy stress T ′ = T∗ − T ,
where T∗ is the Cauchy stress in ℵ∗. To the first order in ∇u its components in the principal reference
system, that is, B = diag{λ2

1, λ
2
2, λ

2
3} where (λ1, λ2, λ3) is the principal stretch, areT ′11

T ′22

T ′33

=
λ′11+ 2µ′11 λ′12 λ′13

λ′21 λ′22+ 2µ′22 λ′23
λ′31 λ′32 λ′33+ 2µ′33


∂1u1

∂2u2

∂3u3

 , (3a)

T ′ik = µ
′

ik∂i uk +µ
′

ki∂kui (i 6= k). (3b)

Here (i, k) take on values (1, 2, 3) and (T ′ik, ui , xi ) are scalar components of (T ′, u, x). Operator ∂i

is the component of the gradient ∇ associated with coordinate xi , and (λ′ik, µ
′

ik) are generalized Lamé
constants defined by

(λ′ik, µ
′

ik)= (λik, µik)λ
2
k, (4a)

1
2
λik =

∂α0

∂λ2
k
+ λ2

i
∂α1

∂λ2
k
+ λ4

i
∂α2

∂λ2
k
, (4b)

µik = µki = α1+α2(λ
2
i + λ

2
k). (4c)

Because configuration ℵ0 is homogeneous, the perturbation balance of linear momentum in a Cartesian
basis reduces to

∇ · T ′ = ρ ü+ Q. (5)

Here ρ is mass density, Q is a body force associated with u, and a superposed dot signifies time differ-
entiation. Perturbation traction on a surface in ℵ∗ with outwardly directed normal n is given by vector

t ′(n) = T ′n+ T n[n.(∇u)n] − T (∇u)T n. (6)

In a principal basis, a Hadamard material can, in view of (1), be characterized by

α0 = 2J
dG(J )

d J
, α1 =

1
√

J
(a0− b0 I ), α2 =

b0
√

J
, (7a)

I = λ2
1+ λ

2
2+ λ

2
3, II = λ2

1λ
2
2+ λ

2
2λ

2
3+ λ

2
3λ

2
1, J = λ2

1λ
2
2λ

2
3. (7b)
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Here G(1) = 0 and (a0, b0) are material constants, where a0 − b0 = µ and µ is the shear modulus
for infinitesimal deformation. A simple model for the subclass of compressible isotropic neo-Hookean
materials arises when [Brock 2001; Brock and Georgiadis 2001]

b0 = 0, G(J )= µ
(

1
√

J
− 1

)
. (8)

Such a material for infinitesimal deformations exhibits a Poisson’s ratio of 0.25. Use of (7) and (8) in
(3) and (4) gives the constitutive forms

1
µ

T ′11 = B1∂1u1+

( 2
J
− b1

)
(∂2u2+ ∂3u3), (9a)

1
µ

T ′22 = B2∂2u2+

( 2
J
− b2

)
(∂3u3+ ∂1u1), (9b)

1
µ

T ′33 = B3∂3u3+

( 2
J
− b3

)
(∂1u1+ ∂2u2), (9c)

T ′ik = T ′ki = µ[(b∂)i uk + (b∂)kui ] (i 6= k). (9d)

In (9) dimensionless parameters

bk =
λ2

k
√

J
, Bk =

2
J
+ bk . (10)

In (9d) and (10), (i, k) take on values (1, 2, 3). Equations (6) and (9) for a surface in ℵ∗ with an outwardly
directed normal in the negative x3-direction give t ′(−3)

3 =−T ′33 and, for k = (1, 2),

t ′(−3)
k =−µ

( 1
J
∂ku3+ b3∂3uk

)
. (11)

In view of (1) and (7b) the principal stretches λk are obtained as functions of the homogeneous principal
Cauchy stress Tk from the coupled nonlinear equations

Tk

µ
+

1
J
− bk = 0

(
Tk

µ
<

1
J

)
. (12)

The parenthetical restriction on tensile Cauchy stress guarantees that coefficients in (9) are nonnegative.
Tensile stress of the same order of magnitude as µ is not precluded, for example, (Tk)max<µ/

√
2 in plane

strain [Brock 2001; Brock and Georgiadis 2001]. For convenience the temporal variable τ = v0× time is
introduced, where v0 =

√
µ/ρ is the rotational wave speed for isotropic infinitesimal deformation. Thus

(u, T ′) are functions of (x, τ ), and (5) and (9) combine to give

2
J
∇(∇ · u)+ (∇2

S − ∂
2)u = Q

µ
(τ > 0), (13a)

(u, T ′, Q)≡ 0 (τ ≤ 0). (13b)

Here ∂ signifies differentiation with respect to τ . We now introduce operators

∇
2
S = bk∂

2
k , ∇

2
D = Bk∂

2
k =∇

2
S +

2
J
∇

2. (14)
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The summation convention applies and ∇2 is the Laplacian. For the homogeneous case (13a) lends itself
to a decomposition of Helmholtz type [Achenbach 1973]:

u = uD + uS, (15a)

(∇2
S − ∂

2)uS = 0, ∇ · uS = 0, (15b)

(∇2
D − ∂

2)uD = 0, uD =∇uD. (15c)

3. Concentrated force

Convolution of the concentrated force solution can be used to study the effect of dynamically induced
body forces on equilibrium configuration ℵ. In this case < is unbounded, and nonequilibrium configura-
tion ℵ∗ arises due to imposition for τ > 0 of a concentrated force at x = 0, that is,

Q = P(τ )δ(x1)δ(x2)δ(x3). (16)

Here δ is the Dirac function and P ≡ 0 (τ < 0). After [Stakgold 1967] we treat < as half-spaces x3 > 0
and x3 < 0. The homogeneous form of (13a) is the field equation in each half-space, and (16) and the
welding of the half-spaces are manifested as conditions for τ > 0 on interface x3 = 0:

[u]+
−
= 0, (17a)

b3[∂3uk]
+

−
+

2
J
[∂ku3]

+

−
=

1
µ

Pk(τ )δ(x1)δ(x2), k = (1, 2), (17b)

2
J
[∂1u1]

+

−
+

2
J
[∂2u2]

+

−
+ B3[∂3u3]

+

−
=

1
µ

P3(τ )δ(x1)δ(x2). (17c)

Here [ f ]+− signifies a jump in quantity f as the interface is crossed from half-space x3 < 0 to half-space
x3 > 0. Solutions to (13)–(15) and (17) must be bounded above as |x| →∞ for finite τ > 0.

To obtain these solutions, unilateral and multiple bilateral Laplace transforms are introduced [van der
Pol and Bremmer 1950; Sneddon 1972]:

f̂ =
∫

f (τ ) exp(−pτ) dτ, (18a)

f ∗ =
∫∫

f̂ (x1, x2) exp p(−q1x1− q2x2) dx1 dx2. (18b)

For Re(p) > 0 and Re(q1, q2)= 0 integration can be taken over the positive τ -axis for (18a), and over
the entire x1- and x2-axes for (18b). Application of (18) to the homogeneous form of (13a) in view of
(13b) and (15) gives for x3 > 0(+) and x3 < 0(−)

u∗S = (U
±

1 ,U
±

2 ,U
±

3 ) exp(−pωS|x3|), (19a)

q1U±1 + q2U±2 ∓ωSU±3 = 0, (19b)

u∗D = p(q1, q2,∓ωD)U±D exp(−pωD|x3|). (19c)
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In (19) (ωS, ωD) are radicals:

ωS =
1
√

b3

√
1− b1q2

1 − b2q2
2 , Re(ωS)≥ 0, (20a)

ωD =
1
√

B3

√
1− B1q2

1 − B2q2
2 , Re(ωD)≥ 0. (20b)

Application of (18) to (17) and substitution of (19) gives the results

p2U±D =
1

2µ1

[
±P̂3−

1
ωS
(q1 P̂1+ q2 P̂2)

]
, (21a)

pU±k =
−P̂k

2µb3ωS
− p2qkU±D , k = (1, 2). (21b)

Here k = (1, 2) and

1= 1+ (b1− b3)q2
1 + (b2− b3)q2

2 . (22)

4. Transform inversion

The inversion operation for (18b) is [van der Pol and Bremmer 1950; Sneddon 1972]

f̂ (x1, x2)=
( p

2π i

)2
∫∫

f ∗ exp p(q1x1+ q2x2) dq1 dq2. (23)

If there are no branch points or poles there, integration can be taken along the entire Im(q1) and Im(q2)-axes.
In view of (19) and (21), f ∗ for any contribution to (ûS, ûD) exhibits one of the following forms:

f ∗ = 1
1

(
qk,

q2
k

ω
,ω

)
exp(−pω|x3|), (24a)

f ∗ = 1
ω

exp(−pω|x3|). (24b)

Here k = (1, 2) and ω= (ωS, ωD). Thus for x3 > 0(+) and x3 < 0(−) the right-hand side of (23) reduces
to the operations

(∓∂3∂k, ∂
2
k , ∂

2
3 )
( 1

2π i

)2
∫∫

exp
(

p(q1x1+ q2x2−ω|x3|
)dq1 dq2

1ω
, (25a)

( 1
2π i

)2
∫∫

exp
(

p(q1x1+ q2x2−ω|x3|)
)dq1 dq2

ω
. (25b)

For the integration procedure, results in [Brock 2012; 2013] suggest transformations

q1 = q cosψ, q2 = q sinψ, (26a)[
x1

x2

]
=

[
cosψ −sinψ
sinψ cosψ

] [
x
y

]
. (26b)

Here |ψ |<π/2 and |x, y, Im(q)|<∞, and (q, ψ) and (y= 0, x, ψ) form quasipolar coordinate systems.
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Thus the integration procedures in (25a) and (25b) respectively become

1
iπ

∫
9

dψ 1
2π i

∫
|q|
1ω

exp p(qx −ω|x3|) dq, (27a)

1
iπ

∫
9

|q|
ω

exp(qx −ω|x3|) dq. (27b)

Here 9 signifies integration over the range |ψ |< π/2, and integration with respect to q is over the entire
Im(q)-axis. In (27)

1= 1+ (b3− b)q2, (28a)

ωS =
1
√

b3

√
1− bq2, b = b1 cos2 ψ + b2 sin2 ψ, (28b)

ωD =
1
√

B3

√
1− Bq2, B = 2

J
+ b. (28c)

Equation (28) shows that conditions Re(ωS)≥ 0 and Re(ωD)≥ 0 hold in the q-plane with cuts Im(q)= 0,
|Re(q)|> 1/

√
b and Im(q)= 0, |Re(q)|> 1/

√
B, respectively. When b3 > b, 1 in (27a) exhibits roots

q =±1/
√

b− b3. Because
√

B >
√

b >
√

b− b3 these lie on the branch cuts of (ωS, ωD). For b > b3

roots q =±i/
√

b3− b lie on the Im(q)-axis, so that deformations in the integration contour in (27a) are
required. Instead the de Hoop method [de Hoop 1960] is employed to change the integration contour to
a path in the q-plane parametrized by the positive real variable t . Thus (27a) gives

1
iπ

∫
9

dψ 1
iπ

Re
∫

exp(−pt)
q+q ′

+
dt

1(q+)ω(q+)
. (29)

For the case ωS , t-integration is over the range (S,∞) and

√
bS2q+ =−

t x
√

b
+ i
|x3|
√

b3

√
t2− S2, q ′

+
= i

√
b3

b
ωS(q+)
√

t2− S2
. (30a)

For the case ωD , t-integration is over the range (D,∞) and

√
B D2q+ =−

t x
√

B
+ i
|x3|
√

B3

√
t2− D2, q ′

+
= i

√
B3

B
ωD(q+)
√

t2− D2
. (30b)

Parameters (S, D) are given by

S =

√
x2

b
+

x2
3

b3
, D =

√
x2

B
+

x2
3

B3
. (31)

Taking the real part of the integrand in (29) gives for (ωS, ωD), respectively,

−
|x3|

π2

∫
9

dψ
S2

∫
∞

S

NS

M
exp(−pt) dt, −

|x3|

π2

∫
9

dψ
D2

∫
∞

D

ND

M
exp(−pt) dt. (32a)

The analogous result for (27b) is

−
|x3|

π2 p

∫
9

dψ
bS2 exp(−pS), −

|x3|

π2 p

∫
9

dψ
B D2 exp(−pD). (32b)
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In (32a) (M, NS, ND) are given by

M = [(b− b3)t2
− r2
]
2
+ 2t2(b− b3)x2

3 , (33a)

NS = (b3− b)
[

2x2

b
+ (b− b3)

(
x2

b
−

x2
3

b3

)]
t2
− r2S2, (33b)

ND = (b3− b)
[

2x2

B
+ (b− b3)

(
x2

B
−

x2
3

B3

)]
t2
− r2 D2. (33c)

In (30)–(33) r =
√

x2
+ x2

3 , where x = x1 cosψ + x2 sinψ . Equations (21), (25), and (32) show that
explicit dependence of (ûS, ûD) on transform parameter p is confined to products P̂k exp(−pt). Inversion
of (ûS, ûD) can then be, in view of (18a) and (24), performed by inspection. For the case of common
temporal load behavior P(τ )= Pδ(τ ) (15a) gives

u =
1

2π2 (P · ∇)∇|x3|

∫
9

dψ
[∫ τ

D

ND

M D2 dt −
∫ τ

S

NS

M S2 dt
]
+

1
2π2 P∇2

|x3|

∫
9

dψ
bS2 (τ − S). (34)

Wave speeds (vS, vD) associated with the integration terms in (34) can be obtained by introducing the
quasispherical coordinate system

x1 = X cos θ sinφ, x2 = X sin θ sinφ, x3 = X cosφ. (35)

Here |X |<∞, |θ |< π/2, 0< φ < π/2, and in view of (31),

vS = cSv0, vD = cDv0, (36a)

cS =

√
b3b√

b3 sin2 φ+ b cos2 φ

, b = b1 cos2 θ + b2 sin2 θ, (36b)

cD =

√
B3 B√

B3 sin2 φ+ B cos2 φ

, B = 2
J
+ b. (36c)

5. Displacement discontinuity

In this instance configuration ℵ∗ arises in unbounded < due to the existence for τ > 0 of a finite dis-
continuity in displacement at x = 0. Convolution of the solution for this problem can be used to study
dynamic perturbation of ℵ by formation of a crack on the plane x3 = 0. We again treat two half-spaces
x3 > 0(+) and x3 < 0(−). Equations (13)–(15) are valid for x3 6= 0, with Q ≡ 0, but Equation (17) for
x3 = 0, τ > 0 is replaced with

[u]+
−
= UC(τ )δ(x1)δ(x2), t ′(3)+ t ′(−3)

= 0. (37)

Here UC vanishes for τ ≤ 0, but for τ > 0 it is continuous and bounded above. The transform operation
(18) produces (19), (20), and (22), with (U±D ,U

±

k ) now given by
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pU±D =−
β3

2
Û C

3 −
1

21

[( 1
J
+ b3

)
ωD
b3

Û C
3 ∓ 2(q1Û C

1 + q2Û C
2 )
]
, (38a)

U±k =±
1
2

Û C
k +

qk

21

[( 1
J
+ b3

)
ωS
b3

Û C
3 ∓ 2(q1Û C

1 + q2Û C
2 )
]
, (38b)

β3 =
1

(Jb3)2

( 2
2+ Jb3

− b3

)
. (38c)

In (38) k = (1, 2), and comparison of (21) and (38) indicates that (25) is replaced by

(∓∂3∂
2
k , ∂k∂

2
3 )
( 1

2π i

)2
∫∫

exp p(q1x1+ q2x2−ω|x3|)
dq1 dq2

p1ω
, (39a)

(∓∂3, ∂k)
( 1

2π i

)2
∫∫

exp p(q1x1+ q2x2−ω|x3|)p
dq1 dq2

ω
. (39b)

The transform inversion process involving (19), (20), (22), and (39) is similar to that for the concentrated
force problem. For the case UC(τ )= UC the results are

u = uD
+ uS
+

U C
k

2π2∇∂3∂k |x3|

∫
9

dψ
[∫ τ

D

ND

M D2 (τ − t) dt −
∫ τ

S

NS

M S2 (τ − t) dt
]

+
U C

3

2π2

(
1+ 1

Jb3

)
∇∂2

3 |x3|

∫
9

dψ
[∫ τ

D

ND

M D2 (τ − t) dt −
∫ τ

S

NS

M S2 (τ − t) dt
]
, (40a)

uD
=

U C
3

2π2∇|x3|

∫
9

β3

B D2 dψH(τ − D), (40b)

uS
k =

U C
k

2π2 ∂3|x3|

∫
9

dψ
bS2 H(τ − S), (40c)

uS
3 =

1
2π2

[
U C

k ∂k +U C
3

(
1+ 1

Jb3

)
∂3

]
|x3|

∫
9

dψ
bS2 H(τ − S). (40d)

Here uD
6= uD and uS

6= uS , k = (1, 2), the summation convention holds, and H is the unit step function.

6. Behavior on a principal plane: concentrated surface force

Convolution of the solution for this problem can serve as the basis for study of dynamic perturbation by
dynamic contact. Thus < is the half-space x3 > 0 with traction-free surface x3 = 0. Configuration ℵ∗

arises due to imposing for τ > 0 the surface load

t ′(−3)
k =−P3k(τ )δ(x1)δ(x2). (41)

Here k = (1, 2, 3) and P3k ≡ 0 (τ < 0) and is bounded above for τ > 0. Because < in ℵ has no surface
traction, T3 ≡ 0 and (9c) and (11) give

b3 =
1
J
, B3 =

3
J
,

1
b1b2
=
√

J

√
b1

b2
−

T1

µ
=
√

J

√
b2

b1
−

T2

µ
. (42)

Equations (13)–(15), with Q ≡ 0, govern for (x3, τ ) > 0. Application of (18) in view of boundary
condition (41) leads to expressions for (U+D ,U

+

k ). Of interest here is displacement u0 on the half-space
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surface x3 = 0, and use of these expressions and variables defined by (26) in (23) give the transform

û0
=

1
iπ

∫
9

J dψ 1
2π i

∫
|q| dq
µpR

N · t̂ ′(−3) exp(pqx), (43a)[
N11 N12

N21 N22

]
=

1
ωS

[
N1 N12

N12 N2

]
,

[
N31

N32

]
=−

[
N13

N23

]
= q N

[
cosψ
sinψ

]
, N33 =−ωD1. (43b)

Again x = x1 cosψ + x2 sinψ , but the definition of terms in (43) is influenced by (42):

ωS =
√

q2
− T , ωD =

1
√

3

√
−q2
− T , T = (1+ Jb)q2

− J, (44a)

N = 2ωSωD − T, R = 4q2ωSωD + T 2, (44b)

(N1, N2)= Mq2(cos2 ψ, sin2 ψ)− R, N12 = Mq2 sinψ cosψ, (44c)

M = q2
+ωS(2ωD − 3ωS), 1= J + q2(1− Jb). (44d)

Integration in (43a) is along the entire Im(q)-axis but, as a special case of (30), the contour can be
changed to a path around branch cuts on the Re(q)-axis. In view of (44a) the branch points are defined
by q = ±(1/

√
b, 1/
√

B). In addition, the Rayleigh function R exhibits real roots q = ±qR , where
qR > 1/

√
b and is defined by

qR =

√
J

√

Jb+ 1− 2/
√

3
. (45)

These values of q define the body wave speeds (vS, vD)— see (36) — and the Rayleigh speed vR in the
principal plane x3 = 0:

vS = cSv0, vD = cDv0, vR = cRv0, (46a)

cS =
√

b, cD =
√

B, cR =

√
b+ 1

J

(
1− 2
√

3

)
, (46b)

b = b1 cos2 θ + b2 sin2 θ, B = 2
J
+ b. (46c)

In (46c) quasipolar coordinate |θ | < π/2 is measured with respect to the x1-direction in the principal
plane. Changing the integration path by means of the Cauchy theorem gives expressions that can be
inverted by inspection. For the step function P3k(τ )= P3k H(τ ),

u0
1 = J

∫
9

U0 cosψ dψ +
J P31

µπ2

∫
9

q dψ
�Sx

H
(
τ −
|x |
cS

)
, (47a)

u0
2 = J

∫
9

U0 sinψ dψ +
J P32

µπ2

∫
9

q dψ
�Sx

H
(
τ −
|x |
cS

)
, (47b)

u0
3 = J

∫
9

U3 dψ. (47c)
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Equation (47) involves the definitions P12 = P31 cosψ + P32 sinψ and

U0 =
P33

µπ2x
6q2T�DωS

(3T 2− 4q4)(T + 2q2)
H
(
τ −
|x |
cD

)
H
(
|x |
cS
− τ

)
−

J P33

µπcR

(
√

3− 1) sgn(x)

8− 3
√

3(1+ Jb)
δ

(
τ −
|x |
cR

)
−

P12

µπ2x
3q3

(3T 2− 4q4)(T + 2q2)
× 4�D�S H

(
τ −
|x |
cD

)
+

16q2�D�
2
S − 3T 3

�S(T − 2q2)
H
(
τ −
|x |
cS

)
, (48a)

U3 =−
P12

µπ2x
6q2T�DωS

(3T 2− 4q4)(T + 2q2)
H
(
τ −
|x |
cD

)
H
(
|x |
cS
− τ

)
+

J P12

µπcR

(
√

3− 1) sgn(x)

8− 3
√

3(1+ Jb)
δ

(
τ −
|x |
cR

)
+

P33

µπ2x
3qT�D

(3T 2− 4q4)(T 2− 4q4)
× T 2 H

(
τ −
|x |
cD

)
+ 4q2�S�D H

(
τ −
|x |
cS

)
, (48b)

�S =

√
T − q2, �D =

1
√

3

√
T + q2, q = τ

x
. (48c)

7. Dimensionless speed values

The < considered here is an idealized isotropic neo-Hookean solid with an effective Poisson’s ratio
of 0.25 for infinitesimal strain. It is chosen for purposes of illustration and, therefore, sample values of
dimensionless speeds (cS, cD) in (36) are given for the spherical octant 0≤ (θ, φ)≤ 90◦(π/2) in Tables 1
and 2. Configuration ℵ results from the plane strain defined by λ3 = 1 and T1+ T2 = 0, so that (9c) and
(11) give

b1 =

√
χ
√

J
, b2 =

1√
χ
√

J
, b3 =

1
√

J
, Bk =

2
J
+ bk, (49a)

J =
2χ

1+χ2 , χ =
T1

µ
+

√
1+

(
T1

µ

)2

,
T3

µ
=

1
√

J
−

1
J
. (49b)

φ = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

θ = 0◦ 1.04811 1.04847 1.04945 1.05080 1.05215 1.05314 1.05351
15◦ 1.04811 1.04813 1.04817 1.04824 1.04830 1.04835 1.04837
30◦ 1.04811 1.04070 1.04459 1.04110 1.03765 1.03515 1.03423
45◦ 1.04811 1.04578 1.03942 1.03095 1.02268 1.01675 1.01460
60◦ 1.04811 1.04425 1.03392 1.02030 1.00720 0.99779 0.99459
75◦ 1.04811 1.04307 1.29664 1.01216 0.99552 0.98385 0.97917
90◦ 1.04811 1.04262 1.02805 1.00911 0.99117 0.97863 0.97416

Table 1. Dimensionless speed cS in spherical octant 0≤ (θ, φ)≤ 90◦ for T1/µ= 0.2.
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φ = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

θ = 0◦ 1.77148 1.77169 1.77228 1.77308 1.77388 1.77446 1.77467
15◦ 1.77148 1.77149 1.77152 1.77156 1.77160 1.77162 1.77163
30◦ 1.77148 1.77093 1.76943 1.76738 1.76534 1.76385 1.76331
45◦ 1.77148 1.77014 1.76651 1.76159 1.75671 1.75316 1.75186
60◦ 1.77148 1.76934 1.76354 1.75571 1.74798 1.74238 1.74035
75◦ 1.77148 1.76874 1.76132 1.75134 1.74152 1.73444 1.73187
90◦ 1.77148 1.76852 1.76050 1.74973 1.73915 1.73152 1.72876

Table 2. Dimensionless speed cD in spherical octant 0≤ (θ, φ)≤ 90◦ for T1/µ= 0.2.

T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 0.94068 0.97015 1.03015 1.01227
15◦ 0.92778 0.97360 1.02689 1.05418
30◦ 0.96691 0.98296 1.01794 1.03667
45◦ 0.99243 0.99560 1.00558 1.01226
60◦ 1.01731 1.00808 0.99307 0.98725
75◦ 1.03515 1.01712 0.98380 0.96855
90◦ 1.04160 1.02041 0.98039 0.96159

Table 3. Dimensionless speed cS in circular quadrant 0≤ θ ≤ 90◦ for various T1.

T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 1.74779 1.73887 1.72729 1.72453
15◦ 1.75162 1.74079 1.72535 1.72064
30◦ 1.76204 1.74604 1.72004 1.70997
45◦ 1.77618 1.75319 1.71275 1.69528
60◦ 1.79020 1.76031 1.70544 1.68047
75◦ 1.80039 1.76550 1.70006 1.66955
90◦ 1.80411 1.76740 1.69809 1.66552

Table 4. Dimensionless speed cD in circular quadrant 0≤ θ ≤ 90◦ for various T1.

Because (49b) gives J < 1, any finite |T1| satisfies the parenthetical restriction in (11). In similar fashion
dimensionless speeds (cS, cD, cR) associated with principal plane x3 = 0 in (45) are given for the circular
quadrant 0 ≤ θ ≤ 90◦(π/2) in Tables 3, 4, and 5. Here ℵ is induced by uniaxial loading (T2, T3) = 0.
Equations (9), (11), and (42) give

b1 = J 3/2, (b2, b3)=
1
J
, J 5/2

−
T1

µ
J − 1= 0

(
T1

µ
<

1
20.4

)
. (50)

In this case the restriction in (11) imposes a tension limit on T1. Equations (9)–(11) show that a nonhydro-
static principal stress in < gives configuration ℵ, whose infinitesimal perturbation response is anisotropic.
Even for the simple nonhydrostatic cases chosen, the data in Tables 1–5 clearly illustrate this behavior.
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T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 0.84679 0.88324 0.95526 0.99078
15◦ 0.85467 0.88703 0.95174 0.98400
30◦ 0.87582 0.89729 0.94207 0.96521
45◦ 0.90392 0.91112 0.92871 0.93895
60◦ 0.93118 0.92474 0.91514 0.91193
75◦ 0.95063 0.93458 0.90508 0.89165
90◦ 0.95765 0.93816 0.90138 0.88409

Table 5. Dimensionless speed cR in circular quadrant 0≤ θ ≤ 90◦ for various T1.

8. Comments

Equations (34), (40), and (47) express exact transient solutions as integrals with respect to quasipolar
angle measure |ψ | < π/2. Equations (34) and (47) also exhibit integration with respect to a temporal
variable t . This integration can, in fact, be performed with use of standard tables [Pierce and Foster 1956;
Gradshteyn and Ryzhik 1980], but the results are cumbersome; for example, in (34), for b > b3:

|x3|

∫ τ

S

NS

M
dt =

1

2
√

r2+ x2
Im

r2S2
+ AST

√
(b− b3)T

× ln

√
T − τ

√
b− b3

√
T − S

√
b− b3

√
T + S

√
b− b3

√
T + τ

√
b− b3

, (51a)

AS = 2 x2

b
+ (b− b3)

(
x2

b
−

x2
3

b3

)
, T = x2

+ i |x3|
√

r2+ x2. (51b)

Here
√

b− b3 → i
√

b3− b when b3 > b. Use of a quasipolar measure, therefore, renders (34), (40),
and (47) as a “hybrid” of quasipolar and principal Cartesian coordinates, as well as general operators
(∇,∇2, f · q). Moreover, dimensionless speeds (cS, cD) associated with (34) and (40) involve quasi-
spherical measure (θ, φ), and (cS, cD, cR) involve quasipolar measure θ . Nevertheless, the form of (34),
(40), and (47) is not complicated and is similar to corresponding results for the linear isotropic case,
compare (34) and [Achenbach 1973, Equation (3.92)].

This type of similarity is well known for linear quasistatic anisotropic results [Ting 1996]. Indeed, in
light of results such as [Ting 1996; Jones 1999] it is often useful to categorize superimposed infinitesimal
deformation equations in accordance with classes of anisotropic materials, for example, [Green and Zerna
1968; Beatty and Usmani 1975]. Due to the idealized neo-Hookean < treated, this article took an ad
hoc solution approach. However, the approach itself may be useful in generation of singular transient
solutions in linear anisotropic solids [Willis 1965; Wang and Achenbach 1992], and such efforts are
underway.
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WAVE VELOCITY FORMULAS TO EVALUATE ELASTIC CONSTANTS
OF SOFT BIOLOGICAL TISSUES

PHAM CHI VINH AND JOSE MERODIO

We use the equations governing infinitesimal motions superimposed on a finite deformation in order to
establish formulas for the velocity of (plane homogeneous) shear bulk waves and surface Rayleigh waves
propagating in soft biological tissues subject to uniaxial tension or compression. Soft biological tissues
are characterized as transversely isotropic incompressible nonlinearly elastic solids. The constitutive
model is given as an strain-energy density expanded up to fourth order in terms of the Green strain
tensor. The velocity formulas are written as ρv2

= a0 + a1e+ a2e2 where ρ is the mass density, v is
the wave velocity, ak are functions in terms of the elastic constants and e is the elongation in the loading
direction. These formulas can be used to evaluate the elastic constants since they determine the exact
behavior of the elastic constants of second, third, and fourth orders in the incompressible limit.

1. Introduction

Soft biological tissues were generally considered incompressible and isotropic under the early days of
their analysis. In more recent years they have been recognized as highly anisotropic due to the presence of
collagen fibers [Holzapfel et al. 2000]. Determination of the acoustoelastic coefficients in incompressible
solids and the limiting values of the coefficients of nonlinearity for elastic wave propagation, among other
studies, has very recently attracted a lot of attention since these analyses give an opportunity to capture
the mechanical properties of these materials (see, for instance, Destrade et al. [Destrade et al. 2010b]
and references therein). For other applications dealing with linearized dynamics we refer to [Bigoni et al.
2007; 2008] and the references therein.

Hamilton et al. [2004] analyzed a strain-energy density suitable for incompressible isotropic elastic
solids such as gels and phantoms, namely

W = µI2+ (A/3)I3+ DI 2
2 , (1)

where
I2 = tr(E2), I3 = tr(E3), (2)

E is the Green strain tensor and µ, A, and D are second-, third-, and fourth-order elastic constants,
respectively (the order given by the exponent of E). A very similar expansion to the one given in (1)
was originally derived in [Ogden 1974].

Indeed, several investigations have been carried out to determine the elastic constants µ, A and D
using shear bulk nonlinear waves [Gennisson et al. 2007; Renier et al. 2007; 2008] and small-amplitude

Keywords: incompressible transversely isotropic elastic solids, soft biological tissues, shear bulk waves, Rayleigh waves,
wave velocity, elastic constants.
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waves propagating in incompressible solids subject to homogeneous deformations [Destrade et al. 2010b]
(linearized waves). It should be noted that if the analysis of a material only includes the small deformation
regime then it is enough to consider (1) up to fourth order in strains.

In contrast to gels and phantoms, soft biological tissues are anisotropic solids due to the presence of
oriented collagen fiber bundles [Holzapfel et al. 2000; Destrade et al. 2010a]. It is thus required a model
other than (1) to account for the anisotropic behavior of these solids. A transversely isotropic model has
been proposed in [Destrade et al. 2010a], in which the strain-energy density of third order (actually, it is
the most general third order expansion) is given by

W = µ I2+
1
3 A I3+α1 I 2

4 +α2 I5+α3 I2 I4+α4 I 3
4 +α5 I4 I5, (3)

where I2 and I3 are given in (2) and

I4 = M · (E M), I5 = M · (E2 M), (4)

are anisotropic invariants where M is the unit vector that gives the undeformed fiber direction. It follows
that µ, α1, α2 and A, α3, α4, α5 are second- and third-order elastic constants, respectively. To evaluate
the elastic constants µ, A, αk (k = 1, 5, where the overline means k = 1, . . . , 5) the authors established a
formula for the velocity of shear bulk waves. This formula is a first-order polynomial in the elongation
e, defined by λ = 1+ e, where λ is the principal stretch in the direction of the fibers and the uniaxial
tension. The speeds of infinitesimal waves expressed in terms of third- and fourth-order constants does
provide a basis for the acousto-elastic evaluation of the material constants [Destrade and Ogden 2010].

To make the model more accurate and representative of soft biological tissue we consider a fourth-order
strain-energy function (actually, the most general fourth order expansion), namely (see also [Destrade
et al. 2010a])

W = µ I2+
1
3 A I3+α1 I 2

4 +α2 I5+α3 I2 I4+α4 I 3
4 +α5 I4 I5

+α6 I 2
2 +α7 I2 I 2

4 +α8 I2 I5+α9 I 4
4 +α10 I 2

5 +α11 I3 I4, (5)

where α6, . . . , α11 are fourth-order elastic constants. In order to determine the elastic constants µ, A, and
αk (k= 1, 11), we develop formulas for the velocity of (homogeneous plane) shear bulk waves and surface
Rayleigh waves which are second-order polynomials of the elongation e. When αk = 0, k = 1, 11, k 6= 6
and α6 is denoted D, these formulas coincide with the corresponding approximate formulas obtained
in [Destrade et al. 2010b]. The results show that linear corrections to the acoustoelastic wave speed
formulas involve second- and third-order constants, and that quadratic corrections involve second-, third-
, and fourth-order constants, in agreement with [Hoger 1999].

The layout of the paper is as follows. In Section 2, we introduce briefly the main governing equations
while Sections 3 and 4 are devoted to the acousto-elastic analysis of (5). In Section 5 some conclusions
are outlined.

2. Expressions of components of the fourth-order elasticity tensor

We consider an incompressible transversely isotropic elastic body B, which possesses a natural unstrained
state B0 and a finitely deformed (pre-stressed) equilibrium state Be. A small time-dependent motion is
superimposed upon this pre-stressed equilibrium configuration to reach a final material state Bt , called
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current configuration. The position vectors of a representative particle are denoted by X A, xi (X), x̃i (X, t)
in B0, Be and Bt , respectively. The deformation gradient tensor associated with the deformations
B0→Bt and B0→Be are denoted by F and F and given in component form by

Fi A =
∂ x̃i

∂X A
, F i A =

∂xi

∂X A
. (6)

It is clear from (6) that
Fi A = (δi j + ui, j )F j A, (7)

where δi j is the Kronecker operator, ui (X, t) denotes the small time-dependent displacement associated
with the deformation Be→Bt and a comma indicates differentiation with respect to the indicated spatial
coordinate in Be.

Suppose that the body is a soft tissue with one preferred direction associated with a family of parallel
fibers of collagen. We denote by M the unit vector in that direction when the solid is unloaded and
at rest. Then, the strain-energy function W of the body, per unit volume at B0, may be expressed by
(5) (see [Destrade et al. 2010a]). It is well-known that E = (C − I)/2, where C = FT F is the right
Cauchy–Green strain tensor and I is the identity tensor. In the absence of body forces, the equations of
motion may be expressed in the following form (see [Prikazchikov and Rogerson 2003]):

∂SAi

∂X A
= ρüi or

∂

∂xm
(Fm A SAi )= ρüi , SAi =

∂W ∗

∂Fi A
, W ∗ =W − p(J − 1), J = det F, (8)

where a superposed dot indicates differentiation with respect to the time t , F is a constant tensor, SAi

are the components of the nominal stress tensor and p plays the role of a Lagrange multiplier and may
be understood as a pressure (in Bt ) associated with the incompressibility constraint. Since the quantities
associated with the deformation Be→ Bt are small in comparison with the corresponding quantities
associated with the deformations B0→Be we have

SAi ≈ SAi (F, p̄)+
∂SAi

∂Fk B
(F, p̄)uk,m Fm B + p∗

∂SAi

∂p
(F, p̄), (9)

where p̄ = p(F) and p∗ = p − p̄ is the time-dependent pressure increment. On use of the linear
approximation (9) into (8)2, the linearized equations of motion are obtained and can be written as

Aj ilkuk,l j − p∗,i = ρüi , (10)

where

Ai jkl = F i A Fk B
∂2W

∂Fj A∂Fl B

∣∣∣∣
F=F

, (11)

are the components of the so-called fourth-order elasticity tensor. It is not difficult to verify that

Apiq j = F pαFqβ

[
1
2
δi j

(
∂W
∂Eαβ

+
∂W
∂Eβα

)
+

1
4

(
F in F j y

∂2W
∂Eαn∂Eβy

+F in F j x
∂2W

∂Eαn∂Exβ
+F im F j y

∂2W
∂Emα∂Eβy

+F im F j x
∂2W

∂Emα∂Exβ

)]∣∣∣∣
F=F

, (12)
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where

∂W
∂Emn

=

5∑
k=2

∂W
∂ Ik

∂ Ik

∂Emn
, (13)

∂2W
∂Emn∂Exy

=

5∑
k=2

∂W
∂ Ik

∂2 Ik

∂Emn∂Exy
+

5∑
k=2

5∑
l=2

∂2W
∂ Ik∂ Il

∂ Ik

∂Emn

∂ Ik

∂Exy
, (14)

and
∂ I2

∂Emn
= 2Enm,

∂2 I2

∂Emn∂Exy
= 2δnxδmy,

∂ I3

∂Emn
= 3Enk Ekm,

∂2 I3

∂Emn∂Exy
= 3(δnxδky Ekm + δkxδmy Enk),

∂ I4

∂Emn
= Mm Mn,

∂2 I4

∂Emn∂Exy
= 0,

∂ I5

∂Emn
= Mm Enj M j +Mi Eim Mn,

∂2 I5

∂Emn∂Exy
= Mm Myδnx +Mx Mnδmy .

(15)

It is clear from (12) that Ai jkl = Akli j . The incremental condition of incompressibility follows and is of
the form

ui,i = 0. (16)

3. Formulas for the velocity of shear bulk waves

We now describe the special loading and geometry case that will be used in the sections that follow.
Consider a rectangular block of a soft transversely isotropic incompressible elastic solid whose faces
in the unstressed state B0 are parallel to the (X1, X2)-, (X2, X3)-, (X3, X1)-planes and with the fiber
direction M parallel to the X1-direction (i. e. the fibers are parallel to O X1). Suppose that the sample is
under uniaxial tension or compression with the direction of tension parallel to the X1-axis. It is easy to
see that the sample is subject to a equi-biaxial deformation, namely

x1 = λ1 X1, x2 = λ2 X2, x3 = λ3 X3, (17)

in which
λ1 = λ, λ2 = λ3 = λ

−1/2, λ > 0, (18)

where λk are the principal stretches of deformation. Note that the faces of the deformed block are parallel
to the (x1, x2)-, (x2, x3)-, (x3, x1)-planes. In the case under consideration we have

F =

 λ1 0 0
0 λ2 0
0 0 λ3

 , E =
1
2

 λ2
1− 1 0 0
0 λ2

2− 1 0
0 0 λ2

3− 1

 , (19)

and
I2 = E2

11+ E2
22+ E2

33, I3 = E3
11+ E3

22+ E3
33, I4 = E11, I5 = E2

11, (20)
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Figure 1. Geometry of cases addressed in Sections 3 and 4. The rectangular block on
the left gives the undeformed configuration while the one on the right gives the deformed
configuration under the conditions at hand indicating the principal stretches of deforma-
tion. Waves travel in the (x1, x2)-plane. In that plane, we denote n as the unit vector in
the direction of propagation and we denote a as the unit vector orthogonal to n.

where Ekk = (λ
2
k−1)/2. With the focus on (5) we apply the equation of motion and the incompressibility

condition to the analysis of homogeneous plane waves.

Remark 1. Using (12)–(15) together with (19) and (20) it is easy to find that there are only 15 nonzero
components of the fourth-order elasticity tensor, namely Ai i j j , Ai j i j (i, j=1, 2, 3, i 6= j) and Ai j j i (i, j=
1, 2, 3, i 6= j).

Consider waves traveling in the (x1, x2)-plane. In that plane denote n as the unit vector in the direction
of propagation and a as the unit vector orthogonal to n (see Figure 1). From [Ogden 2007], for example,
it is known that there exist two shear bulk waves, one of which is polarized along a and travels with
velocity v1a , and the other is polarized along b= a× n and travels with velocity v1b. These velocities
are determined by (see also [Destrade et al. 2010b])

ρv2
1a = (γ12+ γ21− 2β12)c4

θ + 2(β12− γ21)c2
θ + γ21, ρv2

1b = γ13c2
θ + γ23s2

θ , (21)

where θ is the angle between n, the direction of propagation, and the x1-direction, cn
θ :=cosn θ , sn

θ := sinn θ ,
and γi j and βi j (i, j = 1, 2, 3, i 6= j) are given by

γi j = Ai j i j , 2βi j = Ai i i i + Aj j j j − 2(Ai i j j + Ai j j i ), (22)

with no sum on repeated indices in formulas (22). Note that while βi j = βj i (due to Ai jkl = Akli j ), it
is easy to see that γi j 6= γj i in general. The velocities in (21) are written as polynomials in terms of cn

θ

and sn
θ .

Now, consider a sufficiently small elongation e defined by λ1 = 1+ e. Expanding γi j and βi j into
Maclaurin series up to second order in e by means of (22) and using (12)–(15), under the (uniaxial)
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conditions at hand, we obtain for the coefficients of the polynomial in (21)1, after a long computation,

2β12−γ12−γ21 = 2α1+2(4α1+3α2+3α3+3α4+2α5)e

+3
(
6µ+3A+4α1+4α2+6α3+9α4+8α5+6α6+5α7+4α8+4α9+

8
3α10+

3
2α11

)
e2, (23)

2(β12−γ21)= 2α1+(3µ+10α1+8α2+6α3+6α4+4α5)e

+
(
21µ+39

4 A+17α1+17α2+
45
2 α3+30α4+27α5+18α6+15α7+12α8+12α9+8α10+

9
2α11

)
e2, (24)

4γ21 = 4µ+2α2+(A+2α2+4α3+2α5)e+(8µ+4A+2α3+3α5 +12α6+4α7+7α8+4α10+3α11)e2. (25)

Note that by taking αk = 0, k = 6, 11, in the expressions (23)–(25) we obtain the expansions given in
[Destrade et al. 2010a, (19)].

Introducing (23)–(25) into (21)1 yields

ρv2
1a =

1
2α1s2

2θ +µ+
1
2α2+

[
3µc2

θ +
1
4 A+

(
10c2

θ − 8c4
θ

)
α1+

(
8c2
θ − 6c4

θ +
1
2

)
α2

+
( 3

2 s2
2θ + 1

)
α3+

3
2 s2

2θα4+
(
s2

2θ +
1
2

)
α5
]
e+

[(
21c2

θ − 18c4
θ + 2

)
µ

+
(39

4 c2
θ − 9c4

θ + 1
)

A+
(
17c2

θ − 12c4
θ

)
(α1+α2)+

( 45
2 c2

θ − 18c4
θ +

1
2

)
α3

+
(
30c2

θ − 27c4
θ

)
α4+

(
27c2

θ − 24c4
θ +

3
4

)
α5+

( 9
2 s2

2θ + 1
)
α6+

( 15
4 s2

2θ + 1
)
α7

+
(
3s2

2θ +
7
4

)
α8+ 3s2

2θα9+
(
2s2

2θ + 1
)
α10+

( 9
8 s2

2θ +
3
4

)
α11
]
e2. (26)

In a parallel way, we use (12)–(15) to calculate γ13 (= γ12) and γ23, which are the polynomial-term coef-
ficients in (21)2. Their approximations up second order in e are derived expanding them into Maclaurin
series and disregarding all terms equal to and higher than e3 in the expansions. The values are

γ13 = µ+
1
2α2+

(
3µ+ 1

4 A+ 2α1+
5
2α2+α3+

1
2α5

)
e

+
(
5µ+ 7

4 A+ 5α1+ 5α2+ 5α3+ 3α4+
15
4 α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
e2,

γ23 = µ+
(
−3µ− 1

2 A+α3
)
e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2.

(27)

Introducing (27) into (21)2 one gets the approximation of ρv2
1b in terms of e, which is

ρv2
1b = µ+

1
2 c2
θα2+

[
3(µ+ 1

8 A)c2θ −
1
8 A+ 2c2

θα1+
5
2 c2
θα2+α3+

1
2α5

]
e

+
[
5µ+ 7

4 A+ 5c2
θα1+ 5c2

θα2+
5
2(2c2

θ − s2
θ )α3+ 3c2

θα4+
15
4 c2

θα5

+3α6+α7+
7
4(c

2
θ + 4s2

θ )α8+ c2
θα10+

3
4(c

2
θ − 2s2

θ )α11
]
e2. (28)

As noticed before, if αk = 0, k = 1, 11, k 6= 6 and α6 is denoted D one gets the expressions in [Destrade
et al. 2010b, (11)]. Note that when θ = 0 the two shear velocities coincide and can be written as

ρv2
1a = ρv

2
1b = µ+

1
2α2+

(
3µ+ 1

4 A+ 2α1+
5
2α2+α3+

1
2α5

)
e

+
(
5µ+ 7

4 A+ 5α1+ 5α2+ 5α3+ 3α4+
15
4 α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
e2. (29)

The result in [Destrade et al. 2010b, (12)] is a special case of the approximation (29) when αk = 0,
k = 1, 11, k 6= 6.

Let us turn our attention to consider shear waves that travel in the (x2, x3)-plane. Now, by θ we denote
the angle between the direction of propagation of the plane wave and the x2-axis. Then, it is clear that
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n= [0, cos θ, sin θ ]T , a = [0, sin θ,− cos θ ]T . The speed v2a of the shear bulk wave polarized along a
is given by (21)1 with the indices 12 and 21 replaced by 23 and 32, respectively. In this case, it follows
easily using (12)–(15) that γ23 = γ32 = β23. This makes the dependence of the shear wave on θ to vanish
and one finally writes the speed v2a in terms of e as

ρv2
2a = γ32 = µ+

(
−3µ− 1

2 A+α3
)
e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2. (30)

The approximation [Destrade et al. 2010b, (13)] is obtained from (30) by making αk = 0 for k = 1, 11,
k 6= 6, and replacing α6 by D.

Lastly, consider waves that travel in the (x1, x3)-plane. In this case, θ is the angle between the direction
of propagation of the plane wave and the x1-axis. Using (12)–(15), it follows that γ12 = γ13, γ21 = γ31

and β12 = β13. From these facts it is obvious that the secular equations in this case are exactly the ones
obtained for waves propagating in the (x1, x2)-plane. This is consistent with the transversely isotropic
character of the strain-induced anisotropy.

4. Formulas for the velocity of Rayleigh waves

We turn our attention to the analysis of Rayleigh surface waves. In what follows, by RWkm (k,m =
1, 2, 3, k 6= m) we denote, for simplicity, a Rayleigh wave propagating along the xk-direction, and atten-
uating in the xm-direction, i.e., we consider a half space occupying the region xm < 0 in the reference
configuration with boundary xm= 0 and surfaces waves propagating in the direction xk .

4A. Secular equations.

Remark 2. According to Remark 1, the equations of motion (10) for the incremental displacements
ui , the incremental equation (16) of incompressibility, and the expressions of the incremental traction
components are for Rayleigh surface waves the same as those for pre-stressed incompressible isotropic
elastic materials (see [Vinh 2010] and references therein). Moreover, using (12)–(15), (19) and (20) one
can see that the relations

Ai j j i = Aj i i j = Ai j i j − λi
∂W
∂λi

, (31)

still hold for the (uniaxial) cases under consideration. Therefore, the secular equations of Rayleigh waves
for transversely isotropic materials under the conditions considered here are the same as the ones obtained
for pre-stressed incompressible isotropic elastic materials.

Let us consider first the RW12 that travels with velocity v. Following Remark 2 and according to
[Dowaikh and Ogden 1990], the secular equation of the Rayleigh wave RW12 is (see also [Vinh 2010;
Prikazchikov and Rogerson 2004; Vinh and Giang 2010])

γ21(γ12− ρv
2)+ (2β12+ 2γ ∗21− ρv

2)
[
γ21(γ12− ρv

2)
]1/2
= (γ ∗21)

2
, 0< ρv2 < γ12, (32)

where γ12, γ21, and β12 are defined by (22), γ ∗mk = γmk − σm (m, k = 1, 2, 3, m 6= k) and the σi are the
principal stresses of the Cauchy stress tensor, which are given by [Ogden 1984]

σi = λi
∂W
∂λi
− p̄ (i = 1, 2, 3). (33)
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Similarly, the secular equation of RWkm can be written as

γmk(γkm − ρv
2)+ (2βkm + 2γ ∗mk − ρv

2)
[
γmk(γkm − ρv

2)
]1/2
= (γ ∗mk)

2
, 0< ρv2 < γkm, (34)

where γmk and βmk are given by (22). Under the conditions at hand, it follows that σ2 = σ3 = 0, and,
furthermore, γ ∗2k = γ2k (k = 1, 3), γ ∗3k = γ3k (k = 1, 2). The strong-ellipticity condition (see [Ogden and
Singh 2011], for instance) requires that γkm > 0 (k,m= 1, 2, 3, k 6=m). The following results show that it
seems natural to consider expansions of strain energy functions in terms of the invariants of E. Formulas
for the Rayleigh surface waves obtained as polynomials of e depend only on some of the terms in which
the strain-energy function W maybe expanded. More precisely, it is shown that linear polynomials of e
depend on the coefficients included up to the third-order terms of the strain-energy function W . On the
other hand, second-order polynomials in e depend also on the coefficients included up to the fourth-order
terms of the strain-energy function W . We focus first on the first-order approximation for the velocity to
clarify the analysis.

4B. First-order approximations for the velocity. In this section we obtain formulas for the velocity of
the RWkm given as first-order polynomials in e, i.e., we obtain

ρv2
km = akm + bkme, (35)

where vkm is the velocity of RWkm. It follows that these equations include µ, A, ak, k = 1, 5 and can
be used to determine the elastic coefficients associated with the third-order strain-energy function (3).

Expression of v12 associated with RW12. It is readily verified that (32)1 in terms of η=
√
(γ12− ρv2)/γ21

is of the form (see also [Destrade et al. 2010b; Dowaikh and Ogden 1990])

η3
+ η2
+ g(e)η− 1= 0, (36)

where g(e) := (2β12+ 2γ21− γ12)/γ21. For our purposes it is sufficient to expand g(e) up to first order
in e. It is not difficult to obtain that g(e)= g0+ g1e+O(e2) where

g0 =
6µ+ 4α1+α2

2µ+α2
,

g1 =
3A/2+ 16α1+ 15α2+ 18α3+ 12α4+ 11α5

2µ+α2
−
(6µ+ 4α1+ 3α2)(A/2+α2+ 2α3+α5)

(2µ+α2)2
.

(37)

Equation (36) can be rewritten as

F[η, e] ≡ η3
+ η2
+ g(e)η− 1= 0. (38)

To obtain the the first-order approximation in e of ρv2 it is sufficient to expand η as

η = η0+ η1 e, η0 := η(0), η1 = η
′(0), (39)

where η0 is a solution of the equation

η3
+ η2
+ g0η− 1= 0. (40)
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The value η0 corresponds to the Rayleigh wave propagating in the incompressible transversely isotropic
elastic solids (without pre-stresses) and, according to [Ogden and Vinh 2004], η0 is given by

1
3

[
−1+ 3

√
1
2 [91+16+3

√
3
√
1(412−131+32)]− 3

√
1
2 [91+16−3

√
3
√
1(412−131+32)]

]
,

(41)
where 1= g0+ 1= (8µ+ 4α1+ 2α2)/(2µ+α2). Note that η0 depends only on the second-order elastic
constants µ, α1, α2 and η0 = 0.2956 when α1 = α2 = 0 (for which g0 = 3, 1= 4).

Since φ(e) = F[η(e), e] ≡ 0, it is easy to get that φ′(e) = 0, φ′′(e) = 0 as well as the remaining
derivatives. Using (38) and φ′(e)= 0 it follows that

η′(e)=−
∂F(η(e), e)/∂e
∂F(η(e), e)/∂η

=−
g′(e)η

3η2+ 2η+ g(e)
, (42)

and therefore

η1 = η
′(0)=−

∂F(η0, 0)/∂e
∂F(η0, 0)/∂η

=−
g1η0

3η2
0+ 2η0+ g0

. (43)

Now, introducing γ12 and γ21, which are given by (22), into the relation ρv2
= γ12− γ21(η0+ η1 e)2 and

expanding the resulting expression up to first order in e, we obtained

ρv2
12 = s0+ s1 e, (44)

where

s0 = (1− η2
0)(µ+

1
2α2),

s1 = (3− 2η0η1)µ+
1
4(1− η

2
0)A+ 2α1+

1
2(5− 2η0η1− η

2
0)α2+ (1− η2

0)(α3+α5).
(45)

The values η0 and η1 are obtained using (41) and (43), respectively, by means of (37). It is clear that
ρv2

12 is a function of µ, A, ak ( k = 1, 5) and e.

Expression of v23 associated with RW23. According to (34) and noting that σ3 = 0, the secular equation
of the RW23 (k = 2, m = 3) takes the form

γ32(γ23− ρv
2)+ (2β23+ 2γ32− ρv

2)
[
γ32(γ23− ρv

2)
]1/2
= (γ32)

2, 0< ρv2 < γ21. (46)

In terms of the variable η =
√
(γ23− ρv2)/γ32, (46) can be rewritten as

η3
+ η2
+ g(23)(e)η− 1= 0, (47)

where g(23)(e)= (2β23+2γ32−γ23)/γ32. Since γ23 = γ32 = β23, as mentioned just before Equation (30),
it follows that g(23)(e) = 3 and, therefore, that η = η0 where η0 is given by (41). Taking into account
(27)2, the first-order approximation of ρv2

23 = γ23(1− η2
0) is finally

ρv2
23 = (1− η

2
0)[µ+ (−3µ− A/2)e+α3]. (48)

Expression of v21 associated with RW21. According to (34) the secular equation of the RW21 is

γ12(γ21− ρv
2)+ (2β21+ 2γ ∗12− ρv

2)[γ12(γ21− ρv
2)]1/2 = (γ ∗12)

2
, 0< ρv2 < γ21. (49)
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Using (12)–(15) one can see that λ1 ∂W/∂λ1− λ2 ∂W/∂λ2 = γ12− γ21. From this fact and the relation
σ1−σ2 = λ1 ∂W/∂λ1−λ2 ∂W/∂λ2 (obtained from (33)) and σ2 = 0 it follows that σ1 = γ12−γ21. Thus
γ ∗12 = γ21, and (49) now becomes

γ12(γ21− ρv
2)+ (2β21+ 2γ21− ρv

2)
[
γ12(γ21− ρv

2)
]1/2
= (γ21)

2, 0< ρv2 < γ21. (50)

In terms of the variable η =
√
(γ21− ρv2)/γ12, Equation (50) can be written as

η3
+ η2
+ g(21)(e)η− h(e)= 0, (51)

where g(21)(e) := (2β21 + γ21)/γ12, h(e) := γ 2
21/γ

2
12. Up to first order, the expansions of g(21)(e) and

h(e) are g(21)(e)= g(21)
0 + g(21)

1 e+O(e2) and h(e)= 1− h1e+O(e2), where

g(21)
0 =

6µ+4α1+3α2

2µ+α2
,

g(21)
1 =

6µ+ 3
2 A+20α1+19α2+18α3+12α4+11α5

2µ+α2
−

6µ+4α1+3α2

(2µ+α2)2
(6µ+ 1

2 A+4α1+5α2+2α3+α5),

h1 =
4(3µ+2α1+2α2)

2µ+α2
.

(52)

Following the same procedure used to get the first-order approximation of ρv2
12, now, we have

ρv2
21 = s(21)

0 + s(21)
1 e, (53)

where

s(21)
0 = (1−η2

0)
(
µ+ 1

2α2
)
,

s(21)
1 =−(2η0η1+3η2

0)µ+
1
4(1−η

2
0)A−2η2

0α1+
1
2(1−2η0η1−5η2

0)α2+
1
2(1−η

2
0)(2α3+α5),

(54)

in which η0 is calculated by (41) and

η1 =−
g(21)

1 η0+ h1

3η2
0+ 2η0+ g(21)

0

. (55)

4C. Second-order approximations for the velocity. We now extend the above analysis to include fourth-
order terms in the strain-energy function. For that reason, it is necessary to obtain formulas for the
velocity of the RWkm given as second-order polynomials in e. We follow closely the notation used in
the different cases analyzed in Section 4B.

Expression of v12 associated with RW12. In order to create second-order approximations for the velocity
of RW12 we need to expand g(e) into a Maclaurin series up to second order in e. One can write

g(e)= g0+ g1e+ g2e2
+O(e3),
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where g0, g1 are given by (37) and

g2=
2

2µ+α2

(
24µ+12A+12α1+12α2+

39
2 α3+27α4+

105
4 α5+27α6+18α7+

69
4 α8+12α9+11α10+

27
4 α11

)
−

2(6µ+4α1+3α2)

(2µ+α2)2

(
2µ+ A+ 1

2α3+
3
4α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
−

A+2α2+4α3+2α5
(2µ+α3)3

(
12µα3+ 6α2α3+ 8µα5+ 4α2α5+ 12µα2+ 6α2

2

+ 12µα4+ 6α2α4+ 16µα1+ 6α1α2− 4α1α3− Aα1− 2α1α5
)
. (56)

Up to second order in e the expansion of η(e) is η = η0+ η1e+ η2e2, where η0 and η1 are given by (41)
and (43), respectively, and η2 is to be determined. Using (38) and φ′′(e)= 0, it is obtained that

η′′(e)=−

∂2 F
∂η2 η

′2
+ 2

∂2 F
∂η∂e

η′+
∂2 F
∂e2

∂F
∂η

∣∣∣∣
(η(e),e)

, (57)

and, therefore, that

η2 =
1
2η
′′(0)=−

(3η0+ 1)η2
1+ g1η1+ g2η0

3η2
0+ 2η0+ g0

. (58)

Expanding ρv2
= γ12− γ21(η0+ η1 e+ η2 e2)2 up to second order in e yields

ρv2
12 = s0+ s1 e+ s2 e2, (59)

where s0 and s1 are given by (45) and

s2 = (5− 2η2
0− 2η0η2− η

2
1)µ+ (7− 2η0η1− 4η2

0)A/4+ 5α1+ [5− η0(η1+ η2)− η
2
1/2]α2

+ (5− 2η0η1− η
2
0/2)α3+ 3α4+ (15− 4η0η1− 3η2

0)α5/4

+ 3(1− η2
0)α6+ (1− η2

0)α7+ 7(1− η2
0)α8/4+ (1− η2

0)α10+ 3(1− η2
0)α11/4. (60)

Relation (59), where s0 and s1 are given by (45) and s2 is given by (60), is the second-order approximation
for the velocity. Now, consider that αk = 0, k = 1, 11, k 6= 6. Then, using (37) and (56) one obtains
that g0 = 3, g1 = 0, g2 = 18+ 9(A/µ)+ 18(α6/µ). Similarly, using (41), (43) and (58) one obtains that
η0 = 0.2956, η1 = 0 and η2 =−(1.3806+ 0.6903(A/µ)+ 1.3806(α6/µ)). Introducing these results into
(45) and (60) it is easy to obtain that

s0 = 0.9126µ, s1 = 3µ+ 0.9126A/4, s2 = 5.642µ+ 2.071A+ 3.554α6, (61)

which coincide with the coefficients of the approximation in [Destrade et al. 2010b, (19)], where the
coefficient D is simply α6.

Expression of v23 associated with RW23. Introducing the expansion (27)2 of γ23 into the relation ρv2
23 =

γ23(1− η2
0) one obtains the second-order approximation as

ρv2
23 = (1− η

2
0)[µ+ (−3µ− A/2+α3)e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2
]. (62)
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Expression of v21 associated with RW21. Following the same procedure used to obtain the second-order
expansion for ρv2

12, one can write in this case that

ρv2
21 = s(21)

0 + s(21)
1 e+ s(21)

2 e2, (63)

where s(21)
0 and s(21)

1 are determined using (54) and s(21)
2 is given by

s(21)
2 = (2− 2η0η2− η

2
1− 6η0η1− 5η2

0)µ+
(
1− 1

2η0η1−
7
4η

2
0
)

A− (4η1+ 5η0)η0a1

−
(
η0η2+

1
2η

2
1+ 5η0η1+ 5η2

0
)
a2+

( 1
2 − 2η0η1− 5η2

0
)
a3− 3η2

0a4

+
( 3

4 − η0η1−
15
4 η

2
0
)
a5+ (1− η2

0)
(
3a6+ a7+

7
4a8+ a10+

3
4a11

)
, (64)

where η0 and η1 are determined using (41) and (55), respectively, and η2 is

η2 =−
(3η0+ 1)η2

1+ g(21)
1 η1+ g(21)

2 η0− h2

3η2
0+ 2η0+ g(21)

0

. (65)

In (65), g(21)
0 and g(21)

1 are determined using (52) and the remaining symbols are given by

g(21)
2 =

2
2µ+a2

(
27µ+ 51

4 A+17a1+17a2+24a3+30a4+
117

4 a5+27a6+18a7+
69
4 a8+12a9+11a10+

27
4 a11

)
−2

6µ+ 4a1+ 3a2

(2µ+ a2)2

(
5µ+ 7

4 A+5a1+5a2+5a3+3a4+
15
4 a5+3a6+a7+

7
4a8+a10+

3
4a11

)
+4

3µ+ A
4 +2a1+

5
2a2+a3+

1
2a5

(2µ+a2)3

[
(12µ+4a1+2a2−12a3−12a4−8a5)µ

+(A+8a1+6a2+4a3+2a5)a1−(2a2+6a3+6a4+4a5)a2
]

(66)

and

h2 =
1

(2µ+ a2)2

[
(84µ+ 104a1+ 104a2− 12a3− 24a4− 12a5)µ

+(4A+ 48a1+ 16a3+ 8a5)a1+ (A+ 8a1+ 36a2− 2a3− 12a4− 4a5)a2
]
. (67)

5. Conclusions

The purpose of this analysis is to evaluate the mechanical properties of transversely isotropic incompress-
ible nonlinear elastic materials such as certain soft biological tissues. We have considered an expanded
strain energy function in terms of the Green strain tensor. More in particular we have focused on an
energy function with elastic constants of second, third, and fourth orders in the Green strain tensor (see
(5)). Homogeneous plane waves and Rayleigh surface waves have been examined in conjunction with the
strain energy function (5). The speeds of shear waves and Rayleigh waves in the incompressible model
(5) have been obtained. The formulas developed can be used to determine the elastic coefficients included
in (5), although, it is not an easy task. The equations obtained in [Destrade et al. 2010b] are recovered
from their corresponding formulas obtained in this paper. It has been noted that formulas for the speeds
of Rayleigh waves that are linear in e depend on the coefficients included up to third-order terms in
the strain-energy function (5). On the other hand, the speeds of Rayleigh waves given as second-order
polynomials in e depend also on the coefficients included up to fourth-order terms in the strain-energy
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function (5). This is particularly important since even though physical acousticians are interested in third
order constants for anisotropic solids, workers in nonlinear elasticity, and furthermore, in soft biological
tissues, work with finite extensions involving fourth order constants.
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TUBULAR ALUMINUM CELLULAR STRUCTURES: FABRICATION AND
MECHANICAL RESPONSE

RYAN L. HOLLOMAN, VIKRAM DESHPANDE, ARVE G. HANSSEN,
KATHERINE M. FLEMING, JOHN R. SCULLY AND HAYDN N. G. WADLEY

We explore a novel cellular topology structure based upon assemblies of square cross section tubes
oriented in a cross-ply 2D and orthogonal 3D arrangements that can be tailored to support different
combinations of through thickness and in-plane loads. A simple dip brazing approach is used to fabricate
these structures from assemblies of extruded 6061-T6 aluminum alloy tubes and the through thickness
compression of a variety of structures is investigated experimentally and with finite element modeling.
We find that the 3D orthogonal structures have an approximately linear dependence of modulus upon
relative density. However the strength has a power law dependence upon density with an exponent of
approximately 5/3. These cellular structures exhibit almost ideal plastic energy absorption at pressures
that can be selected by adjustment of the vertical and in-plane tube wall thicknesses. A finite element
model with a nonlinear hardening constitutive law is used to explore the buckling modes of the structure,
and to investigate the relationship between cell topology, relative density, tube wall material properties
and the cellular structures resistance to compression.

1. Introduction

Sandwich panel structures are widely used in stiffness dominated design where large bending stresses
must be supported with minimum elastic deflection [Allen 1969]. In these scenarios, widely separated
face sheets carry the primary loads and are constructed of light, stiff, strong materials such as light
metals or fiber reinforced composites. When panel deflections are small, the mechanical performance
is optimized by minimizing the core mass fraction [Zenkert 1995]. Since the flexural modulus of the
sandwich panel increases with the square of the core thickness, the primary role of the core is to maintain
separation of the faces and preserve the sandwich effect [Vinson 2001]. Cores for such applications can be
made of low density materials such as Nomex with a hexagonal honeycomb cell topology [Bitzer 1997]
or rigid polymer foams for less weight sensitive applications [Gibson and Ashby 1988; Mills 2007]. It is
interesting to note that the development of these structures has been paced by advances in the adhesives
used to strongly (and reliably) bond face sheets to the cores. More recently many other core options
have emerged [Wadley 2006] including honeycombs with in-plane stretch resistant square [Wadley et al.
2007] or triangular [Wei et al. 2008] cell topologies, and flex honeycomb or lattice truss cores [Kooistra
et al. 2008] for curved sandwich panels. Ways of making these cellular materials from engineering alloys
such as high strength aluminum [Queheillalt et al. 2008; Kooistra et al. 2004] titanium [Queheillalt et al.
2000; Elzey and Wadley 2001; Moongkhamklang and Wadley 2010] and from composites have also been
developed [Finnegan et al. 2007; Russell et al. 2008].

Keywords: cellular structures, 6061 aluminum, impact energy absorption.
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Facesheet

2L
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Sandwich panel

Support
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�

Ejecta

Figure 1. Example of a sandwich panel structure whose core undergoes localized com-
pression, transverse shear, and membrane stretching during high intensity impulsive
loading. The core in this example exhibits modest resistance to inplane stretching.

Sandwich panel structures have also attracted interest for impact energy absorption applications [Lau-
rin and Vizzini 2005] and for reducing the dynamic deflections of structures that are subjected to high
intensity dynamic loading [Vaziri et al. 2007]. Experimental studies have demonstrated significant re-
ductions in panel deflections during shock loading under water [Wei et al. 2007], in air [Dharmasena
et al. 2008] and when impacted by soil launched toward a panel by a buried explosion [Rimoli et al.
2011]. These studies reveal that the panel’s out-of-plane deflection, d, scaled by the half span length,
L , increases roughly linearly with the incident impulse I [Hutchinson and Xue 2005; Liang et al. 2007;
McShane et al. 2007]. Under the most intense loadings, the deflections of edge clamped panels exceed
the core thickness and the deformation of the panel changes to a combination of core crushing and in-
plane stretching [Tilbrook et al. 2006]; see Figure 1. In this phase of the response, the resistance of
the core to through thickness compression and in-plane stretching of the core and faces govern panel
performance.

Sandwich structures intended for high intensity impulsive loading scenarios typically allocate about a
third of the panels mass to the core to achieve the desired combination of core and face sheet responses
[Wicks and Hutchinson 2001]. Foams [Reyes 2008], and tubes (both empty and foam filled) oriented
axially to the crush direction [Hanssen et al. 2000a; Baumeister et al. 1997; Reid 1993] have been
widely investigated for structural impact problems. These structures are highly compressible and can
undergo compression at nearly constant stress to strains of 60% or more, making them efficient impact
energy absorbers. However, they have little in-plane stretch or transverse shear resistance and are not
optimally suited for the cores of edge supported sandwich panels subjected to high intensity loading.
While honeycomb structures with square [Xue and Hutchinson 2006] or triangular [Gibson and Ashby
1997] cell topologies have shown promise for this application, (the webs resist compression and in the
in-plane stretching), they are difficult to fabricate from the high performance alloys needed for many
applications. Achieving the robust nodal connections between the core and face sheets is also problematic
because of the small nodal contact area. It is difficult to independently vary, and thus tailor, the through-
thickness and in-plane properties.

Here we investigate core topologies based upon 3D arrangements of square cross section, extruded
tubes made from a heat treatable aluminum alloy. The tubes can be assembled in a 2D cross-ply, or 3D
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orthogonal geometry. The in-plane tubes provide stretch resistance while the through thickness tubes
resist compression. By using different wall thicknesses for the in-plane and through thickness tubes, it is
possible to independently control the in-plane stretch resistance and the through thickness crush strength.
The large nodal contact areas also improve load transfer within the core and between cores and face
sheets. The topology affords multifunctionality [Evans et al. 2001] such as cross flow heat exchange
via the open channels that extend within the structure [Tian et al. 2007]. We describe a simple method
for the fabrication of tube core topology structures, and investigate their mechanical response under
quasistatic compression loading. We find that a 3D orthogonal arrangement of tubes offers effective
crushing resistance and appears well suited for impact energy absorbing applications.

2. Cell geometries and fabrication

To explore the design and fabrication of tube-bonded cellular structures we have investigated two recti-
linear cell topologies with and without tubes oriented in the loading direction and develop a method for
their manufacture from extruded aluminum tubes.

2.1. Cell geometry. Rectalinear cellular tube structures can be assembled from square cross-section
tubes to create the two topologies shown in Figure 2. The 2D structure in Figure 2(a) can be assembled by
laying down a colinear layer of tubes each spaced a tube width apart. A second similarly spaced layer is
then orthogonally placed on the first layer, and the assembly sequence repeated until a desired thickness is
achieved. The 3D topology in Figure 2(c) can be assembled from the 2D structure by inserting additional

2D tube structurea)

l

l
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l

l

l
2

l
2

l
2

l
2

2D unit cellb)

(a) (b)
3D tube structurec)

l

l
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l
2

l
2

l
2

3D unit celld)

l

l

t

t

(c) (d)

Figure 2. Examples of cellular structures fabricated from square extruded tubes. (a)
2D structure made by bonding 0/90 layers of colinear tubes. (b) The unit cell of the 2D
structure. (c) A 3D tube structure where the through thickness gaps in the 0/90 assembly
are filled with vertical tubes. (d) Unit cell of the 3D tube structure.
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Figure 3. (a) A modified 3D structure in which the vertical tubes were notched to allow
removal of salts used for dip braze bonding. (b) The unit cell of the modified 3D structure
with the notch geometry incorporated. For all experiments reported here, x = y =
6.35 mm.

tubes in the out of plane (vertical) void space between the cross-ply oriented tubes. The tubes can be
bonded with polymeric adhesives or more robustly by dip or vacuum brazing. To facilitate complete
fluid penetration during dip braze bonding of the structure to face sheets, the vertically inserted tubes
can be notched as shown in Figure 3. In principle, the wall thicknesses of the tubes in each orthogonal
direction can be different, enabling tuning of properties in the various directions.

The structures are periodic and their unit cells are shown in Figures 2(b), 2(d) and 3(b). The relative
density, ρ̄, of each topology is defined as the fraction of volume occupied by solid in each unit cell. The re-
lationship between ρ̄, the tube wall thickness (t), and outer tube width (l) for the 2D topology is given by

ρ̄ =
2(l − t)t

l2 . (1)

The 3D topology assembled from identical tubes in all three directions has a relative density

ρ̄ =
3(l − t)t

l2 . (2)

However, use of notched vertical tubes, with rectangular notches of length x and height y, results in a
reduced relative density for the 3D assemblies

ρ̄ =
2 ∗ t2

v (y− 2l)− tv(2xy+ l(y− 4l))− 8th(th − l)l
4l3 (3)

where the in-plane and through thickness oriented tubes can have different wall thicknesses of th and
tv, respectively. Figure 2 shows that when the cellular tube structures are bonded to face sheets to
create sandwich panels, they have a large core to face sheet interfacial area with potentially benefial
consequences for the robustness of intensely loaded panels.

2.2. Cellular tube structure fabrication. Initial investigations of the mechanical response of a 2D core
(described in Section 4) revealed unstable collapse and poor energy absorbtion characteristics during
compressive loading. Only the 3D geometry is therefore examined in detail. The 3D orthogonal geometry
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Average in-plane Average Average out of Average out Relative
Topology tube wall in-plane tube plane tube wall of plane tube density,

thickness (mm) width (mm) thickness (mm) width (mm) ρ̄

3D 3.47 19.05 3.47 19.05 42.7
3D 3.27 19.05 1.52 19.05 35.1
3D 1.53 19.05 3.30 19.05 28.6
3D 1.45 19.05 1.45 19.05 20.1
3D 0.74 11.48 0.74 11.48 11.6
3D, not notched 1.44 19.05 1.44 19.05 21.0
2D 1.70 19.05 - - 16.3
1D array - - 1.52 19.05 6.7

Table 1. Tube geometries and predicted relative densities for tube-based cellular structures.

assembled from tubes of the same size, behaved well under compressive loading, and so samples were
also assembled from tubes of various wall thickness and outer tube widths to investigate the effect of
these geometric parameters upon energy absorbtion and collapse mechanisms. The geometries of all the
structures investigated are summarized in Table 1. Since there was variability in the wall thickness, the
wall thickness of fifty tubes was measured and the mean thickness was calculated and reported in the
table. The standard deviation in tube wall thickness was ±0.14 mm. These wall thickness variations
were accounted for by the introduction of imperfections in the FE models described later (Section 5).

Samples of each cell topology were fabricated from square cross-section, 6061-T6 aluminum alloy
extrusions using a simple dip brazing process followed by an aging heat treatment. Square cross-sectional
extruded 6061-T6 aluminum alloy tubes were obtained from Argyle Industries Inc. (Branchburg, NJ,
USA). To facilitate compression testing, a face sheet was attached to opposing sides of the samples to
create sandwich panels. The 4.76 mm thick 6061-T6 aluminum alloy face sheet material was supplied
by BMG Metals (Richmond, VA, USA).

A schematic illustration of the fabrication process for making the 3D orthogonal topology structure is
shown in Figure 4. An analogous sequence was used for the 2D topology. All the test structures were dip
brazed using a facility and process developed at Coleman Microwave Co. (Edinburg, VA, USA). This
process involves a prebraze cleaning, dip brazing, and a postbraze heat treatment [ASM 2003]. The
AA 6061-T6 parts were first subjected to a degreasing/chemical deoxidation process to remove the thick
oxide films that form during extrusion processing and subsequent heat treatments. This involved soaking
the tubes in a degreasing solution (Hurrisafe 950 supplied by PCI of America of Rockville, Md, USA)
at 65◦ to 82◦C to remove hydrocarbon residues. After rinsing in warm water, the parts were dipped
in a caustic bath (Isoprep 35 supplied by MacDermid of Denver, CO) for 30 seconds to lightly etch
the surface. After a second warm water rinse, the parts were dipped for 30 seconds in a neutralizing
acid bath (Gil–Sparkle C solution diluted 50% with de-ionizing water). The parts were again rinsed in a
warm water bath before dipping for 45 seconds in a deoxidizing solution containing ferric sulfate, sulfuric
acid, and nitric acids followed by rinsing in warm water and air drying. Once cleaned, the extrusions
were assembled into the appropriate sandwich geometry. During assembly, Lynch Metal (Union, NJ)
grade 4047 Al-Si filler foil was applied to the surfaces of the cellular structure as shown in Figure 4.



70 R. L. HOLLOMAN, V. DESHPANDE, A. G. HANSSEN, K. M. FLEMING, J. R. SCULLY AND H. N. G. WADLEY

Residual Flux
Removal

Molten Brazing
Salt Bath

593
o
C 

Heat Treatment
to T6 condition

18 h. 163
o
C 

Assemble Structure

Cleaning treatment

Convection Oven
Pre-heat

538
o
C 

10 - 15 m.

30 sec.

Fan Cool
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Figure 4. A process flow chart for the manufacturing sequence used to fabricate the
cellular tube structures.

Filler alloy 4047 was used due to its improved fluidity (wetting action) and for minimizing solidification
cracking. A bead of AA 4145 filler paste (Omni/Lucas Milhaupt grade LTB 37-SSK) was also applied
to any small gaps within the assembly. In the case of the 3D structures, it is assumed that AA 4145
was used in very limited quantities and only along small joints at the edge of the 3D structure. Table 2
summarizes the compositions of the AA 6061, AA 4047, and AA 4145 alloys, whose compositions and
braze process conditions governed the microstructure [Fleming et al. 2012]. It should be noted that
perfect tube alignment for all tested structures was dificult to maintain with the fabrication method used
here. The tubes slid and it was difficult to attain perfect alignment even with clamping the face sheets.
Both tube wall thickness variablility and misalignment are imperfections that trip tube buckling modes
during subsequent compression testing.

After assembly, the cellular structure was clamped to the top and bottom face sheets and the entire as-
sembly mounted on a rack for dip brazing. The assembly was preheated for 10–15 minutes at 538◦C (just
slightly below the brazing temperature) in a hot air convection oven to remove moisture [ASM 2003]. The
structures were then quickly transferred to a 593◦C bath of molten brazing flux (Alu-braze 960, Park Met-
allurgical, Detroit, MI) for approximately 30 seconds, this acted as both a heating medium and deoxidizer.
During this emersion, the molten braze alloy flowed (by capillary action) to fill the joints. After removal
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Composition (wt%)

Material Si Cu Mg Mn Fe Cr Zn Mg/Si

AA 6061 0.4– 0.8 0.15–0.4 0.8–1.2 0–0.15 0–0.7 0.04–0.35 0–0.25 0.5–1.5
AA 4047 11.0–13.0 0.3 0.1 0.15 0–0.8 0 0–0.2 0.009max
AA 4145 9.3–10.7 3.3–4.7 0.15 0–0.15 0–0.8 0 0–0.2 0.016max

Table 2. Composition of extruded material (AA 6061) and filler materials used to braze
the tube profiles [Hatch 1984; Braithwaite 2008].

from the molten flux bath, molten salt was drained from the structure, and it was fan cooled to room tem-
perature at rates ranging from 0.08 to 0.32 K/s, depending on the size of the structure. The structure was
then soaked in hot-agitated water and Gil–Sparkle C solution with a 50% de-ionized water. After these
fabrication steps, the structure was slow-aged at room temperature for 96 hours to the T4 condition and
then peak hardened (to the T6 condition) by ageing at 163◦C for 18 hours followed by water quenching.

3. Materials characterization

3.1. Microstructure characterization. Micrographs of the parent alloy and brazed regions of one of the
structures studied here are shown in Figure 5, all samples were electropolished [Fleming et al. 2012] prior
to imaging. Figure 5(a) shows a backscattered SEM micrograph of the tube wall material for a region
more than 125µm from a brazed joint. In the post brazed and heat treated condition, the tube wall

Figure 5. SEM images of the post-brazed and heat treated AA 6061-T6 material. (a)
Backscatter electron image of the extruded tube wall showing precipitate phases deco-
rating the grain boundaries. (b) The brazed region between two tubes showing silicon
rich phases. Microhardness values are shown within the brazed and mixed zones. (c) A
higher magnification view of the brazed and mixed zone regions.
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material has an average grain size of 20µm. The grain boundaries were decorated by large β-Mg2Si
and Q-Al4Cu2Mg8Si7 phase precipitates, as predicted in [Chakrabarti and Laughlin 2004]. Fleming
et al. [2012] has conducted a detailed examination of the microstructure evolutions accompanying the
dip braze bonding process used here. The large β-phase grain boundary particles are consistent with the
time-temperature transformation curves calculated by Fleming and the slower than normal rate of cooling
after brazing. The brazed regions between the tubes, Figure 5(b) consisted of a eutectic structured region
and a transition zone to the parent alloy microstructure. Within the brazed joint, the AA 4047 braze foil
had fully melted and an fcc aluminum solid solution and diamond cubic silicon eutectic microstructure
had formed upon cooling. Both β and Q-Al4Cu2Mg8Si7 phases were predicted [Fleming et al. 2012]
to be responsible for the strengthening in this region. The Vickers microhardness in the brazed and
mixed regions was measured to be approximately 90 HV30 and 98 HV30, respectively; equivalent to
tensile strengths of 285 and 300 MPa. In the mixed zone on either side of the original braze foil location,
Figure 5(c), resolidified AA 6061 formed coarse grains with Al-Si eutectic at solidification boundaries.
Kinetic models and composition profiles [ibid.] have shown that significant outward diffusion of silicon
and inward diffusion of magnesium had occurred in a zone that extended 125µm from the edge of
the brazed zone. Strengthening in this region resulted from precipitated Si, as well as β, and Q phase
precipitation in Al-rich phase [ibid.]

3.2. Alloy mechanical properties. An optical image of a polished cross section cut from a 3D structure is
shown in Figure 6. Microhardness measurements were made at various locations (all further than 125µm
from any brazed region) to investigate the local strength of the post brazed/artificially age hardened

Figure 6. A photograph of a polished cross sectional slice through the 3D tube struc-
ture with measured Vickers microhardness values superimposed. A notch in one of the
vertically oriented tubes can be seen in the upper left. All microhardness measurements
are located in the AA 6061-T6 extrusion region.
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extrusion region of the structure. These hardness values and approximate location of the measurement are
shown in Figure 6. The measured Vickers microhardness lay in the range of 102±7.5 HV30; equivalent
to an alloy tensile strength of approximately 330 MPa, which is consistent with the T6 condition of the
6061 alloy. Indents made in the outer surface of the tube wall, indicated a hardness that deviated very little
from 107 HV. However, when measured on a plane transverse to the extruded direction, the microhardness
was roughly 10 HV smaller, and fluctuated between 95 HV and 102 HV. The microhardness indention
diameter was about 0.1 mm, while half the tube wall thickness was 0.8 mm. As a result the distance to the
free surface from the middle of the tube wall was about eight times the indent diameter, and proximity
to the free surface may have reduced lateral constraint during indentation. Hardness measured in the
same orientation near the two (horizontal) brazed joints, indicated a hardness that varied between 101
and 110 HV consistent with better lateral constraint. We conclude that the strength of the tube wall alloy
after brazing was approximately isotropic and independent of orientation.

Quasistatic tensile tests were used to determine the stress-strain response of the post-brazed and T6
aged 6061 tube wall alloy. The tensile test specimens were cut so that the loading direction was in the
axial (extrusion) direction of the orthotropic tube material. The test coupons were prepared according to
ASTM standard B557-06 and tested on a 50 kN screw driven universal testing machine (Instron Model
4208, Instron Corp, Canton, MA, USA) at 25◦C at a strain rate ε̇ of 10−4 s−1. The specimen’s axial
displacement was determined with a laser extensometer (Electronic Instrument Research, Model LE-01,
Irwin, PA, USA). The specimens were tested to failure and the Cauchy stress, σc and the logarithmic
strain εL , up to diffuse necking were calculated from

σc =
F

A0(1+ ε)
, εL = ln

L2

L1
(4)

where F is the force, A0 is the initial cross section of the tensile coupon, ε is the engineering strain, L1

the initial gauge length and L2 the extended length.
To verify that material in the post brazed 3D orthogonal assembly had the same mechanical properties

throughout its interior, tests were performed on material extracted from the walls of tubes located at the
surface and the interior of the sample. Two samples from each location within a 3D cellular structure were
obtained and tested. In addition, the AA 6061-T6 face sheet material was also tested in the rolling and
transverse directions. Figure 7 shows the cauchy stress-logarithmic strain curve for one of the tube wall
material samples. This curve was subsequently used to deduce the material properties for the numerical
simulations of the 3D orthogonal assembly. A summary of the mechanical test results for all the samples
is shown in Table 3. It is evident that there is little variation in the mechanical properties within the tube
structure, and the ultimate strengths are consistent with the microhardness measurements.

The mechanical response of the brazed joint was also investigated using a lap shear test in accordance
with test standards specified by ASTM D1002-05. The test specimens were cut in the length direction of
the extruded tube and underwent the same brazing and age-hardening process described in Section 2.2.
Tests were conducted at a strain rate of 10−5 s−1 in the specimens gauge area. In three tests, the AA 6061-
T6 material failed prior to the braze joint near the grips at a tensile stress of 247 MPa. The corresponding
shear stress within the joint at the point of material failure was measure to be 165 MPa. Since no nodal
fracture was observed at the brazed lap joint during these tests, the nodes of the adjacent tubes in the FE
models (Section 5) were merged prior to simulations.
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Figure 7. Measured true stress-logarithmic strain curve for post-brazed and fully age
hardened AA 6061-T6 tube wall material tested in uniaxial tension to fracture at room
temperature. The stress-strain curve predicted by a piecewise linear hardening constitu-
tive model used in subsequent simulations is also included.

Direction Modulus, Yield strength, Ultimate strength, Total strain to
Es (GPa) σ02 (MPa) σu (MPa) failure ε f (%)

Exterior region of 3D structure
Axial 70.5 278.2 310.5 5.3
Axial 69.9 280.9 311.5 5.1

Interior region of 3D structure
Axial 68.5 284.5 313.6 4.9
Axial 68.3 283.2 312.8 4.9

Face sheet material
Tranverse 69.4 265.9 346.8 12.5
Rolling 71.4 281.4 344.3 12.7

Table 3. Mechanical properties of 3D orthogonal structure and face sheet.

4. Compressive response of cellular structures

The compressive stress strain response of the cellular structures were measured following the guidelines
of ASTM C 365/C for sandwich panel testing at an applied engineering strain rate of 10−4 s−1. A laser
extensometer was used to measure the compressive displacement and thus nominal strain.

4.1. The 2D cellular structure. The out of plane compressive response of the 2D structure with ρ̄ =
16.3% is shown in Figure 8. The stress linearly increased with an elastic modulus (measured during
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Figure 8. The compressive stress-strain response of a 2D cellular structure with a rel-
ative density of 16.3%. The inset shows an expanded view of the nominally elastic
loading region of the test where the unloading modulus was measured.

unloading) of 3.2 GPa until reaching an initial peak of 13.2 MPa. Continued loading resulted in rapid
softening and a significant period of compression at almost no stress. This was then followed by a second

Figure 9. A photographic sequence showing the unstable collapse modes of a 2D cel-
lular structure with a relative density of 16.3%.



76 R. L. HOLLOMAN, V. DESHPANDE, A. G. HANSSEN, K. M. FLEMING, J. R. SCULLY AND H. N. G. WADLEY

rise in stress to a peak value of 3.1 MPa at a strain of 0.19 followed again by rapid softening. A third
stress peak was observed with a maximum stress of 11.8 MPa at a strain of 0.35. Further loading again
resulted in rapid softening until densification set in at a strain of 0.64.

Figure 9 shows a series of photographs of the 2D structure at various stages of the test. A comparison
of parts (a) and (b) shows that the initial peak in strength was controlled by concertina buckling of layers 1
and 3 in which the tubes on either side of a horizontal plane rotate in opposite directions forming a chevron
pattern; see Figure 9(c). Part (d) indicates that the second stress peak results from the complete collapse
of layer 1. Examination of parts 9(e) and 9(f) show that the third stress peak resulted from collapse of
layers 2 and 4 by the concertina buckling mode. Some variability of response was also observed. In
some tests, the stress-strain response exhibited only two peaks that resulted from simultaneous collapse
of layers 1 and 3, and then layers 2 and 4. Apparently small imperfections in the structure influenced
the details of the buckling sequence, but not the generally unstable response of this structure.

The total absorbed (plastically stored) energy per unit volume, Ev , is obtained from the area under the
stress-strain curve shown in Figure 8. The integration is usually terminated at the densification strain, εD

defined here as the strain where the flow stress reaches the initial yield stress (εD = 0.64 for this sample).
This gave an energy absorbed per volume, Ev = 1.2 × 106 J/m3. Dividing this by the core density
ρ̄ρs = 0.163 · 2.7× 103 kg·m−3

= 440.1 kg·m−3 (where ρs is the density of the solid) gave an energy
absorbed per unit mass, Em = 2.72 J/g. If the stress achieved at the first peak had remained constant until
densification, the energy absorbed per unit mass in the 2D structure would have been the theoretical limit,
Em = 19.1 J/g. Defining the energy absorbing efficiency as the ratio of measured energy absorption, Em ,
versus the theoretical estimate for Em , the 2D structure has an energy absorption efficiency of 14.2%.
The low efficiency is a result of the unstable buckling response of the structure and makes the 2D core
poorly suited for impact energy absorption applications. It was therefore investigated no further.

4.2. The 3D structure. The 3D cellular structures defined in Table 1 had relative densities of 42.7, 20.1,
and 11.6% and were made of tubes of identical wall thickness in each orthogonal direction. The 20.1%
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Figure 10. A comparison of the compressive stress-strain responses for 3D cellular
structures assembled using notched (left) and unnotched (right) vertical tubes. The small
difference in relative density results from removal of the notch material.
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relative density structure represents the 2D structure in Section 4.1, but with a notched tube inserted into
the void of the colinearly aligned tubes, Figure 3(a). It’s out of plane compressive response is shown
in Figure 10, left. The structures unload modulus during initial loading was 3.1 MPa. It reached an
initial peak in strength of 20.9 MPa and then underwent moderate softening before hardening twice more
to reach a strength about equal to that of the first peak. The sample then began to densify at a strain
εD = 0.61. The notched structure had an absorbed energy per unit volume, Ev = 10× 106 J/m3 and an
energy absorbed per unit mass of Em = 19.2 J/g. Its energy absorption efficiency was 81.0%.

To ascertain the effect of the notching, an otherwise identical cellular structure to that with a relative
density of 20.1% was fabricated without notches in the through thickness tubes, and its compressive
stress-strain response is shown in Figure 10(b). The slightly higher relative density of the unnotched
structure (21.0%) was due to additional mass of the unnotched vertical tubes. It can be seen that notching

(a)

(b)

(c)

Figure 11. Photograph sequence of the collapse modes for 3D structures with relative
densities of (a) 11.6, (b) 20.1, and (c) 42.7%. The strains at which each photograph was
taken are indicated on Figure 12.
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reduced the initial peak strength of the 3D structure from 27.1 MPa to 20.9 MPa but also reduced the
amplitude of the stress fluctuations. The energy absorbed per unit volume for the unnotched sample
Ev = 12.45× 106 J/m3 while Em = 21.94 J/g, which were both higher than those of the notched structure.
However, the large stress drops observed in the sample with no axial tube notches reduced its energy
absorption efficiency from 81.0 to 72.3%.

A photograph of the notched 3D structure with a relative density of 20.1% taken at the first peak in
stress (at a strain of 0.04) is shown in Figure 11(b)(i). The drop in strength at the first peak resulted from
the onset of buckling of the set of tubes oriented in the through thickness direction. This was nucleated
at the notches in the tubes shown in the photographs of Figure 11(b). Continued loading resulted in
softening to a relatively constant stress of approximately 15 MPa, Figure 12. At this stage, the buckles
were fully formed in the through thickness tubes, and the side walls of the cross-ply tubes then began to
buckle, Figure 11(b)(ii). This was accompanied by a second rise in stress at a strain of 0.21 that reached a
peak value of 21.8 MPa as densification of layer 2 occurred, Figure 11(b)(iii). This process was repeated
until each of the four cross-ply tube layers had densified at a strain εD = 0.61.

The out of plane compressive response for cores with three different relative densities is compared
in Figure 12. The ultimate peak strength of the 42.7, 20.1, and 11.6% relative density structures were
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Figure 12. The compressive stress-strain responses of notched 3D cellular structures
made from uniform wall thickness tubes with relative densities of 11.6, 20.1 and 42.7%.
The structures exhibit a relatively flat stress-strain response after initial yield until attain-
ment of a density dependent “densification strain” whereupon the stress rises sharply.
The dashed curves correspond to FEA simulations discussed later.
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Topology Relative Peak stress, εD Ev Em Theoretical Energy
Density, ρ̄ σp (MPa) (MJ/m3) (J/g) Em (J/g) absorbing

efficiency

3D 42.7 69.1 0.45 24.4 21.2 29.4 0.73
3D 35.1 53.3 0.51 23.8 25.1 27.5 0.91
3D 28.6 36.8 0.50 14.7 19.0 23.1 0.82
3D 20.1 21.8 0.61 10.4 19.2 23.7 0.81
3D 11.6 9.7 0.59 3.9 12.7 13.7 0.92

3D, no notch 21.0 27.1 0.63 12.5 21.9 30.1 0.72
2D 16.3 13.2 0.64 1.2 2.7 19.1 0.14

1D array 6.7 4.7 0.72 1.7 18.0 35.2 0.51

Table 4. Energy absorption values for tested tubular cellular structures.

69.1, 21.8, and 9.7 MPa respectively, and was controlled by buckling of the through thickness tubes,
Figure 11(a)–(c). This buckling is clearly seen in Figure 11(a)(ii). Further collapse results from the
folds in the vertical tube walls buckling into the cross-ply oriented tubes. The stress-strain curves of all
three structures exhibit relatively constant stress until their (density dependent) densification strain was
reached. Table 4 summarizes the measured mechanical properties for all the samples.

4.3. Effect of tube wall thickness. Figure 13(a) shows the stress-strain responses of 3D structures in
which the wall thicknesses of the in- and out-of-plane tubes were different. Recall that the 3D structure
with equal tube thickness in all directions had a relative density of 42.7%. Its stress-strain response was
shown in Figure 11(c). The wall thickness of just the out-of-plane tubes was reduced by a half, and the
relative density decreased to 35.1% (82% of the isotropic structure), but the strength dropped by only
5%, Figure 13(a). A larger decrease in strength occurred when only the in-plane tube wall thicknesses
were reduced by one half (while keeping the out-of-plane tubes at the original wall thickness). In this
case, the relative density decreased to 28.6% (66% of the isotropic structure) and the peak strength was
reduced by approximately 54%. From the images in Figure 13(b) and (c), the initial peak strength is seen
to be controlled by a similar mechanism to that observed in isotropic samples with identical tube wall
thicknesses. We also note that the structures with relative densities of 35.1% and 28.6% had excellent
energy absorbing characteristics, with efficiencies of 91% and 82%, respectively; see Table 4.

4.4. Tube interactions. To experimentally investigate possible interactions between tubes in the in- and
out-of-plane directions, only the colinearly aligned (in-plane) tubes from the 3D structure with a relative
density of 16.3% were tested in out-of-plane compression, Figure 14(a). The vertical notched tubes in
this colinear tube structure were then also tested in (axial) compression. The response of this 1D array
structure is shown in Figure 14(b). The stress- strain response for a 3D structure made by combining
both sets of tubes is shown in Figure 14(c). The in-plane and out-of-plane tube cells have initial peak
strengths of 13.2 and 4.7 MPa, respectively. The addition of these strengths (17.9 MPa) is seen to be
less than that of the fully assembled 3D structures first peak (20.8 MPa). The experiment indicates the
existence of a synergistic interaction between the colinear aligned and vertical tubes. In the same way
that the peak strength of the 3D assembly cannot be reproduce by summation of the colinear and vertical
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Figure 13. (a) The compressive stress-strain responses for notched 3D cellular struc-
tures in which the tube wall thicknesses in the vertical and horizontal directions were
different. (c) The sample with a relative density of 28.6% density used in-plane tubes
with a reduced wall thickness (of 1.57 mm). (b) The sample with a relative density of
35.1% was constructed using vertical tubes with a reduced thickness of 1.57 mm. The
dashed curves correspond to FEA simulations discussed later. (b) and (c) show the
collapse modes of the two structures. The in-plane tubes buckle first in (c) while the
vertical tubes initiate failure in (b).
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Figure 14. Measured stress-strain curves for a structure composed of (a) colinear
aligned (0/90) tubes and (b) only the vertical tubes used in the 3D assembly. (c) Com-
pares the summed response of (a) and (b) with that measured for the 3D structure. Note
the considerable increase in energy storage of the 3D structure.

tubes acting separately, the energy absorbed per unit volume for the 3D assembly also cannot be achieved
by summing that of its components. The energy absorption per unit volume is increased in the 3D core by
more than the summed energy absorbing capacities for the 1D array and 2D cores (from 2.79 MJm−3 to
10.4 MJm−3), Figure 14(c). The energy absorbed per unit mass is also increased in the 3D core compared
to the summed 1D array and 2D cores (from 5.21 J/g to 19.2 J/g), Figure 14(c). Table 4 summarizes the
energy absorption values for the individual cores examined in this aspect of the study.

4.5. Energy absorption comparisons. The energy absorbed per unit mass for the 3D structures is plotted
against the peak stress and compared to a selection of aluminum foams [Chen 2001; Miyoshi et al. 2000;
Hall et al. 2000] and the upper bound limit for axially compressed square cross section tubes of various
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Figure 15. The energy absorbed per unit mass by the cellular structures investigated in
this study compared to commercially available aluminum foams. Each cellular metal
foam is labeled with its density in kg/m3.The wall thickness to tube width ratio is shown
for the tube upper bound relation.

wall thicknesses to tube width ratios; see Figure 15.1 The line for the upper bound absorbed energy per
unit mass, Em , has been derived (see Appendix A) from the average crush force of tubular extrusions
calculated in [Hanssen et al. 2001] as

Em = σp

[
ρs

σp

C0σ0

]3/5

(5)

where σ0 = 0.5(σ02+ σu) is the extruded tube strength, σ02 = 278.2 MPa is the nominal stress at 0.2%
offset strain, σu = 310.5 MPa is the ultimate tensile stress, ρs = 2700 kg·m−3 is the solid density of
aluminum, and C0 = 1.30 is a coefficient for square tubes. Using the measured uniaxial tensile test
results for the material studied here gives, σ0 = 294.4 MPa. Examination of Figure 15 shows that the
3D structures outperform all metal foams and falls just below the tube upper bound curve. It should be
noted that the energy absorbed per unit mass for the unnotched vertical tubes fell just under the tube
upper bound in Figure 15. We also note that unlike metal foams and arrays of axially compressed tubes
which resist only crushing, the 3D structure has both excellent crush and stretch resistance.

5. Finite element investigation

Finite element techniques have been used to investigate the failure mechanisms responsible for the me-
chanical responses of the cellular structures.

1The energy absorption for the 3D structures and metal foams was always calculated by measuring the area under the
stress-strain curve until the onset of densification (defined as the strain at which the stress reached that of the peak in crush
strength).



TUBULAR ALUMINUM CELLULAR STRUCTURES: FABRICATION AND MECHANICAL RESPONSE 83

5.1. FE model. All the finite element simulations were conducted using the explicit version of the com-
mercial, nonlinear finite element package IMPETUS Afea Solver®[IMPETUS 2013]. The geometry and
relative density of the modeled tube specimens was identical to those reported in Table 1. The initial
models did not incorporate the defects in alignment and tube wall thickness seen in the experiments. The
FE models were constructed using cubic hexahedral elements. A mesh sensitivity study indicated an
in-plane nodal spacing approximately equal to the wall thickness (t) was sufficient to provide converged
solutions. One cubic hexahedral element was therefore used through the thickness of each tube wall.
The nodes of the adjacent tubes were merged prior to the simulation, thus representing a perfect braze
zone with no interface failure criterion. The contact formulation in the software is based on a penalty for-
mulation. All the simulations used rigid front face sheets constrained by the general boundary condition
option of IMPETUS Afea Solver to move only in the through thickness direction while the rigid back
face sheet was clamped in all directions. The simulations were conducted by applying an out-of-plane
velocity-time function, v(t), to the front face sheet given by

v(t)=
w

tend

(
1− cos 360t

tend

)
(6)

where w is the crushing displacement of the sample (6 cm) and tend is the end time for the loading (1 ms),
which results in a maximum initial displacement rate of 6 m/s.

5.2. Material properties. The experimentally recovered Cauchy stress-true strain response of the 6061-
T6 alloy undergoing uniaxial tensile testing was presented in Figure 7. The Cauchy stress, σc, versus
true strain, ε, relation for an elastic-plastic material under uniaxial straining can be written as

ε = εe+ εp =
σc

E
+ εp (7)

where εe and εp are the elastic and plastic components of strain and E is Young’s modulus. Having
performed the uniaxial tensile test shown by Figure 7, the true stress vs. plastic strain curve was tabulated.
From the true stress verses plastic strain curve, the hardening curve used for all FE simulations was
extracted, and the true stress at 230.7 MPa was calibrated to zero plastic strain for the isotropic hardening
assumption. This hardening tabulation was applied in IMPETUS Afea Solver using the general piecewise
linear constitutive model prescription given by

σy = f (εP
eff)

(
1−

(
T − T0

Tm − T0

)m )(
1+

ε̇P
eff

ε0

)c

. (8)

The piecewise linear hardening constitutive model option for IMPETUS-Afea Solver defined by
Equation (8) includes thermal softening and strain rate hardening parts; however, these gave negligible
contributions to the response and so for all tests, the yield stress was only defined by f (εP

eff), a piecewise
linear function of the effective deviatoric strain, which was obtained from the hardening behavior. The
6061-T6 alloys constitutive response was modeled using a multiaxial von Mises yield criterion assuming
isotropic hardening. The solid density ρs = 2700 kg·m−3, Young’s modulus E = 70.5 GPa, and Poisson
ratio v = 0.3. Using the material model described above, a uniaxial tensile test was simulated and
compared to the measured Cauchy stress-logarithmic strain curve in Figure 7. The fit was good and
these material properties were then used for all further simulations.
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To account for softening created by tube wall fracture on the tensile side of severe buckles, the
Cockcroft–Latham failure criterion [Cockcroft and Latham 1968] was implemented for all the com-
pression simulations. This failure criterion is defined by a damage parameter, D = 1, calculated as

D =
1

Wc

∫ εP
eff

0
max(0, σ1) dεP

eff (9)

where σ1 is the first principle stress. The critical damage parameter, Wc = 85 MPa was obtained by fitting
the simulated measured stress-strain response of a single tube lateral compression test (Appendix B). The
general node splitting feature in the IMPETUS code was turned on with the damage card and enabled
failed nodes to split.

The 3D tube structure models were each built from 3,106 cubic hexahedra elements with 107,348
nodes. The wall thicknesses were homogenous throughout the meshed structures and their dimensions
were set to match the 3D topologies in Table 1 with ρ̄ = 11.6%, ρ̄ = 20.1%, ρ̄ = 28.6%, ρ̄ = 35.1%, and
ρ̄ = 42.7%. The perfectly aligned models gave much higher strengths than those seen in the experiments
and so imperfections to the geometry of the FE models were introduced to trip buckling and provide a
better fit to the measured stress-strain curves. The imperfections were modeled as a displacement of the
lowest order measured eigenmode. The eigenmode amplitudes were altered by collecting all the internal
tube wall faces with the general IMPETUS command used to define a surface from a seed node, and then
pressurizing the 3D profiles from their inside walls using the general load pressure option of IMPETUS
Afea Solver.

5.3. Simulation results. The simulated stress-strain curves are compared to the measured stress-strain
compressive curves in Figures 12 and 13. First order eigenmode amplitudes of 2, 1.5, 2.6, 1.4 and 1.4
times the tube wall thickness were employed to trip buckling for the 11.6%, 20.1%, 28.6%, 35.1% and
42.7% relative density structures, respectively. These imperfection amplitudes are consistent with: (1)
the significant misalignment of the 2D tubes at the boundary regions, (2) variations of tube wall thickness
throughout the cellular structure, and (3) other random alignment errors as a result of tube slippage during
dip brazing preparation. The laterally compressed tube simulations shown in Appendix B indicate that by
alleviating these fabrication errors the need for large eigenmode amplitude imperfections can be avoided.

The collapse modes for each of the relative density samples are shown by Figure 16. The large initial
eigenmode amplitudes are apparent in the early stages of strain, Figure 16(a)(i), (b)(i), and (c)(i). The
strains in Figure 16 correspond to those shown in Figure 11, which also provide support for the large
eigenmode imperfections introduced to the FE simulations. The buckling phenomenon observed during
experiments (where the initial stress peak is controlled by through thickness tube buckling into a series
of folds that initiate at the top of the tubes) is clearly observed in the simulations. Figure 17, for the
20.1% relative density structure, shows the buckling modes of the through thickness tubes in more detail
by hiding two colinear tubes that block their view in Figure 16. In regions where the vertical tubes are
not confined by the colinear tubes, the vertical tube walls buckle into the cavity spaces with a first order
eigenmode in Figure 17(a). The notches at each through thickness layer nucleate the buckling of the
through thickness tubes due to material failure (node splitting), shown in detail by Figure 18 (green tube
at a strain of 3.7%). Figure 17(b) and (c) show that the vertical tubes buckle most intensely in the bottom
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(a) (b) (c)
(i) ε = 0.5% (i) ε = 3.7% (i) ε = 3.5%

(ii) ε = 4.1% (ii) ε = 11.5% (ii) ε = 7.5%

(iii) ε = 26.0% (iii) ε = 23.6% (iii) ε = 21.8%

Figure 16. Images of the simulated collapse modes for 3D cellular structures with rela-
tive densities of (a) 11.6%, (b) 20.1%, and (c) 42.7%. The strain sequence corresponds
to that of Figure 11. The colors are used only to aid visualization of the deformations
of each tube.

two layers of the structure, causing densification at this location first. As the vertical walls fold into the
cavity spaces, the folds aid in crushing the colinear tubes below the folds.

The collapse modes in the void spaces (plane A in Figure 18(a)) can be seen in Figure 18(b), where all
the walls buckle uniformly towards the void center as a result of reduced confinement. However, when
all tube walls are brazed together at plane B (Figure 18a), nonuniform buckling of the colinear tubes side
wall occurs on the side connected to the notch as a result of the notch collapse, Figure 18(c). The side of
the colinear tube opposite the notch has a uniform collapse, but its first order eigenmode amplitude is less
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(a) ε = 3.7% (b) ε = 11.5% (c) ε = 23.6%

Figure 17. Images of the simulated collapse modes for 3D cellular structures with a rel-
ative density of 20.1%. Two colinear tubes have been hidden to show the collapse mode
of the axial aligned tubes more clearly. The colors are used to improve visualization of
the core deformations.

than the colinear tube that is not contained by the vertical tube, due to increased mass. In addition, the
simulated densification strains exhibit a polynomial relationship upon relative density, by Equation (6).

The strength, modulus, and energy absorption of cellular foams was shown by Maiti et al. [1984], to
be controlled by the relative density of the structure. This could be altered here by varying the tube wall
thicknesses. Figure 19 shows that for relative densities between 11 and 42% the measured and predicted
modulus of the 3D structures, Ecell scaled by that of the aluminum alloy, Es , has a linear dependence
upon relative density

Ecell/Es = 3.6ρ̄. (10)

This is consistent with an initially stretch-dominated response [Hanssen et al. 1999]. The modulus of
3D orthogonal tube structures studied here is significantly higher than that of bending governed metal
foams of similar relative density and material.

The peak strength of the 3D structure, σcell, scaled by the strength of the alloy from which it is made,
σs , has a power dependence upon relative density

σcell/σs = 1.05(ρ̄)5/3. (11)

Using an energy balance argument, Wierzbicki and Abramowicz [1983] showed that the average axial
crushing stress for an array of vertical tubes scaled with relative density to the power 5/3. This seems
to agree well with both the experimental data and FE predictions presented here for the 3D structures
whose response is dominated by the vertical tubes. We note that the 2D structure (which contains no
vertical tubes aligned with the loading direction) deforms by transverse tube crushing and is expected
to be a bending dominated system whose strength will scale with relative density to the power 3/2 like
open cell foams, which are also bending dominated structures [Maiti et al. 1984].

Table 5 summarizes the energy absorption for the simulated 3D structures. A comparison of Tables 4
and 5 shows only small differences between the measured and simulated energy absorptions. The in-
significant deviations demonstrate the good predictive accuracy of the simulations. However, the energy
absorption efficiency showed more significant variability between measurements and simulations. This
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Figure 18. Simulated images of the collapse mode of a notched 3D cellular structure
with a relative density of 20.1%. (a) Location of image planes. (b) In-plane tube wall
buckling at Plane A. (c) Buckling on Plane B located deeper within the sample. Note the
constraint imposed by the vertical tube upon the amplitude of the in-plane tube buckling
mode.

Topology Relative Peak stress, εD Ev Em Theoretical Energy
density, ρ̄ σp (MPa) (MJ/m3) (J/g) Em (J/g) absorbing

efficiency

3D 42.7 62.0 0.49 25.7 22.3 22.7 0.97
3D 35.1 53.8 0.45 21.0 22.1 23.1 0.95
3D 28.6 36.0 0.47 15.7 20.3 20.6 0.98
3D 20.1 20.7 0.64 10.9 20.3 23.6 0.85
3D 11.6 7.3 0.70 3.5 11.2 16.4 0.68

Table 5. Energy absorption values for simulated 3D structures.

arose because of the product of the simulated densification strain and peak strength was less accurately
estimated.
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Figure 19. Dependence of (a) compressive modulus and (b) compressive strength upon
relative density. Empirical fits to the data are also shown.

6. Summary

Three-dimensional orthogonal tube cellular structures for impact mitigation applications have been manu-
factured by dip brazing square extruded tubes made of aluminum alloy 6061and heat treating the structure
to the peak aged condition. The 3D structures material is othrotropic and the out-of-plane compressive re-
sponse of structures with relative densities between 10 and 40% was measured and numerically simulated
to investigate the mechanisms of plastic collapse and mechanical energy storage. We find that:

(1) The elastic modulus has an approximately linear dependence on relative density, given by Ecell/Es =

3.6ρ̄, consistent with an initially stretch dominated response. The modulus of 3D orthogonal tube
structures is significantly higher than metal foams of similar relative density and material.

(2) The peak strength exhibits a power law dependence upon relative density, given by σcell/σs =

1.05(ρ̄)5/3. In-situ experimental observations and finite element simulations reveal the crush strength
to be controlled by buckling of tubes oriented in the applied load direction.

(3) The specific energy absorption increased with compressive strength from about 10 kJ/kg at a com-
pressive strength of about 10 MPa to 30 kJ/kg at strengths of about 60 MPa. This was slightly less
than the specific strength of arrays of vertical tubes, but this was off-set by the existence of a nonzero
in-plane compressive strength. In addition, the colinear aligned tubes should provide the structure
with good stretch resistance, which is equally important for impact applications.
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Appendix A. Tube upper bound derivation

The axial crushing of both square [Hanssen et al. 1999] and circular [Hanssen et al. 2000b] tubes has
been widely studied. The expression for the average crush force for a hollow extrusion is given by the
design formula [Jones 1989]

F0
avg = C0φ

2/3σ0 As . (12)

The parameters involved are:

C0: cross section dependent dimensionless constant.

φ = As/A f : solidity ratio, where As is the solid (net) extrusion cross section and A f the gross cross
section area.

σ0 = 0.5(σ02+ σu): characteristic stress of extrusion material, where σ02 is the nominal stress at 0.2%
plastic strain, and σu is the ultimate nominal stress.

The compressive peak stress for a crushed extruded tube is described as the average crush force over the
tubes gross cross sectional area. Starting from Equation (12), the compressive peak stress is defined by

σp =
F0

avg

A f
= C0φ

5/3σ0. (13)

Parameters in Equation (13) can be organized to redefine φ, with measurable values, as

φ =

(
σp

C0σ0

)3/5

. (14)

The energy absorbed (E) by the crushed extruded tube is dependent on the average crush force and the
tubes axial displacement (w), and is written as

E = F0
avgw. (15)

This energy absorbed per unit crush mass (Em) is described by

Em =
F0

avgw

ρs Asw
=

F0
avg

ρs As
(16)

where ρs is the density of the tube material. The ratio for the tube energy absorbed per unit mass,
Equation (16), over the tube peak stress, Equation (13), is expressed by

Em

σp
=

F0
avg/(ρs As)

F0
avg/A f

=
A f

ρs As
=

1
ρsφ

. (17)

Rearranging (17) to define the tube energy absorbed per unit mass (Em) with respect to the tube peak
stress (σp) and substituting φ with (14) results in the expression used to graphically obtain the tube upper
limit shown in Figure 15 as

Em =
σp

ρsφ
= σp

(
ρs

σp

C0σ0

)3/5

. (18)
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Measured Numerical
model

Top wall thickness (mm) 1.59 1.575
Right wall thickness (mm) 1.57 1.575

Left wall thickness (mm) 1.58 1.575
Bottom wall thickness (mm) 1.58 1.575

Right to left wall outer width (mm) 18.99 19.05
Top to bottom wall outer width (mm) 18.95 19.05

Relative density, ρ̄ 28.74 30.34
Peak stress, σp (MPa) 48.83 49.15

Table 6. Measured dimensions of single tube profile sample studied under quasistatic
compressive lateral loading.

Appendix B. Lateral compression of a single tube

To test the validity of the modeling approach prior to simulating quasistatic compression of the 3D
topologies we set up a simple single square tube compression experiment and compared the measured
and simulated response using the material model described above. We also tuned the critical damage
parameter (Wc) with this simulation to 85 MPa, which was applied to all 3D simulations to initiate node
splitting.

The dimensions of the measured and modeled tube are outlined in Table 6. The tested tube under-
went the same thermal processes as outlined in Section 2.2, rendering an age-hardened AA 6061-T6
tube. The Specimen was compressed in a 50 kN Instron universal testing machine (Instron Corporation,
Model 4208, Canton, MA, USA) at a strain rate of ε̇ = 4× 10−3 s−1 and temperature of 25◦C. A laser
extensometer (Electronic Instrument Research, Model LE-01, Irwin, PA, USA) was used to measure the
displacement of the tube walls. It should be noted that the tube was not brazed to a face sheet material
like the 3D orthogonal tube samples in the study. Instead, the tube walls directly contacted the load
platens, which resulted in a different collapse mode to that of tubes that were brazed to face sheets.

The meshed tube structure was built from 3,240 cubic hexahedra elements with 112,112 nodes. The
simulated stress-strain curve in Figure 19 demonstrates a good fit to the measured sample. A comparison
of Figure 20(b) and (c) shows near identical collapse mode predictions for the experimental and simulated
single tube profiles. Thus, the material properties were deemed satisfactory for the 3D orthogonal tube
assemblies. Besides providing verification of the material approach, this model also provided evidence
of the sensitivity between tube wall thickness and predicting the force curves. No imperfections were
necessary with a single tube since the wall thickness of the numerical models fell within 1% or less of
each other. This observation suggests that there was a combination of 1) variability in the thickness of
each tube that formed the 3D structure and 2) the misalignment caused by fabrication resulted in the
large imperfections that were required to trip the simulated 3D structures buckling.
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Figure 20. (a) A stress-strain curve for a single tube under lateral compression. (b) The
experimentally observed sequence of the tested collapse modes. (c) The sequence of
simulated collapse modes.
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REFLECTION OF PLANE LONGITUDINAL
WAVES FROM THE STRESS-FREE BOUNDARY

OF A NONLOCAL, MICROPOLAR SOLID HALF-SPACE

AARTI KHURANA AND SUSHIL K. TOMAR

This work is concerned with plane waves propagating through an isotropic nonlocal micropolar solid.
Two longitudinal waves and two sets of coupled transverse waves propagating with distinct speeds may
travel in the medium. All these waves are found to be dispersive in nature. Reflection coefficients and
energy ratios are presented for when a longitudinal displacement wave strikes at the stress-free boundary.
The dispersion curves of various waves for a silicon crystal are computed numerically and depicted
graphically. The effect of nonlocality on the reflection coefficients and energy ratios is observed. The
energy balance law has been verified at each angle of incidence.

1. Introduction

The theory of nonlocal elasticity, developed in [Eringen 1972a; 1972b; 2002; Eringen and Edelen 1972],
states that the nonlocal stress tensor at any reference point x of the body depends not only on the strain at
the point x but also on the strains at all other points x′ of the body. This observation is in accordance with
the atomic theory of lattice dynamics and experimental observations on phonon dispersion [Chen et al.
2004]. In the limiting case, when the effects of strains at points other than x are neglected, one recovers
the classical (local) theory of elasticity. The most general form of the constitutive relation in the nonlocal
elasticity-type representation involves an integral over the entire region of interest. This integral contains
a nonlocal kernel function, which describes the relative influence of the strains at various locations on
the stress at a given location.

Polar theories, in principle, are nonlocal theories (see [Eringen 1999]) where the nonlocality is achieved
through moment tensors associated with each point of the body. However, as the wavelengths of the waves
transmitted become shorter, the number of moment tensors to be employed must be increased to provide
sufficient accuracy in the prediction of the physical phenomena. The response of a body depends heavily
on the ratio of the external characteristic length (L) to the internal characteristic length (l). In classical
field theories, a ratio of L/ l� 1 will yield reliable predictions. However, when L/ l ≈ 1, the classical
field theories (local) fail and we must resort to nonclassical theories (nonlocal). One of the theories in
which L ≈ l is the micropolar theory of elasticity. Some of the relevant papers on nonlocal theories are
[Eringen 1984; Erbay et al. 1992; Wang and Dhaliwal 1993; Lazar and Kirchner 2006; Zeng et al. 2006;
Najafi et al. 2012] among others.

In this paper, we have extended the work proposed in [Eringen 1984] by exploring the possibility of
the propagation of plane elastic waves in a linear isotropic nonlocal micropolar solid. It is seen that there
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may exist four waves comprising of two coupled transverse waves and two independent longitudinal
waves analogous to those existing in a local micropolar solid. In local micropolar elasticity, the longi-
tudinal displacement wave is frequency independent, while the longitudinal microrotational wave and
two sets of coupled transverse waves are frequency dependent. In nonlocal micropolar elasticity, all the
longitudinal and transverse waves are frequency dependent. The reflection phenomena of a longitudinal
displacement wave incident obliquely at a stress-free flat boundary of a nonlocal micropolar elastic half-
space are investigated in detail. Reflection coefficients and their corresponding energy ratios are obtained
analytically and depicted graphically for a silicon crystal against the angle of incidence. The reflection
coefficients and energy ratios have been plotted for two values of the nonlocal parameter, namely e0 = 0
and e0 = 0.39. The parameter e0 = 0 corresponds to the local micropolar medium. The sum of energy
ratios is found to be unity at each angle of incidence which shows that there is no dissipation of energy
during reflection at the free boundary surface of a nonlocal micropolar solid.

2. Basic equations and constitutive relations

For a linear anisotropic nonlocal micropolar solid, the strain energy density function W is given as
[Eringen 2002]

W = 1
2

∫ ∫
{Aklmn(x, x′)εkl(x′)εmn(x)+ Bklmn(x, x′)γkl(x′)γmn(x)

+Cklmn(x, x′)(εkl(x′)γmn(x)+ εkl(x)γmn(x′)} dv(x′)dv(x), (1)

where εkl = ul,k − εklmφm denotes the relative distortion tensor and γkl = φk,l is the curvature or wryness
tensor. The nonlocal constitutive moduli possess the symmetries

Aklmn(x, x′)= Amnkl(x′, x) and Bklmn(x, x′)= Bmnkl(x′, x).

In local micropolar elasticity, the force stress tensor (tkl(x)) and couple stress tensor (mkl(x)) are given
in integral form by the nonlocal constitutive relations [Eringen 2002]

tkl(x)=
∫
{Aklmn(x, x′)εmn(x′)+Cklmn(x, x′)γmn(x′)} dv(x′), (2)

mkl(x)=
∫
{Blkmn(x, x′)γmn(x′)+Cmnlk(x, x′)εmn(x′)} dv(x′). (3)

For an isotropic micropolar solid, the nonlocal elastic moduli are [Eringen 2002]

Aklmn(x, x′)= λδklδmn + (µ+ K )δkmδln +µδknδlm,

Bklmn(x, x′)= αδklδmn + γ δkmδln +βδknδlm and Cklmn(x, x′)= 0,

where the material moduli λ, µ, K , α, β, and γ depend on x and x′ through |x− x′|, that is,

{λ,µ, K , α, β, γ } = {λ′, µ′, K ′, α′, β ′, γ ′}G(|x− x′|),

with λ′, µ′, K ′, α′, β ′, and γ ′ as local micropolar elastic constants, of which λ′ and µ′ correspond to the
classical Lamé constants, and G(|x− x′|) as the nonlocal kernel. The function G(|x− x′|) represents
the effect of distant interactions of material points x′ on the material point x. Since the long-range effects
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quickly die out with distance, this function should attain its maximum at x′ = x. Eringen has shown that
the function G happens to be the Green’s function for the infinite plane, that is, it satisfies [Eringen 1984]

(1− ε2
∇

2)G = δ(|x′− x|), (4)

where ε = e0a, a being the internal characteristic length (for example, the atomic lattice parameter in
crystals, the average granular distance in granular solids, etc.), and e0 is a material constant.

Using these expressions of the elastic moduli, the constitutive relations (2) and (3) become

tkl(x)=
∫
{λδklεrr (x′)+ (µ+ K )εkl(x′)+µεlk(x′)} dv(x′), (5)

mkl(x)=
∫
{αδklγrr (x′)+βγkl(x′)+ γ γlk(x′)} dv(x′). (6)

The equations of motion for a nonlocal isotropic micropolar solid are given by [Eringen 2002]

tkl,k + ρ( fl − ül)= 0, (7)

mkl,k + εlmntmn + ρ(ll − j φ̈l)= 0. (8)

Applying the operator (1− ε2
∇

2) to (5) and (6) and using the property (4) together with∫
f (x)δ(x − a) dx = f (a), (9)

we obtain

(1− ε2
∇

2)tkl = σkl = λ
′δklεrr (x)+ (µ′+ K ′)εkl(x)+µ′εlk(x), (10)

(1− ε2
∇

2)mkl = µkl = α
′δklγrr (x)+β ′γkl(x)+ γ ′γlk(x). (11)

We can see from the expressions of the above equations that σkl and µkl are the force stress and couple
stress tensors of local micropolar elasticity.

Now, using (10) and (11) in the field equations (7) and (8), we obtain

(λ′+µ′)uk,kl + (µ
′
+ K ′)ul,kk + K ′εklmφk,m + (1− ε2

∇
2)ρ( fl − ül)= 0, (12)

(α′+β ′)φk,kl + γ
′φl,kk + K ′εlmnun,m − 2K ′φl + (1− ε2

∇
2)ρ(ll − j φ̈l)= 0. (13)

These are the equations of small motion in a nonlocal micropolar elastic medium. It is clear that in the
absence of nonlocality, that is, when e0 = 0, these equations reduce to the well-known equations of a
uniform micropolar solid. Since ε = e0a, the parameter ε may be called the nonlocal parameter.

3. Wave propagation

Introducing the scalar potentials (q , ξ ) and vector potentials (U , 5) through the Helmholtz decomposition
theorem as

u =∇q +∇ ×U, φ =∇ξ +∇ ×5; ∇ ·U =∇ ·5= 0, (14)
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and plugging them into (12) and (13), we obtain the following equations of motion, in the absence of
body forces and body couples:

(λ′+ 2µ′+ K ′)∇2q − ρ(1− ε2
∇

2)q̈ = 0, (15)

(µ′+ K ′)∇2U + K ′∇ ×5− ρ(1− ε2
∇

2)Ü = 0, (16)

(α′+β ′+ γ ′)∇2ξ − 2K ′ξ − ρ j (1− ε2
∇

2)ξ̈ = 0, (17)

γ ′∇25+ K ′∇ ×U − 2K ′5− ρ j (1− ε2
∇

2)5̈= 0. (18)

It can be seen that (16) and (18) are coupled in vector potentials U and 5 and (15) and (17) are indepen-
dent in scalar potentials q and ξ . It is also noted that in the absence of nonlocality, that is, when ε = 0,
(15)–(18) reduce completely to the wave equations of a linear micropolar solid.

For plane waves propagating in the positive direction of a unit vector n, we have

{q, ξ,U,5} = {a, b, A, B} exp{ιk(n · r − V t)}, (19)

where a and b are scalar constants, A and B are vector constants, and V is the phase speed. The circular
frequency ω is defined by ω = kV , k being the wavenumber. Inserting the expression of q from (19) into
(15), we obtain

V 2
1 = (λ

′
+ 2µ′+ K ′)ρ−1

− ε2ω2. (20)

This is the speed of the longitudinal displacement wave representing the longitudinal acoustic branch.
We see that the speed of the longitudinal displacement wave in the nonlocal micropolar solid is equal
to the speed of the longitudinal wave in the local micropolar solid decreased by an amount ε2ω2. Next,
inserting the expression of ξ from (19) into (17), we obtain

V 2
2 =

(
α′+β ′+γ ′

ρ j
− ε2ω2

)(
1−

2K ′

ρ jω2

)−1

. (21)

This is the speed of the longitudinal microrotational wave representing the longitudinal optic branch.
Similarly, inserting the expressions of U and 5 from (19) into (16) and (18), we obtain

A{(µ′+ K ′)k2
− ρω2

− ρω2ε2k2
}− ιkK ′n× B = 0, (22)

ιkK ′n× A− B{k2γ ′+ 2K ′− ρ jω2
− ρ jω2ε2k2

} = 0. (23)

Elimination of A or B from (22) and (23) yields a quadratic equation in V 2 given by

AV 4
+ BV 2

+C = 0. (24)

The roots of this equation are given by

V 2
3 =

1
2A
(
−B+

√
B2− 4AC

)
, V 2

4 =
1

2A
(
−B−

√
B2− 4AC

)
, (25)

where

A = 1−�, B = ω2ε2
− c2

4−
1
2 c2

3�+ (1−�)(ω
2ε2
− c2

2− c2
3), C = (ω2ε2

− c2
2− c2

3)(ω
2ε2
− c2

4),

�=
2ω2

0

ω2 , ω2
0 =

K ′

ρ j
, c2

2 =
µ′

ρ
, c2

3 =
K ′

ρ
, c2

4 =
γ ′

ρ j
.
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When ε = 0, the expressions of the coefficients A, B, and C exactly match with those obtained in
[Parfitt and Eringen 1969] for micropolar elasticity. These authors showed:

(i) For A > 0, and keeping in mind the restrictions imposed on elastic moduli, the quantity B is always
negative and the quantity C is always positive. Thus, the discriminant is B2

− 4AC > 0 and hence
the value of V 2

3 is finite and positive.

(ii) For A < 0, the quantity B2
− 4AC is finite and positive, since C is already a positive quantity. Also,

√
B2− 4AC > |−B|, which makes the value of V 2

3 negative. This shows that V 2
3 < 0 or > 0 for

A < 0 or > 0, respectively.

(iii) V 2
4 is a finite and positive quantity for A > 0 as well as for A < 0. Thus, a wave propagating with

phase speed V4 exists for all values of ω.

In the present case, that is, when ε 6= 0 and A > 0, the quantity C will have a negative value if ω/ω0

lies between (c4/c3)
(√

j/ε
)

and
√

(1+ c2
2/c

2
3)( j/ε2). Outside this range, we find that the quantity C > 0.

Thus, it is seen that V 2
3 is finite and positive provided C < 0, that is, when

min

{√(
1+

c2
2

c2
3

)
j
ε2 ,

c4
c3

√
j
ε

}
<
ω

ω0
<max

{√(
1+

c2
2

c2
3

)
j
ε2 ,

c4
c3

√
j
ε

}
.

Even for A < 0, one can show that the value of V 2
3 is finite and positive, provided C < 0. Thus, a wave

propagating with phase speed V3 exists only when C < 0. This means that the value of ω/ω0 must lie
between (c4/c3)

(√
j/ε
)

and
√

(1+ c2
2/c

2
3)( j/ε2) for the existence of a wave propagating with speed V3.

The quantity V 2
4 will be finite and positive for A < 0, that is, when ω <

√
2ω0. Beyond this critical

value of ω, a wave propagating with phase speed V4 will degenerate into distance-decaying sinusoidal
vibrations. Thus, we conclude that the nonlocality in an isotropic micropolar medium results in the wave
speed V3 behaving like the wave speed V4 of local micropolar elasticity (see [Parfitt and Eringen 1969]),
but oppositely/adversely.

The quantity V3 is the speed of a set of coupled transverse waves and represents the transverse acoustic
branch, while the quantity V4 is also the speed of another set of coupled transverse waves and represents
the transverse optic branch.

In the absence of nonlocality, all the phase speeds of longitudinal and transverse waves of a linear
isotropic micropolar solid are recovered.

4. Reflection phenomena

Let M = {(x, z);−∞< x <∞,−∞< z ≤ 0} be the region occupied by an isotropic nonlocal micropolar
solid. Let z = 0 be the plane boundary surface of M that is assumed to be free from stresses. We discuss
a two-dimensional problem in the x-z plane, so we take

u = (u1, 0, u3), φ = (0, φ2, 0), ∂

∂y
≡ 0.

From (14), we have

u1 = q,x −U2,z, u3 = q,z +U2,x , φ2 =51,z −53,x ,

where U2 is the y-component of U and 51 and 53 are the x and z-components of 5.
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Let a train of longitudinal displacement waves having amplitude A0 and speed V1 be made incident
at an angle θ0 on the free surface z = 0. We postulate the existence of the following reflected waves to
satisfy the boundary conditions at the free plane surface:

(i) a longitudinal wave of amplitude A1 with speed V1, making an angle θ1 with the normal,

(ii) a set of coupled transverse waves of amplitude A3y propagating with speed V3, making an angle θ3

with the normal, and

(iii) a similar set of coupled transverse waves of amplitude A4y propagating with speed V4, making an
angle θ4 with the normal.

The complete geometry of the problem is shown in Figure 1. Thus, the total wave field is given by

q = A0 exp{ιk1(sin θ0x + cos θ0z)− ιω1t}+ A1 exp{ιk1(sin θ1x − cos θ1z)− ιω1t}, (26)

U =
∑

p=3,4

Apy êy exp{ιkp(sin θpx − cos θpz)− ιωpt}, (27)

5=
∑

p=3,4

(Bpx êx + Bpz êz) exp{ιkp(sin θpx − cos θpz)− ιωpt}, (28)

where ωl = kl Vl (l = 1, 3, 4) have been defined earlier and êx , êy , and êz are the Cartesian unit base
vectors along the x , y, and z directions, respectively.

Comparing the x and z components of (18) and then using (27) and (28), we obtain

Bp =
ιω2

0

kp(c2
4+ 2ω2

0/k
2
p − V 2

p − ε
2ω2

p)
(cos θp êx + sin θp êz)Apy . (29)

This gives us the relation between the coefficients Ap and Bp.

M: [O��P��.��D��E��J��U]

A
Incident wave

z = 0

z

x

0

(A    ,    )4y

T0

T4

(A    ,    )3y T3

( A   ,    )1 T1

O

Figure 1. The geometry of the problem.
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Since the boundary of the half-space M is mechanically stress-free, the appropriate boundary con-
ditions are the vanishing of the force stress and the couple stress. Mathematically, these boundary
conditions can be written as:

σ33 = σ31 = µ32 = 0 at z = 0. (30)

The requisite components of stresses are given by

σ33 = λ
′q,xx + (λ

′
+ 2µ′+ K ′)q,zz + (2µ′+ K ′)U2,xz,

σ31 = (2µ′+ K ′)q,xz +µ
′U2,xx − (µ

′
+ K ′)U2,zz − K ′φ2, µ32 = γ

′φ2,z.
(31)

We shall also assume that at the boundary surface, all frequencies are equal, that is, ω1 = ω3 = ω4 = ω,
say, and Snell’s law holds, which gives k1 sin θ0 = k1 sin θ1 = k3 sin θ3 = k4 sin θ4. The potentials given
in (26)–(28) will satisfy the above boundary conditions (30) at z = 0, if∑

p=0,1

[λ′+ (2µ′+ K ′) cos2 θp]k2
1 Ap − (2µ′+ K ′)

∑
p=3,4

sin θp cos θpk2
p Apy = 0, (32)

(2µ′+ K ′) sin θ0 cos θ0k2
1 A0− (2µ′+ K ′) sin θ1 cos θ1k2

1 A1

−

∑
p=3,4

[
µ′ cos 2θp + K ′ cos2 θp − K ′ω2

0k−2
p

(
c2

4+
2ω2

0

k2
p
− ε2ω2

p − V 2
p

)−1]
k2

p Apy = 0, (33)

∑
p=3,4

γ ′ω2
0 cos θpkp Apy

(
c2

4+
2ω2

0

k2
p
− ε2ω2

p − V 2
p

)−1

= 0. (34)

These equations enable us to provide the amplitude ratios of various reflected waves. Equations (32)–(34)
can be written in matrix form as

[ai j ][Z ] = [M], (35)

where [ai j ] is a 3× 3 matrix, [Z ] = [Z1, Z3, Z4]
t is a column matrix (where superscript t denotes the

transpose), and Z1= A1/A0 and Z p = Apy/A0 (p= 3, 4) are the reflection coefficients. All the entries of
the matrix [ai j ] together with the column matrix [M] are given in the Appendix. Following [Achenbach
1973], the rate of energy transmission per unit area is given by

P∗ = σ33u̇3+ σ31u̇1+µ32φ̇2. (36)

The expressions of the energy ratios Ei (i = 1, 3, 4) corresponding to various reflected waves are

E1 =−Z2
1, E p =

1
P1

[
µ′+ K ′−

ω2
0

k2
p Dp

(
K ′+

γ ′ω2
0

Dp

)]
k3

p cos θp Z2
p, p = 3, 4,

where P1 =−k3
1 cos θ0(λ

′
+ 2µ′+ K ′) and Dp = c2

4+ 2ω2
0/k

2
p − ε

2ω2
p − V 2

p .

5. Numerical results and discussion

For a silicon crystal, the following values of the relevant parameters are taken for an isotropic nonlocal
micropolar solid [Zeng et al. 2006]: λ= 0.1055× 1013 dyne/cm2, µ= 0.2518× 1012 dyne/cm2, K =
0.1×1012 dyne/cm2, e0 = 0.39, j = 9.21×10−12 cm2, ρ = 2.330 gm/cm3, γ = 0.1423×1013 dyne, and
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a = 0.5× 10−7 cm, while for a local micropolar solid, λ= 0.7431× 1012 dyne/cm2, µ= 0.1373× 1012

dyne/cm2, K = 0.1× 1012 dyne/cm2, j = 9.21× 10−12 cm2, ρ = 2.330 gm/cm3, γ = 0.1275× 1013

dyne, a = 0.5× 10−7 cm, and e0 = 0.
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In Figure 2, we have shown the variation of the square of phase speeds (nondimensional) V 2
i /c

2
1

(i = 1, 3, 4) in the nonlocal micropolar solid, with the frequency ratio (ω/ω0). It is seen that the values
of V 2

1 /c
2
1 and V 2

4 /c
2
1 remain almost constant in the considered range 0 ≤ ω/ω0 ≤ 8. We have plotted

the curve of V 2
3 /c

2
1 after magnifying it by a factor of 10−12 as its value was large enough in comparison
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with the values of other quantities. It can be seen through this figure that ωc =
√

2ω0 is the critical
frequency for a wave propagating with phase speed V3, that is, before ωc =

√
2ω0 the quantity V 2

3 /c
2
1

has negative values while later on it remains positive. Moreover, it has also been observed that the effect
of the nonlocality parameter on phase speed depends heavily on the value of characteristic length a. At
higher values of a, the phase speeds of waves are found to be more dispersive.

Figures 3–5 depict the comparison between the nonlocal and local micropolar solids for modulus
values of reflection coefficients Z1, Z3, and Z4 with angle of incidence of the longitudinal displacement
wave propagating with phase speed V1. The solid curve is for the nonlocal micropolar solid, that is, when
e0 = 0.39, while the dotted curve is for the local micropolar solid.

In Figure 3, the modulus value of the reflection coefficient Z1 has a maximum value equal to unity
at normal incidence in both the cases. Then, its value decreases till θ0 = 58◦. Thereafter it increases
with the increase of θ0 to attain its maximum value at grazing incidence. The pattern is similar for the
nonlocal micropolar solid and the local micropolar solid.

In Figure 4, we have plotted the variation of modulus values of the reflection coefficient Z3× 1014

as the value of Z3 is negligibly small. The value of the reflection coefficient Z3 is maximal at normal
incidence. This value decreases with an increase of θ0 throughout the range and approaches zero as θ0

approaches 90◦. Figure 5 depicts the variation of the absolute values of the reflection coefficient Z4. It
is seen that the value increases with increase in θ0 in the range 0◦ ≤ θ0 ≤ 52◦, and thereafter it decreases
and vanishes at θ0 = 90◦.

In Figures 3–5, we have seen that at each angle of incidence the modulus value of the reflection
coefficients Z1 and Z3 for the local micropolar solid is bigger than the corresponding values for the
nonlocal micropolar solid. However, the value of Z4 for the nonlocal micropolar solid is bigger at each
angle of incidence than the value for the local micropolar solid.
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Figures 6–8 depict the variation of the modulus values of the energy ratios with the angle of incidence.
At the free boundary surface, the sum of the energy ratios is equal to unity during reflection at each angle
of incidence of a longitudinal displacement wave propagating with speed V1. The formulae for reflection
coefficients and their corresponding energy ratios are obtained analytically and numerically. This shows
that there is no dissipation of energy at the free boundary surface.
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6. Conclusions

This paper deals with the possibility of plane-wave propagation in an isotropic nonlocal micropolar solid.
The reflection phenomena of a plane wave striking obliquely at the free boundary surface is also discussed.
The following is concluded.

(i) Four waves may travel with distinct speeds in a nonlocal micropolar solid: a longitudinal displace-
ment wave, a longitudinal microrotational wave, and two sets of coupled transverse waves. All the
waves are dispersive in nature.

(ii) The effect of the nonlocality parameter on the reflection coefficients (as well as on the energy ratios)
is found to be maximal at some intermediate angle of incidence of a longitudinal displacement wave.
However, there is no significant difference seen at the grazing incidence and the normal incidence
on the reflection coefficients and energy ratios.

(iii) The balance of energy law has been verified at each angle of incidence of a longitudinal displacement
wave at the free boundary surface.

Appendix

Entries of the matrices [ai j ] and [M]:

a11 =−1, a12 =
(2µ′+ K ′) sin θ0

[λ′+ (2µ′+ K ′) cos2 θ0]v31

√
1− v2

31 sin2 θ0,

a13 =
(2µ′+ K ′) sin θ0

[λ′+ (2µ′+ K ′) cos2 θ0]v41

√
1− v2

41 sin2 θ0, a21 = sin θ0 cos θ0,

a22 =
1

(2µ′+ K ′)v2
31

[
µ′(1− 2v2

31 sin2 θ0)+ K ′(1− v2
31 sin2 θ0)−

K ′ω2
0

k2
3 D3

]
,

a23 =
1

(2µ′+ K ′)v2
41

[
µ′(1− 2v2

41 sin2 θ0)+ K ′(1− v2
41 sin2 θ0)−

K ′ω2
0

k2
4 D4

]
,

a31 = 0, a32 =
�

√
1− v2

31 sin2 θ0

2v3
31

(
1+

ε2ω2
3

V 2
3
−

2ω2
0

ω2
3
−

c2
4

V 2
3

), a33 =
�

√
1− v2

41 sin2 θ0

2v3
41

(
1+

ε2ω2
4

V 2
4
−

2ω2
0

ω2
4
−

c2
4

V 2
4

),
M1 = 1, M2 = sin θ0 cos θ0, M3 = 0,

where v31 =
V3

V1
and v41 =

V4

V1
.
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