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TRANSIENT 3D SINGULAR SOLUTIONS FOR USE
IN PROBLEMS OF PRESTRESSED HIGHLY ELASTIC SOLIDS

LOUIS MILTON BROCK

The dynamic perturbation of a neo-Hookean solid in an initial equilibrium state of finite deformation
can be viewed as the superposition of infinitesimal strains upon large ones. Three transient 3D singular
problems whose solutions are useful in generating the former are studied. The first and second concern,
respectively, a concentrated force and a point displacement discontinuity in an unbounded solid; the
third problem involves a concentrated force applied at a point on the surface of a half-space. The
governing equations resemble those for a linear anisotropic solid. Analytic solutions are obtained, as
well as formulas and calculations for anisotropic wave speeds. Formulation of the problems is in terms
of Cartesian coordinates, but expressions for the solutions and wave speeds make use of a quasipolar
coordinate system.

1. Introduction

Loading of a prestressed highly elastic solid may produce incremental deformations that are infinitesimal
in nature. Equations for infinitesimal deformation superimposed upon large can be developed [Green
and Zerna 1968; Beatty and Usmani 1975] to describe this perturbation response. These equations
are generally similar in form to those for anisotropic, linear elastic solids [Ting 1996], with elastic
constants that depend on constitutive equations for the highly elastic solid and the prestress. As in
isotropic elasticity, whether classical [Love 1944] or transient [Achenbach 1973], quasistatic [Willis
1965; Ting 1996] and transient [Wang and Achenbach 1992] singular solutions can serve as the basis
for treating general dynamic loading. Moreover, the singular solutions themselves give insight into
anisotropic behavior.

To illustrate the construction of such solutions this article considers a simple, neo-Hookean isotropic
solid. The principal stress and principal material axes coincide, and the former is uniform. The anisotropic
3D equations of small deformation in an unbounded solid are solved for the cases of a concentrated force
and a displacement discontinuity at a point. The 3D equations for the half-space subject to a concentrated
surface force are then considered. Analytic solutions and formulas for body-wave and Rayleigh-wave
speeds are provided. Sample calculations for the latter are also presented. The solution process involves
integral transforms in Cartesian coordinates, coupled with inversions based on quasipolar and quasispher-
ical coordinates [Brock 2012; 2013] and a standard method of de Hoop [1960]. The solution expressions
are, therefore, in a hybrid but uncomplicated form.

Keywords: neo-Hookean, dynamic perturbation, 3D singular solution, transient.
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2. Field equations

An elastic body < is homogeneous and isotropic relative to an undisturbed reference configuration ℵ0.
Smooth motion x = x(X) takes < to deformed equilibrium configuration ℵ. Cauchy stress T in ℵ is
[Green and Zerna 1968; Beatty and Usmani 1975]

T = α01+α1 B+α2 B2, B = F FT , F = ∂x
∂X . (1)

Here 1 is the identity tensor, (α0, α1, α2) are scalar functions of the principal invariant (I, II, J ) of B,
and body forces are neglected. Inequalities based on the experiment [Truesdell and Noll 1965] support
restrictions

α0− IIα2 ≤ 0, α1+ Iα2 > 0, α2 ≤ 0. (2)

An adjacent nonequilibrium deformed configuration ℵ∗ arises upon superposition of an infinitesimal
displacement u that depends on X and time. This requires perturbation Cauchy stress T ′ = T∗ − T ,
where T∗ is the Cauchy stress in ℵ∗. To the first order in ∇u its components in the principal reference
system, that is, B = diag{λ2

1, λ
2
2, λ

2
3} where (λ1, λ2, λ3) is the principal stretch, areT ′11

T ′22

T ′33

=
λ′11+ 2µ′11 λ′12 λ′13

λ′21 λ′22+ 2µ′22 λ′23
λ′31 λ′32 λ′33+ 2µ′33


∂1u1

∂2u2

∂3u3

 , (3a)

T ′ik = µ
′

ik∂i uk +µ
′

ki∂kui (i 6= k). (3b)

Here (i, k) take on values (1, 2, 3) and (T ′ik, ui , xi ) are scalar components of (T ′, u, x). Operator ∂i

is the component of the gradient ∇ associated with coordinate xi , and (λ′ik, µ
′

ik) are generalized Lamé
constants defined by

(λ′ik, µ
′

ik)= (λik, µik)λ
2
k, (4a)

1
2
λik =

∂α0

∂λ2
k
+ λ2

i
∂α1

∂λ2
k
+ λ4

i
∂α2

∂λ2
k
, (4b)

µik = µki = α1+α2(λ
2
i + λ

2
k). (4c)

Because configuration ℵ0 is homogeneous, the perturbation balance of linear momentum in a Cartesian
basis reduces to

∇ · T ′ = ρ ü+ Q. (5)

Here ρ is mass density, Q is a body force associated with u, and a superposed dot signifies time differ-
entiation. Perturbation traction on a surface in ℵ∗ with outwardly directed normal n is given by vector

t ′(n) = T ′n+ T n[n.(∇u)n] − T (∇u)T n. (6)

In a principal basis, a Hadamard material can, in view of (1), be characterized by

α0 = 2J
dG(J )

d J
, α1 =

1
√

J
(a0− b0 I ), α2 =

b0
√

J
, (7a)

I = λ2
1+ λ

2
2+ λ

2
3, II = λ2

1λ
2
2+ λ

2
2λ

2
3+ λ

2
3λ

2
1, J = λ2

1λ
2
2λ

2
3. (7b)
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Here G(1) = 0 and (a0, b0) are material constants, where a0 − b0 = µ and µ is the shear modulus
for infinitesimal deformation. A simple model for the subclass of compressible isotropic neo-Hookean
materials arises when [Brock 2001; Brock and Georgiadis 2001]

b0 = 0, G(J )= µ
(

1
√

J
− 1

)
. (8)

Such a material for infinitesimal deformations exhibits a Poisson’s ratio of 0.25. Use of (7) and (8) in
(3) and (4) gives the constitutive forms

1
µ

T ′11 = B1∂1u1+

( 2
J
− b1

)
(∂2u2+ ∂3u3), (9a)

1
µ

T ′22 = B2∂2u2+

( 2
J
− b2

)
(∂3u3+ ∂1u1), (9b)

1
µ

T ′33 = B3∂3u3+

( 2
J
− b3

)
(∂1u1+ ∂2u2), (9c)

T ′ik = T ′ki = µ[(b∂)i uk + (b∂)kui ] (i 6= k). (9d)

In (9) dimensionless parameters

bk =
λ2

k
√

J
, Bk =

2
J
+ bk . (10)

In (9d) and (10), (i, k) take on values (1, 2, 3). Equations (6) and (9) for a surface in ℵ∗ with an outwardly
directed normal in the negative x3-direction give t ′(−3)

3 =−T ′33 and, for k = (1, 2),

t ′(−3)
k =−µ

( 1
J
∂ku3+ b3∂3uk

)
. (11)

In view of (1) and (7b) the principal stretches λk are obtained as functions of the homogeneous principal
Cauchy stress Tk from the coupled nonlinear equations

Tk

µ
+

1
J
− bk = 0

(
Tk

µ
<

1
J

)
. (12)

The parenthetical restriction on tensile Cauchy stress guarantees that coefficients in (9) are nonnegative.
Tensile stress of the same order of magnitude as µ is not precluded, for example, (Tk)max<µ/

√
2 in plane

strain [Brock 2001; Brock and Georgiadis 2001]. For convenience the temporal variable τ = v0× time is
introduced, where v0 =

√
µ/ρ is the rotational wave speed for isotropic infinitesimal deformation. Thus

(u, T ′) are functions of (x, τ ), and (5) and (9) combine to give

2
J
∇(∇ · u)+ (∇2

S − ∂
2)u = Q

µ
(τ > 0), (13a)

(u, T ′, Q)≡ 0 (τ ≤ 0). (13b)

Here ∂ signifies differentiation with respect to τ . We now introduce operators

∇
2
S = bk∂

2
k , ∇

2
D = Bk∂

2
k =∇

2
S +

2
J
∇

2. (14)
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The summation convention applies and ∇2 is the Laplacian. For the homogeneous case (13a) lends itself
to a decomposition of Helmholtz type [Achenbach 1973]:

u = uD + uS, (15a)

(∇2
S − ∂

2)uS = 0, ∇ · uS = 0, (15b)

(∇2
D − ∂

2)uD = 0, uD =∇uD. (15c)

3. Concentrated force

Convolution of the concentrated force solution can be used to study the effect of dynamically induced
body forces on equilibrium configuration ℵ. In this case < is unbounded, and nonequilibrium configura-
tion ℵ∗ arises due to imposition for τ > 0 of a concentrated force at x = 0, that is,

Q = P(τ )δ(x1)δ(x2)δ(x3). (16)

Here δ is the Dirac function and P ≡ 0 (τ < 0). After [Stakgold 1967] we treat < as half-spaces x3 > 0
and x3 < 0. The homogeneous form of (13a) is the field equation in each half-space, and (16) and the
welding of the half-spaces are manifested as conditions for τ > 0 on interface x3 = 0:

[u]+
−
= 0, (17a)

b3[∂3uk]
+

−
+

2
J
[∂ku3]

+

−
=

1
µ

Pk(τ )δ(x1)δ(x2), k = (1, 2), (17b)

2
J
[∂1u1]

+

−
+

2
J
[∂2u2]

+

−
+ B3[∂3u3]

+

−
=

1
µ

P3(τ )δ(x1)δ(x2). (17c)

Here [ f ]+− signifies a jump in quantity f as the interface is crossed from half-space x3 < 0 to half-space
x3 > 0. Solutions to (13)–(15) and (17) must be bounded above as |x| →∞ for finite τ > 0.

To obtain these solutions, unilateral and multiple bilateral Laplace transforms are introduced [van der
Pol and Bremmer 1950; Sneddon 1972]:

f̂ =
∫

f (τ ) exp(−pτ) dτ, (18a)

f ∗ =
∫∫

f̂ (x1, x2) exp p(−q1x1− q2x2) dx1 dx2. (18b)

For Re(p) > 0 and Re(q1, q2)= 0 integration can be taken over the positive τ -axis for (18a), and over
the entire x1- and x2-axes for (18b). Application of (18) to the homogeneous form of (13a) in view of
(13b) and (15) gives for x3 > 0(+) and x3 < 0(−)

u∗S = (U
±

1 ,U
±

2 ,U
±

3 ) exp(−pωS|x3|), (19a)

q1U±1 + q2U±2 ∓ωSU±3 = 0, (19b)

u∗D = p(q1, q2,∓ωD)U±D exp(−pωD|x3|). (19c)
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In (19) (ωS, ωD) are radicals:

ωS =
1
√

b3

√
1− b1q2

1 − b2q2
2 , Re(ωS)≥ 0, (20a)

ωD =
1
√

B3

√
1− B1q2

1 − B2q2
2 , Re(ωD)≥ 0. (20b)

Application of (18) to (17) and substitution of (19) gives the results

p2U±D =
1

2µ1

[
±P̂3−

1
ωS
(q1 P̂1+ q2 P̂2)

]
, (21a)

pU±k =
−P̂k

2µb3ωS
− p2qkU±D , k = (1, 2). (21b)

Here k = (1, 2) and

1= 1+ (b1− b3)q2
1 + (b2− b3)q2

2 . (22)

4. Transform inversion

The inversion operation for (18b) is [van der Pol and Bremmer 1950; Sneddon 1972]

f̂ (x1, x2)=
( p

2π i

)2
∫∫

f ∗ exp p(q1x1+ q2x2) dq1 dq2. (23)

If there are no branch points or poles there, integration can be taken along the entire Im(q1) and Im(q2)-axes.
In view of (19) and (21), f ∗ for any contribution to (ûS, ûD) exhibits one of the following forms:

f ∗ = 1
1

(
qk,

q2
k

ω
,ω

)
exp(−pω|x3|), (24a)

f ∗ = 1
ω

exp(−pω|x3|). (24b)

Here k = (1, 2) and ω= (ωS, ωD). Thus for x3 > 0(+) and x3 < 0(−) the right-hand side of (23) reduces
to the operations

(∓∂3∂k, ∂
2
k , ∂

2
3 )
( 1

2π i

)2
∫∫

exp
(

p(q1x1+ q2x2−ω|x3|
)dq1 dq2

1ω
, (25a)

( 1
2π i

)2
∫∫

exp
(

p(q1x1+ q2x2−ω|x3|)
)dq1 dq2

ω
. (25b)

For the integration procedure, results in [Brock 2012; 2013] suggest transformations

q1 = q cosψ, q2 = q sinψ, (26a)[
x1

x2

]
=

[
cosψ −sinψ
sinψ cosψ

] [
x
y

]
. (26b)

Here |ψ |<π/2 and |x, y, Im(q)|<∞, and (q, ψ) and (y= 0, x, ψ) form quasipolar coordinate systems.
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Thus the integration procedures in (25a) and (25b) respectively become

1
iπ

∫
9

dψ 1
2π i

∫
|q|
1ω

exp p(qx −ω|x3|) dq, (27a)

1
iπ

∫
9

|q|
ω

exp(qx −ω|x3|) dq. (27b)

Here 9 signifies integration over the range |ψ |< π/2, and integration with respect to q is over the entire
Im(q)-axis. In (27)

1= 1+ (b3− b)q2, (28a)

ωS =
1
√

b3

√
1− bq2, b = b1 cos2 ψ + b2 sin2 ψ, (28b)

ωD =
1
√

B3

√
1− Bq2, B = 2

J
+ b. (28c)

Equation (28) shows that conditions Re(ωS)≥ 0 and Re(ωD)≥ 0 hold in the q-plane with cuts Im(q)= 0,
|Re(q)|> 1/

√
b and Im(q)= 0, |Re(q)|> 1/

√
B, respectively. When b3 > b, 1 in (27a) exhibits roots

q =±1/
√

b− b3. Because
√

B >
√

b >
√

b− b3 these lie on the branch cuts of (ωS, ωD). For b > b3

roots q =±i/
√

b3− b lie on the Im(q)-axis, so that deformations in the integration contour in (27a) are
required. Instead the de Hoop method [de Hoop 1960] is employed to change the integration contour to
a path in the q-plane parametrized by the positive real variable t . Thus (27a) gives

1
iπ

∫
9

dψ 1
iπ

Re
∫

exp(−pt)
q+q ′

+
dt

1(q+)ω(q+)
. (29)

For the case ωS , t-integration is over the range (S,∞) and

√
bS2q+ =−

t x
√

b
+ i
|x3|
√

b3

√
t2− S2, q ′

+
= i

√
b3

b
ωS(q+)
√

t2− S2
. (30a)

For the case ωD , t-integration is over the range (D,∞) and

√
B D2q+ =−

t x
√

B
+ i
|x3|
√

B3

√
t2− D2, q ′

+
= i

√
B3

B
ωD(q+)
√

t2− D2
. (30b)

Parameters (S, D) are given by

S =

√
x2

b
+

x2
3

b3
, D =

√
x2

B
+

x2
3

B3
. (31)

Taking the real part of the integrand in (29) gives for (ωS, ωD), respectively,

−
|x3|

π2

∫
9

dψ
S2

∫
∞

S

NS

M
exp(−pt) dt, −

|x3|

π2

∫
9

dψ
D2

∫
∞

D

ND

M
exp(−pt) dt. (32a)

The analogous result for (27b) is

−
|x3|

π2 p

∫
9

dψ
bS2 exp(−pS), −

|x3|

π2 p

∫
9

dψ
B D2 exp(−pD). (32b)
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In (32a) (M, NS, ND) are given by

M = [(b− b3)t2
− r2
]
2
+ 2t2(b− b3)x2

3 , (33a)

NS = (b3− b)
[

2x2

b
+ (b− b3)

(
x2

b
−

x2
3

b3

)]
t2
− r2S2, (33b)

ND = (b3− b)
[

2x2

B
+ (b− b3)

(
x2

B
−

x2
3

B3

)]
t2
− r2 D2. (33c)

In (30)–(33) r =
√

x2
+ x2

3 , where x = x1 cosψ + x2 sinψ . Equations (21), (25), and (32) show that
explicit dependence of (ûS, ûD) on transform parameter p is confined to products P̂k exp(−pt). Inversion
of (ûS, ûD) can then be, in view of (18a) and (24), performed by inspection. For the case of common
temporal load behavior P(τ )= Pδ(τ ) (15a) gives

u =
1

2π2 (P · ∇)∇|x3|

∫
9

dψ
[∫ τ

D

ND

M D2 dt −
∫ τ

S

NS

M S2 dt
]
+

1
2π2 P∇2

|x3|

∫
9

dψ
bS2 (τ − S). (34)

Wave speeds (vS, vD) associated with the integration terms in (34) can be obtained by introducing the
quasispherical coordinate system

x1 = X cos θ sinφ, x2 = X sin θ sinφ, x3 = X cosφ. (35)

Here |X |<∞, |θ |< π/2, 0< φ < π/2, and in view of (31),

vS = cSv0, vD = cDv0, (36a)

cS =

√
b3b√

b3 sin2 φ+ b cos2 φ

, b = b1 cos2 θ + b2 sin2 θ, (36b)

cD =

√
B3 B√

B3 sin2 φ+ B cos2 φ

, B = 2
J
+ b. (36c)

5. Displacement discontinuity

In this instance configuration ℵ∗ arises in unbounded < due to the existence for τ > 0 of a finite dis-
continuity in displacement at x = 0. Convolution of the solution for this problem can be used to study
dynamic perturbation of ℵ by formation of a crack on the plane x3 = 0. We again treat two half-spaces
x3 > 0(+) and x3 < 0(−). Equations (13)–(15) are valid for x3 6= 0, with Q ≡ 0, but Equation (17) for
x3 = 0, τ > 0 is replaced with

[u]+
−
= UC(τ )δ(x1)δ(x2), t ′(3)+ t ′(−3)

= 0. (37)

Here UC vanishes for τ ≤ 0, but for τ > 0 it is continuous and bounded above. The transform operation
(18) produces (19), (20), and (22), with (U±D ,U

±

k ) now given by
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pU±D =−
β3

2
Û C

3 −
1

21

[( 1
J
+ b3

)
ωD
b3

Û C
3 ∓ 2(q1Û C

1 + q2Û C
2 )
]
, (38a)

U±k =±
1
2

Û C
k +

qk

21

[( 1
J
+ b3

)
ωS
b3

Û C
3 ∓ 2(q1Û C

1 + q2Û C
2 )
]
, (38b)

β3 =
1

(Jb3)2

( 2
2+ Jb3

− b3

)
. (38c)

In (38) k = (1, 2), and comparison of (21) and (38) indicates that (25) is replaced by

(∓∂3∂
2
k , ∂k∂

2
3 )
( 1

2π i

)2
∫∫

exp p(q1x1+ q2x2−ω|x3|)
dq1 dq2

p1ω
, (39a)

(∓∂3, ∂k)
( 1

2π i

)2
∫∫

exp p(q1x1+ q2x2−ω|x3|)p
dq1 dq2

ω
. (39b)

The transform inversion process involving (19), (20), (22), and (39) is similar to that for the concentrated
force problem. For the case UC(τ )= UC the results are

u = uD
+ uS
+

U C
k

2π2∇∂3∂k |x3|

∫
9

dψ
[∫ τ

D

ND

M D2 (τ − t) dt −
∫ τ

S

NS

M S2 (τ − t) dt
]

+
U C

3

2π2

(
1+ 1

Jb3

)
∇∂2

3 |x3|

∫
9

dψ
[∫ τ

D

ND

M D2 (τ − t) dt −
∫ τ

S

NS

M S2 (τ − t) dt
]
, (40a)

uD
=

U C
3

2π2∇|x3|

∫
9

β3

B D2 dψH(τ − D), (40b)

uS
k =

U C
k

2π2 ∂3|x3|

∫
9

dψ
bS2 H(τ − S), (40c)

uS
3 =

1
2π2

[
U C

k ∂k +U C
3

(
1+ 1

Jb3

)
∂3

]
|x3|

∫
9

dψ
bS2 H(τ − S). (40d)

Here uD
6= uD and uS

6= uS , k = (1, 2), the summation convention holds, and H is the unit step function.

6. Behavior on a principal plane: concentrated surface force

Convolution of the solution for this problem can serve as the basis for study of dynamic perturbation by
dynamic contact. Thus < is the half-space x3 > 0 with traction-free surface x3 = 0. Configuration ℵ∗

arises due to imposing for τ > 0 the surface load

t ′(−3)
k =−P3k(τ )δ(x1)δ(x2). (41)

Here k = (1, 2, 3) and P3k ≡ 0 (τ < 0) and is bounded above for τ > 0. Because < in ℵ has no surface
traction, T3 ≡ 0 and (9c) and (11) give

b3 =
1
J
, B3 =

3
J
,

1
b1b2
=
√

J

√
b1

b2
−

T1

µ
=
√

J

√
b2

b1
−

T2

µ
. (42)

Equations (13)–(15), with Q ≡ 0, govern for (x3, τ ) > 0. Application of (18) in view of boundary
condition (41) leads to expressions for (U+D ,U

+

k ). Of interest here is displacement u0 on the half-space
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surface x3 = 0, and use of these expressions and variables defined by (26) in (23) give the transform

û0
=

1
iπ

∫
9

J dψ 1
2π i

∫
|q| dq
µpR

N · t̂ ′(−3) exp(pqx), (43a)[
N11 N12

N21 N22

]
=

1
ωS

[
N1 N12

N12 N2

]
,

[
N31

N32

]
=−

[
N13

N23

]
= q N

[
cosψ
sinψ

]
, N33 =−ωD1. (43b)

Again x = x1 cosψ + x2 sinψ , but the definition of terms in (43) is influenced by (42):

ωS =
√

q2
− T , ωD =

1
√

3

√
−q2
− T , T = (1+ Jb)q2

− J, (44a)

N = 2ωSωD − T, R = 4q2ωSωD + T 2, (44b)

(N1, N2)= Mq2(cos2 ψ, sin2 ψ)− R, N12 = Mq2 sinψ cosψ, (44c)

M = q2
+ωS(2ωD − 3ωS), 1= J + q2(1− Jb). (44d)

Integration in (43a) is along the entire Im(q)-axis but, as a special case of (30), the contour can be
changed to a path around branch cuts on the Re(q)-axis. In view of (44a) the branch points are defined
by q = ±(1/

√
b, 1/
√

B). In addition, the Rayleigh function R exhibits real roots q = ±qR , where
qR > 1/

√
b and is defined by

qR =

√
J

√

Jb+ 1− 2/
√

3
. (45)

These values of q define the body wave speeds (vS, vD)— see (36) — and the Rayleigh speed vR in the
principal plane x3 = 0:

vS = cSv0, vD = cDv0, vR = cRv0, (46a)

cS =
√

b, cD =
√

B, cR =

√
b+ 1

J

(
1− 2
√

3

)
, (46b)

b = b1 cos2 θ + b2 sin2 θ, B = 2
J
+ b. (46c)

In (46c) quasipolar coordinate |θ | < π/2 is measured with respect to the x1-direction in the principal
plane. Changing the integration path by means of the Cauchy theorem gives expressions that can be
inverted by inspection. For the step function P3k(τ )= P3k H(τ ),

u0
1 = J

∫
9

U0 cosψ dψ +
J P31

µπ2

∫
9

q dψ
�Sx

H
(
τ −
|x |
cS

)
, (47a)

u0
2 = J

∫
9

U0 sinψ dψ +
J P32

µπ2

∫
9

q dψ
�Sx

H
(
τ −
|x |
cS

)
, (47b)

u0
3 = J

∫
9

U3 dψ. (47c)
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Equation (47) involves the definitions P12 = P31 cosψ + P32 sinψ and

U0 =
P33

µπ2x
6q2T�DωS

(3T 2− 4q4)(T + 2q2)
H
(
τ −
|x |
cD

)
H
(
|x |
cS
− τ

)
−

J P33

µπcR

(
√

3− 1) sgn(x)

8− 3
√

3(1+ Jb)
δ

(
τ −
|x |
cR

)
−

P12

µπ2x
3q3

(3T 2− 4q4)(T + 2q2)
× 4�D�S H

(
τ −
|x |
cD

)
+

16q2�D�
2
S − 3T 3

�S(T − 2q2)
H
(
τ −
|x |
cS

)
, (48a)

U3 =−
P12

µπ2x
6q2T�DωS

(3T 2− 4q4)(T + 2q2)
H
(
τ −
|x |
cD

)
H
(
|x |
cS
− τ

)
+

J P12

µπcR

(
√

3− 1) sgn(x)

8− 3
√

3(1+ Jb)
δ

(
τ −
|x |
cR

)
+

P33

µπ2x
3qT�D

(3T 2− 4q4)(T 2− 4q4)
× T 2 H

(
τ −
|x |
cD

)
+ 4q2�S�D H

(
τ −
|x |
cS

)
, (48b)

�S =

√
T − q2, �D =

1
√

3

√
T + q2, q = τ

x
. (48c)

7. Dimensionless speed values

The < considered here is an idealized isotropic neo-Hookean solid with an effective Poisson’s ratio
of 0.25 for infinitesimal strain. It is chosen for purposes of illustration and, therefore, sample values of
dimensionless speeds (cS, cD) in (36) are given for the spherical octant 0≤ (θ, φ)≤ 90◦(π/2) in Tables 1
and 2. Configuration ℵ results from the plane strain defined by λ3 = 1 and T1+ T2 = 0, so that (9c) and
(11) give

b1 =

√
χ
√

J
, b2 =

1√
χ
√

J
, b3 =

1
√

J
, Bk =

2
J
+ bk, (49a)

J =
2χ

1+χ2 , χ =
T1

µ
+

√
1+

(
T1

µ

)2

,
T3

µ
=

1
√

J
−

1
J
. (49b)

φ = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

θ = 0◦ 1.04811 1.04847 1.04945 1.05080 1.05215 1.05314 1.05351
15◦ 1.04811 1.04813 1.04817 1.04824 1.04830 1.04835 1.04837
30◦ 1.04811 1.04070 1.04459 1.04110 1.03765 1.03515 1.03423
45◦ 1.04811 1.04578 1.03942 1.03095 1.02268 1.01675 1.01460
60◦ 1.04811 1.04425 1.03392 1.02030 1.00720 0.99779 0.99459
75◦ 1.04811 1.04307 1.29664 1.01216 0.99552 0.98385 0.97917
90◦ 1.04811 1.04262 1.02805 1.00911 0.99117 0.97863 0.97416

Table 1. Dimensionless speed cS in spherical octant 0≤ (θ, φ)≤ 90◦ for T1/µ= 0.2.



TRANSIENT 3D SINGULAR SOLUTIONS FOR PRESTRESSED HIGHLY ELASTIC SOLIDS 47

φ = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

θ = 0◦ 1.77148 1.77169 1.77228 1.77308 1.77388 1.77446 1.77467
15◦ 1.77148 1.77149 1.77152 1.77156 1.77160 1.77162 1.77163
30◦ 1.77148 1.77093 1.76943 1.76738 1.76534 1.76385 1.76331
45◦ 1.77148 1.77014 1.76651 1.76159 1.75671 1.75316 1.75186
60◦ 1.77148 1.76934 1.76354 1.75571 1.74798 1.74238 1.74035
75◦ 1.77148 1.76874 1.76132 1.75134 1.74152 1.73444 1.73187
90◦ 1.77148 1.76852 1.76050 1.74973 1.73915 1.73152 1.72876

Table 2. Dimensionless speed cD in spherical octant 0≤ (θ, φ)≤ 90◦ for T1/µ= 0.2.

T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 0.94068 0.97015 1.03015 1.01227
15◦ 0.92778 0.97360 1.02689 1.05418
30◦ 0.96691 0.98296 1.01794 1.03667
45◦ 0.99243 0.99560 1.00558 1.01226
60◦ 1.01731 1.00808 0.99307 0.98725
75◦ 1.03515 1.01712 0.98380 0.96855
90◦ 1.04160 1.02041 0.98039 0.96159

Table 3. Dimensionless speed cS in circular quadrant 0≤ θ ≤ 90◦ for various T1.

T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 1.74779 1.73887 1.72729 1.72453
15◦ 1.75162 1.74079 1.72535 1.72064
30◦ 1.76204 1.74604 1.72004 1.70997
45◦ 1.77618 1.75319 1.71275 1.69528
60◦ 1.79020 1.76031 1.70544 1.68047
75◦ 1.80039 1.76550 1.70006 1.66955
90◦ 1.80411 1.76740 1.69809 1.66552

Table 4. Dimensionless speed cD in circular quadrant 0≤ θ ≤ 90◦ for various T1.

Because (49b) gives J < 1, any finite |T1| satisfies the parenthetical restriction in (11). In similar fashion
dimensionless speeds (cS, cD, cR) associated with principal plane x3 = 0 in (45) are given for the circular
quadrant 0 ≤ θ ≤ 90◦(π/2) in Tables 3, 4, and 5. Here ℵ is induced by uniaxial loading (T2, T3) = 0.
Equations (9), (11), and (42) give

b1 = J 3/2, (b2, b3)=
1
J
, J 5/2

−
T1

µ
J − 1= 0

(
T1

µ
<

1
20.4

)
. (50)

In this case the restriction in (11) imposes a tension limit on T1. Equations (9)–(11) show that a nonhydro-
static principal stress in < gives configuration ℵ, whose infinitesimal perturbation response is anisotropic.
Even for the simple nonhydrostatic cases chosen, the data in Tables 1–5 clearly illustrate this behavior.
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T1/µ= −0.2 −0.1 0.1 0.2

θ = 0◦ 0.84679 0.88324 0.95526 0.99078
15◦ 0.85467 0.88703 0.95174 0.98400
30◦ 0.87582 0.89729 0.94207 0.96521
45◦ 0.90392 0.91112 0.92871 0.93895
60◦ 0.93118 0.92474 0.91514 0.91193
75◦ 0.95063 0.93458 0.90508 0.89165
90◦ 0.95765 0.93816 0.90138 0.88409

Table 5. Dimensionless speed cR in circular quadrant 0≤ θ ≤ 90◦ for various T1.

8. Comments

Equations (34), (40), and (47) express exact transient solutions as integrals with respect to quasipolar
angle measure |ψ | < π/2. Equations (34) and (47) also exhibit integration with respect to a temporal
variable t . This integration can, in fact, be performed with use of standard tables [Pierce and Foster 1956;
Gradshteyn and Ryzhik 1980], but the results are cumbersome; for example, in (34), for b > b3:

|x3|

∫ τ

S

NS

M
dt =

1

2
√

r2+ x2
Im

r2S2
+ AST

√
(b− b3)T

× ln

√
T − τ

√
b− b3

√
T − S

√
b− b3

√
T + S

√
b− b3

√
T + τ

√
b− b3

, (51a)

AS = 2 x2

b
+ (b− b3)

(
x2

b
−

x2
3

b3

)
, T = x2

+ i |x3|
√

r2+ x2. (51b)

Here
√

b− b3 → i
√

b3− b when b3 > b. Use of a quasipolar measure, therefore, renders (34), (40),
and (47) as a “hybrid” of quasipolar and principal Cartesian coordinates, as well as general operators
(∇,∇2, f · q). Moreover, dimensionless speeds (cS, cD) associated with (34) and (40) involve quasi-
spherical measure (θ, φ), and (cS, cD, cR) involve quasipolar measure θ . Nevertheless, the form of (34),
(40), and (47) is not complicated and is similar to corresponding results for the linear isotropic case,
compare (34) and [Achenbach 1973, Equation (3.92)].

This type of similarity is well known for linear quasistatic anisotropic results [Ting 1996]. Indeed, in
light of results such as [Ting 1996; Jones 1999] it is often useful to categorize superimposed infinitesimal
deformation equations in accordance with classes of anisotropic materials, for example, [Green and Zerna
1968; Beatty and Usmani 1975]. Due to the idealized neo-Hookean < treated, this article took an ad
hoc solution approach. However, the approach itself may be useful in generation of singular transient
solutions in linear anisotropic solids [Willis 1965; Wang and Achenbach 1992], and such efforts are
underway.
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