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WAVE VELOCITY FORMULAS TO EVALUATE ELASTIC CONSTANTS
OF SOFT BIOLOGICAL TISSUES

PHAM CHI VINH AND JOSE MERODIO

We use the equations governing infinitesimal motions superimposed on a finite deformation in order to
establish formulas for the velocity of (plane homogeneous) shear bulk waves and surface Rayleigh waves
propagating in soft biological tissues subject to uniaxial tension or compression. Soft biological tissues
are characterized as transversely isotropic incompressible nonlinearly elastic solids. The constitutive
model is given as an strain-energy density expanded up to fourth order in terms of the Green strain
tensor. The velocity formulas are written as ρv2

= a0 + a1e+ a2e2 where ρ is the mass density, v is
the wave velocity, ak are functions in terms of the elastic constants and e is the elongation in the loading
direction. These formulas can be used to evaluate the elastic constants since they determine the exact
behavior of the elastic constants of second, third, and fourth orders in the incompressible limit.

1. Introduction

Soft biological tissues were generally considered incompressible and isotropic under the early days of
their analysis. In more recent years they have been recognized as highly anisotropic due to the presence of
collagen fibers [Holzapfel et al. 2000]. Determination of the acoustoelastic coefficients in incompressible
solids and the limiting values of the coefficients of nonlinearity for elastic wave propagation, among other
studies, has very recently attracted a lot of attention since these analyses give an opportunity to capture
the mechanical properties of these materials (see, for instance, Destrade et al. [Destrade et al. 2010b]
and references therein). For other applications dealing with linearized dynamics we refer to [Bigoni et al.
2007; 2008] and the references therein.

Hamilton et al. [2004] analyzed a strain-energy density suitable for incompressible isotropic elastic
solids such as gels and phantoms, namely

W = µI2+ (A/3)I3+ DI 2
2 , (1)

where
I2 = tr(E2), I3 = tr(E3), (2)

E is the Green strain tensor and µ, A, and D are second-, third-, and fourth-order elastic constants,
respectively (the order given by the exponent of E). A very similar expansion to the one given in (1)
was originally derived in [Ogden 1974].

Indeed, several investigations have been carried out to determine the elastic constants µ, A and D
using shear bulk nonlinear waves [Gennisson et al. 2007; Renier et al. 2007; 2008] and small-amplitude

Keywords: incompressible transversely isotropic elastic solids, soft biological tissues, shear bulk waves, Rayleigh waves,
wave velocity, elastic constants.
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waves propagating in incompressible solids subject to homogeneous deformations [Destrade et al. 2010b]
(linearized waves). It should be noted that if the analysis of a material only includes the small deformation
regime then it is enough to consider (1) up to fourth order in strains.

In contrast to gels and phantoms, soft biological tissues are anisotropic solids due to the presence of
oriented collagen fiber bundles [Holzapfel et al. 2000; Destrade et al. 2010a]. It is thus required a model
other than (1) to account for the anisotropic behavior of these solids. A transversely isotropic model has
been proposed in [Destrade et al. 2010a], in which the strain-energy density of third order (actually, it is
the most general third order expansion) is given by

W = µ I2+
1
3 A I3+α1 I 2

4 +α2 I5+α3 I2 I4+α4 I 3
4 +α5 I4 I5, (3)

where I2 and I3 are given in (2) and

I4 = M · (E M), I5 = M · (E2 M), (4)

are anisotropic invariants where M is the unit vector that gives the undeformed fiber direction. It follows
that µ, α1, α2 and A, α3, α4, α5 are second- and third-order elastic constants, respectively. To evaluate
the elastic constants µ, A, αk (k = 1, 5, where the overline means k = 1, . . . , 5) the authors established a
formula for the velocity of shear bulk waves. This formula is a first-order polynomial in the elongation
e, defined by λ = 1+ e, where λ is the principal stretch in the direction of the fibers and the uniaxial
tension. The speeds of infinitesimal waves expressed in terms of third- and fourth-order constants does
provide a basis for the acousto-elastic evaluation of the material constants [Destrade and Ogden 2010].

To make the model more accurate and representative of soft biological tissue we consider a fourth-order
strain-energy function (actually, the most general fourth order expansion), namely (see also [Destrade
et al. 2010a])

W = µ I2+
1
3 A I3+α1 I 2

4 +α2 I5+α3 I2 I4+α4 I 3
4 +α5 I4 I5

+α6 I 2
2 +α7 I2 I 2

4 +α8 I2 I5+α9 I 4
4 +α10 I 2

5 +α11 I3 I4, (5)

where α6, . . . , α11 are fourth-order elastic constants. In order to determine the elastic constants µ, A, and
αk (k= 1, 11), we develop formulas for the velocity of (homogeneous plane) shear bulk waves and surface
Rayleigh waves which are second-order polynomials of the elongation e. When αk = 0, k = 1, 11, k 6= 6
and α6 is denoted D, these formulas coincide with the corresponding approximate formulas obtained
in [Destrade et al. 2010b]. The results show that linear corrections to the acoustoelastic wave speed
formulas involve second- and third-order constants, and that quadratic corrections involve second-, third-
, and fourth-order constants, in agreement with [Hoger 1999].

The layout of the paper is as follows. In Section 2, we introduce briefly the main governing equations
while Sections 3 and 4 are devoted to the acousto-elastic analysis of (5). In Section 5 some conclusions
are outlined.

2. Expressions of components of the fourth-order elasticity tensor

We consider an incompressible transversely isotropic elastic body B, which possesses a natural unstrained
state B0 and a finitely deformed (pre-stressed) equilibrium state Be. A small time-dependent motion is
superimposed upon this pre-stressed equilibrium configuration to reach a final material state Bt , called



WAVE VELOCITY FORMULAS TO EVALUATE ELASTIC CONSTANTS OF SOFT BIOLOGICAL TISSUES 53

current configuration. The position vectors of a representative particle are denoted by X A, xi (X), x̃i (X, t)
in B0, Be and Bt , respectively. The deformation gradient tensor associated with the deformations
B0→Bt and B0→Be are denoted by F and F and given in component form by

Fi A =
∂ x̃i

∂X A
, F i A =

∂xi

∂X A
. (6)

It is clear from (6) that
Fi A = (δi j + ui, j )F j A, (7)

where δi j is the Kronecker operator, ui (X, t) denotes the small time-dependent displacement associated
with the deformation Be→Bt and a comma indicates differentiation with respect to the indicated spatial
coordinate in Be.

Suppose that the body is a soft tissue with one preferred direction associated with a family of parallel
fibers of collagen. We denote by M the unit vector in that direction when the solid is unloaded and
at rest. Then, the strain-energy function W of the body, per unit volume at B0, may be expressed by
(5) (see [Destrade et al. 2010a]). It is well-known that E = (C − I)/2, where C = FT F is the right
Cauchy–Green strain tensor and I is the identity tensor. In the absence of body forces, the equations of
motion may be expressed in the following form (see [Prikazchikov and Rogerson 2003]):

∂SAi

∂X A
= ρüi or

∂

∂xm
(Fm A SAi )= ρüi , SAi =

∂W ∗

∂Fi A
, W ∗ =W − p(J − 1), J = det F, (8)

where a superposed dot indicates differentiation with respect to the time t , F is a constant tensor, SAi

are the components of the nominal stress tensor and p plays the role of a Lagrange multiplier and may
be understood as a pressure (in Bt ) associated with the incompressibility constraint. Since the quantities
associated with the deformation Be→ Bt are small in comparison with the corresponding quantities
associated with the deformations B0→Be we have

SAi ≈ SAi (F, p̄)+
∂SAi

∂Fk B
(F, p̄)uk,m Fm B + p∗

∂SAi

∂p
(F, p̄), (9)

where p̄ = p(F) and p∗ = p − p̄ is the time-dependent pressure increment. On use of the linear
approximation (9) into (8)2, the linearized equations of motion are obtained and can be written as

Aj ilkuk,l j − p∗,i = ρüi , (10)

where

Ai jkl = F i A Fk B
∂2W

∂Fj A∂Fl B

∣∣∣∣
F=F

, (11)

are the components of the so-called fourth-order elasticity tensor. It is not difficult to verify that

Apiq j = F pαFqβ

[
1
2
δi j

(
∂W
∂Eαβ

+
∂W
∂Eβα

)
+

1
4

(
F in F j y

∂2W
∂Eαn∂Eβy

+F in F j x
∂2W

∂Eαn∂Exβ
+F im F j y

∂2W
∂Emα∂Eβy

+F im F j x
∂2W

∂Emα∂Exβ

)]∣∣∣∣
F=F

, (12)
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where

∂W
∂Emn

=

5∑
k=2

∂W
∂ Ik

∂ Ik

∂Emn
, (13)

∂2W
∂Emn∂Exy

=

5∑
k=2

∂W
∂ Ik

∂2 Ik

∂Emn∂Exy
+

5∑
k=2

5∑
l=2

∂2W
∂ Ik∂ Il

∂ Ik

∂Emn

∂ Ik

∂Exy
, (14)

and
∂ I2

∂Emn
= 2Enm,

∂2 I2

∂Emn∂Exy
= 2δnxδmy,

∂ I3

∂Emn
= 3Enk Ekm,

∂2 I3

∂Emn∂Exy
= 3(δnxδky Ekm + δkxδmy Enk),

∂ I4

∂Emn
= Mm Mn,

∂2 I4

∂Emn∂Exy
= 0,

∂ I5

∂Emn
= Mm Enj M j +Mi Eim Mn,

∂2 I5

∂Emn∂Exy
= Mm Myδnx +Mx Mnδmy .

(15)

It is clear from (12) that Ai jkl = Akli j . The incremental condition of incompressibility follows and is of
the form

ui,i = 0. (16)

3. Formulas for the velocity of shear bulk waves

We now describe the special loading and geometry case that will be used in the sections that follow.
Consider a rectangular block of a soft transversely isotropic incompressible elastic solid whose faces
in the unstressed state B0 are parallel to the (X1, X2)-, (X2, X3)-, (X3, X1)-planes and with the fiber
direction M parallel to the X1-direction (i. e. the fibers are parallel to O X1). Suppose that the sample is
under uniaxial tension or compression with the direction of tension parallel to the X1-axis. It is easy to
see that the sample is subject to a equi-biaxial deformation, namely

x1 = λ1 X1, x2 = λ2 X2, x3 = λ3 X3, (17)

in which
λ1 = λ, λ2 = λ3 = λ

−1/2, λ > 0, (18)

where λk are the principal stretches of deformation. Note that the faces of the deformed block are parallel
to the (x1, x2)-, (x2, x3)-, (x3, x1)-planes. In the case under consideration we have

F =

 λ1 0 0
0 λ2 0
0 0 λ3

 , E =
1
2

 λ2
1− 1 0 0
0 λ2

2− 1 0
0 0 λ2

3− 1

 , (19)

and
I2 = E2

11+ E2
22+ E2

33, I3 = E3
11+ E3

22+ E3
33, I4 = E11, I5 = E2

11, (20)
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Figure 1. Geometry of cases addressed in Sections 3 and 4. The rectangular block on
the left gives the undeformed configuration while the one on the right gives the deformed
configuration under the conditions at hand indicating the principal stretches of deforma-
tion. Waves travel in the (x1, x2)-plane. In that plane, we denote n as the unit vector in
the direction of propagation and we denote a as the unit vector orthogonal to n.

where Ekk = (λ
2
k−1)/2. With the focus on (5) we apply the equation of motion and the incompressibility

condition to the analysis of homogeneous plane waves.

Remark 1. Using (12)–(15) together with (19) and (20) it is easy to find that there are only 15 nonzero
components of the fourth-order elasticity tensor, namely Ai i j j , Ai j i j (i, j=1, 2, 3, i 6= j) and Ai j j i (i, j=
1, 2, 3, i 6= j).

Consider waves traveling in the (x1, x2)-plane. In that plane denote n as the unit vector in the direction
of propagation and a as the unit vector orthogonal to n (see Figure 1). From [Ogden 2007], for example,
it is known that there exist two shear bulk waves, one of which is polarized along a and travels with
velocity v1a , and the other is polarized along b= a× n and travels with velocity v1b. These velocities
are determined by (see also [Destrade et al. 2010b])

ρv2
1a = (γ12+ γ21− 2β12)c4

θ + 2(β12− γ21)c2
θ + γ21, ρv2

1b = γ13c2
θ + γ23s2

θ , (21)

where θ is the angle between n, the direction of propagation, and the x1-direction, cn
θ :=cosn θ , sn

θ := sinn θ ,
and γi j and βi j (i, j = 1, 2, 3, i 6= j) are given by

γi j = Ai j i j , 2βi j = Ai i i i + Aj j j j − 2(Ai i j j + Ai j j i ), (22)

with no sum on repeated indices in formulas (22). Note that while βi j = βj i (due to Ai jkl = Akli j ), it
is easy to see that γi j 6= γj i in general. The velocities in (21) are written as polynomials in terms of cn

θ

and sn
θ .

Now, consider a sufficiently small elongation e defined by λ1 = 1+ e. Expanding γi j and βi j into
Maclaurin series up to second order in e by means of (22) and using (12)–(15), under the (uniaxial)



56 PHAM CHI VINH AND JOSE MERODIO

conditions at hand, we obtain for the coefficients of the polynomial in (21)1, after a long computation,

2β12−γ12−γ21 = 2α1+2(4α1+3α2+3α3+3α4+2α5)e

+3
(
6µ+3A+4α1+4α2+6α3+9α4+8α5+6α6+5α7+4α8+4α9+

8
3α10+

3
2α11

)
e2, (23)

2(β12−γ21)= 2α1+(3µ+10α1+8α2+6α3+6α4+4α5)e

+
(
21µ+39

4 A+17α1+17α2+
45
2 α3+30α4+27α5+18α6+15α7+12α8+12α9+8α10+

9
2α11

)
e2, (24)

4γ21 = 4µ+2α2+(A+2α2+4α3+2α5)e+(8µ+4A+2α3+3α5 +12α6+4α7+7α8+4α10+3α11)e2. (25)

Note that by taking αk = 0, k = 6, 11, in the expressions (23)–(25) we obtain the expansions given in
[Destrade et al. 2010a, (19)].

Introducing (23)–(25) into (21)1 yields

ρv2
1a =

1
2α1s2

2θ +µ+
1
2α2+

[
3µc2

θ +
1
4 A+

(
10c2

θ − 8c4
θ

)
α1+

(
8c2
θ − 6c4

θ +
1
2

)
α2

+
( 3

2 s2
2θ + 1

)
α3+

3
2 s2

2θα4+
(
s2

2θ +
1
2

)
α5
]
e+

[(
21c2

θ − 18c4
θ + 2

)
µ

+
(39

4 c2
θ − 9c4

θ + 1
)

A+
(
17c2

θ − 12c4
θ

)
(α1+α2)+

( 45
2 c2

θ − 18c4
θ +

1
2

)
α3

+
(
30c2

θ − 27c4
θ

)
α4+

(
27c2

θ − 24c4
θ +

3
4

)
α5+

( 9
2 s2

2θ + 1
)
α6+

( 15
4 s2

2θ + 1
)
α7

+
(
3s2

2θ +
7
4

)
α8+ 3s2

2θα9+
(
2s2

2θ + 1
)
α10+

( 9
8 s2

2θ +
3
4

)
α11
]
e2. (26)

In a parallel way, we use (12)–(15) to calculate γ13 (= γ12) and γ23, which are the polynomial-term coef-
ficients in (21)2. Their approximations up second order in e are derived expanding them into Maclaurin
series and disregarding all terms equal to and higher than e3 in the expansions. The values are

γ13 = µ+
1
2α2+

(
3µ+ 1

4 A+ 2α1+
5
2α2+α3+

1
2α5

)
e

+
(
5µ+ 7

4 A+ 5α1+ 5α2+ 5α3+ 3α4+
15
4 α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
e2,

γ23 = µ+
(
−3µ− 1

2 A+α3
)
e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2.

(27)

Introducing (27) into (21)2 one gets the approximation of ρv2
1b in terms of e, which is

ρv2
1b = µ+

1
2 c2
θα2+

[
3(µ+ 1

8 A)c2θ −
1
8 A+ 2c2

θα1+
5
2 c2
θα2+α3+

1
2α5

]
e

+
[
5µ+ 7

4 A+ 5c2
θα1+ 5c2

θα2+
5
2(2c2

θ − s2
θ )α3+ 3c2

θα4+
15
4 c2

θα5

+3α6+α7+
7
4(c

2
θ + 4s2

θ )α8+ c2
θα10+

3
4(c

2
θ − 2s2

θ )α11
]
e2. (28)

As noticed before, if αk = 0, k = 1, 11, k 6= 6 and α6 is denoted D one gets the expressions in [Destrade
et al. 2010b, (11)]. Note that when θ = 0 the two shear velocities coincide and can be written as

ρv2
1a = ρv

2
1b = µ+

1
2α2+

(
3µ+ 1

4 A+ 2α1+
5
2α2+α3+

1
2α5

)
e

+
(
5µ+ 7

4 A+ 5α1+ 5α2+ 5α3+ 3α4+
15
4 α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
e2. (29)

The result in [Destrade et al. 2010b, (12)] is a special case of the approximation (29) when αk = 0,
k = 1, 11, k 6= 6.

Let us turn our attention to consider shear waves that travel in the (x2, x3)-plane. Now, by θ we denote
the angle between the direction of propagation of the plane wave and the x2-axis. Then, it is clear that
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n= [0, cos θ, sin θ ]T , a = [0, sin θ,− cos θ ]T . The speed v2a of the shear bulk wave polarized along a
is given by (21)1 with the indices 12 and 21 replaced by 23 and 32, respectively. In this case, it follows
easily using (12)–(15) that γ23 = γ32 = β23. This makes the dependence of the shear wave on θ to vanish
and one finally writes the speed v2a in terms of e as

ρv2
2a = γ32 = µ+

(
−3µ− 1

2 A+α3
)
e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2. (30)

The approximation [Destrade et al. 2010b, (13)] is obtained from (30) by making αk = 0 for k = 1, 11,
k 6= 6, and replacing α6 by D.

Lastly, consider waves that travel in the (x1, x3)-plane. In this case, θ is the angle between the direction
of propagation of the plane wave and the x1-axis. Using (12)–(15), it follows that γ12 = γ13, γ21 = γ31

and β12 = β13. From these facts it is obvious that the secular equations in this case are exactly the ones
obtained for waves propagating in the (x1, x2)-plane. This is consistent with the transversely isotropic
character of the strain-induced anisotropy.

4. Formulas for the velocity of Rayleigh waves

We turn our attention to the analysis of Rayleigh surface waves. In what follows, by RWkm (k,m =
1, 2, 3, k 6= m) we denote, for simplicity, a Rayleigh wave propagating along the xk-direction, and atten-
uating in the xm-direction, i.e., we consider a half space occupying the region xm < 0 in the reference
configuration with boundary xm= 0 and surfaces waves propagating in the direction xk .

4A. Secular equations.

Remark 2. According to Remark 1, the equations of motion (10) for the incremental displacements
ui , the incremental equation (16) of incompressibility, and the expressions of the incremental traction
components are for Rayleigh surface waves the same as those for pre-stressed incompressible isotropic
elastic materials (see [Vinh 2010] and references therein). Moreover, using (12)–(15), (19) and (20) one
can see that the relations

Ai j j i = Aj i i j = Ai j i j − λi
∂W
∂λi

, (31)

still hold for the (uniaxial) cases under consideration. Therefore, the secular equations of Rayleigh waves
for transversely isotropic materials under the conditions considered here are the same as the ones obtained
for pre-stressed incompressible isotropic elastic materials.

Let us consider first the RW12 that travels with velocity v. Following Remark 2 and according to
[Dowaikh and Ogden 1990], the secular equation of the Rayleigh wave RW12 is (see also [Vinh 2010;
Prikazchikov and Rogerson 2004; Vinh and Giang 2010])

γ21(γ12− ρv
2)+ (2β12+ 2γ ∗21− ρv

2)
[
γ21(γ12− ρv

2)
]1/2
= (γ ∗21)

2
, 0< ρv2 < γ12, (32)

where γ12, γ21, and β12 are defined by (22), γ ∗mk = γmk − σm (m, k = 1, 2, 3, m 6= k) and the σi are the
principal stresses of the Cauchy stress tensor, which are given by [Ogden 1984]

σi = λi
∂W
∂λi
− p̄ (i = 1, 2, 3). (33)
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Similarly, the secular equation of RWkm can be written as

γmk(γkm − ρv
2)+ (2βkm + 2γ ∗mk − ρv

2)
[
γmk(γkm − ρv

2)
]1/2
= (γ ∗mk)

2
, 0< ρv2 < γkm, (34)

where γmk and βmk are given by (22). Under the conditions at hand, it follows that σ2 = σ3 = 0, and,
furthermore, γ ∗2k = γ2k (k = 1, 3), γ ∗3k = γ3k (k = 1, 2). The strong-ellipticity condition (see [Ogden and
Singh 2011], for instance) requires that γkm > 0 (k,m= 1, 2, 3, k 6=m). The following results show that it
seems natural to consider expansions of strain energy functions in terms of the invariants of E. Formulas
for the Rayleigh surface waves obtained as polynomials of e depend only on some of the terms in which
the strain-energy function W maybe expanded. More precisely, it is shown that linear polynomials of e
depend on the coefficients included up to the third-order terms of the strain-energy function W . On the
other hand, second-order polynomials in e depend also on the coefficients included up to the fourth-order
terms of the strain-energy function W . We focus first on the first-order approximation for the velocity to
clarify the analysis.

4B. First-order approximations for the velocity. In this section we obtain formulas for the velocity of
the RWkm given as first-order polynomials in e, i.e., we obtain

ρv2
km = akm + bkme, (35)

where vkm is the velocity of RWkm. It follows that these equations include µ, A, ak, k = 1, 5 and can
be used to determine the elastic coefficients associated with the third-order strain-energy function (3).

Expression of v12 associated with RW12. It is readily verified that (32)1 in terms of η=
√
(γ12− ρv2)/γ21

is of the form (see also [Destrade et al. 2010b; Dowaikh and Ogden 1990])

η3
+ η2
+ g(e)η− 1= 0, (36)

where g(e) := (2β12+ 2γ21− γ12)/γ21. For our purposes it is sufficient to expand g(e) up to first order
in e. It is not difficult to obtain that g(e)= g0+ g1e+O(e2) where

g0 =
6µ+ 4α1+α2

2µ+α2
,

g1 =
3A/2+ 16α1+ 15α2+ 18α3+ 12α4+ 11α5

2µ+α2
−
(6µ+ 4α1+ 3α2)(A/2+α2+ 2α3+α5)

(2µ+α2)2
.

(37)

Equation (36) can be rewritten as

F[η, e] ≡ η3
+ η2
+ g(e)η− 1= 0. (38)

To obtain the the first-order approximation in e of ρv2 it is sufficient to expand η as

η = η0+ η1 e, η0 := η(0), η1 = η
′(0), (39)

where η0 is a solution of the equation

η3
+ η2
+ g0η− 1= 0. (40)
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The value η0 corresponds to the Rayleigh wave propagating in the incompressible transversely isotropic
elastic solids (without pre-stresses) and, according to [Ogden and Vinh 2004], η0 is given by

1
3

[
−1+ 3

√
1
2 [91+16+3

√
3
√
1(412−131+32)]− 3

√
1
2 [91+16−3

√
3
√
1(412−131+32)]

]
,

(41)
where 1= g0+ 1= (8µ+ 4α1+ 2α2)/(2µ+α2). Note that η0 depends only on the second-order elastic
constants µ, α1, α2 and η0 = 0.2956 when α1 = α2 = 0 (for which g0 = 3, 1= 4).

Since φ(e) = F[η(e), e] ≡ 0, it is easy to get that φ′(e) = 0, φ′′(e) = 0 as well as the remaining
derivatives. Using (38) and φ′(e)= 0 it follows that

η′(e)=−
∂F(η(e), e)/∂e
∂F(η(e), e)/∂η

=−
g′(e)η

3η2+ 2η+ g(e)
, (42)

and therefore

η1 = η
′(0)=−

∂F(η0, 0)/∂e
∂F(η0, 0)/∂η

=−
g1η0

3η2
0+ 2η0+ g0

. (43)

Now, introducing γ12 and γ21, which are given by (22), into the relation ρv2
= γ12− γ21(η0+ η1 e)2 and

expanding the resulting expression up to first order in e, we obtained

ρv2
12 = s0+ s1 e, (44)

where

s0 = (1− η2
0)(µ+

1
2α2),

s1 = (3− 2η0η1)µ+
1
4(1− η

2
0)A+ 2α1+

1
2(5− 2η0η1− η

2
0)α2+ (1− η2

0)(α3+α5).
(45)

The values η0 and η1 are obtained using (41) and (43), respectively, by means of (37). It is clear that
ρv2

12 is a function of µ, A, ak ( k = 1, 5) and e.

Expression of v23 associated with RW23. According to (34) and noting that σ3 = 0, the secular equation
of the RW23 (k = 2, m = 3) takes the form

γ32(γ23− ρv
2)+ (2β23+ 2γ32− ρv

2)
[
γ32(γ23− ρv

2)
]1/2
= (γ32)

2, 0< ρv2 < γ21. (46)

In terms of the variable η =
√
(γ23− ρv2)/γ32, (46) can be rewritten as

η3
+ η2
+ g(23)(e)η− 1= 0, (47)

where g(23)(e)= (2β23+2γ32−γ23)/γ32. Since γ23 = γ32 = β23, as mentioned just before Equation (30),
it follows that g(23)(e) = 3 and, therefore, that η = η0 where η0 is given by (41). Taking into account
(27)2, the first-order approximation of ρv2

23 = γ23(1− η2
0) is finally

ρv2
23 = (1− η

2
0)[µ+ (−3µ− A/2)e+α3]. (48)

Expression of v21 associated with RW21. According to (34) the secular equation of the RW21 is

γ12(γ21− ρv
2)+ (2β21+ 2γ ∗12− ρv

2)[γ12(γ21− ρv
2)]1/2 = (γ ∗12)

2
, 0< ρv2 < γ21. (49)
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Using (12)–(15) one can see that λ1 ∂W/∂λ1− λ2 ∂W/∂λ2 = γ12− γ21. From this fact and the relation
σ1−σ2 = λ1 ∂W/∂λ1−λ2 ∂W/∂λ2 (obtained from (33)) and σ2 = 0 it follows that σ1 = γ12−γ21. Thus
γ ∗12 = γ21, and (49) now becomes

γ12(γ21− ρv
2)+ (2β21+ 2γ21− ρv

2)
[
γ12(γ21− ρv

2)
]1/2
= (γ21)

2, 0< ρv2 < γ21. (50)

In terms of the variable η =
√
(γ21− ρv2)/γ12, Equation (50) can be written as

η3
+ η2
+ g(21)(e)η− h(e)= 0, (51)

where g(21)(e) := (2β21 + γ21)/γ12, h(e) := γ 2
21/γ

2
12. Up to first order, the expansions of g(21)(e) and

h(e) are g(21)(e)= g(21)
0 + g(21)

1 e+O(e2) and h(e)= 1− h1e+O(e2), where

g(21)
0 =

6µ+4α1+3α2

2µ+α2
,

g(21)
1 =

6µ+ 3
2 A+20α1+19α2+18α3+12α4+11α5

2µ+α2
−

6µ+4α1+3α2

(2µ+α2)2
(6µ+ 1

2 A+4α1+5α2+2α3+α5),

h1 =
4(3µ+2α1+2α2)

2µ+α2
.

(52)

Following the same procedure used to get the first-order approximation of ρv2
12, now, we have

ρv2
21 = s(21)

0 + s(21)
1 e, (53)

where

s(21)
0 = (1−η2

0)
(
µ+ 1

2α2
)
,

s(21)
1 =−(2η0η1+3η2

0)µ+
1
4(1−η

2
0)A−2η2

0α1+
1
2(1−2η0η1−5η2

0)α2+
1
2(1−η

2
0)(2α3+α5),

(54)

in which η0 is calculated by (41) and

η1 =−
g(21)

1 η0+ h1

3η2
0+ 2η0+ g(21)

0

. (55)

4C. Second-order approximations for the velocity. We now extend the above analysis to include fourth-
order terms in the strain-energy function. For that reason, it is necessary to obtain formulas for the
velocity of the RWkm given as second-order polynomials in e. We follow closely the notation used in
the different cases analyzed in Section 4B.

Expression of v12 associated with RW12. In order to create second-order approximations for the velocity
of RW12 we need to expand g(e) into a Maclaurin series up to second order in e. One can write

g(e)= g0+ g1e+ g2e2
+O(e3),
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where g0, g1 are given by (37) and

g2=
2

2µ+α2

(
24µ+12A+12α1+12α2+

39
2 α3+27α4+

105
4 α5+27α6+18α7+

69
4 α8+12α9+11α10+

27
4 α11

)
−

2(6µ+4α1+3α2)

(2µ+α2)2

(
2µ+ A+ 1

2α3+
3
4α5+ 3α6+α7+

7
4α8+α10+

3
4α11

)
−

A+2α2+4α3+2α5
(2µ+α3)3

(
12µα3+ 6α2α3+ 8µα5+ 4α2α5+ 12µα2+ 6α2

2

+ 12µα4+ 6α2α4+ 16µα1+ 6α1α2− 4α1α3− Aα1− 2α1α5
)
. (56)

Up to second order in e the expansion of η(e) is η = η0+ η1e+ η2e2, where η0 and η1 are given by (41)
and (43), respectively, and η2 is to be determined. Using (38) and φ′′(e)= 0, it is obtained that

η′′(e)=−

∂2 F
∂η2 η

′2
+ 2

∂2 F
∂η∂e

η′+
∂2 F
∂e2

∂F
∂η

∣∣∣∣
(η(e),e)

, (57)

and, therefore, that

η2 =
1
2η
′′(0)=−

(3η0+ 1)η2
1+ g1η1+ g2η0

3η2
0+ 2η0+ g0

. (58)

Expanding ρv2
= γ12− γ21(η0+ η1 e+ η2 e2)2 up to second order in e yields

ρv2
12 = s0+ s1 e+ s2 e2, (59)

where s0 and s1 are given by (45) and

s2 = (5− 2η2
0− 2η0η2− η

2
1)µ+ (7− 2η0η1− 4η2

0)A/4+ 5α1+ [5− η0(η1+ η2)− η
2
1/2]α2

+ (5− 2η0η1− η
2
0/2)α3+ 3α4+ (15− 4η0η1− 3η2

0)α5/4

+ 3(1− η2
0)α6+ (1− η2

0)α7+ 7(1− η2
0)α8/4+ (1− η2

0)α10+ 3(1− η2
0)α11/4. (60)

Relation (59), where s0 and s1 are given by (45) and s2 is given by (60), is the second-order approximation
for the velocity. Now, consider that αk = 0, k = 1, 11, k 6= 6. Then, using (37) and (56) one obtains
that g0 = 3, g1 = 0, g2 = 18+ 9(A/µ)+ 18(α6/µ). Similarly, using (41), (43) and (58) one obtains that
η0 = 0.2956, η1 = 0 and η2 =−(1.3806+ 0.6903(A/µ)+ 1.3806(α6/µ)). Introducing these results into
(45) and (60) it is easy to obtain that

s0 = 0.9126µ, s1 = 3µ+ 0.9126A/4, s2 = 5.642µ+ 2.071A+ 3.554α6, (61)

which coincide with the coefficients of the approximation in [Destrade et al. 2010b, (19)], where the
coefficient D is simply α6.

Expression of v23 associated with RW23. Introducing the expansion (27)2 of γ23 into the relation ρv2
23 =

γ23(1− η2
0) one obtains the second-order approximation as

ρv2
23 = (1− η

2
0)[µ+ (−3µ− A/2+α3)e+

(
5µ+ 7

4 A− 5
2α3+ 3α6+α7+α8−

3
2α11

)
e2
]. (62)
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Expression of v21 associated with RW21. Following the same procedure used to obtain the second-order
expansion for ρv2

12, one can write in this case that

ρv2
21 = s(21)

0 + s(21)
1 e+ s(21)

2 e2, (63)

where s(21)
0 and s(21)

1 are determined using (54) and s(21)
2 is given by

s(21)
2 = (2− 2η0η2− η

2
1− 6η0η1− 5η2

0)µ+
(
1− 1

2η0η1−
7
4η

2
0
)

A− (4η1+ 5η0)η0a1

−
(
η0η2+

1
2η

2
1+ 5η0η1+ 5η2

0
)
a2+

( 1
2 − 2η0η1− 5η2

0
)
a3− 3η2

0a4

+
( 3

4 − η0η1−
15
4 η

2
0
)
a5+ (1− η2

0)
(
3a6+ a7+

7
4a8+ a10+

3
4a11

)
, (64)

where η0 and η1 are determined using (41) and (55), respectively, and η2 is

η2 =−
(3η0+ 1)η2

1+ g(21)
1 η1+ g(21)

2 η0− h2

3η2
0+ 2η0+ g(21)

0

. (65)

In (65), g(21)
0 and g(21)

1 are determined using (52) and the remaining symbols are given by

g(21)
2 =

2
2µ+a2

(
27µ+ 51

4 A+17a1+17a2+24a3+30a4+
117

4 a5+27a6+18a7+
69
4 a8+12a9+11a10+

27
4 a11

)
−2

6µ+ 4a1+ 3a2

(2µ+ a2)2

(
5µ+ 7

4 A+5a1+5a2+5a3+3a4+
15
4 a5+3a6+a7+

7
4a8+a10+

3
4a11

)
+4

3µ+ A
4 +2a1+

5
2a2+a3+

1
2a5

(2µ+a2)3

[
(12µ+4a1+2a2−12a3−12a4−8a5)µ

+(A+8a1+6a2+4a3+2a5)a1−(2a2+6a3+6a4+4a5)a2
]

(66)

and

h2 =
1

(2µ+ a2)2

[
(84µ+ 104a1+ 104a2− 12a3− 24a4− 12a5)µ

+(4A+ 48a1+ 16a3+ 8a5)a1+ (A+ 8a1+ 36a2− 2a3− 12a4− 4a5)a2
]
. (67)

5. Conclusions

The purpose of this analysis is to evaluate the mechanical properties of transversely isotropic incompress-
ible nonlinear elastic materials such as certain soft biological tissues. We have considered an expanded
strain energy function in terms of the Green strain tensor. More in particular we have focused on an
energy function with elastic constants of second, third, and fourth orders in the Green strain tensor (see
(5)). Homogeneous plane waves and Rayleigh surface waves have been examined in conjunction with the
strain energy function (5). The speeds of shear waves and Rayleigh waves in the incompressible model
(5) have been obtained. The formulas developed can be used to determine the elastic coefficients included
in (5), although, it is not an easy task. The equations obtained in [Destrade et al. 2010b] are recovered
from their corresponding formulas obtained in this paper. It has been noted that formulas for the speeds
of Rayleigh waves that are linear in e depend on the coefficients included up to third-order terms in
the strain-energy function (5). On the other hand, the speeds of Rayleigh waves given as second-order
polynomials in e depend also on the coefficients included up to fourth-order terms in the strain-energy
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function (5). This is particularly important since even though physical acousticians are interested in third
order constants for anisotropic solids, workers in nonlinear elasticity, and furthermore, in soft biological
tissues, work with finite extensions involving fourth order constants.
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