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DISPERSION OF GUIDED WAVES IN INITIALLY STRESSED LAYERED PLATES

JIANGONG YU AND SHENLEI LI

Based on the theory of the mechanics of incremental deformations, guided wave propagation in multi-
layered plates under initial stresses in the thickness and wave-propagation directions is investigated. The
Legendre polynomial series method is used to solve the coupled wave equations and its convergence is
discussed along with numerical examples. The effects of initial stresses on Lamb-like waves and SH
waves are analyzed, and numerical results show that they are quite distinct. The frequency variation is
not linear with the increase of the initial stresses in both directions. The effects of the initial stress in the
thickness direction are very different from those in the longitudinal direction.

1. Introduction

Because of the limitations of manufacturing and assembling technology, initial stresses in structural
elements, especially in layered structures, are inevitable. The working loads on structures can be taken
as the initial stresses. Thus, the problem of initially stressed structures is very common and it is very
important to study it in both the practical and the theoretical sense.

Wave propagation in structures with initial stresses has received considerable attention. Chen and
Wright [1966] derived the frequency equations for wave propagation in an initially stressed circular
cylinder. Murdoch [1977] considered the effect of interfacial stress on the propagation of Stoneley waves.
Ogden and Sotiropoulos [1995] studied interfacial waves in prestressed layered incompressible elastic
solids. Gei [2008] investigated small-amplitude interfacial waves along a thin film between two pre-
stressed, incompressible elastic media. Rayleigh waves in a magnetoelastic initially stressed conducting
medium with a gravity field were investigated in [El-Naggar et al. 1994]. Abd-Alla and Ahmed [1999]
investigated Love wave propagation in a nonhomogeneous orthotropic elastic layer with initial stress over-
lying a semiinfinite medium. Abd-Alla [1999] presented the effect of initial stress on axisymmetric waves
in an orthotropic hollow cylinder. Qian et al. [2004] studied the effect of initial stress on Love waves
in an elastic substrate with a piezoelectric layer and a piezoelectric substrate with an elastic layer. Du
et al. [2007] studied Love wave propagation in layered magnetoelectroelastic structures with initial stress.
Garg [2007] considered the effect of initial stress on harmonic plane waves in viscoelastic anisotropic
media. Gupta et al. [2012] investigated torsional surface waves in an initially stressed heterogeneous
half-space covered by a homogeneous layer. Bigoni et al. [2008] studied the filtering and band gap
characteristics of a prestressed, stiff layer on an elastic half-space.

The above investigations are all about surface waves, subsurface waves, and interfacial waves. Guided
wave propagation in structures with initial stresses has also received attention. Akbarov and Guliev
[2009] studied axisymmetric longitudinal waves in a prestrained compound circular cylinder. Akbarov
et al. [2011b] studied the case of torsional waves. Akbarov and Guliev [2010] investigated axisymmetric
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longitudinal waves in a prestrained circular cylinder embedded in a prestrained compressible infinite
medium. These three papers are all about circular cylinders. As they are more common structures,
initially stressed multilayered plates have received more attention. Kayestha et al. [2010] obtained disper-
sion curves for a perfectly bonded prestressed compressible elastic bilayered plate. Wijeyewickrema and
Leungvichcharoen [2009] investigated the influence of imperfections in the contact conditions between
the layers of a prestrained three-layered plate. These two investigations do not allow readers to draw any
concrete conclusions about the influence of the initial strains on the wave propagation velocity or on wave
dispersion in layered media. Akbarov et al. [2008; 2011a] and Zamanov and Agasiyev [2011] investigated
these issues. Akbarov et al. [2008] and Zamanov and Agasiyev [2011] studied the influence of initial
strains in the wave-propagation direction on the Lamb wave dispersion curves. Akbarov et al. [2011a]
studied the influence of initial strains in the thickness direction on the Lamb wave dispersion curves.
Furthermore, small-amplitude waves in prestressed [Rogerson and Sandiford 1996; Gei et al. 2004; Gei
2008] and large deformed [Shmuel et al. 2012] multilayered structures have been given attention.

This paper simultaneously investigates the influence of initial stresses in two directions, the thickness
and wave-propagation directions. Their different effects are discussed. We also illustrate the case of SH
waves. The influences on Lamb waves and on SH waves are very different.

2. Mathematics and formulation of the problem

Consider an orthotropic N-layered plate with initial stresses in two directions, Sxx =−
∑N

n=1 Pnπhn−1,hn (z)
and Szz =−Q, as shown in Figure 1. The rectangular window function is

πhn−1,hn (z)=

{
1, hn−1 ≤ z ≤ hn,

0, elsewhere.

The plate is infinite in the horizontal direction and has a total thickness hN . We place the horizontal
(x, y)-plane of a Cartesian coordinate system on the bottom surface and let the plate be in the positive z
region, where the medium occupies the region 0≤ z ≤ hN .

�

Figure 1. Schematic diagram of a layered plate under initial stresses.
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According to [Biot 1965] (see also [Selim and Ahmed 2006]) the dynamic equations for the plate with
initial stresses are governed by
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(3)

Here ui , Ti j and εi j are the elastic displacements, stresses, and strains, respectively, while ρ is the
density of the plate.

By introducing the rectangular window function π0,hN (z), the stress-free boundary (Tzz = Txz = Tyz = 0
at z = 0, z = hN ) is automatically incorporated in the constitutive relations of the plate [Datta and
Hunsinger 1978]

Txx = C11εxx +C12εyy +C13εzz, Tyy = C12εxx +C22εyy +C23εzz,

Tzz = (C13εxx +C23εyy +C33εzz)π0,hN (z), Tyz = 2C44εyzπ0,hN (z),

Txz = 2C55εxzπ0,hN (z), Txy = 2C66εxy,

(4)

where Ci j are the elastic coefficients.
For the layered plate these coefficients are expressed as

Ci j =

N∑
n=1

Cn
i jπhn−1,hn (z), (5a)

where N is the number of the layers and Cn
i j is the elastic constant of the N-th material. Similarly, the

mass density can be expressed as

ρ =

N∑
n=1

ρnπhn−1,hn (z). (5b)
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For a free harmonic wave being propagated in the x direction in a plate, we assume the displacement
components to be of the form

ux(x, y, z, t)= exp(ikx − iωt)U (z), (6a)

u y(x, y, z, t)= exp(ikx − iωt)V (z), (6b)

uz(x, y, z, t)= exp(ikx − iωt)W (z). (6c)

U (z), V (z), and W (z) represent the amplitude of vibration in the x , y, and z directions, respectively,
while k is the magnitude of the wave vector in the propagation direction and ω is the angular frequency.

Substituting (3)–(6) into (1), the governing differential equations in terms of displacement components
can be obtained:

U ′′
N∑

n=1

(Cn
55+ 0.5Pn − 0.5Q)πhn−1,hn (z)+U ′

( N∑
n=1

(Cn
55+ 0.5Pn)πhn−1,hn (z)

)′
− k2U

N∑
n=1

(Cn
11+ Pn)πhn−1,hn (z)+ ikW ′

N∑
n=1

(Cn
13+Cn

55+ 0.5Pn + 0.5Q)πhn−1,hn (z)

+ ikW
( N∑

n=1

(Cn
55+ 0.5Pn)πhn−1,hn (z)

)′
=−ω2U

N∑
n=1

ρnπhn−1,hn (z), (7a)

V ′′
N∑

n=1

(Cn
44− 0.5Q)πhn−1,hn (z)+ V ′

( N∑
n=1

Cn
44πhn−1,hn (z)

)′
− k2V

N∑
n=1

(Cn
66− 0.5Pn)πhn−1,hn (z)

=−ω2V
N∑

n=1

ρnπhn−1,hn (z), (7b)

W ′′
N∑

n=1

(Cn
33+ Q)πhn−1,hn (z)+ ikU ′

N∑
n=1

(Cn
13+Cn

55+ 0.5Pn + 0.5Q)πhn−1,hn (z)

− k2W
N∑

n=1

(Cn
55− 0.5Pn + 0.5Q)πhn−1,hn (z)+W ′

( N∑
n=1

(Cn
33+ Q)πhn−1,hn (z)

)′
+ ikU

( N∑
n=1

(Cn
13+ Q)πhn−1,hn (z)

)′
=−ω2W

N∑
n=1

ρnπhn−1,hn (z) (7c)

where the superscript ( )′ is the partial derivative for z. Obviously, (7b) is independent of the other
two equations. It represents the antiplane SH waves. The other two, (7a) and (7c), control the in-plane
Lamb-like waves.

To solve the coupled wave (7), we expand the field quantities of each layer into one specific Legendre
orthogonal polynomial series:

• In the first layer

u1
a =

∞∑
m=0

pa
m,1 Q1

m(z) exp(ikx), (8a)



DISPERSION OF GUIDED WAVES IN INITIALLY STRESSED LAYERED PLATES 189

with
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• The subsequent layers follow as such.

• In the last layer
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QN
m (z)=

√
2m+1

hN−hN−1
Lm

(
2

hN−hN−1
z−

hN + hN−1

hN − hN−1

)
and

uN
a (z = hN )= uN ,hN

a = uN−1,hN−1
a + (hN − hN−1)

∞∑
m=0

pa
m,N QN

m (z = hN ) exp(ikx)

and so on.

Here, Lm is the m-th order Legendre polynomial. Theoretically, m runs from 0 to ∞. In practice,
the summation over the polynomials in (8) can be truncated at some finite value m = M , at which
higher-order terms become negligible.

The forms of ua (a = 1, 2, 3) and (ux , u y, uz) are chosen in order to automatically incorporate in
the calculation the continuity conditions at the interfaces relative to the components of the mechanical
displacement.
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Equation (7) is multiplied by Q1∗
j (z), Q2∗

j (z), . . . , QN∗
j (z), with j running from 0 to M , so that inte-

gration over z from 0 to hN yields the following 3N (M + 1) equations:
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where nA j,m
αβ (α, β = 1, 2, 3) and nM j

m are the elements of a nonsymmetric matrix. They can be easily
obtained according to (7).

Equation (9) can be written as
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So, (10) yields a form of the eigenvalue problem. The eigenvalue ω2 gives the angular frequency of
the guided wave; eigenvectors pi

m,n (i = 1, 2, 3) allow the components of the particle displacement to
be calculated. According to V ph = ω/k and V g = dω/dk, the phase velocity and group velocity can
be obtained. Equation (10) can be solved numerically making use of standard computer programs for
the diagonalization of nonsymmetric square matrices. 3N (M + 1) eigenmodes are generated from the
order-M expansion. Acceptable solutions are those eigenmodes for which convergence is obtained as
M is increased. We determine that the eigenvalues obtained are converged when a further increase in
the matrix dimension does not result in a significant change in the eigenvalue. We consider 0.5% as a
significant change.

3. Numerical results

Based on the foregoing formulations, computer programs have been written using Mathematica to cal-
culate the dispersion curves. We take common ceramic-metal (silicon nitride (N) and steel (S)) layered
plates as examples. Their material properties are listed in Table 1. Because SH waves and Lamb-like
waves are independent, we will discuss them respectively.

3.1. Convergence of the method. In order to verify the convergence of the method, the Lamb-like wave
and SH wave dispersion curves for a three-layered plate under an uniform initial stress Q = 20 GPa are
calculated for M = 6, 7, 8, and 9, as shown in Figure 2. The stacking sequence and thickness (m) of the
plate are N/S/N-1/2/1.

Material C11 C13 C33 C44 C55 C66 ρ

Steel 282 113 282 84 84 84 7.932
Silicon nitride 380 120 380 130 130 130 2.37

Table 1. The material properties of the layered plate. Ci j values are in units of 109 N/m2,
ρ values in 103 kg/m3.
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Figure 2. Dispersion curves for the N/S/N-1/2/1 plate under uniform initial stress Q =
20 GPa for various M values. (a) SH waves and (b) Lamb-like waves.

For SH waves, the first three modes are convergent when M = 6; the first four modes are convergent
when M = 7 and 8. So, we think that at least the first M/2 SH modes are convergent. Similarly, for
Lamb-like waves, the first three modes are convergent when M = 6; the first four modes are convergent
when M = 7 and 8. So, we believe that at least the first M /2 Lamb-like wave modes are convergent.

For all the numerical calculations presented below, the series expansion is truncated at M = 16.

3.2. Effects of the initial stresses on Lamb-like waves. Figure 3 shows the phase velocity dispersion
curves for the N/S/N-1/2/1 plate under different uniform initial stresses. Figure 3a is for the plate under
initial stresses Q and Figure 3b is for the plate under uniform initial stresses P , that is, P1 = P2 = P3.
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 (a)  (a)

(b)  (b)

Figure 3. Lamb-like wave phase velocity spectra for the N/S/N-1/2/1 plate, (a) under
initial stresses Q and (b) under uniform initial stresses P .

According to Figure 3a, a tensile stress in the thickness direction usually makes the wave speed lower
at low frequencies (except for the first mode). As the frequency increases, a tensile stress makes the
wave speed higher. In many cases, the effect of the tensile stress is contrary to that of the compressive
stress. Comparing the two figures, we can see that the effect of the initial stress P is quite different from
that of the initial stress Q. In many cases, the effect of the initial stress P is almost contrary to that of
the initial stress Q.

Figure 3 reflects the relation between the effect of the initial stress and frequency. We observe the
relation between the frequency (or wave speed) and the magnitudes of initial stress Q and P , as shown
in Figures 4a and 4b, which show the frequency versus initial stress Q and P at k = 1 rad/m. In fact,
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(a)  (b) (b)
(a) (b)

Figure 4. Lamb-like wave frequency curves versus initial stresses for the N/S/N-1/2/1
plate at k = 1 rad/m, with (a) uniform initial stresses Q and (b) uniform initial stresses P .

these two figures also reflect the relation between the wave speed and initial stress because of the fixed
wave number. It can be seen that with the increase of the initial stresses in both directions, the frequency
variation is not linear and the varying trends of each mode are different. The effects of the compressive
stress and tensile stress do not always contrast. For instance, for mode 2, the highest frequency is at
about the initial stress Q = 0 and P = 0; both compressive stress and tensile stress make the wave speed
and frequency lower.

In the above examples, the initial stresses in the wave-propagation direction are uniform, that is,
P1 = P2 = P3. Now we illustrate the differences in the effects of P1 and P2. In order to facilitate the
comparison, we take an equal-thickness layered plate, N/N/N-1/1/1, as an example. We calculate three
cases: P1 = P2 = P3 = 0; P1 =−80 GPa, P2 = P3 = 0; and P2 =−80 GPa, P1 = P3 = 0. The obtained
dispersion curves and the frequency-stress curves are shown in Figures 5 and 6. It can be seen that the
effects of P1 and P2 are different. We cannot conclude that the effect of one is stronger than that of
another one. For different modes, the extents of their influence are different, and vary as the frequency
increases.

3.3. Effects of the initial stresses on SH waves. This section concerns the effects of the initial stresses
on SH waves. Figures 7 and 8 show the dispersion curves for the N/S/N-1/2/1 plate under different
uniform initial stresses P and Q. It can be seen that the effects of initial stresses are very regular. For the
case of initial stress in the wave-propagation direction, compressive stress always makes the wave speed
lower but tensile stress makes the wave speed higher. At small wavenumbers, the effect is weak. As
the wavenumber increases, the effect becomes stronger. The effect of initial stresses Q is quite different
from that of initial stresses P except that compressive stress still makes the wave speed lower. For a plate
with the initial stress in the thickness direction, the effect of initial stresses does not change significantly
as the wavenumber increases, but it becomes stronger as the mode order increases and it is very weak
on the first mode.
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Figure 5. Lamb-like wave phase velocity spectra for the N/N/N-1/1/1 plate under initial
stresses P; 1 layer stress represents P1 = −80 GPa, P2 = P3 = 0; and 2 layer stress
represents P2 =−80 GPa, P1 = P3 = 0.

(a)  (b) (b)  
(a) (b)

Figure 6. Lamb-like wave frequency curves versus initial stresses for the N/N/N-1/1/1
plate at k = 1 rad/m, with (a) initial stresses P1 and (b) initial stresses P2.

Figure 9 illustrates the curves of frequency with initial stresses P and Q for the N/S/N-1/2/1 plate at
k = 1 rad/m. It can be seen that with the increase of the initial stresses in both directions, the frequencies
of all modes approximately linearly lower. The effect of compressive stress is entirely contrary to that of
tensile stress. For the initial stresses in the wave-propagation direction, the slopes of the frequency curves
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(a) (b)(a)

(b)  (b)

Figure 7. SH wave dispersion curves for the N/S/N-1/2/1 plate under uniform initial
stresses P; (a) phase velocity spectra and (b) frequency spectra.

for all modes are similar. For the initial stresses in the thickness direction, the slope of the frequency
curve for the first mode is very small. As the mode order increases, the slope becomes larger.

4. Conclusions

Following [Biot 1965], guided wave propagation in layered plates under initial stresses in the thickness
and wave-propagation directions are investigated. The Legendre polynomial series method is used to
solve the coupled wave equations. The effects of the initial stresses on the dispersion curves are discussed.
Based on the calculated results, the following conclusions can be drawn:

(1) The effect of the initial stress on Lamb-like waves is quite different from that on the SH waves. The
effect on SH waves is very regular.



196 JIANGONG YU AND SHENLEI LI
�

(a)  (b)(a)
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 (b)  (b)

Figure 8. SH wave dispersion curves for the N/S/N-1/2/1 plate under initial stresses Q;
(a) phase velocity spectra and (b) frequency spectra.

(a)  (b) (b)  
(a) (b)

Figure 9. SH wave frequency curves versus initial stresses for the N/S/N-1/2/1 plate at
k = 1 rad/m, with (a) uniform initial stresses Q and (b) uniform initial stresses P .
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(2) The effect of the compressive stress on Lamb-like waves is not always contrary to that of the tensile
stress. But the effect of the compressive stress on SH waves is almost entirely contrary to that of
the tensile stress.

(3) For Lamb-like waves, the effect of the initial stress in the thickness direction usually is contrary to
that of the initial stress in the wave-propagation direction. However, for SH waves, the effects of
initial stresses in the two directions do not contrast, but their influential patterns are different.

(4) For Lamb-like waves, with the increase of the initial stresses in both directions, the frequency
variation is not linear and the varying trends of every mode are different. For SH waves, the curves
of the frequency versus the stresses are approximately linear for all modes.
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