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MICROSTRUCTURE-INDUCED ANISOTROPY

VOLODYMYR I. KUSHCH, SOFIA G. MOGILEVSKAYA,
HENRYK K. STOLARSKI AND STEVEN L. CROUCH

Maxwell’s concept of equivalent inhomogeneity is employed for evaluating the effective elastic proper-
ties of macroscopically anisotropic particulate composites with isotropic phases. The effective anisotropic
elastic properties of the material are obtained by comparing the far-field solutions for the problem of a
finite cluster of isotropic particles embedded in an infinite isotropic matrix with those for the problem
of a single anisotropic equivalent inhomogeneity embedded in the same matrix. The former solutions
precisely account for the interactions between all particles in the cluster and for their geometrical ar-
rangement. Illustrative examples involving periodic (simple cubic) and random composites suggest that
the approach provides accurate estimates of their effective elastic moduli.

1. Introduction

This paper examines Maxwell’s concept of equivalent inhomogeneity in the context of the effective
elastic properties of macroscopically anisotropic particulate composites with spherical particles. The
matrix and the particles are assumed to be isotropic, so the overall anisotropy is entirely due to the
geometrical arrangement of particles. Maxwell [1873] originally proposed the concept for evaluating
the effective electrical conductivity of isotropic particulate composites. He obtained an approximation
formula by equating “the potential at a great distance from the sphere” for two problems: a finite cluster of
conducting spherical particles embedded in an infinite conducting matrix, and a single equivalent sphere
embedded in the same matrix. The formula did not account for the interaction between the particles
and, therefore, for their geometrical arrangement. According to Maxwell, the formula was only valid
for materials with low volume fractions of particles. Nonetheless, the formula and analogous estimates
(for example, for dielectric, magnetic, optical, and elastic properties) remain extremely popular [Milton
2002; Torquato 2002; McCartney and Kelly 2008; McCartney 2010; Levin et al. 2012] due to their
simple, ready-to-use analytical nature. The accuracy of these analytical formulas has been discussed in
several publications (for example, [McCartney and Kelly 2008; McCartney 2010; Mogilevskaya et al.
2012]).

It was recently brought to our attention that a concept somewhat similar to that of Maxwell is widely
used in the geophysics community. Kuster and Toksöz [1974] (who apparently were not aware of
Maxwell’s approach) suggested equating the displacement fields for waves scattered by the equivalent
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spherical inhomogeneity and those by a cluster of spherical or spheroidal reinforcements in order to
evaluate the effective elastic moduli of two-phase composites. These authors made the assumption
that “multiple scattering effects are negligible”, which allowed them to neglect interactions between
the reinforcements in the cluster and its geometry. The method is discussed in detail in [Berriman and
Berge 1996], where it was compared with the Mori–Tanaka approach. Recently, Weng [2010] and Levin
et al. [2012] have shown that the approach of [Kuster and Toksöz 1974] is a dynamical analog of the
Maxwell scheme.

In a series of recent papers Maxwell’s concept was modified to evaluate the effective elastic prop-
erties of transversely isotropic composites [Mogilevskaya et al. 2010a; 2010b; 2012; Mogilevskaya
and Crouch 2013], the thermal properties of isotropic particulate composites [Koroteeva et al. 2010;
Mogilevskaya et al. 2011], and the viscoelastic properties of transversely isotropic composites [Py-
atigorets and Mogilevskaya 2011]. The modified concept allowed for a precise account of both the
interactions among the constituencies in the cluster and their geometrical arrangement. The comparisons
of the estimates obtained using Maxwell’s modified approach with benchmark results for periodic and
random composites and with the exact solutions demonstrated the estimates’ accuracy even for materials
with high volume fractions. It has been suggested [Mogilevskaya et al. 2010b; Mogilevskaya and Crouch
2013] that the general methodology presented in those papers would be formally applicable to composite
materials exhibiting anisotropic behavior if the solution of a single inhomogeneity with a corresponding
degree of anisotropy was used as the reference solution.

The objective of the present paper is to demonstrate that Maxwell’s concept is applicable to macro-
scopically anisotropic particulate composites with isotropic phases (matrix and spherical particles). The
formulation involves the solutions for two problems: an infinite isotropic matrix containing a spherical
inhomogeneity with an arbitrary degree of anisotropy, and an infinite matrix containing a cluster of
nonoverlapping isotropic elastic spherical particles. The effective stiffness tensor of the composite is
evaluated by comparing the far-field asymptotic behavior of the displacements for both solutions.

The method of solving the problem of a single anisotropic ellipsoidal inhomogeneity was outlined
in Eshelby [1961]; see also [Mura 1987] and the references therein. Closed-form solutions have been
reported for the particular cases of material symmetries, for example, by Huang [1968], who considered
a problem of a single anisotropic spherical inhomogeneity which possessed cubic symmetry.

The problem of a finite cluster of elastic spherical particles embedded in an infinite elastic matrix has
been studied in several publications, but mostly under various simplified assumptions, for example, the
assumption that the strains inside the inhomogeneities are uniform [Molinari and El Mouden 1996] and
the equivalent transformational strains are polynomial [Moschovidis and Mura 1975]; or the assumption
that the interactions are governed by the average equivalent transformational strains [Rodin and Hwang
1991; Shen and Yi 2001]. In several papers the interactions between the inhomogeneities were accounted
for in different approximate manners (for example, pairwise interactions in [Ju and Yanase 2010] and
eight-particle interactions in [Yin and Sun 2005]). The problem was also solved numerically, for example,
in [Fu et al. 1998] with the boundary element method. Complete multipole-type analytical solutions for
the problem of a finite cluster of isotropic inhomogeneities were obtained in [Golovchan et al. 1993]
for spherical particles, [Kushch 1996] for aligned spheroidal inhomogeneities, [Kushch 1998] for arbi-
trary oriented spheroidal inhomogeneities, and [Kushch et al. 2011] for spherical inhomogeneities with
imperfect, Gurtin–Murdoch type, interfaces.
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The solutions for spatially periodic media have been reported for cubic arrays of rigid spheres [Nunan
and Keller 1984], for cubic arrays of elastic spheres [Sangani and Lu 1987], for a medium with arbitrary
periodic arrays of elastic spheres [Kushch 1985; 1987; Sangani and Mo 1997], for a medium with periodic
arrays of elastic spheroids [Kushch 1997], and for a transversely isotropic medium with finite or infinite
periodic arrays of transversely isotropic spheres [Kushch 2003; Kushch and Sevostianov 2004]. These
solutions were used to calculate the effective elasticity tensors of periodic and quasirandom composites.

The three-dimensional effective elastic properties (isotropic and anisotropic) of particulate composite
and porous materials were also calculated in [Nemat-Nasser and Taya 1981; Nemat-Nasser et al. 1982;
Iwakuma and Nemat-Nasser 1983; Luciano and Barbero 1994; Cohen and Bergman 2003; Cohen 2004].
Those estimates were obtained using the simplifying assumptions of constant equivalent strains within
each inhomogeneity. Torquato [1997] obtained exact series expansions for the effective stiffness tensor
of macroscopically anisotropic, two-phase composite media in terms of the powers of the “elastic po-
larizabilities”. Numerical estimates are also available, for example, with the finite element method in
[Segurado and Llorca 2002; 2006; Zohdi and Wriggers 2005] and with boundary element method in
[Grzhibovskis et al. 2010]. In addition, various effective medium theories and variational bounds have
been generalized to estimate the overall three-dimensional anisotropic elastic properties (for example,
[Willis 1977; Benveniste 1987; Ponte Castañeda and Willis 1995; Milton 2002; Torquato 2002]).

In the present paper the cluster problem is solved semianalytically using the multipole expansion
method of [Kushch et al. 2011]. The reference solution for a single anisotropic spherical inhomogeneity
is rederived in a form more suitable for comparison with the cluster problem. A numerical procedure
for calculating the effective stiffness tensor is described for materials with an arbitrary degree of overall
anisotropy. Closed-form expressions are given for the particular case of cubic symmetry. The effective
moduli obtained with the generalized Maxwell method are compared with those obtained by periodic
homogenization [Kushch 1987; Sangani and Lu 1987] and with the various approximate estimates and
bounding methods.

The paper is structured as follows. Sections 2–4 summarize the statement of the problem, governing
equations, and numerical solution (with details provided in the Appendix). These are followed by illus-
trative examples involving periodic (simple cubic) and random composites in Section 5 and conclusions
in Section 6.

2. The equivalent anisotropic inhomogeneity problem

Consider an infinite isotropic elastic matrix with shear modulus µ0 and Poisson’s ratio ν0 containing an
anisotropic spherical elastic inhomogeneity of radius Reff perfectly bonded to the matrix material. The
entire system is subjected to the uniform far-field strain E= Ei j ii i j . This is the standard Eshelby problem
whose analytical solution is outlined elsewhere (for example, in [Eshelby 1961; Mura 1987]). Below it
is derived in a somewhat different form, more suitable for our purposes. The derivation procedure is
essentially that of [Kushch et al. 2011], with minor modifications.

The displacement vector u(0) in the matrix domain is sought as a sum of the far field and the disturbance
field caused by the inhomogeneity

u(0)(r)= E · r + udis(r), (1)
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where r is a position vector relative to the Cartesian coordinate system with origin at the center of the
inhomogeneity, and udis is the displacement disturbance field that should obey the condition udis(r)→ 0
as ‖r‖→∞. To assure that this condition is satisfied, udis is taken in the form

udis(r)=
∑
i,t,s

B(i)ts U (i)
ts (r)

(∑
i,t,s

=

3∑
i=1

∞∑
t=0

t∑
s=−t

)
, (2)

where B(i)ts are the unknown complex coefficients, and the complex-value irregular vector functions U (i)
ts

(i = 1, 2, 3) are defined by (A.7). Specifically, U (1)
ts are the potential vectors (gradients of scalar potential),

U (2)
ts are harmonic vectors with nonzero curl, and U (3)

ts are the biharmonic vectors with harmonic diver-
gence. In particular, U (2)

1s and U (3)
1s represent the displacements due to the concentrated moment and force,

respectively (see the Appendix). For a single inhomogeneity problem the series of (2) involves only the
functions with t ≤ 2, see [Kushch et al. 2011]. In addition, equilibrium conditions for the inhomogeneity,
with the resultant force T = 0 and the resultant torque M = 0, require that some coefficients with t ≤ 2
also be excluded (see the Appendix). Thus udis involves only the functions possessing nonzero vector
dipole moment:

udis(r)= B(1)00 U (1)
00 (r)+

∑
|s|≤2

B(3)2s U (3)
3s (r). (3)

The Cartesian projections of udis are real numbers, which implies that B(3)2,−s = (−1)s B(3)2s . Thus, the
total number of unknown coefficients includes two real (B(1)00 and B(3)20 ) and two complex (B(3)21 and B(3)22 )
coefficients in (3).

The linear far-field displacement field ufar = E · r is expressed as follows [Kushch et al. 2011]:

E · r = c(3)00 u(3)00 (r)+
∑
|s|≤2

c(1)2s u(1)2s (r), (4)

where u(i)ts are the regular vector functions defined by (A.5), and the coefficients c(i)ts are defined as follows

c(3)00 =
(E11+ E22+ E33)

3γ0(ν0)
, c(1)20 =

(2E33− E11− E22)

3
,

c(1)21 =−c(1)2,−1 = E13− iE23, c(1)22 = c(1)2,−2 = E11− E22− 2iE12,

(5)

where the coefficients γt = γt(ν0) are given by (A.6) and i2
=−1.

It is well-known [Eshelby 1961] that the strains Di j in the inhomogeneity are uniform, thus the dis-
placement u(1)(r) inside the inhomogeneity can be presented as the following linear function of Cartesian
coordinates (r = x j i j ):

u(1)(r)= D · r = Di j x j ii . (6)

By analogy with (4), u(1)(r) can be written as

u(1)(r)= d(3)00 u(3)00 (r)+
∑
|s|≤2

d(1)2s u(1)2s (r), (7)
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where

γ0d(3)00 =
(D11+ D22+ D33)

3
, d(1)20 =

(2D33− D11− D22)

3
,

d(1)21 = D13− iD23, d(1)22 = D11− D22− 2iD12,

(8)

and d(1)2,−s = (−1)sd(1)2s . The corresponding uniform stress tensor inside the inhomogeneity is

σ (1)(r)= S= Si j ii i j = C∗ : D, (9)

where C∗ is the stiffness tensor (anisotropic, in the general case).
The twelve unknowns that govern the problem of a single inhomogeneity include six real coefficients

Di j of (8), and two real (B(1)00 and B(3)20 ) and two complex (B(3)21 and B(3)22 ) coefficients of (3). They
can be obtained from the following conditions of perfect bonding at the matrix/inhomogeneity interface
Seff(r = Reff):

[[u]]Seff = 0, [[Tr (u)]]Seff = 0, (10)

where [[ f ]]Seff =
(

f (0) − f (1)
)

Seff
is a jump of the quantity f across the interface Seff and Tr (u) is the

traction vector at Seff. The latter has the following form (n= er = n j i j ):

Tr
(
u(1)

)
= S · er = Si j ii i j · er = Si j n j ii . (11)

In view of r = r er , the tractions Tr
(
u(1)

)
can be expanded in series analogous to that of (7):

r Tr
(
u(1)

)
= s(3)00 u(3)00 (r)+

∑
|s|≤2

s(1)2s u(1)2s (r), (12)

where

γ0s(3)00 =
(S11+ S22+ S33)

3
, s(1)20 =

(2S33− S11− S22)

3
,

s(1)21 = S13− iS23, s(1)22 = S11− S22− 2iS12.

(13)

In order to fulfill the interface conditions of (10), we express u(0) and u(1) in terms of vector spherical
harmonics S(i)ts (see (A.1)) and use their orthogonality at the spherical surface Seff. With the aid of (A.5)
and (A.7) we find that

ufar(r)= γ0c(3)00 r S(3)00 +
∑
|s|≤2

c(1)2s
r

(2+ s)!

(
S(1)2s + 2S(3)2s

)
, (14)

udis(r)=−B(1)00
1
r2 S(3)00 +

∑
|s|≤2

(2− s)!
r2

[
B(1)2s

1
r2

(
S(1)2s − 3S(3)2s

)
+ B(3)2s

(
β−3 S(1)2s + γ−3 S(3)ts

)]
, (15)

and
u(1)(r)= D · r = γ0d(3)00 r S(3)00 +

∑
|s|≤2

d(1)2s
r

(2+ s)!

(
S(1)2s + 2S(3)2s

)
, (16)

where the coefficients γt = γt(ν0) and βt = βt(ν0) involved in (15) are defined by (A.6).
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By equating the coefficients of S(3)00 on both sides of the equality u(0) = ufar+ udis = u(1), we obtain
the algebraic equation

γ0c(3)00 −
1

R3
eff

B(1)00 = γ0d(3)00 . (17)

Similarly, by equating the coefficients of S(1)2s and S(3)2s (s = 0, 1, 2), one obtains

2c(1)2s +
(2+ s)!(2− s)!

R3
eff

(
2

R2
eff

B(1)2s + 2β−3 B(3)2s

)
= 2d(1)2s ,

2c(1)2s +
(2+ s)!(2− s)!

R3
eff

(
−

3
R2

eff
B(1)2s + γ−3 B(3)2s

)
= 2d(1)2s ,

(18)

In view of γ−3− 2β−3 = 1, we find that

B(1)2s

R2
eff
=

1
5

B(3)2s . (19)

By eliminating B(1)2s using (19) and taking into account that β−3(ν)= (1− 2ν)/3, (18) reduces to

c(1)2s +
(2+ s)!(2− s)!

R3
eff

(8− 10ν0)

15
B(3)2s = d(1)2s . (20)

The same procedure is employed to fulfill the second condition in (10), namely Tr
(
u(0)

)
= Tr

(
u(1)

)
.

With the aid of (A.9) and (A.11) we write

Tr (ufar)= c(3)00 2µ0g0(ν0)S
(3)
00 + 2µ0

∑
|s|≤2

c(1)2s
1

(2+ s)!

(
S(1)2s + 2S(3)2s

)
, (21)

Tr (udis)= B(1)00
4µ0

R3
eff

S(3)00 + 2µ0
∑
|s|≤2

(2−s)!
r3

[
−B(1)2s 4

1
R2

eff

(
S(1)2s −3S(3)2s

)
+B(3)2s

(
b−3 S(1)2s +g−3 S(3)2s

)]
,

(22)

and

Tr
(
u(1)

)
= γ0s(3)00 S(3)00 +

∑
|s|≤2

s(1)2s
1

(2+ s)!

(
S(1)2s + 2S(3)2s

)
. (23)

The coefficients bt = bt(ν0) and gt = gt(ν0) involved in (22) are defined by (A.10). By using (18), as
well as the equalities 2b−3− g−3 = 4 and b−3(ν)= (1+ ν)/3, we obtain the following linear equations:

2µ0g0c(3)00 +
4µ0

R3
eff

B(1)00 = γ0s(3)00 , (24)

c(1)2s −
(2+ s)!(2− s)!

R3
eff

(7− 5ν0)

15
B(3)2s =

s(1)2s

2µ0
(s = 0, 1, 2). (25)

The system of (17), (18), (24), and (25) represents a complete set of four real and four complex
algebraic equations (twelve real equations in total) needed to find all the unknown coefficients (six real
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coefficients Di j of (8) and two real (B(1)00 and B(3)20 ) and two complex (B(3)21 and B(3)22 ) coefficients of (3)).
This system is uniquely resolved to get all the series expansion coefficients in (2) and (7).

3. The cluster problem

Consider an infinite elastic isotropic matrix with shear modulus µ0 and Poisson’s ratio ν0 containing a
cluster of N nonoverlapping isotropic elastic spherical particles, of the same radii R and elastic properties
µ1 and ν1, perfectly bonded to the matrix. In the global Cartesian coordinate frame Ox1x2x3, the center
of p-th particle is specified by vector Rp. The entire system is subjected to the uniform far-field strain
E = Ei j ii i j . In the following this problem is referred to as a finite cluster model (FCM) of the composite.

The solution of the problem is described in detail in [Kushch et al. 2011], where it was obtained for the
case of more general interface conditions. The solution procedure employs the superposition principle.
Specifically, udis(r) of (1) is sought as a superposition of the disturbance fields of (2) (vanishing at
infinity) caused by each particle separately:

udis(r)=
N∑

p=1

∑
i,t,s

A(i)(p)ts U (i)
ts (r − Rp), (26)

where U (i)
ts are the irregular vector functions (vanishing at infinity) defined by (A.7) and A(i)(p)ts are the

multipole expansion coefficients related to the p-th particle. The displacement vector within the particle
is bounded but not linear (due to the interactions between the particles in the cluster) and, therefore, is
represented by the infinite series of the regular functions u(i)ts defined by (A.5):

u(p)(r)=
∑
i,t,s

d(i)(p)ts u(i)ts (r). (27)

An infinite system of linear equations for the unknown coefficients A(i)(p)ts and d(i)(p)ts is obtained from
the interface conditions of (10), written for each particle, using the orthogonality properties of vector
spherical harmonics. For this purpose, the matrix displacement u(0) given by (1) and (26) should be ex-
panded in the local spherical coordinates of each specific particle with the aid of the reexpansion formulas
for U (i)

ts due to shift of the coordinate frame [Kushch 1985; 2013] The system is solved numerically after
the series of (26) and (27) are truncated (see [Kushch et al. 2011] for more details).

4. Effective stiffness of the composite
using the generalized Maxwell approach

The generalized Maxwell concept of equivalent inhomogeneity implies that the effective stiffness tensor
of the composite can be obtained by comparing the far-field asymptotic behavior of the displacements
for the solutions obtained in Sections 2 and 3. Specifically, we equate the dipole moments of an entire
cluster of particles to those of an equivalent spherical inhomogeneity with the effective elastic moduli
to be found. The radius Reff of the equivalent inhomogeneity is defined by Maxwell [1873] so as to
preserve the volume fraction c of the inhomogeneities in the cluster, which results in

R3
eff = N R3/c. (28)
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A comparison of the displacements given by (2) and (26) yields the following relation:

B(i)i−1,s =

N∑
p=1

A(i)(p)i−1,s , i = 1, 2, 3. (29)

In fact, (29) for i = 2 is a trivial identity because B(2)1s = A(2)1s = 0, due to the equilibrium conditions (see the
Appendix and the text preceding (3)). Equation (29) is a formal expression of the generalized Maxwell
concept which consists in equating the dipole moments of an entire cluster to those of an equivalent
inhomogeneity whose the effective elastic moduli are to be found.

The complete numerical procedure that utilizes the generalized Maxwell concept includes the follow-
ing steps:

(a) identification of the cluster of N inhomogeneities that adequately represent the composite material
in question,

(b) solution of the cluster problem for any given E to get a whole set of the series expansion coeffi-
cients A(i)(p)ts ,

(c) evaluation of the dipole coefficients B(i)i−1,s of the equivalent inhomogeneity from the relation (29),

(d) substitution of the coefficients B(i)i−1,s into (17) and (18) to obtain the coefficients d(3)00 and d(1)2s (these
are later used to recover the coefficients Di j from (8)),

(e) substitution of the coefficients B(i)i−1,s into (24) and (25) to obtain the coefficients s(3)00 and s(1)2s (these
are later used to recover the coefficients Si j from (13)), and

(f) determination of the effective stiffness tensor C∗ from the constitutive relation S= C∗ : D. In order
to determine all the components of this tensor, steps (b)–(e) need to be performed for six linearly
independent realizations of the tensor E, for example, for E11 i1 i1, E22 i2 i2, E33 i3 i3, E13(i1 i3+ i3 i1),
E23(i2 i3+ i3 i2), and E12(i1 i2+ i2 i1).

This procedure is illustrated below for the case of periodic composite material with simple cubic (SC)
packing of isotropic spherical particles embedded into isotropic matrix.

4.1. Cubic symmetry. Consider the periodic composite with SC packing of spherical elastic particles.
The cluster of N = n3 particles representing the material is shown on the left in Figure 1 (n is the
number of particles in each of the coordinate directions). This composite is known to be macroscopically
anisotropic and is characterized by three independent elastic moduli C∗1111, C∗1122, and C∗1212 (C∗2222 =

C∗3333 = C∗1111, C∗2233 = C∗3311 = C∗1122, and C∗2323 = C∗3131 = C∗1212). Alternatively, the overall behavior
can be characterized by the effective bulk modulus k∗ and two shear moduli µ∗1 and µ∗2 as follows:

k∗ =
(C∗1111+ 2C∗1122)

3
, µ∗1 =

(C∗1111−C∗1122)

2
, µ∗2 = C∗1212. (30)

In these notations, the generalized Hooke’s law S= C∗ : D is written as

S11+ S22+ S33 = 3k∗(D11+ D22+ D33),

2S33− S11− S22 = 2µ∗1(2D33− D11− D22),

S11− S22− 2iS12 = 2µ∗1(D11− D22)− 4iµ∗2 D12.

(31)
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Figure 1. Maxwell’s equivalence principle: (left) the finite cluster model (FCM) and
(right) the equivalent inhomogeneity.

4.1.1. Effective bulk modulus. Consider the far-field strain field characterized by nonzero components
E11 = E22 = E33 = 1. The algebraic manipulations with (5), (8), (17), (24), and (31) and the use of the
identity

g0(ν0)

γ0(ν0)
=

1+ ν0

1− 2ν0
=

3k0

2µ0
(32)

yield the following relations:

1− B(1)00
1

R3
eff

=
(D11+ D22+ D33)

3
, 3k0+

4µ0

R3
eff

B(1)00 = 3k∗
(D11+ D22+ D33)

3
, (33)

which reduce to

3k0+ 4µ0
B(1)00

R3
eff

= 3k∗
(

1−
B(1)00

R3
eff

)
. (34)

Using (29) and the Maxwell definition of volume fraction given by (28), one gets

B(1)00

R3
eff

=
c

N R3

N∑
p=1

A(1)(p)00 = c
〈
A(1)00

〉
, (35)

where
〈
A(1)00

〉
is the mean dipole moment. Combination of the last two equations leads to the following

expression for the effective bulk modulus k∗:

k∗

k0
=

1+ (4µ0)/(3k0)c
〈
A(1)00

〉
1− c

〈
A(1)00

〉 . (36)

4.1.2. Effective shear modulus µ∗1. Consider the far-field strain field characterized by nonzero compo-
nents E33 = 1 and E11 = E22 =−E33/2. The only nonzero coefficient of (5) is c(1)20 = 1. Using (20) and
(25) with s = 0 as well as (31), one gets the following system of equations:

1+
4

R3
eff

(8− 10ν0)

15
B(3)20 =

(2D33− D11− D22)

3
,

1−
4

R3
eff

(7− 5ν0)

15
B(3)20 =

µ∗1

µ0

(2D33− D11− D22)

3
.

(37)
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The system of (37), with the use of expression (29), yields the following solution for the effective
shear modulus µ∗1:

µ∗1

µ0
=

1− (7− 5ν0)
4

15 c
〈
A(1)20

〉
1+ (8− 10ν0)

4
15 c

〈
A(1)20

〉 , (38)

where the mean dipole
〈
A(1)2s

〉
is defined as

〈
A(1)2s

〉
=

1
N R3

N∑
p=1

A(1)(p)2s . (39)

4.1.3. Effective shear modulus µ∗2. Now consider the far-field strain field characterized by nonzero com-
ponent E12 = 1. The only nonzero coefficient of (5) is c(1)22 = −2i. Using (20) and (25) with s = 2 as
well as (31), one gets the following system of equations:

−2i+ 24
(8− 10ν0)

15
B(3)22

R3
eff

= D11− D22− 2iD12,

−2i+ 24
(−7+ 5ν0)

15
B(3)22

R3
eff

=
µ∗1

µ0
(D11− D22)− 2i

µ∗2

µ0
D12.

(40)

Using (29) and separating the imaginary parts in the equations of system (40), the following solution for
the effective shear modulus µ∗2 is obtained:

µ∗2

µ0
=

1+ (7− 5ν0)
4
5 c
〈
Im A(1)22

〉
1− (8− 10ν0)

4
5 c
〈
Im A(1)22

〉 . (41)

4.1.4. Noninteracting estimates. In the case when the interactions between the particles are neglected,
the cluster problem reduces to a set of N uncoupled single-particle problems, as in the original Maxwell
approach. Hence, 〈

A(1)00

〉
=

k1− k0

k1+
4
3µ0

, (42)

〈
A(1)20

〉
=

15
4

µ0−µ1

(8− 10ν0)µ1+ (7− 5ν0)µ0
, (43)〈

Im A(1)22

〉
=

5
4

µ0−µ1

(8− 10ν0)µ1+ (7− 5ν0)µ0
. (44)

It could be shown that, in this case, the estimates of (36) for the effective bulk modulus reduce to
those of [Kerner 1956; McCartney and Kelly 2008; McCartney 2010], and to one of the Hashin and
Shtrikman [1963] bounds. They also coincide with the estimates of the composite sphere assemblage,
the Mori–Tanaka method, and those of the generalized self-consistent method (for example, [Milton 2002;
McCartney and Kelly 2008]). The estimates of (38) for the effective shear modulus µ∗1 and the estimates
of (41) for the effective shear modulus µ∗2 coincide and reduce to those of [Kerner 1956; McCartney
and Kelly 2008; McCartney 2010] and to the one of the Hashin and Shtrikman [1963] bounds. They
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also coincide with the estimates of the composite sphere assemblage and the Mori–Tanaka method (for
example, [Milton 2002; McCartney and Kelly 2008]).

It can be concluded that noninteracting estimates cannot capture the overall, microstructure induced,
anisotropy of the composite material.

5. Numerical study

5.1. Periodic (SC) composite. In order to test the developed approach, we evaluate three effective elas-
tic moduli of the periodic composite with simple cubic (SC) arrangement of particles considered in
Section 4.1 (the representative cluster is depicted in Figure 1, left). Accurate values of the effective
moduli of such composites are reported by Kushch [1987] and Sangani and Lu [1987], who provided
complete solutions of the triple periodic homogenization problem. Their results are practically identical
except for in the value of µ∗2(c)/µ0 for porous material. It was suggested by Cohen [2004] that the
estimates of [Sangani and Lu 1987] might be inaccurate. Therefore, in the subsequent analysis, all the
periodic (SC) solutions have been recalculated with tmax = 20 and used as reference solutions. In addition,
various bounds and approximate estimates are available (for example, [Milton 2002; Cohen and Bergman
2003; Cohen 2004]) and are used for comparison.

In order to provide comparison with the numerical data reported in the above cited works, in the
following studies, as in [Kushch 1987; Sangani and Lu 1987], we assume ν0 = ν1 = 0.3. The equivalent
inhomogeneity (Figure 1, right) is assumed to be anisotropic and to possess cubic symmetry of elastic
properties with three independent elastic moduli defined by (30).

First simulations are conducted to analyze the convergence rate of the generalized Maxwell solution in
terms of the cluster’s size. The three effective elastic moduli for high-contrast composite (µ1/µ0 = 100)
are presented in Table 1 for the values n = 1, 2, 3, 4 and two volume fractions c (c = 0.1 and c = 0.5).
The packing limit for the SC composite is cmax = π/6≈ 0.5236. The extreme cases we study in this part
are deliberately designed to test the developed method.

Here and below, the series of (26) and (27) are truncated at tmax = 13. This number was sufficient
to provide numerical solutions for dipole coefficients A(1)(p)0s and A(3)(p)2s that are accurate up to four
significant digits for c ≤ 0.45 and up to at least three significant digits for c = 0.5. The last row of
Table 1 contains values of SC results from [Kushch 1987; Sangani and Lu 1987] that are accurate up to
four significant digits. It is seen from Table 1 that for c = 0.5 the value of n = 4 is sufficient to estimate
all three moduli with accuracy of about 5%. This seems to be a good result, in view of the fact that
c = 0.5 is near the packing limit (cmax = 0.5236) and the contrast between the particles and the matrix is
very high (almost rigid particles). For c = 0.1 the convergence rate is higher, especially for the relative
bulk modulus k∗/k0. Therefore, in the subsequent numerical studies the value n = 4 has been adopted.

The generalized Maxwell approach is capable of capturing the microstructure-induced overall anisotropy
of the material (quite pronounced for c = 0.5, µ∗1/µ

∗

2 ≈ 2), whereas the noninteracting approach predicts
macroscopic isotropy (µ∗2 = µ

∗

1).
The simulations to follow are conducted for porous (µ1= 0), moderate contrast (µ1/µ0= 10), and high-

contrast (µ1/µ0 = 100) composite materials and for a wide range of volume fractions. The normalized
effective moduli k∗/k0, µ∗1(c)/µ0, and µ∗2(c)/µ0 obtained using the generalized Maxwell approach,
labeled FCM, are presented in Tables 2, 3, and 4, respectively, where they are compared with the SC
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c = 0.1 c = 0.5
n k∗/k0 µ∗1/µ0 µ∗2/µ0 k∗/k0 µ∗1/µ0 µ∗2/µ0

1 1.176 1.228 1.228 2.564 3.015 3.015
2 1.176 1.247 1.217 2.928 4.881 3.242
3 1.176 1.254 1.214 3.098 6.160 3.301
4 1.176 1.258 1.212 3.184 7.024 3.330

SC 1.176 1.263 1.209 3.287 6.697 3.399

Table 1. Convergence of the FCM solution to the exact solution in terms of the cluster
size, n.

k∗/k0 µ∗1/µ0 µ∗2/µ0

c SC FCM C&B SC FCM C&B SC FCM C&B

0.10 0.774 0.774 0.774 0.841 0.839 0.841 0.812 0.814 0.812
0.20 0.602 0.601 0.604 0.718 0.712 0.719 0.640 0.644 0.641
0.30 0.465 0.462 0.471 0.609 0.600 0.612 0.490 0.494 0.496
0.40 0.348 0.343 0.364 0.504 0.495 0.512 0.360 0.360 0.379
0.45 0.295 0.289 0.318 0.450 0.443 0.463 0.301 0.298 0.330
0.50 0.242 0.238 0.276 0.393 0.389 0.413 0.243 0.237 0.288

Table 2. Comparison of normalized effective moduli of porous solid.

solutions. In addition, these tables contain the results predicted by the approximate formulas proposed
for the cubic arrays by Cohen and Bergman [2003] and Cohen [2004], labeled C&B.

These formulas have the following forms [Cohen and Bergman 2003; Cohen 2004]:

k∗

k0
= 1−

c
k0/(k0− k1)− 3k0(1− c)/(3k0+ 4µ0)

, (45)

µ∗1

µ0
= 1−

c(1−µ1/µ0)

1− (1− c+G1)s2
, (46)

µ∗2

µ0
= 1−

c(1−µ1/µ0)

1− (1− c+G2)s2
, (47)

where
G1 = (3k0+µ0)(−0.929c+ 1.1422c5/3)/(k0+ 2µ0), G2 =−2G1/3,

s2 = 1.2(k0+ 2µ0)(1−µ1/µ0)/(3k0+ 4µ0).
(48)

Expression (45) coincides with that of (36) and (42), which means that it does not include the effects
of particles’ interactions. In the case of porous materials Cohen [2004, Tables 2 and 3] showed that
estimates (45)–(47) are in good agreement with those of [Iwakuma and Nemat-Nasser 1983], while the
results of [Kushch 1987; Sangani and Lu 1987] for the bulk modulus are in good agreement with those
of [Torquato 1998].
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k∗/k0 µ∗1/µ0 µ∗2/µ0

c SC FCM C&B SC FCM C&B SC FCM C&B

0.10 1.150 1.150 1.150 1.208 1.204 1.208 1.173 1.175 1.173
0.20 1.331 1.331 1.330 1.504 1.490 1.500 1.363 1.369 1.361
0.30 1.558 1.561 1.551 1.915 1.890 1.890 1.593 1.604 1.581
0.40 1.869 1.872 1.829 2.492 2.467 2.375 1.907 1.919 1.856
0.45 2.087 2.083 1.996 2.873 2.865 2.646 2.130 2.137 2.024
0.50 2.391 2.378 2.189 3.348 3.381 2.927 2.463 2.446 2.222

Table 3. Comparison of normalized effective moduli of moderate contrast (µ1/µ0 = 10) composite.

k∗/k0 µ∗1/µ0 µ∗2/µ0

c SC FCM C&B SC FCM C&B SC FCM C&B

0.10 1.176 1.176 1.176 1.263 1.258 1.263 1.209 1.212 1.209
0.20 1.397 1.399 1.396 1.676 1.653 1.669 1.445 1.455 1.442
0.30 1.690 1.694 1.677 2.336 2.287 2.270 1.746 1.765 1.723
0.40 2.137 2.139 2.048 3.505 3.449 3.106 2.208 2.230 2.092
0.45 2.514 2.508 2.284 4.556 4.570 3.610 2.599 2.609 2.330
0.50 3.287 3.184 2.564 6.697 7.024 4.156 3.399 3.330 2.623

Table 4. Comparison of normalized effective moduli of high-contrast (µ1/µ0 = 100) composite.

It can be seen from Tables 2–4 that the generalized Maxwell approach provides estimates of the
effective stiffnesses of composites consistent with SC results for the considered range of c and µ1/µ0.
On the other hand, the approximate expressions of [Cohen and Bergman 2003; Cohen 2004], in general,
provide accurate estimates only for low volume fractions of particles for high-contrast composites, as
suggested by the authors themselves.

The normalized effective moduli k∗(c)/k0, µ∗1(c)/µ0, and µ∗2(c)/µ0 of the high-contrast composite
(µ1/µ0 = 100) are also plotted in Figure 2, in which the FCM-based results (n = 4) are marked by open
and solid circles, the dash-dotted lines represent the noninteracting approach, the solid and dashed lines
represent the SC solution of [Kushch 1987], and the open and solid triangles represent the results of
[Cohen 2004].

In addition, in Table 5, we verified that the effective shear moduli µ∗1(c) and µ∗2(c) of high-contrast
composite (µ1/µ0 = 100, ν0 = ν1 = 0.3) obtained with both SC and FCM models satisfy the following
inequalities developed for a composite with cubic symmetry [Milton 2002]:

3c
2[µ∗1(c)−µ0]

+
c

µ∗2(c)−µ0
≤

5
2(µ1−µ0)

+
3(1− c)(k0+ 2µ0)

µ0(3k0+ 4µ0)
, (49)

3(1− c)
2[µ1−µ

∗

1(c)]
+

(1− c)
µ1−µ

∗

2(c)
≤

5
2(µ1−µ0)

−
3c(k1+ 2µ1)

µ1(3k1+ 4µ1)
. (50)

As can be seen from Table 5, the noninteracting estimates coincide with the right-hand side of inequal-
ity (49), while they also fulfill inequality (50). The estimates based on Cohen and Bergman’s formulas
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0.0 0.1 0.2 0.3 0.4 0.5
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3  SC (Kushch, 1987)
 FCM (N = 64)
 Cohen (2004)
 Non-interacting, Eq. (37)
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 / 
k 0

c
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4

6

 SC (Kushch, 1987) - 1*/ 0

 SC (Kushch, 1987) - 2*/ 0

 FCM (N = 64) - 1*/ 0

 FCM (N = 64) - 2*/ 0

 Cohen (2004) - 1*/ 0

 Cohen (2004) - 2*/ 0

 Non-interacting, Eq. (41) 
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/

0, 
  

2*
/

0

c
Figure 2. Normalized effective bulk modulus (left) and shear moduli (right) of high-
contrast (µ1/µ0 = 100) composite with SC array of spherical particles.

LHS (49) LHS (50)
c (43) C&B FCM SC RHS (49) (43) C&B FCM SC RHS (50)

0.10 1.0967 1.048 1.053 1.049 1.0967 0.023 0.023 0.023 0.023 0.0241
0.20 0.9776 0.901 0.899 0.893 0.9776 0.020 0.020 0.020 0.020 0.0229
0.30 0.8586 0.769 0.742 0.739 0.8586 0.018 0.018 0.018 0.018 0.0217
0.40 0.7395 0.651 0.570 0.571 0.7395 0.015 0.015 0.015 0.015 0.0205
0.45 0.6800 0.597 0.472 0.471 0.6800 0.014 0.014 0.014 0.014 0.0199
0.50 0.6205 0.546 0.341 0.340 0.6205 0.013 0.013 0.013 0.013 0.0193

Table 5. The values of the left and right-hand sides (LHS and RHS) of (49) and (50)
for µ1/µ0 = 100.

(46) and (47) also satisfy both inequalities. Interestingly the combination involved in the left-hand side
of (50) is the same (up to three significant digits) for all four methods considered.

5.2. Random composite. In this section the generalized Maxwell approach is used to evaluate the ef-
fective elastic stiffness of random particulate composites. In the case of statistically uniform random
microstructure, the composite is known to be macroscopically isotropic and characterized by two elastic
moduli, k∗ and µ∗.

The representative finite clusters of such material are constructed by random generations of particles
in a cube by employing the molecular dynamics algorithm for growing particles used in [Sangani and
Mo 1997]. To provide statistical validity to the results, the simulation data are averaged over 20 random
configurations. The standard error of the mean (the standard deviation divided by the square root of the
number of configurations) is indicated in Tables 6 and 7, with the error estimate for the last significant
digit enclosed in parentheses. For example, 4.35(3) means 4.35± 0.03.

In Table 6, the normalized effective bulk (k∗/k0) and shear (µ∗/µ0) moduli of the rigid particle
composite (µ1 =∞) are presented for a wide range of volume fractions: c = 0.1, 0.25, 0.45, 0.6. In
order to check isotropy of the model, the normalized shear modulus was estimated using both (38) and
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k∗/k0 µ∗/µ0

c (36) S&M (42) (38) (41) S&M (43)

0.10 1.184(0) 1.183(1) 1.179 1.245(0) 1.244(0) 1.242(2) 1.233
0.25 1.569(2) 1.60(1) 1.538 1.794(3) 1.775(2) 1.85(2) 1.700
0.45 2.55(1) 2.53(1) 2.322 3.32(2) 3.32(3) 3.42(3) 2.718
0.60 4.22(3) 4.35(3) 3.423 6.5(1) 6.2(2) 6.6(1) 4.15

Table 6. Normalized effective moduli of random composite with rigid particles.

k∗/k0 µ∗/µ0

c (36) S&M (42) (38) (41) S&M (43)

0.10 0.771(0) 0.771(1) 0.774 0.821(0) 0.821(0) 0.820(1) 0.825
0.25 0.522(0) 0.520(1) 0.533 0.599(0) 0.596(1) 0.588(3) 0.611
0.45 0.294(1) 0.299(1) 0.318 0.364(1) 0.351(3) 0.355(2) 0.390
0.60 0.168(1) 0.177(1) 0.202 0.219(1) 0.202(4) 0.205(1) 0.259

Table 7. Normalized effective moduli of random porous solid.

(41). Also, Table 6 contains the data obtained by the accurate approach of [Sangani and Mo 1997],
labeled S&M, and that obtained by noninteracting method of [McCartney 2010], labeled with (42) and
(43).

In order to provide macroscopic isotropy of the composite, the simulations in [Sangani and Mo 1997]
have been conducted with N = 32 for c = 0.6 and with N = 16 for other volume fractions. In our
computations, as before, N = 64 and tmax = 13. As seen from Table 6, the modified Maxwell approach
provides good estimates for a whole range of c: for c ≤ 0.45, the difference between the estimates for
k∗/k0 obtained with the generalized Maxwell approach and those reported in [Sangani and Mo 1997]
does not exceed the statistical error margins. Note that the configurations with c > 0.49 strongly depend
on the method used in generating the random microstructure and on the value of N (since, at such high
c, the hard-sphere system may be in a metastable fluid state, a semicrystalline state, or a disordered
glassy state; for example, [Rintoul and Torquato 1996; Sangani and Mo 1997; Sierou and Brady 2001]).
However, even for c = 0.6 the relative error in the estimates for k∗/k0 obtained from (36) is about 4%.
At the same time, underestimation of the effective stiffness by the noninteracting Maxwell method is of
the order of 22% for the normalized bulk modulus and 38% for the normalized shear modulus. A minor
anisotropy (within 5%) predicted by (38) and (41) can be due to the cubic shape of finite cluster we used
and/or the specific N (= 43

= 64) where the semicrystalline arrangement of particles in the generated
configuration is likely. This issue deserves separate consideration.

The analogous data for the porous solid are collected in Table 7. Here, we observe the same tendencies
and patterns as in the previous case, with the only difference being that this time the standard (noninter-
acting) Maxwell procedure overestimates k∗/k0 and µ∗/µ0 for c = 0.6 by 15% and 26%, respectively.
The use of the generalized Maxwell procedure reduces the error for k∗/k0 to 5% and for µ∗/µ0 to 1–7%.
For c < 0.6, an accuracy of the suggested method is even higher, see Tables 6 and 7.
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6. Conclusions

In this paper the generalized Maxwell approach based on the concept of equivalent anisotropic inhomo-
geneity is applied for evaluating the anisotropic overall elastic properties of particulate composites with
isotropic phases (matrix and spherical particles). A numerical procedure using the approach is outlined
for materials with an arbitrary degree of overall anisotropy. This procedure accurately accounts for the
geometrical arrangement of particles and their interactions. In a special case of the periodic composite
material with simple cubic packing of spherical particles, the closed-form expressions for the three elastic
moduli that characterize the overall behavior are provided in terms of dipole coefficients for individual
particles. It is demonstrated that noninteracting estimates cannot capture the overall, microstructure-
induced anisotropy of the composite materials considered in this work. Illustrative examples involving
simple cubic and random composites demonstrate that the approach provides estimates that are consistent
with those predicted by the triple-periodic model for the whole range of volume fractions. Based on the
results of this work, as well as on the two-dimensional results of [Mogilevskaya and Crouch 2013], it is
clear that the approach can be used for the three-dimensional analysis of materials reinforced with parti-
cles of arbitrary shapes, if the cluster problem (Section 3) is solved with the boundary element method.

There are several interesting, problem-related issues which are left unresolved/unaddressed in this
paper. The first problem is related to the choice of the spherical shape of the equivalent inhomogeneity,
which might not adequately represent the shape of the cluster. While this is likely to affect the values
of the effective moduli, the reasonable agreement of our results with exact solution for the periodic
composite indicates that this effect is rather small. In addition, the recent studies by Sevostianov and
Giraud [2012], who investigated the effect of the inhomogeneity’s shape on compliance, found that a
sphere and a cube of equal volumes possess quite similar compliance tensors. Therefore, it is expected
that the dipole moments (apparently expressed in terms of the compliance contribution tensor) would
also be similar for the sphere and cube of equal volume. From that point of view, our assumption of
spherical shape of the equivalent inhomogeneity should be considered as an approximation which can be
refined by taking a more appropriate shape of the cluster or equivalent inhomogeneity. The convergence
study in terms of cluster size is a separate problem which also deserves much more attention. In the
context of this paper, the most important finding is that macroscopic elastic anisotropy of a composite
can be predicted with reasonable accuracy from a relatively small fragment/cluster of the composite
structure. In the present work we assumed isotropic constituents of the composite, which means that the
macroscopic anisotropy is entirely due to the geometric arrangement of particles. Similar methodology
can also be used for composites with anisotropic particles (for example, cubic or transverse isotropic).
All of these issues will be addressed in subsequent publications.

Appendix

The vector surface spherical harmonics S(i)ts = S(i)ts (r) (for example, [Morse and Feshbach 1953]) are
defined in terms of their scalar counterparts, χ s

t = Ps
t (cos θ) exp(isϕ), as

S(1)ts = r∇(χ s
t )= eθ

∂

∂θ
χ s

t +
eϕ

sin θ
∂

∂ϕ
χ s

t ,

S(2)ts = r∇ ×
(
erχ

s
t
)
=

eθ
sin θ

∂

∂ϕ
χ s

t − eϕ
∂

∂θ
χ s

t , (A.1)
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S(3)ts = erχ
s
t (t ≥ 0, |s| ≤ t).

These functions constitute a complete and orthogonal set on the sphere S. Specifically,

1
S

∫
S

S(i)ts · S
( j)
kl d S = α(i)ts δtkδslδi j , (A.2)

where α(1)ts = α
(2)
ts = t (t + 1)αts and α(3)ts = αts =

1
2t+1

(t+s)!
(t−s)!

. The vector surface spherical harmonics
satisfy the following useful relations:

S(i)t,−s = (−1)s+i−1 S(i)ts , S(i)
−(t+1),s = S(i)ts . (A.3)

The complete set of the partial solutions of Lamé’s equation

2(1− ν)
(1− 2ν)

∇(∇ · u)−∇ ×∇ × u = 0, (A.4)

where u is the displacement vector and ν is the Poisson ratio, have been introduced in [Kushch 1985].
The regular (bounded everywhere but r→∞) complex-value vector functions u(i)ts are written in terms
of the vector spherical harmonics S(i)ts of (A.1) as

u(1)ts =
r t−1

(t + s)!

(
S(1)ts + t S(3)ts

)
, u(2)ts =−

1
(t + 1)

r t

(t + s)!
S(2)ts ,

u(3)ts =
r t+1

(t + s)!

[
βt(ν)S

(1)
ts + γt(ν)S

(3)
ts
]
,

(A.5)

where the coefficients

βt(ν)=
t + 5− 4ν

(t + 1)(2t + 3)
and γt(ν)=

t − 2+ 4ν
(2t + 3)

(A.6)

are related by γt + (t + 1)βt ≡ 1. The irregular (infinitely growing at r → 0 and vanishing at infinity)
complex-value functions U (i)

ts are

U (1)
ts =

(t − s)!
r t+2

[
S(1)ts − (t + 1)S(3)ts

]
, U (2)

ts =
1
t
(t − s)!

r t+1 S(2)ts ,

U (3)
ts =

(t − s)!
r t

[
β−(t+1)(ν)S

(1)
ts + γ−(t+1)(ν)S

(3)
ts
]
.

(A.7)

The traction vector Tn = σ · n at the surface S : r = constant is

1
2µ

Tr (u)=
ν

1−2ν
er (∇ · u)+

∂

∂r
u+1

2
er × (∇ × u). (A.8)

For the regular vector functions of (A.5), this results in [Kushch 1985]

1
2µ

Tr (u
(1)
ts )=

(t − 1)
r

u(1)ts ,
1

2µ
Tr (u

(2)
ts )=

(t − 1)
2r

u(2)ts ,

1
2µ

Tr (u
(3)
ts )=

r t

(t + s)!

[
bt(ν)S

(1)
ts + gt(ν)S

(3)
ts
]
,

(A.9)
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where
bt(ν)= (t + 1)βt − 2(1− ν)/(t + 1), gt(ν)= (t + 1)γt − 2ν. (A.10)

For the irregular solutions U (i)
ts of (A.7), the vector takes the following form:

1
2µ

Tr (U
(1)
ts )=−

(t + 2)
r

U (1)
ts ,

1
2µ

Tr (u
(2)
ts )=−

(t + 2)
2r

U (2)
ts ,

1
2µ

Tr (U
(3)
ts )=

(t − s)!
r t+1

[
b−(t+1)S

(1)
ts + g−(t+1)S

(3)
ts
] (A.11)

In view of (A.5), Tr (u
(i)
ts ) can be represented in terms of vector spherical harmonics of (A.1).

The resultant force T and resultant torque (moment) M acting on the spherical surface S : r = R
enclosing the point r = 0 are

T =
∫

S
Tr d S, M =

∫
S

r × Tr d S. (A.12)

It is readily found that T = M = 0 for all the regular functions u(i)ts . Among the irregular functions U (i)
ts ,

only three functions have nonzero resultant force, namely

T
(
U (3)

10

)
= 16µπ(ν− 1)i3, T

(
U (3)

11

)
=−T

(
U (3)

1,−1

)
= 32µπ(ν− 1)(i1+ ii2). (A.13)

Hence, U (3)
1s can be regarded as vector monopoles. The net resultant torque is zero for all the Lamé

solutions except for U (2)
1s , for which

M
(
U (2)

10

)
=−8µπ i3, M

(
U (2)

11

)
= M

(
U (2)

1,−1

)
=−16µπ(i1+ ii2). (A.14)

Formulas (A.13) and (A.14) provide an insight into the physical meaning of the irregular vector functions
U (2)

1s and U (3)
1s , these being the displacements due to concentrated moment and force, respectively, applied

at the point r = 0.
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