
Journal of

Mechanics of
Materials and Structures

IDENTIFICATION OF MULTILAYERED THIN-FILM STRESS
FROM NONLINEAR DEFORMATION OF SUBSTRATE

Kang Fu

Volume 8, No. 5-7 July–September 2013

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 8, No. 5-7, 2013

dx.doi.org/10.2140/jomms.2013.8.369 msp

IDENTIFICATION OF MULTILAYERED THIN-FILM STRESS
FROM NONLINEAR DEFORMATION OF SUBSTRATE

KANG FU

Due to the enlargement of wafer size and the increase of product integrity, thin-film stress problems
inevitably get into the range of geometric nonlinearity and are found in multilayered thin-film materials.
In this work, multilayered thin-film materials are modeled as a large-deflection multilayered composite
plate in the framework of geometrically nonlinear plate theory. Based on the principle of virtual work
for a thin-film material plate with thin-film stresses of multiple layers as driving forces, a nonlinear plate
finite element system for kinematic fields of thin-film materials, which includes in-plane displacements,
cross section rotations, and out-of-plane deflection, is established. The least squares method with regular-
ization applied for total or partial kinematic fields obtained by the finite element method solution versus
those given by experiments leads to an iterative procedure for identification of the nonlinear multilayered
thin-film stresses.

1. Introduction

Thin-film materials are widely used in the microelectronics, opticoelectronics, and microelectromechan-
ical systems industries. An understanding of the mechanical properties of thin-film materials plays an
important role in quality control in component fabrication and in reliability assurance. Among all thin-
film material mechanical properties, thin-film stress is a key factor which has to be determined. Thin-
film stress in fabrication processes may introduce undesirable warping of wafers, peeling of thin films
from substrates, and cracking of thin films. Thin-film stress may influence the functional properties
of products, for example, the electronic properties of microelectronic circuits and the performance of
microelectromechanical systems. Along with the enlargement of wafer diameter and the increase of
product integrity, thin-film stress problems inevitably get into the range of geometric nonlinearity and
are found in the multilayered thin-film materials.

Thin-film stress is introduced in thin-film materials during the thin-film material development process.
The mismatch of the microstructures and the difference in thermoexpansion coefficients of the materials
constituting substrates and thin films are the origins of thin-film stress. Thin-film stress is divided by ori-
gin into intrinsic and thermal thin-film stresses, which generally coexist. Although intrinsic and thermal
thin-film stress can be determined, respectively, from microscopic and macroscopic models, the methods
that determine thin-film stress directly from integrated thin-film materials remain the first choice owing
to their simplicity in application and the sufficient precision they offer under certain conditions. In this
category is the method which uses the measured curvature variation of thin-film material to evaluate
thin-film stress, proposed first by Stoney [1909] and developed further in [Brenner and Senderoff 1949;
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Glang et al. 1965]. This method is valid in the case of small deformation and constant thin-film material
thickness, as well as for isotropic and homogeneous thin-film stress distributions. The classic Stoney
formula is used in many industrial applications [Flinn 1989; Nix 1989]. Extensions to the cases of
multilayered thin-film materials, nonconstant thin-film material thicknesses, nonhomogeneous thin-film
stress distributions, and geometric nonlinearity have been made in the last three decades [Harper and
Wu 1990; Finot and Suresh 1996; Finot et al. 1997; Freund et al. 1999; Freund 2000; Giannakopoulos
et al. 2001; Feng et al. 2006; Huang and Rosakis 2006]. In dealing with thin-film stress problems with
geometric nonlinearity, Masters and Salamon [1993] and Salamon and Masters [1995] resorted to a Ritz-
type method based on the potential energy minimization principle, where the relations of the thin-film
stress to both the deflection and the curvature of thin-film materials are studied. The aforementioned
methods are all analytic methods. In these cases, various types of restrictions must be retained in order
to guarantee the possibility of obtaining analytic solutions. Less restricted methods are developed in
the framework of finite element methods. The calculation of thin-film stress from measured thin-film
material deformation based on an inverse solution of thin-film material problems with a finite element
model is found in [Engelstad et al. 2005]. An inverse problem technique based on a linear plate finite
element method that is used to identify thin-film stress is presented in [Fu 2012]. Many advantages can
be found in the two numerical-type methods due to the inherent adaptability of the finite element method.

In this paper, the author’s previous work is extended to determine the geometrically nonlinear thin-film
stress of multilayered thin-film materials. The mechanical modeling of multilayered thin-film material
as a special nonlinear composite plate is given in Section 2, where the principle of virtual work for
multilayered thin-film stress in the range of geometric nonlinearity is applied at the end of the section.
A nonlinear finite element system is established from the virtual work equation by finite element dis-
cretization in Section 3. In Section 4, a nonlinear inverse problem for determining thin-film stress using
measured kinematic data of thin-film materials is set up via a least squares formula together with the
solution scheme. Examples are provided in Section 5 for illustrating the effectiveness of the proposed
approach in the determination of nonlinear multilayered thin-film stress. Section 6 contains conclusions.

In the text, Greek subscripts vary in the range {1, 2} and Latin subscripts take values in {1, 2, 3}. The
summation convention applies to each repeated pair of indices in the formulas unless otherwise indicated.

2. Mechanical modeling of nonlinear multilayered thin-film materials

2.1. Basic formulations. Nonlinear multilayered thin-film material is here modeled as a special com-
posite plate, which consists of a substrate and n thin-film layers of different materials. An infinitesimal
portion of the thin-film material is illustrated in Figure 1, where hs and h f

i are the thicknesses of the
substrate and the i-th thin-film layer for i = 1, . . . , n, respectively. For thin films, h f

i � hs . For the
thin-film materials considered in this work, the thicknesses of the thin films do not have to be constant
and no defaults such as cracks exist in the materials.

Suppose that the total macroscopic deformation of a thin-film material stems only from the noncon-
formal internal eigenstrains of the thin films and the substrate without the intervention of external loads,
and it is the continuity requirement on the total deformation of the thin-film material that will introduce
the elastic strains and corresponding stresses in the thin films as well as in the substrate.
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Figure 1. Multilayered thin-film materials.

In modeling the structure of a thin-film material as a nonlinear multilayered thin or moderately thick
plate [Reddy 2003; Roccabianca et al. 2010; 2011] under the hypothesis of large deflection [von Kármán
1910; Timoshenko and Woinowsky-Krieger 1959], the primary kinematic fields of the first-order shear
deformable plate model used to represent the total deformation of the thin-film material are the in-plane
displacements uα, the out-of-plane displacement u3, and the plate cross section rotations θα, which are
all defined on the neutral surface of the plate and are in reference to a configuration that is free of any
strain.

In a Cartesian coordinate system, the origin of which is on the neutral surface of the thin-film ma-
terial plate as shown in Figure 1, the geometrically nonlinear strain-displacement relations in the two
longitudinal directions of the thin-film material plate are given by

ε11 = ∂1u1+ x3∂1θ2+ (∂1u3∂1u3)/2, (1)

ε22 = ∂2u2− x3∂2θ1+ (∂2u3∂2u3)/2, (2)

2ε12 = ∂2u1+ ∂1u2− x3∂1θ1+ x3∂2θ2+ (∂1u3∂2u3+ ∂2u3∂1u3)/2, (3)

where εαβ are the strain components in the two longitudinal directions of the thin-film material plate
and x3 is the coordinate in the normal direction of the plate neutral surface, and, as in the following,
∂α(∗)= ∂(∗)/∂xα. The components of the transversal shear strain are given by

ε13 = (∂1u3− θ2)/2, (4)

ε23 = (∂2u3− θ1)/2. (5)

The strain component formulations given by (1)–(5) are applied for the strain components of the substrate,
εs
αβ , or for those of the i-th thin-film layer, ε fi

αβ , i = 1, . . . , n, depending on whether the coordinate x3 is
placed in the substrate or in the i-th thin-film layer. The application of the identical geometric relations of
(1)–(5) to the substrate and the thin films implicates automatically the continuity of the total deformation
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of the thin-film materials at the interfaces between all the adjacent thin-film layers as well as at that
between the first thin-film layer and the substrate. Since the kinematic fields have a strain-free reference
configuration, the total strains given by (1)–(5) consist of elastic strains and eigenstrains.

The deformations of the substrate and thin films given by (1)–(3) are total strains, which consist of
eigenstrains, ε∗αβ , and elastic strains, εe

αβ , for the substrate as well as for the thin films:

εαβ = ε
e
αβ + ε

∗

αβ . (6)

The eigenstrains of the substrate, εs∗
αβ , are usually isotropic thermal strains, while those of the thin films,

ε
f ∗
αβ , consist of thermal strains and intrinsic strains. In the substrate and the thin films, the elastic strains

are developed to compensate the nonconformal eigenstrains in order to ensure the continuity of the total
deformation of the thin-film materials.

The stresses in the substrate and thin films are related to their mechanical conjugated elastic strains.
For the sake of simplicity of presentation, the constitutive relations for the isotropic and linear elastic
materials that constitute the substrate and thin films are discussed in this paper. For substrate materials,
the stress components, σ s

αβ , and the elastic strain components, εes
αβ , are supposed to be related by a

constitutive law of the pseudo-three-dimensional stress state given by

σ s
αα =

E s

1− νs2 (ε
es
αα + ν

sεes
ββ), (7)

σ s
αβ =

E s

1+ νs ε
es
αβ for α 6= β, (8)

σ s
α3 =

κE s

1+ νs ε
es
α3, (9)

where E s and νs are the Young’s modulus and Poisson’s ratio of the substrate materials, respectively, and
κ is the shear force numerical corrector of the plate model. The transversal normal stress component σ33

is considered to vanish both in the substrate and the thin films. The transversal shear deformation and
the transversal shear stress are considered to be negligible in the thin films, supposing that they are in the
region that is sufficiently approximated to the thin-film material plate top or bottom surface. Therefore,
the thin-film stress components, σ fi

αβ , and the thin-film elastic strain components, εe fi
αβ , in the i-th thin-film

layer are considered to be related by a constitutive law of plane stress state given by

σ fi
αα =

E fi

1− ν fi 2
(εe fi
αα + ν

fi ε
e fi
ββ ), (10)

σ
fi
αβ =

E fi

1+ ν fi
ε

e fi
αβ for α 6= β, (11)

where E fi and ν fi are the Young’s modulus and Poisson’s ratio of the material of the i-th thin-film layer,
respectively.

Similarly to the previous work [Fu 2012], the principle of virtual work for geometrically nonlinear
multilayered thin-film materials in its established equilibrium state is formulated as follows:∫

�s
σ s

kl(uα, u3, θα)δε
s
kl d�s

+

n∑
i=1

∫
� fi
σ

fi
αβδε

fi
αβ d� fi = 0, (12)
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where �s and � fi are the volumes of the substrate and the i-th thin-film layer, respectively. The identi-
fication of thin-film stress means that the thin-film stress components of all the thin-film layers σ fi

αβ , i =
1, . . . , n, in the second term of the left-hand side of (12) are considered as independent variables, which
have to be determined from some of the kinematic fields that are obtained from physical measurements.

2.2. Identification-oriented formulations. The use of the relation between the total kinematic fields
of the thin-film materials and the thin-film stresses of all the thin-film layers of (12) is not sufficient
to identify the thin-film stresses from the total kinematic fields, since total deformation of a thin-film
material may correspond to different combinations of multilayered thin-film stresses. Two approaches
that can be used to solve this problem are suggested in this subsection.

One approach is based on the use of a series of measured substrate deformations of thin-film material
1ū fi , i = 1, . . . , n, of which the i-th measured deformation is related to the i-th layer thin-film stress σ fi

αβ ,
for i = 1, . . . , n, respectively. In practice, there are two occasions in which the substrate deformation
of thin-film material 1ū fi with respect to the i-th layer thin-film stress σ fi

αβ , for i = 1, . . . , n, can be
measured experimentally: One is that when the i-th thin-film layer is deposited on the (i − 1)-th thin-
film layer during a normal layer-by-layer thin-film forming process, which is realized in order from
the first thin-film layer to the n-th. This measurement may be carried out at an interval of every two
normal deposition operations. Another occasion is that when the i-th thin-film layer is removed from the
(i − 1)-th thin-film layer during a layer-by-layer thin-film sacrificing process, which is realized in order
from the n-th thin-film layer to the first. This second process is a type of investigative test with the use
of destructive techniques such as chemical etching or mechanical grinding upon fabricated multilayered
thin-film material samples. Usually, these operations on the i-th thin-film layer should not change the
intrinsic thin-film strains of the lower-ordered layers that are bound in in-processing thin-film materials.
As for possible changes of the temperature strains of lower-ordered layer thin films or the substrate, they
are easily estimated.

Notice that in the two measurement processes, the measured deformation of the thin-film material 1ū fi

is a deformation induced by adding or removing the i-th layer thin-film stress σ fi
αβ on an in-processing

thin-film material. At this moment, the substrate deformation of the thin-film material 1ū fi depends not
only on the i-th layer thin-film stress σ fi

αβ , but also on all the thin-film stresses σ f p
αβ , p = 1, . . . , i − 1,

since the first through (i − 1)-th layer thin films are still bound on the substrate.
In accordance with these properties of the layer-by-layer deformation measurement processes on an

in-processing thin-film material, the principle of virtual work for the in-processing thin-film material
under the action both of the substrate stress σ s

kl and thin-film stresses σ f p
αβ , p = 1, . . . , i , is formulated as∫

�s
σ s

kl

( i∑
p=1

1ū f p
)
δεs

kl d�s
+

i∑
p=1

∫
� f p

σ
f p
αβ δε

f p
αβ d� f p = 0, (13)

where the summation of 1ū f p from 1 to i constitutes the total change of the kinematic fields induced by
the thin-film stresses of all the thin-film layers σ f p

αβ , p = 1, . . . , i . When the deformations of the thin-film
material with respect to all the thin-film stresses 1ū fi , i = 1, . . . , n, are in disposition after one of the
aforementioned measurement processes has been completely carried out, the i-th layer thin-film stress
σ

fi
αβ , i = 1, . . . , n, can be evaluated according to (13) in order from the first thin-film layer to the n-th in

a layer-by-layer cumulative way.
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In the identification process of the i-th layer thin-film stress σ fi
αβ , the i-th layer thin-film stress σ fi

αβ is
evaluated according to (13) from the measured deformations1ū f p , p= 1, . . . , i , and the thin-film stresses
σ

f p
αβ , p = 1, . . . , i −1. Meanwhile the thin-film stresses σ f p

αβ , p = 1, . . . , i −1, also have to be updated so
as to take into account the influence on them of the i-th layer thin-film stress σ fi

αβ . For this purpose, the
measured deformations 1ū f p , p = 1, . . . , i , and the thin-film stresses σ f p

αβ , p = 1, . . . , i − 1, obtained in
the previous layer evaluation are used at the beginning of the process to evaluate a first i-th layer thin-film
stress σ fi

αβ . Then, the p-th layer thin-film stress σ f p
αβ , for p = 1, . . . , i − 1, is updated according to (6) and

(10) and (11) from the p-th layer total strain ε f p
αβ given by the kinematic fields obtained in the actual layer

evaluation, and the p-th layer invariant eigenstrain ε f p∗
αβ obtained in the previous layer evaluations. The

process proceeds iteratively until the i-th layer thin-film stress σ fi
αβ is finally identified. At this moment,

the i-th layer invariant eigenstrain ε fi∗
αβ is once for all evaluated from the i-th layer thin-film stress σ fi

αβ

and the actual i-th layer total strain ε fi
αβ according to (6) and (10) and (11). The final thin-film stresses

of all the thin-film layers are identified when this layer-by-layer cumulative process is finished at i = n.
Another approach is to identify the thin-film stresses of all the thin-film layers from the total de-

formation of thin-film materials with the use of (12), which is possible when the continuity condition
of deformations between all the adjacent thin-film layers can be formulated with the use of thin-film
eigenstrains. When the thin-film layers are bound together, the in-plane strain components must be equal
on the interface of the adjacent i-th and (i + 1)-th thin-film layers owing to the deformation continuity
requirement:

ε
fi
αβ = ε

fi+1
αβ . (14)

By substituting (6) into (14), the continuity condition of (14) becomes

ε
e fi+1
αβ = ε

e fi
αβ −1ε

∗(i+1,i)
αβ , (15)

where 1ε∗(i+1,i)
αβ is the difference of the eigenstrain components between the i-th and (i + 1)-th thin-

film layers at their interface. By substituting (10) and (11) into (15), the transitional conditions for the
thin-film stresses on the interface between the i-th and (i + 1)-th thin-film layers are found as

σ fi+1
αα =

E fi+1

[1−(ν fi+1)2]

{
1

E fi
[(1−ν fi ν fi+1)σ fi

αα−(ν
fi−ν fi+1)σ

fi
ββ]−

(
1ε∗(i+1,i)

αα +ν fi+11ε
∗(i+1,i)
ββ

)}
, (16)

σ
fi+1
αβ =

E fi+1

(1+ ν fi+1)

[
(1+ ν fi )

E fi
σ

fi
αβ −1ε

∗(i+1,i)
αβ

]
for α 6= β. (17)

With the use of these transitional conditions on the thin-film stresses, the thin-film stresses of all the
thin-film layers can be represented by a generic thin-film stress of a chosen principal thin-film layer. After
doing this, (12) can be used to determine the generic thin-film stress from the integral deformation of
the n-layered thin-film materials. The key in this approach is that all the differences of the eigenstrains
between the i-th and (i + 1)-th thin-film layers 1ε∗(i+1,i)

αβ , i = 1, . . . , n − 1, must be known, for the
acquisition of which one may turn to the solution of other important problems such as the thermal
strains, experimental measurements, multiscale modeling and computations, etc., which are left to be the
research subjects of other works.

In the present work, the second approach is used partially in the aforementioned layer-by-layer cu-
mulative approach. Notice that once the thin-film stress of a layer is determined in the layer-by-layer
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cumulative process, it can be used with the previously evaluated and newly updated thin-film stress of
the lower-ordered layer to calculate the difference of eigenstrain components between the two layers
according to (16) and (17). The eigenstrains as well as their differences between adjacent layers are gen-
erally unchanged or may be easily determined during the layer-by-layer cumulative evaluation process,
and the layer-by-layer cumulative approach can use these properties to establish a more efficient solution
strategy. The advantages of the application of these properties are illustrated in the following.

For an in-processing thin-film material with one thin-film layer at the beginning, both the substrate
stress σ s

i j and the first-layer thin-film stress σ f1
αβ are first evaluated as before from 1ū f1 . Then, the

difference of the eigenstrain components at the interface between the substrate and the first thin-film
layer 1ε∗(1,0)αβ is determined from (16) and (17), in which the substrate stress σ s

αβ at the one surface of
the substrate that is in contact with the first thin-film layer is used as the lower-ordered layer stress.

Following the preceding step, in identifying the second-layer thin-film stress σ f2
αβ and in updating the

substrate stress σ s
i j and the first-layer thin-film stress σ f1

αβ from 1ū f1 and 1ū f2 , the actual first-layer thin-
film stress σ f1

αβ in (13) is represented by the actual substrate stress σ s
i j according to (16) and (17) with the

use of the unchanged difference of the eigenstrain components at the interface between the substrate and
the first thin-film layer 1ε∗(1,0)αβ . After the updated substrate stress σ s

i j and the identified second-layer
thin-film stress σ f2

αβ are determined from 1ū f1 and 1ū f2 according to (13), the updated first-layer thin-
film stress σ f1

αβ is given according to (16) and (17) with the use of the updated substrate stress σ s
i j and

the unchanged difference of the eigenstrain components at the interface between the substrate and the
first thin-film layer 1ε∗(1,0)αβ . The difference of the eigenstrain components at the interface between the
first and second thin-film layers 1ε∗(2,1)αβ is then calculated according to (16) and (17) with the use of the
updated first-layer thin-film stress σ f1

αβ and the just-identified second-layer thin-film stress σ f2
αβ .

Similarly, in identifying the i-th layer thin-film stress σ fi
αβ and in updating the substrate stress σ s

i j and
the thin-film stresses σ f p

αβ , p = 1, . . . , i −1, from 1ū fq , q = 1, . . . , i , all the actual thin-film stresses σ f p
αβ ,

p = 1, . . . , i − 1, in (13) are represented successively by the actual substrate stress σ s
i j according to (16)

and (17), in which the differences of the eigenstrain components at the interfaces between the (p− 1)-th
and p-th thin-film layers 1ε∗(p,p−1)

αβ , p = 1, . . . , i − 1, are already known. After the updated substrate
stress σ s

i j and the identified i-th layer thin-film stress σ fi
αβ are determined according to (13) from 1ū fq ,

q = 1, . . . , i , the thin-film stresses σ f p
αβ , p = 1, . . . , i − 1, are updated with successive uses of (16) and

(17) from the updated substrate stress σ s
i j and the unchanged differences of the eigenstrain components

at the interfaces between the (p − 1)-th and p-th thin-film layers 1ε∗(p,p−1)
αβ , p = 1, . . . , i − 1. The

difference of the eigenstrain components at the interface between the (i − 1)-th and i-th thin-film layers
1ε
∗(i,i−1)
αβ is then calculated according to (16) and (17) with the use of the updated (i − 1)-th layer thin-

film stress σ fi−1
αβ and the just-identified i-th layer thin-film stress σ fi

αβ . The thin-film stresses of all the
thin-film layers are ultimately identified when this process is finished at i = n.

Since the identification process for multilayered thin-film stress is similar to a successive identification
process of single layered thin-film stress and the updating of the thin-film stresses of the lower-ordered
layers is not in the core of the identification process, the efficiency of the method is largely improved.

3. Finite element discretization

Since the kinematic fields are defined on the plate neutral surface, only two-dimensional quadrilateral
or triangular element meshes are needed to mesh the neutral surface of the thin-film material plates.
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Thin-film materials may be considered as very thin or moderately thick plates depending on the ratio of
thickness to characteristic longitudinal dimensions of the thin-film materials studied. In these cases, the
suitable elements for the mechanical model of the multilayered thin-film materials presented in Section 2
are those of transversal shear locking-free plate elements without the appearance of “hourglass” phenom-
ena. Many successful elements for this type of problem can be implemented in the present work with
minor modifications. The MITC4 elements [Brezzi et al. 1989; Bucalem and Bathe 1993] used in work
[Fu 2012] are here extended to study geometrically nonlinear problems with five kinematic fields. The
resulting finite element equation from (12) or (13) can be written as

K u = Fσ, (18)

where K is the global geometrically nonlinear finite element rigidity matrix; u is the column vector matrix
containing all nodal degrees of freedom of the mesh; σ is the column vector matrix of multilayered thin-
film stresses defined in elements or on nodes, which contains only the unknown thin-film stresses of the
thin-film layer actually considered during the identification process; and F is the geometrically nonlinear
matrix which transforms the stress column matrix vector σ into an equivalent nodal force column vector
matrix of the finite element system, and which contains also the previously identified thin-film stresses of
the lower-ordered thin-film layers if the cumulative layer-by-layer method that is presented in Section 2.2
is used. In the identification process of the thin-film stresses, the sensitivity of the kinematic fields to the
thin-film stresses is needed in the next section. From (18), the system of the sensitivity is formulated as

K
∂u

∂σ
fi
αβ

= F
∂σ

∂σ
fi
αβ

. (19)

Equations (18) and (19) are geometrically nonlinear systems dependent on u, which have to be solved
by an iterative procedure. In the same iteration, the factorized matrix K can be used for the solution
processes both of the kinematic nodal values u and their sensitivity to the thin-film stresses.

4. Identification procedure of geometrically nonlinear multilayered thin-film stress

The determination of the thin-film stresses from the kinematic fields is an inverse problem from the point
of view of (18). It is in general impossible to obtain the thin-film stresses σ from the nodal degrees of
freedom u with the direct use of (18) since (18) is usually not well-posed mathematically and only a part
of the nodal degrees of freedom u can, in fact, be provided by the experimental measurements. In order
to overcome these difficulties, a least squares condition is used to establish a feasible solution scheme as

L =min
{σ }
[(u− ū)T (u− ū)], (20)

where ū is a subset of the nodal degrees of freedom u, which are provided by the experimental mea-
surements. In the layer-by-layer cumulative identification process of the thin-film stress of the i-th
thin-film layer σ fi

αβ following (13), ū is the summation of all the measured substrate deformations 1ū f p ,
p = 1, . . . , i . The necessary condition of the minimization leads to an iterative type of equation for the
determination of the thin-film stresses given as follows:

ST
k Sk(σk+1− σk)= ST

k (uk − ū), (21)
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where the subscript indices k and k + 1 designate the k-th and (k + 1)-th steps of the iterations, and
Sk = (∂u/∂σ)k is the sensitivity of the kinematic fields to the thin-film stresses at the k-th iteration step,
which is calculated from (19). Equation (21) is a generalized linear system which may be solved by var-
ious techniques, for example, the singular-value-decomposition method, the regularization method, the
iterative regularization method, etc. Here the regularization method is used. According to the Tikhonov
regularization strategy [Tikhonov and Arsenin 1974], the minimization of (20) leads to

(ST
k Sk +αH T H)(σk+1− σk)= ST

k (uk − ū), (22)

where H is a regularization matrix, which is derived from regularization functions, and α is a regular-
ization parameter, which may be determined by the L-curve method, the minimum discrepancy method,
etc. [Golub et al. 1979; Hansen 1992; Engl et al. 1996]. In the case of ensuring the first-order derivative
smoothness of the thin-film stresses, the regularization function may be taken as the L2-norm of the
thin-film stress field:

8=

n∑
i=1

∫
� fi

(
∂σ

fi
αβ

∂xα

)
d� fi , (23)

where no summation convention is used. The discretized form of (23) leads to

8= σ T H T Hσ, (24)

where the corresponding regularization matrix H is defined. The regularization matrix H given by (24) is
invariant in the iteration process. Other regularization functions can be used depending on the smoothness
requirement of the thin-film stress fields.

In the identification process of the thin-film stresses from a set or subset of the degrees of freedom of
the measured deformation ū provided by the experiments, an iterative solution procedure with the use of
(18), (19), (21), (22), and (24) is given in following algorithm.

Algorithm. (i) Beginning of the identification process.

(ii) Initialization of the iterations on thin-film layers: i = 1 and ū =1ū fi .

(iii) Initialization of the identification iterations on σ fi
αβ : k = 0, uk = 0, and σk = 0.

(iv) Computation of H according to (24).

(v) Update of the thin-film stresses of the lower-ordered layers from 1ū fi .

(vi) Computation of uk with the use of (18) from σk .

(vii) Computation of Sk with the use of (19) from uk .

(viii) Computation of σk+1 with the use of (21) or (22) from uk , σk , Sk , and H .

(ix) Examination of convergence:
If uk converges to ū, go to (x); else k = k+ 1, go to (vi).

(x) Output of σk+1 as the identified thin-film stresses of the i-th thin-film layer; go to (xi).

(xi) Examination of the iteration on thin-film layers:
If i = n, go to (xii); else i = i + 1, ū = ū+1ū fi , go to (iii).

(xii) End of the identification process.
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5. Numerical examples

In this section, two examples are presented to illustrate the characteristics and effectiveness of the
proposed method. In the identification processes of the two examples, the least squares method with
regularization is used, while the convergence criterion is set to be of a relative error of 1.0× 10−4 for
deflection fields.

5.1. Nonlinear thin-film stress of a two-layered thin-film material strip. In this example, a strip of
rectangular plan shape of two-layered thin-film material is considered. The substrate material is of silicon
(Si) and its original shape is flat. A uniform thin-film layer of tungsten (W) is supposed to be deposited
on the substrate. The sizes and material parameters of the thin-film material are given in Table 1.

A Cartesian coordinate system is set up in such a way that the origin is taken at the centroid of the
strip geometry; the longitudinal axis of symmetry of the strip, the normal of the longitudinal vertical
plan of symmetry, and the upward normal of the neutral surface are taken as the x1, x2, and x3-axes,
respectively. Consider that a uniformly distributed thin-film stress exists in the thin film, of which the
stress components denoted by σ f

11, σ f
22, and σ f

12 are 1111.0 MPa, 0.0 MPa, and 0.0 MPa, respectively.
According to the large deflection theory of thin plates, an analytic solution on the deflection of the

free strip along the longitudinal direction in the above-mentioned thin-film stress state is found based on
[Zhang et al. 2004] as

u3(x1)=
hs

2 cosh
(
L
√

h f σ f
11/D

)[cosh
(
x1

√
h f σ

f
11/D

)
− 1

]
, (25)

where hs , h f , L , and D are the substrate thickness, the thin-film thickness, the semilength of the strip,
and the bending stiffness of the plate, respectively.

The deflection of the strip under the aforementioned state of stress calculated from (25) is used as
the pseudoexperimental data for the identification of the thin-film stress. The entire strip is discretized
with the use of a 2× 22 mesh of quadrilateral elements of equal size. The values of the deflection u3

at the element nodal points given by (25) are used as a subset of the nodal degrees of freedom ū, which
are used in the inverse calculations of both the present nonlinear numerical approach and the linear
numerical approach of [Fu 2012]. The curvature of the strip deformation derived from (25) in the same
state of stress is also used for the evaluation of the thin-film stress from Stoney’s formula. The results
of identified thin-film stresses obtained from three different methods in comparison with the original
exact stresses in half of the strip are shown in Figure 2. It is noticed that the results of the present
nonlinear numerical approach accord well with the original thin-film stresses, while those given by the
linear numerical approach and Stoney’s formula manifest important discrepancies with respect to the
exact values in the same way.

Young’s modulus (GPa) Poisson’s ratio Thickness (µm) Plan sizes (mm2)

Substrate (Si) 130 0.28 350 100× 2
Film (W) 248 0.30 0.9 100× 2

Table 1. Sizes and material parameters of a thin-film material strip.
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Figure 2. Comparison of the identified thin-film stresses from different methods.

5.2. Nonlinear thin-film stress in a three-layered wafer. A wafer of three-layered thin-film material is
considered in this example. The material parameters and geometrical sizes of the thin-film materials are
given in Table 2.

The initial shape of the substrate of silicon is flat, on which the first thin-film layer of nickel and
the second thin-film layer of tungsten are supposed to be deposited uniformly. The thin-film material is
discretized on its neutral surface with the use of a mesh of 400 four-node quadrilateral elements.

As an example for algorithmic test, the degrees of freedom of experimental measurement ū in this
example are given by solving a direct problem of the thin-film material with the use of (18), of which the
uniformly distributed thin-film stress fields of the first and second thin-film layers are prescribed such
that σ f1

11 = σ
f1

22 = 345.0 MPa, σ f2
11 = σ

f2
22 = 1044.7 MPa, and σ f1

12 = σ
f2

12 = 0.0 MPa. Here, the thin-film
stresses of the two thin-film layers are intentionally related by the transitional conditions of (16) and (17)
in supposing that the eigenstrains of the two thin-film layers are equal, which means also that the elastic
strains of the two thin-film layers are equal on the interface between the two layers.

The direct solution of the substrate deflection under only the prescribed thin-film stress of the first thin-
film layer 1ū f1

3 is shown in Figure 3, and is considered as a deflection field of the substrate configuration
change due to the removal of the first thin-film layer from the substrate, and has in addition been adjusted
by the action of the thin-film stress of the second layer. The direct solution of the substrate deflection

Young’s modulus (GPa) Poisson’s ratio Thickness (µm) Radius (mm)

Substrate (Si) 130 0.28 350 50
Layer 1 (Ni) 130 0.31 0.9 50
Layer 2 (W) 385 0.30 0.9 50

Table 2. Sizes and material parameters of a three-layered wafer.
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Figure 3. Change of substrate deflection due to the removal of the first thin-film layer.

under the prescribed thin-film stresses of the first and second thin-film layers 1ū3 = 1ū f1
3 +1ū f2

3 is
given in Figure 4, which is considered as a deflection field of the total substrate configuration change
due to the removal of all the two thin-film layers from a fabricated two-layered thin-film material. Since
the maximum values of the deflections in Figures 3 and 4 are of the same order as the thin-film material
thickness, the deformations of the thin-film material belong to large deflection problems. In this case, the
geometrically nonlinear deformation is more sensitive to the loads at the primary deformation stage. As a
consequence, the first deflection field 1ū f1

3 given by the first-layer thin-film stress σ f1
αβ is more important

than the adding-up deflection field 1ū f2
3 =1ū3−1ū f1

3 given by the adding-up second-layer thin-film
stress σ f2

αβ .
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Figure 4. Change of substrate deflection due to the removal of the two thin-film layers.
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Figure 5. Identified maximum principal thin-film stress of the first thin-film layer.
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Figure 6. Identified maximum principal thin-film stress of the second thin-film layer.

In following the first approach proposed in Section 2.2, the first-layer thin-film stress σ f1
αβ is first

identified with the use of the deflection field1ū f1
3 . Then, the second-layer thin-film stress σ f2

αβ is identified
with the use of the total deflection field 1ū3 and the previously identified first-layer thin-film stress σ f1

αβ .
The identified maximum principal thin-film stress of the first thin-film layer and that of the second

thin-film layer are shown in Figures 5 and 6, respectively. Notice from Figures 5 and 6 that the identified
thin-film stresses of the two thin-film layers are in general similar to the prescribed thin-film stresses of
the two thin-film layers. The maximum discrepancies on the maximum principal stresses of the first and
second thin-film layers with respect to those of the prescribed thin-film stresses of the two thin-film layers
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are only locally 0.3% and 2.6%, respectively. The existing discrepancies of the values and distributions
compared with those of the original fields may be improved by various numerical means such as mesh
refinement, regularization parameter optimization, convergence criteria enhancement, etc.

Finally, notice that the second approach can be also applied in this example. With the use of the
transitional conditions for the thin-film stresses on the interface between the first and the second thin-
film layers, the thin-film stress of a chosen principal layer can be first identified from the total deformation
and then the thin-film stress of other layer can be determined according to the transitional conditions from
the identified thin-film stress.

6. Conclusions

The identification of thin-film stress in nonlinear multilayered thin-film materials is studied, combining
use of mechanical modeling, the finite element method, and the theory of inverse problems. From the
method and numerical examples presented, the main findings of the work are summarized as follows.

(1) When the deformation of the thin-film materials is as large as in the range of the large deflection the-
ory of classical plates, the estimation of thin-film stress should turn to the plate models of nonlinear
large deflection theories. The important differences between the geometrically nonlinear and linear
theories may manifest in this range of thin-film material deformations. It is shown that the thin-
film stress determined from the linear models is underestimated for a given nonlinear correlating
kinematic field.

(2) In the nonlinear identification process, the change of the configuration of thin-film materials does
not linearly depend on the thin-film stress. The layer-by-layer cumulative formulation allows for
identifying the thin-film stress of each layer from the cumulative deformation and the corresponding
cumulative thin-film stresses.

(3) The transitional conditions for the thin-film stresses at the interfaces between thin-film layers are
proposed according to the deformation continuity requirement. In supposing that the eigenstrains
as well as their differences between thin-film layers are invariant in the identification process, the
stress transitional conditions can be obtained in the layer-by-layer cumulative identification process,
and are used as key factors in establishing an efficient solution strategy.

(4) The applied inverse problem method allows for using a subset of the total degrees of freedom to
determine the thin-film stresses, which provides great flexibility in choosing appropriate methods
or techniques for measuring correlating fields. The method itself is also adaptive to different com-
putations.

(5) With use of the finite element method, the nonhomogeneities of geometrical shapes, material char-
acteristics, and mechanical fields in thin-film materials no longer constitute major hurdles in the
modeling and solution of the thin-film stress problems since they can be defined element-by-element
over the thin-film materials.

(6) The structural model used in the present work is suitable for both thin and moderately thick thin-film
materials. The application of a reliable finite element ensures the validity of the numerical approach
in the two cases. The structural model used here can be easily enriched in kinematic fields or in
thin-film stress fields whenever needed.
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