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A TWO-DIMENSIONAL PROBLEM IN
MAGNETOTHERMOELASTICITY WITH LASER PULSE

UNDER DIFFERENT BOUNDARY CONDITIONS

SUNITA DESWAL, SANDEEP SINGH SHEORAN AND KAPIL KUMAR KALKAL

This paper is concerned with the study of vibrations induced by a laser beam in the context of generalized
magnetothermoelasticity. The basic governing equations for isotropic and homogeneous elastic solids
are formulated under Green–Naghdi theory in the x-z plane. The temporal profile of the laser beam is
considered as non-Gaussian. The governing nondimensional equations are solved using normal mode
analysis. The obtained solution is then applied to two specific problems in the half-space, where the
boundary is subjected to either a mechanical or thermal load. Numerical computations are performed for
a specific model to calculate the displacement, temperature, and stress fields and the results are displayed.
The effects of time and magnetic field on the variation of different field quantities are analyzed in the
figures.

1. Introduction

The dynamical interactions between the thermal and mechanical fields in solids are important to many
practical applications, such as modern aeronautics, nuclear reactors and high speed particle accelerators,
etc. The classical theory of thermoelasticity finds stresses caused by a temperature field using the para-
bolic heat conduction equation. The absence of any elasticity term in the heat conduction equation for
uncoupled thermoelasticity appears to be unrealistic, since, due to mechanical loading of an elastic body,
the strain so produced causes variation in temperature field. Moreover, the parabolic nature of the heat
conduction equation results in an infinite velocity of wave propagation, which also contradicts the actual
physical phenomena.

Biot [1956] developed the coupled theory of thermoelasticity to overcome the paradox inherent in
the uncoupled theory, that elastic changes have no effect on temperature. In this theory, the equations
of elasticity and heat conduction are coupled. However, it shares the defect of the uncoupled theory in
which it predicts an infinite speed of propagation for heat waves. Generalized thermoelastic theories
have been developed with the objective of removing this defect of coupled theory. The development of
these theories was accelerated by the advent of the experimental observation of the second sound effect
in materials at very low temperatures by Ackerman et al. [1966] and Ackerman and Overton [1969]. In
heat transfer problems involving very short time intervals and/or very high heat flux, the second sound
effect in the coupled theory yields results that are realistic and very much different from those obtained
from the classical theory of thermoelasticity.

Sandeep Singh Sheoran is thankful to the University Grants Commission, New Delhi, for financial support in the form of Junior
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It is well known that there are three major generalizations of the theory of thermoelasticity. The
first is that made by Lord and Shulman [1967], known as L-S theory, which involves one relaxation
time for a thermoelastic process. The second is due to Green and Lindsay [1972] and is known as G-L
theory. It takes into account two parameters as relaxation times. L-S theory only modifies Fourier’s
heat conduction equation, while G-L theory modifies both the energy equation and the equation of
motion. Dhaliwal and Sherief [1980] extended L-S theory by including the anisotropic case. Later
on, by providing sufficient basic modifications to the constitutive equations to follow thermodynamical
principles, Green and Naghdi [1991; 1992; 1993] produced an alternative theory which was divided into
three different parts, referred to as G-N theory of types I, II, and III. The constitutive assumptions for
the heat flux vector are different in each theory. The nature of these three types of constitutive equations
is such that when the respective theories are linearized, type I is same as classical heat conduction
theory (based on Fourier’s heat conduction law), type II predicts the finite speed of heat propagation
involving no energy dissipation, and type III indicates the propagation of thermal signals with finite
speed. Hetnarski and Ignaczak [1999] presented a survey of various representative theories in the range
of generalized thermoelasticity. Ezzat et al. [2004] discussed a problem in generalized thermoelasticity
theory for isotropic media with temperature-dependent moduli of elasticity under L-S, G-L, and coupled
theories. Youssef [2006] studied two-dimensional generalized thermoelasticity problem with a spherical
cavity subjected to thermal shock and ramp-type heating.

During pulsed laser heating, a thermoelastic wave is generated due to thermal expansion in the near-
surface region and propagates into the target. Because of the extremely short heating time, the laser-
induced thermoelastic wave has an extremely high strain rate, which in turn causes strong coupling be-
tween the strain rate and the temperature field. This coupling damps the stress wave during its propagation
and induces a localized temperature variation [Wang and Xu 2001; 2002]. Chen et al. [2004] developed
a problem in which three different approaches, ultrafast thermoelasticity, Lord–Shulman theory, and
classical thermoelasticity, are used to investigate thermoelastic stress waves in a gold medium. Sun et
al. [2008] studied the coupled thermoelastic vibrations of a microscale beam resonator induced by laser
pulse heating. The vibrations of deflection and thermal moments were calculated using an analytical
numerical technique based on the Laplace transformation. The effect of laser pulse energy depth, the
size effect, and the effects of different boundary conditions were analyzed.

Laser-induced vibration of microbeam resonators has attracted considerable attention recently due to
many important technological applications in microelectromechanical systems (MEMS) and nanoelec-
tromechanical systems (NEMS). The field equations for coupled thermoelastic vibration of Rayleigh and
Timoshenko beams have been derived by Jones [1966]. Many authors have studied the vibration and heat
transfer process of beams [Kidawa-Kukla 1997; 2003; Fang et al. 2007].

So-called ultrashort lasers are those with a pulse duration ranging from nanoseconds to femtoseconds,
in general. In the case of ultrashort-pulsed laser heating, high-intensity energy flux and ultrashort duration
laser beams have introduced situations in which very large thermal gradients or an ultrahigh heating speed
may exist on the boundaries. In such cases, as pointed out by many investigators, the classical Fourier
model, which leads to an infinite propagation speed of thermal energy, is no longer valid [Joseph and
Preziosi 1989; Özişik and Tzou 1994; Tzou 1997; Tang and Araki 1999]. The non-Fourier effect of heat
conduction takes into account the effect of mean free time (thermal relaxation time) in the energy carrier’s
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collision process, which can eliminate this contradiction. He et al. [2002] solved a boundary value prob-
lem for a one-dimensional semi-infinite piezoelectric rod with the left boundary subjected to a sudden
heat flux using the theory of generalized thermoelasticity with one relaxation time. Youssef and Al-Felali
[2012] investigated the induced temperature and stress fields when subjected to non-Gaussian laser heat-
ing in context with classical coupled thermoelasticity, Lord–Shulman theory and Green–Lindsay theory.

The theory of magnetothermoelasticity has received the attention of many researchers due to its ap-
plications in widely diverse fields such as geophysics, for understanding the effect of earth’s magnetic
field on seismic waves, damping of acoustic waves, emission of electromagnetic radiations from nu-
clear devices, optics, etc. The theory of magnetothermoelasticity was introduced by Knopoff [1955]
and Chadwick [1957] and developed by Kaliski and Petykiewicz [1959]. The theoretical outline of the
development of magnetothermoelasticity was discussed by Paria [1962]. Paria studied the propagation of
plane magnetothermoelastic waves in an isotropic unbounded medium under the influence of a magnetic
field acting transversely to the direction of propagation. Nayfeh and Nemat-Nasser [1972] studied the
propagation of plane waves in a solid under the influence of an electromagnetic field. Sherief and Ezzat
[1996] discussed a thermal shock problem in magnetothermoelasticity with thermal relaxation. Sherief
and Helmy [2002] illustrated a two-dimensional half-space problem subjected to a nonuniform thermal
shock in the context of electromagnetothermoelasticity theory. Ezzat and Youssef [2005] constructed a
generalized magnetothermoelasticity problem in a perfectly conducting medium. Baksi et al. [2005] ex-
amined a magnetothermoelastic problem with thermal relaxation and a heat source in a three-dimensional,
infinite rotating elastic medium. Deswal and Kalkal [2011] employed normal mode analysis to study a
problem in the purview of magnetothermoviscoelasticity with diffusion.

The objective of present investigation is to study the phenomenon of wave propagation in generalized
magnetothermoelasticity with pulsed heating of a microbeam. Normal mode analysis is employed for
the general solution of the problem. The resulting formulation is then applied to the problem of an
elastic half-space whose boundary is subjected to two types of loads, mechanical and thermal. Finally, a
numerical example has been considered and the results are displayed graphically to highlight the effects
of magnetic field and time on physical quantities. To the authors’ best knowledge, the technique of normal
mode analysis has never been applied to Green–Naghdi theory of type III. It is also pertinent that hardly
any effort has been made to discuss the laser pulse problem in the above-mentioned theory. In addition,
we have also studied magnetic effects on the field variables. The present model is not only of theoretical
interest, but may have practical applications in various fields such as geophysics, plasma physics, and
other related topics. The self-focusing of a circularly polarized laser pulse in the hot plasma is very
much influenced by the application of an external magnetic field. The external magnetic field enhances
self-focusing for right-hand polarization while for left-hand polarization it acts to reduce self-focusing
[Javan and Nasirzadeh 2012].

2. Governing equations

The governing equations in the context of Green–Naghdi theory of type III with a laser pulse heat source
and a magnetic field for a isotropic and homogeneous elastic medium are (see [Kumar and Mukhopadhyay
2009])
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• the equation of motion
ρüi = σ j i, j + Fi , (1)

where ui are the components of displacement vector Eu, ρ is the density of the medium, σi j are the
components of the stress tensor, and Fi are the components of the Lorentz body force vector;

• the heat conduction equation

k∗θ,i i +k θ̇ ,i i = ρCE θ̈ +β1T0üi,i −
∂Q
∂t
, (2)

where θ = T − T0 with T the absolute temperature and T0 is a reference temperature assumed to
obey the inequality |θ/T0| � 1, CE is the specific heat, k∗ is material constant, k is the thermal
conductivity, and β1 = (3λ+ 2µ)αt with αt is the coefficient of linear thermal expansion;

• the constitutive relations

σi j = 2µei j + λeδi j −β1θδi j , (3)

ei j =
1
2 (ui, j + u j,i ), (4)

where ei j are the components of strain tensor, δi j is the Kronecker delta function, e is the cubical
dilation, and λ and µ are the Lamé constants.

We take linearized Maxwell’s equations governing the electromagnetic field for a perfectly conducting
medium as

curl Eh = EJ + ε0
∂ EE
∂t
, (5)

curl EE =−µ0
∂ Eh
∂t
, (6)

EE =−µ0

(
∂ Eh
∂t
× EH

)
, (7)

div Eh = 0, (8)

where µ0 is the magnetic permeability, ε0 is the electric permittivity, EH is the applied magnetic field, Eh
is the induced magnetic field, EE is the induced electric field, EJ is the current density vector, and Q is the
laser pulse heat source.

3. Problem formulation

A rectangular cartesian coordinate system is chosen in such a way that the x-axis lies along the free
boundary of a perfectly conducting homogeneous isotropic generalized thermoelastic half-space with a
laser pulse heat source, subjected to a constant magnetic field EH(0, H0, 0) which produces an induced
magnetic field Eh(0, h2, 0) and induced electric field EE(E1, 0, E3). Let the z-axis point vertically down-
ward into the half-space so that it occupies the region z ≥ 0. The surface (z = 0) of the half-space is
subjected to mechanical and thermal loads, and all the considered quantities will be functions of the
time variable t and of coordinates x and z. Also, the boundary plane (z = 0) of the half-space is heated
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Figure 1. Temporal profile of L(t) (tp = 2 ps).

uniformly by a laser pulse with non-Gaussian temporal profile [Sun et al. 2008]

L(t)=
L0t
t2
p

exp
(
−

t
tp

)
, (9)

where tp is the time duration of a laser pulse and L0 the laser intensity, which is defined as the total
energy carried by a laser pulse per unit cross section of the laser beam. In the present study we take
tp = 2 ps as the time duration. According to [Tang and Araki 1999], the thermal conduction in the beam
can be modeled as a one-dimensional problem with an energy source Q(z, t) as

Q(z, t)=
Ra

δ
exp

( z−h/2
δ

)
L(t), (10)

where δ is the absorption depth of the heating energy and Ra the absorptivity of the irradiated surface.
For a two-dimensional problem in the x-z plane, the displacement components take the form

u = u(x, z, t), v = 0, w = w(x, z, t). (11)

The strain components become

exx =
∂u
∂x
, ezz =

∂w

∂z
, exz =

1
2

(
∂u
∂z
+
∂w

∂x

)
, exy = eyz = eyy = 0. (12)

The cubical dilatation e is thus given by

e = exx + eyy + ezz =

(
∂u
∂x
+
∂w

∂z

)
. (13)

The components of the initial magnetic field vector EH are

Hx = 0, Hy = H0, Hz = 0. (14)
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The electric intensity vector EE is parallel to the current density vector EJ , thus

Ex = E1, Ey = 0, Ez = E3, (15)

Jx = J1, Jy = 0, Jz = J3. (16)
From (5)–(8), we can obtain

E1 = µ0 H0
∂w

∂t
, E3 =−µ0 H0

∂u
∂t
, (17)

h1 = 0, h2 =−H0e, h3 = 0, (18)

J1 =−ε0µ0 H0
∂2w

∂t2 , J3 = ε0µ0 H0
∂2u
∂t2 . (19)

The Lorentz’s force EF is given by the relation

EF = µ0( EJ × EH). (20)

Inserting (14) and (19) in (20), we can obtain the components of the Lorentz’s force EF as

Fx =−ε0µ
2
0 H 2

0
∂2u
∂t2 , Fy = 0, Fz =−ε0µ

2
0 H 2

0
∂2w

∂t2 . (21)

Now, we will use the following nondimensional variables:

(x ′, z′, u′, w′, δ′, h′)= c0η0(x, z, u, w, δ, h), (t ′, t ′p)= c2
0η0(t, tp),

(σ ′i j , p′1)=
1

λ+2µ
(σi j , p1), (θ ′, p′2)=

β1

(λ+ 2µ)
(θ, p2),

(22)

where

c2
0 =

λ+2µ
ρ

, η0 =
ρCE

k∗
ω̄, ω̄ =

ρCE c3
0

k∗h∗
,

and h∗ is some standard length.
With the help of these nondimensional quantities, (1)–(3) take the following form (dropping the prime

signs for convenience):

α
∂2u
∂t2 = β

2
∇

2u+ (1−β2)
∂e
∂x
−
∂θ

∂x
, (23)

α
∂2w

∂t2 = β
2
∇

2w+ (1−β2)
∂e
∂z
−
∂θ

∂z
, (24)

k∗∇2θ + k(c2
0η0)∇

2θ̇ = ρCE c2
0
∂2θ

∂t2 +
β2

1 T0

ρ

∂2e
∂t2 −

β1c0η0

ρ

∂Q
∂t
, (25)

σzx = β
2
(
∂u
∂z
+
∂w

∂x

)
, (26)

σzz =
∂w

∂z
+ (1− 2β2)

∂u
∂x
− θ, (27)

where

α = 1+
ε0µ

2
0 H 2

0

ρ
, β2

=
µ

λ+2µ
.
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Now, we introduce the displacement potentials φ(x, z, t) and ψ(x, z, t), which are related to the
displacement components as

u = ∂φ
∂x
+
∂ψ

∂z
, w =

∂φ

∂z
−
∂ψ

∂x
. (28)

By simplifying (23)–(25) using (28) along with (9) and (10), we obtain the following equations:

∂2φ

∂t2 =
1
α
(∇2φ− θ), (29)

∂2ψ

∂t2 =
1
α0
∇

2ψ, (30)

k1∇
2θ + k2∇

2θ̇ =
∂2θ

∂t2 + ε1∇
2φ̈− ε2

Ra L0

δt2
p

exp
( z−h/2

δ
−

t
tp

)
, (31)

where

α0 =
α

β2 , k1 =
k∗

(λ+ 2µ)CE
, k2 =

k
k∗
ω̄, ε =

β2
1

(λ+ 2µ)ρ
, ε1 =

εT0

CE
, ε2 =

√
ε

k∗
ω̄.

4. Normal mode analysis

The solution of the considered physical variables can be decomposed in terms of normal modes as

(u, w, φ,ψ, θ, σi j )(x, z, t)= (u∗, w∗, φ∗, ψ∗, θ∗, σ ∗i j )(z)e
(ωt+ιmx), (32)

where ω is the complex time constant and m is the wave number in x-direction.
Using (32) in (29)–(31), we get

(D2
− ε3)ψ

∗
= 0, (33)

(D2
− ε4)φ

∗
= θ∗, (34)

(ε5 D2
− ε6)θ

∗
− ε1ω

2(D2
−m2)φ∗+ ε2ε7 exp

( z−h/2
δ
−

t
tp
−ωt − ιmx

)
= 0, (35)

where

D ∼= ∂

∂z
, ε3 = m2

+α0ω
2, ε4 = m2

+αω2, ε5 = k1+ωk2, ε6 = ε5m2
+ω2, ε7 =

Ra L0

t2
pδ

.

Eliminating θ∗(z) between (34) and (35), we get the following fourth-order partial differential equation
satisfied by φ∗(z):

(D4
− AD2

+ B)φ∗(z)=−C E exp
( z−h/2

δ
−

t
tp
−ωt − ιmx

)
, (36)

where

A =
ε4ε5+ ε1ω

2
+ ε6

ε5
, B =

ε4ε6+ ε1m2ω2

ε5
, C =

ε2ε7

ε5
, E = 1−

(1+ωtp)t
tp

.
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Using the solutions of (33), (34), and (36) (which are assumed to be bounded as z→∞), we can
express φ(x, z, t), ψ(x, z, t), and θ(x, z, t) in the following forms:

φ(x, z, t)=
( 2∑

i=1

L i e−λi z
)

e(ωt+ιmx)
− ε8 f1(z, t), (37)

ψ(x, z, t)= L3e−λ3ze(ωt+ιmx), (38)

θ(x, z, t)=
( 2∑

i=1

L ′i e
−λi z

)
e(ωt+ιmx)

− ε9 f1(z, t), (39)

where L i , L ′i (i = 1, 2), and L3 are parameters depending on m and ω and

f1(z, t)= C E exp
( z−h/2

δ
−

t
tp

)
, L ′i = (λ

2
i − ε3)L i (i = 1, 2),

ε8 =

(
δ4

δ4 B− δ2 A+ 1

)
, ε9 =

1− ε4δ
2

δ2 .

Here, λi (i = 1, 2) are the positive roots of the characteristic equation

λ4
− Aλ2

+ B = 0,

and λ3 is the root of the characteristic equation

λ2
− ε3 = 0.

Similarly, applying normal mode analysis and using the solutions of (33), (34), and (36) in (26)–(28),
we get

u =
(
ιm

2∑
i=1

L i e−λi z
− λ3L3e−λ3z

)
e(ωt+ιmx)

− ιmε8 f1(z, t), (40)

w =−

[( 2∑
i=1

L iλi e−λi z
+ (ιm)L3e−λ3z

)
e(ωt+ιmx)

+ ε8
f1(z, t)
δ

]
, (41)

σzx =−β
2
[(

2ιm
2∑

i=1

L iλi e−λi z
− (λ2

3+m2)L3e−λ3z
)

e(ωt+ιmx)
+ f2(z, t)

]
, (42)

σzz =

( 2∑
i=1

(η+ ε4)L i e−λi z
− 2ιmβ2λ3L3e−λ3z

)
e(ωt+ιmx)

+ f3(z, t), (43)

where η = (1− 2β2)m2, f2(z, t)= ε8(2ιm/δ) f1(z, t), and f3(z, t)= (η− 1/δ2
− ε9)ε8 f1(z, t).

5. Applications

We consider a homogeneous, isotropic magnetothermoelastic solid with laser pulse heating occupying
the half-space z ≥ 0. The boundary z = 0 of the half-space is subjected to mechanical and thermal loads.
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Case (i): Mechanical load. For an isothermal boundary plane z = 0, subjected to a normal mechanical
load, the boundary conditions are given as

σzz(x, 0, t)+ σ̄zz(x, 0, t)=−p1(x, t), (44)

σzx(x, 0, t)+ σ̄zx(x, 0, t)= 0, (45)

θ(x, 0, t)= 0, (46)

where p1(x, t) is a given function of x and t , σz j is the mechanical stress, and σ̄z j ( j = x, y, z) is the
Maxwell stress, which is given as

σ̄z j = µ0[Hzh j + H j hz − Hkhkδz j ]. (47)

Invoking the nondimensional form of (44)–(46) along with (26)–(28) and normal mode analysis as for
(32), we obtain the system of equations

P1L1+ P2L2+ P3L3 = P, (48)

Q1L1+ Q2L2+ Q3L3 = Q, (49)

R1L1+ R2L2 = R, (50)

whose coefficients are defined as follows, where η1 =
µ0 H 2

0
λ+ 2µ

:

Pi = λ
2
i η1+m2(2β2

− η1)+αω
2, Qi =−2ιmλi , Ri = λ

2
i − ε4, i = 1, 2,

P3 = 2ιmλ3β
2, Q3 = λ

2
3+m2,

P =−p∗1 +
(

1
δ2 (1+ η1)− η−m2η1− ε9

)
ε8 f1(z, t)e−(ωt+ιmx),

Q = 2ιm
δ
ε8 f1(z, t)e−(ωt+ιmx), R = ε8ε9 f1(z, t)e−(ωt+ιmx).

(51)

The solution of the system of linear equations (48)–(50) can be expressed as

L1 =
11

1
, L2 =

12

1
, L3 =

13

1
, (52)

where

11 =−P R2 Q3+ Q R2 P3+ R(P2 Q3− Q2 P3), (53)

12 =−P1 RQ3+ Q1 R P3+ R1(P Q3− Q P3), (54)

13 = P1(Q2 R− Q R2)− Q1(P2 R− R2 P)+ R1(P2 Q− Q2 P), (55)

1=−P1 R2 Q3+ Q1 R2 P3+ R1(P2 Q3− Q2 P3). (56)

Substituting the values of L1, L2 and L3 from (52) into (39)–(43), we get the expressions for the
displacement components, temperature distribution, and stress components as

u = 1
1

(
ιm

2∑
i=1

1i e−λi z
− λ313e−λ3z

)
e(ωt+ιmx)

− (ιm)ε8 f1(z, t), (57)
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w =−

[
1
1

( 2∑
i=1

1iλi e−λi z
+ ιm13e−λ3z

)
e(ωt+ιmx)

+ ε8
f1(z, t)
δ

]
, (58)

θ =
1
1

( 2∑
i=1

(λ2
i − ε3)1i e−λi z

)
e(ωt+ιmx)

− ε8ε9 f1(z, t), (59)

σzx =−β
2
[

1
1

(
2ιm

2∑
i=1

1iλi e−λi z
− η213e−λ3z

)
e(ωt+ιmx)

+ f2(z, t)
]
, (60)

σzz =
1
1

( 2∑
i=1

(η+ ε4)1i e−λi z
− 2ιmβ2λ313e−λ3z

)
e(ωt+ιmx)

+ f3(z, t), (61)

where η2 = λ
2
3+m2.

Case (ii): Thermal load. In this case the boundary conditions on the surface z = 0 are given by

σzz(x, 0, t)+ σ̄zz(x, 0, t)= 0, (62)

σzx(x, 0, t)+ σ̄zx(x, 0, t)= 0, (63)

θ(x, 0, t)= p2(x, t), (64)

where p2(x, t) is a given function of x and t .
Adopting the same procedure as in Case (i), that is, using the required expressions in (62)–(64) (the

dimensionless forms) and normal mode analysis, we can get a system of linear equations:

P1L1+ P2L2+ P3L3 = P ′, (65)

Q1L1+ Q2L2+ Q3L3 = Q, (66)

R1L1+ R2L2 = R′, (67)
where

P ′ =
(

1
δ2 (1+ η1)− η−m2η1− ε9

)
ε8 f1(z, t)e−(ωt+ιmx),

R′ = p∗2 + ε8ε9 f1(z, t)e−(ωt+ιmx).

(68)

The corresponding expressions for the displacement components u and w, temperature distribution θ ,
and stress components σzx and σzz are given by (57)–(61) with (P, R) replaced by (P ′, R′) in (53)–(55).

6. Limiting cases

6.1. Neglecting the laser pulse effect.

Case (i): Mechanical load. To obtain the expressions for u, w, θ , σzx , and σzz in the context of the gen-
eralized theory of magnetothermoelasticity due to a mechanical load applied on the isothermal boundary
z = 0, we shall neglect the parameter corresponding to the laser pulse heat. For this, we put L0 = 0,
which implies that ε7 = 0 and f1(z, t)= 0. Now, substituting f1(z, t)= 0 in (51), we get the following
modifications in the expressions of P , Q, and R:

P =−p∗1, Q = 0, R = 0. (69)
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Using (69) in (53)–(55), we get

11 =−p∗1 R2 Q3, 12 =−p∗1 R1 Q3, 13 =−p∗1(R2 Q1− R1 Q2). (70)

Hence, (57)–(61) take the form

u = 1
1

(
ιm

2∑
i=1

1i e−λi z
− λ313e−λ3z

)
e(ωt+ιmx), (71)

w =−

[
1
1

( 2∑
i=1

1iλi e−λi z
+ ιm13e−λ3z

)
e(ωt+ιmx)

]
, (72)

θ =
1
1

( 2∑
i=1

(λ2
i − ε3)1i e−λi z

)
e(ωt+ιmx), (73)

σzx =−β
2
[

1
1

(
2ιm

2∑
i=1

1iλi e−λi z
− η213e−λ3z

)
e(ωt+ιmx)

]
, (74)

σzz =
1
1

( 2∑
i=1

(η+ ε4)1i e−λi z
− 2ιmβ2λ313e−λ3z

)
e(ωt+ιmx). (75)

Case (ii): Thermal load. Similarly, for a thermal load, the corresponding expressions for the field vari-
ables under generalized magnetothermoelasticity are given by (71)–(75) with 1i replaced by 1∗i , where

P ′ = 0, Q = 0, R′ = p∗2, (76)

and

1∗1 = p∗2(P2 Q3− Q2 P3), (77)

1∗2 =−p∗2(P1 Q3− Q1 P3), (78)

1∗3 = p∗2(P1 Q2− P2 Q1). (79)

6.2. Neglecting the magnetic effect. Case (i): Mechanical load. For a mechanical load applied on
the isothermal boundary z = 0, we take H0 = 0 and thus obtain α = 1, which provides the following
modifications in (51):

Pi = 2β2m2
+ω2, P =−p∗1 +

(
1
δ2 − η− ε9

)
ε8 f1(z, t)e−(ωt+ιmx), i = 1, 2.

By considering these modifications in (53)–(56), we get the corresponding expressions for field variables
from (57)–(61).

Case (ii): Thermal load. Similarly, in case of a thermal load, we assume that magnetic properties are
absent from the medium. Then, by taking H0 = 0 and α = 1, we get the following changes in (68):

Pi = 2β2m2
+ω2, P ′ =

(
1
δ2 − η− ε9

)
ε8 f1(z, t)e−(ωt+ιmx), i = 1, 2.
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Following the same procedure as described earlier in Section 5(ii) and considering the above modifica-
tions, the corresponding expressions for u, w, θ , σzx , and σzz are given by (57)–(61).

7. Numerical results and discussions

In this section, we carry out computational work in order to illustrate the results derived in Section 5 and
examine the behavior of the displacement components u and w, temperature distribution θ , and stress
components σzx and σzz .

For this purpose, the material is chosen as copper and the values of the relevant parameters are taken
as follows:

k = 386 Wm−1K−1, T0 = 293 K, ρ = 8954 kgm−3, αt = 1.78× 10−5 K−1,

CE = 383.1 J kg−1K−1, Ra = 0.5, µ0 = 4π × 10−7 Hm−1, ε0 = (10−9/36π)Fm−1,

H0 = (107/4π)Am−1, h = 0.01, δ = 0.01, L0 = 1× 1011 Jm−1,

λ= 7.76× 1010 kgm−1s−2, m = 1.2, ω = 1. µ= 3.86× 1010 kgm−1s−2.

The computation is carried out for

t = 0.1, 0.3, 0.5; p∗1 = 10; p∗2 = 10; x = 1; 0≤ z ≤ 4.5; h∗ = 10.

A comparison of the dimensionless form of the field variables for the cases of magnetothermoelasticity
with a laser pulse (MTLP) and generalized thermoelasticity theory with a laser pulse (TLP) for three
different values of time t , subjected to mechanical and thermal loads, is presented in Figures 2–9. The
values of all the physical quantities for all the cases are displayed in the range 0≤ z ≤ 4.5.

Case (i): Mechanical load. Figure 2 shows the variation of displacement component u with the distance z
for MTLP and TLP for different values of t . We observe that all the curves show similar behavior, that is,
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Figure 2. Variation of displacement u for a mechanical load.
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Figure 3. Variation of displacement w for a mechanical load.

all the curves start with negative values on the boundary of half-space, then rapidly increase to a maximal
positive value and thereafter continuously decrease to zero value. Also, the effect of the magnetic field
is significant for 0.5≤ z ≤ 2 and the influence of time t is prominent in the range 0.3≤ z ≤ 3.

Figure 3 shows the variation of displacement component w with distance z for MTLP and TLP for
different values of t . We note that w starts with a positive value and then decreases continuously to zero
value for all the cases in the range 0≤ z ≤ 3.5. We see that the increment in time as well as the absence of
magnetic field increase the magnitude of displacement component w. For MTLP and TLP at t = 0.1, 0.3,
and 0.5, the effect is pronounced in the range 0≤ z ≤ 2.
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Figure 4. Variation of temperature distribution θ for a mechanical load.
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Figure 5. Variation of tangential stress σzx (left) and normal stress σzz (right) for a
mechanical load.

Figure 4 shows the variation of θ with distance z for MTLP and TLP for different values of time t . It
can be seen that the behavior of θ for all the three cases is similar: its magnitude increases in the range
0≤ z ≤ 0.5 and then decreases in the range 0.5≤ z ≤ 4.5. It is also seen that time strongly affects the
temperature distribution θ ; the difference is pronounced for both MTLP and TLP.

Figure 5 displays the variation of tangential stress σzx and normal stress σzz with distance z for MTLP
and TLP for different values of t . In both cases the magnitude is greater for TLP than for MTLP, and
it increases with t . It is also seen that all the curves show similar trends and the difference for time t is
more pronounced than for a magnetic field.
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Figure 6. Variation of displacement u for a thermal load.
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Figure 7. Variation of displacement w for a thermal load.

Case (ii): Thermal load. Figure 6 displays the variation of u with distance z for MTLP and TLP for
different values of t . It is noticed that for all the cases the displacement component u behaves similarly.
The values of u for TLP are found to be greater in the range 0 ≤ z ≤ 0.25 and lesser in the range
0.25≤ z ≤ 3.5, as compared to MTLP. Moreover, the value of u increases with time.

Figure 7 depicts the variation of w with distance z for MTLP and TLP for different values of t . The
magnetic field acts to decrease the magnitude of displacement component w while an increment in time
significantly enlarges the magnitude of w. Also, w shows a similar pattern for all the curves. The
difference is clearly noticeable for MTLP and TLP in the range 0≤ z ≤ 2.
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Figure 8. Variation of temperature distribution θ for a thermal load.
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Figure 9. Variation of tangential stress σzx (left) and normal stress σzz (right) for a
thermal load.

Figure 8 shows the variation of θ with distance z for MTLP and TLP for different values of t . We see
that the trend of θ for all the cases is found to be similar. We notice that θ increases with time t while
the presence of a magnetic field lowers the value of temperature. The effect of a magnetic field and time
on temperature is prominent.

Figure 9 demonstrates the variation of σzx and σzz with distance z for MTLP and TLP for different
values of t . We observe that σzx begins at zero value at z = 0 for all cases, then increases sharply to
attain its highest value (in magnitude) at z = 0.5, and thereafter diminishes smoothly to zero. Hence, all
the curves show similar trends. The magnitude of σzx for TLP is smaller than for MTLP; in both cases it
increases with time. As for σzz , the curves for MTLP start at a negative value, while for TLP the curves
begin with zero value. Normal stress shows significant sensitivity towards both factors. The magnitude
of σzz decreases if we neglect the magnetic effect, and it increases with t .

8. Conclusions

The problem of investigating displacement components, temperature, and stress components in an in-
finite, homogeneous isotropic elastic half-space is studied in the purview of magnetothermoelasticity
with a laser pulse. A normal mode analysis technique is employed to express the results mathematically.
Theoretically obtained field variables are also exemplified through a specific model to present the results
in graphical form.

The analysis of results permits some concluding remarks:

(1) It is clear from the figures that all the field variables have nonzero values only in the bounded region
of space. Outside this region, the values vanish identically. This means that this outside region has
not felt any thermal disturbance yet. Hence, all the results are in agreement with the generalized
theory of thermoelasticity.

(2) The effect of the magnetic field is much pronounced in all the field variables except for the dis-
placement component u and temperature field θ (however, it is still significant) in the case of a
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thermal load. In case of a mechanical load being applied, the presence of a magnetic field decreases
the magnitude of all the field variables, whereas it has both increasing and decreasing effects for
thermal load.

(3) We see from the figures that the time t plays a significant role in all the field quantities. Changes in
the value of time t cause significant changes in all the studied fields, and the magnitudes of all the
field variables increase with an increase in time t .

(4) We can easily conclude from the figures that the curves for all the field variables show similar
behaviors, for all the cases considered and for both type of loads applied.

(5) If the laser pulse effect is neglected, then the results are in agreement with [Das and Kanoria 2012]
with appropriate modification in the boundary conditions.

(6) The temperature distribution θ shows a zero value for a mechanical load and a maximal value for
a thermal load at the boundary of the surface, which is physically plausible and consistent with the
theoretical boundary conditions of the problem.

The new model is employed in a homogeneous, isotropic thermoelastic medium as a new improvement
in the field of thermoelasticity. The subject becomes more interesting because the use of a laser pulse
with an extensive short duration or a very high heat flux has found numerous applications. The method
used in this article is applicable to a wide range of problems in thermodynamics. By the obtained results,
it is expected that the present model of equations will serve as more realistic and will provide motivation
to investigate generalized magnetothermoelastic problems regarding laser pulse heat with high heat flux
and/or short time duration.
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