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IMPROVED THERMOELASTIC COEFFICIENTS
OF A NOVEL SHORT FUZZY FIBER-REINFORCED
COMPOSITE WITH WAVY CARBON NANOTUBES

SHAILESH I. KUNDALWAL AND MANAS C. RAY

The elastic response of a novel short fuzzy fiber-reinforced composite (SFFRC) has recently been investi-
gated by the authors (Mech. Mater. 53 (2012), 47–60). The distinctive feature of the construction of this
novel SFFRC is that straight carbon nanotubes (CNTs) are radially grown on the circumferential surfaces
of unidirectional short carbon fiber reinforcements. The waviness of CNTs is intrinsic to many manu-
facturing processes and plays an important role in the thermomechanical behavior of CNT-reinforced
composites. However, the effect of the waviness of CNTs on the thermoelastic response of a SFFRC has
yet to be investigated. Therefore, we investigate the effect of wavy CNTs on the thermoelastic properties
of this SFFRC, revealing that the axial thermoelastic coefficients of the SFFRC significantly increase
when the wavy CNTs are coplanar with the longitudinal plane of the carbon fibers for higher values of
the waviness factor and wave frequency of the CNTs. The effective values of the thermal expansion
coefficients of this SFFRC are also found to be sensitive to change in temperature.

A list of abbreviations and symbols can be found starting on page 21.

1. Introduction

Research on the synthesis of molecular carbon structures by an arc-discharge method for the evaporation
of carbon led to the discovery of an extremely thin, needle-like graphitic carbon nanotube (CNT) [Iijima
1991]. Researchers probably thought that CNTs might be useful as nanoscale fibers for developing novel
CNT-reinforced nanocomposites, and this conjecture motivated them to accurately study the physical
properties (mechanical, thermal, and electrical) of CNTs. Numerous experimental and numerical studies
revealed that the axial Young’s modulus of CNTs is in the terapascal range [Treacy et al. 1996; Natsuki
et al. 2004; Shen and Li 2004; Liu et al. 2005; Li and Guo 2008]. The quest for utilizing these exceptional
mechanical properties of CNTs and their high aspect ratio led to the emergence of a new area of research
on the development of CNT-reinforced nanocomposites [Odegard et al. 2003; Ashrafi and Hubert 2006;
Seidel and Lagoudas 2006; Esteva and Spanos 2009; Ray and Batra 2009; Meguid et al. 2010; Khondaker
and Keng 2012].

As nanoscale graphite structures, CNTs are of great interest not only for their mechanical properties but
also for their thermal properties. For example, in several studies [Bandow 1997; Yosida 2000; Maniwa
et al. 2001] the coefficients of thermal expansion (CTEs) of CNTs and their bundles are determined
by using X-ray diffraction techniques. Bandow [1997] found that the CTE in the radial direction of
multiwalled CNTs (MWCNTs) is almost the same as the CTE of graphite. Yosida [2000] and Maniwa

Keywords: short fuzzy fiber composite, wavy CNTs, micromechanics, thermoelastic coefficients.
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et al. [2001] estimated the CTEs of single-walled CNT (SWCNT) bundles. Their results indicate that
CNT bundles have a negative CTE at low temperatures and a positive CTE at high temperatures. Rar-
avikar et al. [2002] estimated the CTEs of armchair (5, 5) and (10, 10) SWCNTs by using a molecular
dynamics simulation (MDS) and found that the CTE of the CNT in the radial direction is less than that in
the axial direction. Jiang et al. [2004] presented an analytical method to determine the CTEs of SWCNTs
based on the interatomic potential and the local harmonic model. They found that all CTEs of SWCNTs
are negative at low and room temperatures, and become positive at high temperatures. Kwon et al. [2004]
performed a MDS and reported that the axial and radial CTEs of CNTs are nonlinear functions of change
in temperature. Kirtania and Chakraborty [2009] presented a finite element (FE) analysis to estimate the
CTEs of SWCNTs and demonstrated that the CTEs of SWCNTs increase uniformly with increase in
the diameter of the SWCNT. The nonequilibrium Green’s function method was employed by Jiang et al.
[2009] to investigate the CTEs of SWCNTs and graphene. They found that the axial CTE is positive in
the whole temperature range while the radial CTE is negative at low temperatures. Alamusi et al. [2012]
investigated the axial CTEs of SWCNTs and MWCNTs by using a MDS, considering the effects of
temperature and CNT diameter. For all CNTs, the obtained results revealed that axial CTEs are negative
within a wide low-temperature range and positive in a high temperature range, and the temperature range
for negative axial CTEs narrows as the diameter of the CNT decreases. Extensive research has also been
carried out concerning the prediction of the CTEs of CNT-reinforced composites [Pipes and Hubert 2003;
Kirtania and Chakraborty 2009]. In these studies, the results indicate that the addition of CNTs into the
matrix causes significant improvement in the thermoelastic response of the CNT-reinforced composite
as compared to that of the base composite.

It has been reported in many experimental studies [Shaffer and Windle 1999; Qian et al. 2000; Zhang
et al. 2008; Yamamoto et al. 2009; Tsai et al. 2011] that CNTs are actually curved cylindrical tubes.
The use of long CNTs in CNT-reinforced nanocomposites has revealed that CNT curvature significantly
reduces the effective properties of the CNT-reinforced composite [Fisher et al. 2002; Berhan et al. 2004;
Shi et al. 2004; Anumandla and Gibson 2006]. The effect of CNT curvature on the polymer matrix
nanocomposite stiffness has been investigated by Pantano and Cappello [2008]. They concluded that in
the presence of weak bonding, enhancement of the nanocomposite stiffness can be achieved through the
bending energy of CNTs rather than through their axial stiffness. Li and Chou [2009] studied the failure of
CNT/polymer matrix composites by using a micromechanics model and conducting FE simulations. They
found that CNT waviness tends to reduce the elastic modulus and tensile strength of the nanocomposite
but increases its ultimate strain. Farsadi et al. [2013] developed a three-dimensional FE model to inves-
tigate the influence of the waviness of the CNTs on the elastic moduli of a CNT-reinforced composite.

In addition to the waviness of CNTs, significant technical and manufacturing challenges have hin-
dered the development of large-scale CNT-enhanced structures [Ajayan and Tour 2007; Schulte and
Windle 2007]. Alignment, dispersion, and adhesion of CNTs in polymer matrices are vital for struc-
tural composite applications [Thostenson et al. 2001; Ajayan and Tour 2007; Schulte and Windle 2007].
More success can be achieved in improving the transverse multifunctional properties of hybrid CNT-
reinforced composites by growing short CNTs on the circumferential surfaces of advanced fibers [Bower
et al. 2000; Veedu et al. 2006; Qiu et al. 2007; Garcia et al. 2008]. For example, Veedu et al. [2006]
developed a multifunctional composite in which CNTs are grown on the circumferential surfaces of
the fibers and found that the presence of CNTs on the surfaces of the fibers reduces the effective CTE
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Figure 1. Left: SEM image of vertically aligned curved CNTs (adapted with permission
from [Zhang et al. 2008]). Right: SEM image of aligned CNTs grown on alumina fiber
(adapted with permission from [Yamamoto et al. 2009]).

of the multifunctional composite up to 62% compared to that of the base composite (that is, without
CNTs). Qiu et al. [2007] developed a multifunctional composite through an effective infiltration-based
vacuum-assisted resin transfer moulding process. Their study indicated that the effective CTE of the
multifunctional composite was reduced up to 25.2% compared with that of the composite without CNTs.
A fiber coated with radially grown CNTs on its circumferential surface is called a “fuzzy fiber” [Garcia
et al. 2008; Yamamoto et al. 2009; Chatzigeorgiou et al. 2012], and the resulting composite may be
called a fuzzy fiber-reinforced composite (FFRC). Chatzigeorgiou et al. [2012] estimated the thermoe-
lastic properties of fuzzy fiber composites in which a carbon fiber is coated with radially aligned straight
CNTs by employing the asymptotic expansion homogenization method. They reported that the radial
CTE of the fuzzy fiber composite is one order of magnitude less than its axial CTE. Recently, the elastic
properties and the load transfer characteristics of a novel short fuzzy fiber-reinforced composite (SFFRC)
have been extensively studied in [Kundalwal and Ray 2012; Kundalwal 2013].

Scanning electron microscopy (SEM) images analyzed in [Zhang et al. 2008] and [Yamamoto et al.
2009] are shown in Figure 1. They show clearly that CNTs remain highly curved when they are grown on
the surfaces of advanced fibers. It is hypothesized that their affinity to becoming curved is due to their high
aspect ratio and associated low bending stiffness. Since the addition of CNTs in hybrid CNT-reinforced
composites influences the thermoelastic properties of the hybrid nanocomposites, the waviness of the
CNTs may also affect the effective thermoelastic response of the SFFRC. However, the thermoelastic
response of such a hybrid nanocomposite, being composed of short fuzzy fiber reinforcements coated
with wavy CNTs, has not yet been investigated. Therefore, in this study we have endeavored to investigate
the effect of waviness of CNTs on the effective thermoelastic properties of a SFFRC.

The outline is as follows: Section 2 briefly describes the architecture of the SFFRC containing wavy
CNTs coplanar with either of the two mutually orthogonal planes. Section 3 presents the development
of the Mori–Tanaka (MT) models for estimating the effective thermoelastic properties of the SFFRC and
its constituent phases. In Section 4, numerical results are presented. Finally, Section 5 delineates the
conclusions drawn from this study.
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2. Architecture of a novel SFFRC

The top part of Figure 2 represents a lamina of a SFFRC in which the short fuzzy fibers are uniformly
reinforced in the polymer matrix. Its in-plane cross section is illustrated in Figure 2, bottom. The short
fuzzy fiber coated with sinusoidally wavy CNTs [Fisher et al. 2002; Berhan et al. 2004; Anumandla
and Gibson 2006; Pantano and Cappello 2008; Zhang et al. 2008; Tsai et al. 2011; Farsadi et al. 2013]
reinforced in the polymer matrix can be viewed as a circular cylindrical short composite fuzzy fiber
(SCFF), as illustrated in Figure 3. The SCFFs are assumed to be uniformly dispersed over the volume of
a lamina of the SFFRC in such a way that the three orthogonal principal material coordinate axes (1-2-3)
exist in the composite as shown in Figure 2, top. The architecture of the representative volume element

 

 

 

Figure 2. Top: schematic diagram of a lamina made of the SFFRC containing wavy
CNTs. Bottom: In-plane cross section of the SFFRC lamina. (Wavy CNTs are coplanar
with the longitudinal plane of the carbon fiber.)
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Figure 3. Fuzzy fiber coated with wavy CNTs reinforced in the polymer matrix (wavy
CNTs are coplanar with the transverse plane of the carbon fiber).

 

Figure 4. Architecture of the RVE of the SFFRC in which the SCFF is embedded in
the polymer material.

(RVE) of the SFFRC in which the SCFF embedded in the polymer material is schematically illustrated
in Figure 4. The orientation of the plane of the wavy CNTs radially grown on the circumferential surface
of the carbon fiber is an important issue because the planar orientations of the wavy CNTs may influence
the thermoelastic properties of the SFFRC; this issue needs to be carefully addressed. Two possible
planar orientations of the wavy CNTs are considered herein. The wavy CNTs are coplanar with either
the longitudinal (that is, the 1-3 or 1′-3′) or the transverse (that is, the 2-3 or 2′-3′) plane of the carbon
fiber, as shown in Figures 2 and 3, respectively. Investigation of the effect of all other planar orientations
of the wavy CNTs is beyond the scope of the present study.

3. Modeling of the effective thermoelastic properties
of a novel SFFRC and its constituent phases

This section deals with the procedures of employing the MT model to predict the effective thermoelastic
properties of the SFFRC and its constituent phases. The various steps involved in the computation of the
effective thermoelastic properties of the SFFRC are outlined as follows.
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• The first step in modeling the SFFRC is to determine the effective thermoelastic properties of a poly-
mer matrix nanocomposite (PMNC) containing wavy CNTs coplanar with either the longitudinal
(that is, the 1-3 or 1′-3′) or the transverse (that is, the 2-3 or 2′-3′) plane of the carbon fiber.

• Subsequently, considering the PMNC material as the matrix phase and the short carbon fibers as the
reinforcement, the effective thermoelastic properties of the SCFF can be computed.

• Finally, using the effective thermoelastic properties of the SCFF and the polymer matrix, the effec-
tive thermoelastic properties of the SFFRC can be obtained.

3.1. Effective thermoelastic properties of the PMNC. From the constructional features of the SCFF, it
may be seen that the carbon fiber is wrapped by a lamina of PMNC material, as illustrated in Figure 5.
The average effective thermoelastic properties of the annular portion of the PMNC material surrounding
the carbon fiber can be approximated by estimating the effective thermoelastic properties of the unwound
lamina containing wavy CNTs. Hence, the effective elastic coefficient matrix [C

NC
] and the effective

thermal expansion coefficient vector {αNC
} of the unwound lamina containing wavy CNTs are to be

estimated a priori. Subsequently, appropriate transformations and homogenization procedures can be
 

Figure 5. Unwound lamina of PMNC containing wavy CNTs coplanar with the longi-
tudinal (top) or transverse (bottom) plane of the carbon fiber.
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Figure 6. RVE of unwound PMNC material containing a wavy CNT coplanar with
the longitudinal (that is, 1-3) plane of the carbon fiber (adapted with permission from
[Kundalwal and Ray 2013]).

carried out on [C
NC
] and {αNC

} to determine the effective thermoelastic properties of the annular portion
of PMNC surrounding the carbon fiber.

Wavy CNTs coplanar with the longitudinal plane of the carbon fiber. We first consider the wavy CNTs to
be coplanar with the longitudinal plane (the 1-3 or 1′-3′ plane) of the carbon fiber, as shown in Figures 2
and 4, while computing the thermoelastic properties of the PMNC. An appropriate RVE of unwound
PMNC material containing a wavy CNT can be considered to investigate the thermoelastic properties of
the unwound PMNC material. Such an RVE is schematically illustrated in Figure 6. The RVE shown in
Figure 6 can be divided into infinitesimally thin slices of thickness dy and each slice can be treated as
an off-axis unidirectional lamina in which the CNT axis makes an angle θ with the radial direction. The
CNT waviness is assumed to be sinusoidal in the longitudinal plane of the carbon fiber and is defined by

x = A sin(ωy), ω = nπ/Ln, (1)

in which A and Ln are the amplitude of the CNT wave and the linear distance between the CNT ends,
respectively, and n represents the number of CNT waves. The running length, Lnr , of the CNT is given by

Lnr =

∫ Ln

0

√
1+ A2ω2cos2(ωy) dy, (2)

where the angle θ shown in Figure 6 is given by

tan θ = dx/dy = Aω cos(ωy). (3)

The effective thermoelastic properties at any point of any slice of the unwound lamina of PMNC
containing sinusoidally wavy CNTs where the CNT axis makes an angle θ with the radial direction (3 or
3′) can be approximated by transforming the effective thermoelastic properties of the unwound lamina
of PMNC containing straight CNTs. Hence, in what follows the MT model for predicting the effective
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thermoelastic properties of the unwound lamina of PMNC with straight CNTs will be presented first.
Due to difficulties in the atomistic modeling of CNTs inside the polymer matrix environment, researchers
have considered CNTs as equivalent solid fibers for estimating the effective thermoelastic properties of
CNT-reinforced composites [Fisher et al. 2002; Pipes and Hubert 2003; Berhan et al. 2004; Anumandla
and Gibson 2006; Pantano and Cappello 2008; Tsai et al. 2011; Farsadi et al. 2013]. Thus, considering
CNTs as solid fibers, the MT model [Mori and Tanaka 1973] can be utilized to estimate the effective
elastic coefficient matrix [Cnc

] of the unwound lamina of PMNC with straight CNTs [Benveniste 1987]:

[Cnc
] = [C p

] + vn([Cn
] − [C p

])([ Ã1][vp[I ] + vn[ Ã1]]
−1), (4)

in which

[ Ã1] =
[
[I ] + [Sn

]([C p
])−1([Cn

] − [C p
])
]−1
,

where vn and vp represent the volume fractions of the CNT fiber and polymer material, respectively,
present in the RVE of the PMNC. The square matrix [Sn

] represents the Eshelby tensor for the cylindrical
CNT. The elements of the Eshelby tensor [Sn

] for the cylindrical CNT reinforcement in the isotropic
polymer matrix are explicitly written as [Qiu and Weng 1990]

[Sn
] =



Sn
1111 Sn

1122 Sn
1133 0 0 0

Sn
2211 Sn

2222 Sn
2233 0 0 0

Sn
3311 Sn

3322 Sn
3333 0 0 0

0 0 0 Sn
2323 0 0

0 0 0 0 Sn
1313 0

0 0 0 0 0 Sn
1212


, (5)

in which

Sn
1111 = Sn

2222 =
5− 4ν p

8(1− ν p)
, Sn

3333 = 0, Sn
1122 = Sn

2211 =
4ν p
− 1

8(1− νi )
,

Sn
1133 = Sn

2233 =
ν p

2(1− ν p)
, Sn

3311 = Sn
3322 = 0, Sn

1313 = Sn
2323 = 1/4, Sn

1212 =
3− 4ν p

8(1− ν p)
,

where ν p denotes the Poisson’s ratio of the polymer matrix.
Using the effective elastic coefficient matrix [Cnc

], the effective thermal expansion coefficient vector
{αnc
} for unwound PMNC with straight CNTs can be derived in the form of [Laws 1973] as

{αnc
} = {αn

}+ ([Cnc
]
−1
− [Cn

]
−1
)([Cn

]
−1
− [C p

]
−1
)−1({αn

}− {α p
}), (6)

where {αn
} and {α p

} are the thermal expansion coefficient vectors of the CNT fiber and the polymer
material, respectively. The effective elastic coefficient matrix [CNC

] and the effective thermal expansion
coefficient vector {αNC

} at any point of any slice of the unwound lamina of PMNC where the CNT is
inclined at an angle θ with the 3 (3′)-axis can be derived by employing the appropriate transformations:

[CNC
] = [T1]

−T
[Cnc
][T1]

−1, {αNC
} = [T1]

−T
{αnc
}, (7)
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in which

[T1] =



k2 0 l2 0 kl 0
0 1 0 0 0 0
l2 0 k2 0 −kl 0
0 0 0 k 0 −l
−2kl 0 2kl 0 k2

− l2
−n

0 0 0 l 0 k


,

with

k = cos θ = [1+{nπ A/Ln cos(nπy/Ln)}
2
]
−1/2

and

l = sin θ = nπ A/Ln cos(nπy/Ln)[1+{nπ A/Ln cos(nπy/Ln)}
2
]
−1/2.

Subsequently, the average effective elastic coefficient matrix [C
NC
] and the thermal expansion coefficient

vector {αnc
} of the lamina of unwound PMNC material containing wavy CNTs can be obtained by

averaging the transformed elastic coefficients (CNC
i j ) and the thermal expansion coefficients (αNC

i j ) over
the linear distance between the CNT ends as [Hsiao and Daniel 1996]

[C
NC
] =

1
Ln

∫ Ln

0
[CNC
] dy, {αNC

} =
1

Ln

∫ Ln

0
{αNC
} dy. (8)

When the carbon fiber is viewed to be wrapped by such an unwound lamina of PMNC, the matrix [C
NC
]

and the vector {αNC
} as given by (8) also provide the effective properties at a point located in the PMNC

with respect to the 1′-2′-3′ coordinate system, where the wavy CNT is grown at an orientation angle
φ with the 3-axis in the 2-3 plane as shown in Figures 4 and 5. Hence, at any point in the PMNC
surrounding the carbon fiber, the effective elastic coefficient matrix [C

PMNC
] and the effective thermal

expansion coefficient vector {αPMNC
} of the PMNC with respect to the 1-2-3 coordinate system turn out

to be dependent on the CNT orientation angle φ and can be determined by the following transformations:

[C
PMNC
] = [T ]−T

[C
NC
][T ]−1, {αPMNC

} = [T ]−T
{αNC
}, (9)

where

[T ] =



1 0 0 0 0 0
0 m2 n2 mn 0 0
0 n2 m2

−mn 0 0
0 −2mn 2mn m2

− n2 0 0
0 0 0 0 m −n
0 0 0 0 n m


, with m = cosφ and n = sinφ.

From (9) it is obvious that the effective thermoelastic properties at any point in the PMNC surrounding
the carbon fiber with respect to the principle material coordinate axes of the SFFRC vary over the annular
cross section of the PMNC phase of the RVE of the SCFF. However, without loss of generality, it may
be considered that the volume average of these effective thermoelastic properties over the volume of
the PMNC can be treated as the constant effective elastic coefficient matrix [CPMNC

] and the constant
effective thermal expansion coefficient vector {αPMNC

} of PMNC containing sinusoidally wavy CNTs
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surrounding the carbon fiber with respect to the 1-2-3 coordinate axes of the SFFRC. These are given by

[CPMNC
] =

1
π(b2− a2)

∫ 2π

0

∫ b

a
[C

PMNC
]r dr dφ,

{αPMNC
} =

1
π(b2− a2)

∫ 2π

0

∫ b

a
{αPMNC

}r dr dφ.

(10)

Thus the effective constitutive relations for the PMNC material surrounding the carbon fiber with respect
to the principle material coordinate (1-2-3) axes of the SFFRC can be expressed as

{σ PMNC
} = [CPMNC

]({εPMNC
}− {αPMNC

}1T ), (11)

in which 1T represents the temperature deviation from a reference temperature.

Wavy CNTs coplanar with the transverse plane of the carbon fiber. Now the CNT waviness is assumed
to be sinusoidal in the transverse plane (2-3 or 2′-3′) of the carbon fiber, as shown in Figure 3, and is
characterized by

z = A sin(ωy), ω = nπ/Ln, (12)

in which the angle θ shown in Figure 7 is given by

tan θ = dz/dy = Aω cos(ωy). (13)

The procedure of utilizing the MT model presented in Section 3.1 for determining the effective thermoe-
lastic properties of the unwound lamina of PMNC with straight CNTs can be utilized to estimate the
effective thermoelastic properties of the unwound lamina of PMNC with wavy CNTs coplanar with the
transverse plane of the carbon fiber. Once [Cnc

] and {αnc
} are computed by (4) and (6), respectively, the

effective elastic coefficient matrix [CNC
] and the effective thermal expansion coefficient vector {αNC

} at
any point of any slice of the unwound lamina of PMNC where the CNT is inclined at an angle θ with
the 3 (3′)-axis can be derived by employing the appropriate transformations for the wavy CNTs coplanar
with the transverse plane of the carbon fiber:

[CNC
] = [T2]

−T
[Cnc
][T2]

−1, {αNC
} = [T2]

−T
{αnc
}, (14)

in which

[T2] =



1 0 0 0 0 0
0 k2 l2 kl 0 0
0 l2 k2

−kl 0 0
0 −2kl 2kl k2

− l2 0 0
0 0 0 0 k −l
0 0 0 0 l k


.

Subsequently, (8) and (10) can be used to estimate the effective elastic coefficient matrix [CPMNC
] and

thermal expansion coefficient vector {αPMNC
} of the PMNC material surrounding the carbon fiber when

the wavy CNTs are coplanar with the transverse plane of the carbon fiber.
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Figure 7. RVE of the unwound PMNC material containing a wavy CNT to be coplanar
with the transverse plane (that is, 2-3 plane) of the carbon fiber (adapted with permission
from [Kundalwal and Ray 2013]).

3.2. Effective thermoelastic properties of the SCFF. The second step in modeling the SFFRC is to
estimate the effective thermoelastic properties of the SCFF. Utilizing the effective elastic properties of
PMNC containing wavy CNTs derived in the previous section as the matrix material properties and with
the carbon fiber aligned along the 1-direction as the reinforcement, the MT model presented for the
unwound PMNC can be augmented to derive the effective elastic coefficient matrix [CSCFF

] of a lamina
made of the SCFF:

[CSCFF
] = [CPMNC

] + v̄ f ([C f
] − [CPMNC

])([ Ã2][vPMNC[I ] + v f [ Ã2]]
−1
), (15)

where
[ Ã2] =

[
[I ] + [S f ]([CPMNC

])−1([C f
] − [CPMNC

])
]−1
,

and where v̄ f and vPMNC are the volume fractions of the carbon fiber and PMNC, respectively, with
respect to the volume of the RVE of the SCFF, and the Eshelby tensor, [S f

], is determined based
on the elastic properties of the PMNC and the shape of the carbon fiber. It should be noted that the
PMNC material is transversely isotropic and, consequently, the Eshelby tensor [Li and Dunn 1998]
corresponding to transversely isotropic material is utilized to compute the matrix [S f

]. The elements of
the Eshelby tensor for the cylindrical carbon fiber embedded in the transversely isotropic PMNC material
are explicitly given by [Li and Dunn 1998]:

[S f
] =



S f
1111 S f

1122 S f
1133 0 0 0

S f
2211 S f

2222 S f
2233 0 0 0

S f
3311 S f

3322 S f
3333 0 0 0

0 0 0 S f
2323 0 0

0 0 0 0 S f
1313 0

0 0 0 0 0 S f
1212


, (16)
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in which

S f
1111 = S f

2222 =
5CPMNC

11 +CPMNC
12

8CPMNC
11

, S f
1122 = S f

2211 =
3CPMNC

12 −CPMNC
11

8CPMNC
11

, S f
1133 = S f

2233 =
CPMNC

13

2CPMNC
11

,

S f
3311 = S f

3322 = 0, S f
1313 = S f

2323 = 1/4, S f
3333 = 0, S f

1212 =
3CPMNC

11 −CPMNC
12

8CPMNC
11

.

Using the effective elastic coefficient matrix [CSCFF
], the effective thermal expansion coefficient vector

{αSCFF
} for the SCFF can be determined as follows [Laws 1973]:

{αSCFF
} = {α f

}+ ([CSCFF
]
−1
− [C f

]
−1
)([C f

]
−1
− [CPMNC

]
−1
)−1({α f

}− {αPMNC
}), (17)

where [C f
] and {α f

} are the elastic coefficient matrix and thermal expansion coefficient vector of the
carbon fiber, respectively.

3.3. Effective thermoelastic properties of the SFFRC. Considering the SCFF as the cylindrical rein-
forcement embedded in the isotropic polymer matrix, the effective elastic properties [C] of the SFFRC
can be determined by utilizing the MT model as follows:

[C] = [C p
] + vSCFF([CSCFF

] − [C p
])
(
[ Ã3]

[
v̄P [I ] + vSCFF[ Ã3]

]−1)
, (18)

in which

[ Ã3] =
[
[I ] + [SSCFF

]([C p
])−1([CSCFF

] − [C p
])
]−1

and where vSCFF and v̄p are the volume fractions of the SCFF and polymer material, respectively, with
respect to the volume of the RVE of the SFFRC. The elements of the Eshelby tensor [SSCFF

] for the
cylindrical SCFF reinforcement in the isotropic polymer matrix are given by [Qiu and Weng 1990]

[SSCFF
] =



S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0

0 0 0 S2323 0 0
0 0 0 0 S1313 0
0 0 0 0 0 S1212


, (19)

in which

S1111= 0, S2222= S3333=
5−4ν p

8(1−ν p)
, S2211= S3311=

ν p

2(1−ν p)
,

S2233= S3322=
4ν p
−1

8(1−ν p)
, S1122= S1133= 0, S1313= S1212= 1/4, S2323=

3−4ν p

8(1−ν p)
.

Finally, the effective thermal expansion coefficient vector {α} of the SFFRC can be derived as [Laws
1973]

{α} = {αSCFF
}+ ([C]−1

− [CSCFF
]
−1)([CSCFF

]
−1
− [C p

]
−1
)−1({αSCFF

}− {α p
}). (20)
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4. Results and discussion

In order to verify the validity of the MT model derived herein, the predictions of the MT model are
first compared with the existing experimental and numerical results. Then the effective thermoelastic
properties of the SFFRC containing wavy CNTs are determined by employing the MT model.

4.1. Comparison with experimental and numerical results. Recently, Kulkarni et al. [2010] experimen-
tally and numerically investigated the elastic response of a nanoreinforced laminated composite (NRLC).
The NRLC is made of CNT-reinforced polymer nanocomposite and carbon fiber. The cross sections of
such NRLC are schematically shown in Figure 8. The geometry of the NRLC shown in Figure 8 is similar
to that of the SCFF shown in Figure 3 if straight CNTs are considered. Thus, to confirm the modeling of
the SCFF in the present study, we compare the results predicted by Kulkarni et al. [2010] for the NRLC
with those predicted by the MT model for the SCFF with straight CNTs. It may be observed from
Table 1 that the predicted value of the transverse Young’s modulus (Ex ) of the SCFF computed by the
MT model matches closely with that of the experimental value predicted by Kulkarni et al. [2010]. The
experimental value of Ex is lower than the theoretical prediction; this may be attributed to the fact that
CNTs are not perfectly radially grown and straight, and hence the radial stiffening of the NRLC decreases
[ibid.]. Further possible reasons for the disparity between the analytical and experimental results include
lattice defects within CNTs [Ivanov et al. 2006; Yu et al. 2006] and the formation of voids in CNT-
reinforced composites [Grunlan et al. 2006; Borca-Tasciuc et al. 2007]. Also, the value of Ex predicted
by the MT model utilized herein is much closer to the experimental value than that of the numerical
value predicted by Kulkarni et al. [2010]. This is attributed to the fact that the appropriate transformation
and homogenization procedures given by (9) and (10) have been employed in the present study, whereas
they did not consider such transformation and homogenization procedures in their numerical modeling.
These comparisons are significant since the prediction of the transverse Young’s modulus of the SCFF
provides a critical check on the validity of the MT model. Thus it can be inferred from the comparisons
shown in Table 1 that the MT model can be reasonably applied to predict the elastic properties of the
SFFRC and its phases.

 

 

Figure 8. Transverse and longitudinal cross sections of the NRLC (adapted with per-
mission from [Kulkarni et al. 2010]).
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NRLC∗

Numerical∗ Experimental∗ MT model
Ex (GPa) 13.93 10.02 11.91
νxy 0.34 – 0.38
νzx 0.16 – 0.18

Table 1. Comparisons of the effective engineering constants of NRLC, 2% CNT and
41% IM7 carbon fiber, with those of SCFF containing straight CNTs. Ex is the transverse
Young’s modulus of the NRLC, νzx and νxy are the axial and transverse Poisson’s ratios
of the NRLC, respectively, and ∗ indicates data from [Kulkarni et al. 2010].

Eyy (GPa) Exx (GPa)
w = A/λ FE Model# MT FE Model# MT

0 18 17.800 4.577 4.448
0.005 17.920 17.790 4.574 4.448
0.010 17.780 17.800 4.570 4.446
0.015 17.690 17.750 4.566 4.445
0.020 17.570 17.720 4.563 4.442
0.025 17.480 17.680 4.561 4.440
0.030 17.130 17.630 4.559 4.435

Table 2. Comparisons of the engineering constants of unwound PMNC material with
sinusoidally wavy CNTs, where # indicates data from [Farsadi et al. 2013], with
En
= 1030 GPa, νn

= 0.063, E p
= 3.8 GPa, ν p

= 0.4, and CNT volume fraction
vn = 0.014; w is the waviness ratio, A and λ are the amplitude and the wavelength
of the sinusoidally wavy CNT, En and E p are the Young’s moduli of the CNT and
polymer matrix, respectively, Eyy and Exx are the axial and transverse Young’s moduli
of unwound PMNC containing sinusoidally wavy CNTs, respectively, and νn and ν p are
the Poisson’s ratios of the CNT and polymer matrix, respectively.

Next, the engineering constants of unwound PMNC containing sinusoidally wavy CNTs determined by
the MT model are compared with those of the similar nanocomposite containing sinusoidally wavy CNTs
studied by Farsadi et al. [2013]. Table 2 illustrates these comparisons. The two sets of results predicted
by the FE and MT models are in excellent agreement, validating the MT model used in this study. The
CTEs of unwound PMNC containing straight CNTs determined by the MT model are also compared
with those of the similar CNT-reinforced composite studied by Kirtania and Chakraborty [2009], as
shown in Table 3. For the effective values of CTEs of the CNT-reinforced composite, the two sets of
results predicted by the FE and MT models are in excellent agreement, validating the MT model used
here. It may also be observed from Tables 2 and 3 that the analytical MT model presented in this study
requires much less computational time than the FE model. Thus one may use the analytical MT model
for intuitive predictions of the effective thermoelastic properties of any novel advanced composites.
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α1(×10−6 K−1) α2(×10−6 K−1)

vn FE Model$ MT FE Model$ MT
0.5 25.2030 24.4850 69.7540 69.9030
1 15.3020 15.0720 72.8670 72.8790
3 5.0978 5.1820 74.7155 74.5120
5.45 2.2670 2.2978 73.5434 73.1220
7.9 1.0643 1.1170 71.7165 71.1300

10.3 0.4253 0.4847 69.7879 69.0140
15.77 −0.3201 −0.2560 65.1728 64.0370

Table 3. Comparisons of the CTEs of unwound PMNC material with straight CNTs,
where $ indicates data from [Kirtania and Chakraborty 2009], with En

= 1000 GPa,
νn
= 0.2, E p

= 3.89 GPa, ν p
= 0.37, αn

=−1.5× 10−6 K−1, and α p
= 58× 10−6 K−1;

α1 and α2 are the axial and transverse CTEs of unwound PMNC with straight CNTs,
respectively, and αn and α p are the CTEs of the CNT and polymer matrix, respectively.

4.2. Analytical modeling results. Armchair SWCNTs, carbon fiber, and polymer matrices are consid-
ered for evaluating the numerical results. Their material properties are taken from [Villeneuve et al.
1993; Peters 1998; Honjo 2007; Kwon et al. 2004; Shen and Li 2004] and are listed in Table 4. Since
the investigations of earlier researchers [Yosida 2000; Maniwa et al. 2001; Jiang et al. 2004; Kwon et al.
2004; Jiang et al. 2009] have shown strong temperature dependence in the CTEs of CNTs, the variation in
CTEs of the armchair (10, 10) CNT with temperature deviation is considered here. However, the elastic
properties of CNTs, carbon fiber, and polymer are reported to be marginally dependent on the temperature
deviation [Shen 2001]. Hence, the temperature dependence of the elastic properties of the constituent
phases of the SFFRC is neglected. The relationships between the axial (αn

3 ) and transverse (αn
1 ) CTEs

of the armchair (10, 10) CNT and the temperature deviation (1T ) are given by [Kwon et al. 2004]:

αn
1 = α

n
2 = 3.7601× 10−101T 2

− 3.2189× 10−71T − 3.2429× 10−8 K−1, (21)

αn
3 = 6.4851× 10−111T 2

− 5.8038× 10−81T + 9.0295× 10−8 K−1. (22)

For the SFFRC, the hexagonal packing array of the SCFFs is considered for evaluating the numerical
results. The maximum value of the CNT volume fraction in the SFFRC can be determined based on the

Material C11 C12 C13 C23 C33 C66 α1 α2

(10, 10) CNTa 288 254 87.8 87.8 1088 17 b b dn = 0.00136
Carbon fiberc,d 236.4 10.6 10.6 10.7 24.8 25 1.1 6.8 2a = 10
Polymere 4.09 1.55 1.55 1.55 4.09 1.27 66 66

Table 4. Material properties of the constituent phases of the SFFRC, where a indicates
data from [Shen and Li 2004], c [Honjo 2007], d [Villeneuve et al. 1993], and e [Peters
1998]. The values of α1 and α2 of the armchair (10, 10) CNT marked with b are from
[Kwon et al. 2004] and are given in the text. Values of C are in units of GPa, α in
10−6 K−1, and dn and a in µm.
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Figure 9. Variation of the maximum CNT volume fraction with the carbon fiber volume
fraction in the SFFRC.

surface to surface distance at the roots of the two adjacent CNTs (0.0017µm), the CNT diameter (dn),
and the running length of the sinusoidally wavy CNT (Lnr ) as [Kundalwal and Ray 2013]

(VCNT)max =
πd2

n Lnr

d(dn + 0.0017)2
v f , (23)

where dn is the diameter of the CNT in µm. The derivation of (23) can be found in [Kundalwal and
Ray 2013]. It is evident from (2) and (23) that an increase in the amplitude of the CNT increases the
running length of the CNT which eventually increases the maximum CNT volume fraction (VCNT)max

in the SFFRC. Figure 9 illustrates the variation of the maximum value of the CNT volume fraction in
the SFFRC with the carbon fiber volume fraction (v f ) while the values of the wave frequency (ω) vary
from ω = 8π/Ln to ω = 32π/Ln . As expected, the maximum value of the CNT volume fraction in the
SFFRC increases with the increase in the values of v f and ω. To investigate the effect of wavy CNTs
on the thermoelastic properties of the SFFRC, the value of ω is varied while keeping the value of v f as
0.3, and adopting the following values of the other geometrical parameters of the RVE of the SFFRC:

• diameter of the armchair (10, 10) SWCNT dn = 0.00136µm [Shen and Li 2004],

• radius of the carbon fiber a = 5µm,

• radius of the RVE of the SFFRC R = 8.2888µm,

• radius of the SCFF b = 7.5353µm,

• half-length of the carbon fiber L f = 100µm,

• half-length of the RVE of the SFFRC L = 110µm,

• length of the straight CNT Ln = 2.5353µm,

• maximum amplitude of the wavy CNT A = 100dn µm,

• maximum waviness factor A/Ln = 0.0536µm.

First, the effective thermoelastic coefficients of the PMNC for different values of ω of the CNT are
computed by employing the MT model. The estimated effective thermoelastic properties of the PMNC
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are then used to compute the effective thermoelastic properties of a SCFF in which the carbon fiber is the
reinforcement and the matrix phase is the PMNC material. However, for the sake of brevity, the effective
thermoelastic properties of the PMNC and SCFF are not presented here. Unless otherwise mentioned,
the two fixed values of ω (ω = 16π/Ln and ω = 32π/Ln) are considered for evaluating the results.

Figure 10 illustrates the variation of the effective elastic coefficients C11 and C12 of the SFFRC with
waviness factor A/Ln . It may be observed from Figure 10(a) that the effective values of C11 of the
SFFRC are not affected by variations of the amplitude of the wavy CNTs in the 2-3 plane. When the
wavy CNTs are coplanar with the 1-3 plane, increase in the values of A/Ln and ω significantly increases
C11. Figure 10(b) reveals that the waviness of the CNTs causes a significant increase in the value of
C12 when the wavy CNTs are coplanar with the 1-3 plane. Figure 11 demonstrates the variation of
the values of C13 and C55 of the SFFRC with the waviness factor. Since the SFFRC is transversely
isotropic material, the values of C13 are found to be identical to those of C12, as shown in Figures 10(b) 
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Figure 10. Variation of the effective elastic coefficients (a) C11 and (b) C12 of the SF-
FRC with waviness factor (v f= 0.3, (VCNT)max).
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Figure 11. Variation of the effective elastic coefficients (a) C13 and (b) C55 of the SF-
FRC with waviness factor (v f= 0.3, (VCNT)max).
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Figure 12. Variation of the effective elastic coefficients (a) C22 and (b) C23 of the SF-
FRC with waviness factor (v f= 0.3, (VCNT)max).

and 11(a). It may be observed from Figure 11(b) that the value of C55 of the SFFRC initially increases
significantly, and then stabilizes for higher values of A/Ln , when the wavy CNTs are coplanar with the
1-3 plane. Figure 12(a) reveals that increase in the value of A/Ln decreases C22 when the CNT waviness
is coplanar with the 1-3 plane, whereas the value of C22 increases for higher values of A/Ln when the
CNT waviness is coplanar with the 2-3 plane. A similar trend is obtained for the value of C23, as shown
in Figure 12(b). Although not presented here, the same is true for the effective elastic coefficient C44.

It may be noted from Figures 10–12 that if the wavy CNTs are coplanar with the 1-3 plane then the
axial elastic coefficients of the SFFRC are significantly improved over their values with straight CNTs
(ω = 0) for higher values of A/Ln and ω. When the wavy CNTs are coplanar with the longitudinal plane
(1-3 or 1′-3′ plane) of the carbon fiber, as shown in Figure 2, the amplitudes of the CNT waves becomes
parallel to the 1-axis, which results in the aligning of the projections of parts of the CNT lengths with
the 1-axis leading to axial stiffening of the PMNC. The greater the value of ω, the more such projections
will occur, and hence the effective axial elastic coefficients (C11, C12, C13, C55, and C66) of the SFFRC
increase with an increase in the value of ω. On the other hand, if the wavy CNTs are coplanar with the
transverse plane (2-3 or 2′-3′ plane) of the carbon fiber, then the transverse elastic coefficients (C22, C23,
C33, and C44) of the SFFRC increase from their values with straight CNTs (ω = 0). The reverse is true
when the wavy CNTs are coplanar with the 1-3 (1′-3′) plane.

Figure 13 illustrates the variation in the axial (α1) and transverse (α2) CTEs of the SFFRC with the
waviness factor. It may be observed from Figure 13(a) that the values of α1 of the SFFRC are not affected
by variations in the amplitude of the wavy CNTs in the 2-3 plane, whereas the value of α1 initially
increases and then significantly decreases for higher values of A/Ln and ω when the CNT waviness is
coplanar with the 1-3 plane. It is also important to note from Figure 13(a) that the effective value of α1 is
zero for A/Ln and ω as 0.037 and 32π/Ln , respectively, when the wavy CNTs are coplanar with the 1-3
plane. Figure 13(b) reveals that the waviness of the CNTs improves the effective values α2 of the SFFRC
when the wavy CNTs are coplanar with the 2-3 plane, compared to those of the SFFRC with straight
CNTs (ω = 0). Although not presented here, the computed effective values of α3 are found to match
identically with those of α2, corroborating the fact that the SFFRC is transversely isotropic material.
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Figure 13. Variation of the effective (a) axial (α1) and (b) transverse (α2) CTEs of the
FFRC with waviness factor (1T = 300 K , v f= 0.3, (VCNT)max).

Note from (20) that the CTEs of the SFFRC are dependent on the elastic coefficients of the SFFRC.
Hence, with the increase in the value of A/Ln up to ∼ 0.013, the axial elastic coefficients of the unwound
PMNC are increased which eventually influences the effective CTEs of the unwound PMNC when the
CNT waviness is coplanar with the 1-3 plane. Therefore, the effective CTEs (α1, α2, and α3) of the
FFRC are initially increased for lower values of A/Ln . For A/Ln ≥ 0.013, the effective CTEs (α1,
α2, and α3) of the SFFRC with wavy CNTs coplanar with the 1-3 plane start to decrease. This is
attributed to the fact that the negative axial and transverse CTEs (αn

1 and αn
3 ) of the radially grown

wavy CNTs on the circumferential surfaces of the carbon fibers significantly suppress the positive CTE
(α p
= 66× 10−6 K−1) of the polymer matrix, which eventually lowers the effective values of α1 of

the SFFRC. This effect becomes more pronounced for higher values of A/Ln and ω because the CNT
volume fraction in the SFFRC increases with A/Ln and ω, as depicted in Figure 9. From Figures 10–13
it is important to note that the axial thermoelastic coefficients significantly improve for higher values of
A/Ln and ω when the CNT waviness is coplanar with the 1-3 plane. The effect of wavy CNTs coplanar
with the 2-3 plane on the axial thermoelastic coefficients of the SFFRC is not as pronounced. On the
other hand, marginal improvement in the transverse thermoelastic coefficients of the SFFRC is observed
when the CNT waviness is coplanar with the 2-3 plane. Hence, for investigating the effect of temperature
deviation on the effective thermal expansion coefficients of the SFFRC, the wavy CNTs are considered
to be coplanar with the 1-3 plane when the values of ω and A are 32π/Ln and 0.136µm, respectively.

Practically, the carbon fiber volume fraction in short fiber composites can vary, typically from 0.2 to
0.6. Hence, to analyze the effect of temperature deviation on the effective thermal expansion coefficients
of the SFFRC, the two discrete values of the carbon fiber volume fraction are considered, 0.25 and 0.55.
Figure 14(a) and (b) illustrate the variation of the values of α1 and α2 of the SFFRC, respectively, with
the temperature deviation for different values of the carbon fiber volume fraction. It is important to note
from these figures that the effective values of CTEs of the SFFRC decrease with the increase in the
temperature deviation for higher values of v f and ω. It may also be observed that wavy CNTs coplanar
with the 1-3 plane significantly improve the CTEs of the SFFRC over the values with straight CNTs



20 SHAILESH I. KUNDALWAL AND MANAS C. RAY

 
100 200 300 400 500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-5

 'T (K)

 D
1
 (

K
-1

)

 

 
v

f
 = 0.25, Z = 0

v
f
 = 0.25, Z = 32S/L

n
, A/L

n
 = 0.0418

v
f
 = 0.55, Z = 0

v
f
 = 0.55, Z = 32S/L

n
, A/L

n
 = 0.2406

(a)

100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

3

4

5
x 10

-5

 'T (K)

 D
2
 (

K
-1

)

 

 

v
f
 = 0.25, Z = 0

v
f
 = 0.25, Z = 32S/L

n
, A/L

n
 = 0.0418

v
f
 = 0.55, Z = 0

v
f
 = 0.55, Z = 32S/L

n
, A/L

n
 = 0.2406

(b)

Figure 14. Variation of the effective (a) axial (α1) and (b) transverse (α2) CTEs of the
SFFRC with temperature deviation when the wavy CNTs are coplanar with the longitu-
dinal plane (that is, 1-3 plane) of the carbon fiber (A = 0.136µm).

(ω = 0). This is attributed to the fact that as the values of v f and ω increase the CNT volume fraction
in the SFFRC increases, as shown in Figure 9, which eventually improves the values of the CTEs of the
SFFRC. It is also seen from these two plots that the CTEs of the SFFRC can be modified by changing
the values of A/Ln and ω according to the requirements of thermal management.

5. Conclusions

The effective thermoelastic properties of a novel short fuzzy fiber-reinforced composite (SFFRC) contain-
ing wavy carbon nanotubes (CNTs) have been investigated. An analytical micromechanics model based
on the Mori–Tanaka model was utilized to predict the effective thermoelastic coefficients of this novel
composite. The influence of the waviness of the CNTs on the thermoelastic coefficients of the SFFRC has
been studied, considering sinusoidally wavy CNTs to be coplanar with either of two mutually orthogonal
planes. The following main conclusions can be drawn from the investigations carried out here.

(1) If the plane of the radially grown wavy CNTs is coplanar with the longitudinal plane of the carbon
fiber then the axial effective thermoelastic coefficients of the SFFRC are significantly improved over
those of the FFRC with either straight CNTs (ω = 0) or wavy CNTs coplanar with the transverse
plane of the carbon fiber.

(2) When the CNT waviness is coplanar with the transverse plane of the carbon fiber, marginal improve-
ment has been observed in the transverse effective thermoelastic coefficients of the SFFRC.

(3) If the CNT waviness is coplanar with the longitudinal plane of the carbon fiber then the thermoelastic
response of the SFFRC significantly improves with an increase in the temperature for higher values
of the carbon fiber volume fraction, waviness factor, and wave frequency of the CNT.

Therefore, the SFFRC with sinusoidally wavy CNTs studied here may be used for advanced structures
that require stringent constraints on dimensional stability.
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List of abbreviations

CNT Carbon nanotube
CTE Coefficient of thermal expansion
CVD Chemical vapor deposition
FE Finite element
MDS Molecular dynamics simulation
MT Mori–Tanaka
MWCNT Multiwalled carbon nanotube

NRLC Nanoreinforced laminated composite
PMNC Polymer matrix nanocomposite
RVE Representative volume element
SCFF Short composite fuzzy fiber
SEM Scanning electron microscopy
SFFRC Short fuzzy fiber-reinforced composite
SWCNT Single-walled carbon nanotube

List of symbols

A Amplitude of the CNT (µm)
[ Ã1], [ Ã2], [ Ã3] Matrices of the strain concentration factors
a Radius of the carbon fiber (µm)
b Radius of the SCFF (µm)
[C

NC
] Elastic coefficient matrix of the unwound PMNC containing wavy CNTs (GPa)

[Cr
] Elastic coefficient matrix of the r -th phase (GPa)

Cr
i j Elastic coefficients of the r -th phase (GPa)

dn Diameter of the CNT (µm)
En and E p Young’s moduli of the CNT and polymer matrix, respectively (GPa)
Ex Transverse Young’s modulus of the NRLC (GPa)
Eyy and Exx Axial and transverse Young’s moduli of the unwound PMNC containing

sinusoidally wavy CNTs, respectively (GPa)
[I ] Fourth-order identity matrix
L Length of the RVE of the SFFRC (µm)
L f Half-length of the short carbon fiber embedded in the RVE of the SFFRC (µm)
Ln Length of straight CNT (µm)
Lnr Running length of sinusoidally wavy CNT (µm)
(NCNT)max Maximum number of radially grown aligned CNTs on the circumferential surface

of the short carbon fiber
n Number of waves of a sinusoidally wavy CNT along its axial direction
R Radius of the RVE of the SFFRC (µm)
[Sr
] Eshelby tensor of the r -th domain

Sr
i j Elements of the Eshelby tensor of the r -th domain
[T ], [T1], [T2] Transformation matrices
(VCNT)max Maximum volume fraction of the CNT in the SFFRC
vSCFF Volume fraction of the SCFF in the SFFRC
v f Volume fraction of the carbon fiber in the SFFRC
v̄ f Volume fraction of the carbon fiber in the SCFF
vm Volume fraction of the matrix in the composite
vn Volume fraction of the CNT in the PMNC/the CNT-reinforced nanocomposite
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vPMNC Volume fraction of the PMNC in the SCFF
vP Volume fraction of the polymer in the PMNC
v̄P Volume fraction of the polymer in the SFFRC
vSCFF Volume fraction of the SCFF in the SFFRC
{α} Thermal expansion coefficient vector of the SFFRC (K−1)
{αr
} Thermal expansion coefficient vector of the r -th phase (K−1)

αr
i Thermal expansion coefficients of the r -th phase (K−1)
1T Temperature deviation from the reference temperature (K)
{εr
} Strain vector of the r -th phase

λ Wavelength of the CNT (nm)
νn and ν p Poisson’s ratios of the CNT and polymer matrix, respectively
νzx and νxy Axial and transverse Poisson’s ratios of the unwound PMNC containing

sinusoidally wavy CNTs, respectively
{σ r
} Stress vector of the r -th phase (GPa)

ω Wave frequency of the CNT (µm−1)
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MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY
OF COUPLED VISCOELASTIC SYSTEMS DRIVEN BY WHITE NOISE

JIAN DENG, WEI-CHAU XIE AND MAHESH D. PANDEY

The moment and almost-sure stochastic stability of two-degree-of-freedom coupled viscoelastic systems,
under parametric excitation of white noise, are investigated through moment Lyapunov exponents and
Lyapunov exponents, respectively. The system of stochastic differential equations of motion is first
decoupled by using the method of stochastic averaging for dynamic systems with small damping and
weak excitations. Then a new scheme for determining the moment Lyapunov exponents is proposed
for a coupled viscoelastic system. The largest Lyapunov exponent is calculated through its relation with
moment Lyapunov exponent. The moment and almost-sure stability boundaries and critical excitation are
obtained analytically. These analytical results are confirmed by numerical simulation. As an application
example, the stochastic stability of flexural-torsional viscoelastic beam is studied. It is found that, under
white noise excitation, the parameters of damping ˇ and the viscoelastic intensity  have stabilizing
effects on the moment and almost-sure stability. However, viscosity parameter � plays a destabilizing
role. The stability index decreases from positive to negative values with the increase of the amplitude of
noise power spectrum, which suggests that the noise destabilize the system. These results are useful in
engineering applications.

1. Introduction

Dynamic responses of many engineering structures are governed in general by an equation of motion of
the form

Rx.t/D f .x.t/; Px.t/; �.t//; (1-1)

where the superscript dot denotes the derivative with respect to time, x.t/ is the response vector, and
�.t/ is a vector of dynamic loadings. These dynamic loadings, such as those arising from earthquakes,
wind, and blasting, can be characterized satisfactorily only by probabilistic models, which leads to the
fact that (1-1) is actually a stochastic differential equation. Oseledec [1968] showed that for continuous
dynamical systems, both deterministic and stochastic, there exist deterministic real numbers character-
izing the average exponential rates of growth or decay of the solution for large time and called them
Lyapunov exponents. The sample or almost sure stability of stochastic system (1-1) is governed by this
Lyapunov exponent which is defined as (see [Xie 2006])

�x D lim
t!1

1

t
log kxk; (1-2)

where kxk D .xT x/1=2 is the Euclidean norm. If the largest Lyapunov exponent is negative, the trivial
solution of system (1-1) is stable with probability 1; otherwise, it is unstable almost surely. Hence, the

Keywords: stochastic stability, moment Lyapunov exponents, white noise, viscoelasticity, coupled system.
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vanishing of the largest Lyapunov exponent indicates the almost-sure stability boundaries in parameter
space.

On the other hand, the stability of the p-th moment EŒkxkp � of the solution of system (1-1) is governed
by the p-th moment Lyapunov exponent defined by (see [Xie 2006])

ƒx.p/D lim
t!1

1

t
logEŒkxkp �; (1-3)

where EŒ � � denotes the expected value. If ƒx.p/ is negative, then the p-th moment is stable; otherwise,
it is unstable. Hence, the vanishing of the p-th moment Lyapunov exponent indicates the p-th moment
stability boundaries in parameter space.

These stability properties of system (1-1) with stochastic differential equations are difficult to obtain
exactly. The method of stochastic averaging, originally formulated in [Stratonovich 1963] and mathemat-
ically proved in [Khasminskii 1966], has been widely used to solve approximately stochastic differential
equations containing a small parameter. Under certain conditions stochastic averaging can reduce the
dimension of some problems, which greatly simplifies the solution [Xie 2006]. The popularity of sto-
chastic averaging can be felt from the large number of papers in the literature, such as [Roberts and
Spanos 1986; Ariaratnam 1996; Sri Namachchivaya and Ariaratnam 1987]. Larionov [1969] justified
an averaging method in a rigorous manner for integrodifferential equations of both deterministic and
stochastic systems.

For single-degree-of-freedom (SDOF) systems, Arnold et al. [1997] constructed an approximation for
the moment Lyapunov exponents of a two-dimensional linear system driven by real or white noise, by
using a perturbation approach. At the same time, asymptotic expansion series for the moment Lyapunov
exponent and stability index are constructed and justified for the two-dimensional linear stochastic system
[Khasminskii and Moshchuk 1998]. Xie [2006] systematically studied moment Lyapunov exponents,
Lyapunov exponents, and the stability index of SDOF systems under various noise excitation in terms of
the small fluctuation parameter. In the same book, Xie proposed a Monte Carlo simulation method for
determining the moment Lyapunov exponents of stochastic systems. For two-degree-of-freedom (2DOF)
coupled systems, Namachchivaya and van Roessel [2001] studied the moment Lyapunov exponents of
two coupled elastic oscillators under real noise excitation, by using stochastic averaging method and
asymptotic expansion method. More recently, in their serial papers, Kozic el al. [2012] investigated the
Lyapunov exponent and moment Lyapunov exponents of 2DOF linear elastic systems subjected to a
white noise parametric excitation.

The stability of elastic systems has been studied extensively [Bolotin 1964]. However, in engineer-
ing applications more and more viscoelastic materials, such as polymers and composite materials, are
employed. For these materials, stress is not a function of instantaneous strain but depends on the past
time history of strain and vice versa, which is quite different from linear elastic materials. In the case
of a structural column, the viscoelastic property has a great impact on its dynamic behavior, particularly
the dynamic stability [Potapov 1994]. When viscoelasticity is properly treated, the equation of motion
becomes more complicated and turns out to be an integrodifferential equation rather than an ordinary
differential equation as in the elastic case.

The deterministic dynamic stability of viscoelastic systems has been investigated by many authors [Ah-
madi and Glocker 1983]. Ariaratnam was among the first who studied the stochastic almost-sure stability
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of viscoelastic systems under wide band random fluctuations in the stiffness parameter [Ariaratnam 1993]
and under bounded noise excitation [Ariaratnam 1996], by evaluating the largest Lyapunov exponent
and the rotation number using the method of stochastic averaging. Abdelrahman [2002] systematically
investigated stochastic stability of coupled systems and gyroscopic systems and extended Ariaratnam’s
method from SDOF to 2DOF systems, but still only the Lyapunov exponent was calculated. Sufficient
conditions for almost-sure stability were obtained for both elastic and viscoelastic columns under the
excitation of a random wide band stationary process using Lyapunov’s direct method [Potapov 1994].
Later, Potapov [1997] described the behavior of stochastic viscoelastic systems by numerically evaluating
Lyapunov exponents of linear integrodifferential equations.

It is known that the almost-sure stability cannot assure the moment stability. To have a complete picture
of the dynamical stability of a stochastic system, it is important to study both the sample and moment
stability and to determine both the Lyapunov exponents and the moment Lyapunov exponents, because
moment Lyapunov exponents give not only the moment stability but also the almost-sure stability. Xie
was the first to deal with the determination of small noise expansion of the moment Lyapunov exponent of
a SDOF viscoelastic column under bounded noise excitation [Xie 2003]. Moment Lyapunov exponents
of such a viscoelastic system under the excitation of a wide band noise was further investigated by using
the averaging method of both first order and second order [Huang and Xie 2008].

The objective of this paper is to study the moment and almost sure stability of 2DOF coupled vis-
coelastic systems driven by white noise using the method of stochastic averaging. A new scheme for
determining the moment Lyapunov exponents is presented for 2DOF coupled viscoelastic systems, which
is an extension of [Ariaratnam et al. 1991] from elastic systems to viscoelastic and from almost-sure
stability to moment stability characterized by moment Lyapunov exponents. This paper is also different
from [Sri Namachchivaya and van Roessel 2001] where the Girsanov theorem and Feynman–Kac for-
mula were used and viscoelasticity was not considered. Furthermore, this study carries out Monte Carlo
simulation of moment Lyapunov exponents for coupled systems. This research is motivated by problems
in the dynamic stability of viscoelastic systems subjected to stochastically fluctuating loads. Examples
and numerical results are provided for illustration.

2. Formulation

Consider the coupled nongyroscopic stochastic system

Rq1C 2"ˇ1 Pq1C!
2
1.1� "H /q1C "

1=2!1.k11 q1C k12 q2/�.t/D 0;

Rq2C 2"ˇ2 Pq2C!
2
2.1� "H /q2C "

1=2!2.k21 q1C k22 q2/�.t/D 0;
(2-1)

where q
1
, q

2
are state coordinates, ˇ

1
, ˇ

2
are damping coefficients, !

1
, !

2
are natural frequencies, " is a

small parameter introduced to make the analysis more convenient. and the kij ; i; j D 1; 2 are constants.
We call k

12
and k

21
the coupling parameters; the case of k

12
D k

21
D k is called symmetric coupling

and that of k
12
D�k

21
D k skew-symmetric coupling. H is a linear viscoelastic operator given by

H Œ .t/�D

Z t

0

H.t � �/ .�/ d�; 0�

Z 1
0

H.�/ d� < 1; (2-2)

where H.�/ is the relaxation kernel. �.t/ is the stochastic loads imposing on the system.
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Equation (2-1) is a typical system of 2DOF coupled Stratonovich stochastic differential equations,
which is extremely difficult to directly determine its stability property. The stochastic averaging method
was often used to approximate the original Stratonovich stochastic system by an averaged Itô stochastic
system, which is presumably easier to study, and infer properties of the dynamics of the original system
by the understanding of the dynamics of the averaged system [Ariaratnam et al. 1991]. To apply the
averaging method, one may first consider the unperturbed system, i.e., "D 0 and �.t/D 0, which is of
the form: Rqi C!

2
i qi D 0; i D 1; 2. The stable solutions for the unperturbed system are found to be

qi D ai cosˆi ; Pqi D�!iai sinˆi ; ˆi D !i t C�i ; i D 1; 2: (2-3)

Then the method of variation of parameters is used. Differentiating the first equation of (2-3) and com-
paring with the second equation lead to

Pai cosˆi � ai
P�i sinˆi D 0: (2-4)

Substituting (2-3) into (2-1) results in

Pai sinˆi C ai
P�i cosˆi DGi ; (2-5)

where

Gi D�"
�
2ˇi !iai sinˆi �!

2
i H Œai cosˆi �

�
C "1=2�.t/!i.kii ai cosˆi C kij aj cos ĵ /:

By solving (2-4) and (2-5), the equations in (2-1) can be written in amplitude, ai , and phase, �i , as

Pai D "F
.1/
a;i C "

1=2F
.0/
a;i ;

P�i D "F
.1/

�;i
C "1=2F

.0/

�;i
; (2-6)

where

F
.0/
a;i D �.t/

�
1
2
kiiai sin 2ˆi C

1
2
kij aj cos ĵ sinˆi

�
;

F
.1/
a;i D�ˇiai Cˇiai cos 2ˆi � sinˆi!i�"H .ai cosˆi/;

F
.0/

�;i
D �.t/

�
kii cos2ˆi C

aj

ai

kij cosˆi cos ĵ

�
;

F
.1/

�;i
D�ˇi sin 2ˆi �

1

ai.t/
cosˆi!i�"H .ai.s/ cosˆi/:

(2-7)

If the correlation function R.�/ of the noise �.t/ decays sufficiently quickly to zero as � increases,
then the processes ai and �i converge weakly on a time interval of order 1=" to a Itô stochastic differential
equation for the averaged amplitudes Nai and phase angles N�i , whose solutions provide a uniformly valid
first-order approximation to the exact values

dai D "m
a
i dt C "1=2

2X
jD1

�a
ij dW a

j ; i D 1; 2; (2-8)

d�i D "m
�
i dt C "1=2

2X
jD1

�
�
ij dW

�
j ; i D 1; 2; (2-9)
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where the overbar is dropped for simplicity of presentation and W a
i ;W

�
i ; i D 1; 2 are independent

standard Wiener processes. The drift coefficients "ma
i , "m�

i and the 2 � 2 diffusion matrices "ba D

"� a.� a/T, "b� D "��.��/
T

, in which � a D Œ�a
ij �, �

� D Œ�
�
ij �, ba D Œba

ij �, b� D Œb
�
ij �, are given by

ma
i DM

t

�
F
.1/
a;i C

Z 0

�1

E

� 2X
jD1

�
@F

.0/
a;i

@aj

F
.0/
a;j� C

@F
.0/
a;i

@�j

F
.0/

�;j�

��
d�
�

D ai

�
�ˇi �!i�"Mt

�
I sc

i

�
C

3
16

k2
iiS0

�
C

1

8

a2
j

ai

k2
ij S0;

m
�
i DM

t

�
F
.1/

�;i
C

Z 0

�1

E

� 2X
jD1

�
@F

.0/

�;i

@aj

F
.0/

�;j�
C

@F
.0/

�;i

@�j

F
.0/

�;j�

��
d�
�
D�!i�"Mt

�
I cc

i

�
;

ba
ii DM

t

�Z 1
�1

E
�
F
.0/
a;i F

.0/
a;i�

�
d�
�
D

1
8

�
k2

iia
2
i C 2k2

ij a2
j

�
S0;

ba
ij DM

t

�Z 1
�1

E
�
F
.0/
a;i F

.0/
a;j�

�
d�
�
D 0;

b
�
ii DM

t

�Z 1
�1

E
�
F
.0/

�;i
F
.0/

�;i�

�
d�
�
D

3
8
k2

iiS0C
1

4

a2
j

a2
i

k2
ij S0;

b
�
ij DM

t

�Z 1
�1

E
�
F
.0/

�;i
F
.0/

�;j�

�
d�
�
D

1
4

�
kiikjj C kij kji

�
S0;

I cc
i D cosˆi.t/

Z t

0

H.t � s/ cosˆi.s/ ds;

I sc
i D sinˆi.t/

Z t

0

H.t � s/ cosˆi.s/ ds;

F
.0/
j� D F

.0/
j

�
a; �; �.t C �/; t C �

�
; i; j D 1; 2;

(2-10)

where the coupled oscillators are assumed to have noncommensurable frequencies, i.e., !
1
¤ !

2
. A

Gaussian white noise process is a weakly stationary process that is delta-correlated and has mean zero.
This process is formally the derivative of the Wiener process given by �.t/D

p
S

0
PW .t/, with constant

cosine power spectral density S.!/ D S
0

and sine power spectral density ‰.!/ D 0 over the entire
frequency range.

The averaging operator is defined as

M
t
. � /D lim

T!1

1

T

Z tCT

t

. � / dt:

When applying the averaging operator, the integration is performed over explicitly appearing t only. The
term containing viscoelastic operator is averaged according to the method given in [Larionov 1969].
Applying the transformation s D t � � and changing the order of integration lead to
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M
t

˚
I sc

i

	
D lim

T!1

1

T

Z T

tD0

Z t

sD0

H.t � s/ cosˆi.s/ sinˆi.t/ ds dt

D lim
T!1

1

T

Z T

tD0

Z t

�D0

H.�/ sinˆi.t/ cosˆi.t � �/ d� dt

D lim
T!1

1

2T

Z T

�D0

Z T

tD�

H.�/Œsin.2!i t �!i� C 2 N'/C sin!i�� dt d�

D
1

2

Z 1
0

H.�/ sin!i� d� D 1
2
H s.!i/:

(2-11)

Similarly, one obtains
M

t

˚
I cc

i

	
D

1
2
H c.!i/; (2-12)

where

H s.!/D

Z 1
0

H.�/ sin!� d�; H c.!/D

Z 1
0

H.�/ cos!� d� (2-13)

are the sine and cosine transformations of the viscoelastic kernel function H.t/, respectively. The term

Ei D ˇi C!i�"Mt
.I sc

i /D ˇi C
1
2
!i�"

!i

�2C!2
i

; i D 1; 2; (2-14)

may be called pseudodamping, because it plays the role of damping but includes viscoelasticity as well.
In this study, the viscoelastic kernel function is supposed to follow ordinary Maxwell model

H.t/D  e��t ; (2-15)

which can be used as an approximation to most linear viscoelastic behavior as closely as possible if
enough number of Maxwell units are arranged in parallel. Its sine and cosine transformations in (2-13)
are given by

H s.!/D
!

�2C!2
; H c.!/D

�

�2C!2
: (2-16)

It is of importance to note that both the averaged amplitude ai and phase angle equations �i do not
involve the phase angles and then the amplitude equations are advantageously decoupled from the phase
angle equations. Hence, the averaged amplitude vector (a

1
; a

2
) is a two dimensional diffusion process.

3. Moment Lyapunov exponents and Lyapunov exponents

To obtain moment Lyapunov exponents from (2-8), one may transform the Itô stochastic differential
equations for the amplitudes by using Khasminskii’s transformation [1966]

r D
p

a2
1C a2

2; ' D tan�1
a

2

a
1

; a1 D r cos'; a2 D r sin'; P D rp; (3-1)

and then the moment Lyapunov exponent is given by

ƒD lim
t!1

1

t
logEŒP �: (3-2)
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The Itô equations for P can be obtained using Itô’s lemma [Xie 2006]:

dP DmP .P; '/ dt C �P1 dW1C �P2 dW2; (3-3)

where

�P1 D "
1=2

�
�a

11

@P

@a
1

C �a
21

@P

@a
2

�
; �P2 D "

1=2

�
�a

12

@P

@a
1

C �a
22

@P

@a
2

�
; (3-4)

and

mP .P; '/D "

�
ma

1

@P

@a
1

Cma
2

@P

@a
2

C
1

2

�
ba

11

@2P

@a2
1

C .ba
12C ba

21/
@2P

@a
1
@a

2

C ba
22

@2P

@a2
2

��
;

D "pP

�
ma

1
p

a2
1
C a2

2

cos'C
ma

2
p

a2
1
C a2

2

sin'C
1

2

�
ba

11

a2
1
C a2

2

�
.p� 2/ cos2 'C 1

�
C
.ba

12
C ba

21
/

2.a2
1
C a2

2
/
.p� 2/ sin 2'C

ba
22

a2
1
C a2

2

�
.p� 2/ sin2 'C 1

���
: (3-5)

To determine the diffusion terms, one may use the replacement as

†P dW D �P1 dW1C �P2 dW2;

which yields the equation

†2
P D �

2
P1C�

2
P2 D "

�
�a

11

@P

@a
1

C�a
21

@P

@a
2

�a
12

@P

@a
1

C�a
22

@P

@a
2

�(
�a

11
@P=@a

1
C�a

21
@P=@a

2

�a
12
@P=@a

1
C�a

22
@P=@a

2

)

D "

�
..�a

11/
2
C.�a

12/
2
/

�
@P

@a
1

�2

C2.�a
11�

a
21C�

a
12�

a
22/

@P

@a
1

@P

@a
2

C..�a
21/

2
C.�a

22/
2
/

�
@P

@a
2

�2 �

D "

�
ba

11

�
@P

@a
1

�2

C.ba
12Cba

21/
@P

@a
1

@P

@a
2

Cba
22

�
@P

@a
2

�2 �
: (3-6)

Hence,
dP DmP .P; '/ dt C �P1 dW1C �P2 dW2 DmP .P; '/ dt C†P .P; '/ dW: (3-7)

Similarly, one can obtain the Itô equations for ',

d' Dm'.'/ dt C �'1 dW1C �'2 dW2 Dm'.'/ dt C†'.'/ dW; (3-8)

where

�'1 D "
1=2

�
�a

11

@'

@a
1

C �a
21

@'

@a
2

�
; �'2 D "

1=2

�
�a

12

@'

@a
1

C �a
22

@'

@a
2

�
; (3-9)

m'.'/D "

�
ma

1

@'

@a
1

Cma
2

@'

@a
2

C
1

2

�
ba

11

@2'

@a2
1

C .ba
12C ba

21/
@2'

@a
1
@a

2

C ba
22

@2'

@a2
2

��
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D "

�
�

ma
1

p
a2

1
C a2

2

sin'C
ma

2
p

a2
1
C a2

2

cos'

C
1

2

�
ba

11

a2
1
C a2

2

sin 2' �
.ba

12
C ba

21
/

a2
1
C a2

2

.2 cos2 ' � 1/�
ba

22

a2
1
C a2

2

sin 2'

��
; (3-10)

and

†2
' D �

2
'1C �

2
'2 D "

�
ba

11

�
@'

@a
1

�2

C .ba
12C ba

21/
@'

@a
1

@'

@a
2

C ba
22

�
@'

@a
2

�2 �

D "

�
ba

11

a2
1
C a2

2

sin2 ' �
.ba

12
C ba

21
/

a2
1
C a2

2

sin' cos'C
ba

22

a2
1
C a2

2

cos2 '

�
: (3-11)

It is noted that the coefficients of the right-hand side terms of amplitude equations in (2-8), such as
ma

i , i D 1; 2, are homogeneous of degree one in a
1

and a
2
, which results in the fact that the diffusion

term ba in (2-10) are homogeneous of degree two in a
1

and a
2
. Therefore, substituting a

1
D r cos' and

a
2
D r sin' from (3-1) into (3-5), one finds that the drift m

P
.P; '/ and diffusion term †

P
.P; '/ are

functions of P of degree one and '. However, the drift m'.'/ in (3-10) and diffusion term †'.'/ in
(3-11) are functions of ' only, which shows P .t/ in (3-7) and '.t/ in (3-8) are coupled, although '.t/
is itself a diffusion process.

To obtain the moment Lyapunov exponent, a linear stochastic transformation is adopted:

S D T .'/P; P D T �1.'/S; 0� ' < �;

from which one obtains

@S

@P
D T .'/;

@S

@'
D T

0

'P;
@2S

@P2
D 0;

@2S

@P@'
D T

0

' ;
@2S

@2'
D PT

00

'' ; (3-12)

where T
0

' and T
00

'' denote the first and second derivative of T .'/ with respect to ', respectively.
The Itô equation for the transformed p-th norm process S can also be derived using Itô’s Lemma

dS DmS dt C

�
�P1

@S

@P
dW1C �P2

@S

@P
dW2C �'1

@S

@'
dW1C �'2

@S

@'
dW2

�
: (3-13)

The drift coefficient is given by

mS DmP

@S

@P
Cm'

@S

@'
C

1

2

�
bS

11

@2S

@P2
C .bS

12C bS
21/

@2S

@P@'
C bS

22

@2S

@'2

�
D

1
2
P .�2

'1C �
2
'2/T

00

'' C .m'P C �P1�'1C �P2�'2/T
0

' CmP T; (3-14)

and the diffusion terms have the relation

bS
D Œ�S .�S /

T
�; �S

D

�
�

P1
�

P2

�
'1

�
'2

�
: (3-15)
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Substituting �
P1
; �

P2
from (3-4) and �

'1
; �
'2

from (3-9) into (3-15) lead to
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.cos2 ' � sin2 '/C
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1
C a2

2

cos' sin'
�
: (3-16)

For bounded and nonsingular transformation T .'/, both processes P and S are expected to have
the same stability behavior. Therefore, T .'/ is chosen so that the drift term of the Itô differential
Equation (3-13) is independent of the phase process ' so that

dS D "ƒS dt C "1=2.�S1 dW1C �S2 dW2/: (3-17)

Comparing the drift terms of equations (3-13) and (3-17), one can find that such a transformation T .'/

is given by the equation

1
2
P .�2

'1C �
2
'2/T

00

'' C
�
m'P C �P1�'1C �P2�'2

�
T

0

' CmP T D "ƒS; 0� ' < �; (3-18)

in which T .'/ is a periodic function in ' of period � . Equation (3-18) defines an eigenvalue problem of
a second-order differential operator with ƒ being the eigenvalue and T .'/ the associated eigenfunction.
Taking the expected value of both sides of (3-17), one can find that EŒ�

S1
dW

1
C �

S2
dW

2
�D 0 [Xie

2006]. Hence, one obtains EŒS �D "ƒEŒS � dt , from which the eigenvalue ƒ is seen to be the Lyapunov
exponent of the p-th moment of the system (2-1), that is, ƒDƒ

q.t/
.p/. It is noted that both processes

P and S have the same stability behavior.
Substituting (3-16) into (3-18) yields
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12�T
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' CmP T
�
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where †2
' , m' , bS

12
, and m

P
are given in (3-11), (3-10), (3-16), and (3-5), respectively. Substituting

these equations into (3-19) yields

L.p/ŒT �D �2T
00

'' C�1T
0

' C�0T DƒT; 0� ' < �; (3-20)

where
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Substituting a
1
D r cos', a

2
D r sin' into these equations, one finds that the coefficients �

0
, �

1
, and

�
2

are functions of ' and p only. Solving Equation (3-20) yields the moment Lyapunov exponent ƒ.
This idea was first applied in [Wedig 1988] to derive the eigenvalue problem for the moment Lyapunov

exponent of a SDOF linear Itô stochastic system. This paper extends to 2DOF coupled systems and
considered viscoelasticity.

Determination of moment Lyapunov exponents. It is found that the coefficients in (3-20) are periodic
with period � , it is reasonable to consider a Fourier cosine series expansion of the eigenfunction T .'/

in the form

T .'/D

KX
iD0

Ci cos.2i'/: (3-21)

Here only cosine functions are adopted because sometimes the eigenvalue problems in (3-20) contains
1= sin.2'/. This Fourier expansion method is actually a method for solving partial differential equations
and has been used in [Wedig 1988; Bolotin 1964; Sri Namachchivaya and van Roessel 2001], and
elsewhere.

Substituting this expansion and a
1
D r cos', a

2
D r sin' into eigenvalue problem (3-20), multiplying

both sides by cos.2j'/, j D 0; 1; : : : ;K, and performing integration with respect to ' from 0 to �=2
yield a set of equations for the unknown coefficients Ci , i D 0; 1; : : : ;K:

KX
iD0

aij Ci DƒCj ; j D 0; 1; 2; : : : ; (3-22)

where

aij D
4

�

Z �=2

0

L.p/Œcos.2i'/� cos.2j'/ d'; j D 0; 1; : : : ;K; (3-23)

and Z �=2

0

cos.2i'/ cos.2j'/ d' D
�
�=4 if i D j ;

0 if i ¤ j:

The eigenvalue can be obtained by solution of a polynomial equation as follows. Rearranging (3-22)
leads to



LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF VISCOELASTIC SYSTEMS WITH WHITE NOISE 37266666664

a
00
� Oƒ a

01
a

02
a

03
� � �

a
10

a
11
�ƒ a

12
a

13
� � �

a
20

a
21

a
22
�ƒ a

23
� � �

a
30

a
31

a
32

a
33
�ƒ � � �

� � � � � � � � � � � �
: : :

377777775

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

C
0

C
1

C
2

C
3

� � �

9>>>>>>>=>>>>>>>;
D 0: (3-24)

The third-order submatrix is listed here. For convenience, ƒ is inserted in aij .
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(3-25)

where Ei is the pseudodamping defined in (2-14).
To have a nontrivial solution of the Ck , it is required that the determination of the coefficient matrix

of (3-24) equal zero, from which the eigenvalue ƒ.p/ can be obtained,

e
.K /
KC1

Œƒ.K /�
KC1
C e

.K /
K

Œƒ.K /�
K
C � � �C e

.K /
1

Œƒ.K /�
1
C e

.K /
0
D 0; (3-26)

where ƒ.K / denotes the approximate moment Lyapunov exponent under the assumption that the expan-
sion of eigenfunction T .'/ is up to K-th order Fourier cosine series. The set of approximate eigenvalues
obtained by this procedure converges to the corresponding true eigenvalues as K!1. However, as
shown in Figure 1, the approximate eigenvalues converges so quickly that the approximations almost
coincide after the order K � 1. One may approximate the moment Lyapunov exponent of the system by

ƒq.t/.p/�ƒ
.K /.p/: (3-27)

Determination of Lyapunov exponents. The p-th moment Lyapunov exponent ƒ
q.t/

.p/ is a convex an-
alytic function in p that passes through the origin and the slope at the origin is equal to the largest
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Figure 1. Moment Lyapunov exponents for various K-th order Fourier expansion.

Lyapunov exponent �
q.t/

, i.e.,

�q.t/.p/D lim
p!0

ƒ.K /.p/

p
D� lim

p!0

e
.K /
0

pe
.K /
1

; (3-28)

which is obtained directly from (3-26).
For comparison, the largest Lyapunov exponent for system (2-8) can be directly derived from invariant

probability density by solving a Fokker–Plank equation [Xie 2006].
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The constants Q and �
0

are defined as
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1
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.I sc

2 /C
1
8
k2

22S0:
(3-32)

4. Stability boundary

Moment Lyapunov exponents can be numerically determined from (3-26). When K D 0, the eigenfunc-
tion in (3-21) is T .'/D C

0
; then, from a

00
�ƒ.0/ D 0, the moment Lyapunov exponent is defined as

ƒq.t/.p/�ƒ
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C
1

64
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22S0C24k2S0�32.E1CE2/�p:

(4-1)
If viscoelasticity is not considered, i.e., �" D 0 and Ei D ˇi , then (4-1) reduces to the moment Lyapunov
exponent for 2DOF linear systems subjected to white noise parametric excitation which was reported in
Equation (3.19) in [Janevski et al. 2012], where the perturbation method was applied.

The moment stability boundary is then obtained as�
3k2

11C 3k2
22C 8k2

�
S0pC 2

�
5k2

11S0C 5k2
22S0C 24k2S0� 32.E1CE2/

�
D 0: (4-2)

Again, if viscoelasticity and coupling parameter .k D 0/ are not considered, (4-2) can be reduced to
that obtained by other approximate methods such as asymptotic expansion of integrals and stochastic
averaging; see Equation (40) of [Ariaratnam and Xie 1993].

The Lyapunov exponent is given by

�.0/.p/D lim
p!0

ƒ.0/.p/

p
D
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64

�
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: (4-3)

The almost-sure stability region is found to be

5k2
11S0C 5k2

22S0C 24k2S0� 32.E1CE2/ < 0: (4-4)

From (4-2) and (4-4), the almost-sure and the moment stability boundary are both a straight line in
the coordinates with E

1
and E

2
.

When K D 1, the eigenfunction is T .'/D C
0
CC

1
cos 2', the moment Lyapunov exponent can be

solved from ˇ̌̌̌
ˇa00
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Expanding we get an equation, .ƒ.1//
2
C e

.1/
1
ƒ.1/C e

.1/
0
D 0, leading to an analytical expression for the
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moment Lyapunov exponent. The coefficients for systems with white noise (S.!/D S
0
) are given by
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It can be found that on the condition of white noise, our case reduced to the results of [Janevski et al.
2012]. When k

11
D k

22
D 0, the moment Lyapunov exponent is given by
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The moment stability boundary is then obtained as ƒ.1/.p/D 0. From this boundary, one can establish
the relation between E

1
and E

2
, and the critical excitation S

0
, which will be shown in application part.

The corresponding largest Lyapunov exponents are

�.1/.p/D
1

112

21k4S2
0
� 56k2S

0
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1
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2
/C 32.E

1
�E

2
/2

k2S
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: (4-8)

The almost-sure stability region is found to be

21k4S2
0 � 56k2S0.E1CE2/C 32.E1�E2/

2 < 0: (4-9)

The analytical accurate results of Lyapunov exponents from (3-29) and numerical results from (3-28)
are compared in Figure 2, left, which shows the two results almost overlap. Care should be taken
that for S.!/! 0, the numerical results may become unstable due to roundoff errors. Figure 2, left,
illustrates that Lyapunov moments converge quickly with the increase of expansion order K. It is noted
that although the results in Figure 2 overlap, the analytical expressions from (3-29) to (3-31) seem not
to agree with the expression given in (4-8). This can be explained by the discrepancy between exact
solutions and a sequence of approximations.

When K D 2, the eigenfunction is T .'/D C
0
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1
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2
cos 4', and the moment Lyapunov

exponent can be solved from ˇ̌̌̌
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Figure 2. Comparisons of largest Lyapunov exponents for varying k22 (left) and varying
K (right).

Expanding we get a cubic equation, .ƒ.2//
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The analytical expression for moment Lyapunov exponent can then be obtained by solving this cubic
equation. However, for K � 3, no explicit expressions can be presented, as quartic equation is involved.

The Lyapunov exponent for K D 2 is given by

�.2/ D� lim
p!0

e
.2/
0

pe
.2/
1

D
1

256

�
N

�
D

; (4-12)
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where
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5. Stability index

The stability index is the nontrivial zero of the moment Lyapunov exponent. Hence, it can be determined
as a root-finding problem such that ƒ

q.t/
.ı

q.t/
/D 0. When the order K of the Fourier expansion is 0,

from (4-1), the stability index is given by

ıq.t/ D 2
5k2

11
S

0
C 5k2

22
S
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C 24k2S

0
� 32.E

1
CE

2
/

3k2
11

S
0
C 3k2

22
S

0
C 8k2S

0

: (5-1)

When K D 1, the stability index is the nontrivial solution of ƒ.1/.p/D 0 from (4-7), which is hard to
express analytically. Typical results of the stability index are shown in Figure 3. It is seen that the stability
index decreases from positive to negative values with the increase of the amplitude of power spectrum,
which suggests that the noise destabilizes the system. The larger the pseudodamping coefficient E

1
, the

larger the stability index, and then the more stable the system.

6. Simulation

Monte Carlo simulation is applied to determine the p-th moment Lyapunov exponents and to check the
accuracy of the approximate results from the stochastic averaging.

Suppose the excitation is approximated by a Gaussian white noise with spectral density S.!/D #2 D

constant for all !, and then �.t/ dt D # dW .t/. Let

x1.t/D q1.t/; x2.t/D Pq1.t/; x3.t/D q2.t/; x4.t/D Pq2.t/;

x5.t/D

Z t

0

 e��.t�s/q1.s/ ds; x6.t/D

Z t

0

 e��.t�s/q2.s/ ds:

(6-1)
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Figure 3. Stability index for system under white noise.

Equation (2-1) can be written as a six-dimensional system of Itô differential equations

dx DA x dt CB x# dW; (6-2)

where x D fx
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: (6-3)

Equation (6-2) is linear homogeneous. We apply the algorithm proposed in [Xie 2006; Wolf et al. 1985]
to simulate the moment Lyapunov exponents and Lyapunov exponents. The norm for simulations is

kx.t/k D

qP6
iD1 x2

i :

The iteration equations are given by, using the explicit Euler scheme,

xkC1
1
D xk

1 Cxk
2 ��t;

xkC1
2
D xk

2 C
�
�!2

1xk
1 � 2"ˇ1xk

2 C "!
2
1xk

5

�
�t � "1=2!1.k11xk

1 C k12xk
3 /# ��

k ;

xkC1
3
D xk

3 Cxk
4 ��t;

xkC1
4
D xk

4 C
�
�!2

2xk
3 � 2"ˇ2xk

4 C "!
2
2xk

6

�
�t � "1=2!2.k21xk

1 C k22xk
3 /# ��

k ;



44 JIAN DENG, WEI-CHAU XIE AND MAHESH D. PANDEY

xkC1
5
D xk

5 C .xk
1 � �x

k
5 /�t; and xkC1

6
D xk

6 C .xk
3 � �x

k
6 /�t;

where �t is the time step and k denotes the k-th iteration.
The analytical and numerical Lyapunov exponents in Figure 2 are tangent lines of results from Monte

Carlo simulation, which confirms the method of stochastic averaging is a valid first-order approximation
method. In Monte Carlo simulation, the sample size for estimating the expected value is N D 5000, time
step is �t D 0:0005, and the number of iteration is 108.

7. Application: flexural-torsional stability of a rectangular beam

As an application, the flexural-torsional stability of a simply supported, uniform, narrow, rectangular,
viscoelastic beam of length L subjected to a stochastically varying concentrated load P .t/ acting at the
center of the beam cross-section as shown in Figure 4 is considered. Both nonfollower and follower
loading cases are studied.

For the elastic beam under dynamic loading, the flexural and torsional equations of motion are given
by (see [Xie 2006])

EIy

@4u

@z4
C
@2.Mx /

@z2
�
@2My

@z2
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@2u
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@2 
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C
@Mx

@z

@u

@z
CMx

@2u

@z2
C
@Mz

@z
Cmr2 @

2 

@t2
CD 

@ 

@t
D 0;

(7-1)

with boundary conditions

u.0; t/D u.L; t/D
@2u.0; t/

@z2
D
@2u.L; t/

@z2
D 0;  .0; t/D  .L; t/D 0; (7-2)

P(t) (Follower)

P(t) (Non-Follower)

η

ξu

x

ψ
η ξ

P(t)

2

L

y

x

x

z

z

y

2

L
P(t)

u

ψ

Figure 4. Flexural-torsional vibration of a rectangular beam.
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where Mx , My , and Mz are the bending moments in the x, y, and z direction, respectively. u.t/ is the
lateral deflection and  .t/ is the angle of twist. E is Young’s modulus of elasticity and G is the shear
modulus. Iy is the moment of inertia in the y direction. J is Saint-Venant’s torsional constant. EIy is
the flexural rigidity, GJ is the torsional rigidity, m is the mass per unit length of the beam, r is the polar
radius of gyration of the cross section, D

 
and Du are the viscous damping coefficients in the  and u

directions,respectively, t is time and z is the axial coordinate.
For a three-dimensional loading, the stress and strain tensors � and � are given by

� D �I C s; � D �I C e; (7-3)

where �
I

and �
I

are the stress and strain first invariants, which produce dilatation and no distortion, also
called hydrostatic or volumetric tensor, and s and e are the stress and strain deviatoric components, which
tend to distort the body. The deviatoric stress tensor can be obtained by subtracting the hydrostatic stress
tensor from the stress tensor.

According to Boltzmann’s superposition principle, a constitutive relation for a linear viscoelastic
material under three-dimensional loading can be obtained by replacing the bulk modulus B and the
shear modulus G by appropriate Volterra operators [Drozdov 1998]. Most natural and polymer materials
exhibit a elastic dilatation whereas the shear deformation is viscoelastic. The bulk modulus is assumed
to time-independent and then the viscoelastic constitutive relation is given by

�I D 3B�I ; s D 2G.1�H /e; (7-4)

where � is the bulk modulus, G is the shear modulus, and H is the relaxation operator defined in (2-3)
for Maxwell viscoelastic materials. Therefore, for problems with viscoelastic materials, one may simply
replace the elastic moduli E and G in elastic problems by the Voltera operators E.1�H / and G.1�H /,
respectively. The governing equation for a viscoelastic deep beam can be obtained from (7-1) as
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(7-5)

These equations are partial stochastic differential equations and are difficult to solve. An approximate
solution can be obtained by using Galerkin method. Seek solutions of the form

u.z; t/D q1 sin
�z

L
;  .z; t/D q2 sin

�z

L
; (7-6)

in which q
1
D um D u.1

2
L; t/, q

2
D  m D  .

1
2
L; t/. Substituting into (7-5), multiplying by sin.�z=L/,

and integrating with respect to z from 0 to L yields

RQ1C 2ˇ1
PQ1C!

2
1.1�H /Q1C!1k12�.t/Q2 D 0;

RQ2C 2ˇ2
PQ2C!

2
2.1�H /Q2C!2k21�.t/Q1 D 0;

(7-7)
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where
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where ˇ
1

and ˇ
2

are reduced viscous damping coefficients, Pcr is the critical force for the simply sup-
ported narrow rectangular beam.

For nonfollower force case, the only difference is that My D 0 in (7-5). The equations of motion are
of the same form of (7-7), but the parameters are different,
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2
D kN : (7-9)

It is seen that (7-7) has the same form of (2-1), except that k
11
D k

22
D 0. By introducing the polar

transformation and using the method of stochastic averaging, Equation (7-7) can be approximated in
amplitude by the Itô stochastic differential equations in (2-8), where the drift and diffusion terms are
given by

ma
i D ai

�
�ˇi � �"Mt

.I sc
i /
�
C

1

8

a2
j

ai

k2
ij S0; ba

ii D
1
4
k2

ij a2
j S0; ba

ij D 0: (7-10)

Substituting (7-10) and a
1
D r cos', a

2
D r sin' into (3-20) yields the eigenvalue problem, from

which moment Lyapunov exponents can be determined by solving (3-26).
Some analytical stability boundaries are discussed here. For nonfollower symmetric coupled systems

under white noise excitation, the moment stability boundaries can be obtained from (4-1) for K D 0

and (4-7) for K D 1, and the almost-sure stability boundaries is from (4-3) for K D 0 and (4-9) for
K D 1, which is shown in Figure 5, left. The moment stability boundaries are more conservative than
the almost-sure boundary. With the moment order p increase, these moment boundaries become more
and more conservative.

One can also obtain the critical amplitude of power spectral density of white noise excitation for the
case K D 1 from (4-7) and (4-9), which is illustrated in Figure 5, right. The critical excitation increases
with the pseudodamping coefficient, which confirms that damping and viscoelasticity would consume
some energy of motion during vibration. Smaller amplitude of excitation (S

0
) would destabilize the

system in terms of higher-order moment stability, which suggests that stability region with higher-order
moment is more conservative than that with lower-order moment stability. Almost-sure stability is the
least conservative. Some numerical values for discrete points already shown in Figure 5, right, are listed
in Table 1 for reference.
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Figure 5. Left: Almost-sure and p-th moment stability boundaries. Right: Critical
excitation and pseudodamping.

E
1

p D 0 p D 1 p D 2 p D 4

0 0.6667 0.2857 0.2500 0.2000
2 2.0000 0.8571 0.7500 0.6000
4 3.3333 1.4286 1.2500 1.0000
6 4.6667 2.0000 1.7500 1.4000
8 6.0000 2.5714 2.2500 1.8000
10 7.3333 3.1429 2.7500 2.2000

E
1

p D 0 p D 1 p D 2 p D 4

0 0.4593 0.2500 - 0.1000
2 1.9512 1.6443 1.4142 1.1000
4 3.0526 2.4459 2.0000 1.4600
6 4.0836 3.1290 2.4495 1.7286
8 5.0816 3.7463 2.8284 1.9667

10 6.0605 4.3184 3.1623 2.1909

Table 1. Critical excitations S
0

for the cases K D 0 (left) and K D 1 (right).

8. Discussion

Figure 6, top, shows that with the increase of ˇ, the slope of the moment curves at the original point
change from negative to positive, which suggests the beam’s status from instability to stability and so
damping plays a stabilizing role in flexural-torsional analysis of the beam under white noise excitation.

Figure 6, bottom, shows that the viscoelastic intensity  has a stabilizing effect (left panel) but � plays
a destabilizing effect on systems under white noise (right panel). With an increase of  , the stability
index also increases, which means the stability region for p > 0 becomes wider, so the viscoelasticity
help stabilization. However, the decrease of � means the relaxation time increase, the stability region
for p > 0 also becomes wider, which shows smaller � or larger relaxation time helps to stabilize the
system. The effect of stabilization is prominent only when � is small. As � exceeds 10, large increase
of � produces very small effect on stabilization.
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Figure 6. Effect of damping (top), viscosity  (bottom left), and viscosity � (bottom
right on moment Lyapunov exponents.

9. Conclusions

The stochastic stability of coupled viscoelastic systems described by Stratonovich stochastic integro-
differential equations of 2DOF was investigated. The system was parametrically excited by white noise
of small intensity with small damping. The Stratonovich equations of motion were first decoupled
into two-dimensional Itô stochastic differential equations, by making use of the method of stochastic
averaging for the nonviscoelastic terms and the method of Larionov for viscoelastic terms. An elegant
scheme for determining the moment Lyapunov exponents was presented by only using Khasminskii
and Wedig’s mathematical transformations from the decoupled Itô equations. The moment Lyapunov
exponents and Lyapunov exponents are compared well to the Monte Carlo simulation results and other
analytical expressions from the literature.

As an application, the flexural-torsional stability of a simply supported rectangular viscoelastic beam
subjected to a stochastically varying concentrated load acting at the center of the beam cross-section is
considered. The moment and almost-sure stability boundaries and the critical amplitude of power spectral
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density are obtained. It is found that, under white noise excitation, the parameters of damping ˇ and
the viscoelastic intensity  have stabilizing effects on the moment and almost-sure stability. However,
viscosity parameter � plays a destabilizing role. The stability index decreases from positive to negative
values with the increase of the amplitude of power spectrum, which suggests that the noise destabilize
the system. These results are useful in engineering applications.

Acknowledgement

The research for this paper was supported, in part, by the Natural Sciences and Engineering Research
Council of Canada.

References

[Abdelrahman 2002] N. M. Abdelrahman, Stochastic stability of viscoelastic dynamical systems, University of Waterloo, Wa-
terloo, Canada, 2002.

[Ahmadi and Glocker 1983] G. Ahmadi and P. G. Glocker, “Dynamic stability of a Kelvin-viscoelastic column”, J. Engineering
Mech. 109:4 (1983), 990–999.

[Ariaratnam 1993] S. T. Ariaratnam, “Stochastic stability of linear viscoelastic systems”, Prob. Engin. Mech. 8:3-4 (1993),
153–155.

[Ariaratnam 1996] S. T. Ariaratnam, “Stochastic stability of viscoelastic systems under bounded noise excitation”, pp. 11–18
in Advances in nonlinear stochastic mechanics (Trondheim, 1995), Solid Mech. Appl. 47, Kluwer, Dordrecht, 1996.

[Ariaratnam and Xie 1993] S. T. Ariaratnam and W. C. Xie, “Lyapunov exponents and stochastic stability of two-dimensional
parametrically excited random systems”, Trans. ASME J. Appl. Mech. 60:3 (1993), 677–682.

[Ariaratnam et al. 1991] S. T. Ariaratnam, D. S. F. Tam, and W. C. Xie, “Lyapunov exponents and stochastic stability of coupled
linear systems under white noise excitation”, Probabilistic Engineering Mechanics 6:2 (1991), 51–56.

[Arnold et al. 1997] L. Arnold, M. M. Doyle, and N. Sri Namachchivaya, “Small noise expansion of moment Lyapunov
exponents for two-dimensional systems”, Dynam. Stability Systems 12:3 (1997), 187–211.

[Bolotin 1964] V. V. Bolotin, The dynamic stability of elastic systems, Holden-Day, San Francisco, 1964.

[Drozdov 1998] A. D. Drozdov, Viscoelastic structures: mechanics of growth and aging, Academic Press, San Diego, 1998.

[Huang and Xie 2008] Q. Huang and W. C. Xie, “Stability of SDOF linear viscoelastic system under the excitation of wide-band
noise”, J. Appl. Mech. .ASME/ 75:2 (2008), id 021012.

[Janevski et al. 2012] G. Janevski, P. Kozic, and R. Pavlovic, “Moment Lyapunov exponents and stochastic stability of a
thin-walled beam subjected to eccentric axial loads”, J. Theor. Appl. Mech. 50:1 (2012), 61–83.

[Khasminskii 1966] R. Z. Khasminskii, “A limit theorem for solutions of differential equations with a random right hand part”,
Teor. Verojatnost. i Primenen 11 (1966), 444–462. In Russian; translated in Theor. Probab. Appl. 11 (1966), 390–406.

[Khasminskii and Moshchuk 1998] R. Khasminskii and N. Moshchuk, “Moment Lyapunov exponent and stability index for
linear conservative system with small random perturbation”, SIAM J. Appl. Math. 58:1 (1998), 245–256.

[Larionov 1969] G. S. Larionov, “Investigation of the vibration of relaxing systems by the averaging method”, Mech. Polymers
5 (1969), 714–720.

[Oseledec 1968] V. I. Oseledec, “A multiplicative ergodic theorem: Lyapunov characteristic number for dynamical systems”,
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COMBINED EFFECTS OF INTERSTITIAL AND LAPLACE PRESSURE
IN HOT ISOSTATIC PRESSING OF CYLINDRICAL SPECIMENS

LAURA GALUPPI AND LUCA DESERI

Sintering of precompacted metallic and ceramic micro and nanopowders is a complex problem influ-
enced by several factors. We quantify the influence of both local capillary stresses acting at the surface
of one pore or particle (usually referred to as Laplace pressure) and the gas pressure in pores during
sintering of precompacted metallic (micro/nano)powdered cylinders. The latter influences only the third
phase of sintering, that is, the phase in which the porosity is closed.

The isostatic pressing loading mode, which also covers the case of free sintering, is considered.
Whereas the Laplace pressure is demonstrated to have a beneficial effect on sintering, the gas pressure
acts against the reduction of the porosity, causing an increase in sintering time. This contribution could
reach the sum of the stress due to loading and the interstitial pressure, thereby preventing the desired
porosity to be reached.

For the sake of illustration, a specific aluminum-zinc-magnesium-copper alloy is examined in this
paper. The purpose is to estimate the effects of sintering time and residual porosity and to determine
thresholds under which the contributions described above are negligible. In order to determine the effects
of Laplace and gas pressure in pores on the stability of the process, a high-order perturbation analysis
has been performed.

1. Introduction

In recent decades, powder technology has become one of the most important technological processes for
the production of metallic and ceramics components. Free sintering, hot isostatic pressing (HIP), and
hot forging are different ways to realize a key phase in which the primary mechanical properties of the
final material are obtained. In order to be able to predict the final structure of a body undergoing such
a process, it is crucial to define an analytical theory of sintering allowing one to follow the evolution of
the mechanical properties of the material (determined by this structure) during sintering, and to get the
final features of the compound at the end of this process.

The foundations of the analytical study of sintering processes were laid down in the 70s (see, for
example, [Skorohod 1972; Ashby 1974; Coleman and Beere 1975]) and many studies gave important
new results in the 90s [Duva and Crow 1992; Cocks 1994; Olevsky and Molinari 2000]. In recent years,
several papers have improved knowledge of sintering processes. This has been done both from analytical
(see, among others, [Olevsky et al. 2006; Maximenko et al. 2012; Wakai 2013]) and experimental (see,
for example, [Guillon et al. 2008; Sankar et al. 2011]) points of view; the latter is usually focused on new
materials and techniques. An innovative sintering technique, widely developed and used in recent years,

Keywords: sintering, powder technology, nanopowders, hot isostatic pressing, interstitial and Laplace pressure, ceramic
compaction, metallic powder compaction .
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is spark plasma sintering (SPS), in which materials are compacted and condensed to higher densities.
Systems designed for SPS use direct current pulses to create spark energy between the particles of the
material. This technology achieves rapid fusing between particles and, unlike other sintering processes
that are solely involved in metalworking, SPS can be applied to ceramics, composite materials, and
nanostructures. The compaction of samples can be achieved in a relatively short time period, making
SPS a very promising technique for elaborate nanostructured materials. Several studies have recently
been performed on this technique [Munir et al. 2006; Schwarz et al. 2012; Wolff et al. 2012].

The present work is focused on modeling the evolution of material properties during sintering of axisym-
metric samples. It is a natural extension of [Olevsky and Molinari 2006], dealing with an analysis of the
kinetics and stability of porous axially symmetric bodies undergoing sintering under different loading
modes. In that paper, in addition to an extensive review of the available literature, both about modeling
of sintered materials obtained by compacted powders (see, for example, [Bigoni and Piccolroaz 2004;
Piccolroaz et al. 2006a; 2006b]) and constitutive equations for porous media, the problem is solved for
the cases in which both the interstitial stress (due to the pressure exerted by the gas in the pores) and the
Laplace pressure (due to the surface tension at the interfaces between matrix and pores) are negligible
compared with the external loading. The strategy introduced in [Olevsky and Molinari 2006] appears to
be the most effective among the possibilities for predicting the kinetics of bodies undergoing sintering
(even for the simple geometry mentioned above). More modern formulations dealing with multiscale
mechanics may also be conceived to deliver more accurate micromechanics-based approaches to sintering
(see, for example, [Deseri and Owen 2003; 2010; 2013; Paola and Zingales 2011; 2012; Dal Corso and
Deseri 2013; Deseri et al. 2013; Paola et al. 2013], among many others).

Even though sintering is an inhomogeneous process, not only due to the inhomogeneity of the prop-
erties of the powder particles but also to internal stresses the can arise either from external constraints,
differential densification [Green et al. 2008], or particle rearrangement during sintering [Wakai et al.
2007; Lee et al. 2012], in this work only the average state of the stress is considered. This is motivated
by the observation, pointed out in [Olevsky and Molinari 2006], that the assumption of homogeneous
plane stress through a sample is reasonable even in the case of a nonuniform cross-section (see, for
example, [Hutchinson et al. 1978] for tensile tests). Incidentally, this is equivalent to assuming that
specimens undergo constant states of (plane) stresses corresponding to the average of the actual stress
fields. The approach suggested by the assumptions above has the advantage of capturing the essentials of
both kinetics and stability, avoiding searching for the solutions of complicated (initial) boundary value
problems. Nevertheless, in [Olevsky and Molinari 2006], this strategy has been employed only for cases
in which the effect of the Laplace pressure is negligible with respect to the applied stresses. Hence it
needs to be extended to the case of moderate stresses in comparison with the interstitial gas pressure.

Here we consider ideal processes where stresses are kept constant, unlike in [Olevsky and Molinari
2006], where, instead, a fictitious external load replaces the role of the stress.

This paper is outlined as follows. In Section 2, the theory of sintering introduced in [Olevsky 1998;
Olevsky and Molinari 2006] is essentially summarized and specialized for the case of isostatic pressing
processes, emphasizing the role of the Laplace pressure and the gas pressure in pores. In Section 2.3,
the two most-used ways to get the relationship between the porosity (defined as the ratio of the volume
of pores and the total volume of the sintered material) and the Laplace pressure (also called the sintering
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stress) are revisited; furthermore, the model for obtaining such a pressure based on the microscopic
dissipation is shown to be compatible with the incompressibility of the matrix if and only if the material
is nonlinearly viscous. Analogously, in Section 2.4 a practical way to account for the interstitial stress
(that is, the gas pressure in pores) is proposed.

In Section 3, the effect of the Laplace pressure on the evolution of the porosity in sintering processes
entailing isostatic pressing is studied. An accurate comparison among different models of the normalized
shear and bulk moduli of the material and between the two different expressions for the sintering is
performed. In Section 3.1, two issues are investigated. First of all, thresholds on stresses caused by
external loads are determined, under which the influence of the interstitial pressure cannot be neglected.
Such thresholds may be strongly influenced by the strain rate sensitivity of the material and the average
radius of the particles; this feature may have a stronger impact for nanostructured powders. Furthermore,
the discrepancy between the values of the residual porosity is evaluated by neglecting or accounting for
the Laplace pressure in sintering processes of a given time-duration. In Section 4, an analogous analysis
is performed regarding the effect of gas pressure in pores in isostatic pressing sintering processes. In
performing such analysis, two cases may arise through a comparison between the stress caused by exter-
nal loading and Laplace pressure (sintering driving) and gas pressure in pores (opposing the reduction of
the porosity). In particular, the occurrence of equality between such values can be reached at a definite
(critical) porosity, which remains constant at a limit value. It is clear that, if this value is greater than the
desired porosity at the end of the process, this cannot be obtained.

Finally, in Section 5, the stability of the process, namely of the solution of the problem in terms of the
time evolution of the porosity obtained in Section 2, is performed in two steps along the lines traced in
[Olevsky and Molinari 2006]. A lower-order analysis is performed in Section 5.1, where perturbations
on the porosity alone are considered. In Sections 5.2 and 5.3, a higher-order analysis is performed by
perturbing, together with the porosity, the reference value of the Laplace pressure and the gas pressure in
pores; this more refined analysis shows that the effect of the latter is to reduce the stability of the process.
The Appendix is devoted to analyzing free sintering processes. In particular, since no external stress is
applied, it is crucial to examine to what extent different ways of evaluating the Laplace pressure may
influence the outcome in terms of the evolution of the porosity. Hence, a parametric analysis in terms of
the given temperature is performed to estimate the sintering time for a prescribed target residual porosity.

2. Theory of sintering and kinetics of porosity

The sintering process is classically divided into three phases [Swinkels and Ashby 1981; Swinkels et al.
1983; Cocks 1994]:
• A first stage in which the particles are brought into contact and necks grow at the particle contacts;

in this phase, the material may be modeled as an aggregate of individual particles with little contact.
For crystalline materials, this phase involves diffusion of vacancies in the crystal lattice, whereas
noncrystalline materials sinter by viscous flow [Scherer 2001].

• An intermediate second stage in which the material can be idealized as a porous material with
connected porosity.

• A third and final phase in which, usually for relative density (that is, as will be discussed in the
sequel, the ratio between the volume of the matrix and the total volume of the sintered material)
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greater than 90% [Coleman and Beere 1975], i.e., for porosity less than 10%, in which the pores
are isolated and spherical. In the sequel, this value of the porosity will be denoted by θc, called the
closure porosity.

It is important to note that in the second phase the pores can be considered quasispherical [Ashby 1974].
The mechanical response of a porous body with nonlinear-viscous behavior (stages 2 and 3) is strongly

influenced by the presence of pores (see, for example, [Wakai 2013]) and is described by a rheological
constitutive relation, namely:

σi j =
σ(w)

w
[ϕε̇′i j +ψ ėδi j ] + pLδi j − pI δi j , (1)

interrelating the components of the stress σi j and the strain rate ε̇i j [Olevsky 1998]. The quantity pL rep-
resents the Laplace pressure, while the term pI represents the gas pressure in the pores. Obviously, pI = 0
during the first and second phases, since the porosity is open. Here, ε̇′i j denotes the i j-th component of
the deviatoric strain rate tensor; w is the effective equivalent strain rate, defined as

w =
1

√
1− θ

√
ϕγ̇ 2+ψ ė2, (2)

where

ė = ε̇i i (3)

measures the local shrinking rate (whenever the sintering process entails a volume reduction), and

γ̇ =
√
ε̇′i j ε̇
′

i j (4)

measures the local rate of change in shape. Here and subsequently, index notation with Einstein summa-
tion convention is adopted.

The quantity pL represents the interstitial pressure produced by the gas contained in the pores; in the
sequel we will refer to pL as either the “Laplace pressure” or the “sintering stress” (see [Olevsky 1998;
Olevsky and Molinari 2000; 2006]).

For further developments, it is convenient to introduce the stress quantities p and τ directly related to
shrinking and change in shape, respectively:

p = 1
3

trσ =
σ(w)

w
ψ ė+ pL − pI , (5)

τ =
√
σ ′i jσ

′

i j =
σ(w)

w
ϕγ̇ , (6)

where σ ′i j denotes the i j-th component of of the deviatoric stress tensor. The quantities ϕ, ψ , pL , and
pI and their dependence upon the porosity will be treated in Sections 2.2, 2.3, and 2.4.

Let us consider a cylindrical axisymmetric specimen, subject to an external load. The porosity θ ,
defined as the ratio between the pore volume and the total volume [Olevsky and Molinari 2006], is
supposed to be constant throughout the sample. This is equivalent to considering the spatial average of
the porosity.
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From now on, we shall consider average stress distributions of the following form:

[σi j ] =

σr 0 0
0 σr 0
0 0 σz

 , (7)

where z denotes the direction of the axis of the sample and r is any radial direction. Furthermore, in the
sequel, the corresponding average strain rate tensor will be considered. Here, ε̇z and ε̇r denote the axial
and radial strain rates, respectively. Hence, ė and γ̇ turn out to be

ė = ε̇z + 2ε̇r , γ̇ =

√
2
3 |ε̇z − ε̇r |. (8)

Following [Olevsky and Molinari 2006], one can introduce a loading mode parameter n∗ defined by

n∗ = τ

p
=

(σ (w)/w)γ̇

(σ (w)/w)ė+ pl − pI
(9)

Similar to the loading mode parameter, it is useful to define a strain rate mode parameter n as

n =
ϕγ̇

ψ ė
. (10)

The parameter n assumes the following values for the corresponding loading modes:

(1) n = 0 for isostatic pressing,

(2) n→∞ for pure shear (p = 0),

(3) n =−
√

6 for “free” forging,

(4) n =
√

6 for drawing, and

(5) n =
√

2
3 sgn(ε̇z)ϕ/ψ for constrained forging.

In the sequel, we will consider cases 1, 3, and 5 only.
We refer to “free” forging as the loading mode represented in Figure 1a, a transverse compressive

force acting at the top and bottom faces of the sample with no lateral confinement. Hence, the case of
constrained forging, shown in Figure 1b, is nothing but an axial compression of the sample in a rigid die.

From (1), (8), and (10), the following relation can be obtained:

σz =
σ(w)

w
ψ ė
[
1+

√
2
3 n sgn(ε̇z − ε̇r )

]
+ pL − pI ; (11)

the dependence of the effective equivalent stress σ(w) on the effective equivalent strain rate w determines
the constitutive behavior of a porous material.

Following [Ashby 1990], a power-law mechanism for the deformation is assumed:

σ(w)

σ0
= A

(
w

ε̇0

)m

, (12)

where A and m are material constants (A is temperature dependent, 0< m < 1), and σ0 and ε̇0 are the
reference stress and reference strain rate, respectively. The two limiting cases corresponding to ideal
plasticity and linear viscosity are given by m = 0 and m = 1, respectively.
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Free Forging,

n= -    6

Constrained forging,

n= - 2y

3f

Isostatic Pressing,
n=0

Free Sintering,
n=0

(a) (b) (c) (d)

Figure 1. Different loading modes.

Equations (12) and (2) can be used to obtain an explicit expression for the ratio between the effective
equivalent stress σ(w) and the effective equivalent strain rate w in terms of the porosity, the normalized
shear and bulk moduli, the loading mode, and the shrinking rate:

σ(w)

w
=
σ0 A
ε̇m

0
wm−1

=
σ0 A
ε̇m

0
|ė|m−1

[
ψ

1−θ

(
ψ

ϕ
n2
+ 1

)](m−1)/2
. (13)

This paper is mainly devoted to studying the influence of both the Laplace pressure and the gas pressure
in pores on the overall stress; for this reason, it is essential to monitor the magnitude |σz − pL + pI |,
which can be regarded as a “driving force” of the sintering process, for each analyzed loading mode.

To this end, by substituting expression (13) into (11) the following relation can be obtained:

σz − pL + pI =
Aσ0

ε̇m
0
|ė|m

[
ψ

1−θ

(
ψ

ϕ
n2
+ 1

)](m−1)/2
[

1+

√
2
3

n sgn(ε̇z − ε̇r )

]−1/m

. (14)

In order to achieve an analytical expression for the evolution of the material behavior during the sintering
process, it is necessary now to introduce the porosity θ , defined as the ratio of the volume of pores and
the total volume. By denoting the total volume of the sintered material as Vtot and the volumes of the
matrix pores as Vmatrix and Vpores = Vtot− Vmatrix, respectively, the relative density can be written as:

ρ =
Vmatrix

Vtot
. (15)

The porosity reads:

θ =
Vpores

Vtot
= 1− ρ. (16)
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Because of mass continuity and the assumed incompressibility of the matrix (the shrinkage is only
due to the change of the porosity) [Olevsky 1998], the evolution law for the porosity is given by

ė = θ̇

1−θ
. (17)

Taking into account expression (17) and recalling that the shrinkage is ė < 0 and thus θ̇ < 0, the relation-
ship (14) leads to the following evolution equation for the porosity:

θ̇ = sgn(θ̇)[sgn(θ̇)(σz − pL + pI )]
1/m ε̇0

(Aσ0)1/m

×

[
ψ

1−θ

(
ϕ

ψ
n2
+ 1

)](1−m)/2m
[
ψ

(
1+

√
2
3

n sgn(ε̇z − ε̇r )

)]−1/m

(1− θ), (18)

which accounts for the contribution of the Laplace pressure and the gas pressure in the pores. The ana-
logue of (18) neglecting such contributions was obtained in [Olevsky and Molinari 2006, Equation 15].

2.1. Evolution law for porosity for isostatic pressing processes. For the case of isostatic pressing, σz =

σr ; in the sequel their common value will be denoted by σ . Here the loading mode parameter n is zero
and the process entails a monotonic decrease of the porosity, that is, θ̇ < 0; hence, relation (18) reduces
to the following expression:

θ̇ =−[−(σ − pL + pI )]
1/m ε̇0

(Aσ0)1/m (1− θ)
(3m−1)/2mψ−(1+m)/2m . (19)

Obviously, since γ̇ = 0, the normalized shear modulus ϕ has no influence on the process. The normalized
bulk modulus ψ is a known function of the porosity θ ; for such a function, here and subsequently, we shall
use the expressions given in Section 2.2. For this case, the models of [Ponte Castañeda 1991; Sofronis
and McMeeking 1992] give the same behavior. This is because of the expression of the normalized bulk
modulus ψ , which is indeed the same for both models.

Equation (19) may be normalized by using the dimensionless specific time defined as

τL =

[
pL0

σ0 A

]1/m

ε̇0, (20)

where pL0 is the reference value of the Laplace pressure, dependent on the surface tension and on the
characteristic radius of the particles; it will be discussed in Section 2.3. Consequently, the evolution law
for the porosity (19) can be rewritten as

∂θ

∂τL
=−(1− θ)(3m−1)/2m

[−(σ − pL + pI )]
1/mψ−(1+m)/2m . (21)

For future use, it is useful to introduce a dimensionless pressure parameter, called the specific external
pressure (SEP):

SEP= σ/α/r0, (22)

where α denotes the surface tension and r0 the average radius of the particles (for further explanation,
see Section 2.3).
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2.2. Dependence of the normalized shear and bulk moduli on porosity. In the literature there are sev-
eral studies relating to the determination of the normalized bulk and shear moduli. In particular we will
use four different models:

• The Skorohod model [Skorohod 1972]:

ϕ = (1− θ)2, ψ =
2
3
(1−θ)3

θ
.

• The Ponte Castañeda–Duva–Crow model [Ponte Castañeda 1991; Duva and Crow 1992]:

ϕ =
(1− θ)2/(1+m)

1+ 2
3 θ

, ψ =
2
3

(
1− θm

mθm

)2/(m+1)

.

• The McMeeking–Sofronis model [Sofronis and McMeeking 1992]:

ϕ =
(1−θ

1+θ

)2/(1+m)
, ψ =

2
3

(
1− θm

mθm

)2/(m+1)

.

• The Cocks model [Cocks 1994]:

ϕ =
(1− θ)2/(1+m)

1+ 2
3 θ

, ψ =
m+ 1

3
(1+ θ)(1− θ)2/(m+1)

θ
.

In Figures 2 and 3 moduli ψ and ϕ, respectively, are plotted as functions of porosity for different
values of the parameter m. The Skorohod model accounts for linear-viscous incompressible material
with voids only; indeed, the moduli ψ and ϕ are independent from the parameter m.

2.3. Dependence of the Laplace pressure on porosity. The effective Laplace pressure pL is the result of
the collective action of local capillary stresses in a porous material. A variety of approaches can be found
in the literature. We will consider two possible derivations of the expression for the Laplace pressure.

(1) Sintering stress derived by using a stochastic approach. This derivation was employed by Skorohod
[1972], who obtained pL by calculating the surface free energy per unit mass with respect to the specific
volume of the porous material by assuming spherical particles. The achieved result may be stated as
follows:

pL = pL0(1− θ)2 =
3α
r0
(1− θ)2, (23)

where α is the surface tension and r0 is the characteristic radius of the particles.

(2) Sintering stress derived by averaging the dissipation. Here we summarize results shown in [Olevsky
and Molinari 2000, Appendix A.2.2] about the derivation of an expression for the Laplace pressure.
A hollowed sphere is considered as a schematic for a pore (see Figure 4); at its surface, namely for
r = R1 (where r denotes the radial coordinate), the pressure pL0 = 2α/r0 is applied, whereas the external
boundary (r = R2) is stress free.

The porosity is then determined by the volume fraction:

θ =

(
R1

R2

)3

. (24)
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Figure 2. Normalized bulk modulus ψ as a function of porosity, for different values of
the strain rate sensitivity, m.

The introduction of standard compatibility conditions into the constitutive relation (1) yields the radial
and circumferential stresses as functions of the unknown radial velocity Vr (r) (and of pL and pI ). Finally,
the stress balance (in the radial direction) allows for determining

Vr (r)=−
pL0 R3

1 R3
2

2(Aσ0/ε̇
m
0 )ϕ(R

3
2 − R3

1)r
2
, (25)

for m = 1, namely in the case of linearly viscous behavior.
Henceforth, the effective equivalent strain rate w (see (2)) appearing in (1) is relevant for the expression

of the dissipation potential proposed in [Olevsky 1998, Equation (26)], that is,

D =
Aσ0/(ε̇

−1/m
0 )

m+ 1
(1− θ)wm+1. (26)

Through this expression, the dissipation of the matrix and its average on the volume of the hollowed
sphere may be deduced. Additionally, the dissipation of the effective porous material, subject to free sin-
tering, is evaluated; its connection with the volume-averaged dissipation through Hill’s identity [Olevsky
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Figure 3. Normalized shear modulus ϕ as a function of porosity, for different values of
the strain rate sensitivity, m.

pL0

Figure 4. A representative element of the porous medium.

and Molinari 2000, Equation A29] allows for determining the following expression for the Laplace
pressure:

pL =
2α
r0

√
3
2
ψ(θ)

θ

1−θ
. (27)
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The latter can be particularized to obtain the sintering stress associated with the models cited above; in
particular,

• pL =
2α
r0
(1− θ) for the Skorohod model,

• pL =
2α
r0

for the Castañeda and McMeeking models, and

• pL =
2α
r0

√
1+ θ for the Cocks model.

Figure 5 shows the dependence of the Laplace pressure on the porosity θ . The stochastic approach,
yielding relation (23), gives a parabolic trend for the Laplace pressure. This is increasing when the
porosity decreases and is independent of the value of the parameter m, so that pL does not depend upon
the material behavior. In particular, the values of pressure calculated through (27) are compatible enough
with the ones obtained from (23) in the porosity range of interest for common sintered components (see
the blown-up inset in Figure 5).

2.4. Gas pressure in pores and its dependence upon porosity. During the sintering process, the porosity
becomes isolated and the final stage of sintering starts at a relative density ρ = 90%, that is, at the closure
porosity θc = 0.1. At this time, the gas pressure in the pores is equal to the external pressure; as the
relative density ρ increases, the gas pressure in the closed pores also increases. The more natural way to

porosity

p
[P

a
]

L

Stochastic approach

E.d., Skorohod model

E.d., Castaneda model

E.d., Cocks model

Figure 5. The Laplace pressure as a function of porosity.
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account for such a phenomenon is through the ideal gas law [Arzt et al. 1983; Wilkinson 1988], that is,
(pI + patm)Vpores = const., where pI is the gas pressure in the pores and patm the atmospheric pressure.

Recalling that, thanks to the incompressibility of the matrix, Vmatrix = const. during the process, from
the ideal gas law it follows that the quantity (pI + patm)(1− ρ)/ρ = (pI + patm)Vpores/Vmatrix remains
constant. Recalling (16), the relationship can be rewritten as:

(pI + patm)
θ

1−θ
= const.= (p0+ patm)

θc

1− θc
, (28)

where p0 is the external pressure (that is, the gas pressure in the pores when the porosity closes). Thus,
the evolution of the pressure in the pores during the sintering process is given by

pI =

0, if θ > θc,

(p0+ patm)
θc

θ

1−θ
1−θc

− patm, if θ < θc.
(29)

In the case of isostatic pressing, the external pressure is equal to the applied stress |σ |.
The effects of the Laplace pressure pL and the gas pressure in the pores pI are investigated in Sec-

tions 3 and 4, respectively.

3. Effect of the Laplace pressure on sintering
processes entailing isostatic pressing

In this section, the effect of the Laplace pressure on sintering processes entailing isostatic pressing is
studied. To be precise, processes entailing, as the driving force, only the stress due to the external load
are compared to processes in which the Laplace pressure is taken into account.

Figure 6 shows the time evolution of the porosity during an isostatic pressing process that reduces the
porosity from 30% to 5%, obtained by using the Castañeda–Duva–Crow model for SEP = 10, in two
cases:

• Accounting for the interstitial pressure pL (the continuous line), and the driving force of the process
is σ − pL .

• Neglecting the Laplace pressure (the dashed line), and the driving force is only the stress due to the
external load, σ .

The latter describes the approximation adopted in [Olevsky and Molinari 2006]. Indeed, since |σ − pL |>

|σ |, the time decay of the porosity would be lower than in reality. Nevertheless, we record that the time
evolution of the porosity has a qualitative analogue to the one obtained by neglecting pL (see Figure 6).
When the strain rate sensitivity, m, decreases, the initial part of both graphs become steeper. Indeed, for
infinite slope, the material behavior would be perfectly plastic (this would correspond to m = 0).

The gap between the two curves is higher for lower values of the strain rate sensitivity, m, hence the
Laplace pressure has more influence on the sintering process when the material tends towards the plastic
behavior. This may be explained by the (Ashby) power law (for example, (12)), relating the equivalent
strain rate w and the effective equivalent stress σ(w). Indeed, it is evident from such an equation that, for
lower values of the strain rate sensitivity, m, the effective equivalent strain rate is more sensitive to stress
changes, and, in particular, to the difference between the stress evaluated by accounting for the Laplace
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Figure 6. Isostatic pressing: evolution of porosity for SEP= 10.

pressure as a driving force of sintering or by neglecting it. For the sake of clarity, the Ashby relation
(12) is displayed in Figure 7 for different values of the parameter m; the plot highlights the change of w
obtained by considering as the driving force |σ − pL | instead of |σ |, which is much more relevant for
higher values of m.

Figure 8 is the analogue of Figure 6 for a lower value of external pressure, that is, SEP= 1. Here, the
gap between the curves is remarkable because, in this case, the “sintering driving force” is basically the
Laplace pressure, simply because it is higher than the externally imposed stress.

A comparison between the three different models for the normalized shear and bulk moduli ϕ and ψ ,
between the two different expressions for pL (see (23) and (27)), is performed in the sequel. Figure 9
shows such a comparison for SEP= 5, for a material with linear-viscous behavior (m = 1).

The time-evolution diagrams shown in the left and right parts of Figure 9 are similar, because the
values of the Laplace pressure given by (23) and (27) are compatible enough for porosities between 30%
and 5% (see the inset in Figure 5). The differences among the curves relative to the various considered
models are due to the corresponding expressions of the normalized bulk modulus ψ .

3.1. Influence of interstitial stress on industrial processes entailing isostatic pressing. A specific metal-
lic alloy (aluminum-zinc-magnesium-copper) is examined in this section. This is motivated by its exten-
sive use in industrial sintering processes. The main features of this material are listed in Table 1. For
aluminum alloys, the average sintering time is thirty minutes and usually the applied external pressure is
on the order of 100 MPa [Muhlburger and Paschen 1993; Schaffer et al. 2001; Gokce and Findik 2008].
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Figure 9. Isostatic pressing: evolution of porosity for SEP= 5, m = 1, for different models.

It may be shown that the important parameters influencing the Laplace pressure are the radius of the
grains, r0, and the surface tension, α. Values of the powder grain size from 20 nm to 5µm are taken into
account here.

In the sequel, we shall examine the discrepancies in the estimates of the sintering times evaluated
by either neglecting or accounting for the sintering stress pL . Furthermore, we shall also calculate the
residual porosity in both of the cases mentioned above.

3.1.1. Threshold external loading pressures and sintering times. Here we are interested in comparing the
sintering times t and t0 employed to reduce the porosity from 30% to 5% in cases in which the sintering
driving force is taken to be either |σ − pL | or |σ |, respectively. We are also interested in calculating
the values of the external pressure p∗ for which the discrepancy between the sintering times, that is,
(t − t0)/t , attains the values 5%, 10%, and 15%. Obviously, whenever the external pressure is less than
p∗, for a given value of discrepancy, for example 5%, an error greater than 5% occurs by neglecting the
effect of the Laplace pressure.

Figures 10 and 11 show the threshold pressures for 5µm and 50 nm powders (obtained by the Cas-
tañeda model). We see immediately that the effect of the Laplace pressure becomes more relevant for

Young’s modulus E 70.7 GPa
Poisson’s ratio ν 0.325
Surface tension α 1.128 N/m
Activation energy Q 14390 kJ
Melting temperature Tm 659◦ C
Average particle radius r0 5–50µmm
Sintering temperature Ts 100–350◦ C
Sintering pressure Pb 600–610 MPa

Table 1. Characteristics of the considered aluminum-zinc-magnesium-copper alloy.
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Figure 11. Threshold pressure p∗, for 50 nm powder.

lower values of the powder grain size. Hence, in this case the threshold pressures are comparable to
those usually applied in industrial processes.

The threshold pressures evaluated by using the Cocks model do not exhibit meaningful differences
with the results obtained by adopting the Castañeda model.

The results of these sections rely upon the model of the Laplace pressure based on the stochastic
approach ((23), discussed in Section 2.3). Equation (27), instead derived by averaging the dissipation,
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does not allow for evaluating pL for different values of the strain rate sensitivity parameter m. However,
the values of the threshold pressure obtained by using the latter model are in complete agreement with
the ones obtained by using the former.

3.1.2. Residual porosity. The residual porosity is a fundamental feature of the material, because, among
other reasons, it determines the mechanical properties of a sintered specimen.

A thirty-minute sintering process with external loading pressure of 100 MPa is now considered. Here
we are interested in comparing the residual porosities θr and θr0 after thirty minutes, when the sintering
driving force is, respectively, taken to be either

• |σ − pL | or

• |σ |.

For the different values of powder grain size mentioned above, we are able to calculate the value of
the strain rate sensitivity, m, that permits having a sintering reference time on the order of thirty minutes
(30′). For the sake of convenience, without loss of generality, in the sequel a time range corresponding
to a variation of ±30% of the reference time is considered.

Figure 12 shows the sintering time (that is, the time required to reduce the porosity from 30% to 5%)
as a function of the strain rate sensitivity, m; furthermore, the values of m corresponding to the real
sintering times of 30′± 30% are highlighted in the plot.

With such values of the parameter m, we may calculate the percentage error

E%=
θr − θr0

θr
100[%], (30)

occurring when the Laplace pressure, pL , is neglected. Figure 13 shows value of such an error as a
function of the strain rate sensitivity, m, for grain sizes between 20 nm and 1µm.
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Figure 12. Sintering time as a function of the strain rate sensitivity, m.



68 LAURA GALUPPI AND LUCA DESERI

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74
0

10

20

30

40

50

60

70

80

90

m

r0=1000nm

r0=500nm

r0=200nm

r0=100nm

r0=50nm

r0=20nm

E
%

Figure 13. Errors E% on the residual porosity for different values of the grain size, r0.

For nanopowders (that is, for grain sizes less than 1µm) the error becomes much higher than in the
case of micropowders. In particular, for sizes on the order of 100 nm an error of about 40% may occur,
while for 20 nm the error is on the order of 80%. For lower grain sizes, the gap between θr and θr0 is
higher than for the previous cases.

The second parameter influencing the Laplace pressure is the surface tension α; there are lots of
uncertainties in the determination of its value [Kumikov and Khokonov 1983]. Hence, because of the
lack of reliability, the sensitivity of the model to variations of α in the range of ±50% is analyzed.
Figure 14 shows the error E% (defined by (30)) as a function of the surface tension α, for different
values of the powder grain size. For increasing values of α, the Laplace pressure grows and hence the
gap between θr and θr0 increases accordingly; this phenomenon turns out to be more relevant for lower
powder grain sizes.

4. Effect of the gas pressure in pores
on sintering processes entailing isostatic pressing

In this section the effect of the gas pressure in pores on sintering processes entailing isostatic pressing
is studied through the comparison of results obtained by accounting for pI or by neglecting it. Isostatic
pressing processes that reduce the porosity from 30% to 5% are considered. The evolution of the pressure
in the pores during sintering is given by (29) where, in the case of isostatic pressing, the external pressure
p0 is equal to the absolute value |σ | of the applied stress.

Figure 15 shows, for SEP= 10, the absolute values of the sintering driving forces, that is, the stress
due to the external load, the gas pressure in the pores, and the Laplace pressure. Figure 16 shows the
values of the total sintering driving force, for different values of the SEP, in two cases:
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• accounting for the whole driving force (the dashed line) σ − pL + pI and

• neglecting the gas pressure in the pores (the dotted line), that is, the driving force is considered to
be σ − pL .

The latter describes nonpressurized pores. Indeed, since no pressure could act against stresses caused
by external loading (and Laplace pressure), the time decay of the porosity, in this case, would be faster
than in reality. It is noticeable that, since σ − pL < 0 and pI ≥ 0 during the whole sintering process (see
(29)), the total driving force σ − pL + pI may turn out to become null at a definite value of the porosity.
Such a value will be denoted by θ∗ and be given by the following condition:

|σ − pL(θ
∗)| = pI (θ

∗). (31)

In the limiting case for which condition (31) holds, (21) yields θ̇ = 0 and hence θ = const. Thus, whenever
such a condition is achieved the porosity remains constant at the limit value θ∗.

It is evident that the value of θ∗ depends upon the external load and the choice of expression (23) or
(27) for the Laplace pressure. Moreover, since pI = 0 for θ > θc, condition (31) can be verified only in
the third phase of sintering, when pI > 0; it leads to θ∗ < θc.
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By denoting with θF the desired porosity at the end of the process and recalling that θc denotes the
closure porosity, that is, the value of the porosity for which the pores becomes isolated, we may now
distinguish two cases:

• Case in which θF < θ
∗ < θc. Figure 17 shows the time evolution of the porosity, obtained by using

the Castañeda–Duva–Crow model, for different values of the strain rate sensitivity, m, for SEP= 10,
in two cases:

– accounting for the gas pressure in the pores pI (the continuous line), and
– neglecting this pressure (the dashed line).

It is evident that, since θ > θc (that is, during the first and second phases of sintering), the evolution
of the porosity obviously is not affected by the presence of pI , and hence the curves coincide. When
the third phase begins, at porosity θ = θc, the dashed line moves away from the continuous one; as
stated above, the sintering time obtained by accounting for the gas pressure in the pores is higher
than the one obtained by neglecting it.

The fundamental result, in the case under examination, is that the desired final value of the
porosity θF cannot be obtained; the value of the porosity at the end of the process is given by
θ∗ > θF . Moreover, whenever the condition (31) is achieved the rate of change of the porosity goes
to zero; in the proximity of such a condition, the time-porosity graph presents an horizontal plateau.
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Figure 17. Isostatic pressing: evolution of porosity for SEP= 10.
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This leads to a stretch of sintering times, which is evident from Figure 17.

• Case in which θ∗ < θF . Figure 18 shows the time evolution of the porosity, obtained by using the
Castañeda–Duva–Crow model, for different values of the strain rate sensitivity, m, for SEP= 1. It
is evident from Figure 16 that, for such a value of the SEP, the critical porosity θ∗ is not achieved
in the range of the considered porosities, that is, θ∗ < θF . This allows for obtaining the desired
porosity θF at the end of the process. The only effect of the gas pressure in the pores is to stretch
the sintering times. This phenomenon will be studied in the following subsection.

In both cases, the gap between the two curves is higher for lower values of the strain rate sensitivity, m,
and hence the presence of gas pressure in the pores has more influence on the sintering process whenever
the material tends towards the plastic behavior. This may be explained by the (Ashby) power law (12),
that indicates that for lower values of the parameter m, the effective equivalent strain rate is more sensitive
to stress changes.

Comparison between the three different models for the normalized shear and bulk moduli ϕ and ψ and
between the two different expressions for pL (see (23) and (27)) is performed in the sequel. Figure 19
shows such a comparison for SEP= 1 for a material with linear-viscous behavior (m = 1).

The time-evolution diagrams shown in the left and right portions of Figure 19 are quite similar, be-
cause the value of the Laplace pressure given by (23) and (27) are compatible enough for porosities
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Figure 18. Isostatic pressing: evolution of porosity for SEP= 1.
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Figure 19. Isostatic pressing: evolution of porosity for SEP= 1.

between 30% and 5% (see the inset in Figure 5). The differences among the curves relative to the
various considered models are due to the corresponding expressions of the normalized bulk modulus ψ .

Figure 20 shows such a comparison for SEP= 10 with m = 1. In this case as well, the left and right-
hand graphs are similar. The differences among the curves relative to the various considered models are
due to the corresponding expressions of the normalized bulk modulus ψ , leading, in the case of pL given
by (27), to slightly different values of the critical porosity θ∗.

4.1. Influence of the gas pressure in pores on industrial processes entailing isostatic pressing. Simi-
larly to the analysis performed in Section 3.1, we are interested in determining if there exists a threshold
for the external pressure under (or over) which the effect of the gas pressure in pores is negligible in a
“real” industrial process. The same aluminum-zinc-magnesium-copper alloy presented in Section 3.1 is
considered here.
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Figure 20. Isostatic pressing: evolution of porosity for SEP= 10.
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As discussed above, in the case of isostatic pressing, the gas pressure in the pores at the beginning of
the third phase of sintering (that is, at the closure porosity, θc) is equal to the external pressure. Hence,
whenever the external pressure increases, the pressure in the pores also increases, acting “against” the
sintering process and preventing the desired final porosity from being reached. Figure 21 shows the final
porosity that can be reached as a function of the applied external pressure for different values of the
strain rate sensitivity, m, for both 5µm and 50 nm powders.

Since the required final porosity can be reached only for low values of the external pressure (and,
hence, of the gas pressure in the pores), there is no sense in looking for an external pressure threshold
under which the effect of the gas pressure in the pores is negligible from the point of view of the sintering
time, or the error on the evaluation of the residual porosity, similarly to Sections 3.1.1 and 3.1.2.

5. Stability

5.1. Lower-order analysis. Here we may denote by θ (0)(t) the fundamental solution of the evolution
law (19) associated with a uniform distribution of the initial porosity. Following [Olevsky and Molinari
2006, §3.1.1] we assume that the perturbed solution has the form

θ(t)= θ (0)(t)+ δθ(t) exp(λ(t − t0)), (32)

where the magnitude of the perturbation δθ(t) is taken to be much smaller than that of θ (0)(t) at all times.
In [Olevsky and Molinari 2006, §3.1.1] a normalized perturbation growth rate with respect to the current
rate of change of porosity is considered; this is done in order to have “first”-order information about the
stability of the process. The quantity λ = δθ̇/δθ can be regarded as the perturbation growth rate. It is
possible to calculate the quantity λ/θ̇ as a function of θ , θ0, m, pL , and the external pressure. This can
be done in the framework of the three different models considered in the previous sections.

Because, during sintering, shrinkage occurs monotonically (θ̇ ≤ 0), the problem is linearly stable if
λ < 0, that is, λ/θ̇ > 0, while it is linearly unstable if λ > 0, that is, λ/θ̇ < 0. In Figure 22 the quantity
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Figure 21. Final porosity as a function of applied external pressure, for 5µm powder.
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Figure 22. Normalized perturbation growth rate. Low order, SEP= 10.

(λ/θ̇)δθ is plotted as a function of θ for different values of the strain rate sensitivity, m, with SEP= 10.
It is evident from the graph that the process is always linearly stable. The value of the applied external
pressure does not change the stability condition.

5.2. Higher-order analysis: Effect of the Laplace pressure. The former analysis was meant to explore
the consequences of the perturbation of the porosity on the rate of change θ̇ , evaluated by (19).

In the present context the stress σ is uncoupled from porosity, hence a more refined method of produc-
ing perturbations is needed. To this end, one may follow the procedure used in [Olevsky and Molinari
2006, §3.1.2] to account for perturbation of the actual porosity and, in our case, of the Laplace pressure.
Note that the quantity pL0 (which can be written as a function of pL and the porosity through (23) or
(27)) is a material property and does not change during the sintering process.

Two differences may be highlighted between the stability analysis performed in the present work and
the one introduced in [Olevsky and Molinari 2006]:

• Unlike in [Olevsky and Molinari 2006], here the high-order analysis entails a process with constant
external pressure.

• The presence and the perturbation of the sintering stress pL is considered here.
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A perturbed solution is considered in the following form:

θ(t)= θ (0)(t)+ δθ exp(λ(t − t0)), pL(t)= pL
(0)(t)+ δpL exp(λ(t − t0)); (33)

by substituting (33) in (19) and (23) (for the Laplace pressure derived by using stochastic approach),
after linearization about the fundamental solution (θ (0)(t), pL

(0)) we have
1
θ̇

∂ f (θ, σ, pL)

∂θ
−
λ

θ̇

1
θ̇

∂ f (θ, σ, pL)

∂pL

∂pL0(θ, pL)

∂θ

∂pL0(θ, pL)

∂pL


θ (0)(t),pL (0)(t)

[
δθ

δpL

]
=

[
0
0

]
, (34)

where

f (θ, σ, pL)= ε̇0(1− θ)(3m−1)/2m
(
|σz − pL |

Aσ0

)1/m

ψ−(1+m)/2m, (35)

and where the matrix in (34) is evaluated at (θ0(t), pL
0(t)), as specified. Equation (34) has nontrivial

solutions if and only if the determinant of the matrix is equal to zero. By imposing this condition, we
obtain a characteristic first-order equation with respect to the normalized perturbation growth rate λ/θ̇ .
As in the lower-order case, the quantity λ= δθ̇/δθ can be regarded as the perturbation growth rate. Since,
during sintering, shrinkage occurs monotonically (θ̇ ≤ 0), the problem is linearly stable if the quantity
λ/θ̇ (the normalized perturbation growth rate) is negative, and linearly unstable if λ/θ̇ > 0. This can be
done in the framework of the three different models considered in the previous sections.

The root of (34) is shown in Figure 23 for the three principal cases defined in Section 2.1. It is evident
that, since the normalized perturbation growth rate λ/θ̇ is negative for the whole porosity range, the
sintering process is always stable. By carefully comparing Figure 22 to Figure 23 it can be detected that
the effect of the Laplace pressure is to slightly increase the absolute value of λ/θ̇ , that is, to increase the
stability of the process.

Figure 23 shows the results obtained considering the Laplace pressure evaluated by using the stochastic
approach, leading to expression (23) for the sintering stress. The results obtained by using the other
methodology (which leads to pL given by (27)) are very similar.

5.3. Higher-order analysis: Effect of the gas pressure in the pores. In this subsection, perturbations of
the porosity evolution rate, Laplace pressure, and gas pressure in the pores, pI , are introduced, in order
to investigate the effect of pI on the stability of the sintering process. Such perturbations are considered
in the following form:

θ(t)= θ (0)(t)+ δθ exp(λ(t − t0)),

pL(t)= pL
(0)(t)+ δpL exp(λ(t − t0)),

pI (t)= pI
(0)(t)+ δpI exp(λ(t − t0)).

(36)

The latter is substituted in the governing equations of the problem, namely (19), (29), and (23) (for the
Laplace pressure derived by using stochastic approach) or (27) (for Laplace pressure obtained through
dissipative approach). Note that the external pressure at the pore closure, p0, is a fixed parameter. After
a linearization about the fundamental solution (θ (0)(t), pI

(0), pL
(0)), the following set of equations can
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Figure 23. Normalized perturbation growth rate. High-order stability analysis, SEP= 10.

be obtained:

1
θ̇

∂ f (θ, σ, pL)

∂θ
−
λ

θ̇

1
θ̇

∂ f (θ, σ, pL)

∂pL

1
θ̇

∂ f (θ, σ, pL)

∂pI

∂pL0(θ, pL)

∂θ

∂pL0(θ, pL)

∂pL
0

∂p0(θ, pI )

∂θ
0

∂p0(θ, pI )

∂pI


θ (0)(t),pL (0)(t),pI (0)(t)

 δθδpL

δpI

=
0

0
0

 . (37)

As in the previous subsection, in order to obtain nontrivial solutions of (37), the determinant of the
matrix has to be null. By imposing such a condition, a first-order equation with respect to the normalized
perturbation growth rate λ/θ̇ is obtained. As in the previous cases, the problem is linearly stable if the
quantity λ/θ̇ (normalized perturbation growth rate) is negative, and linearly unstable if λ/θ̇ > 0. The
normalized perturbation growth rate is plotted in Figure 24 as a function of the porosity, for different
values of m and for the Skorohod, Castañeda–McMeeking, and Cocks models. Obviously, the presence
of pI influences just the third phase of the sintering process, for relative densities greater than 90%, that
is, for θ < θc = 0.1. Moreover, the final porosity θ∗ is here greater than zero, and depends upon the
applied external pressure.
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Figure 24. Normalized perturbation growth rate. High-order stability analysis, SEP= 2.

As it is evident from Figure 24, the effect of the gas pressure in the pores is to reduce the value
of the normalized perturbation growth rate λ/θ̇ , that is, to reduce the stability of the sintering process.
Nevertheless, the process turns out to be stable.

Figure 24 shows the results obtained considering the Laplace pressure evaluated by using the stochastic
approach, leading to the expression for the sintering stress (23). Results obtained by using the other
methodology (which leads to (27) for pL ) are qualitatively very similar.

6. Conclusions

This work is focused on modeling the evolution of material properties during both hot isostatic pressing
(HIP) and free sintering of axisymmetric samples. The effects of both the Laplace pressure, due to the
surface tension at the interfaces between the matrix and pores, and the pressure exerted by the gas within
the pores on the evolution of the porosity have been investigated for the first time in the literature for
such samples. The stability of the process has also been studied.

The Laplace pressure acts in favor of closing the pores, thereby having a beneficial effect on the
HIP process by reducing sintering times. Discrepancies in the estimates of such times and in the resid-
ual porosity, evaluated by either neglecting or accounting for the Laplace pressure, are studied. It is
highlighted that this action cannot be neglected whenever the sintered material has a high strain rate
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sensitivity and a small radius of its particles. Indeed, HIP of nanopowders turns out to be very sensitive
to the Laplace pressure. This is particularly important for nanopowdered ceramics and nanoparticles of
aluminum-zinc-magnesium-copper alloy, which are widely employed in industrial sintering processes.

The gas pressure acting within the pores strongly affects the sintering process only in its third (and
final) phase in which, for porosity less than the closure porosity (which is usually on the order of 10%),
the pores are basically isolated. During this phase, as the relative density increases the gas pressure in
the closed pores also increases, acting “against” the sintering process. This in turn increases the sintering
time and can prevent the HIP process from reaching the desired final porosity in the sample. Obviously,
the higher the applied pressure the stronger this effect is. This confirms expectations, namely that the
effects of the gas pressure must be accounted for whenever the desired final porosities are relatively
small (precise evaluation giving information about the relationship between such gas pressure and the
smallness of the desired porosity may be obtained through our model).

The stability of the process has been studied by perturbing the rate of change of the porosity and the
Laplace pressure, as well as the gas pressure in the pores. While the effect of the former is to slightly
increase the stability of the sintering process, the latter reduces the stability. Nevertheless, the process
turns out to be stable.

Appendix: Free sintering

The case of free sintering corresponds to a condition frequently met in industrial processes. In these
cases, there is no applied external pressure, so that the shrinkage is due only to the sintering stress, pL .

In the case under examination, the stress and strain-rate tensors are purely hydrostatic. Thus, free
sintering can be regarded as a particular case of isostatic pressing, with null external loading stress. The
evolution law for the porosity may be obtained from (19), simply by substituting σ = 0:

θ̇ =−

(
pL − pI

σ0 A

)1/m

ε̇0ψ
−(1+m)/2m(1− θ)(3m−1)/2m . (A.1)

The introduction of the dimensionless specific time τL , defined by (20), yields the following normaliza-
tion of (A.1):

∂θ

∂τL
= (pL − pI )

1/mψ−(1+m)/2m(1− θ)(3m−1)/2m . (A.2)

A.1 Effect of the Laplace pressure. Because for free sintering the gas pressure in the pores is neglected,
the only force driving the process is the Laplace pressure, the choice of the approach used to derive its
expression (stochastic or dissipation averaging; see Section 2.2) has a strong influence on the result. This
issue may be studied in the sequel.

Sintering stress by using a stochastic approach (pL = (3α/r0)(1−θ)2, see Section 2.3(1)). By substituting
(23) into (A.2), it may be written as follows:

∂θ

∂τL
=

(3α
r0

)1/m
ψ−(1+m)/2m(1− θ)3((m+1)/2m). (A.3)

In order to compare the evolution of the porosity for this case, for the three different models considered in
Section 2.2 (Skorohod, Cocks, Castañeda–Duva–Crow, and McMeeking; the latter two models coincide
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for isostatic pressing), Figure 25 shows the evolution of the porosity for different values of the strain rate
sensitivity, m.

It is worth noting that the results obtained for the three considered models are fairly different. This
is due to the different expressions for the normalized bulk modulus ψ . Figure 2 shows that the Cocks
model, for m = 1, gives the highest values of ψ in the whole range of interesting porosities. For such
values of ψ , (A.3) gives lower values of the rate of change of the porosity θ̇ , corresponding to higher
sintering times. Because the Skorohod model introduces smaller values of ψ , the sintering times obtained
by adopting such a model are the shortest.

In Figure 25, the time evolution of the porosity, evaluated for the different models and for different
values of the parameter m, is plotted. Whenever m decreases, Figure 2 shows that the values of the
normalized bulk modulus ψ obtained by using the Castañeda model increase, while those coming from
the Cocks model decrease. The same figure shows that, for lower values of m, the Castañeda model
gives values of ψ lower than those obtained by using the Cocks expression for the same item. Hence,
employment of the Cocks model gives sintering times lower than those obtained by using the approach of
Castañeda. Also from Figure 25, note that when m tends to zero (ideal plastic behavior), the time-porosity
graph has a steep knee.
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Figure 25. Free sintering evolution of porosity for different values of m, with pL =

(3α/r0)(1− θ)2.
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Sintering stress from dissipation averaging (that is, pL=(2α/r0)
√
(3/2)ψ(θ)θ/(1−θ), see Section 2.3(2)).

In this case, expression (A.1), which holds for m = 1 only, reduces to

θ̇ =−
ε̇0

σ0 A
2α
r0

√
3
2
θ(1− θ)
ψ(θ)

. (A.4)

In the considered range of porosity, the resulting values of the Laplace pressure may be shown to be
lower than those obtained by virtue of the expression derived by the stochastic approach (see Figure 5),
and hence the sintering times are higher.

A.2 Effect of the gas pressure in the pores. In the case of free sintering, the stress due to the external
(relative) pressure is σ = 0; the total driving force of the problem is thus given by the sum of a posi-
tive contribution, the Laplace pressure pL , and the gas pressure in the pores, which gives a “negative”
contribution.

Since the applied external pressure is equal to the standard atmospheric pressure, at the closure porosity
θC , pI = 0. Hence the gas pressure in the pores is usually negligible with respect to the interstitial pressure,
pL , and the condition (31) is not reached. More precisely, it can be attained for values of grain size not
used in real sintering processes.

Figure 26 shows the evolution of the porosity for a free sintering process in two cases:
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Figure 26. Free sintering evolution of porosity for different values of m.
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• accounting for the whole driving force (the dashed line) |pL − pI | and

• neglecting the gas pressure in the pores (the dotted line), that is, the driving force is considered to
be only pL .

It is evident that the gap between the two curves is negligible.

A.3 Influence of temperature on free sintering time. In this paper the sintering processes are assumed
to be at constant temperature. In fact, preheated electric ovens are employed in industrial processes,
whose thermal capacity may be regarded infinitely large with respect to that of any specimen under
consideration. Hence, the temperature remains constant during sintering.

In this section, temperatures are normalized by using the dimensionless specific temperature T ∗, de-
fined as

T ∗ := T
Tmelting

. (A.5)

There are two main phenomena that determine the influence of the temperature on free sintering pro-
cesses:

(1) For lower values of m (m→ 0), the material behavior is almost plastic, and yet it feels the effects
of the temperature more than for higher values of the parameter m (see Figure 27).

Figure 27. Free sintering evolution of porosity for different values of the specific temperature.
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(2) The material behavior is affected by the temperature; thus the value of the parameter m should be
a function of the temperature.

The present model takes into account only the first phenomenon; the implicit dependence on the tem-
perature is given by A = Ã(T ) [Ashby 1990] and the material constant A, appearing in (A.1), is raised
to 1/m.

Figure 27 shows the evolution of the porosity, evaluated by using the Castañeda model and for the
expression of pL derived by the stochastic approach, for different values of the strain rate sensitivity, m,
and for different specific temperatures, T ∗. It is evident that, when the temperature increases, the sintering
time does decrease. This reduction becomes more important for lower values of the parameter m.

Notation

σi j Components of the stress tensor
σ ′i j Components of the deviatoric stress tensor
ε̇i j Components of the strain rate tensor
ε̇′i j Components of the deviatoric strain rate tensor
ė First invariant of the strain rate tensor
pL Laplace pressure (sintering stress)
pI Gas pressure in the pores
w Effective equivalent strain rate
θ Porosity
ψ Normalized bulk modulus
ϕ Normalized shear modulus
γ̇ Measure of the local rate of change in shape
p First invariant of the stress tensor
τ Measure of the shear stress
σr Radial stress
σz Axial stress
ε̇r Radial strain rate
ε̇z Axial strain rate
n∗ Loading mode parameter
n Strain rate mode parameter
σ(w) Effective equivalent stress
σ0 Reference stress
ε̇0 Reference strain rate
A Time-dependent material constant
m Strain rate sensitivity
ρ Relative density
Vtot Total volume of sintered material
Vmatrix Matrix volume
Vpores Pore volume
τL Dimensionless specific time
SEP Specific external pressure
α Surface tension
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r0 Characteristic radius of the particles
pL0 Reference value of the Laplace pressure
R1, R2 Internal and external radii, respectively, of the hollow sphere used as a schematic for a pore
Vr Radial velocity
D Dissipation potential
θc Closure porosity
patm Atmospheric pressure
t Sintering time evaluated by accounting for the Laplace pressure
t0 Sintering time evaluated by neglecting the Laplace pressure
p∗ External pressure for which a given value of the discrepancy between t and t0 is obtained
θr Residual porosity at the end of the sintering process, evaluated by accounting for the Laplace pressure
θr0 Residual porosity at the end of the sintering process, evaluated by neglecting the Laplace pressure
E% Error on the evaluation on the residual porosity
θF Desired final porosity at the end of the sintering process
θ∗ Limit value of the porosity
λ Perturbation growth rate
•
(0) Reference solution for •
δ• Perturbation of •
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PLANAR GRAINED STRUCTURES WITH
TRACTION-SMOOTHING INCLUSIONS: AN ELASTOSTATIC

NUMERICAL ANALYSIS FOR SHEAR AND TORSION

SHMUEL VIGDERGAUZ

The topical problem of optimizing the stress state in a bimaterial plate by proper shaping of the ma-
trix/inclusion interface is considered with respect to a recently advanced criterion of minimizing the
global variations of the contact stresses. Mathematically, the variations provide an integral-type as-
sessment of the local stresses which requires less computational effort than direct minimization of the
stress concentration factor. The proposed criterion can thus be easily incorporated in the numerical
optimization scheme previously proposed by the author for similar inverse problems. It consists of an
efficient complex-valued direct solver and an ordinary evolutionary search enhanced with an economi-
cal shape parametrization tool. The attendant problem of optimizing the effective shear moduli is also
solved for comparison purposes. Though methodologically the paper continues the previous works of
the author, the primary emphasis is now placed on developing a systematic optimization approach to
obtain comprehensive numerical results for nonbiaxial loadings. This setup is of special interest since
it differs drastically from the biaxial case, where the analytically known equistress interfaces serve as
an efficient benchmark for both theory and computations. Consequently, given the lack of structurally
specific analytical assessments, the simulations performed for a wide range of values of the governing
parameters provide detailed numerical insight into the chosen case. The elastic behavior of the optimal
square-symmetric structures with strongly contrasting well-ordered constituents is conveniently detailed
in a set of figures.

1. Introduction

An infinite plate with a regular lattice of perfectly bonded foreign inclusions is often employed as a simple
and efficient theoretical model to numerically simulate the linear elastic behavior of fibrous composites
with negligible end effects. The assumed periodicity permits a statistically correct assessment of real
materials with technologically inevitable small structural deviations in inclusions’ shapes, sizes, and loca-
tions within the lattice cells. Mathematically, the periodicity is incorporated either in the boundary condi-
tions on the cell sides (in FEM-like methods) or through quasiperiodic functions in the complex-variable
technique. Both approaches lead to equivalent boundary-value problems for determining the stress-strain
state of the cell which depend on the phases’ elastic moduli and volume fractions as well as on the
inclusion shape. In practical applications, the shape is much less important than the other factors and
hence may be additionally used for optimizing the structure’s elastic response to an applied static load.

I express my heartfelt thanks to my doctor Dalia Dori (the Rambam Medical Center, Haifa, Israel) who returned me to good
health and continue to treat me with compassion and the utmost care.
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The corresponding optimization criteria are generally distinguished as either local (like the stress con-
centration) or integral (like the effective moduli (EMs), whose precise definition can be found elsewhere
(see, for example, [Milton 2002])). Due to their averaging nature, integral-type criteria are computa-
tionally more tractable for both perforated [Vigdergauz 2001] and bimaterial composites [Vigdergauz
2013].

While very helpful in structural engineering, the EMs provide no information on the local stresses
since they involve only cell averages of the elastic field. For this reason, even though the inclusion shape
results in an acceptable value of either EM, it may induce potentially damaging stress concentrations.

The direct localization and minimization of the stress peaks is hard to tackle numerically. Matters
can be simplified by relaxing the optimality criterion: instead of minimizing the stress peaks we propose
[Vigdergauz 2013] to minimize the variations of the traction stresses σnn(t) and σnθ (t) in the local
curvilinear coordinates t = (n, θ) along the interface L:

V [σnn] + V [σnθ ]
{L}
// min . (1-1)

Conforming with the theory of real-valued functions [Natanson 1955], the variations are defined through
the nonnegative discrete sums of absolute values of the differences of the stresses between each two
adjacent points on L:

V [σ(L)] = sup
n∑

i=0

|σ(ti+1)− σ(ti )| ≥ 0, {ti } ∈ L , (1-2)

where the supremum is taken over all possible partitions of L with an arbitrary system of points t0, t1, . . . , tn
ordered by a chosen direction of traversing. For a closed contour we require tn = t0. The abstract notation
σ stands here for either σnn or σnθ

The variations are an integral measure of how the function is everywhere close to uniformity; hence
(1-1) and (1-2)) provide the best possible tool to smooth the tractions.

Evidently, the V-functional is absolutely bounded below by zero. It is minimized over a set of closed
continuous shapes with neither self-intersections nor angles, which may only hinder the smoothing of
the tractions.

In contrast to the EM-related two-dimensional averaging of the stresses, the V-criterion is only one-
dimensional and would thus be expected to have better equalizing capability in numerical simulations.
On the theoretical side, this expectation is supported by the benchmark inequality [Natanson 1955],

V [σ ] ≥max(σ )−min(σ ) > 0, max(σ ) 6=min(σ ), (1-3)

which shows that V-minimization necessarily narrows the gap between the extrema of the function.
Similarly, the identity [Natanson 1955]

V [σ ] =
∫

L
|σ ′(t)| dt (1-4)

indicates the potential capability of the V-criterion to filter computationally induced noise (stress oscil-
lations) in points with large absolute values of the first derivative |σ ′(t)|. Both above-described features
do show up in the numerical simulations (see Section 5).
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Though the other pros and cons of the devised criterion are detailed in [Vigdergauz 2013], we sum-
marize them here again for completeness. The pros are as follows:

• The V-criterion is evidently attainable under very broad assumptions and regains equistressness,
whenever such exists.

• The contact stresses in (1-1) are mutual for both phases, thus simultaneously involving them in the
optimization process.

• The proposed integral-type assessment of the local stresses is more numerically stable than their
direct minimization, which often presents a nasty computational problem.

• The current V-criterion is intimately related to the V-minimization of the hoop stresses along
traction-free holes advanced and applied to perforated structures in [Vigdergauz 2012a; 2012b].
This allows for using the same numerical optimization scheme, as before, specifically adjusted for
the current purposes.

• Numerical results (Section 5) show that minimization of the variation of the stresses does effectively
smooth them. The strong filtering capability of the proposed V-criterion is critical for achieving our
ends.

The cons:

• The proposed criterion actually defines myriads of functions, all of which behave differently within
the same strictly positive minimum value of V . Though the numerical scheme stably identifies a
single and physically sensible solution (see Section 5), in the chosen examples this may not always
be the case.

• The question remains open as to how V-minimization affects the local criterion of the boundary
stresses maxima; in other words, whether both criteria are minimized in parallel or only at the ex-
pense of each other, with the lesser maximum inducing a more rigidity-favorable stress distribution.
Since the stress cell averages are fixed by a given external load (see (2-8) in the next section), the
latter case seems hardly to be expected, as also illustrated in Section 5. Nevertheless, a thorough
analysis is required in the future.

In the previous paper [Vigdergauz 2013], the V-criterion is numerically applied to identify the optimal
shapes for the square checkerboard arrangement of the inclusions and biaxial loading. This combination
allows us to assess the deviation of the inclusion shape from the analytical equistress optimum (see, for
instance, [Milton 2002]) under geometric bounds within a periodicity cell. When the shape evolution
with the increasing volume fraction c1 is unbounded, the equistress inclusions are known to exist at any
c1 < 1 with the following attaining the absolute minimum in (1-1):

σnn(t)= Const. 6= 0, σnθ (t)= 0, t ∈ L −→ V [σ ] = 0. (1-5)

In contrast, this paper focuses on shape V-optimization in an unbounded square lattice under shear or
torsion when the equistress inclusions cease to exist at all and the V-criterion remains perhaps the only
optimization measure of the local stresses. This distinction between the two problems is substantial
enough for studying the shear/torsion case in its own right with the aim of augmenting the numerical
application of the V-criterion.
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In order to numerically find the V-optimal shapes and related quantities, we employ the same solution
strategy which has been proven to be efficient in the closely related optimization problems [Vigdergauz
2012a; 2012b; 2013]. This includes an efficient complex-valued direct solver and a standard evolutionary
optimization algorithm enhanced with an economical shape parametrization tool.

Our contribution is thus in extending the V-criterion to shear and torsion loads and in obtaining a
variety of numerical results, which turn out to be drastically different from those for the biaxial case.
While the stress-smoothing concept is not yet fully validated, it provides a quantitative insight into the
optimal design of two-dimensional elastic structures.

The paper is organized as follows. For reader convenience, Section 2 summarizes the analytical
basics required for further development. In these terms, Section 3 formulates the optimization problem
and briefly sketches the applied numerical scheme. Section 4 verifies this scheme’s performance against
the available data in the literature. The results for the representative test cases within a wide range
of governing parameters are displayed and analyzed at length in Section 5. Finally, Section 6 gives
conclusions and discusses open issues.

2. Problem setup and cell governing equations

Geometrically, a two-dimensional grained regular structure with four-fold rotational symmetry is formed
by replicating a basic square cell along the axes of a complex Cartesian plane z = x + iy, with periods ω1

and ω2 = iω1, Imω1 and Reω2 both equal to zero, and area F =−iω1ω2. Let the cell contain only one
inclusion perfectly bonded with the matrix along the smooth interface L , let the cell and the inclusion
both be centered at the origin, and let the inclusion have at least the same square symmetry as the cell.
Under these conditions, the set 3 of admissible structures is completely defined by the inclusion shape:
3=3(L). We adopt the index j = 1, 2 to identify the inclusion and the matrix, respectively. The curve
L divides the cell domain S in two parts, S1 and S2 = S\S1, of the volume fractions c1 and c2 = 1− c1,
each occupied by its own homogeneous and isotropic linearly elastic phase, with planar bulk and shear
moduli K j and µ j , respectively.

For an applied static load, the inclusion-distorted stress tensor σ(z)= {σxx , σyy, σxy} at any point in
S is linearly given by the two Kolosov–Muskhelishvili (KM) potentials ϕ(z), and χ(z) [Muskhelishvili
1975], modified in [Vigdergauz 1999] for doubly periodic problems. They are sectionally holomorphic
functions [Gakhov 1966] in S:

ϕ(z)=
{
ϕ1(z), z ∈ S1,

ϕ2(z), z ∈ S2,
ψ(z)=

{
χ1(z), z ∈ S1,

χ2(z), z ∈ S2,
(2-1)

where the pairs (ϕ1(z), χ1(z)) and (ϕ2(z), χ2(z)) are analytic, respectively, in the subdomains S1 and S2

of constancy of the elastic moduli.
The stresses in either subdomain take then the form

Tr{σ(z)} = σxx(z)+ σyy(z)= 4 Reϕ′j (z), z ∈ S j + L , j = 1, 2, (2-2a)

Dev{σ(z)} = σyy(z)− σxx(z)= 2 Re[z̄ϕ′′j (z)+χ
′

j (z)− δ j,2φ
′(z)], (2-2b)

σxy(z)= Im[z̄ϕ′′(z)+ψ ′(z)+χ ′j (z)− δ j,2φ
′(z)] (2-2c)

φ′(z)= ζ0(z)ϕ′(z). (2-2d)
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Here δ j,2 is the Kronecker delta and ζ0(z) is the normalized quasiperiodic Weierstrass zeta function
[Abramowitz and Stegun 1965]:

ζ0(z)= (F/π)ζ(z), [ζ0(z)]m = ω̄l, l = 1, 2, (2-3)

which implicitly incorporates the cell-type specifics. The square brackets denote the quasiperiod of the
bracketed function, that is, the difference of its values at arbitrary congruent points: [ f (z)]l ≡ f (z +
ωl)− f (z), [z]l = ωl , l = 1, 2.

The KM matrix-related components ϕ2(z) and χ2(z) are also quasiperiodic and have the following
form [Vigdergauz 1999]:

ϕ2(z)= D1z+ D2ζ0(z)+ ξ(z), (2-4a)

χ2(z)= R1z+ R2ζ0(z)+ η(z), (2-4b)

where Dl and Rl , l= 1, 2, are unknown quasiperiods, [ϕ2(z)]l = D1ωl+D2ω̄l and [χ2(z)]l = R1ωl+R2ω̄l ,
l = 1, 2, and ξ(z) and η(z) are new doubly periodic functions.

Furthermore, the contact tractions P(t)= Px(t)+ i Py(t), t ∈ L , acting on either side of the interface in
the normal direction n= (n, θ), 0≤ θ = arg(t)≤ 2π , are obtained [Muskhelishvili 1975] by integrating
the tensor product σ(t)⊗n≡ σnn(t)+ iσnθ (t):

σ(z)⊗n= 2 Reϕ′j (t)+
dt̄
dt
[tϕ′′j (t)+χ

′

j (t)− δ j,2φ′(t)], (2-5)

over an arc γ ∈ L . From (2-2)–(2-5) we have (up to an additive constant)

P(t)=
∫
γ

(σnn(t)+ iσnτ (t)) dt = ϕ j (t)+ tϕ′j (z)+χ j (t)− δ j,2φ(t). (2-6)

Displacements un(t) and uθ (t) along γ are expressed through the same functions [Muskhelishvili 1975]:

2µ j [un(t)+ iuθ (t)] = λ jϕ j (t)− tϕ′j (z)−χ j (t)+ δ j,2φ(t), λ j = (3− ν j )/(1+ ν j ). (2-7)

Quasiperiods from (2-4) enter linearly into the stress averages 〈·〉 over the cell (see [Vigdergauz 1999]),
namely

〈Tr〉 = 〈σxx + σyy〉 = 4 Re(D1+ R2), (2-8a)

〈Dev〉 = 〈σxx − σyy〉 = 2 Re(D2+ R1), (2-8b)

〈σxy〉 = Im(D2− R1), (2-8c)

which are used in the periodic problems as a given external load. They may be conveniently combined
into the linearly independent trial loads:

〈Tr〉 = 1, 〈Dev〉 = 0, 〈σxy〉 = 0, bulk load, (2-9a)

〈Tr〉 = 0, 〈Dev〉 = 1, 〈σxy〉 = 0, shear, (2-9b)

〈Tr〉 = 0, 〈Dev〉 = 0, 〈σxy〉 = 1, torsion. (2-9c)
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For further use we also display the ϕ(z) series expansions

ϕ1(z)=
∞∑

k=1

d(k)1 zk, z ∈ S1+ L; ξ(z)=
∞∑

k=1

d(k)2 ζ
(k)
0 (z); ζ

(k)
0 (z)≡

dkζ0(z)
dzk ; (2-10)

converging for a rather smooth shape L . However, in computations they may cause spurious stress
oscillations which are effectively filtered by the V-criterion, whose smoothing capability counts strongly
in its favor.

Remark. Since the cell type completely resides in the Weierstrass zeta function and its derivatives, the
above-sketched analytical technique holds for a general parallelogram cell. However, as stated before,
we restrict ourselves to the square to reduce the computational size of the problem by employing high
rotational symmetry.

Indeed, under nonbiaxial loads (2-9b) and (2-9c) the KM potentials exhibit the following properties
when reflected over the x-axis (z→ z̄) or rotated through 90 degrees (z→ i z) about the origin:

ϕ(z̄)=±ϕ(z), ϕ(i z)=−iϕ(i z), χ(z̄)=±χ(z), χ(i z)= iχ(i z), z ∈ S, (2-11)

where the upper and lowers signs (when present) correspond to shear and torsion, respectively. As a
result, the coefficients {d1,2} partially vanish:

d(k)1,2 = 0 for k 6= 4l − 2, l = 1, 2, . . . , (2-12)

while the nonzero items are either real or pure imaginary:

Im d(4l−2)
1.2 = 0 for shear, Re d(4l−2)

1.2 = 0 for torsion, (2-13)

and, furthermore, in view of (2-2) and (2-5):

σnn(θ +π/4)=∓σnn(θ −π/4), σnθ (θ +π/4)=±σnθ (θ −π/4), (2-14a)

σ
(m)
θθ (θ +π/4)=∓σ

(m)
θθ (θ −π/4), σ

(i)
θθ (θ +π/4)=∓σ

(i)
θθ (θ −π/4). (2-14b)

With (2-11)–(2-13), the simulations can be performed only along the irreducible interval [0, π/4] of the
optimized square-symmetric interface.

The KM phase-related components are linked at the boundary L by the assumed continuity of the
tractions (2-6) and displacements: (2-7)

ϕ2(t)+ t̄ϕ′2(t)+χ2(t)−φ(t)= ϕ1(t)+ t̄ϕ′1(t)+ψ1(t), (2-15a)

µ12[λ2ϕ2(t)− (t̄)ϕ′2(t)−χ2(t)+φ(t)] = λ1ϕ1(t)− t̄ϕ′1(t)−ψ1(t), (2-15b)

µ12 = µ1/µ2, µ2 6= 0, t ∈ L .

Together with nonhomogeneous average loads (2-8), the boundary conditions (2-15) form the direct
elastostatic problem (DEP) in finding the local stress tensor (2-2) and all the related quantities through
the quasiperiodic KM potentials (2-4) in the form (2-10).
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In particular, after appropriately combining identities (2-15), the traction stresses in (2-6) are [Vigder-
gauz 2013]

(1−µ12)P ′(z)= (1−µ12)(σnn(t)+ iσnτ (t))= (λ1+ 1)ϕ′1(t)−µ12(λ2+ 1)ϕ′2(t), t ∈ L , (2-16)

and, furthermore, with the invariant (2-2a), the hoop stresses on either side of the interface takes the form

σ
( j)
θθ (t)= 4 Reϕ j (z)− σnn(t), t ∈ L , j = 1, 2. (2-17)

The analytical averaging of the local strain/stress field (2-2) while making use of (2-16) and (2-8) gives
[Vigdergauz 1999] the closed expressions for the inverses of all effective moduli of the composite. Sim-
ilarly to the stress averages (2-8), they linearly involve the quasiperiods D1 and D2 of ϕ2(z):

1
K ∗
=

1
K2
+ 4Aq, A = 4 Re D1− 1, q =

1
K2
+

1
µ2
, (2-18a)

1
µ∗1
=

1
µ2
+ 4B1q, B1 =−4 Re D2, (2-18b)

1
µ∗2
=

1
µ2
+ 4B2q, B2 = 2 Im D2, (2-18c)

taken from the DEP solutions at the corresponding trial loads (2-9). For an alternative derivation in
the case of perforated plates, see [Lukkassen et al. 2012]. The perturbation-like forms (2-18) are espe-
cially amenable to numerical evaluation, since all the structure-specific features completely reside in the
coefficients:

D1,2, R1,2 = D1,2, R1,2(K1, K2, µ1, µ2, c1, L). (2-19)

In particular, for perforated plates (K1, µ1 = 0) we have [Vigdergauz 1999]

D1,2, R1,2 = D1,2, R1,2(c1, L). (2-20)

For future use, we display at last the exact, structure-independent Hashin–Shtrikman (HS) bounds on the
effective shear moduli [Milton 2002]:

(c1µ
−1
1 + c2µ

−1
2 )−1

≤ µ∗1,2 ≤ c1µ1+ c2µ2−
c1c2(µ1−µ2)

2

c1µ2+ c2µ1+max{K1, K2}
. (2-21)

Though not attainable on piecewise homogeneous composites, they serve as a benchmark to assess µ∗1,2
(see Section 5).

3. Problem formulation and solution procedure

We are now in a position to accurately rephrase the problem (1-1) of minimizing variation of the traction
elastic stresses in complex-variable terms as follows.

Given the phases’ elastic moduli and the volume fractions of a two-dimensional thin-grained elastic
structure, to find the shape of a perfectly bonded foreign inclusion, which minimizes the contact stresses
variation for either shear or torsion loading, we have:

V [P ′(L)]
L∈3

// min(K1, K2, µ1, µ2, c1). (3-1)
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Maximization of either of the effective shear moduli,

µ∗1,2(L) L∈3
// max(K1, K2, µ1, µ2, c1), (3-2)

will also be studied in parallel with (3-1). In order to save computational effort, we additionally sup-
pose that the admissible set 3 contains no concave curves, which are most likely not promising for
optimization.

As already noted in Section 1, both problems have markedly different solutions with the attainable
µ∗-maxima falling rather short of the upper HS bound.

In light of these considerations, our objective is to quantitatively illustrate the described situation by
optimizing both criteria for a representative data set. In doing so, we intend to obtain the evolution of the
V-optimal solutions with increasing c1 and to compare them with their µ∗-optimal counterparts. Unlike
in the equistress case, here only a numerical solution of (3-1) and (3-2) is available.

The computational size of this shape optimization problem is halved by the relations derived in
Section 2, the loads (2-8), the boundary stresses (2-16) and (2-17), and the effective moduli (2-18),
are free from χ1(z) and from the doubly periodic part η(z) of χ2(z) in (2-4). Because of their analyticity,
both functions may also be eliminated from the boundary conditions (2-15) of the DEP [Vigdergauz
2013]. Actually, χ1(z) and η(z) are needed only to find the stresses strictly inside the phases, which is
outside of our current scope.

In the previous papers [Vigdergauz 2012a; 2013] we used this feature to develop a simple and fast com-
putational tool for stochastic shape optimization in two-dimensional elastostatics. The experience gained
from a series of applications provides strong grounds to believe that here it will do as well. Because the
tool is detailed in the above-mentioned articles, now we only briefly sketch its basic constituents for
convenient reference. They include: (A) an enhanced direct solver adapted specially for KM potentials,
(B) an economical shape encoding scheme, and (C) a standard genetic algorithm search for the optimum.

(A) By eliminating χ1(z) and η(z), the initial DEP is equivalently transformed into an infinite system
of linear algebraic equations in the quasiperiods D1, D2, R1, and R2, and the ϕ-coefficients {d1,2} from
(2-10). In numerical practice, the system is truncated at a finite size N with real entries. They come as
regular integrals over L with the integrands composed of the basic functions in (2-10) and their conjugates
and derivatives.

(B) Such integrals are commonly calculated using quadratures over a number of points along the discre-
tion path in the parameter space, the choice of which is important for the numerical efficiency of the
optimization as a whole. To this end, we propose to employ a finite-term conformal mapping of the
exterior of the unit circle γ onto the square-symmetric inclusion shape L [Ahlfors 1978]:

t =�(τ)= C
(
τ +

Q∑
q=1

a4q−3τ
−4q+3

)
, t ∈ L , τ = exp iθ ∈ γ, 0≤ θ ≤ 2π, (3-3)

which straightforwardly incorporates geometrical constraints [Vigdergauz 2012b]. Particularly, the as-
sumed shape convexity is explicitly enforced in the current terms as [Pólya and Szegő 1972]

Re
τ�′′(τ )

�′(τ )
>−1, τ ∈ γ. (3-4)
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An arbitrary multiplier C is used for scaling the shape to a given volume fraction c1 of the inclusion.
In fact, the proposed conformal-mapping parametrization replaces the initial searching space with its
(Q+ 1)-dimensional subspace, ordered in the sense that the higher coefficient a4q−2 is, the less impact
it has on the shape. This scheme dramatically reduces the running time and gives a better convergence
rate than the usual nodal representation. It also allows us to compute the boundary integrals through the
same set of points hm ∈ γ , m = 1, 2, . . . ,M , along the unit circle independently of the actual shape L .

(C) A gradientless genetic algorithm (GA) approach which employs the mapping coefficients {a4q−2} as
design variables bounded by the required mapping uniqueness [Ahlfors 1978], −(4q − 3)−1/2

≤ a4q−3 ≤

(4q − 3)−1/2. The growing popularity enjoyed by GAs is mostly due to their simplicity and practically
proven ability to find the global or near-global optimum in difficult high-dimensional problems, espe-
cially, where the search space is not well understood. Another strong GA feature is implementation
flexibility. In effect, only the shape-encoding procedure and the fitness-evaluation scheme specifically
configure the basic GA for a current purpose.

4. Numerical scheme verification

Before performing the simulations, the accuracy of the built-in deterministic solver of the KM potentials
needs to be estimated by comparing against available data from the literature.

A good example is the case of a square array of hard circular disks (K1 = 225, µ1 = 135) in a soft
matrix (K2 = 3 1

3 , µ2 = 1) whose effective shear moduli µ∗1,2 from (2-18) are computed in [Greengard
and Helsing 1998] with the highest accuracy by solving an integral equation of Sherman–Lauricella type
[Muskhelishvili 1975]. Comparison with our results (Table 1) shows remarkably good agreement almost
up to the percolation threshold c1 = π/4 ≈ 0.785398 . . . . The reason for this is that the circle has no
angular points which may not be exactly mapped by the finite-term approximation (3-3).

This is in contrast to, say, the exact FEM representation, actually used by [Berggren et al. 2001] to
compute the effective moduli of an elastic plate with a square lattice of square holes (µ1 = 0) for different

µ∗1 c1 = 0.3 c1 = 0.5 c1 = 0.78 c1 = 0.785
GH 1.9415606008 3.7984374034 33.0679995249 41.5392409243
Current 1.941560601 3.7984374034 33.06798462 41.52200211
Relative error 2.053× 10−11 3.488× 10−12 4.507× 10−7 4.150× 10−4

V-criterion 2.602 2.752 9.944 15.745

µ∗2 c1 = 0.3 c1 = 0.5 c1 = 0.78 c1 = 0.785
GH 1.5410983175 2.1743265379 14.6242590661 27.277092151
Current 1.541098318 2.174326538 14.62424051 27.05524626
Relative error −1.260× 10−11

−1.293× 10−12 1.269× 10−6 8.133× 10−3

V-criterion 1.849 1.719 5.701 14.656

Table 1. A square array of hard disks in a soft matrix: comparison of the µ∗1,2 values
obtained by different methods at different values of the inclusion volume fraction c1.
The corresponding V-criteria are also added for completeness. Data from [Greengard
and Helsing 1998] is labeled by GH.
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q 1 2 3
d4q−1 −0.159082817 1.4840715179× 10−2

−3.756551076× 10−3

q 4 5 6
d4q−1 1.355021822× 10−3

−4.465339808× 10−4 1.194202545× 10−4

Table 2. The side-straightening coefficients of the circle-to-square conformal mapping.

values of their volume fraction. Before reproducing these results with the current approach, we have to
find the mapping coefficients {d4q−1} from (3-3). In the current context, the most relevant way to do this
is again a genetic algorithm minimizing the V-criterion:

n∑
i=0

|Im(ti+1)− Im(ti )|
{dm}
// min, {ti } ∈ L , 0≤ arg(ti )≤ 45◦, (4-1)

at a given area of the square for nonconcave curves (3-4). The criterion (4-1) straightens the segment of
square-symmetric shape which corresponds to the right half of the square. The resultant coefficients for
Q = 6 and the V-optimal shape are given in Table 2 and Figure 1, respectively.

For clarity, it should be pointed out that the V-criteria (3-1) and (4-1) are divorced from each other.
The latter is a pure conformal approximation of an isolated given shape and hence does not include the
KM direct solver. It may find further use in similar situations.

Table 3 compares the FEM-obtained values of µ∗1-related constants (2-20) from [Berggren et al. 2001]
to their KM counterparts. Here the relative errors are several orders of magnitude worse than those for the
circle. This gap may not completely account for the rounded square corners as the FEM-related results
correspond to smaller values of µ∗1. Actually, it should be the reverse: they are found as the minimum of a
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Figure 1. The six-term equiarea mapping of a unit square. The maximum deviation,
δ ≈ 0.0283, occurs at the square’s vertex
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c1 = 0.1 c1 = 0.3 c1 = 0.5 c1 = 0.7 c1 = 0.9
BLMS 0.179394 0.563755 1.165734 2.519723 9.202034
Current 0.178934 0.561895 1.160867 2.508157 9.161075
Relative error 2.57× 10−3 3.299× 10−3 4.175× 10−3 4.590× 10−3 4.451× 10−3

Table 3. The c1-dependent constant R1(c1) from (2-20) for a square array of square
holes in a matrix. Values are shown for the FEM of [Berggren et al. 2001] (denoted
BLMS) and the KM solver.

variational problem [Berggren et al. 2001] and hence remain always larger than the exact values. In other
words, the FEM estimate seems too conservative, as noted by the authors themselves. This solver’s ac-
curacy is, however, acceptable for our purposes. Possibly excessive smoothing of angular points through
neglecting the high-order coefficients is counteracted by the integral nature of the V-criterion.

Furthermore, since probabilistic computations are nonexplicit and involve heuristic parameters, the
proposed GA-optimization approach should be carefully calibrated by multiple test runs on real data. The
proximity to the true extremum can be only estimated through the internal convergence of the results
for problem size parameters successively increasing from the initial values Q = 5÷ 7, N = 16÷ 48,
and M = 360, for varying c1. These choices for further computations are based on our experience
in the previous studies [Vigdergauz 2012a; 2012b; 2013]. In the current simulations the V-optimum
relative deviations induced by doubling each size remain typically less then 0.6%, providing an acceptable
compromise between accuracy and computational cost. For eliminating GA-related stochastic noise, all
output data were computed several times, randomly starting each optimization process and stopping the
evolution after a rather large number of iterations, when the fitness is deemed to converge.

5. Numerical results

The conducted GA simulations aim to numerically find the optimum, by (3-1) and (3-2), in the represen-
tative interval of the inclusion volume fraction c1 at given phases’ moduli. In order to make the results
more conclusive, we present, for comparison, four distinctive cases, namely the interchanged pairs of
soft inclusions/hard matrix and hard inclusion/soft matrix, each under either shear or torsion load. The
local moduli values are borrowed from [Greengard and Helsing 1998], as given in the previous section.
The graphed results show the c1-dependent evolution of the V- and µ∗1,2-optimal inclusion shapes, the
corresponding µ∗1,2(c1) values, and, finally, the stress distributions along the V-optimal interfaces. For
correct comparison we kept the same GA parameter values for all observations.

Figure 2 presents the computed V (c1)-optima for the chosen cases. It is of interest that the hard
inclusion demonstrates the decreasing dependence of V on c1. As we shall see below, this is primarily
due to narrowing the interval (1-3) between the extrema of the case-dominating tangential tractions σnθ

with increasing c1 rather than due to smoothing.
Figure 3 shows the µ∗1(c1) and µ∗2(c1) maxima against their V-optimal counterparts and those of the

circular inclusions, all within the HS bounds (2-21).
Essentially, even the µ∗1.2 maxima appear to be rather far from the upper HS bound. This is particularly

true of the second modulus µ∗2. Similar µ∗-optimization results have been obtained in [Vigdergauz
2001] for a more simple limiting case of a perforated structure (µ1 = 0). Furthermore, V-optimization
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Figure 3. The soft (top) and hard (bottom) inclusions, for the effective shear moduli
µ∗1(c1) and µ∗2(c1) (the dashed lines) within the HS bounds: optimum (1) and V-related
values (2). The moduli for the circular inclusion (3) are also added for comparison.

is performed at the sacrifice of substantially decreased shear effective moduli, especially for the hard
inclusion where the V-related modulus µ∗2 lies close to the HS lower bound. Moreover, in this case the
V-related effective shear moduli are significantly less than even those for the circle (Figure 3, bottom).
This is accounted for by affecting the V-performance of the inclusion shapes, as shown in Table 4. Since
in both cases the tractions are monotone functions of the angle θ in the irreducible interval [0, π/4] (see
Figure 6 on page 101), V-optimization acts here by drastically diminishing their tangential components at
the significant expense of much lower normal stresses, which enter into the criterion (1-2) with the same
weight. Conceivably, the case-dependent weights for either component might improve the numerical
sensitivity of the optimization scheme. This complication is, however, beyond the scope of this paper.
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V µ∗2 max(σnn(θ)) max(σnθ (θ))

V-opt 0.801 4.342 0.373 0.634
Circle 1.205 6.654 0.190 1.544
Difference (%) 50.4 −53.2 49.0 −143.3

Table 4. The hard inclusion under torsion at c1 = 0.75: comparison of the numerically
obtained V-optimal values of Ke with those for the circular shape. The relative dif-
ference between each pair of counterparts with respect to the former is also added for
convenience. Conforming with the symmetry relations (5-1b), min(σnn)=min(σnθ )= 0.

Of special interest are the V and µ∗-optimal square-symmetric shapes compared in Figure 4 for dis-
crete values of c1. In all instances, the µ∗-optimal inclusion shapes tend, as expected, to form nearly
straight segments connecting distinct angular points. Their favorable role in maximizing the shear moduli
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was first numerically observed by Vigdergauz and Cherkayev [1986] and later analyzed in more depth
[Cherkaev et al. 1998] for the simplest case of an isolated hole in a shear-loaded infinite plane. On the
contrary, due to its smoothing nature, V-optimization rounds the inclusion shape. Furthermore, at any c1,
the µ∗1 and µ∗2-optimal soft inclusions differ from each other by rotation about the origin through 45◦ as
caused by the different principal directions of the shear and torsion trial loads. For the µ∗-optimal holes
this fact was indicated in [Vigdergauz 2001].

The µ∗1-optimal hard inclusion behaves more complicatedly than the soft. It experiences a sudden
rotation by 45◦ when evolving through the interval c1 ∈ [0.4550; 0.4555] (see the top right graph in
Figure 4). This puzzling observation should be verified independently by other methods.

Finally, Figures 5 and 6 illustrate the angular distribution of the tractions and the induced hoop stresses
along the irreducible part 0 ≤ θ ≤ 45◦ of the V-optimal interface. The symmetry relations (2-14) give
the following locations of the distributions’ zeros:
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Figure 5. The boundary stresses for the V-optimal soft inclusion under shear and torsion
(the dashed lines) for varying inclusion volume fraction c1: the normal contact traction
(top left), tangential contact traction (top right), matrix-side hoop stress (bottom left),
and inclusion-side hoop stress (bottom right).
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Figure 6. The boundary stresses for the V-optimal hard inclusion under shear and tor-
sion (the dashed lines) with change in the inclusion volume fraction c1: the normal
contact traction (top left), tangential contact traction (top right), matrix-side hoop stress
(bottom left), and inclusion-side hoop stress (bottom right). Data for the circular hole at
c1 = 0.75 under torsion are also added for comparison.

σnn(π/4)= σnθ (0)= σ
(m)
θθ (π/4)= σ

(i)
θθ (π/4)= 0 for shear, (5-1a)

σnn(0)= σnθ (π/4)= σ
(m)
θθ (0)= σ

(i)
θθ (0)= 0 for torsion. (5-1b)

It should be borne in mind that the angle θ = arctan(y/x) : t = x + iy ∈ L is measured in the physical
plane rather than around the auxiliary unit circle γ . From these figures, one sees that none of the patterns
show high-frequency oscillations. This is also true for the hoop stresses σθθ (θ), which are not involved
explicitly in the V-smoothing process.

In most cases, the boundary stresses are monotonic functions of the angle θ . The only exceptions are
provided by the torsion for all stresses around the soft inclusion at c1 = 0.75 and for the hard inclusion-
side hoop stresses at any c1. Curiously the extremal values of the normal and tangential tractions around
the hard inclusion under torsion and shear, respectively, decrease with increasing c1 (see Figure 6). Both
features are not V-specific since they also take place for the circle (not shown for better visibility).
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6. Summary and future applications

The numerical V-optimization of the interface tractions is now extended to planar grained structures
under shear and torsion loads. As explained in Section 1, this loading case merits separate attention. The
results obtained attest to the general applicability of the proposed V-criterion. Computationally, they are
rather accurate, marking a sharp contrast with the biaxial mode, where the equistress principle permits
one to simultaneously saturate the structurally independent HS upper K ∗ bound and the V-optimum by
the same inclusions shapes. For clarity, we summarize the basic distinctions as follows.

• The V and µ∗-optimal inclusions significantly differ from each other in their shapes and orienta-
tions. The degree of dissimilarity depends on all the parameters involved: the load type, the relative
inclusion rigidity, and its volume fraction.

• As a result, the corresponding shear moduli appear to be rather different, with the maximum being
far from the upper HS bound. For bimaterial grained structures its unattainability was first proved
by Allaire and Aubry [1999], if not earlier. Now some nontrivial quantitative characteristics of this
phenomenon are also provided.

• Finally, the above-noted (see Section 5) dramatic rotation of the µ∗1-optimal hard inclusion in passing
the point c1 ≈ 0.45525 is well worth a further look and independent corroboration.

These observations stimulate similar investigations for V-optimal structures with badly ordered phases
or with macroisotropy. In the latter case, it is of special interest to compare the numerical results with
the corresponding phase-interchange analytical relations deduced by Gibiansky and Torquato [1996]. We
hope to pursue both issues in further publications. It would also be interesting to study the V-criterion’s
performance for the weighted sums in (1-1), as mentioned in Section 5. Due to the lack of analytical
results, it would be prudent here to use a straightforward, numerical trial-and-error approach.
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CONTINUOUS CONTACT PROBLEM FOR TWO ELASTIC LAYERS
RESTING ON AN ELASTIC HALF-INFINITE PLANE

ERDAL ÖNER AND AHMET BIRINCI

The continuous contact problem for two elastic layers resting on an elastic half-infinite plane and loaded
by means of a rigid stamp is presented. The elastic layers have different heights and elastic constants. An
external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under
the assumptions that all surfaces are frictionless, body forces of elastic layers are taken into account,
and only compressive normal tractions can be transmitted through the interfaces. General expressions
of stresses and displacements are obtained by using the fundamental equations of the theory of elastic-
ity and the integral transform technique. Substituting the stress and the displacement expressions into
the boundary conditions, the problem is reduced to a singular integral equation, in which the function
of contact stresses under the rigid stamp is unknown. The integral equation is solved numerically by
making use of the appropriate Gauss–Chebyshev integration formula for circular and rectangular stamp
profiles. The contact stresses under the rigid stamp, contact areas, initial separation loads, and initial
separation distances between the two elastic layers and the lower-layer elastic half-infinite plane are
obtained numerically for various dimensionless quantities and shown in graphics and tables.

1. Introduction

Contact problems have been widely carried out in the literature. Their areas of application include
pavements of highways and airfields, foundations, railway ballasts, foundation grillages, roller bearings,
joints, and support elements (see, for example, [Garrido and Lorenzana 1998; Birinci and Erdöl 2001;
Ozsahin 2007]). General methods for contact problems may be seen in [Hertz 1895; Galin 1961; Uffliand
1965]. Keer et al. [1972] analyzed the smooth receding contact problem between an elastic layer and a
half-space formulated under the assumptions of plane stress, plane strain, and axisymmetric conditions.
The plane smooth contact problem for an elastic layer lying on an elastic half-space with a compressive
load applied to the layer through a frictionless rigid stamp was considered in [Ratwani and Erdogan 1973].
Civelek and Erdogan [1975] investigated the continuous and discontinuous contact problems between
an elastic layer and a rigid half-plane for the case of a single load in tension. Geçit [1980] analyzed
a tensionless contact without friction between an elastic layer and an elastic foundation. Geçit [1981]
also studied the axisymmetric contact problem for an elastic layer and an elastic foundation. Çakıroğlu
et al. [2001] analyzed the continuous and discontinuous contact problems of two elastic layers resting
on an elastic semiinfinite plane. Dini and Nowell [2004] considered the problem of plane elastic contact
between a thin strip and symmetric flat and rounded punches. El-Borgi et al. [2006] analyzed a receding
contact plane problem between a functionally graded layer and a homogeneous substrate. The contact
problem for multilayered composite structures was studied in [Ke and Wang 2006; 2007]. Kahya et al.

Keywords: continuous contact, elastic layer, integral equation, rigid stamp, theory of elasticity.
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[2007] investigated a frictionless receding contact problem between an anisotropic elastic layer and an
anisotropic elastic half-plane, when the two bodies were pressed together by means of a rigid circular
stamp. A receding contact axisymmetric problem between a functionally graded layer and a homoge-
neous substrate was examined in [Rhimi et al. 2009]. Rhimi et al. [2011] studied a double receding
contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. A
frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half-plane was
solved in [Çömez 2010]. Argatov and Mishuris [2010] examined an axisymmetric contact problem for
a biphasic cartilage layer with allowance for tangential displacements on the contact surface. Chen et al.
[2011] investigated the singular integral equation method for a contact problem of rigidly connected
punches on an elastic half-plane. The contact problem for a layer was studied for the case when the
elastic properties of the medium are arbitrary continuously differentiable functions of its thickness in
Trubchik et al. [2011]. Adibnazari et al. [2012] investigated the contact of an asymmetrical rounded
apex wedge with a half-plane. The two-dimensional contact problem of a rigid cylinder indenting an
elastic half-space with surface tension was examined in [Long et al. 2012]. Aleksandrov [2012] solved
the axisymmetric contact problem for a prestressed incompressible elastic layer. Chidlow et al. [2013]
analyzed the two-dimensional solutions of both adhesive and nonadhesive contact problems involving
functionally graded materials. Kumar and DasGupta [2012] studied the mechanics of contact of an in-
flated spherical nonlinear hyperelastic membrane pressed between two rigid plates. A quadratic boundary
element formulation for continuously nonhomogeneous, isotropic, and linear elastic functionally graded
material contact problems was carried out in Gun and Gao [2014]. Vollebregt [2014] presented a new
solver, called BCCG+FAI, for solving elastic normal contact problems.

Although there is much research available in the literature related to contact problems of multiple
layers and half-planes, there are not enough studies about initial separation loads and distances in contact
mechanics. This paper aims to obtain initial separation loads and initial separation distances between
two layers and a lower-layer elastic half-plane for a continuous contact problem. This paper also presents
the contact stresses under the rigid stamp, and the contact areas.

2. General expressions for stresses and displacements

Figure 1 shows two elastic, homogeneous, isotropic layers with different elastic constants and heights,
resting on an elastic half-infinite plane and subjected to a concentrated load with magnitude P by means
of a rigid stamp. The thickness in the z direction is taken to be unit. Since x = 0 is the symmetry plane,
it is sufficient to consider the problem in the region 0 ≤ x <∞ only. For numerical calculations, two
types of stamp profiles are used, circular and rectangular.

Consider a plane strain problem and let ρ1g and ρ2g be body forces acting vertically in the layers. The
body force of the elastic half-infinite plane is neglected. The stress and the displacement components
may be obtained as

ui (x, y)= ui p(x)+ uih(x, y), (1a)
vi (x, y)= vi p(y)+ vih(x, y), (1b)
σi x(x, y)= σi xp(y)+ σi xh(x, y), (2a)
σiy(x, y)= σiyp(y)+ σiyh(x, y), (2b)
τi xy(x, y)= τi xyh(x, y), (2c)
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     (a) (b)

Figure 1. Geometry of the problem and loading condition. (a) Circular and (b) rectan-
gular stamp cases.

where i = 1, 2, 3, the subscripts p and h refer to the particular part of the stress and the displacement com-
ponents corresponding only to existing body forces, and the components of displacements and stresses
for the layers and half-infinite plane without body forces, respectively. The particular part of the stress
and the displacement components corresponding to ρ1g and ρ2g for the layers and the elastic half-infinite
plane may be obtained as [Çakıroğlu 1990]

u1p(x)=
(

3−χ1

8µ1

)(
ρ1gh1

2

)
x, (3a)

v1p(y)=−
ρ1gy
2µ1

[
1+χ1

8
h1+

χ1− 1
χ1+ 1

(h2+ h− y)
]
, (3b)

u2p(x)=
(

3−χ2

8µ2

)(
ρ2gh2

2
+ ρ1gh1

)
x, (3c)

v2p(y)=
χ2− 1
χ2+ 1

ρ2gy
2µ2

(y− h2)−
1+χ2

8µ2
y
(
ρ1gh1+ ρ2g

h2

2

)
, (3d)

u3p(x)=
(

3−χ3

8µ3

)
(ρ2gh2+ ρ1gh1)x, (3e)

v3p(y)=−
1+χ3

8µ3
(ρ1gh1+ ρ2gh2)y, (3f)

σ1xp(y)=
3−χ1

1+χ1

ρ1g
2
(2y− h− h2), (3g)

σ1yp(y)= ρ1g(y− h), (3h)

σ2xp(y)=
3−χ2

1+χ2

ρ2g
2
(2y− h2), (3i)

σ2yp(y)=−ρ1gh1+ ρ2g(y− h2), (3j)

σ3yp(y)=−(ρ1gh1+ ρ2gh2), (3k)

σ3xp = τ1xyp = τ2xyp = τ3xyp = 0, (3l)
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where u = u(x, y) and v = v(x, y) represent displacement components in the x and y directions, respec-
tively; µi is the shear modulus, χi is an elastic constant, with χi = (3− 4νi ) for plane strain, and νi is
the Poisson’s ratio (i = 1, . . . , 3). The subscripts 1, 2, and 3 refer to the upper layer, the lower layer, and
the elastic half-infinite plane, respectively.

The components of the displacements and stresses for the layers and the half-infinite plane without
body forces may be expressed as follows [Çakıroğlu 1990]:

uih(x, y)= 2
π

∫
∞

0
{[Ai + Bi y]e−αy

+ [Ci + Di y]eαy
} sin(αx) dα, (4a)

vih(x, y)= 2
π

∫
∞

0

{[
Ai + Bi

(
χi

α
+ y

)]
e−αy
+

[
−Ci + Di

(
χi

α
− y

)]
eαy
}

cos(αx) dα, (4b)

1
2µi

σi xh(x, y)= 2
π

∫
∞

0

{[
α(Ai + Bi y)−

(
3−χi

2

)
Bi

]
e−αy

+

[
α(Ci + Di y)+

(
3−χi

2

)
Di

]
eαy
}

cos(αx) dα, (4c)

1
2µi

σiyh(x, y)= 2
π

∫
∞

0

{
−

[
α(Ai + Bi y)+

(
1+χi

2

)
Bi

]
e−αy

+

[
−α(Ci + Di y)+

(
1+χi

2

)
Di

]
eαy
}

cos(αx) dα, (4d)

1
2µi

τi xyh(x, y)= 2
π

∫
∞

0

{
−

[
α(Ai + Bi y)+

(
χi − 1

2

)
Bi

]
e−αy

+

[
α(Ci + Di y)−

(
χi − 1

2

)
Di

]
eαy
}

sin(αx) dα, (4e)

u3h(x, y)= 2
π

∫
∞

0
{[C3+ D3 y]eαy

} sin(αx) dα, (4f)

v3h(x, y)= 2
π

∫
∞

0

{[
−C3+ D3

(
χ3

α
− y

)]
eαy
}

cos(αx) dα, (4g)

1
2µ3

σ3xh(x, y)= 2
π

∫
∞

0

{[
α(C3+ D3 y)+

(
3−χ3

2

)
D3

]
eαy
}

cos(αx) dα, (4h)

1
2µ3

σ3yh(x, y)= 2
π

∫
∞

0

{[
−α(C3+ D3 y)+

(
1+χ3

2

)
D3

]
eαy
}

cos(αx) dα, (4i)

1
2µ3

τ3xyh(x, y)= 2
π

∫
∞

0

{[
α(C3+ D3 y)−

(
χ3− 1

2

)
D3

]
eαy
}

sin(αx) dα, (4j)

where Ai , Bi , Ci , Di (i = 1, 2) and C3, D3 are unknown coefficients which will be determined from the
boundary conditions prescribed for y = 0, y = h2, and y = h.

3. Boundary conditions and solution of the singular integral equation

The continuous contact problem for two elastic layers resting on an elastic half-infinite plane and sub-
jected to a concentrated load with magnitude P by means of a rigid stamp will be investigated. The
contact stresses under the rigid stamp, the contact areas, the distribution of the contact stresses between
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the layers and the lower-layer half-infinite plane until the occurrence of the initial separation, the initial
separation loads, and the initial separation distances will be examined.

The boundary conditions for the frictionless contact problem outlined above can be defined as follows:

τ1xy(x, h)= 0, 0≤ x <∞, (5a)

σ1y(x, h)=
{
−p(x),
0,

0≤ x < a,
a ≤ x <∞,

(5b)

τ1xy(x, h2)= 0, 0≤ x <∞, (5c)

τ2xy(x, h2)= 0, 0≤ x <∞, (5d)

σ1y(x, h2)= σ2y(x, h2), 0≤ x <∞, (5e)
∂

∂x
[v1(x, h2)− v2(x, h2)] = 0, 0≤ x <∞, (5f)

τ2xy(x, 0)= 0, 0≤ x <∞, (5g)

τ3xy(x, 0)= 0, 0≤ x <∞, (5h)

σ2y(x, 0)= σ3y(x, 0), 0≤ x <∞, (5i)
∂

∂x
[v2(x, 0)− v3(x, 0)] = 0, 0≤ x <∞, (5j)

∂

∂x
[v1(x, h)] = f (x), 0≤ x < a, (5k)

where a is the half-width of the contact area between the rigid stamp and the upper layer, p(x) is the
unknown contact stress under the rigid stamp, and f (x) is the derivative of the function F(x) which
characterizes profile of the rigid stamp. In the case of a circular stamp, f (x) can be obtained as follows:

F(x)= h− δ− [(R2
− x2)1/2− R], (6a)

f (x)= d
dx
[F(x)] = −

x
(R2− x2)1/2

, (6b)

where δ is the maximum displacement, which occurs on the layer under the stamp on the axis of symmetry
(x = 0), and R is the radius of the rigid circular stamp.

In the case of rectangular stamp, because F(x) is equal to a constant, f (x) can be obtained as follows:

f (x)= d
dx
[F(x)] = 0. (6c)

Applying the boundary conditions (5a)–(5j) to the stress and displacement expressions, the coefficients
Ai , Bi , Ci , Di (i = 1, 2), C3, and D3 can be determined in terms of the unknown contact stress p(x);
by substituting these coefficients into (5k), after some routine manipulations and using the symmetry
condition p(x)= p(−x), one may obtain the following singular integral equation for p(x):∫ a

−a

[ 1
t−x
+ k(x, t)

]
p(t) dt =−

4πµ1

1+χ1
f (x), −a < x < a, (7)

where the kernel k(x, t) is given by (A.1). The equilibrium condition of the problem may be expressed
as ∫ a

−a
p(t) dt = P. (8)
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In order to obtain the initial separation load and initial separation distance between the two elastic layers
and the lower-layer half-infinite plane, the contact stresses σ1y(x, h2) and σ2y(x, 0) need to be determined.
Substituting the values of Ai , Bi , Ci , and Di (i = 1, 2) as evaluated in terms of p(x) into (2b) and after
some algebraic manipulation, the contact stresses are obtained as follows:

σ1y(x, h2)=−ρ1gh1−
1
πh

∫ a

−a
k∗2(x, t)p(t) dt, 0≤ x <∞, (9a)

σ2y(x, 0)=−ρ1gh1

[
1+

ρ2h2

ρ1h1

]
−
µ2

µ1

1
πh

∫ a

−a
k∗3(x, t)p(t) dt, 0≤ x <∞, (9b)

where the kernels k∗2(x, t) and k∗3(x, t) are given by (A.2) and (A.3). In order to simplify the solution of
the singular integral equation, the following dimensionless quantities are introduced:

x = as, t = ar, φ(r)=
p(ar)
P/h

, M(s)=
m(as)
P/h

, m(as)=−
4πµ1

1+χ1
f (as). (10)

Substituting from (10), then (7), (8), (9a), and (9b) may be obtained as follows:∫ 1

−1

[ 1
r−s
+ N (s, r)

]
φ(r) dr = M(s), −1< s < 1, N (s, r)= ak(as, ar), (11a)

a
h

∫ 1

−1
φ(r) dr = 1, (11b)

σ1y(x, h2)

P/h
=−

1
λ
−

1
π

a
h

∫ 1

−1
k2(x, ar)8(r) dr, 0≤ x <∞, (11c)

σ2y(x, 0)
P/h

=−
1
λ

[
1+

ρ2h2

ρ1h1

]
−
µ2

µ1

1
π

a
h

∫ 1

−1
k3(x, ar)8(r) dr, 0≤ x <∞, (11d)

where λ is called the load factor, and defined as

λ=
P

ρ1ghh1
. (12)

3.1. Circular stamp case. The contact stress p(x) vanishes at the ends because of the smooth contact
at the end points, and therefore the index of the integral equation (11a) is −1. Noting this, the solution
of integral equation can be found as follows [Erdogan and Gupta 1972]:

φ(r)= g(r)(1− r2)1/2, −1< r < 1. (13)

Using the appropriate Gauss–Chebyshev integration formula, (11a) and (11b) may be reduced to the
following forms:

n∑
i=1

(1− r2
i )
[ 1

ri−s j
+ N (s j , ri )

]
g(ri )=

n+1
π

M(s j ), j = 1, . . . , n+ 1,

a
h

n∑
i=1

(1− r2
i )g(ri )=

n+1
π

,

(14)
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where

ri = cos
( iπ

n+1

)
, i = 1, . . . , n, (15a)

s j = cos
(2 j−1

n+1
π

2

)
, j = 1, . . . , n+ 1. (15b)

The extra equation in (14) corresponds to the consistency condition of the original integral equation in
(11a). In this case, the (n + 1/2)-th equation in (14) is satisfied automatically. Hence, the equations
in (14) constitute a system of n + 1 equations for n + 1 unknowns. Note that the system is highly
nonlinear in a and an interpolation scheme is required to determine this unknown. Solving this system
of equations and using (13), φ(r), the normalized contact stress distribution, and a half-width of the
contact area are obtained. By using (13), substituting the results into (11c) and (11d) and using the
Gauss integration formula, the contact stresses σ1y(x, h2) and σ2y(x, 0) are determined. In order to be
valid for the singular integral equation given in (11a), the contact stresses σ1y(x, h2) and σ2y(x, 0) must
be compressive everywhere and no sign changing is allowed. So, the critical load value can be calculated
numerically by equating (11c) and (11d) to zero. Then λcr (the initial separation load) and xcr (the initial
separation distance) can be obtained.

3.2. Rectangular stamp case. Since the contact stress under the rigid stamp goes to infinity at the cor-
ners, that is, g(±1)→∞, the index of the singular integral equation is +1. Assuming the solution of
integral equation as [Erdogan and Gupta 1972]

φ(r)= g(r)(1− r2)−1/2, −1< r < 1, (16a)

and using the appropriate Gauss–Chebyshev integration formula, (11a) and (11b) may then be replaced
by

n∑
i=1

Wi

(
1

ri−s j
+ N (s j , ri )

)
g(ri )= 0, j = 1, . . . , n− 1, (16b)

a
h

n∑
i=1

Wi g(ri )= 1, (16c)

where

W1 =Wn =
π

2n−2
, Wi =

π

n−1
, i = 2, . . . , n− 1, (16d)

ri = cos
( i−1

n−1
π
)
, i = 1, . . . , n, (16e)

s j = cos
(2 j−1

n−1
π

2

)
, j = 1, . . . , n− 1. (16f)

Equations (16b) and (16c) constitute n linear algebraic equations for n unknowns, g(ri ), i = 1, . . . , n.
Solution of these algebraic equations and use of (16a) gives the unknown contact stress function under the
rigid stamp, p(x). In order to obtain the initial separation load and distance in the case of a rectangular
stamp, the same method as in the case of the circular stamp is followed.
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4. Results and discussion

Some of the calculated results obtained from the solution of the continuous contact problem described in
the previous sections for various dimensionless quantities such as R/h, µ1/(P/h), µ2/µ1, and µ3/µ2

are shown in Tables 1–5 and Figures 2–6. Table 1 and Figure 2 show the variation of the half-width of
the contact area for a circular stamp with µ1/(P/h) and R/h. As it can be seen in Table 1 and Figure 2,
the half-width of the contact area a/h increases with increasing R/h, but decreases with increasing load
ratio µ1/(P/h). The variation of the contact stress under the rigid stamp for a rectangular stamp with
µ2/µ1 is given in Figure 3. It may be observed in this figure that as µ2/µ1 increases, the normalized
contact stress increases in the interior region of the rigid stamp and decreases in the region close to the
corners. Figure 4 shows the variation of the contact stress distribution under a rigid circular stamp with
µ2/µ1. It appears that the maximum value of the contact stress is always at x = 0, and it increases with
increasing µ2/µ1.

In Figure 5, the contact stress distribution under the rectangular stamp is given. As expected, the
contact stresses become infinite at the corners of the stamp. The normalized contact stress increases
with decreasing (a/h). Variation of the initial separation load λcr and the initial separation distance xcr

between the layers and the lower-layer half-infinite plane with µ2/µ1 for various values of µ3/µ2 in case

a/h
µ1/(P/h) R/h=10 R/h=50 R/h=100 R/h=250 R/h=500 R/h=750 R/h=1000

10 0.6541 1.3043 1.7382 2.5392 3.3912 4.0241 4.5486
50 0.3069 0.6541 0.8861 1.3043 1.7382 2.0552 2.3149

100 0.21806 0.4762 0.6541 0.9747 1.3043 1.5433 1.7382
250 0.13815 0.3069 0.4287 0.6541 0.8861 1.0529 1.1883
500 0.0977 0.21806 0.3069 0.4762 0.6541 0.7822 0.8861
750 0.07978 0.17824 0.25142 0.39304 0.5442 0.6541 0.7429

1000 0.0691 0.15443 0.21806 0.3421 0.4762 0.5743 0.6541

Table 1. Variation of the half-width of the contact area for a circular stamp with
µ1/(P/h) and R/h (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 2, and µ3/µ2 = 2).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 4.10 166.95 3.31 118.343 2.80 83.5115
0.25 3.10 139.777 2.53 99.2449 2.17 69.8606
0.5 2.59 139.172 2.11 94.9923 1.82 64.8572
4 1.21 96.3381 1.16 55.4769 1.13 42.5852

10 1.04 43.3536 1.03 37.0934 1.02 33.6179
50 0.97 29.9315 0.97 29.1694 0.97 28.6559

Table 2. Variation of the initial separation load λcr and the initial separation distance xcr

between layers for a circular stamp with µ2/µ1 and µ3/µ2 (χ1=χ2=χ3= 2, h2/h1= 1,
R/h = 100, µ1/(P/h)= 500, and ρ2/ρ1 = 1).
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e 

Figure 2. Variation of the half-width of the contact area for a circular stamp with
µ1/(P/h) (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 2, and µ3/µ2 = 2).

       
Figure 3. Variation of the contact stress distribution under the rigid stamp for a rectan-
gular stamp with µ2/µ1 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, a/h = 0.7, and µ3/µ2 = 1).
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Figure 4. Variation of the contact stress distribution under the rigid stamp for a circular
stamp withµ2/µ1 (χ1=χ2=χ3=2, h2/h1=1, µ3/µ2=2, R/h=500, andµ1(P/h)=
100).
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Figure 5. Variation of the contact stress distribution under the rigid stamp for a rectan-
gular stamp with a/h (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ3/µ2 = 1, and µ2/µ1 = 1).
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µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 4.11 306.572 3.32 219.487 2.81 156.831
0.25 3.11 229.880 2.55 167.793 2.19 121.864
0.5 2.61 195.927 2.15 142.534 1.86 103.65
4 1.92 150.064 1.58 102.83 1.40 73.6904

10 1.82 143.238 1.51 96.6480 1.34 69.1730
50 1.77 139.115 1.47 92.8876 1.30 67.53

Table 3. Variation of the initial separation load λcr and the initial separation distance
xcr between the lower layer and the elastic half-infinite plane for a circular stamp with
µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, R/h = 100, µ1/(P/h) = 500, and
ρ2/ρ1 = 1).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 3.76 91.2134 3.64 76.8386 3.16 35.5079
0.25 3.44 87.0030 2.91 63.6723 2.56 32.8831
0.5 2.98 80.4193 2.50 54.4106 2.22 32.6244
1 2.57 70.5130 2.15 46.2382 1.94 32.5297
4 1.67 49.8831 1.61 32.118 1.58 26.0751

10 1.51 27.9614 1.50 24.2309 1.49 22.3332

Table 4. Variation of the initial separation load λcr and the initial separation distance
xcr between layers for a rectangular stamp with µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2,
h2/h1 = 1, a/h = 0.7, and ρ2/ρ1 = 1).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 3.86 96.1742 3.65 86.8571 3.17 66.6502
0.25 3.47 93.7733 2.93 73.7035 2.59 57.2691
0.5 2.99 84.9483 2.55 66.6905 2.27 52.1141
1 2.65 78.6212 2.28 61.3007 2.05 48.06
4 2.29 70.7674 1.99 54.4808 1.82 43.0774

10 2.19 68.2357 1.91 52.4519 1.76 41.6836

Table 5. Variation of the initial separation load λcr and the initial separation distance xcr

between the lower layer and the elastic half-infinite plane for a rectangular stamp with
µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, a/h = 0.7, and ρ2/ρ1 = 1).

of a circular stamp is given in Tables 2 and 3. As it can be seen in these tables, the initial separation load
and distance between the layers and the lower-layer half-infinite plane decrease with increasing µ2/µ1

and µ3/µ2.
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Figure 6. Variation of the contact stress distribution between two elastic layers. Left:
variation with R/h for a circular stamp with χ1 = χ2 = χ3 = 2, µ1/(P/h) = 500,
h2/h1 = 1, µ2/µ1 = 2, µ3/µ2 = 2, and ρ2/ρ1 = 1. Right: Variation with a/h for a
rectangular stamp with χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 1, µ3/µ2 = 1, and
ρ2/ρ1 = 1.

Figure 6, left, shows the variation of the initial separation load and the initial separation distance
between layers for a circular stamp with R/h. It appears that the initial separation load and the initial
separation distance increase with increasing R/h. The variation of the initial separation load and the
initial separation distance between layers for a rectangular stamp with a/h is shown in Figure 6, right.
It appears that the initial separation load and the initial separation distance increase with increasing a/h.
In Tables 4 and 5, variations of the initial separation load and distance between the two elastic layers and
the lower-layer elastic half-infinite plane for a rectangular stamp with µ3/µ2 and µ2/µ1 are given. As
it can be seen in Tables 4 and 5, the initial separation load and distance decrease with increasing µ3/µ2

and µ2/µ1.

5. Conclusions

This paper considers the continuous contact problem for two elastic layers resting on an elastic half-
infinite plane. The results presented in this paper show that the elastic properties of the layers and
intensity of the applied load have considerable effect on the contact stress distribution, the contact areas,
the initial separation load, the and the initial separation distance. Additionally, the rigid stamp width
(in the rectangular stamp case) and the radius of the rigid stamp (in the circular stamp case) play a
very important role in the contact stress distribution, contact areas, initial separation load, and initial
separation distance.
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Appendix

Expressions of the kernels k(x, t), k∗2(x, t), and k∗3(x, t) appearing in (7), (9a), and (9b) are given as
follows:

k(x, t)= 1
h

∫
∞

0

{
1
1∗∗

[
[e−5z−4zξ (−4z2ξ 2ez+2zξ (m1(1+χ1)(e4z

− 2e2z+2zξ
+ e4zξ )

+ 4e2z+2zξ (1+χ2))(1+χ3)−4zξ(1+χ2)ez+2zξ (m2(−m1(1+χ1)(e4z
−2e2z+2zξ

+e4zξ )

+ (1+χ2)e2z(1− 2e2zξ
+ e4zξ ))+ (−e2z

+ e4zξ
− e4z

+ e2z+4zξ
− 4ze2z+2zξ )(1+χ3)

+ ez(m1(1+χ1)(e4z
− 2e2z+2zξ

+ e4zξ )(m2(1+χ2)(−1+ e4zξ )

+ (1+χ3)(1−2e2zξ
+e4zξ ))+(1+χ2)(e4z

−e4zξ
+4ze2z+2zξ )(m2(1+χ2)(1−2e2zξ

+e4zξ )

+ (1+χ3)(−1+ e4zξ ))
)]
− 1

}
sin
[
(t − x) z

h

]
dz, (A.1)

k∗2(x, t)=
∫
∞

0

2
1∗∗

[
−m1(1+χ1)e−4z−5zξ (−4(ez+6zξ

+ e3z+4zξ )z3ξ 3(1+χ3)

+ ez+2zξ (e2zξ (−1+z)+e2z(1+z))
(
−m2(1+χ2)(−1+e4zξ

−(1+χ3)(1−2e2zξ
+e4zξ ))

+ ez+2zξ zξ
(
−(e2z

+e2zξ
−e6zξ

−e2z+4zξ
+4(z−1)e4zξ

+4(z+1)e2ze2zξ )m2(1+χ2)

+ (1− 2e2zξ
+ e4zξ )(e2z

+ e2zξ )(1+χ3)
)
+ 4z2ξ 2ez+4zξ (m2(1+χ2)(e2z

+ e2zξ )

+ (e2zξ (z− 1)+ e2z(z+ 1))(1+χ3))
)]

cos
[ z

h
(t − x)

]
dz, (A.2)

k∗3(x, t)=
∫
∞

0

4
1∗∗

[
−e−3z−2zξ (−1+ e2zξ

+ zξ(1+ e2zξ ))((1− z)e2zξ

− (1+ z)e2z
+ zξ(e2z+2zξ ))m2(1+χ1)(1+χ2)

]
cos
[ z

h
(t − x)

]
dz, (A.3)

where

1∗∗ = e−4z−4zξ [16e2z+4zξ z3ξ 3(−(1+χ2)+m1(1+χ1))(1+χ3)− (−e4z
+ e4zξ

− 4ze2z+2zξ )

×m1(1+χ1)((−1+ e4zξ )m2(1+χ2)+ (1− 2e2zξ
+ e4zξ )(1+χ3))+ (e4z

+ e4zξ
− 2e2z+2zξ )

× (1+ 2z2))(1+χ2)((1− 2e2zξ
+ e4zξ )m2(1+χ2)+ (−1+ e4zξ )(1+χ3))

− 4z2(e2z+4zξ (1+χ2)((1− 2e2zξ
+ e4zξ )m2(1+χ2)+ (−1+ e4zξ

− 8ze2zξ )(1+χ3))

−m1(1+χ1)(−4e2z+4zξm2(1+χ2)+ (e6zξ
− e4z+2zξ

− 4ze2z+4zξ )(1+χ3))
)

− 4zξe2zξ (m1(1+χ1)
(
(−e4z

+ e4zξ
− e2z

− 4ze2z+2zξ
+ e2z+4zξ )m2(1+χ2)

+ (e2z(1− 2e2zξ
+ e4zξ )(1+χ3))− (1+χ2)

(
2e2z(1− 2e2zξ

+ e4zξ )m2z(1+χ2)

+ (e4z
+ e4zξ

− 2ze2z
+ 2ze2z+4z

− 2e2z+2zξ (1+ 2z2ξ 2))(1+χ3)
))]
.
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