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BIMATERIAL LATTICES WITH ANISOTROPIC THERMAL EXPANSION

MARINA M. TOROPOVA AND CRAIG A. STEEVES

Bimaterial lattices with anisotropic thermal expansion consist of nonidentical cells comprising a skewed
triangle made of one material surrounding an unskewed triangle made of a second material. The two
materials have differing individual coefficients of thermal expansion. The variation in skew angles
makes the thermal expansion of the cell anisotropic. Being composed of anisotropic nonidentical cells,
the assembled lattice is also anisotropic and can be designed to have different coefficients of thermal
expansion on its top and bottom surfaces. Such lattices can be used as transition elements or adapters
to avoid thermal-expansion mismatch between two parts of a structure made of materials with different
coefficients of thermal expansion and subjected to temperature changes. In the present paper, three
nonlinear algebraic equations linking skew angles with the coefficients of thermal expansion in three
directions of a cell are derived, the design of several lattices is performed, the algorithm of lattice design
is elaborated, and some examples are presented.

1. Introduction

Often structures that are used in aerospace, civil engineering, and microelectronics experience large
temperature changes. If connected components of such structures are made of materials with different
coefficients of thermal expansion (CTE), they experience mechanical stresses due to thermal-expansion
mismatch. To eliminate thermal stresses, the parts of the structure with differing CTEs, herein referred
to as the substrates, can be connected to each other through special transition elements or adapters with
anisotropic CTE. Using composite structures with graded CTEs for joining purposes is not a new concept.
For example, Yousefiani et al. [2009a; 2009b] applied it to design a layered injector-chamber attachment
component in rocket engines. In the first of these papers they suggested joining approaches such as
welding, brazing, or solid-state bonding to produce a graded-CTE layered composite. In the second,
they used build-up (bottom-up) fabrication approaches such as metal deposition or powder metallurgy
to produce a graded-CTE layered composite preform, which was consolidated and heat-treated to create
the graded-CTE integrated composite billet of near net shape. In [Dang 2008], the composite adapters
with graded CTE were components of a precision optical assembly to prevent lens misalignment. The
adapter material comprised multiple thin composite material layers, each possessing a CTE slightly
different from its two adjacent layers, bonded to form an adapter with CTE gradually varying in the
direction perpendicular to the bonding interfaces. Such adapters will bend when subjected to temperature
changes, and deformations of the system must be permitted or thermal stresses will arise if the bending is
suppressed. Also, their mechanical properties can be substantially anisotropic, leading to the reduction of
overall stiffness and strength. An alternative to graded systems is a compliant system, where differential
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thermal expansion is accommodated by connectors with low stiffness. This has the disadvantage of
reducing the overall stiffness of the structure.

Here, we suggest a way for joining dissimilar parts of a structure using planar composite lattices with
anisotropic CTE: one edge of the lattice has CTE that matches the material of the first substrate, and the
opposite edge of the lattice has a CTE matching the second substrate. In designing such lattices, we rely
on [Sigmund and Torquato 1996; Lakes 1996; Gibiansky and Torquato 1997; Sigmund and Torquato
1997; Jefferson et al. 2009; Steeves et al. 2007; Lehman and Lakes 2013], where it was demonstrated
that a lattice with a desirable isotropic CTE can be constructed from cells incorporating two materials
with widely differing individual CTEs and empty space. A lattice cell consisting of a skewed triangle of
low-CTE material surrounding a triangle of high-CTE material combines high stiffness, simple shape,
and ability to reach desirable CTE [Steeves et al. 2007]. In [Steeves et al. 2007; Berger et al. 2011], a pin-
jointed lattice consisting of these cells is shown to be nearly optimally stiff: the mechanical response of
this type of lattice is dominated by stretching rather than bending. Such lattices are structurally robust and
can be relatively easily manufactured. Gdoutos et al. [2013] designed, fabricated, and tested thermally
stable metastructures consisting of the cells suggested in [Steeves et al. 2007]. These structures were
finely and coarsely tuned by varying the CTE of the constituent materials and the unit cell geometry. The
microscale unit cells were composed of aluminum and titanium and were assembled over a large area to
create thin low-CTE foils.

In this work, the lattice concept created by Steeves et al. is used to design a lattice adapter with
anisotropic CTE. To be anisotropically tunable, each cell can have six different skew angles and therefore
have anisotropic thermal expansion. Also, the cells in the lattice are not identical. As a result, the whole
lattice has anisotropic and graded net CTE. In this paper, the anisotropic thermal expansion of the lattice
is analyzed and the equations connecting the cell skew angles with CTE in three directions are derived.
These equations are used to find desirable skew angles for the design of each cell. Then the design of the
whole lattice is performed: three CTEs in each cell are found as functions of the CTEs of the substrates. A
system for choosing the lattice materials that can provide such CTEs is discussed. Design examples then
show how the choice of materials influences the skewness of the cells. This anisotropic-lattice concept
eliminates both of the problems with other adapter concepts: the lattice remains stiff at all times, and if
pin-connected, differential thermal deformations of the substrates are accommodated without generating
any thermal stresses either in the lattice or the substrates. Moreover, the anisotropic lattices presented
here are scale independent and can be extended to three-dimensional geometries.

2. Formulation of the problem

Consider two adjoining planar parts of a structure; name them Substrate 1 and Substrate 2. Suppose that
Substrates 1 and 2 are made of materials with different CTEs A1 and A2, respectively. We would like
to join these plates by a planar interfacial one-row lattice that has the CTE of the first substrate A1 on
the edge connected to the first plate and the CTE of the second substrate A2 on the edge adjacent to the
second plate; this eliminates thermal stresses in the substrates during thermal excursions. In addition, the
lattice itself should experience no internal thermal stresses during temperature changes. For this purpose,
we use the lattice with cells described in [Steeves et al. 2007]: it is based on a virtual triangle AC E and
consists of a skewed triangle ABC DE F made of a material with lower CTE α1 and connected with an
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Figure 1. One cell of a lattice. The members AB, BC , C D, DE , E F , and AF have
low CTE, depicted in black. The members B D, DF , and B F have higher CTE, depicted
in gray. The equilateral triangle upon which the cell is based is shown as a dashed line.
The skew angles, θ1, θ2, θ3, θ4, θ5, and θ6, are the angles by which the unit cell strut
orientation differs from those of an equilateral triangle.

Substrate 1

Substrate 2

Figure 2. A planar anisotropic lattice connecting two substrates with different CTE. The
lattice has net anisotropic CTE, and each individual cell has net anisotropic CTE.

internal unskewed triangle B DF made of a material with higher CTE α2 (Figure 1). The internal triangle
B DF is pin-joined to the skewed triangle. Adjacent cells of the lattice, connected at A, C , and E , also
have pin-joints between each other and with the substrates (Figure 2) such that the whole structure is
free of bending and thermal stresses.

The triangle AC E is equilateral [Steeves et al. 2007]: AC = L1, C E = L2, AE = L3, and L1 =

L2 = L3 = L . Unlike the lattice described in [Steeves et al. 2007], the skew angles θ1, θ2, θ3, θ4, θ5,
and θ6 and the lengths of members l1 = AB, l2 = BC , l3 = C D, l4 = DE , l5 = E F , and l6 = AF
may be different. As a result, AC , C E , and AE can expand differently when temperature changes:
d L1 = α1L1dT , d L2 = α2L2dT , and d L3 = α3L3dT , where T is temperature and αi , i = 1, 2, 3, are
the CTEs of the cell along AC , C E , and AE , respectively.

By choosing the angles θi , i = 1, 2, 3, 4, 5, 6, we can influence the change of d L1, d L2, and d L3 in
each cell and provide different changes of distances between vertices of the cells and hence different
CTEs on the bottom and top levels of the lattice (Figure 3). To design such a lattice, we need first to
obtain relations between CTEs αi , i = 1, 2, 3, and angles θ j , j = 1, 2, 3, 4, 5, 6.
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Figure 3. Lattice design: base equilateral triangles of two cells. During thermal expan-
sion, the original points translate from, for example, B to B ′. The lattice cell must be
designed to accommodate the changing distances between the points.

3. General formulae

The undeformed lengths of the constituent members of a cell (Figure 1) are

l1 = L1 f1(θ1, θ2), l2= L1 f2(θ1, θ2), l3 = L2 f3(θ3, θ4),

l4 = L2 f4(θ3, θ4), l5= L3 f5(θ5, θ6), l6 = L3 f6(θ5, θ6),
(1)

where

f1 =
sin θ2

sin(θ1+ θ2)
, f2=

sin θ1

sin(θ1+ θ2)
, f3 =

sin θ4

sin(θ3+ θ4)
,

f4 =
sin θ3

sin(θ3+ θ4)
, f5=

sin θ6

sin(θ5+ θ6)
, f6 =

sin θ5

sin(θ5+ θ6)
.

From (1), we obtain the differential relations

1
L

dl1

(
1−

α1

α1

)
= f ′1θ1 dθ1+ f ′1θ2 dθ2,

1
L

dl2

(
1−

α1

α1

)
= f ′2θ1 dθ1+ f ′2θ2 dθ2,

1
L

dl3

(
1−

α2

α1

)
= f ′3θ3 dθ3+ f ′3θ4 dθ4,

1
L

dl4

(
1−

α2

α1

)
= f ′4θ3 dθ3+ f ′4θ4 dθ4,

1
L

dl5

(
1−

α3

α1

)
= f ′5θ5 dθ5+ f ′5θ6 dθ6,

1
L

dl6

(
1−

α3

α1

)
= f ′6θ5 dθ5+ f ′6θ6 dθ6,

(2)

where f ′iθ j
, i, j = 1, 2, 3, 4, 5, 6, is a partial derivative of the function fi with respect to the angle θ j .

The length of three members of the internal triangle can be expressed as

F B = l7 = (L2
1 f 2

1 + L2
3 f 2

6 − 2L1L3 f1 f6 cos A′)1/2,

B D = l8 = (L2
1 f 2

2 + L2
2 f 2

3 − 2L1L2 f2 f3 cos B ′)1/2,

DF = l9 = (L2
2 f 2

4 + L2
3 f 2

5 − 2L2L3 f4 f5 cos C ′)1/2,

(3)

where
A′ = θ1+ θ6+ 60◦, B ′ = θ2+ θ3+ 60◦, and C ′ = θ4+ θ5+ 60◦.
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From (3), we can find dli , i = 7, 8, 9, as

dl7 = a7dl7+ b7dθ1+ c7dθ2+ d7dθ5+ e7dθ6,

dl8 = a8dl8+ b8dθ1+ c8dθ2+ d8dθ3+ e8dθ4,

dl9 = a9dl9+ b9dθ3+ c9dθ4+ d9dθ5+ e9dθ6,

(4)

where

a7 =
l1

l2
7
(l1− l6 cos A′)

α1

α2
+

l6

l2
7
(l6− l1 cos A′)

α3

α2
,

b7 =
∂l7

∂θ1
=

L
l7
(l1− l6 cos A′) f ′1θ1 +

l1l6

l7
sin A′,

c7 =
∂l7

∂θ2
=

L
l7
(l1− l6 cos A′) f ′1θ2 ,

d7 =
∂l7

∂θ5
=

L
l7
(l6− l1 cos A′) f ′6θ5 ,

e7 =
∂l7

∂θ6
=

L
l7
(l6− l1 cos A′) f ′6θ6 +

l1l6

l7
sin A′.

(5)

The coefficients a8, b8, c8, d8, and e8 can be obtained from previous formulae by replacing l1, l6, l7, α1,
α3, f1, f6, θ1, θ2, θ5, θ6, and A′ by l3, l2, l8, α2, α1, f3, f2, θ3, θ4, θ1, θ2, and B ′, respectively. Similarly,
the coefficients a9, b9, c9, d9, and e9 can be obtained from (5) by replacing l1, l6, l7, α1, α3, f1, f6, θ1,
θ2, θ5, θ6, and A′ by l5, l4, l9, α3, α2, f5, f4, θ5, θ6, θ3, θ4, and C ′, respectively.

Then expressing dθi through dli from (2), substituting them into (4), and performing all necessary
transformations, we obtain three nonlinear equations linking the six skew angles θi with three normalized
thermal-expansion coefficients along the lines AC , C E , and AE in the skewed triangle:(α1

α1
− 1

) f1 cos(θ1+ θ2)+ f2

sin θ2
+

(α3

α1
− 1

) f6 cos(θ5+ θ6)+ f5

sin θ5

=
1

sin A′

(
1−

α2

α1

)( f1

f6
+

f6

f1
− 2 cos A′

)
,

(α1

α1
− 1

) f2 cos(θ1+ θ2)+ f1

sin θ1
+

(α2

α1
− 1

) f3 cos(θ3+ θ4)+ f4

sin θ4

=
1

sin B ′

(
1−

α2

α1

)( f2

f3
+

f3

f2
− 2 cos B ′

)
,

(α3

α1
− 1

) f5 cos(θ5+ θ6)+ f6

sin θ6
+

(α2

α1
− 1

) f4 cos(θ3+ θ4)+ f3

sin θ3

=
1

sin C ′

(
1−

α2

α1

)( f4

f5
+

f5

f4
− 2 cos C ′

)
.

(6)

The equations (6) are scale-independent, contain the ratio α2/α1 as a parameter, and couple three
normalized CTEs in a cell α1/α1, α2/α1, and α3/α1. If the skew angles are known, these three CTEs
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can be calculated using the following formulae:

α1

α1
= 1+

11

1
,

α2

α1
= 1+

12

1
, and

α3

α1
= 1+

13

1
, (7)

where

1= c11c22c33+ c21c32c13,

11 = F1c22c33+ F2c13c32− F3c22c13,

12 = F2c11c33+ F3c13c21− F1c21c33,

13 = F3c11c22+ F1c21c32− F2c11c32,

(8)

c11 = sin θ5 sin(θ5+ θ6)(sin θ2 cos(θ1+ θ2)+ sin θ1),

c13 = sin θ2 sin(θ1+ θ2)(sin θ5 cos(θ5+ θ6)+ sin θ6),

c21 = sin θ4 sin(θ3+ θ4)(sin θ1 cos(θ1+ θ2)+ sin θ2),

c22 = sin θ1 sin(θ1+ θ2)(sin θ4 cos(θ3+ θ4)+ sin θ3),

c32 = sin θ6 sin(θ5+ θ6)(sin θ3 cos(θ3+ θ4)+ sin θ4),

c33 = sin θ3 sin(θ3+ θ4)(sin θ6 cos(θ5+ θ6)+ sin θ5),

(9)

F1 =
1

sin A′

(
1−

α2

α1

)(
sin2 θ2 sin2(θ5+ θ6)+ sin2 θ5 sin2(θ1+ θ2)

− 2 cos A′ sin θ2 sin θ5 sin(θ1+ θ2) sin(θ5+ θ6)
)
,

F2 =
1

sin B ′

(
1−

α2

α1

)(
sin2 θ1 sin2(θ3+ θ4)+ sin2 θ4 sin2(θ1+ θ2)

− 2 cos B ′ sin θ1 sin θ4 sin(θ1+ θ2) sin(θ3+ θ4)
)
,

F3 =
1

sin C ′

(
1−

α2

α1

)(
sin2 θ3 sin2(θ5+ θ6)+ sin2 θ6 sin2(θ3+ θ4)

− 2 cos C ′ sin θ3 sin θ6 sin(θ3+ θ4) sin(θ5+ θ6)
)
.

(10)

On the other hand, in design of anisotropic lattices, we need to solve the inverse problem of finding the
skew angles when the values of three CTEs in each cell are known. In this case, three equations (6)
are insufficient and it is possible to impose additional conditions on the lattice or optimize the lattice
structure using various criteria. If instead we make the simplification θ1 = θ2 = t1, θ3 = θ4 = t2, and
θ5 = θ6 = t3 (Figure 4), the equations (6) take the form(α1

α1
− 1

)
cot t1+

(α3

α1
− 1

)
cot t3 = G1,(α1

α1
− 1

)
cot t1+

(α2

α1
− 1

)
cot t2 = G2,(α2

α1
− 1

)
cot t2+

(α3

α1
− 1

)
cot t3 = G3,

(11)
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Figure 4. A cell with three skew angles. The original six skew angles are replaced by
θ1 = θ2 = t1, θ3 = θ4 = t2, and θ5 = θ6 = t3.

where

G1 =
1

sin A′′

(
1−

α2

α1

)(cos t1
cos t3

+
cos t3
cos t1

− 2 cos A′′
)
,

G2 =
1

sin B ′′

(
1−

α2

α1

)(cos t1
cos t2

+
cos t2
cos t1

− 2 cos B ′′
)
,

G3 =
1

sin C ′′

(
1−

α2

α1

)(cos t2
cos t3

+
cos t3
cos t2

− 2 cos C ′′
)

and A′′ = t1+ t3+ 60◦, B ′′ = t1+ t2+ 60◦, and C ′′ = t2+ t3+ 60◦.
From (11), αi/α1, i = 1, 2, 3, can be found as

α1

α1
= 1+

G1+G2−G3

2
tan t1,

α2

α1
= 1+

G2+G3−G1

2
tan t2,

α3

α1
= 1+

G1+G3−G2

2
tan t3.

(12)

From (12), it is seen that if any ti = 0, i = 1, 2, 3, then αi = α1 and the two other skew angles do not
influence it. Conversely, if αi = α1, then the two skew angles adjacent to this side must be equal to zero.

If all angles in (6) are equal to θ , the cell is isotropic with a constant coefficient of thermal expansion in
all directions equal to α and these three equations can be transformed into the equation for the expansion
coefficient obtained in [Steeves et al. 2007]:

α

α1
=

1− 0.5(α2/α1) sin(2θ)(1/
√

3+ tan θ)

1− 0.5 sin(2θ)(1/
√

3+ tan θ)
. (13)

In the isotropic configuration, the maximum of the function α/α1 is reached at θ =−15◦; the function
decreases at −15◦ < θ < 90◦ (see Figure 5). For design considerations, to avoid overlapping the cells, we
consider skew angles in the range [−15◦, 30◦]. In this range of skew angle, all values of three normalized
CTEs presented by the formulae (12) belong to the interval �≡ [α(30◦)/α1, α(−15◦)/α1] that depends
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Figure 5. The influence of two skew angles on α3/α1 for α2/α1 = 2.581, which corre-
sponds to the ratio of the CTEs of aluminum and titanium.

on the ratio α2/α1 (Figure 6). Here, α/α1 is calculated from (13). Figure 5 plots the behavior of α3/α1

via t3 at three different sets of values t1 = 30◦, t2 = 20◦; t1 = 15◦, t2 = 20◦; and t1 =−5◦, t2 = 20◦ and
the ratio α2/α1 = 2.581, which corresponds to the ratio of the CTEs of aluminum and titanium. These
do not coincide with the isotropic case, which means that an arbitrary set of three values from � is not
necessarily a solution of the equations (11). In other words, the condition

α1

α1
,
α2

α1
,
α3

α1
∈�

is necessary but not sufficient for the existence of the solution of the equations (11). For example, while
the maximum for t1=−5◦, t2= 20◦ coincides with the maximum for the isotropic case, t1= 15◦, t2= 20◦

has a maximum at t3 = −10◦ and t1 = 30◦, t2 = 20◦ has a maximum at t3 = −5◦. Hence, in the latter
two cases, we need to search for solutions in the interval [−10◦, 30◦] and [−5◦, 30◦], respectively. Also,
the maxima in the three cases are different, so it is not possible to attain the same maximum α3.

In Figure 6, it is seen that the interval � increases with respect to the ratio α2/α1. The higher values
of normalized CTEs can be reached at negative unequal skew angles θ1 6= θ2, θ3 6= θ4, and θ5 6= θ6. This
case will be illustrated in Section 6, Problem 5.

4. Lattice design

In this section, planar, one-row lattices are considered. We can design lattices by designating the points on
the substrates to which the lattice will be attached and following those points as the temperature changes.
This will provide the changes in the lengths of the sides of the equilateral triangles upon which the lattice
cells are based, to which the changing lengths of the lattice cells must be matched. For example, Figure 3
shows the base triangles of two cells. Suppose the point A is fixed. When temperature changes, the other



BIMATERIAL LATTICES WITH ANISOTROPIC THERMAL EXPANSION 235

N
or

m
al

iz
ed

 C
oe

ffi
ci

en
t o

f T
he

rm
al

 E
xp

an
si

on

-3

-2

-1

0

1

2

1 2 3 4 5

maximum normalized CTE

minimum
normalized
CTE

Thermal Expansion Ratio, α2/α1

Figure 6. Upper and lower boundaries of the normalized CTE, giving the range �, as
a function of the ratio α2/α1.

points B, C , D, and E move to the positions B ′, C ′, D′, and E ′, respectively. The new distances AB ′,
B ′D′, and C ′E ′ can be expressed in terms of the side length L and three unknown CTEs of each cell. The
following four conditions on the shape of the lattice after temperature changes are sufficient to find them:

(1) the distances between vertices connected to Substrate 1 must be equal to L(1+ A1dT ),

(2) the distances between vertices connected to Substrate 2 must be equal to L(1+ A2dT ),

(3) the height of each triangle must remain constant, i.e., not depend on temperature, and

(4) the lattice must have a line of symmetry.

The third condition is arbitrary: the relative approach or retreat of the substrates depends upon the
materials and the configuration of the overall structure. Here, constant H is chosen although 1H > 0
and 1H < 0 may equivalently be selected.

Using these conditions and deriving formulae for αi , i = 1, 2, 3, we neglect terms with αi
2 (which is

reasonable because αi are small). As a result, the formulae for α1, α2, and α3 in each cell of two-cell,
three-cell, and n-cell lattices as functions of the CTEs of substrates A1 and A2 are obtained.

To work with several cells, denote αi1 = α1, αi2 = α2, and αi3 = α3, where i is the number of the cell
in the row (the skeleton of a lattice is depicted in Figure 7). For example, i = 1 for cell ABC and i = 2
for B DE . Along AB and B D, j = 1; along BC and DE , j = 2; and along AC and B E , j = 3.

Consider a lattice consisting of two cells ABC and B DE (Figure 7). The lattice is pin-joined at A, B,
and D to a substrate with CTE A1 while at points C and E it is pin-joined to a substrate with CTE A2. At
the initial state, AB = BC = AC = B D = DE = B E = L . When the temperature changes, the lengths
of these segments become L(1+αi j dT ). The first substrate and the bottom level of the lattice have the
same CTE (Condition (1)), α11 = α21 = A1. Similarly, when temperature changes, the distance between
points C and E changes following the formula L(1+ A2dT ) (Condition (2)). Denote F B = x . Then for
the first cell,

L2(1+α12dT )2− x2
= L2(1+α13dT )2− (L(1+α11dT )− x)2.
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Figure 7. Designation of CTEs in a multicell lattice. Note that the lines do not represent
actual cell members; these lines refer to the virtual equilateral triangles upon which the
cells are based, shown in Figure 1 as dashed lines. The cell vertices are A to E while
the midpoints on the lower face of the cell are F and G. H is the height of the cells. If
the lattice has a line of symmetry, it would exist as the dashed line with additional cells
to the left.

Neglecting terms with α2
i j , we get

x = 0.5L(1+ (α11+ 2α12− 2α13)dT ).

Using this formula, we can find from the second cell that

BG = 0.5L(1+ (α21− 2α22+ 2α23)dT ).

Thus, when temperature changes, the distance between points C and E changes according to the rule

C E = L(1+ (α12−α13−α22+α23+ A1)dT ).

Hence,

A2 = α12−α13−α22+α23+ A1.

Also, we would like to design a lattice that does not expand along FC and G E so that the lattice
cell height H remains constant when temperature changes (Condition (3)). Applying the approach used
above, we can write, for example, for the first cell

(H + d H)2 = L2(1+α12dT )2− 0.25L2(1+ (2α12− 2α13+α11)dT )2

=
(
0.5
√

3L(1+ 2
3(α12+α13− 0.5α11)dT )

)2
.

Thus, the CTE along cell heights FC and G E is αH =
2
3(α12+α13− 0.5α11). In this case,

α12+α13− 0.5α11 = 0.

Finally, for more uniform deformation of the lattice, symmetry can be imposed through α12 = α23 and
α13 = α22 (Condition (4)).
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For a lattice consisting of two symmetric cells, three CTEs in each cell can be found as functions of
the CTEs of the substrates

α11 = α21 = A1,

α12 = α23 = 0.25A2,

α13 = α22 = 0.5A1− 0.25A2.

(14)

All values must belong to the interval �, and the CTEs, α1 and α2, of the two materials that comprise
the lattice are restricted by the following inequalities:

α2+ A1 > 2α1,

α2+ 0.25A2 > 2α1,

α2+ 0.5A1− 0.25A2 > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1 > 3.48A2,

α2+ 12.93α1 > 6.97A1− 3.48A2.

(15)

From (15), it follows that, in the particular case when the lattice is made of the same materials as
the substrates (α1 = A1 and α2 = A2), the ratio of the lattice material CTEs must lie in the range
2< α2/α1 < 5.20875.

For a three-cell lattice, we obtain similar formulae:

α11 = α21 = α31 = A1,

α12 = α33 = 0.5A2− 0.25A1,

α13 = α32 = 0.75A1− 0.5A2,

α22 = α23 = 0.25A1.

(16)

The conditions on the CTEs of the materials comprising the lattice are:

α2+ 0.25A1 > 2α1,

α2+ 0.5A2− 0.25A1 > 2α1,

α2+ 0.75A1− 0.5A2 > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1 > 6.97A2− 3.48A1,

α2+ 12.93α1 > 10.45A1− 6.97A2.

(17)

From (17), it follows that, if α1 = A1 and α2 = A2, 2.5 < α2/α1 < 2.7515. This is a very narrow
range with few candidate materials, so for the lattices consisting of three or more cells, choosing lattice
materials different from the substrate materials is nearly obligatory. Aluminum and titanium are a rare
combination of common substrate materials that can be connected by a three-cell lattice of the same
materials.
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If the lattice contains 2n cells, n = 2, 3, 4, . . . , and is symmetrical with respect to the vertical line
passing through one of the bottom vertices (see the line of symmetry in Figure 7), the formulae for cells
lying to the right of the symmetry line are

αi1 = A1,

αi2 = 0.5i A1− 0.25(2i − 1)A2,

αi3 = 0.25(2i − 1)A2− 0.5(i − 1)A1,

(18)

where i = 1, 2, . . . , n.
The conditions for the lattice materials are

α2+ A1 > 2α1,

α2− 0.25A2+ 0.5A1+ 0.5i(A2− A1) > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1+ 6.97i(A2− A1) > 3.48A2.

(19)

Two additional analogous conditions define the maximum number of cells that the lattice made of
these materials can contain:

n <
2α2+ 0.5A2− 4α1

A2− A1
,

n <
0.5A2+ 0.14α2+ 1.86α1− A1

A2− A1
.

(20)

If we need to design a lattice of more complex shape or just a lattice without the vertical line of
symmetry or consisting, for example, of an odd number of cells, the formulae for the cells’ CTEs and the
lattice-material selection can be obtained in similar way. If two substrates are connected by a one-row
lattice with three cells or more, they also can be connected by a lattice containing two or more rows.
This may be advantageous if a lattice possessing a particular ratio of width to height is preferable.

5. General algorithm of lattice design

Assembling all the reasoning presented in the previous sections, this algorithm is effective for lattice-
tailoring:

(1) Choose the initial number of cells in the lattice.

(2) Using the formulae (14), (16), or (18), find the CTEs αi j in all cells of the lattice as functions of the
substrate CTEs A1 and A2.

(3) Choose the materials of the lattice accounting for the relations (15), (17), (19), or (20), and find the
ratio α2/α1.

(4) Check the existence of solutions to equations (6) at calculated values of normalized CTEs of the
current cell αi/α1 = αi j/α1, i = 1, 2, 3, and the chosen ratio of α2/α1.

(5) If the solution exists, find the skew angles of the current cell. Then repeat the previous step with
the next cell of the lattice.
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(6) If the solution does not exist, there are three options:
(a) Choose lattice materials with a higher value of the ratio α2/α1.
(b) Use unequal negative skew angles adjacent to the cell members in order to provide a wider

range of cell CTEs.
(c) Reduce the number of cells in the lattice.

(7) After Step (6), repeat Step (4).

(8) The lattice design halts when this procedure is performed for all cells in the lattice. If the lattice
can be successfully designed, it may be possible to increase the number of units cells and redesign
the lattice, beginning at Step (1).

The initial number of lattice cells is determined heuristically, accounting for the geometry of the substrates
and the difference between their CTEs. The larger the difference, the fewer cells the lattice can contain.
Problem 6 from the next section will illustrate this. The final number of cells is determined through
Step (6)(c) in the design algorithm.

Aluminum substrate
CTE = A2 = 22.2 ppm/C

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Figure 8. Problem 1: Two-cell aluminum-titanium lattice to connect aluminum and
titanium substrates.

6. Examples

Problem 1. This is an example of connecting titanium and aluminum substrates by a two-cell lattice
made also of titanium and aluminum. So α1= A1= 8.6 ppm/C, α2= A2= 22.2 ppm/C, and α2/α1= 2.58.
For these values of α1 and α2, �= [−0.581, 1.1135]. From (14), we find α11/α1 = α21/α1 = A1/α1 = 1,
α12/α1 = α23/α1 = 0.25A2/α1 = 0.64535, and α13/α1 = α23/α1 = 0.5A1/α1−0.25A2 =−0.14535. All
values of αi j belong to �. Now using formulae (11), the skew angles in the left cell can be calculated as
t1 = 0.0◦, t2 = 12.9◦, and t3 = 27.1◦ (Figure 8).

In the problem of the two-cell lattice connecting titanium and aluminum substrates, the inequalities
(15) define a region of allowable values of α1 and α2; the region is plotted in Figure 9. For this case,
the third and fourth inequalities in (15) are the strongest. Their intersection provides a minimum of
α2 = 17.14 ppm/C with corresponding α1 = 7.94 ppm/C.

The utility of the lattice adapter can be illustrated by this example. For comparison, a bimetallic
strip consisting of titanium and aluminum layers of the same thickness welded together and uniformly
heated to 100◦C will be bent due to thermal-expansion mismatch [Timoshenko 1925]. The maximum
stress during heating of this bimetallic strip [Timoshenko 1925] is 70.5 MPa. A pinned lattice adapter
experiences no thermal distortion or thermal stress.
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Figure 9. Problem 1: The white region indicates the ranges for the CTEs of the lattice
materials that can be used to design the lattice for Problem 1. The lines defining the
allowable region are the inequalities in (15). Note the difference in the scales of the two
axes; for small or moderately large values of α1, large values of α2 are implied.

Problem 2. The same lattice materials can be used to connect other substrates that have CTEs that are
more widely different, for example, zirconium and lead. In this case, A1= 5.7 ppm/C and A2= 28 ppm/C
with�=[−0.581, 1.1135]. Then α11/α1=α21/α1= A1/α1= 0.66279, α12/α1=α23/α1= 0.25A2/α1=

0.81395, and α13/α1 = α23/α1 = 0.5A1/α1− 0.25A2 = −0.48256. Again, αi j belong to �. The skew
angles for the left cell are t1 = 12.71◦, t2 = 8.65◦, and t3 = 30.48◦ (Figure 10). It is seen that skew angles
of the lattice cells are greater than those from Problem 1. We have allowed t3 > 30◦ because these are the
exterior sides of the lattice, and hence, there are no adjacent cells to cause interference. It does however
make impossible the addition of further cells.

Lead substrate
CTE = A2 = 28 ppm/C

Zirconium substrate
CTE = A1 = 5.7 ppm/C

Ti

Al

Figure 10. Problem 2: Two-cell aluminum-titanium lattice to connect zirconium and
lead substrates.
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Lead substrate
CTE = A2 = 28 ppm/C

Zirconium substrate
CTE = A1 = 5.7 ppm/C

Ti

Pb

Figure 11. Problem 3: Two-cell lead-titanium lattice to connect zirconium and lead substrates.

Problem 3. We can connect the same substrates as in Problem 2 using other materials for the lattice,
for example, titanium and lead. While these materials are unlikely candidates for lattice construc-
tion, their widely differing CTEs make them good example materials. In this case, α1 = 8.6 ppm/C,
α2 = 28.0 ppm/C, and α2/α1 = 3.25. A1 and A2 and therefore the values of αi j have the same values as
in Problem 2. For this combination of lattice materials, �= [−1.256, 1.162]. All values of αi j belong
to �. From formulae (11), the skew angles in the left cell can be calculated as t1 = 10.0◦, t2 = 6.5◦,
and t3 = 25.7◦ (Figure 11). In this lattice, the ratio α2/α1 is greater than in the lattices of the previous
problems, which is why the lattice cells are less skewed.

Problem 4. In this problem, we design a three-cell aluminum-titanium lattice connecting aluminum and
titanium substrates. It is possible because the ratio of CTEs of the substrates satisfies 2.5< α2/α1 < 2.7515.
Using formulae (16), we find α11/α1=α21/α1=α31/α1= 1, α12/α1=α33/α1= 1.04, α13/α1=α32/α1=

−0.54, and α22/α1=α23/α1= 0.25. The skew angles for the first cell on the left are t1= 0.0◦, t2=−3.0◦,
and t3 = 32.6◦. The skew angles for the second cell are t1 = 0.0◦, t2 = 21.0◦, and t3 = 21.0◦ (Figure 12).
Here, although α2/α1 ∈ �, this ratio is very close to the minimum boundary of �. That is why t3 in
the first cell on the left and t2 in last cell on the right are greater than 30◦. In this case, it is admissible
because these skew angles do not cause overlapping with adjoining lattice cells but force a limit to the
number of cells in this lattice to be three.

Aluminium substrate
CTE = A2 = 22.2 ppm/C

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Figure 12. Problem 4: Three-cell titanium-aluminum lattice to connect titanium and
aluminum substrates.
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Titanium substrate
CTE = A1 = 8.6 ppm/C

Lead substrate
CTE = A2 = 28 ppm/C

Ti

Al

Figure 13. Problem 5: Three-cell titanium-aluminum lattice to connect titanium and
lead substrates. The available range of thermal expansion is expanded by allowing the
six skew angles to be independent.

Problem 5. Suppose there is a need to connect titanium and lead substrates by a three-cell titanium-
aluminum lattice. From formulae (16), we have α11/α1 = α21/α1 = α31/α1 = 1, α12/α1 = α33/α1 =

1.375, α13/α1 = α32/α1 = −0.875, and α22/α1 = α23/α1 = 0.25. For the chosen lattice materials,
�= [−0.581, 1.1135]. As we can see, α12/α1= α33/α1 /∈� and α13/α1= α32/α1 /∈�. To overcome this
for α12/α1, we can use negative nonsymmetric skew angles θ3 6= θ4, and for α13/α1, we can use symmetric
angles greater than 30◦; this will not lead to the overlapping of the cells because these skew angles are
adjacent to the external sides of the lattice. The skew angles for the second cell are the same as in
Problem 4. The solution for the first cell on the left is not unique; for example, the skew angles that satisfy
(6) may be θ1= θ2=0.0◦, θ3=−30.0◦, θ4=−6.2◦, and θ5= θ6=35.3◦. Figure 13 is a sketch of the lattice.

Problem 6. If the substrate materials have CTEs that are relatively similar (A2/A1 . 2), we can design
a lattice consisting of four cells and more. For example, suppose we would like to connect titanium
(A1 = 8.6 ppm/C) and stainless-steel (A2 = 17.3 ppm/C) substrates with an aluminum-titanium lattice.
For such materials, the maximum total number of cells in the lattice according to inequalities (20) is 4.
Using formulae (18), we have α11/α1 = α21/α1 = 1, α12/α1 = 0.5A1/α1− 0.25A2/α1 = 0.03, α13/α1 =

0.25A2/α1 = 0.5, α22/α1 = A1/α1− 0.75A2/α1 = −0.5, and α23/α1 = 0.75A2/α1− 0.5A1/α1 = 1.0.
Now, using (11), for Cell 1, t1 = 0.0◦, t2 = 24.6◦, and t3 = 16.1◦. For Cell 2, t1 = 0.0◦, t2 = 32.0◦, and
t3 = 0.0◦ (Figure 14). Two other cells are symmetric with respect to the vertical line passing through
the middle of the lattice. Note that, if the second substrate is made from ferritic stainless steel with CTE
A2 = 9.9 ppm/C, then the maximum number of the cells in the lattice would be 22.

2

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Stainless steel substrate
CTE = A2 = 17.3 ppm/C

1

Figure 14. Problem 6: Four-cell aluminum-titanium lattice for stainless steel and tita-
nium substrates.
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The solutions to the problems considered above show that, the more the substrates’ CTEs differ, the
more the lattice cells are skewed. On the other hand, the higher the ratio of CTEs of the lattice materials,
the less the cells of the lattice are skewed. Also, different skew angles adjacent to the same side of the
cell can provide a wider range of CTEs compared to corresponding skew angles equal to each other.

7. Conclusion

The anisotropic planar lattices described in this paper provide a structural option for connecting materials
with differing CTEs without generating thermal stresses during temperature excursions. Each cell is
composed of internal and external triangles made of materials with different CTEs and pin-connected at
three locations. The internal triangle is regular whereas the external triangle is deformed with varying
skew angles. As a consequence of the variation in skew angles in a single cell, the cells have anisotropic
CTEs. Combining cells with anisotropic CTEs into a pin-jointed lattice provides the capability to achieve
desirable, and differing, CTEs on the bottom and top edges of the lattice. Such lattices can therefore be
used as transition elements between two parts of a structure (substrates) with different CTEs, and as a
result, the whole structure will be free of thermal stresses. Additionally, these lattices are relatively stiff;
the isotropic variants are nearly optimally stiff for a structure of this nature [Steeves et al. 2007]. Alterna-
tive options for adapters for thermal mismatch mitigation either induce thermal stresses and curvatures
or are very compliant.

The design strategy described herein provides a systematic process for choosing the geometric config-
uration of a single-row lattice that connects substrates of known materials. In particular, guidance on the
choice of the materials that would be appropriate to connect the substrates is given, based upon the CTEs
of the substrate materials. The design process for single rows of lattice can be extended to multiple rows
if that provides a preferable aspect ratio for the adapter. A key limitation to this lattice system is that there
are stringent limits on the maximum number of cells that can be used. As the difference between the
substrate CTEs increases, the maximum number of lattice cells is reduced because the total deflections
that must be accommodated increase with lattice length. An option for mitigating this limitation is to use
multirow lattices and permit rotation of the lattice cells. Such topics are the subject of ongoing research.
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