
Journal of

Mechanics of
Materials and Structures

Volume 9, No. 2 March 2014

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele

EDITORIAL BOARD

ADAIR R. AGUIAR University of São Paulo at São Carlos, Brazil
KATIA BERTOLDI Harvard University, USA

DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, USA

THOMAS J. PENCE Michigan State University, USA
YASUHIDE SHINDO Tohoku University, Japan
DAVID STEIGMANN University of California at Berkeley

ADVISORY BOARD

J. P. CARTER University of Sydney, Australia
R. M. CHRISTENSEN Stanford University, USA
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, USA
J. HUTCHINSON Harvard University, USA

C. HWU National Cheng Kung University, Taiwan
B. L. KARIHALOO University of Wales, UK

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland

D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil
M. B. RUBIN Technion, Haifa, Israel

A. N. SHUPIKOV Ukrainian Academy of Sciences, Ukraine
T. TARNAI University Budapest, Hungary

F. Y. M. WAN University of California, Irvine, USA
P. WRIGGERS Universität Hannover, Germany

W. YANG Tsinghua University, China
F. ZIEGLER Technische Universität Wien, Austria

PRODUCTION production@msp.org

SILVIO LEVY Scientific Editor

Cover photo: Mando Gomez, www.mandolux.com

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2014 is US $555/year for the electronic version, and
$710/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/jomms/
mailto:production@msp.org
http://www.mandolux.com
http://msp.org/jomms/
http://msp.org/
http://msp.org/


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 9, No. 2, 2014

dx.doi.org/10.2140/jomms.2014.9.121 msp

PLANE WAVES AT THE BOUNDARY
OF TWO MICROPOLAR THERMOELASTIC SOLIDS WITH DISTINCT

CONDUCTIVE AND THERMODYNAMIC TEMPERATURES

RAJNEESH KUMAR, MANDEEP KAUR AND SATISH C. RAJVANSHI

The present investigation is concerned with wave propagation at an interface of two different micropolar
thermoelastic solid half-spaces with distinct conductive and thermodynamic temperatures. Reflection
and transmission phenomena of plane waves impinging obliquely at a plane interface between two dif-
ferent micropolar thermoelastic solid half-spaces with two temperatures are investigated. The incident
wave is assumed to be striking at the plane interface after propagating through one of the micropolar
generalized thermoelastic solids with two temperatures. Amplitude ratios of the various reflected and
transmitted waves are obtained in closed form and it is found that these are functions of the angle of
incidence and frequency, and are affected by the elastic properties of the media. Micropolarity and two-
temperature effects are shown on these amplitude ratios for a specific model. Results of some earlier
workers have also been deduced from the present investigation.

1. Introduction

The theory of micropolar elasticity introduced and developed by Eringen [1966] has aroused much inter-
est in recent years because of its possible utility in investigating the deformation properties of solids
for which classical theory is inadequate. Micropolar theory is believed to be particularly useful in
investigating material consisting of bar-like molecules, which exhibit microrotational effects and can
support body and surface couples. A micropolar continuum is a collection of interconnected particles in
the form of small rigid bodies undergoing both translational and rotational motions. The force at a point
of the surface element of a body is completely characterized by the force stress vector and couple stress
vector at that point.

The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar
continua to include thermal effects. A comprehensive review of the subject was given in [Eringen 1970;
1999; Nowacki 1981]. Tauchert et al. [1968] also derived the basic equations of the linear theory of
micropolar coupled thermoelasticity. Dost and Tabarrok [1978] presented the generalized thermoelas-
ticity by using Green and Lindsay theory. Chandrasekharaiah [1986] developed a heat flux-dependent
micropolar thermoelasticity. Boschi and Ieşan [1973] extended a generalized theory of micropolar ther-
moelasticity that permits the transmission of heat as thermal waves at finite speeds.

Thermoelasticity with two temperatures is one of the nonclassical theories of the thermoelasticity of
elastic solids. The main difference between this theory and the classical theory is the thermal dependence.

MSC2010: 74A10, 74J05.
Keywords: micropolar thermoelastic solid, conductive and thermodynamic temperatures, elastic waves, reflection coefficient,
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Chen and Williams [1968] and Chen et al. [1969] formulated a theory of heat conduction in deformable
bodies. This depends on two distinct temperatures, the conductive temperature 8 and thermodynamic
temperature T . Chen et al. [1969] suggested that the difference between these two temperatures is
proportional to the heat supply. These two temperatures may be equal under certain conditions for time-
independent situations. However, for time-dependent problems relating to wave propagation, these two
temperatures are, in general, different, regardless of the presence of a heat supply. The two tempera-
tures and the strain are found to have representation in the form of a traveling wave pulse, a response
which occurs instantaneously throughout the body [Boley and Tolins 1962]. Warren and Chen [1973]
investigated wave propagation in the two-temperature theory of thermoelasticity.

Youssef [2006] presented a new theory of generalized thermoelasticity by taking into account the the-
ory of heat conduction in deformable bodies, which depends on distinct conductive and thermodynamic
temperatures. He also established a uniqueness theorem for the equation of two-temperature generalized
linear thermoelasticity for a homogeneous and isotropic body. Recently, Puri and Jordan [2006] studied
the propagation of plane waves under two temperatures. Youssef and Al-Lehaibi [2007] and Youssef and
Al-Harby [2007] investigated various problems on the basis of two-temperature thermoelasticity with a
relaxation time and showed that the obtained results are qualitatively different when compared to those in
the case of one-temperature thermoelasticity. Magaña and Quintanilla [2009] investigated the uniqueness
and growth of the solution in two-temperature generalized thermoelastic theories. Mukhopadhyay and
Kumar [2009] studied thermoelastic interaction in two-temperature generalized thermoelasticity in an in-
finite medium with a cylindrical cavity. Various investigators have studied problems in two temperatures,
for example, [Kaushal et al. 2010; Kumar and Mukhopadhyay 2010; El-Karamany 2011; El-Karamany
and Ezzat 2011; Kaushal et al. 2011].

Various authors have investigated the problems of reflection and transmission at the boundary surface
of micropolar elastic solid half-spaces, for example, [Tomar and Gogna 1992; 1995a; 1995b; Hsia and
Cheng 2006; Hsia et al. 2007; Kumar and Barak 2007; Kumar et al. 2008a; 2008b].

In this paper, we study the problem of reflection and transmission of plane waves at an interface of
two different micropolar generalized thermoelastic solid half-spaces with two temperatures. Micropo-
larity and two-temperature effects are depicted graphically on the amplitude ratios for the incidence of
various plane waves, that is, longitudinal displacement waves (LD waves), thermal waves (T waves), and
transverse displacement waves coupled with transverse microrotational waves (CD-I and CD-II waves).

2. Basic equations

Following [Eringen 1966; Ezzat and Awad 2010], the field equations in an isotropic, homogeneous,
micropolar elastic medium in the context of the generalized theory of thermoelasticity with two temper-
atures, without body forces, body couples, or heat sources, are given by

(λ+ 2µ+ K )∇(∇ · Eu)− (µ+ K )∇ × (∇ × Eu)+ K (∇ × Eφ)− ν∇T = ρ
∂2
Eu

∂t2 , (1)

(α+β + γ )∇(∇ · Eφ)− γ∇ × (∇ × Eφ)+ K (∇ × Eu)− 2K Eφ = ρ j
∂2 Eφ

∂t2 , (2)

K ∗∇28= ρc∗
(
∂T
∂t
+ τ0

∂2T
∂t2

)
+ νT0

(
∂

∂t
+ τ0

∂2

∂t2

)
(∇ · Eu), (3)
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where

T = (1− a∇2)8,

and the constitutive relations are

ti j = λur,rδi j +µ(ui, j + u j,i )+ K (u j,i − εi jrφr )− ν(1− a∇2)8δi j , (4)

mi j = αφr,rδi j +βφi, j + γφ j,i , i, j, r = 1, 2, 3, (5)

where λ and µ are Lamé’s constants; K , α, β, and γ are micropolar constants; ti j are the components
of the stress tensor; mi j are the components of couple stress tensor; Eu and Eφ are the displacement and
microrotation vectors; δi j is the Kronecker delta; ρ is the density; εi jr is the alternating symbol; j is the
microinertia; K ∗ is the thermal conductivity; c∗ is the specific heat at constant strain; τ0 is the relaxation
time; T is the deviation of the thermodynamic temperature from the reference temperature; 8 is the
deviation of the conductive temperature from the reference temperature; T0 is the reference temperature;
a is the two-temperature parameter; and ν = (3λ+ 2µ+ K )αT , where αT is the coefficient of linear
thermal expansion.

The necessary and sufficient conditions for the internal energy to be nonnegative as given in [Eringen
1970] are

0≤ (3λ+ 2µ+ K ), 0≤ µ, 0≤ K , 0≤ 3α+ 2γ, −γ ≤ β ≤ γ, 0≤ γ.

3. Formulation of the problem

We consider a homogeneous, isotropic, micropolar, thermoelastic solid half-space with two temperatures
(medium M2) lying over another homogeneous, isotropic, micropolar, thermoelastic solid half-space with
two temperatures (medium M1). The rectangular Cartesian coordinate system Ox1x2x3 having origin on
the surface x3 = 0 with the x3-axis pointing vertically into the medium M1 is introduced. Quantities in
medium M2 are denoted with a bar, while those in medium M1 have no bar.

We consider the two-dimensional problem in the x1x3-plane, so that the displacement vector Eu and
microrotation vector Eφ for the solid medium M1 are taken as

Eu = (u1(x1, x3), 0, u3(x1, x3)), Eφ = (0, φ2(x1, x3), 0). (6)

For convenience, the following nondimensional quantities are introduced:

x ′1 =
ω∗x1

c1
, x ′3 =

ω∗x3

c1
, u′1 =

ρω∗c1

νT0
u1, u′3 =

ρω∗c1

νT0
u3, φ′2 =

ρc2
1

νT0
φ2,

t ′ = ω∗t, T ′ = T
T0
, 8′ =

8

T0
, t ′i j =

1
νT0

ti j , m′i j =
ω∗

c1νT0
mi j ,

τ ′0 = ω
∗τ0, a′ =

ω∗2

c2
1

a,

(7)

where

ω∗ =
ρc∗c2

1

K ∗
, c2

1 =
λ+2µ+K

ρ
.
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The expressions relating the displacement components u1 and u3 to the potential functions φ and ψ in
dimensionless form are taken as

u1 =
∂φ

∂x1
−
∂ψ

∂x3
, u3 =

∂φ

∂x3
+
∂ψ

∂x1
. (8)

Making use of (8) in (1)–(2) and with the aid of (6) and (7) (after suppressing the primes), we obtain

∇
2φ− (1− a∇2)8−

∂2φ

∂t2 = 0, (9)

∇
2ψ + a1φ2− a2

∂2ψ

∂t2 = 0, (10)

∇
2φ2− a3∇

2ψ − a4φ2− a5
∂2φ2

∂t2 = 0, (11)

∇
28= a6

(
1+ τ0

∂

∂t

)
∂

∂t
(1− a∇2)8+ a7

(
∂

∂t
+ τ0

∂2

∂t2

)
∇

2φ, (12)

where

a1 =
K

µ+K
, a2 =

ρc2
1

µ+ K
, a3 =

K c2
1

γω∗2
, a4 = 2a3, a5 =

ρ̂c2
1

γ
, a6 =

ρc∗c2
1

K ∗ω∗
, a7 =

ν2T0

ρK ∗ω∗
,

and ∇2
=
∂2

∂x2
1
+
∂2

∂x2
3

is the Laplacian operator.

4. Boundary conditions

The boundary conditions at the interface x3 = 0 are requirements of the continuity of the normal stress
component, the tangential stress component, the tangential couple stress component, the tangential dis-
placement component, the normal displacement component, the microrotation component, and of the
thermodynamic temperature and normal component of the heat flux. Mathematically these can be written
as

t33= t̄33, t31= t̄31, m32= m̄32, u1= ū1, u3= ū3, φ2=φ2, T = T , K ∗ ∂T
∂x3
= K ∗ ∂T

∂x3
. (13)

5. Reflection and transmission

We consider LD waves, T waves, CD-I, and CD-II waves propagating through medium M1, which we
designate as the region x3 > 0, and incident at the plane x3 = 0 with direction of propagation at angle
θ0 normal to the surface. Corresponding to each incident wave, we get reflected LD, T, CD-I, and CD-II
waves in medium M1 and transmitted LD, T, CD-I, and CD-II waves in medium M2, as shown in Figure 1.
In order to solve (9)–(12), we assume solutions of the form

{φ,8,ψ, φ2} = {φ̃, 8̃, ψ̃, φ̃2}eι{k(x1sin θ−x3cos θ)−ωt}, (14)

where k is the wave number, ω the angular frequency, θ the angle of incidence, and φ, 8, ψ , and φ2

arbitrary constants.
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Figure 1. Geometry of the problem.

Making use of (14) in (9)–(12) yields

V 4
+ D1V 2

+ E1 = 0, (15)

V 4
+ D2V 2

+ E2 = 0, (16)

where

D1 =
−1+ (a− 1/ω2)a6ω

2(ι/ω+ τ0)− a7(ι/ω+ τ0)

a6(ι/ω+ τ0)
, E1 =

1− aω2
[a7(ι/ω+ τ0)+ a6(ι/ω+ τ0)]

a6(ι/ω+ τ0)
,

D2 =

(
a1a3

ω2a2
+ 1

)
1

(a4/ω2−a5)
−

1
a2
, E2 =

1
(a5− a4/ω2)a2

,

and V 2
= ω2/k2.

Equations (15) and (16) are quadratic in V 2, therefore the roots of these equations give four values of
V 2. Corresponding to each value of V 2 in (15), there exist two types of waves in medium M1 which are,
in decreasing order of their velocities, a LD and a T wave. Similarly, corresponding to each value of V 2

in (16), there exist two types of waves in medium M1, a CD-I and a CD-II wave. Let V1 and V2 be the
velocities of the reflected LD and T waves, respectively, and V3 and V4 be the velocities of the reflected
CD-I and CD-II waves in medium M1, respectively.

In view of (14), the appropriate solutions of (9)–(12) for mediums M1 and M2 are assumed in the
following forms.
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For medium M1:

{φ,8} =

2∑
i=1

{1, fi }[S0i eι{ki (x1sin θ0i−x3 cos θ0i )−ωi t}+ Pi ], (17)

{ψ, φ2} =

4∑
j=3

{1, f j }[T0 j eι{k j (x1sin θ0 j−x3 cos θ0 j )−ω j t}+ Pj ]. (18)

Medium M2:

{φ,8} =

2∑
i=1

{1, f̄i }[Si eι{k̄i (x1 sin θ i−x3cos θ i )−ω̄i t}], (19)

{ψ, φ2} =

4∑
j=3

{1, f̄ j }[T j eι{k̄ j (x1 sin θ j−x3cos θ j )−ω̄ j t}], (20)

where
Pi = Si eι{ki (x1sin θi+x3cos θ i )−ωi t}, Pj = T j eι{k j (x1sin θ j+x3cos θ j )−ω j t},

fi =
ω2(1− 1/V 2

i )

1+ aω2/V 2
i
, f j =

−ω2(a2− 1/V 2
j )

a1
,

and S0i and T0 j are the amplitudes of the incident LD and T waves, and CD-I and CD-II waves, re-
spectively. Si and T j are the amplitudes of the reflected LD and T waves, and CD-I and CD-II waves,
respectively, and Si and T j are the amplitudes of the transmitted LD and T waves, and CD-I and CD-II
waves, respectively.

In order to satisfy the boundary conditions, we use the following extension of Snell’s law:

sin θ0

V0
=

sin θ1

V1
=

sin θ2

V2
=

sin θ3

V3
=

sin θ4

V4
=

sin θ1

V 1
=

sin θ2

V 2
=

sin θ3

V 3
=

sin θ4

V 4
, (21)

where
k1V1 = k2V2 = k3V3 = k4V4 = k̄1V 1 = k̄2V 2 = k̄3V 3 = k̄4V 4 = ω, at x3 = 0. (22)

Making use of the values of φ, ψ , 8, and φ2 from (17)–(20) in boundary conditions (13), and with the
aid of (4)–(8), using (21) and (22), we obtain a system of eight nonhomogeneous equations which can
be written as

8∑
j=1

ai j Z j = Yi (i = 1, 2, 3, 4, 5, 6, 7, 8), (23)

where

a1i =

(
d1+ d2

(
1−

V 2
i

V 2
0

sin2θ0

))
ω2

V 2
i
+ (1− τ1ιω)

(
1+ a

ω2

V 2
i

)
fi ,

a1 j = d2
ω2

V j V0
sin θ0

√√√√1−
V 2

j

V 2
0

sin2θ0,
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a15 =−

[(
d̄1+ d̄2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
1

+ p̄0(1− τ̄1ιω)

(
1+ ā

ω2

V 2
1

)
f̄1

]
,

a16 =−

[(
d̄1+ d̄2

(
1−

V 2
2

V 2
0

sin2θ0

))
ω2

V 2
2

+ p̄0(1− τ̄1ιω)

(
1+ ā

ω2

V 2
2

)
f̄2

]
,

a17 =−d̄2
ω2

V 3V0
sin θ0

√
1−

V 2
3

V 2
0

sin2θ0, a18 =−d̄2
ω2

V 4V0
sin θ0

√
1−

V 2
4

V 2
0

sin2θ0,

a2i =−(2d4+ d5)
ω2

Vi V0
sin θ0

√
1−

V 2
i

V 2
0

sin2θ0,

a2 j =

(
d4
ω2

V 2
j

(
1− 2

V 2
j

V 2
0

sin2 θ0

)
+ d5

ω2

V 2
j

(
1−

V 2
j

V 2
0

sin2 θ0

))
− d5 f j ,

a25 = (2d̄4+ d̄5)
ω2

V 1V0
sin θ0

√
1−

V 2
1

V 2
0

sin2θ0, a26 = (2d̄4+ d̄5)
ω2

V 2V0
sin θ0

√
1−

V 2
2

V 2
0

sin2θ0,

a27 =−

[
d̄4
ω2

V 2
3

(
1− 2

V 2
3

V 2
0

sin2θ0

)
+ d̄5

(
ω2

V 2
3

(
1−

V 2
3

V 2
0

sin2θ0

)
− f̄3

)]
,

a28 =−

[
d̄4
ω2

V 2
4

(
1− 2

V 2
4

V 2
0

sin2θ0

)
+ d̄5

(
ω2

V 2
4

(
1−

V 2
4

V 2
0

sin2θ0

)
− f̄4

)]
,

a3i = 0, a3 j = ι
ω

V j

√
1−

V 2
j

V 2
0

sin2 θ0 f j , a35 = a36 = 0, a37 = ι
ω

V 3
p1

√
1−

V 2
3

V 2
0

sin2θ0 f̄3,

a38 = ι
ω

V 4
p1

√
1−

V 2
4

V 2
0

sin2θ0 f̄4,

a4i = ι
ω

V0
sin θ0, a4 j =−ι

ω

V j

√
1−

V 2
j

V 2
0

sin2 θ0,

a45 = a46 =−ι
ω

V0
sin θ0, a47 =−ι

ω

V 3

√
1−

V 2
3

V 2
0

sin2θ0, a48 =−ι
ω

V 4

√
1−

V 2
4

V 2
0

sin2θ0,

a5i = ι
ω

Vi

√
1−

V 2
i

V 2
0

sin2θ0, a5 j = ι
ω

V0
sin θ0,

a55 = ι
ω

V 1

√
1−

V 2
1

V 2
0

sin2θ0, a56 = ι
ω

V 2

√
1−

V 2
2

V 2
0

sin2θ0, a57 = a58 =−ι
ω

V0
sin θ0,

a6i = 0, a6 j = f j , a65 = a66 = 0, a67 =− f̄3, a68 =− f̄4,

a7i =

(
1+ a

ω2

V 2
i

)
fi , a7 j = 0, a75 =−

(
1+ ā

ω2

V 2
1

)
f̄1, a76 =−

(
1+ ā

ω2

V 2
2

)
f̄2, a77 = a78 = 0,
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a8i = ι
ω

Vi

(
1+ a

ω2

V 2
i

)√
1−

V 2
i

V 2
0

sin2θ0 fi , a8 j = 0,

a85 = ιp2
ω

V 1

(
1+ ā

ω2

V 2
1

)√
1−

V 2
1

V 2
0

sin2θ0 f̄1,

a86 = ιp2
ω

V 2

(
1+ ā

ω2

V 2
2

)√
1−

V 2
2

V 2
0

sin2θ0 f̄2, a87 = a88 = 0,

p̄0 =
ν

ν
, d1 =

λ

ρc2
1
, d2 =

(2µ+ K )
ρc2

1
, d4 =

µ

ρc2
1
, d5 =

K
ρc2

1
, p1 =

γ

γ
, p2 =

K ∗1
K ∗
,

d̄1 =
λ̄

ρc2
1
, d̄2 =

(2µ+ K )
ρc2

1
, d̄4 =

µ

ρc2
1
, d̄5 =

K
ρc2

1
.

(24)

In (24), i = 1, 2 and j = 3, 4, and

Z1=
S1

A∗
, Z2=

S2

A∗
, Z3=

T3

A∗
, Z4=

T4

A∗
, Z5=

S1

A∗
, Z6=

S2

A∗
, Z7=

T 3

A∗
, Z8=

T 4

A∗
. (25)

(1) For an incident LD wave:

A∗ = S01, S02 = T03 = T04 = 0, Y1 =−a11, Y2 = a21, Y3 = a31 = 0,

Y4 =−a41, Y5 = a51, Y6 = a61 = 0, Y7 =−a71, Y8 = a81.

(2) For an incident T wave:

A∗ = S02, S01 = T03 = T04 = 0, Y1 =−a12, Y2 = a22, Y3 = a32 = 0,

Y4 =−a42, Y5 = a52, Y6 = a62 = 0, Y7 =−a72, Y8 = a82.

(3) For an incident CD-I wave:

A∗ = T03, S01 = S02 = T04 = 0, Y1 = a13, Y2 =−a23, Y3 = a33,

Y4 = a43, Y5 =−a53, Y6 =−a63, Y7 = a73 = 0, Y8 = a83 = 0.

(4) For an incident CD-II wave:

A∗ = T04, S01 = S02 = T03 = 0, Y1 = a14, Y2 =−a24, Y3 = a34,

Y4 = a44, Y5 =−a54, Y6 =−a64, Y7 = a74 = 0, Y8 = a84 = 0,

where Z1, Z2, Z3, and Z4 are the amplitude ratios of the reflected LD, T, and coupled CD-I and CD-II
waves in the medium M1, and Z5, Z6, Z7, and Z8 are the amplitude ratios of the transmitted LD, T, and
coupled CD-I and CD-II waves in medium M2.



PLANE WAVES AT THE BOUNDARY OF TWO MICROPOLAR THERMOELASTIC SOLIDS 129

6. Particular cases

Case I. If the two-temperature parameters vanish, that is, a = 0 and ā = 0 in (23), then we obtain the
amplitude ratios at the interface of the two micropolar thermoelastic solid half-spaces with the following
changed values of ai j :

a1i =

(
d1+ d2

(
1−

V 2
i

V 2
0

sin2θ0

))
ω2

V 2
i
+ (1− τ1ιω) fi ,

a15 =−

[(
d̄1+ d̄2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
2

+ p̄0(1− τ̄1ιω̄1) f̄1

]
,

a16 =−

[(
d̄1+ d̄2

(
1−

V 2
2

V 2
0

sin2θ0

))
ω2

V 2
2

+ p̄0(1− τ̄1ιω̄2) f̄2

]
,

a7i = fi , a75 =− f̄1, a76 =− f̄2, a8i = ι
ω

Vi

√
1−

V 2
i

V 2
0

sin2θ0 fi ,

a85 = ιp2
ω

V 1

√
1−

V 2
1

V 2
0

sin2θ0 f̄1 a86 = ιp2
ω

V 2

√
1−

V 2
2

V 2
0

sin2θ0 f̄2.

(26)

Case II. By neglecting the thermal effect and the two-temperature effect in (23), the amplitude ratios at
the interface of the two micropolar elastic solid half-spaces are given by

6∑
j=1

ai j Z j = Yi (i = 1, 2, 3, 4, 5, 6),

where the values of ai j are given by

a1i = 0, a11 =

(
d1+ d2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
1
, a12 = d2

ω2

V3V0
sin θ0

√
1−

V 2
3

V 2
0

sin2θ0,

a13 = d2
ω2

V4V0
sin θ0

√
1−

V 2
4

V 2
0

sin2θ0, a14 =−

[(
d̄1+ d̄2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
1

]
,

a15 =−d̄2
ω2

V 3V0
sin θ0

√
1−

V 2
3

V 2
0

sin2θ0, a16 =−d̄2
ω2

V 4V0
sin θ0

√
1−

V 2
4

V 2
0

sin2θ0,

a21 =−(2d4+ d5)
ω2

V1V0
sin θ0

√
1−

V 2
1

V 2
0

sin2θ0,

a22 =

(
d4
ω2

V 2
3

(
1− 2

V 2
3

V 2
0

sin2θ0

)
+ d5

ω2

V 2
3

(
1−

V 2
3

V 2
0

sin2θ0

))
− d5 f3,

a23 =

(
d4
ω2

V 2
4

(
1− 2

V 2
4

V 2
0

sin2θ0

)
+ d5

ω2

V 2
4

(
1−

V 2
4

V 2
0

sin2θ0

))
− d5 f4,

a24 = (2d̄4+ d̄5)
ω2

V 1V0
sin θ0

√
1−

V 2
1

V 2
0

sin2 θ0,
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a25 =−

[
d̄4
ω2

V 2
2

(
1− 2

V 2
2

V 2
0

sin2θ0

)
+ d̄5

(
ω2

V 2
2

(
1−

V 2
2

V 2
0

sin2θ0

)
− f̄3

)]
,

a26 =−

[
d̄4
ω2

V 2
3

(
1− 2

V 2
3

V 2
0

sin2θ0

)
+ d̄5

(
ω2

V 2
3

(
1−

V 2
3

V 2
0

sin2θ0

)
− f̄4

)]
,

a31 = 0, a32 = ι
ω

V3

√
1−

V 2
3

V 2
0

sin2θ0 f3, a33 = ι
ω

V4

√
1−

V 2
4

V 2
0

sin2θ0 f4,

a34 = 0, a35 = ι
ω

V 3
p1

√
1−

V 2
3

V 2
0

sin2θ0 f̄3, a36 = ι
ω

V 4
p1

√
1−

V 2
4

V 2
0

sin2θ0 f̄4,

a41 = ι
ω

V0
sin θ0, a42 =−ι

ω

V3

√
1−

V 2
3

V 2
0

sin2θ0, a43 =−ι
ω

V4

√
1−

V 2
4

V 2
0

sin2θ0,

a44 =−ι
ω

V0
sin θ0, a45 =−ι

ω

V 3

√
1−

V 2
3

V 2
0

sin2θ0, a46 =−ι
ω

V 4

√
1−

V 2
4

V 2
0

sin2θ0,

a51 = ι
ω

V1

√
1−

V 2
1

V 2
0

sin2θ0, a52 = a53 = ι
ω

V0
sin θ0, a54 = ι

ω

V 1

√
1−

V 2
1

V 2
0

sin2θ0,

a55 = a56 =−ι
ω

V0
sin θ0,

a61 = 0, a62 = f3, a63 = f4, a64 = 0, a65 =− f̄3, a66 =− f̄4.

(27)

V1 is the velocity of the reflected P wave and

Z1 =
S1

A∗
, Z2 =

T3

A∗
, Z3 =

T4

A∗
, Z4 =

S1

A∗
, Z5 =

T 3

A∗
, Z6 =

T 4

A∗
, (28)

where Z1, Z2, and Z3 are the amplitude ratios of the reflected P and coupled CD-I and CD-II waves in
medium M1, and Z5, Z6, and Z7 are the amplitude ratios of the transmitted P and coupled CD-I and
CD-II waves in medium M2.

The above results are similar to those obtained by Tomar and Gogna [1995a; 1995b], changing the
dimensionless quantities into physical quantities.

Case III. By neglecting the micropolarity effect in medium M2, we obtain amplitude ratios at the inter-
face of the micropolar thermoelastic solid with two temperatures and the thermoelastic solid with two
temperatures as

7∑
j=1

ai j Z j =Yi (i = 1, 2, 3, 4, 5, 6, 7),
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where

a1i =

(
d1+ d2

(
1−

V 2
i

V 2
0

sin2θ0

))
ω2

V 2
i
+ (1− τ1ιω)

(
1+ a

ω2

V 2
i

)
fi ,

a1 j = d2
ω2

V j V0
sin θ0

√√√√1−
V 2

j

V 2
0

sin2θ0,

a15 =−

[(
d̄1+ d̄2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
1

+ p̄0(1− τ̄1ιω)

(
1+ ā

ω2

V 2
1

)
f̄1

]
,

a16 =−

[(
d̄1+ d̄2

(
1−

V 2
2

V 2
0

sin2θ0

))
ω2

V 2
2

+ p̄0(1− τ̄1ιω)

(
1+ ā

ω2

V 2
2

)
f̄2

]
,

a17 =−d̄2
ω2

V 3V 0
sin θ0

√
1−

V 2
3

V 2
0

sin2θ0,

a2i =−(2d4+ d5)
ω2

Vi V0
sin θ0

√
1−

V 2
i

V 2
0

sin2θ0,

a2 j =

(
d4
ω2

V 2
j

(
1− 2

V 2
j

V 2
0

sin2 θ0

)
+ d5

ω2

V 2
j

(
1−

V 2
j

V 2
0

sin2 θ0

))
− d5 f j ,

a25 = (2d̄4+ d̄5)
ω2

V 1V0
sin θ0

√
1−

V 2
1

V 2
0

sin2θ0,

a26 = (2d̄4+ d̄5)
ω2

V 2V0
sin θ0

√
1−

V 2
2

V 2
0

sin2θ0,

a27 =−d̄4
ω2

V 2
3

(
1− 2

V 2
3

V 2
0

sin2θ0

)
,

a3i = 0, a3 j = ι
ω

V j

√√√√1−
V 2

j

V 2
0

sin2 θ0 f j , a35 = a36 = a37 = 0, ,

a4i = ι
ω

V0
sin θ0, a4 j =−ι

ω

Vi

√√√√1−
V 2

j

V 2
0

sin2θ0, a45 = a46 =−ι
ω

V0
sin θ0,

a47 =−ι
ω

V 3

√
1−

V 2
3

V 2
0

sin2θ0, a5i = ι
ω

Vi

√
1−

V 2
i

V 2
0

sin2θ0,

a5 j = ι
ω

V0
sin θ0, a55= ι

ω

V 1

√
1−

V 2
1

V 2
0

sin2θ0, a56= ι
ω

V 2

√
1−

V 2
2

V 2
0

sin2θ0, a57=−ι
ω

V0
sin θ0,

a6i =

(
1+ a

ω2

V 2
i

)
fi , a6 j = 0, a65 =−

(
1+ ā

ω2

V 2
1

)
f̄1, a66 =−

(
1+ ā

ω2

V 2
2

)
f̄2, a67 = 0,
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a7i = ι
ω

Vi

(
1+a

ω2

V 2
i

)√
1−

V 2
i

V 2
0

sin2θ0 fi , a7 j = 0, a75= ιp2
ω

V 1

(
1+ ā

ω2

V 2
1

)√
1−

V 2
1

V 2
0

sin2θ0 f̄1,

a76 = ιp2
ω

V 2

(
1+ ā

ω2

V 2
2

)√
1−

V 2
2

V 2
0

sin2θ0 f̄2, a77 = 0,

(29)

and

Z1 =
S1

A∗
, Z2 =

S2

A∗
, Z3 =

T3

A∗
, Z4 =

T4

A∗
, Z5 =

S1

A∗
, Z6 =

S2

A∗
, Z7 =

T 3

A∗
,

where Z1, Z2, Z3, and Z4 are the amplitude ratios of the reflected LD, T, and coupled CD-I and CD-
II waves in medium M1, and Z5, Z6, and Z7 are the amplitude ratios of the transmitted LD, T, and
SV (transverse) waves in medium M2.

Subcase (a). By taking ā = 0, we obtain amplitude ratios at the interface of the micropolar thermoelastic
solid with two temperatures and the thermoelastic solid. The values of ai j are from (29), with the
following changes:

a15 =−

[(
d̄1+ d̄2

(
1−

V 2
1

V 2
0

sin2θ0

))
ω2

V 2
1

+ p̄0(1− τ̄1ιω) f̄1

]
,

a16 =−

[(
d̄1+ d̄2

(
1−

V 2
2

V 2
0

sin2θ0

))
ω2

V 2
2

+ p̄0(1− τ̄1ιω) f̄2

]
,

a65 =− f̄1, a66 =− f̄2,

a75 = ιp2
ω

V 1

√
1−

V 2
1

V 2
0

sin2θ0 f̄1, a76 = ιp2
ω

V 2

√
1−

V 2
2

V 2
0

sin2θ0 f̄2.

Case IV. If the upper medium M2 is neglected and in the absence of two-temperature effect, we obtain
the amplitude ratios at the free surface of micropolar generalized thermoelastic solid half-space as

4∑
j=1

ai j Z j = Yi (i = 1, 2, 3, 4), (30)

where the values of ai j are given by

a1i =

(
d1+ d2

(
1−

V 2
i

V 2
0

sin2θ0

))
ω2

V 2
i
+ (1− τ1ιω) fi , a1 j = d2

ω2

V j V0
sin θ0

√√√√1−
V 2

j

V 2
0

sin2θ0,

a2i =−(2d4+ d5)
ω2

Vi V0
sin θ0

√
1−

V 2
i

V 2
0

sin2θ0,

a2 j =

(
d4
ω2

V 2
j

(
1− 2

V 2
j

V 2
0

sin2 θ0

)
+ d5

ω2

V 2
j

(
1−

V 2
j

V 2
0

sin2 θ0

))
− d5 f j ,
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a3i = 0, a3 j = ι
ω

V j

√√√√1−
V 2

j

V 2
0

sin2θ0 f j , a4i = ι
ω

Vi

√
1−

V 2
i

V 2
0

sin2θ0 fi , a4 j = 0,

and
Z1 =

S1

A∗
, Z2 =

S2

A∗
, Z3 =

T3

A∗
, Z4 =

T4

A∗
, (31)

where Z1, Z2, Z3, and Z4 are the amplitude ratios of the reflected LD, T, and coupled CD-I and CD-II
waves in medium M1.

The above results are in agreement with those obtained by Singh and Kumar [1998], changing the
dimensionless quantities into physical quantities.

7. Numerical results and discussion

For numerical computations, we take the following values of the relevant parameters for both the half-
spaces.

Following Eringen [1984], the values of the micropolar constants for medium M1 are taken as

λ= 9.4× 1010 Nm−2, µ= 4.0× 1010 Nm−2, K = 1.0× 1010 Nm−2,

γ = 7.79× 10−10 N, j = 0.002× 10−17 m2, ρ = 1.74× 103 Kgm−3,

and the thermal parameters for medium M1 are taken as

T0= 0.298 K, ν= 0.268×108 Nm−2K−1, c∗= 0.104×104 Jkg−1K−1, a= 0.3 m2,

K ∗= 1.7×102 Jm−1s−1K−1, ω= 1, τ0= 0.813×10−12 s.

Following Gauthier [1982], the values of the micropolar constants for medium M2 are taken as

λ̄= 7.59× 1010 Nm−2, µ= 0.00189× 1013 Nm−2, ̄ = 0.00196× 10−16 m2,

K = 0.0149× 1010 Nm−2, γ = 2.68× 10−7 N, ρ̄ = 2.19× 103 Kgm−3.

The thermal parameters for medium M2 are taken to be of comparable magnitudes:

T 0 = 0.0296 K, ν = 0.2603× 107 Nm−2K−1, c̄∗ = 0.921× 104 Jkg−1K−1,

K ∗ = 2.04× 102 Jm−1s−1K−1, ā = 0.1 m2, τ̄0 = 0.713× 10−12 s.

In Figures 2–25, we represent with the solid line the incident wave for the micropolar thermoelastic
solid with one relaxation time and two temperatures (NL1), with the small-dashed line the incident wave
for the micropolar thermoelastic solid with one relaxation time (ZL1), with the dash-dot-dash line the
incident wave for the thermoelastic solid with one relaxation time (TZL1), and with the large-dashed
line the incident wave for the thermoelastic solid with one relaxation time and two temperatures (TL1).

7.1. Incident LD wave. Variations of amplitude ratios |Zi |, 1 ≤ i ≤ 8, with angle of incidence θ0, for
incident LD waves are shown in Figures 2–9.

Figures 2 and 3 show that the values of the amplitude ratios |Z1| and |Z2| for ZL1 remain greater than
the values for NL1 and that the values for TL1 remain greater than the values for TZL1 in the whole
range. The values of |Z2| for NL1 are magnified by a factor of 102. Figures 4 and 5 show that the values



134 RAJNEESH KUMAR, MANDEEP KAUR AND SATISH C. RAJVANSHI

0 10 20 30 40 50 60 70 80 90

Angle of Incidence θ0

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e
 r

a
ti
o

 |Ζ
1
|

NL1

ZL1

TZL1

TL1

Figure 2. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 3. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 4. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 5. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 6. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 7. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 8. Variation of amplitude ratio with angle of incidence for LD wave.

0 10 20 30 40 50 60 70 80 90

Angle of Incidence θ
0

0

0.04

0.08

0.12

A
m

p
lit

u
d

e
 r

a
ti
o

 |Ζ
8
|

NL1

ZL1

Figure 9. Variation of amplitude ratio with angle of incidence for LD wave.
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Figure 10. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 11. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 12. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 13. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 14. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 15. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 16. Variation of amplitude ratio with angle of incidence for T wave.
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Figure 17. Variation of amplitude ratio with angle of incidence for T wave.
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of |Z3| and |Z4| for NL1, ZL1, TZL1, and TL1 are oscillatory and the values for TL1 remain greater
than the values for TZL1 in the whole range.

Figure 6 shows that the values of |Z5| for ZL1, TL1, and TZL1 increase in the whole range, except
near the grazing incidence, where the values decrease sharply. Figure 7 shows that the values of |Z6|

for NL1, ZL1, TL1, and TZL1 decrease in the whole range. The values of |Z6| for ZL1 and TL1 are
magnified by a factor of 10 and for NL1 by 103.

Notice from Figures 8 and 9 that the values of |Z7| and |Z8| for ZL1 remain greater than the values for
NL1 in the whole range, except near the grazing incidence, where the values for NL1 are greater. The
values of |Z7| for TZL1 and TL1 are magnified by a factor of 10.

7.2. Incident T wave. Variations of the amplitude ratios |Zi |, 1≤ i ≤ 8, with angle of incidence θ0, for
incident T waves are shown in Figures 10–17.

Figure 10 shows that the values of |Z1| for ZL1 remain greater than the values for NL1 in the whole
domain. The values of |Z1| for NL1, ZL1, TZL1, and TL1 are reduced by a factor of 10. It is evident
from Figure 11 that the values of |Z2| for NL1 increase and those for ZL1, TZL1, and TL1 decrease in
the whole range.

Figure 12 shows that the values of |Z3| for TL1 are greater than those for NL1, and the values for TZL1
are greater than those for ZL1, in the whole range. Figure 13 shows that the behavior of the variation of
the amplitude ratio |Z4| is similar to that of |Z3| with a different magnitude. Figure 14 shows that the
values of the amplitude ratio |Z5| for NL1 are greater than for ZL1, except in the range 0◦ < θ0 < 33◦,
where the behavior is reversed.

Figure 15 shows that the values of |Z6| for NL1, ZL1, TZL1, and TL1 decrease in the whole range,
while the values for TZL1 and TL1 follow an oscillatory pattern near the grazing incidence. The values
of |Z6| for ZL1, TZL1, and TL1 and the values of |Z7| for TZL1 and TL1 are magnified by multiplying
the original value by 10. It can be noticed from Figure 16 that values of |Z7| for NL1, ZL1, TZL1, and
TL1 are oscillatory in the whole range. Figure 17 shows that the values of |Z8| for NL1 remain greater
than the values for ZL1 in the whole range.

7.3. Incident CD-I wave. Variations of the amplitude ratios |Zi |, 1≤ i ≤ 8, with angle of incidence θ0,
for incident CD-I waves are shown in Figures 18–25.

Figures 18 and 19 show that the values of the amplitude ratios |Z1| and |Z2| for NL1 and ZL1 oscillate,
while the values for TZL1 and TL1 increase with increase in θ0. The values of |Z1| for TZL1 and NL1
remain greater than those for TL1 and ZL1, respectively, in the whole range. The values of |Z2| for NL1
are magnified by a factor of 102.

Figures 20 and 21 show that the values of |Z3| and |Z4| for NL1 are greater than those for TL1, and
the values for ZL1 are greater than those for TZL1, in the whole domain, which reveals the effect of
micropolarity. Figures 22 and 23 show that the values of |Z5| and |Z6| for ZL1 remain greater than the
values for NL1 in the whole range. The values of |Z6| for NL1 are magnified by a factor of 104 and for
TL1 and TZL1 by a factor of 10.

It is shown in Figures 24 and 25 that the values of |Z7| and |Z8| for NL1 and ZL1 decrease in the
whole range, except near θ0 = 90◦, where the values increase. The values of |Z7| for TL1 and TZL1 are
magnified by a factor of 102.
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Figure 18. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 19. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 20. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 21. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 22. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 23. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 24. Variation of amplitude ratio with angle of incidence for CD-I wave.
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Figure 25. Variation of amplitude ratio with angle of incidence for CD-I wave.
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8. Conclusion

The expressions for the reflection and transmission coefficients of various reflected and transmitted waves
have been derived. When an LD wave is incident, the values of the amplitude ratios for NL1 and ZL1
follow an oscillatory pattern and the magnitudes of the amplitude ratios |Zi |, 1≤ i ≤ 8, for TL1 remain
greater than the values for TZL1. When a T wave is incident, the values of |Zi |; i = 3, 4, 7, 8 for NL1
remain more than the values for TL1 that reveals the effect of two temperatures. When a CD-I wave
is incident the values of the amplitude ratios |Z1|, |Z2|, |Z5|, |Z6|, and |Z7| for TZL1 and TL1 remain
greater than the values for ZL1 and NL1, respectively, due to the effect of micropolarity.
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[Boschi and Ieşan 1973] E. Boschi and D. Ieşan, “A generalized theory of linear micropolar thermoelasticity”, Meccanica
(Milano) 8:3 (1973), 154–157.

[Chandrasekharaiah 1986] D. S. Chandrasekharaiah, “Heat-flux dependent micropolar thermoelasticity”, Int. J. Eng. Sci. 24:8
(1986), 1389–1395.

[Chen and Williams 1968] P. J. Chen and W. O. Williams, “A note on non-simple heat conduction”, Z. Angew. Math. Phys.
19:6 (1968), 969–970.

[Chen et al. 1969] P. J. Chen, M. E. Gurtin, and W. O. Williams, “On the thermodynamics of non-simple elastic materials with
two temperatures”, Z. Angew. Math. Phys. 20:1 (1969), 107–112.

[Dost and Tabarrok 1978] S. Dost and B. Tabarrok, “Generalized micropolar thermoelasticity”, Int. J. Eng. Sci. 16:3 (1978),
173–183.

[El-Karamany 2011] A. S. El-Karamany, “Two-temperature theory in linear micropolar thermoviscoelastic anisotropic solid”,
J. Therm. Stresses 34:9 (2011), 985–1000.

[El-Karamany and Ezzat 2011] A. S. El-Karamany and M. A. Ezzat, “On the two-temperature Green–Naghdi thermoelasticity
theories”, J. Therm. Stresses 34:12 (2011), 1207–1226.

[Eringen 1966] A. C. Eringen, “Linear theory of micropolar elasticity”, J. Math. Mech. 15:6 (1966), 909–923.
[Eringen 1970] A. C. Eringen, Foundations of micropolar thermoelasticity (Udine, 1970), CISM Courses and Lectures Series
23, Springer, Vienna, 1970.

[Eringen 1984] A. C. Eringen, “Plane waves in nonlocal micropolar elasticity”, Int. J. Eng. Sci. 22:8–10 (1984), 1113–1121.
[Eringen 1999] A. C. Eringen, Microcontinuum field theories, I: Foundations and solids, Springer, Berlin, 1999.
[Ezzat and Awad 2010] M. A. Ezzat and E. S. Awad, “Constitutive relations, uniqueness of solution, and thermal shock ap-
plication in the linear theory of micropolar generalized thermoelasticity involving two temperatures”, J. Therm. Stresses 33:3
(2010), 226–250.

[Gauthier 1982] R. D. Gauthier, “Experimental investigations on micropolar media”, Chapter 7, pp. 395–463 in Mechanics of
micropolar media, edited by O. Brulin and R. K. T. Hsieh, World Scientific, Singapore, 1982.

[Hsia and Cheng 2006] S.-Y. Hsia and J.-W. Cheng, “Longitudinal plane wave propagation in elastic-micropolar porous media”,
Jpn. J. Appl. Phys. 45 (2006), 1743–1748.

[Hsia et al. 2007] S.-Y. Hsia, S.-M. Chiu, C.-C. Su, and T.-H. Chen, “Propagation of transverse waves in elastic-micropolar
porous semispaces”, Jpn. J. Appl. Phys. 46 (2007), 7399–7405.

[Kaushal et al. 2010] S. Kaushal, N. Sharma, and R. Kumar, “Propagation of waves in generalized thermoelastic continua with
two temperature”, Int. J. Appl. Mech. Eng. 15:4 (2010), 1111–1127.

[Kaushal et al. 2011] S. Kaushal, R. Kumar, and A. Miglani, “Wave propagation in temperature rate dependent thermoelasticity
with two temperatures”, Math. Sci. Quart. J. 5:2 (2011), 125–146.

[Kumar and Barak 2007] R. Kumar and M. Barak, “Wave propagation in liquid-saturated porous solid with micropolar elastic
skelton at boundary surface”, Appl. Math. Mech. (English Ed.) 28:3 (2007), 337–349.

http://dx.doi.org/10.1115/1.3640647
http://dx.doi.org/10.1115/1.3640647
http://dx.doi.org/10.1007/BF02128724
http://dx.doi.org/10.1016/0020-7225(86)90067-4
http://dx.doi.org/10.1007/BF01602278
http://dx.doi.org/10.1007/BF01591120
http://dx.doi.org/10.1007/BF01591120
http://dx.doi.org/10.1016/0020-7225(78)90046-0
http://dx.doi.org/10.1080/01495739.2011.601260
http://dx.doi.org/10.1080/01495739.2011.608313
http://dx.doi.org/10.1080/01495739.2011.608313
http://dx.doi.org/10.1512/iumj.1966.15.15060
http://dx.doi.org/10.1016/0020-7225(84)90112-5
http://dx.doi.org/10.1007/978-1-4612-0555-5
http://dx.doi.org/10.1080/01495730903542829
http://dx.doi.org/10.1080/01495730903542829
http://dx.doi.org/10.1142/9789812797247_0007
http://dx.doi.org/10.1143/JJAP.45.1743
http://dx.doi.org/10.1143/JJAP.46.7399
http://dx.doi.org/10.1143/JJAP.46.7399
http://mathscience.kiau.ac.ir/Content/Vol5No2/3.pdf
http://mathscience.kiau.ac.ir/Content/Vol5No2/3.pdf
http://dx.doi.org/10.1007/s10483-007-0307-z
http://dx.doi.org/10.1007/s10483-007-0307-z


148 RAJNEESH KUMAR, MANDEEP KAUR AND SATISH C. RAJVANSHI

[Kumar and Mukhopadhyay 2010] R. Kumar and S. Mukhopadhyay, “Effects of thermal relaxation time on plane wave propa-
gation under two-temperature thermoelasticity”, Int. J. Eng. Sci. 48:2 (2010), 128–139.

[Kumar et al. 2008a] R. Kumar, N. Sharma, and P. Ram, “Interfacial imperfection on reflection and transmission of plane waves
in anisotropic micropolar media”, Theor. Appl. Fract. Mec. 49:3 (2008), 305–312.

[Kumar et al. 2008b] R. Kumar, N. Sharma, and P. Ram, “Reflection and transmission of micropolar elastic waves at an
imperfect boundary”, Multidiscip. Model. Mater. Struct. 4:1 (2008), 15–36.

[Magaña and Quintanilla 2009] A. Magaña and R. Quintanilla, “Uniqueness and growth of solutions in two-temperature gen-
eralized thermoelastic theories”, Math. Mech. Solids 14:7 (2009), 622–634.

[Mukhopadhyay and Kumar 2009] S. Mukhopadhyay and R. Kumar, “Thermoelastic interactions on two-temperature general-
ized thermoelasticity in an infinite medium with a cylindrical cavity”, J. Therm. Stresses 32:4 (2009), 341–360.
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DYNAMIC COMPRESSION OF SQUARE TUBE CELLULAR STRUCTURES

RYAN L. HOLLOMAN, KARTHIKEYAN KANDAN,
VIKRAM DESHPANDE AND HAYDN N. G. WADLEY

Aluminum cellular structures have been fabricated by combining a two-dimensional [0◦/90◦]2 arrange-
ment of square Al 6061-T6 alloy tubes with orthogonal tubes inserted in the out-of-plane direction. By
varying the tube wall thickness, the resulting three-dimensional cellular structures had relative densities
between 11 and 43%. The dynamic compressive response of the three-dimensional cellular structure,
and the two-dimensional [0◦/90◦]2 array and out-of-plane tubes from which they were constructed, have
been investigated using a combination of instrumented Kolsky bar impact experiments, high-speed video
imaging, and finite element analysis. We find the compression rate has no effect upon the strength for
compression strain rates up to 2000 s−1, despite a transition to higher-order buckling modes at high strain
rates. The study confirms that a synergistic interaction between the colinear aligned and out-of-plane
tubes, observed during quasistatic loading, extends to the dynamic regime. Finite element simulations,
using a rate-dependent, piecewise linear strain hardening model with a von Mises yield surface and an
equivalent plastic strain failure criterion, successfully predicted the buckling response of the structures,
and confirmed the absence of strain-rate hardening in the three-dimensional cellular structure. The sim-
ulations also reveal that the ratio of the impact to back-face stress increased with strain rate and relative
density, a result with significant implications for shock-load mitigation applications of these structures.

1. Introduction

Light sandwich-panel structures are widely used in stiffness-governed design, where large bending
stresses must be supported with minimum elastic deflection [Allen 1969]. Since the flexural modulus
of a sandwich panel increases with the square of its core thickness, the primary purpose of the core
is to maintain separation of the face sheets at minimum mass [Vinson 1999]. By combining carbon
fiber-reinforced polymer composite face sheets with lightweight Nomex and other polymeric cores, very
high-flexural modulus structures have been developed for a variety of applications [Shahdin et al. 2009].
Advances in fabrication methods have led to the emergence of sandwich panels whose faces and cellular
cores are made from high-strength metallic alloys based upon aluminum [Kooistra et al. 2004; Queheillalt
et al. 2008], stainless steels [Ferri et al. 2006; Radford et al. 2007], and titanium [Queheillalt et al. 2000;
Elzey and Wadley 2001; Moongkhamklang and Wadley 2010]. These sandwich structures also have
high flexural strengths and moduli, and offer significant advantages over monolithic plates of equivalent
mass in a variety of dynamic loading scenarios [Xue and Hutchinson 2004; Deshpande and Fleck 2005;
Dharmasena et al. 2009; 2013; Wadley et al. 2013].

The benefits of metallic sandwich structures during localized impulsive loading arise from their high
flexural strength and significant plastic strain energy dissipation. Some of the incident kinetic energy

Keywords: cellular structures, 6061 aluminum, impact testing, dynamic loads, material rate-dependence.
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is stored as the plastic work of core compression, but for edge-clamped panels, a substantial fraction is
also dissipated by plastic stretching of the core and face sheets [Zok et al. 2004]. Numerous cellular core
topologies have been investigated for dynamic loading applications, including honeycombs with in-plane
stretch-resistant square [Wadley et al. 2007] or triangular [Wei et al. 2008; Dharmasena et al. 2011] cells,
as well as more-compressible prismatic topologies based upon corrugations (with stretch resistance in
only one direction) [Rimoli et al. 2011]. Concepts such as flex honeycomb [Bitzer 1997, pp. 1–9] or
lattice truss cores [Kooistra et al. 2008] have been proposed for curved sandwich panels, but these cores
are significantly less stretch resistant.

The sandwich-panel approach is not widely used to mitigate automobile impacts. Instead this com-
munity has focused on crash box (tube) designs that absorb the kinetic energy during frontal vehicle
impact [Hanssen et al. 2000b; 2001], and reduce force transmission to levels that remain below the
injury threshold for vehicle occupants. An ideal crash box design provides close to theoretical plastic
energy absorption at predictable (constant) force through progressive buckling and plastic deformation
of the box/tube structure. However, the crush response of tubes is highly impact orientation-dependent
[Abramowicz and Jones 1997; Pingle et al. 2011]. More-isotropic aluminum foams [Reyes 2008] and
foam-filled tubes [Reid 1993; Baumeister et al. 1997; Hanssen et al. 2000a] have therefore received
attention for these structural impact problems. These foam-based structures are highly compressible, and
can undergo compression at nearly constant (plateau) stress to plastic strains of 60% or more, making
them efficient impact energy absorbers. However, they possess little (or none) of the in-plane stretch
resistance that is utilized in sandwich panel-based mitigation approaches.

The compressive stress versus strain response of cellular structures is frequently found to depend upon
the rate of straining [Dannemann and Lankford 2000; Deshpande and Fleck 2000]. This can arise from
material strain-rate hardening [Wadley et al. 2003], changes in the deformation modes of the cells [Maiti
et al. 1984] and from inertial effects [Calladine and English 1984]. To eventually design a structure whose
energy absorption and stress transfer are insensitive to the rate or direction of compression, it is necessary
to understand the significance of each of these factors to the overall response. The objective of the study
reported here is to investigate the dynamic crushing of a cellular structure made from a three-dimensional
arrangement of square cross section, extruded tubes of a heat-treatable 6061 aluminum alloy, shown in
Figure 1(a), that exhibits negligible strain-rate hardening. The structure contains [0◦/90◦]2 oriented in-
plane tubes that provide in-plane stretch resistance, while the through-thickness tubes resist compression
in analogous fashion to that of a crash box design.

A recent study of the quasistatic compressive response of three-dimensional tube structures [Holloman
et al. 2013] revealed a synergistic interaction between the in and out-of-plane tubes that enhanced the en-
ergy dissipated by the structure’s component tubes. The compressive energy absorption was comparable
to that of axially loaded tubes, but had superior stretch resistance [loc. cit.], and a more omnidirectional
crush response than a collinear tube array. The study also showed that by using different wall thicknesses
for the in-plane and through-thickness tubes, it was possible to independently control the in-plane stretch
resistance and the through-thickness crush strength. The large nodal contact areas also improved load
transfer within the core, and between the core and face sheets. The topology also afforded multifunction-
ality [Evans et al. 2001] such as cross-flow heat exchange via the open channels that extend within the
structure [Tian et al. 2007]. The study described here investigates the dynamic out-of-plane compressive
response of the same structures. The dynamic crushing resistance and collapse mode mechanisms are
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Figure 1. (a) A three-dimensional tube structure with the vertical tube notched to fa-
cilitate dip braze bonding. (b) The unit cell of the three-dimensional structure with the
notch geometry incorporated. For all experiments reported here, x = y = 6.35 mm.

explored via direct-impact Kolsky bar experiments that utilize high-speed photography. Finite-element
analysis is also used to investigate the dynamic deformation modes, and to estimate the stresses at the
impact and distal faces of the structures.

2. Experimental protocols

2.1. Test structures. A two-dimensional structure was first assembled by laying down a colinear layer of
6061 aluminum alloy square tubes, each spaced a tube width apart. A second, similarly spaced, layer was
then orthogonally placed on the first, and the assembly sequence repeated to create a [0◦/90◦]2 structure.
The three-dimensional topology, shown in Figure 1(a), was then assembled from the two-dimensional
structure by inserting additional tubes in the out-of-plane (vertical) void space between the cross-ply
oriented tubes. The out-of-plane tube was notched, as shown in Figure 1(a), to facilitate complete fluid
penetration during subsequent dip brazing bonding and heat treatment [Holloman et al. 2013]. Since
the notches affect the buckling response, additional three-dimensional samples were fabricated using
regular out-of-plane tubes without notches. Samples consisting of just the regular and notched vertical
tubes (called one-dimensional structures here) were also fabricated and tested. Following the dip brazing
process, all the structures were slow-aged at room temperature for 96 hours to the T4 condition and then
peak hardened (to the T6 condition) by heating to 163◦ C for 18 hours, followed by water quenching.
Figure 1(a) shows that when the cellular tube structures are bonded to 4.76 mm thick face sheets to
create sandwich panels, they have a large core-to-face-sheet interfacial area with potentially beneficial
consequences for the robustness of intensely loaded panels. The structure’s relative density, ρ̄, given by
the ratio of the volume occupied by metal to that of a unit cell — see Figure 1(b) — was calculated for
each sample. A summary of the geometries and relative densities of the samples investigated is presented
in Table 1.
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Sample core In-plane Out-of-plane
Topology w (mm) h (mm) t (mm)∗ l (mm)∗ t (mm)∗ l (mm)∗ ρ̄

1D 19.1 76.2 – – 1.52 19.1 6.7∗∗

2D 57.2 76.2 1.70 19.1 – – 16.3
3D 57.2 76.2 1.45 19.1 1.45 19.1 20.1
3D 34.4 55.4 0.74 11.5 0.74 11.5 11.6
3D 57.2 76.2 3.47 19.1 3.47 19.1 42.7
1D unnotched 19.1 76.2 – – 1.52 19.1 7.3∗∗

3D unnotched 57.2 76.2 1.44 19.1 1.44 19.1 21.0
∗ Variability in the tube wall thickness resulted in reporting a mean value per sample with a
standard deviation in tube wall thickness of ±0.14 mm.
∗∗ Corresponds to relative density contribution to the three-dimensional structure.

Table 1. Tube core geometries (sample core widths and heights, w and h, and mean
tube wall thicknesses, t , and tube widths, l) and relative densities (ρ̄).

Tensile tests were previously performed on the tube wall alloy in postbrazed and peak-hardened con-
dition [Holloman et al. 2013]. The experimental curve (measured at 25◦ C with a strain rate of 10−4 s−1)
is shown in Figure 2, and is later used to deduce the coefficients for a constitutive model for numerical
simulation of the tube structures.
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Figure 2. Measured tensile stress-strain relation for a sample of the 6061-T6 alloy ex-
tracted from a tube structure. The predicted responses of the constitutive model for strain
rates of 10−4 and 103 s−1 are also shown.
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2.2. Dynamic testing. The dynamic out-of-plane compressive response of the core structures was mea-
sured from a series of direct-impact Kolsky bar tests, where the force was measured on the sample’s
back face with a strain-gauged Kolsky [1949] bar while synchronously recording the strain with a high-
speed video camera; see Figure 3. Each specimen was attached to the end of a stationary 2 m long,
7.62 cm diameter Kolsky bar using Loctite Super Glue. A striker projectile was accelerated with a gas
gun towards the front face of the specimen, and the force transmitted by the sample was measured by
diametrically opposed strain gauges placed 0.76 m from the impact end of the Kolsky bar. The striker
diameter was equal to both the inner diameter of the gas gun barrel and the diameter of the Kolsky bar.
The gas gun barrel measured 4.50 m in length; to achieve an impact velocity, v0, of less than or equal to
75 ms−1, the projectile was positioned 3.2 m from the exit of the barrel. Higher velocities were achieved
by placing the striker projectile 3.8 m from the gun barrel exit. All initial velocities were measured near
the barrel exit using two sets of laser velocity gates as shown in Figure 3. That figure also defines all
other relevant geometrical parameters of the test setup. The Kolsky bar was made from aluminum alloy
6082-T6, with yield strength 310 MPa and measured longitudinal elastic wave speed c = 5108 ms−1. A
time window of 485.5µs was therefore available for measurements before elastic reflections from the
distal end of the Kolsky bar complicated interpretation.

The precision of the measurements was derived from multiple calibration tests. An example of one of
the results is shown in Figure 4(a). The aluminum Kolsky bar was impacted by an aluminum projectile
that had a diameter of 7.6 cm, a length of 54.0 cm, and a mass of 6124 g. In this example, it impacted
the Kolsky bar with an initial (preimpact) velocity v0 = 7.3 ms−1. Figure 4(a) sets time t = 0 as the
first arrival of the stress pulse at the strain gauges, and shows that the rise time of the stress pulse at
the gauge location was 35µs for the bar/strain gauge system used here. This rise-time limitation only
became significant at the highest impact velocities, where substantial specimen compression could occur
within the first 5µs after impact.

Aluminum 6082-T6 Kolsky bar

Signal conditioner

(Kistler 359TA)

Strain
gauges

Momentum
trap

Specimen

Aluminum or

steel projectile

Phantom V16
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camera

Trigger signal
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m
v0
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5.7

5.0

200
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Gas gun barrel

Laser gates 
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velocity and 

trigger camera

Oscilloscope

(Tektronics TDS3014)

Figure 3. Schematic diagram of the Kolsky bar arrangement used for dynamic testing.
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Figure 4. (a) Transmitted stress versus time history of the aluminum Kolsky bar follow-
ing impact by a 54.0 cm long, 7.6 cm diameter aluminum striker with a mass of 6.124 kg
and velocity v0 = 7.3 ms−1. The axial stress in the aluminum Kolsky bar (predicted
by one-dimensional elastic wave theory) was 51.3 MPa (the dashed curve). (b) The
measured front-face velocity for a three-dimensional tube structure with ρ̄ = 20.1%.
Simulated data is also shown.

Elastic wave theory [Johnson 1972] gives the axial stress transferred to the aluminum Kolsky bar
in this test as ρcv0/2 = 51.3 MPa, where ρ = 2755 kg·m−3 is the density and c = 5108 ms−1 is the
extensional wave speed of the aluminum Kolsky bar. The predicted axial stress pulse — the red dotted
curve in Figure 4(a) — is within 16% of the first stress measured peak (61.2 MPa), and is reasonably
close to the average measured stress. The measured calibration test stress drops to zero at t = 236µs,
which corresponds to the arrival of the elastic stress pulse reflected from the free end of the striker.

Russell et al. [2010] have shown that the striker projectile kinetic energy governs the compressive
strain of the crushable sample and the transient velocity imposed upon the impacted end of the specimen.
For the samples tested here, impact experiments were performed at nominal impact velocities of 75, 100,
and 150 ms−1. A steel striker of mass M = 2.5 kg was used for impact velocities v0 of 75 and 100 ms−1.
It imparted sufficient momentum to crush most of the samples beyond their densification strain. An
aluminum striker of mass M = 0.75 kg was used for tests at impact velocity v0 ≥ 150 ms−1. High-speed
video images of the samples were recorded using a Phantom V12 high-speed camera to measure the
compression rate, to identify failure modes and to confirm that the striker kinetic energy was sufficient
to provide a constant-velocity sample compression up to a nominal strain of at least 50%. Figure 4(b)
shows a typical impact face velocity result for a three-dimensional structure with ρ̄ = 20.1%; the front-
face velocity rose quickly upon striker impact to a peak crushing velocity and then fell slowly during
continued crushing. The actual crush velocity was always slightly less than that of the striker just prior
to impact, and remained relatively constant during crushing to the densification strain. As the relative
density was increased to ρ̄ = 42.7%, constant velocity compression ceased at core compressions of 20%
and the samples were not completely crushed even with the more-massive striker. In the results to follow,
we designate each test by the incident impact velocity, v0, of the striker.
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3. Finite element analysis protocols

Finite element (FE) techniques have been used to study the dynamic compression of one-, two-, and
three-dimensional tubes. The aims of this aspect of the investigation were to

(i) validate the analysis method by comparing the predicted and measured dynamic crush resistance of
the tube structures,

(ii) investigate the dynamic collapse mechanisms responsible for the mechanical responses of the cellu-
lar tube structures,

(iii) determine the stresses imposed on the front (not experimentally measured), and

(iv) rationalize the absence of strain rate strengthening of the structure.

3.1. The FE model. All the tests were analyzed using finite element simulations conducted using the
explicit version of the commercial, nonlinear finite element package IMPETUS Afea Solver® [Hanssen
and Olovsson 2013]. The geometry and relative density of the modeled tube specimens were designed
to be the same as those of the measured specimens, reported in Table 1, but following the usual practice
[Zok et al. 2005; Radford et al. 2007; Fyllingen et al. 2010], small imperfections (described below) were
incorporated in the models to account for manufacturing defects, such as tube misalignment and tube
wall thickness variability, seen in the tested specimens. The modeled sandwich structure geometry was
merged with a modeled Kolsky bar of the same dimensions and with strain gauge placement as shown
in Figure 3. The Kolsky bar model included a cylindrical gridded region, at the same location as the
experimental strain gauges, where the axial displacements and forces could be inferred.

The FE models were constructed using cubic hexahedral elements. The meshing specifics are summa-
rized in Table 2. A mesh sensitivity study indicated that an in-plane nodal spacing approximately equal
to the tube wall thickness (t) was sufficient to provide converged solutions for impacts with tube core
structures. One cubic hexahedral element was therefore used through the thickness of each tube wall.
The nodes of the adjacent tubes were merged prior to the simulation, thus representing a perfect braze
zone with no interface failure criterion [Holloman et al. 2013]. The contact formulation in the software
is based on a penalty formulation. Simulations with uniform-wall-thickness models resulted in higher
strengths than observed experimentally, and so imperfections to the geometries were introduced to trip
buckling and better predict the stress-strain curves. The imperfections were modeled as a displacement
of the lowest-order measured eigenmode to each tube wall. For most modeled structures the first-order
eigenmode amplitude was set at 0.1 times the tube wall thickness; however, the unnotched tube structure
required a larger amplitude imperfection (0.3 the tube wall thickness) to match the experiments.

All the simulations introduced a cylindrical projectile with the same dimensions and mass as the
experimental projectile. An initial velocity (v0) was applied to the simulated projectile that matched the
measured projectile velocity recorded by the laser gates in the experiment. Conservation of momentum
during the inelastic collision between the projectile and the specimen resulted in a decrease in projectile
velocity, as shown in Figure 4(b).

3.2. Material properties. The experimentally recovered Cauchy stress-true strain response of the Al
6061-T6 alloy during uniaxial tensile testing is presented in Figure 2. The uniaxial Cauchy stress, σ ,
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Hexahedral elements
Topology ρ̄ Cubic Linear Nodes

1D 6.7 2,176 – 88,958
2D 16.3 5,440 – 297,854
3D 20.1 7,264 – 403,838
3D 11.6 5,356 1,936 345,958
3D 42.7 4,592 – 253,294
1D, unnotched 7.3 450 – 28,192
3D, unnotched 21.0 2,240 450 205,376

Table 2. Tube geometries and velocity-time function values used during FE simulations.

versus true strain, ε, relation for an elastic-plastic material under uniaxial straining can be written

ε = εe+ εp =
σ

E
+ εp, (1)

where εe and εp are the elastic and plastic components of the strain, respectively, and E is the Young’s
modulus. Having performed the uniaxial tensile test, the true stress versus plastic strain curve was
tabulated and used to determine an isotropic strain hardening relation needed for FE simulations. The
transition from elastic to plastic behavior was set at a Cauchy stress of 230.7 MPa. This hardening
tabulation was implemented in the IMPETUS Afea Solver using the general piecewise linear hardening
constitutive model with optional thermal softening and strain-rate hardening. The yield stress of this
model is defined in the form

σy = f (εeff)

(
1−

(
T − T0

Tm − T0

)m )(
1+

ε̇eff

ε̇0

)c

, (2)

where f (εeff) is the piecewise-linear hardening function of the effective deviatoric strain, which was
obtained from the hardening curve behavior. The thermal softening component was defined by the current
temperature, T , the reference temperature, T0, the melting temperature, Tm , and the thermal softening
parameter, m. The strain-rate hardening component of (2) was defined by a reference strain rate, ε̇0, and
a strain-rate hardening parameter, c. The coefficients used in conjunction with (2) to model the material
are given in Table 3. The thermal softening and strain-rate hardening components made a negligible
contribution to the yield stress. The yield strength was primarily defined by the piecewise linear hardening
function f (εeff) modeled using a von Mises yield criterion with isotropic hardening. Using the material
model described above, a uniaxial tensile test was simulated at room temperature for the measured strain
rate and compared well to the measured Cauchy stress-logarithmic strain curve (Figure 2). The response
at a strain rate of 103 s−1 is also shown, and confirms the modest strain-rate dependence of the alloy.

To account for softening created by tube wall fracture on the tensile side of severely buckled tubes, the
Cockcroft–Latham failure criterion [Cockcroft and Latham 1968] was implemented for all the dynamic
compression simulations. Failure was defined to occur when a damage parameter, D, reached unity. The
damage parameter was calculated as

D = 1
Wc

∫ εeff

0
max(0, σ1) dεeff, (3)
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Elastic constant Strain rate Temperature softening Fracture
and density hardening and adiabatic heating parameter

E (GPa) ν ρ (kg·m−3) ε0 (s−1) c T0 (K) Tm (K) m Wc (MPa)
70.5 0.3 2700 5·10−4 0.001 293 893 1 85

Table 3. Material constants for AA6061-T6 tube wall material.

where σ1 is the first principle stress. The critical damage parameter, Wc = 85 MPa, was obtained by fitting
the simulated measured stress-strain response of a single laterally compressed tube tested in [Holloman
et al. 2013]. The general node-splitting feature in the IMPETUS code was turned on. In this feature the
damage variable is allowed to evolve without any change to the constitutive response of the Al 6061-T6
alloy until D = 1. At that instant, the Al 6061-T6 alloy is assumed to have failed and nodes of the
elements where this failure has occurred are split apart.

4. Quasistatic core response

The quasistatic compressive responses of all the core structures investigated here have been investigated
previously in [Holloman et al. 2013], and the key findings relevant to this study are summarized in
Table 4, together with a summary of the dynamic results presented below. The relative density given
to the one-dimensional tube samples corresponds to their contribution in a three-dimensional structure,
Table 1. The compressive strengths of the one-dimensional (notched) and two-dimensional cores were
4.7 and 13.2 MPa, respectively. The addition of one and two-dimensional strengths (17.9 MPa) was less
than the measured peak strength of the equivalent three-dimensional structure (20.8 MPa) with a relative
density, ρ̄ = 20.1%, indicating a substantial synergistic interaction between the colinear and vertical
tubes during quasistatic loading. However, the mechanism responsible for the enhanced crush resistance
of the fully integrated three-dimensional structure was not identified.

The volumetric energy absorption up to the core densification strain (εD) per unit volume,1 Ev, and
gravimetric energy absorption, Em = Ev/ρ̄ρs (where rs is the density of the aluminum alloy), are also
given for each core in Table 4. The theoretical gravimetric energy absorption, E∗m (the product of the
compressive strength and densification strain divided by ρ̄ρs), and the gravimetric energy-absorbing effi-
ciency (Em/E∗m) are also summarized in Table 4. The energy-absorbing efficiency of the two-dimensional
structures was low as a result of the unstable buckling response of the structure, making the two-
dimensional core poorly suited for impact energy-absorption applications. All other structures exhibited
energy-absorbed-per-unit-mass values near the upper bound for tubes [Holloman et al. 2013].

5. Dynamic compression results

We begin by examining the dynamic compression of the components (single-axial and two-dimensional
tube arrays) of the three-dimensional cellular structure, and then investigate the fully integrated structure
at three relative densities. Finite element analysis is used to resolve the tube collapse modes, identify the
mechanism responsible for the synergistic effect, and estimate the impact-face pressure.

1Defined as the area under the stress strain response until the onset of densification.
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Topology ρ̄ v (ms−1) σp (MPa) εD Ev (MJ/m3) Em (J/g) E∗m (J/g) Em/E∗m
1D 6.7 0 4.7 0.72 1.7 9.4 18.7 0.50
notched 72 2.6 0.65 1.0 5.5 9.2 0.59
tube 105 3.2 0.56 1.4 7.7 9.6 0.80

157 3.0 0.68 2.3 12.7 10.9 1.16

1D tube 7.3 0 10.3 0.79 5.3 26.9 39.6 0.68
73 10.2 0.77 1.9 9.6 37.2 0.26

108 11.6 0.75 3.3 16.7 40.8 0.41
157 11.2 0.72 4.3 21.8 37.1 0.58

2D 16.3 0 13.2 0.64 1.2 2.7 19.2 0.14
[0/90◦]2 73 15.4 0.62 2.8 6.4 21.2 0.30

104 13.4 0.59 4.3 9.7 17.3 0.56
156 13.5 0.59 4.8 10.9 17.0 0.64

3D 20.1 0 20.8 0.61 10.4 19.2 23.4 0.82
cellular 73 18.2 0.59 8.4 15.5 18.2 0.85
structure 104 17.5 0.56 9.3 17.1 17.0 1.00

157 17.2 0.56 8.8 16.2 16.6 0.98

3D 21.0 0 27.1 0.63 12.5 22.0 30.1 0.73
cellular 74 24.6 0.72 10.8 19.0 30.7 0.62
structure 108 21.8 0.66 10.5 18.5 24.5 0.75
(unnotched) 154 19.5 0.63 9.6 16.9 20.7 0.82

3D 11.6 0 7.3 0.59 3.9 12.7 13.7 0.92
cellular 72 7.0 0.73 2.8 8.9 16.3 0.55
structure 156 7.1 0.73 3.5 11.2 16.5 0.68

3D 42.7 0 49.8 0.45 24.4 21.2 29.4 0.73
cellular 73 53.2 – – – – –
structure 105 51.4 – – – – –

157 56.6 – – – – –

Table 4. Measured mechanical properties (including relative density, ρ̄, impact velocity,
v, and compressive strength, σp) and energy absorption values (including volumetric en-
ergy absorption, Ev, gravimetric energy absorption, Em , theoretical gravimetric energy
absorption, E∗m , and energy absorption efficiency, Em/E∗m) for tested tubular cellular
structures.

5.1. Axially loaded tubes.

5.1.1. Notched tube response. The back-face pressure versus core strain responses of notched tubes
impacted at the three velocities are given in Figure 5(b–d), and compared with the quasistatic result in
Figure 5(a). The core strain, εc, for the impacted samples was defined as εc = h−1

∫ t
0 v(t) dt, where

v(t) was the measured sandwich-panel impact-face velocity as a function of time t (measured from
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Figure 5. The measured and simulated back-face stress versus nominal compressive
strain for a notched (one-dimensional) tube which contributed 6.7% to the relative den-
sity of a three-dimensional structure. (a) The quasistatic compression response followed
by the responses after impact at (b) 72 ms−1, (c) 105 ms−1, and (d) 157 ms−1. Simula-
tion results are also shown for the specimens’ front (impacted) face pressure.

the high-speed photographs), and h the initial core height (85.7 mm). The predicted back-face stress
versus imposed nominal strain results are overlaid on the experimental data in Figure 5, and found to
be in good agreement with the measured back-face stress. Under quasistatic loading, examination of
Figure 5(a) shows a plateau-like stress versus strain response after an initial peak in compressive stress
of σp = 4.7 MPa. During dynamic impact at 72 ms−1 the stress-strain response remained plateau-like, as
seen in Figure 5(b), but with a smaller initial stress peak of 2.9± 0.3 MPa for the three impact velocities;
this is consistent with an absence of strain-rate (or inertial) hardening. However, after the initial peak
in resistance, the measured and simulated flow stresses of the dynamically loaded samples gradually
increased with strain, especially at the highest strain rate, and also exhibited several small additional
stress peaks before the onset of densification (where the stress rose rapidly towards 25 MPa and beyond)
at a strain εD = 0.62±0.06, which was less than the value of 0.72 measured under quasistatic deformation.
These results are summarized in Table 4.
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A sequence of high-speed video images and corresponding simulations for a notched tube impacted
at v0 = 72 ms−1 are shown in Figure 6. The initial strain suffered by the impacted tube occurred by axial
plastic compression of the tube walls at the notches. However, after a small shortening period as the tube
walls at the notch compressed, the initial peak in strength was reached as the tube began to buckle about
a notch, see Figure 6(a). This was initiated at the right-hand notch (nearest to impact end of the tube) at

Figure 6. Observed and simulated deformation sequence for a (one-dimensional)
notched tube specimen impacted at an initial velocity v0 = 72 ms−1. Impact occurs
on the right side of both the photographs and the FE simulations.
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a nominal strain of slightly less than 0.04, and correlated well with the first stress peak in Figure 5(b).
As the nominal strain increased, new notch buckling events progressed from notches at the impact end
of the sample towards those at the distal end, see Figure 6(a and b). At a nominal strain of 0.34, the
tube walls near all the notches had suffered significant buckling deflections, see Figure 6(c), and material
near the impact end had rotated about the notch. Further axial compression resulted in fracture of the
buckled tube wall at the most distal notch, and contact of the tube walls on either side of this notch, as in
Figure 6(d). This self-contact coincided with stiffening of the structure, and a rise in compressive flow
stress to 4.7 MPa at a nominal strain of 0.56; see Figure 5(b). This process then progressed from right
to left along the tube, resulting in densification at εD = 0.65; see Figure 5(b).

If the four notches had buckled (without tube rotation) until tube wall contact was established across
the 6.35 mm-wide notch, the axial displacement of the 76.2 mm-long tube would have been 25.4 mm, a
strain of 33%. Since the densification strain was about twice this value, we conclude that the combination
of tube rotation and axial compression of the tube walls between the notches contributed about the same
level of strain as notch deformation to the densification limit. We note that simulation images compared
well to those observed with the high-speed camera (see Figure 6). The comparison was best when the
strain was below 0.300. Beyond this strain, tube rotations were increasingly difficult to precisely predict
due to the global nature of failure, and its sensitivity to imperfections. The simulations verified that the
strength was governed by buckling collapse of the tubes, and that this was initiated at the right-hand
notch nearest to the impact.

Increasing the impact velocity resulted in a similar deformation sequence, but the degree of tube rota-
tion decreased with increased impact velocity (see Figure 7). This was observed in both the experimental
data and in the simulation. Since tube rotation is an inertially sensitive failure mode, and was active
during the nominal plateau region of the crush response, its decrease with increase in impact velocity
may be responsible for the more rapid rise in plateau flow stress as the impact velocity increased; asee
Figure 5(b–d). This would prolong axial tube compression (a harder mode) as opposed to tube rotation.

The total absorbed (plastically stored) energy per unit volume, Ev, was obtained from the area under
the stress-strain curve shown in Figure 5(b). The integration was terminated at the densification strain,
where the flow stress began to increase sharply due to material self-impingement. This gave a volumetric
absorbed energy Ev = 1.0 MJ/m3. Dividing this by the core density, ρ̄ρs = 0.067 · 2.7 Mg·m−3

=

180.9 kg·m−3, gives a gravimetric absorbed energy, Em = 5.5 J/g. If the stress achieved at the first
stress peak had remained constant until densification, the gravimetric absorbed energy would have been
the theoretical limit of the structure, E∗m = 9.2 J/g. The notched one-dimensional structure impacted at
v0 = 72 ms−1 therefore had an energy absorption efficiency of 59.0%. The energy absorption and energy
absorption efficiency of the tubes rose with impact velocity as the cores’ peak strength also increased, see
Table 4, and increased beyond unity (using the first stress peak to define the theoretical energy absorption)
because of the gradual rise in plateau-region flow stress with strain in the most rapidly crushed samples.
The FEA results slightly underpredicted the measured densification strains, most notably for the test at
v0 = 157 ms−1.

The simulations permit calculation of the front-face pressure for each test, and this is overlaid on
the experimental and predicted back-face responses of Figure 5. The initial inelastic impact resulted in
very large contact stresses on the front-face sheet, and a significant momentum transfer to the lighter
sandwich structure, leading to its loss of contact with the striker. As the tube-crushing reaction forces
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Figure 7. Experimentally observed and simulated deformation sequence for a notched
(one-dimensional) tube specimen impacted at an initial velocity v0 = 157 ms−1.

decelerated the impact face, the striker eventually recontacted the sample, and the stress once again
increased. The repetition of this process is responsible for the series of stress peaks observed in the
front-face stress-strain profiles, see Figure 5.

5.1.2. Regular tube response. The impact response of the vertical tube without notches is shown in
Figure 8(b–d), and compared with that measured during quasistatic testing in Figure 8(a). The initial
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Figure 8. The measured and simulated back-face stress versus nominal compressive
strain of an unnotched one-dimensional tube structure which contributed 7.3% to the
relative density of the unnotched three-dimensional structure. (a) Quasistatic response,
and for impacts at (b) 73 ms−1, (c) 108 ms−1, and (d) 157 ms−1. Simulation results are
also shown for the front face of the specimen.

peak stress was again unaffected by the impact velocity, but had a much higher value of ∼ 11 MPa than
that of a notched tube (∼ 2.9 MPa). The flow stress then dropped with continued loading, exhibiting
numerous stress oscillations, until the onset of densification at a very high densification strain, εD = 0.8.
The simulated back-face stress-strain responses are compared to experimental results in Figure 8, and
are in reasonable agreement with the measurements considering the (small) experimental variability in
the tube orientation. The measured peak strength and energy absorption for the samples are summarized
in Table 4. Even though the initial peak strength was about four times that of the notched structure, and
it had a higher densification strain, the volumetric energy absorption was only about twice that of the
notched structure because of the substantial fall in strength following the initial peak in stress, and the
highly oscillatory plateau region’s response.

High-speed video and simulated images of the collapse process are shown in Figure 9. At low strains
the tubes underwent plastic compression, and the initial peak in strength at εc= 0.04% was correlated with
tube wall buckling; see Figure 9(a). This was followed by failure of the tube-front face bond, rotation of
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the tube, and tube wall fracture at the apex of buckles; see Figure 9(b). This process continued resulting
in fragmentation (and loss) of the tube walls. This delayed the onset of material self-impingement, and
was the origin of the higher-than-normal densification strain; see Figure 9(e). The simulated damage
progression in Figure 9 also shows the significant tube rotation and fragmentation of the tube during

Figure 9. Observed and simulated deformation sequence for a one-dimensional tube
specimen with a relative density of 7.3% and no notches impacted at an initial velocity
v0 = 73 ms−1.
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dynamic loading2 observed experimentally. The “spiky” character of the measured stress profile was
also seen in the simulation, and the transient partial load drops were linked to tube fracture events. The
progressive drop in flow stress with continued straining arose from continued fragmentation at the distal
end of the tube until densification at a strain of 0.8.

5.2. Two-dimensional tube array. The measured and simulated compressive stress versus strain re-
sponse of the dynamically tested two-dimensional structure is shown in Figure 10(b–d) and compared to
the quasistatic result in Figure 10(a). The stress versus strain responses at all loading rates exhibit three
peaks followed by densification. The initial peak stress, σp was again independent of loading rate, which
is consistent with minimal strain-rate hardening. The load dropped after each peak in stress resulted

2The response of the tube was highly sensitive to small changes in its orientation. When tubes were perfectly aligned,
progressive concertina plastic buckling of the tubes was observed. However, introduction of the small misalignments present in
the experiments resulted in the modes shown in the figures.
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Figure 10. The measured and simulated dynamic stress versus normalized nominal
strain responses of a two-dimensional tube structure with a relative density of 16.3%;
(a) quasistatic response, and following impact at (b) 73 ms−1, (c) 104 ms−1, and
(d) 156 ms−1.
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in low volumetric and gravimetric energy absorptions (Table 4), but these (and the energy absorption
efficiency) increased with impact velocity because the stress drops decreased in amplitude at higher
velocities (Figure 10).

High-speed video observations and simulations (Figure 11) indicate that the initial rise to the first
stress peak was always correlated with the onset of a high-order (short wavelength) buckling mode of

Figure 11. Observed and simulated deformation sequence for a two-dimensional spec-
imen impacted at an initial velocity v0 = 73 ms−1.
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the axially aligned walls of the tube layer nearest the impacted face; see Figure 11(a and b). As the
sample continued to undergo compression, the buckling behavior became impact velocity dependent.
At an impact velocity of 73 ms−1, buckling of the first-to-buckle (right-hand) layer stopped, as seen in
Figure 11(b), and further strain was achieved by initiation of a low-order mode of buckling of the other
three tube layers. As the compressive strain reached a value of about 0.2, the deformation localized into
the tube layer second from the right in Figure 11(c), and the second peak in stress then corresponded to
the collapse (aided by wall fracture) of this layer. The third stress peak corresponded to collapse of the
tube layer third from the impacted end of the sample; see Figure 11(d). Collapse of the first impacted
layer then coincided with the onset of densification at a strain of 0.62; see Figure 11(e). As the velocity
of impact increased, the initial impact provided sufficient pressure to cause complete (but still high-order
mode) buckling of the right-hand tube layer, and this collapse corresponded to the first peak in stress;
see Figure 12(a and b). The other peaks then corresponded with the progressive collapse of the layers
from right to left, as in Figure 12(c–e).

The simulated nominal stress versus applied nominal strain results shown in Figure 10(b–d) compared
well with the experimental results. While the three peaks in stress are well predicted, the simulations do
not fully capture the unloading instability, suggesting that the simulated tube wall fracture process is not
completely captured by the approximate approach used here.

5.3. Three-dimensional tube cores.

5.3.1. Notched vertical tube response. The dynamic responses of the three-dimensional structures are
shown in Figure 13(b–d) and are again compared to the quasistatic result in Figure 13(a). The three-
dimensional cores’ initial quasistatic peak strength, σp, was 20.9 MPa, while dynamically it was slightly
less (varying from 17.2 to 18.2 MPa), and independent of impact velocity, see Table 4.3

In general, the dynamically deformed samples exhibited plateau-like compression responses with three
small stress peaks like those associated with the sequential collapse of the two-dimensional in-plane tubes
discussed above. The volumetric and gravimetric energy absorptions of the three-dimensional structures,
seen in Table 4, were independent of compression rate. The average volumetric energy absorbed for
the four loading rates was 9.2 MJ/m3. This significantly exceeded that for the average absorbed en-
ergy of 5.8 MJ/m3 for the components of the three-dimensional system (one notched tube and the two-
dimensional tube array, see Table 5). The energy absorption efficiency of the three-dimensional structure
was independent of the compression rate, and varied between 82 and 100%. The high efficiency resulted
in part from the rising background stress just before densification was reached. This high efficiency,
combined with the plateau-like compressive stress-strain response to compressive strains of about 50%,
indicates the three-dimensional tube structure to be well suited for impact-mitigation applications.

The rear-face pressure responses from the finite element simulations were in good agreement with the
measurements at the lowest impact velocity; see Figure 13(b). During quasistatic loading, three stress
peaks were superimposed on a constant stress plateau response; see Figure 13(a). However, during dy-
namic loading, the third peak occurred on a rising background stress response and was most pronounced

3The difference in strength was consistent with small tube misalignments which have a significant effect upon the small
samples tested here. To illustrate, Figure 14(a) shows a high-speed video image of the sample tested at v0 = 73 ms−1, and
reveals that one of the in-plane tubes’ side-walls (at the top right of the sample) was not in full contact with the underlying
in-plane tube wall, causing it to prematurely fail.
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Figure 12. Observed and simulated deformation sequence for a two-dimensional spec-
imen impacted at an initial velocity v0 = 156 ms−1.

in the sample tested at the highest impact velocity; see Figure 13(d). This rising background stress was
a characteristic of the vertical notched tube response; see Figure 5(c and d). A rise in predicted stress
during the plateau response was also observed, but, for the two most rapidly loaded samples, exceeded
that measured beyond a core strain of 20%. The small drops in flow stress after each peak were correlated
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Figure 13. The measured and simulated dynamic stress versus nominal strain responses
of a three-dimensional tube structure (containing notched out-of-plane tubes) with a
relative density of 20.1%. (a) Quasistatic response, and after impact at (b) 73 ms−1,
(c) 104 ms−1, and (d) 157 ms−1.

with the buckling instability and fracture of the walls of one of the collapsing tube layers of the four tube
layer, [0/90◦]2 in-plane tube system.

The collapse mechanisms were investigated by examining a sequence of high-speed video images
and finite element analyses. The result for an impact at v0 = 73 ms−1 is shown in Figure 14. The
initial peak in stress occurred at a strain of 0.10; see Figure 13(b). From the experimental observations
shown in Figure 14(b) this was correlated with both notch-induced out-of-plane tube collapse and the
initiation of buckling of the in-plane tube walls, and was identical to the mechanism previously observed
at quasistatic strain rates [Holloman et al. 2013]. By using the FEA postprocessor to make the in-plane
tubes transparent after a simulation, as Figure 15(a), we see that by a core strain of 0.04, the notched
tube had begun to buckle at the two notches nearest the impacted face. We were also able to confirm that
notch-tripped buckling of the out-of-plane tube was coincident with in-plane buckling, a result consistent
with the earlier observations that the components (single-axial and two-dimensional tube arrays) of the
three-dimensional cellular structure also buckled at the same strain (4%).
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Figure 14. Observed and simulated deformation sequence for a three-dimensional spec-
imen with a relative density of 20.1% after impact at an initial velocity v0 = 73 ms−1.
Two sides of the simulated FE model are shown to more clearly reveal the deformation
sequence.
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Figure 15. Deformation sequence showing the three-dimensional notched and un-
notched structures when the colinear tubes have been made transparent to show the
collapse mode of the axial aligned tubes following impact at an initial velocity v0 =

73 ms−1.
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Topology
∑
ρ̄ v (ms−1)

∑
σp (MPa) Ev (MJ/m3) Em (J/g)

Notched 1D tube 23.0 0 17.9 2.8 5.2
with 2D core 72 17.4 4.4 8.2

105 17.3 7.2 13.3
157 16.8 8.9 16.4

Unnotched 1D tube 23.6 0 23.2 6.1 9.5
with 2D core 73 25.1 4.8 8.5

108 25.6 8.7 15.4
157 25.6 11.5 20.3

Table 5. Summed responses of one and two-dimensional cores (including the sum of the
relative densities, ρ̄, the impact velocity, v, and the sum of the compressive strengths, σp).
(The sums of the one and two-dimensional cores do not match the measured relative den-
sity of the three-dimensional core because of variability in tube wall thickness resulting
from the extrusion process and an effect of the braze layer.)

Further compression beyond the initial stress peak resulted in the flow stress softening to a strain of
∼ 20%. The high-speed video images and the simulations, shown in Figure 14(c), indicate this corre-
sponded with continued buckling of the second in-plane tube layer from the strike face, consistent with
observations of the two-dimensional in-plane structure at this impact rate; see Figure 11(a). Collapse of
the second layer, rather than that nearest the strike face, appears to have resulted from its higher-order
buckling mode, which requires a higher stress to continue collapse. Following this softening, the tested
structure hardened to a second stress peak at a strain of 0.38 followed by a sharp drop in stress at a
strain of 0.41. The mechanism responsible for the structures’ rapid stress drop can be seen by comparing
the high-speed images and simulations in Figure 14(c and d). It resulted from the buckling collapse of
the third layer of tubes from the strike face. The orthogonal simulated view of the collapse process in
Figure 14 also reveals a significant lateral (transverse shear) displacement as the axial strain increased to
0.4. The simulations also revealed that the second and fourth notches from the impact face contributed
to the shearing of the second and fourth in-plane tube layers. This mechanism is not apparent in the high-
speed video images due to the orientation of the specimen. Further collapse of the structure resulted
in core densification (with additional shear of the second and fourth in-plane tube layers) as the fourth
in-plane layer and the first in-plane tube layer buckled at εD = 0.61.

It is interesting to note that as the impact velocity increased, the transverse (shear) displacement was
reduced, and at the highest impact velocity the structure collapsed axially with no transverse displace-
ment; this was observed by both experiment and simulation (Figure 16). This change in deformation
mode appears to be linked with the collapse of the vertical notched tube which during isolated testing
(see Figures 6 and 7), exhibited significant rotation and transverse displacement at low velocities, but
deformed in a more axial manner at the highest impact velocity. To investigate this we show the simu-
lated deformation sequence of the axial tubes of the three-dimensional sample tests conducted at 73 and
157 ms−1 in Figure 17. It can be seen that a significant lateral deformation accompanies the low-velocity
test, but at high velocities, the sample progressively collapsed with no transverse motion.
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Figure 16. Observed and simulated deformation sequence for a three-dimensional spec-
imen with a relative density of 20.1% after impact at an initial velocity v0 = 157 ms−1.

The simulations indicate the initial contact stresses between the projectile and the front-face sheet
increased from 764 to 1520 MPa as the impact velocity increased from 73 to 157 ms−1, and greatly exceed
those at the distal end of the samples; see Figure 13(b–d). Following striker impact at v0 = 73 ms−1,
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Figure 17. Deformation sequence showing the orthogonal side of the three-dimensional
notched structure after the colinear tubes have been made transparent.

the three-dimensional sample was brought into equilibrium much more quickly than the one or two-
dimensional cores, because of its higher mass and core strength. However, as the initial impact velocity
was increased, larger amounts of energy were transferred to the specimen during initial contact, and the
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contact force briefly dropped to zero for impact at v0 = 157 ms−1 as sample face sheet-striker separation
occurred; see Figure 13(d).

Three-dimensional tube cores with relative densities ρ̄ = 11.6 and 42.7% were also tested; the results
are summarized in Table 4. The structure with ρ̄ = 11.6% was observed to fail in a similar fashion as
the ρ̄ = 20.1% structure. At the lowest impact velocity transverse (shear) displacement was present, but
at the highest impact velocity the structure collapsed axially with no transverse shear, which resulted in
increased flow stress. The three-dimensional cores with a relative density of 42.7% were not completely
crushed during dynamic loading, even though the striker was reflected from the specimen (thereby in-
creasing the transferred momentum and applied pressure). While the initial strength could be measured
(and is given in Table 4), it was not possible to determine the densification strain or energy absorbed by
this structure. Simulations indicated that the out-of-plane notched tube in the highest density structure
showed no rotation, ever at the lowest impact velocity, where rotation was observed in the other two
structures.

5.3.2. Regular vertical tube three-dimensional case. The three-dimensional core without notches in the
vertical tubes (ρ̄ = 21.0%)4 was tested dynamically to determine the role of the notches upon the response
of the three-dimensional structure. The measured and simulated compressive stress-strain responses for
impacts at various velocities are shown in Figure 18. The samples tested at impact velocities of 73 and
108 ms−1 exhibited several small peaks in stress during the region of plateau response like those seen
in the two and three-dimensional structure with notched axial tubes. These stress peaks corresponded
to the sequential collapse of three of the in-plane tube layers; see Figure 19. Collapse of the fourth
layer coincided with densification (in simulations, the first layer was responsible for densification). The
sample tested at the highest impact velocity, as shown in Figure 18(d), exhibited almost no secondary
peaks and had an almost ideal plateau response to a densification strain of about 0.6 (about the same as
the quasistatic test).

The mechanical properties of the cores are summarized in Table 4. The cores were slightly stronger
than their notched counterparts, consistent with the higher strength of the unnotched out-of-plane tube.
The first peak stress and densification strains were again independent of impact velocity. The average
volumetric energy absorbed was 10.9 MJ/m3, compared to 7.8 MJ/m3 for the average of the summed
component tubes (see Table 5) indicating much less of a synergistic energy absorption effect in this three-
dimensional structure. The energy absorption efficiencies range between 62 and 82% (see Table 4) for
these cores, making them quite efficient.

Recall that in Section 5.1 a regular tube not in perfect axial alignment with the striker underwent
tube rotation and buckling with fragmentation. Stress drops were observed to accompany the fracture
events. Comparison of the single tube (Figure 8) and three-dimensional (Figure 18) responses reveals
significantly reduced load drops suggesting that vertical tube fragmentation was suppressed. Using the
FEA postprocessor to make in-plane tubes transparent, the out-of-plane (unnotched) tube walls are shown
to have concertina buckled in Figure 15 as opposed to rotation, buckling, and fragmentation fracture
(Figure 9). This appears to be the origin of the extra energy absorbed in the three-dimensional structures
compared to their one-dimensional and [0◦/90◦]2 tube components.

4Its density was less than the sum of the one-dimensional tube and two-dimensional structure due to variations of ±0.14 mm
in the thickness of the tube walls.
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Figure 18. The measured and simulated dynamic stress versus normalized nominal
strain responses of a three-dimensional tube structure that used out-of-plane tubes with-
out notches. Its relative density was 21.0%. (a) Quasistatic response, and following
impact at (b) 74 ms−1, (c) 108 ms−1, and (d) 154 ms−1.

6. Discussion

Figure 20(a) summarizes dependence of the initial compressive peak stress, σp, for the three-dimensional
notched structures and their components as a function of the impact velocity, v0, and applied strain
rate, ε̇c = v0/h (upper scale). The results confirm that the structures’ initial compressive strength is
insensitive to the rate of loading for strain rates up to 2000 s−1. Detailed observations indicate that the
axial compression of single notched tubes proceeds by plastic compression of the tube walls followed
by buckling at the notches and then of the tube segments between the notches; see Figures 6 and 7. The
rotation of the tubes became increasingly relevant after crushing to strains of 20%, and was reduced by
increasing the rate of compression, consistent with a [Calladine and English 1984] Type II structure. The
suppression of the Type II behavior in rapidly compressed samples was linked with a rise in flow stress
with plastic strain during plateau-region compression of single tubes and the three-dimensional structures
that contained them (see Figure 13).
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Figure 19. Observed and simulated deformation sequence for a three-dimensional spec-
imen whose four vertical tubes had no notches in the axial aligned tube. The sample
relative density was 21.0%, and it was impacted at an initial velocity v0 = 74 ms−1.

The [0/90◦]2 in-plane tube structures failed by plastic buckling of the tubes walls aligned with the
crush direction, and was accompanied by three significant load drops. At low impact velocities, lateral
displacement of the tubes (transverse to the loading direction) also occurred. As this lateral displacement
was suppressed at higher impact velocities, the drop in load was reduced and the average stress prior to
densification increased; see Figure 10.
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Figure 20. (a) Measured back-face stresses for the notched tube core structures as a
function of impact velocity on applied strain rate for the initial stress profile peak. The
horizontal dashed lines correspond to an extension of the quasistatic strength. (b) De-
pendence of compressive strength upon relative density with an empirical fit.

The combination of the notched vertical tubes and [0/90◦]2 lay-up to form the three-dimensional
structure resulted in an increase in plastic energy absorption that significantly exceeded the sum of the
energy absorptions of the individual vertical tubes and two-dimensional lay-up; see Table 5. Analysis
of the finite element simulations has revealed that it was a result of suppression of the vertical notched
tubes’ rotation by the in-plane tubes. The axial strain was then achieved by a greater contribution from
plastic compression of the tubes’ walls — a more energy-absorbing mechanism than rotation.

Removal of the notches from the vertical tubes increased the axial compressive strength of the tubes.
Their mode of compression when made from an alloy in its peak aged state was highly dependent upon
the orientation of tubes. The small misalignments present in experiments resulted in a low-order buckling
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mode during initial deformation, followed by rotation and progressive fragmentation. Numerous load
drops associated with the fragmentation were observed, and the rotation resulted in a general reduction
in compression resistance. Inserting the unnotched tubes in the three-dimensional structure increased
the strength of the structure over that of a similar-density three-dimensional structure containing notched
tubes, and led to a synergistic effect upon the energy absorption. In this case, detailed analysis of the
finite element simulations revealed that the in-plane tubes suppressed rotation and forced the vertical
tubes to concertina buckle with additional energy absorption.

Figure 20(b) shows that the variation in peak strength, σp, of the notched three-dimensional structures
with relative densities between 11 and 43% scaled by the strength of the alloy, σs , from which they are
made. The strength exhibits a power dependence upon relative density:

σp/σs = (ρ̄)
5/3. (4)

This agrees with both the experimental data and FE predictions for the structures tested quasistatically
[Holloman et al. 2013]. The dynamically tested structures at all tested impact velocities scale with
relative density to the power 5/3, and like the quasistatic results, this suggests the response is dominated
by the out-of-plane tubes. By tailoring the in and out-of plane tube walls the three-dimensional structure
can be made anisotropic and the compressive strengths will be based on the power law, (4), as shown
quasistatically in [Holloman et al. 2013].

The simulation procedure used here has successfully modeled both the rear-face pressure versus com-
pression strain response and the mechanisms of core collapse. It was therefore used to estimate the
front (impact) face contact pressure which was not measured in these experiments. During an impact,
the contact pressure and frontal displacement determine the work done by the impact mitigators. The
simulations indicate that the ratio of the front to rear-face pressure is linearly related to the impact velocity
and inversely dependent upon the relative density of the cellular structure; see Figure 21. However, the
front-face pressure is much higher than that at the rear of the specimens and increases with both core
density and impact velocity, suggesting that this structure may be well suited for mitigating high-intensity
dynamic loads.
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Figure 21. Simulated stress ratio based on the initial peak stress calculated for the front
and back faces of the sandwich structures with notched cores.
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7. Conclusion

We have fabricated aluminum 6061-T6 sandwich-panel structures with cores made from a two-dimensional
[0◦/90◦]2 arrangement of tubes with either notched or unnotched orthogonal tubes inserted in the out-of-
plane direction. The resulting three-dimensional tube cores had relative densities between 11 and 43%.
A combination of instrumented Kolsky bar impact experiments, high-speed video imaging, and finite ele-
ment simulations using a rate-dependent, piecewise-linear hardening model with a von Mises multiaxial
yield surface and a simplified failure criterion were used to investigate the dynamic compressive response
of the three-dimensional tube core sandwich structure and the two-dimensional and out-of-plane-tubes
from which they were constructed. We have found that:

(1) A three-dimensional tube structure of a given relative density has a near-constant crush strength to a
strain of about 60%. The initial compressive strength is independent of impact velocity for compression
strain rates up to 2000 s−1, which was verified with the simulated model to be a consequence of the
rate-independent plastic response of the aluminum 6061-T6 alloy.

(2) The core strength exhibited a power-law dependence upon relative density, given by σp/σs = (ρ̄)
5/3,

consistent with crush strengths controlled by the buckling of tubes oriented in the applied-load direction.

(3) The vertical tube response of the tubes was rate-dependent due to tube rotation at low impact veloci-
ties.

(4) The vertical tube collapse mode changes when placed inside the in-plane tube lay-up, leading to a
synergistic interaction in the energy absorption between the colinear aligned and vertical tubes at dynamic
loading, which was also observed with quasistatic loading.

(5) The finite element simulations reveal that the ratio of the impact to back-face stresses increased with
strain rate and core density, which is a valuable result for shock load mitigation problems.
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DYNAMIC RESPONSE OF TWIN LINED SHELLS
DUE TO INCIDENT SEISMIC WAVES

J. P. DWIVEDI, V. P. SINGH AND RADHA KRISHNA LAL

The dynamic interaction of the twin shells subjected to seismic waves is investigated numerically. It is
found that the three-dimensional response of twin shells may differ significantly from the two-dimensional
response, and that through-soil interaction between the shells may also be significant.

1. Introduction

The dynamic response of buried pipelines and subway shells for structural stability during earthquakes
is important when those structures can potentially be subjected to seismic ground motion. The ampli-
fication of seismic motions and stress concentrations may occur as a result of wave scattering around
such structures. Mow and Pao [1973] were among the first to study wave diffraction around a cylindrical
cavity in an infinite medium and the resulting stress concentration using wave function expansions. An
analytic model was presented in [Trifunac 1972] to study horizontal polarized shear (SH) wave scattering
at a semicylinder located at the boundary of a half-space. SH wave scattering for various topographies
has also been studied in [Wong and Jennings 1975]. Chin et al. [1987] and Liu et al. [1991] studied
the response of pipelines buried in back-filled trenches. In reality, many underground structures are con-
structed in close proximity and the interaction between such closely spaced structures may be significant
[Okumura et al. 1992; Guan and Moore 1994]. The purpose of this paper is to investigate the three-
dimensional response of a pair of lined cylindrical cavities located in a full-space subjected to incident
seismic waves.

2. Governing equations

The geometry of the problem is as shown in Figure 1. The parallel twin shells, denoted I and II, are
deeply buried in a viscoelastic ground material described by the shear modulus µ, mass density ρ, and
Poisson’s ratio σ . The material properties for the linings are described by the sets of variables µI, ρI, and
σI and µII, ρII, and σII. For convenience, the index indicating the medium or shell lining is omitted in
(2-1)–(2-9), which are valid for each of these three different materials. The displacements and stresses
in these solids can be expressed in terms of potentials φ, ψ , and χ , which satisfy the following wave
equations of motion:

∇
2φ+ k2

αφ = 0, kα =
ω

υL
, (2-1)

∇
2ψ + k2

βψ = 0, (2-2)

Radha Krishna Lal is the corresponding author.
Keywords: seismic waves, multiple successive reflections, shells.
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∇
2χ + k2

βχ = 0, kβ =
ω

υL
, (2-3)

where ω is the excitation frequency, υL and υT denote the longitudinal and transverse wave velocities,
and ∇2 is the Laplace operator in polar cylindrical coordinates.

The factor e−iω(t−t0) is omitted in the text. The general solutions of (2-1), (2-2), and (2-3) take the
following forms:

φ(r, θ, z)=
∞∑

n=0

φn =

∞∑
n=0

Hn(αLr)
{

cos nθ
sin nθ

}({
A
B

}
n

e±iγL z
)

=

∞∑
n=0

Hn(αLr)(An cos nθ + Bn sin nθ)e±iγL z, (2-4)

ψ(r, θ, z)=
∞∑

n=0

ψn =

∞∑
n=0

Hn(αT r)
{

cos nθ
sin nθ

}({
C
D

}
n

e±iγT z
)

=

∞∑
n=0

Hn(αT r)(Cn cos nθ + Dn sin nθ)e±iγT z, (2-5)

χ(r, θ, z)=
∞∑

n=0

χn =

∞∑
n=0

Hn(αT r)
{

cos nθ
sin nθ

}({
E
F

}
n

e±iγT z
)

=

∞∑
n=0

Hn(αT r)(En cos nθ + Fn sin nθ)e±iγT z, (2-6)

where Hn are the Bessel functions that satisfy the radiation conditions. Bessel functions of the first kind
are used for the liners, and the outgoing wave in the medium is expressed in terms of Hankel functions

(a) (b)

Figure 1. Geometry of the problem.
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of the first kind. The wave numbers αυ (υ = L , T ) are given by

αL =

√
ω2

υ2
L − γ

2
L
, (2-7)

αT =

√
ω2

υ2
T − γ

2
T
. (2-8)

At the interface between the linings and the medium, the continuity and equilibrium conditions will
be enforced:

(u(I)r , u(I)θ , u(I)z )= (ur , uθ , uz), (2-9)

(u(II)r , u(II)θ , u(II)z )= (ur , uθ , uz), (2-10)

(σ (I)rr , σ
(I)
rθ , σ

(I)
r z )= (σrr , σrθ , σr z), (2-11)

(σ (II)rr , σ
(II)
rθ , σ

(II)
r z )= (σrr , σrθ , σr z). (2-12)

For the problem specified in Figure 1, the wave field consists of the incident seismic waves and the
waves scattered by shells I and II:

φ = φi
+φI(r, θ, z)+φII(R, ϑ, z), (2-13)

ψ = ψ i
+ψ I(r, θ, z)+ψ II(R, ϑ, z), (2-14)

χ = χ i
+χ I(r, θ, z)+χ II(R, ϑ, z), (2-15)

where the superscript i denotes the incident seismic wave.

2.1. Coordinate system transform. In the numerical analysis, the interaction between the two shells is
considered by coordinate system transformations (Figure 1(b)). The coordinate transformations from
(r, θ) to (R, ϑ) and from (R, ϑ) to (r, θ) are [Watson 1944]

Hn(αυr) cos nθ =
∞∑

m=0

εm

2
(Hn−m(αυD)± (−1)m Hn+m(αυD))Jm(αυR) cos mϑ, (2-16)

Hn(αυr) sin nθ =
∞∑

m=0

εm

2
(Hn−m(αυD)± (−1)m Hn+m(αυD))Jm(αυR) sin mϑ, (2-17)

and

Hn(αυR) cos nϑ =
∞∑

m=0

εm

2
(Hm−n(αυD)± (−1)n Hm+n(αυD))Jm(αυr) cos mθ, (2-18)

Hn(αυR) sin nϑ =
∞∑

m=0

εm

2
(Hm−n(αυD)± (−1)m Hm+n(αυD))Jm(αυr) sin mθ, (2-19)

where

εm =

{
1 if m = 0,
2 if m = 1, 2, . . . .

(2-20)



186 J. P. DWIVEDI, V. P. SINGH AND RADHA KRISHNA LAL

2.2. Incident seismic wave. The incident seismic wave can be expressed in terms of potentials. The
incident P wave and S wave potentials can be written as

φi
= φ0 exp(ikα sin δ0(x cos θ0)+ y sin θ0+ ikαz cos δ0− iω(t − t0)), (2-21)

ψ i
= ψ0 exp(ikβ sin δ0(x cos θ0)+ y sin θ0+ ikβz cos δ0− iω(t − t0)), (2-22)

χ i
= χ0 exp(ikβ sin δ0(x cos θ0)+ y sin θ0+ ikβz cos δ0− iω(t − t0)), (2-23)

where δ0 is the angle of the wavefront normal to the z-axis (see Figure 1(a)), while θ0 is the angle that
the normal of the intersection between the XOY plane and the wavefront makes with the x-axis (see
Figure 1(b)).

Expressing the wave potentials in polar coordinates yields

φi
= φ0

∞∑
m=0

εm

2
(i)m Jm(kαr sin δ0)(A0,m cos mθ + B0,m sin mθ) exp(ikαz cos δ0− iω(t − t0)), (2-24)

ψ i
= ψ0

∞∑
m=0

εm

2
(i)m Jm(kβr sin δ0)(A0,m cos mθ + B0,m sin mθ) exp(ikβz cos δ0− iω(t − t0)), (2-25)

χ i
= χ0

∞∑
m=0

εm

2
(i)m Jm(kβr sin δ0)(A0,m cos mθ + B0,m sin mθ) exp(ikβz cos δ0− iω(t − t0)), (2-26)

where
A0,m =

εm

2
(i)m cos mθ0, B0,m =

εm

2
(i)m sin mθ0, (2-27)

and Jm is a Bessel function of the first kind. Stresses τrr , τθθ , and τrθ and displacements ur and uθ in
the medium can be evaluated in terms of potentials (for example, in [Achenbach 1973]).

The potentials in (2-13)–(2-15) must satisfy the stress-free boundary conditions at the half-space and
cavity surfaces:

τxy = τyy = 0 at y = 0, τrθ = τrr = 0 at r = rI, τRϑ = τR R = 0 at R = RI, (2-28)

since ψ i , χ i , and φi already satisfy the stress-free conditions at y = 0.

2.3. Method of successive reflections. The approaches of Thiruvenkatachar and Viswanathan and Scheidl
and Ziegler are used as follows:

(1) The incoming wave from shell II is assumed to be zero. Using the boundary conditions, the waves
in the lining and the outgoing wave in the medium are determined at shell I.

(2) Using the boundary conditions, the waves in the lining and the outgoing wave in the medium at
shell II are obtained. The incoming wave from shell I is then included using the coordinate transform
of the outgoing wave at shell I.

(3) The waves in the lining and the outgoing wave in the medium at shell I are reevaluated with the
incoming wave from shell II included.

(4) Steps (2) and (3) are repeated until the solution converges.
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2.4. Convergence. Following the convergence of the method of successive reflections by Thiruvenkat-
achar and Vishwanathan for wave scattering by a cylinder in a half-space, the convergence of the method
is now examined for the specific case of two unlined cavities. Attention is focused on the response of
cavity I as a result of the incident wave boundary conditions and wave reflection between the two cavities.

Therefore, with the incoming wave from cavity II excluded, a constant k1 can be found for the upper
bound of the outgoing wave coefficients due to unit incident waves:

(|AI
n|, |B

I
n|, |C

I
n|, |D

I
n|, |E

I
n|, |F

I
n|) < kI

(rα/2)2n

(n!)2
(n+ 1), n = 0, 1, 2, . . . , (2-29)

where α is the maximum of |αL | and |αT |.
Substituting (2-29) into (2-16) and (2-17), it is then possible to find a positive number kD so that the

following inequality holds for the incoming wave coefficients for cavity II:

(|aII
m |, |b

II
m |, |c

II
m |, |d

II
m |, |e

II
m |, | f

II
m |) < kIkD

∞∑
k=0

εm
(riα/2)2k(k+ 1)(m+ k− 1)!

(Dα/2)(m+k)(k!)2
. (2-30)

Similarly, the coefficients of the outgoing wave of cavity II are bounded as follows:

(|AII
m |, |B

II
m |, |C

II
m |, |D

II
m |, |E

II
m |, |F

II
m |)<kIkDkII

∞∑
k=0

εm
(ri Riα

2/2)2(k+m)(m+k−1)!(k+1)(m+1)
(Dα/2)(m+k)(k!)2(m!)2

. (2-31)

The incoming wave for cavity I can be obtained from the outgoing wave from cavity II using the coordi-
nate transform once more:

(|aI
n|, |b

I
n|, |c

I
n|, |d

I
n|, |e

I
n|, | f

I
n |)

< kIk2
DkII

∞∑
m=0

εn

∞∑
k=0

εm
(ri Riα

2/4)2(k+m)(m+ k− 1)!(m+ n− 1)!(k+ 1)(m+ 1)
(Dα/2)(2m+k+n)(k!)2(m!)2

. (2-32)

It can be proved that the series defined by

kn
D = k2

D

∞∑
m=0

εn

∞∑
k=0

εm
(ri Riα

2/4)2(k+m)(m+ k− 1)!(m+ n− 1)!(k+ 1)(m+ 1)
(Dα/2)(2m+k+n)(k!)2(m!)2

(2-33)

is uniformly convergent for a given n. Hence, the outgoing wave for cavity I (with incoming wave from
cavity II included) is subject to

(|AI
n|, |B

I
n|, |C

I
n|, |D

I
n|, |E

I
n|, |F

I
n|) < kI(1+ k1kn

DkII)
(riα

2/2)2n

(n!)2
. (2-34)

Following m iterations of the method of successive reflections, the outgoing wave of cavity I gives

(|AI
n|, |B

I
n|, |C

I
n|, |D

I
n|, |E

I
n|, |F

I
n|)<

∞∑
j=0

kI(k1kn
DkII)

(riα/2)2n

(n!)2
= kI

1−(kIkn
DkII)

(m+1)

1− kIkn
DkII

(riα/2)2n

(n!)2
. (2-35)

The method of successive reflections therefore converges provided kIkn
DkII < 1. The spacing D be-

tween the two cavities in (2-33) can be changed for a given ri and Ri so that kIkn
DkII < 1. Therefore the
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procedure converges if either of the following two conditions is satisfied:

(1) The wavelength is long enough or there is sufficient spacing between the two cavities.

(2) The kIkn
DkII<1 values for the dominant terms (for example, n=2) are particularly small (kIkn

DkII�1).

It is remarkable to note that, in some specific problems, the expected divergence may also be removed
by a large number of iterations of the technique applied in this paper.

3. Numerical study

3.1. Geometry. The response of the twin lined shells to seismic ground motion is clearly a function of a
considerable number of geometrical and material properties. In order to simplify this study, the response
will be examined for shells of equal radius (ri = Ri ) and with identical linings (re = Re, µ= µI = µII).
The Poisson’s ratios for the medium and liners are 0.30 and 0.35, respectively. Furthermore, the center-to-
center spacing of the shells will be taken as D= 3.50ri , 4.50ri , or∞, and the liner thickness, re−ri = ri/8,
and the incident seismic waves examined will be parallel to either the YOZ (θ0= π/2) or the XOZ (θ0= 0)
plane. The two shells have axes parallel to z, so that for θ0 = π/2 the shells have symmetric response
about the YOZ plane and only one shell response needs to be reported. Alternatively, for θ0 = 0 the shell
responses are different but symmetric about the horizontal diameters. For all the results presented, the
displacements and stresses are normalized by kβ and µk2

β , respectively.

3.2. Incident S wave: interaction between the shells. To examine the interaction of the two shells,
Figure 2 shows predictions of the normalized hoop stress for shells at three different spacings, D/ri =

3.50, 4.50, and∞, and for two different incident angles, δ0 = π/2 and δ0 = π/3. To determine the effect
of the frequency of the seismic ground motion, a range of normalized vibration frequencies a0 = ωri/υT

is considered.

Figure 2. Maximum stress versus normalized frequency: response to incident S waves
at the inside surface of the liner, at position z = 0 (θ0 = π/2, µ/µm = 3) for δ0 = π/2
(left) and δ0 = π/3 (right).
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Figure 3. Maximum displacements U∗r (left), U∗θ (middle), and U∗Z (right) versus nor-
malized frequency: response to incident S waves at the outside surface of the liner, at
position z = 0 (θ0 = 0, D/ri = 3.50).

At low vibration frequency, a0 < 0.5, the shell-to-shell interaction for all three shell spacings is
insignificant. As normalized frequency a0 increases, however, the shell response becomes significantly
influenced by the spacing. For 0.5 < a0 < 2.5, the hoop stress σ ∗θθ is up to 35% less for an isolated
shell D/ri =∞ than for D/ri = 3.50, 4.50. For shells with D < 3ri , the increase in hoop stress due to
through-soil interaction is expected to be even more important.

3.3. Incident S wave: influence of lining modulus. To examine the influence of lining design, Figure 3
shows solutions for the maximum normalized displacements U∗r , U∗θ , and U∗z for the specific normalized
frequency a0 = 1, for a range of modular ratios µ/µm and for three different incident angles δ0. Figure 4
shows solutions for the maximum normalized stresses σ ∗θθ and σ ∗θ z for the specific normalized frequency
a0 = 1, for a range of modular ratios µ/µm and for three different incident angles δ0.

Figure 4. Maximum normalized stresses σ ∗θθ (left) and σ ∗θ z (right) versus normalized
frequency: response to incident S waves at the inside surface of the liner, at position
z = 0 (θ0 = 0, D/ri = 3.50).
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Figure 5. Maximum stress versus normalized frequency: response to incident S waves
at the inside surface of the liner, at position z = 0 (δ0 = π/2, µ/µm = 3) for shells I
(left) and II (right).

The normalized radial and circumferential displacements are the greatest responses under plane strain
conditions, δ0 = π/2. They peak at low modulus ratio, µ/µm , but remain nearly constant when µ/µm

ranges from 0.25 to 4. Normalized longitudinal displacement also decreases monotonically as µ/µm

increases, but is generally more sensitive to any changes in the modular ratio.
Normalized stress amplitudes σ ∗θθ and σ ∗θ z at the inner surface of the lining all steadily decrease as the

surrounding modulus, µm , decreases relative to that of liners µ. All values tend towards zero as modular
ratio µm/µ approaches zero. As noted for the normalized displacement, the two-dimensional loading
condition δ0 = π/2 induces the greatest stress. Circumferential stresses σ ∗θθ are largest in magnitude.

3.4. Incident S wave: influence of incident angle θ0. The behavior of the two shells is now examined
under the plane strain condition (δ0 = π/2) with incident angles θ0 = 0, π/3, and π/2, and a range of
vibration frequencies. The shells are spaced at distance D/ri = 3.50 and have a lining modulus three
times that of the ground medium (µ/µm = 3). Figure 5 shows the amplitude of the normalized stress
σ ∗θθ for shells I and II.

For an isolated shell, the response is independent of the incident angle θ0. However, for these closely
spaced shells, the response is significantly affected by the orientation of the incoming wave. Firstly,
Figure 5 clearly shows that the effect of the incident angle θ0 is frequency dependent. The circumferential
stress σ ∗θθ of shell I has the greatest amplitude when θ0 = π/3 at the normalized frequency a0 = 0.8. For
larger values of normalized frequency, a0 > 1.5, the responses are less frequency dependent and the
vertically moving seismic wave (θ0 = π/2) induces the highest hoop stresses in both shells. For shell II
the peak stress occurs when 0.2< a0 < 0.8, but is not quite as great and is less dependent on θ0.

3.5. Incident P wave. Figure 6 shows normalized radial, circumferential, and longitudinal displace-
ments for θ = π/2, for three incident wave angles δ0 and a range of the modular ratios. The trends
are similar to those observed earlier for shell response to shear waves, but with stress and displacement
amplitudes somewhat smaller. The response increases as the modular ratio increases. Figure 7 shows
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Figure 6. Maximum displacements U∗r (left), U∗θ (middle), and U∗Z (right) versus nor-
malized frequency: response to incident P waves at the outside surface of the liner, at
position z = 0 (θ0 = π/2, D/ri = 3.50).

Figure 7. Maximum stresses σ ∗θθ (left), σ ∗θ z (middle), and σ ∗zz (right) versus normalized
frequency; response to incident P waves at the inside surface of the liner, at position
z = 0 (θ0 = 0, D/ri = 3.50).

solutions for maximum normalized stresses σ ∗θθ , σ ∗θ z , and σ ∗zz for the specific normalized frequency a0= 1,
for a range of modular ratios µ/µm and three different incident angles δ0. Compared to the normalized
displacement amplitudes, the stresses are more sensitive to changes in the modular ratios.

3.6. Incident P wave: interaction between the shells. The interaction between the shells is shown in
Figure 8 different angles, δ0 = π/2 and π/4. Unlike the prediction made for the shell response to an S
wave, the hoop stress σ ∗θθ decreases rapidly as the frequency is increased. The through-soil interaction
between the shells is not as significant as it is for an incident S wave. At most frequencies, the stress
predictions for the closely spaced shells are higher than those for an isolated shell, though the difference
is not very significant.

3.7. Incident P wave: influence of incident angle. Figure 9 shows the hoop stress response for shells I
and II. The peak hoop stress is produced for an incident angle δ0 = 0 and a normalized frequency a0 = 1.
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Figure 8. Maximum stress versus normalized frequency: response to incident P waves
at the inside surface of the liner, at position z = 0 (θ0 = π/2, µ/µm = 3) for δ0 = π/2
(left) and δ0 = π/4 (right).

Figure 9. Maximum stress versus normalized frequency; response to incident P waves
at the inside surface of the liner, at position z= 0 (δ0=π/2, µ/µm = 3, and D/ri = 3.50)
for shells I (left) and II (right).

However, less response is induced in shell II for incident angle θ0 = 0 since it is shielded by shell I
(shell II is in the “shadow” of shell I).
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SOLUTIONS OF THE VON KÁRMÁN PLATE EQUATIONS
BY A GALERKIN METHOD, WITHOUT INVERTING

THE TANGENT STIFFNESS MATRIX

HONGHUA DAI, XIAOKUI YUE AND SATYA N. ATLURI

Large deflections of a simply supported von Kármán plate with imperfect initial deflections, under a
combination of in-plane loads and lateral pressure, are analyzed by a semianalytical global Galerkin
method. While many may argue that the dominance of the finite element method in the marketplace
may make any other attempts to solve nonlinear plate problems to be redundant and obsolete, semi- and
precise analytical methods, when possible, simply serve as benchmark solutions if nothing else. Also,
since parametric variations are simpler to access through such analytical methods, they are more useful
in studying the physics of the phenomena. In the present method, the Galerkin scheme is first applied
to transform the governing nonlinear partial differential equations of the von Kármán plate into a system
of general nonlinear algebraic equations (NAEs) in an explicit form. The Jacobian matrix, the tangent
stiffness matrix of the system of NAEs, is explicitly derived, which speeds up the Newton–Raphson
iterative method if it is used. The present global Galerkin method is compared with the incremental
Galerkin method, the perturbation method, the finite element method and the finite difference method in
solving the von Kármán plate equations to compare their relative accuracies and efficiencies. Buckling
behavior and jump phenomenon of the plate are detected and analyzed. Besides the classical Newton–
Raphson method, an entirely novel series of scalar homotopy methods, which do not need to invert the
Jacobian matrix (the tangent stiffness matrix), even in an elastostatic problem, and which are insensitive
to the guesses of the initial solution, are introduced. Furthermore, we provide a comprehensive review of
the newly developed scalar homotopy methods, and incorporate them into a uniform framework, which
renders a clear and concise understanding of the scalar homotopy methods. In addition, the performance
of various scalar homotopy methods is evaluated through solving the Galerkin-resulting NAEs. The
present scalar homotopy methods are advantageous when the system of NAEs is very large in size, when
the inversion of the Jacobian may be avoided altogether, when the Jacobian is nearly singular, and the
sensitivity to the initially guessed solution as in the Newton–Raphson method needs to be avoided, and
when the system of NAEs is either over- or under-determined.

1. Introduction

Analysis of large deflections of square and rectangular plates is one of the most studied engineering
problems in the structural community, with many engineering applications including in aircraft structures,
shipbuilding, bridges, and spaceships. The thin plates used in aircraft construction are subjected to lateral
loads from the pressurized cabin or from the lift on the wings, and to edge loading due to bending of the
fuselage and wings. The skin plates of a ship bottom are subjected to a significant water pressure, and to

Keywords: von Kármán plate equations, initial imperfection, global Galerkin method, nonlinear algebraic equations, scalar
homotopy methods, buckling behavior.
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the edge loading owing to bending of the hull. Plate bending problems are also applicable to spaceships,
where the outer plates may undergo lateral pressures and in-plane loadings.

The classical Kirchhoff theory for linear plate bending is accurate only for small deflection problems
(w ≤ 0.2 thickness) ignoring the middle surface strains and the corresponding in-plane stresses. As
the external force increases, the lateral deflection may be relatively large (w ≥ 0.3 thickness). In this
scenario, the stretching of the middle surface of the plate should be considered and correspondingly the
membrane forces arising from this stretching play a role in carrying lateral loads. The extension to large
deformations was first provided by von Kármán in a seminal work [1910], wherein the nonlinear terms
are retained in the kinematic relationships to account for a significantly large deflection of the plate (w
is comparable with plate thickness or larger but remains small with respect to other dimensions of the
plate). This leads to a pair of coupled nonlinear fourth-order equations for the transverse displacement,
and the stress function for the in-plane stress resultants. Inasmuch as the nonlinear terms are included in
the coupled PDEs, closed form solutions for the nonlinear problem do not exist.

The first attempt to solve the von Kármán plate equations by a semianalytical method is attributed to
Way [1939], who analyzed a geometrically nonlinear clamped rectangular plate via an energy method
to obtain approximate solutions. Levy [1942a; 1942b] applied a Fourier series method to solve a simply
supported rectangular plate under combined edge compression and lateral loading. Then Levy [1944]
and Woolley et al. [1946] analyzed long rectangular plates with simply supported edges and clamped
edges respectively by a similar approach. Okada, Oshima and Fukumoto [Okada et al. 1979] applied
the Rayleigh–Ritz method to a simply supported long rectangular plate (length/width = 3 and 4) under
hydrostatic pressure, and discussed various buckling behaviors. Ueda, Rashed and Paik [Ueda et al. 1987]
proposed an incremental Galerkin method by solving stepwise the linearized form of the von Kármán
plate equations of the simply supported rectangular plate. The incremental Galerkin method was then
applied to solve stiffened ship plates [Paik et al. 2001]. Large deflection of a simply supported plate was
also analyzed in [Shen 1989] using a perturbation method and in [Bert et al. 1989] using a differential
quadrature method. These semianalytical methods have respective drawbacks in that they may be too
complex mathematically, or require large amounts of computational efforts, or have a slow convergence
rate of the solution. Readers are advised to see [Chia 1980] for a comprehensive review.

With the development of modern digital computers, numerical methods based on domain discretization
took over the difficult task. Brown and Harvey [1969] used the finite difference method to carry out
the analysis of large deflections of rectangular plates subjected to a combination of lateral pressure
and edge loading. Some of the earlier finite element implementations for large deformations were
conducted in [Brebbia and Connor 1969] and [Bergan and Clough 1973], and involved conventional
displacement based elements with the strain energy expressed in terms of the three displacement com-
ponents. The stress based finite element method was proposed in [Punch and Atluri 1986]. A boundary
element approach was proposed to investigate static, dynamic and buckling behavior of thin flat plates in
[O’Donoghue and Atluri 1987]. Although these numerical methods can be employed to solve the von Kár-
mán plate equations accurately and are more flexible than the semianalytical methods with respect to
various boundary conditions and geometries, these domain discretization methods would require several
orders of magnitude more degrees of freedom than semianalytical approaches. Therefore, the computa-
tional burden is comparatively heavy. Also, semianalytical methods will provide the needed benchmark
solutions with minimal computational cost, to judge the accuracies of the many fully numerical methods
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using spatial discretization based on simple polynomials locally.
In this paper a simply supported rectangular plate with initial imperfections, under a combination of

in-plane and out of plane loads, is analyzed by the global Galerkin method. The present method is applied
directly to the von Kármán equations to derive a system of cubic order fully coupled NAEs with as many
unknowns as desired. Then the resulting system of NAEs is solved by an algebraic equation solver, such
as the Newton–Raphson method. Previously, Dai, Paik and Atluri [Dai et al. 2011a] applied the global
Galerkin method to the von Kármán plate, and derived the Galerkin-resulting system of NAEs explicitly.
However, the explicit expression for Jacobian matrix (the so-called “tangent-stiffness” matrix) was not
obtained, and should be calculated symbolically at each step. As a contribution of the present study,
we derive the explicit expression of the Jacobian matrix (or the tangent stiffness matrix) of the resulting
NAEs, so that the iterative methods, which require the numerical inversion of the Jacobian matrix, may
be applied more efficiently. Eliminating the symbolic operations makes the computational efficiency
much more improved than that in [Dai et al. 2011a], as will be verified in numerical illustrations.

The global Galerkin method is compared with the incremental Galerkin method, the perturbation
method, the finite element method and the finite difference method in solving the von Kármán plate
equations under a combination of in-plane and out-of-plane loads to test its accuracy and efficiency. In
addition, the buckling behavior and jump phenomenon of the plate are detected and analyzed numerically.

Another topic of this study is to review a recently proposed class of scalar homotopy methods for
solving NAEs. Conventionally, the Newton–Raphson method is popularly used to find successively
better approximations to the solutions of a real valued nonlinear system. The Newton–Raphson method
converges remarkably quickly provided that the initial guess is sufficiently close to the solution. However,
the Newton–Raphson method in general requires the inversion of the Jacobian matrix in each iterative
step, it is sensitive to the initial guess, and the accuracy of the solution cannot be guaranteed if nearly
singular or ill-conditioned Jacobian matrix is encountered. When the Jacobian (tangent stiffness) ma-
trix becomes singular, as in limit load problems, researchers over the past three decades have devised
enhancements to the Newton–Raphson method, such as the arclength method. In this paper we present
more elegant algorithms which do not involve the inversion of the Jacobian and which are simpler to use
when the Jacobian is nearly singular.

We introduce a series of scalar homotopy methods based on the Newton scalar homotopy function.
The general form of the Newton homotopy methods is used to incorporate all the existing homotopy
methods in a uniform framework. Besides, the present paper provides a concise and clear interpretation
for the scalar homotopy methods, and the efficiencies of the various methods are tested through using
them to solve the Galerkin-resulting system of NAEs. The presented scalar homotopy methods overcome
the several known drawbacks of the Newton–Raphson method:

(1) They can be applied more efficiently than the Newton–Raphson method, when the unknown vector
to be solved from the NAEs tends to be large (even through we have limited our study in this paper
to only 40 nonlinear algebraic equations).

(2) They completely avoid the need for the inversion of the Jacobian matrix either numerically or ana-
lytically (which is impossible in most cases).

(3) They perform much better than the Newton–Raphson method, when the Jacobian matrix is nearly
singular, or is severely ill-conditioned.
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Figure 1. A rectangular plate with initial deflection and general in-plane and lateral loads.

(4) They are insensitive to the guess of the initial solution vector, unlike the Newton–Raphson method.

(5) They can solve either over-determined or under-determined systems of NAEs.

The paper is organized as follows. In Section 2, the global Galerkin method is used to transform the
governing PDEs into a system of NAEs. The explicit form of the Jacobian matrix of the NAEs is also
derived. In Section 3, various NAE solvers are introduced. A series of Newton homotopy methods are
illustrated and classified into continuous-type Newton homotopy and iterative-type Newton homotopy
methods. Consequently all the existing Newton homotopy methods are incorporated into a correspond-
ing uniform framework. Moreover, features of the solvers are discussed. We note that Section 3 can
stand alone for researchers who are interested in the new NAE solvers. Researchers who focus on the
semianalytical methods or nonlinear behavior of the plate may skip this part. Numerical experiments are
carried out in Section 4. Finally, we draw some conclusions about the present global Galerkin method
and the NAE solvers in Section 5.

2. Governing equations and the Galerkin method

The elastic large deflection response of a plate with initial deflection is governed by two PDEs, which
are named von Kármán equations. One of them represents the equilibrium condition in the transverse
direction, and the other represents the compatibility condition of in-plane strains. The PDEs are as
follows:

φ ≡ D∇4w− t
[
ϕ,yy(w+w0),xx +ϕ,xx(w+w0),yy − 2ϕ,xy(w+w0),xy

]
− Q = 0, (1a)

∇
4ϕ = E

[
w2
,xy −w,xxw,yy + 2w0,xyw,xy −w0,xxw,yy −w0,yyw,xx

]
. (1b)

In the above, w0 is the given initial transverse displacement; w is the additional transverse displacement;
Q is the lateral pressure acting on the plate; ϕ is the Airy stress function governing the in plane stress
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resultants and t is the plate thickness.

∇
4
=
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 , D =
Et3

12(1− ν)2
, (2)

where D is the flexural rigidity, and ∇4 is the well known biharmonic operator; E and ν are Young’s
modulus and Poisson’s ratio. The subscripts ,x and ,y stand for ∂/∂x and ∂/∂y.

Stress σx in the x direction, σy in the y direction and shear stress τxy in xy plane may be expressed as

σx = ϕ,yy, σy = ϕ,xx , τxy = ϕ,xy .

We emphasize that, in using the Galerkin method, we need to solve the Airy stress function ϕ first
from the (1b), and then apply the Galerkin approach to (1a), which is different from the Rayleigh–Ritz
method where the airy stress function ϕ and even the governing equations are not required. Rayleigh–
Ritz method based on Lagrangian equations is simple in application but computationally expensive since
more freedoms are expected by Rayleigh–Ritz method than by Galerkin method, because the deflections
of all three directions are required to be assumed. In this study, we derive the explicit expressions of the
ϕ and then the resulting NAEs, so that researchers can avoid lengthy algebra and enjoy the advantage of
the Galerkin method. The geometry and general loading conditions of the plate is plotted in Figure 1.

In solving the governing equations, the added deflection w due to the applied load, and the initial
deflection w0 should satisfy the boundary conditions at four edges. All four edges are assumed to be
simply supported, and the boundary conditions of the plate are

w = 0, w,yy + νw,xx= 0, at y = 0 and y = b,

w = 0, w,xx + νw,yy= 0, at x = 0 and x = a.

2.1. Application of the Galerkin method. To satisfy the boundary conditions, the initial deflection w0

and the added deflection function w can be normally assumed in double Fourier series,

w0 =

M∑
m=1

N∑
n=1

A0mn sin
mπx

a
sin

nπy
b
, (3)

w =

M∑
m=1

N∑
n=1

Amn sin
mπx

a
sin

nπy
b
, (4)

where A0mn and Amn are the known and unknown coefficients, respectively. The present simply supported
plate can be solved with various patterns of external loads. The conditions of the combined loads, namely,
biaxial loads, biaxial in-plane bending and edge shear are given as follows:∫ b

0
ϕ,yy t dy = Px ,

∫ b

0
ϕ,yy t

(
y− b

2

)
dy = Mx at x = 0 and x = a, (5a)∫ a

0
ϕ,xx t dx = Py,

∫ a

0
ϕ,xx t

(
x − a

2

)
dx = My at y = 0 and y = b, (5b)

ϕ,xy =−τ at all four edges. (5c)
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Then the homogenous solution ϕh for the Airy stress function ϕ should satisfy the condition of the
combined loads acting on the plate. Considering the loading conditions, we can easily find ϕh , by
assuming ϕh as cubic polynomials in x and y. Substituting ϕh into (5) we can obtain,

ϕh =−Px
y2

2bt
− σr x

y2

2
− Py

x2

2at
− σr y

x2

2
−Mx

y2(2y− 3b)
b3t

−My
x2(2x − 3a)

a3t
− τxy xy. (6)

The following notations are introduced to abbreviate the expressions involving the sine or cosine terms:

sin
mπx

a
≡ sx(m), cos

mπx
a
≡ cx(m), sin

nπy
b
≡ sy(n), cos

nπy
b
≡ cy(n).

To find the particular solution ϕp that should satisfy (1b), one ought to substitute w and w0 into the right
side of (1b), thus obtaining

∇
4ϕp =

Eπ4

4a2b2

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

{[
Amn Aklml(nk−ml)− Akl A0mn(nk−ml)2

]
cx(m+k)cy(n+ l)

+
[
Amn Aklml(nk+ml)+ Akl A0mn(nk+ml)2

]
cx(m+k)cy(n− l)

+
[
Amn Aklml(nk+ml)+ Akl A0mn(nk+ml)2

]
cx(m−k)cy(n+ l)

+
[
Amn Aklml(nk−ml)− Akl A0mn(nk−ml)2

]
cx(m−k)cy(n− l)

}
. (7)

Consequently, motivated by the form of the right-hand side of (7), the particular solution ϕp for the Airy
stress function is assumed as

ϕp =
Eπ4

4a2b2

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

{
B1(m,n,k, l)cx(m+k)cy(n+l)+B2(m,n,k, l)cx(m+k)cy(n−l)

+B3(m,n,k, l)cx(m−k)cy(n+l)+B4(m,n,k, l)cx(m−k)cy(n−l)
}
. (8)

Upon substituting (8) into (1b), the coefficients Bi , i = 1, 2, 3, 4 can be readily calculated; they are not
written out for saving space. Then, substituting the Bi into (8), we obtain the particular solution ϕp:

ϕp =
Eα2

4

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

{
Amn Aklml(nk−ml)− Akl A0mn(nk−ml)2

[(m+ k)2+ (n+ l)2]2
cx(m+ k)cy(n+ l)

+
Amn Aklml(nk+ml)+ Akl A0mn(nk+ml)2

[(m+ k)2+ (n− l)2]2
cx(m+ k)cy(n− l)

+
Amn Aklml(nk+ml)+ Akl A0mn(nk+ml)2

[(m− k)2+ (n+ l)2]2
cx(m− k)cy(n+ l)

+
Amn Aklml(nk−ml)− Akl A0mn(nk−ml)2

[(m− k)2+ (n− l)2]2
cx(m− k)cy(n− l)

}
. (9)

Then, the Airy stress function ϕ can be expressed as

ϕ = ϕh +ϕp. (10)

It is evident from Equations (6), (9) and (10) that ϕ is a second-order function with regard to the
unknown deflection coefficients Amn . To compute the unknown coefficients, the global Galerkin method
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is applied to the equilibrium (1a):∫∫∫
V
φ(x, y, z)sx(i)sy( j) dx dy dz = 0. (11)

Upon substituting (10) into (1a), and then (1a) to (11) after a lengthy derivation, we obtain a system of
third-order (cubic) coupled NAEs, with respect to the unknown coefficients, the explicit expression of
the nonlinear system of algebraic equations is

∑∑
Amn · Dπ4

(
m2

a2 +
n2

b2

)2

H01(i, j,m, n)

+

∑∑∑∑∑∑
Amn Akl Ars ·(−t)

Eα2π4

4a2b2 (H1+H2+H3+H4−2H9−2H10−2H11−2H12)

+

∑∑∑∑
Amn Akl ·(−t)

Eα2π4

4a2b2

∑∑
A0rs(H1+H2+H3+H4−2H9−2H10−2H11−2H12)

+

∑∑∑∑
Akl Ars ·(−t)

Eα2π4

4a2b2

∑∑
A0mn(H6+H7−H5−H8+2H13−2H14−2H15+2H16)

+

∑∑
Akl ·(−t)

Eα2π4

4a2b2

∑∑∑∑
A0mn A0rs(H6+H7−H5−H8+2H13−2H14−2H15+2H16)

+

∑∑
Amn · (−t)

{
m2π2

a2

[(
Px

bt
+ σr x −

6
b2t

Mx

)
H01(i, j,m, n)+

12
b3t

Mx H03(i, j,m, n)
]

+
n2π2

b2

[(
Py

at
+σr y−

6
a2t

My

)
H01(i, j,m, n)+

12
a3t

My H02(i, j,m, n)
]

+
2τπ2

ab
mn · H04(i, j,m, n)

}

+

∑∑
A0mn · (−t)

{
m2π2

a2

[(
Px

bt
+ σr x −

6
b2t

Mx

)
H01(i, j,m, n)+

12
b3t

Mx H03(i, j,m, n)
]

+
n2π2

b2

[(
Py

at
+σr y−

6
a2t

My

)
H01(i, j,m, n)+

12
a3t

My H02(i, j,m, n)
]

+
2τπ2

ab
mn · H04(i, j,m, n)

}
−Q · H00(i, j)= 0, (12)

where for simplicity the coefficient matrix H1(i, j,m, n, k, l, r, s) is denoted by H1 and so forth, and all
the summations above are carried out over the dummy indexes m, n, k, l, r, s, and i, j are free indexes.
All the coefficient matrices can be obtained by performing integration over the whole volume of the
plate, whose expressions are provided in the Appendix of [Dai et al. 2011a]. We can write the resulting
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algebraic system (12) neatly in matrix form:

Kt At + Ks As + K f Af +C = 0, (13)

where C is a constant column matrix, K f , Ks and Kt are the first-, second- and third-order coefficient
matrices — the dimensions (number of rows × number of columns) of these matrices being

M N × (M N )3 for Kt , M N × (M N )2 for Ks, M N ×M N for K f , M N × 1 for C,

— and where Af , As and At are the first-, second- and third-order unknown vectors.1

2.2. An explicit derivation of the Jacobian matrix (tangent stiffness matrix) for the von Kármán plate.
Up to now, the NAEs are obtained, and can be solved by applying NAE solvers. However, in most of the
cases, the Jacobian matrix of the derived system of NAEs is required to enable the iterative procedures
in the course of using the algebraic equation solvers. In our previous work, we only derived the explicit
form of algebraic system. The Jacobian matrix to this system is not derived explicitly. Therefore, we
resort to symbolic operations embedded in the Matlab to calculate the Jacobian matrix at each iteration.
Although very accurate solutions were achieved in [Dai et al. 2011a] via this scheme, we admit that the
computational efforts are very heavy. In the present work, we derive the explicit form of the Jacobian
matrix to eliminate this drawback. It should be emphasized that the explicit form of the Jacobian matrix
of the NAEs resulting from the von Kármán plate PDEs is provided for the first time in literature. This
Jacobian matrix needs to be inverted in each iterative step in the Newton–Raphson method, but such an
inversion is not necessary in any of the scalar homotopy methods presented in this paper.

The resulting algebraic system (13) can be written in a general form as

F(A)= 0, (14)

or, particularly
Fi j (Apq)= 0, i, p = 1, 2, . . . ,M; j, q = 1, 2, . . . , N . (15)

It should be noted that Fi j does not represent a matrix. It is used to simply denote that there are M × N
equations, with the [( j − 1)N + i]-th equation being denoted by Fi j . Similarly, Apq represents the
[(q − 1)N + p]-th unknown coefficient.

Bu,v =
∂Fi j

∂Apq
, (16)

where the Bu,v is the u-th row and v-th column of B with u = ( j − 1)N + i , v = (q − 1)N + p. There
are eight terms in (12), the first six terms are associated with the unknown coefficients and the last two
terms are constant with regard to unknowns. The Jacobian matrix B of (12) is derived term by term as
follows.

∂F1
i j

∂Apq
= Dπ4

(
p2

a2 +
q2

b2

)2

H01(i, j, p, q).

1The second- and third-order unknown vectors are vectors devised in [Dai et al. 2011a; 2011b] for obtaining the matrix
equation (13).
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∂F2
i j

∂Apq
=

∑∑∑∑
Akl Ars × (−t)

Eα2π4

4a2b2 (H1+ H2+ H3+ H4− 2H9− 2H10− 2H11− 2H12)

+

∑∑∑∑
Amn Ars × (−t)

Eα2π4

4a2b2 (H1+ H2+ H3+ H4− 2H9− 2H10− 2H11− 2H12)

+

∑∑∑∑
Amn Akl × (−t)

Eα2π4

4a2b2 (H1+ H2+ H3+ H4− 2H9− 2H10− 2H11− 2H12),

the matrices Hi in the first, second and third line being evaluated, respectively, as follows:

H(i, j, p, q, k, l, r, s), H(i, j,m, n, p, q, r, s), H(i, j,m, n, k, l, p, q).

∂F3
i j

∂Apq
=

∑∑
Akl × (−t)

Eα2π4

4a2b2

∑∑
A0rs(H1+ H2+ H3+ H4− 2H9− 2H10− 2H11− 2H12)

+

∑∑
Amn × (−t)

Eα2π4

4a2b2

∑∑
A0rs(H1+ H2+ H3+ H4− 2H9− 2H10− 2H11− 2H12),

where the matrices Hi in the first and second lines are H(i, j, p, q, k, l, r, s) and H(i, j,m, n, p, q, r, s),
respectively.

∂F4
i j

∂Apq
=

∑∑
Ars × (−t)

Eα2π4

4a2b2

∑∑
A0mn(H6+ H7− H5− H8+ 2H13− 2H14− 2H15+ 2H16)

+

∑∑
Akl × (−t)

Eα2π4

4a2b2

∑∑
A0mn(H6+ H7− H5− H8+ 2H13− 2H14− 2H15+ 2H16),

where the matrices Hs in the first and second line are H(i, j,m, n, p, q, r, s) and H(i, j,m, n, k, l, p, q),
respectively.

∂F5
i j

∂Apq
= (−t)

Eα2π4

4a2b2

∑∑∑∑
A0mn A0rs(H6+ H7− H5− H8+ 2H13− 2H14− 2H15+ 2H16).

∂F6
i j

∂Apq
= (−t)

{
p2π2

a2

[(
Px

bt
+ σr x −

6
b2t

Mx

)
H01+

12
b3t

Mx H03

]

+
q2π2

b2

[(
Py

at
+ σr y −

6
a2t

My

)
H01+

12
a3t

My H02

]
+

2τπ2

ab
pq H04

}
,

where the matrices depend on (i, j, p, q). Therefore, the Jacobian matrix is

Bu,v =
∂Fi j

∂Apq
=

6∑
k=1

∂Fk
i j

∂Apq
. (17)

Consequently, with the explicit form of the system of NAEs and its Jacobian matrix, the present problem
can be solved readily by using various NAE solvers. In the course of solving a system of NAEs, the
Jacobian matrix is usually necessary. Normally, the numerical approximation of the Jacobian matrix is
calculated in each iteration step via numerical difference techniques. The explicitly derived Jacobian
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matrix may significantly accelerate the computing rate of the algebraic solver [Dai et al. 2014a]. The
effect of using the explicitly derived Jacobian matrix rather than the numerically calculated one on the
computational efficiency has been intensively analyzed in [Dai et al. 2014b] in a two-degree-of-freedom
airfoil problem. It was demonstrated that using the explicit Jacobian matrix can be roughly two orders
of magnitude faster.

3. Methods for nonlinear algebraic equations

The numerical solution of linear or nonlinear, well-conditioned or ill-conditioned, and underdetermined
or overdetermined algebraic equations is one of the main aspects of computational mechanics. In many
practical nonlinear engineering problems, methods such as the finite element method, boundary element
method, finite volume method, the meshless method, global Galerkin method, Rayleigh–Ritz method,
etc., eventually lead to a system of nonlinear algebraic equations (NAEs). Many numerical methods
used in computational mechanics, as illustrated in [Atluri 2005] lead to the solution of a system of linear
algebraic equations for a linear problem, and of a system of NAEs for a nonlinear problem.

A system of nonlinear algebraic equations is

Fi (x j )= 0, i, j = 1, 2, . . . , n. (18)

Solvers for this set of NAEs are introduced below. In the section of numerical experiments, they are
applied to solve the resulting algebraic system from the implementation of the Galerkin method to
von Kármán plate equations.

3.1. Newton method and preliminary work. The most famous method for solving nonlinear algebraic
equations is the Newton–Raphson method, or Newton method, which is given algorithmically as

xk+1 = xk − B−1
k Fk, (19)

where we use x := x1, x2, . . . , xn and F := F1, F2, . . . , Fn to represent the vectors, B is the n × n
Jacobian matrix with its (i, j) entry given by ∂Fi/∂x j , and xk+1 is the (k+1)-th iteration for the unknown
vector x. Newton method is advantageous in that it converges quadratically fast, provided that the initial

“guesses” for the solution are within a certain radius of convergence. However, sometimes Newton
method suffers from its sensitiveness to initial “guesses”, and the computational burden/accuracy of
inverting the Jacobian matrix when the Jacobian matrix is singular or severely ill-conditioned.

Hirsch and Smale [1979] derived a “continuous Newton method” governed by the differential equation

ẋ(t)=−B−1 F(x), (20)

x(0)= a, (21)

where a ∈ Rn . It should be noted that applying a forward Euler scheme to (20) leads to the classical
Newton method. Therefore, the continuous Newton method is just the iterative form of Newton method
written in the ODE form. The performance does not improve much as compared with the classical
Newton method.

Until very recently Newton-type methods are the only choice for solving NAEs, where the inverse of
Jacobian matrix is inevitable. To eliminate the need for inverting a matrix in the iteration procedure, a
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straightforward first-order ODE system,

ẋ(t)=−F(x), (22)

x(0)= a, (23)

was used [Ramm 2004]. However, iteration procedure arising out of the integration of (22) is very
sensitive to the initial guess, and converges very slowly. Liu and Atluri [2008] proposed a fictitious time
integration method (FTIM) in the form of a system of ODEs as

ẋ(t)=−
ν

q(t)
F(x), (24)

where ν is a nonzero parameter and q(t) is required to be a monotonically increasing function of t . In their
approach, the term ν/q(t) plays the role of speeding up the convergence. It is noted that an elementary
version of the continuation method similar to the FTIM was introduced in [Kane and Levinson 1985].

However, both the methods of FTIM and that in [Ramm 2004] are not rigorously derived mathemati-
cally. Interestingly, we can see that both of them do not need the Jacobian matrix, let alone its inversion.
However, according to authors’ experience, they are extremely sensitive to initial guesses, and converge
much more slowly than the Newton method. Therefore both methods are not recommended unless the
Jacobian matrix cannot be obtained or involved.

Atluri, Liu and Kuo [Atluri et al. 2009] proposed a modified Newton method (MNM), which is in fact
a combination of the continuous Newton method and the FTIM and the finite difference technique, for
solving nonlinear algebraic equations avoiding the inverse of the Jacobin matrix. The MNM is given as

dxi

dτ
=−

ν

1+ τ
(1− si )Bi

xi − xi−1

1s
+ Fi = 0, i = 1, . . . ,m, (25)

where s = 1 − e−t is a new variable, and s ∈ [0, 1) is divided into m subintervals with 1s = 1/m.
Numerical examples of [Atluri et al. 2009] showed that the MNM converges faster than the FTIM in
some problems. However, the convergence rate still cannot compare with that of the Newton method. In
addition, the ODE system (25) of the MNM is m times larger than the FTIM and the continuous Newton
method, which makes the integration much more expensive.

Liu, Yeih, Kuo and Atluri [Liu et al. 2009] developed a scalar homotopy method, which transforms the
original NAEs into an equivalent system of ODEs. The scalar homotopy method is totally distinguished
from the aforementioned FTIM, MNM methods because the FTIM and MNM are based on (24), which
is not a strictly derived relation but rather an intuition.

In solving nonlinear algebraic equations, the homotopy method represents a way to enhance the
convergence from a local convergence to a global convergence. Previously, all the homotopy methods
are based on the construction of a vector homotopy function, H(x, t) which serves the objective of
continuously transforming a function G(x) into F(x) by introducing a homotopy parameter t . The
homotopy parameter t can be treated as a time-like fictitious variable, and the homotopy function can be
any continuous function such that: H(x, 0)= G(x) and H(x, 1)= F(x).

Two kinds of homotopy functions are popularly used. The fixed-point homotopy function can be
written as

H(x, t)= t F(x)+ (1− t)(x− x0)= 0, (26)
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and the Newton homotopy function is

H(x, t)= t F(x)+ (1− t)[F(x)− F(x0)] = 0, (27)

where x0 is the given initial values and t ∈ [0, 1]. Motivated by the above vector homotopy function (26),
Liu et al. [2009] proposed a fixed-point scalar homotopy function

h(x, t)= 1
2 t‖F(x)‖2+ 1

2(t − 1)‖x− x0‖
2
= 0, (28)

Then x = x(t) is assumed in [Liu et al. 2009]. Differentiating (28) on both sides with respect to t yields

1
2 [‖F(x)‖2+‖x− a‖2] + [t BT F− (1− t)(x− a)] · ẋ = 0. (29)

Also, ẋ needs to be parallel to the gradient of the above scalar homotopy function, such that the trajectory
of x can be equivalent to seeking of h(x, t)= 0. Thus,

ẋ =−λ
∂h
∂x
. (30)

Therefore, using Equations (28)–(30) the scalar homotopy method (SHM) is derived as

ẋ =−
1
2
‖F(x)‖2+‖x− a‖2

‖t BT F− (1− t)(x− a)‖2
[t BT F− (1− t)(x− a)]. (31)

The SHM is the first scalar homotopy method, and it is based on the fixed point scalar homotopy function.
This method is proved to be less sensitive to initial guess, it has an acceptable convergence rate [Liu
et al. 2009]. Systems of over/under determined algebraic equations, or systems being sensitive to initial
guesses, or systems whose Jacobian matrix is ill-conditioned, can be solved by the SHM method better
than by the Newton method.

3.2. Continuous Newton homotopy methods. In this study, we introduce a series of continuous algo-
rithms based on the Newton homotopy function. The general form of the Newton homotopy methods
incorporates all the existing homotopy methods in a uniform framework.

The Newton homotopy function (27) can be written as

H(x, t)= F(x)+ (t − 1)F(x0)= 0. (32)

Similar to the process in SHM, we can transform the vector Newton homotopy function into a scalar
form as follows:

h(x, t)= 1
2‖F(x)‖2+ 1

2(t − 1)‖F(x0)‖
2
= 0. (33)

Equation (33) holds for all t ∈ [0, 1]. To motivate this study, we first consider a fictitious time function
Q(t), t ∈ [0,∞), where t is the fictitious time and Q(t) has to satisfy that Q(t) > 0, Q(0)= 1, and Q(t)
is a monotonically increasing function of t , and Q(∞)=∞. Then we introduce the proposed fictitious
time function Q(t) into (33) and have a generalized scalar Newton homotopy function

h(x, t)= 1
2‖F(x)‖2− 1

2Q(t)
‖F(x0)‖

2
= 0, (34)
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Using the fictitious time function, Q(t), when the fictitious time t = 0 and t =∞, we can obtain

h(x, t = 0)= 1
2‖F(x)‖2− 1

2‖F(x0)‖
2
= 0⇔ F(x)= F(x0), (35)

h(x, t =∞)= 1
2‖F(x)‖2 = 0⇔ F(x)= 0. (36)

Clearly, the tracking of a solution path for the proposed scalar Newton homotopy function is equivalent
to the fictitious time varying from zero to infinity. Multiplying both sides of (34) by Q(t) we have

h(x, t)= 1
2 Q(t)‖F(x)‖2− 1

2‖F(x0)‖
2
= 0, (37)

We expect h(x, t) to be an invariant manifold in the space of (x, t) for a dynamical system h(x(t), t)
to be specified further. With the assumption of Q(t) > 0, the manifold defined is continuous, and thus the
following operation of differential carried out on the manifold makes sense. As a consistency condition,
by taking the time differential of (37) with respect to t and considering x = x(t), we have

1
2 Q̇(t)‖F(x)‖2+ Q(t)(BT F) · ẋ = 0. (38)

To transform the original NAEs to ODEs, x should be specified like x = λu. It should be emphasized
that there are a variety of choices for the form of ẋ = λu. Various Newton homotopy methods may
generate from selections of u. Initially, we assume

ẋ = λu. (39)

Substituting (39) into (38) yields

λ=−
Q̇(t)

2Q(t)
‖F(x)‖2

FT Bu
, (40)

where, λ is a scalar. Plugging λ into (39), we have

ẋ =−
Q̇(t)

2Q(t)
‖F(x)‖2

FT Bu
u, (41)

Equation (41) is the general form equation for the continuous Newton homotopy methods. A class
of continuous Newton homotopy methods can be obtained from this general equation by reasonably
choosing different driving vector u. It is found that a fictitious time function is introduced in (41) which
is a mathematically equivalent n (if t is implicit) or n+ 1 (if t is explicit) dimensional dynamical system
to the original algebraic equation system. The solution for the original algebraic equation can be obtained
by applying numerical integration to the equivalent dynamical ODEs.

The fictitious time function Q(t) should be specified before applying the numerical integration. Q(t),
as discussed above, should be a monotonically increasing function of t . There are many choices for Q(t).
According to [Ku et al. 2009], we can choose

Q(t)= e
ν

1−m [(1+t)1−m
−1]
, (42)

so that
Q̇(t)
Q(t)

=
ν

(1+ t)m
, 0< m ≤ 1. (43)

We make (42) the first choice of Q(t). A simpler, intuitive choice of the fictitious time function is
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method driving vector u Q(t)

DNM1 B−1 F choice 1
DNM2 B−1 F choice 2*
MBECA1 BT F choice 1
MBECA2 BT F choice 2
DJIFM1 F choice 1
DJIFM2 F choice 2

Table 1. A summary of continuous Newton homotopy methods.

Q(t)= et, (44)

which makes Q̇(t)/Q(t)= 1. This is labeled as the second choice of Q(t).
Finally the general form continuous Newton homotopy method has been derived as (41) with a spec-

ified Q(t) in (42) or (44). Integrating this system of ODEs, one can arrive at the stable solution of the
ODEs, which is the solution of the original nonlinear algebraic system.

Different choices of the driving vector u in the general Equation (41) lead to different kinds of con-
tinuous Newton homotopy methods. See Table 1 for a summary of methods.

Interestingly, if we choose Q(t)= e2t , that is, choice 2*, instead of Q = et for the DNM2, we obtain

ẋ =−B−1 F, (45)

which turns out to be exactly the continuous Newton method by Hirsch and Smale [1979]. Applying the
forward Euler scheme to (45), we have

xk+1 = xk − B−1
k Fk, (46)

which is the classical Newton method.
It can be seen from Table 1 that DNMs are different from the other continuous Newton homotopy

methods in that the inverse of the Jacobian matrix is involved. The DNM2 and DNM1 should be regarded
as the Newton method and a variant Newton method respectively. However, the DNMs [Ku et al. 2011;
Ku and Yeih 2012] are more flexible than the Newton method, since the dynamical system of the DNMs
can be with different choices of Q(t) and numerical integration methods, while the Newton method is a
special case with Q(t)= e2t and the forward Euler method. It is expected that proper selections of Q(t)
and integration method may improve the convergence performance.

The MBECAs and the DJIFMs do not involve the inversion of Jacobian matrix. The MBECA1 turns
out to be exactly the same as the ECSHA, which is applied in [Dai et al. 2011a].

There are three types of continuous Newton homotopy methods as introduced above. All the three
methods are based on the driving vector u where there is only one vector in u. To be extended, we can
assume u to be constructed by two vectors, such as F and BT F, or F and its normal vector P , or BT F
and its normal vector P∗. To derive the new methods, the only thing to do is to replace the u in (41). In
this study, unless otherwise specified, we use the forward Euler method to perform the integration for the
continuous Newton homotopy methods. The performance of the continuous Newton homotopy methods
is tested in numerical examples.
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3.3. Iterative Newton homotopy methods. Subsequently, Liu and his coworkers developed a series of
purely iterative Newton homotopy methods, where Q(t) no longer needs to be specified. Similar to the
continuous Newton homotopy methods, these iterative Newton homotopy methods can also be incorpo-
rated into a uniform framework.

To derive the purely iterative methods, the general equation (41) of the continuous Newton homotopy
methods is first discretized into a discrete time dynamics via the forward Euler method:

x(t +1t)= x(t)−β
‖F(x)‖2

FT Bu
u, (47)

where

β = q(t)1t and q(t)=
Q̇(t)

2Q(t)
. (48)

Then, we differentiate F with respect to t , and obtain

Ḟ = Bẋ =−q(t)
‖F‖2

‖BT F‖2
AF, (49)

where A= B BT . Similarly, we use the forward Euler scheme to integrate (49) and get

F(t +1t)= F(t)−β
‖F(x)‖2

FT Bu
u. (50)

Considering that formula (37) is an invariant manifold in time and letting C = 1
2‖F(x0)‖

2, we can get

‖F(t)‖2 =
2C

Q(t)
, (51)

‖F(t +1t)‖2 =
2C

Q(t +1t)
, (52)

since the defined manifold should be invariant with time. Squaring both sides of (50) and using Equa-
tions (51) and (52) we can obtain

C
Q(t +1t)

=
C

Q(t)
− 2β

C
Q(t)
+β2 C

Q(t)
‖F‖2

(FT Bu)2
‖Bu‖2. (53)

After some simple algebra, the following scalar equation is obtained:

a0β
2
− 2β + 1− s = 0, (54)

where

a0 :=
‖F‖2‖Bu‖2

‖FT Bu‖2
, s =

Q(t)
Q(t +1t)

=
‖F(t +1t)‖2

‖F(t)‖2
. (55)

It worth noting that s can be used as a quantity to assess the convergence property of the iterative Newton
homotopy methods, and a0 ≥ 1 according to the Cauchy–Schwarz inequality

‖F · (Bu)‖ ≤ ‖F‖‖Bu‖. (56)
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From (54), we can take the solution of β to be

β =
1−
√

1− (1− s)a0

a0
. (57)

To ensure 1− (1− s)a0 ≥ 0, let

1− (1− s)a0 = γ
2
≥ 0, (58)

s = 1−
1− γ 2

a0
, (59)

and from (57) it follows that

β =
1− γ

a0
. (60)

From Equations (47), (55) and (60) we can obtain the algorithm

x(t +1t)= x(t)− (1− γ )
FT Bu
‖Bu‖2

u, (61)

where
−1< γ < 1 (62)

is a parameter to be chosen by user. Equation (61) is the general form of the iterative Newton homotopy
methods.

Using Equations (55), (59) and (62) we derive that

‖F(t +1t)‖
‖F(t)‖

=
√

s < 1, (63)

which means that the residual error is absolutely decreased. This property guarantees that the algorithm
in (61) is absolutely convergent to the true solution, and a smaller s implies a faster convergence rate.

Recall that the continuous Newton homotopy methods involve the fictitious time function, and the
dynamical system (41) should be integrated in time, step by step. Conversely, the iterative Newton
homotopy methods are purely iterative, and do not require a specification of Q(t). Different choices
of the driving vector u in the general Equation (61) will lead to different iterative Newton homotopy
methods as summarized in Table 2, wherein R = BT F, C = BT B.

The RNBA is the first iterative Newton homotopy method, which employs one vector R in the driving
vector u. Later, a series of iterative Newton homotopy methods employing two vectors in the driving
vector are developed. The OVDA uses u= αF+βR, and the dividing parameters α and β are determined
by letting ∂s/∂α = 0 and β = 1−α.

Liu, Dai and Atluri [2011a; 2011b] proposed the OIA/ODVs and the OIAs. The main difference
between the OIA/ODVs, OIAs and the OVDA is that two orthogonal vectors instead of the couple of
F and R are used to constitute the driving vector. Numerical examples in [Liu et al. 2011a; 2011b]
illustrated that OIA/ODVs and OIAs have a better performance than the OVDA in solving their selected
problems, while this is not always the case. Numerical examples of this study indicate that the OIAs and
the OVDA are comparable in terms of convergence rate, while the OIA/ODVs converge more slowly.
In particular, the OIA/ODV[R] is several times slower than the OIAs and the OVDA. So the OIAs are
believed to be superior to the OIA/ODVs.
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method driving vector u P (or P∗) parameter optimization scheme

RNBA [Liu and Atluri 2011b] R * *

OVDA [Liu and Atluri 2011a] αF+βR * ∂s/∂α = 0, β = 1−α

OIA/ODV[R] [Liu et al. 2011a] αR+β P R− ‖R‖2
RT C R

C R ∂s/∂α = ∂s/∂β = 0

OIA/ODV[F] [Liu et al. 2011a] αF+β P∗ F− ‖F‖2
FT C F

C F ∂s/∂α = ∂s/∂β = 0

OIA(R) [Liu et al. 2011b] αR+β P F− R·F
‖R‖2

R ∂s/∂α = ∂s/∂β = 0

OIA(F) [Liu et al. 2011b] αF+β P∗ R− R·F
‖F‖2

F ∂s/∂α = ∂s/∂β = 0

LOIA [Liu and Atluri 2012] αF+ R * ∂s/∂α = 0, β = 1−α

GOIA [Liu and Atluri 2012] αF+ R * global minimum of s

Table 2. A summary of iterative Newton homotopy methods.

It can be seen from Table 2 that the LOIA is essentially similar to the OVDA method, so only the
OVDA is evaluated via numerical experiments. For more details about the Newton homotopy methods,
one is recommended to refer to related references in Table 2.

4. Numerical examples

In this section, examples concerning the solution of von Kármán nonlinear plate equations, for a plate
undergoing various kinds of loads are provided to verify the present method as well as to evaluate the
novel algebraic equation solvers. The Young’s modulus and Poisson’s ratio are E = 205.8× 109 and
ν = 0.3, unless otherwise specified. For NAE solvers, the parameter γ = 0.3 and the stop criterion
ε = 10−4 are fixed throughout the paper.

In some examples, the external loads are applied in terms of critical values Pxcr or τcr. The critical
values of Pxcr and τcr for a plate depend on its supporting pattern as well as length versus width ratio.
For a simply supported plate with a/b = 1 or 2, the critical values are given as follows

σxcr = 4×
π2 D
b2t

,
a
b
= 1, 2,

τcr = k×
π2 D
b2t

, k = 9.34 if
a
b
= 1; k = 6.6 if

a
b
= 2,

where σxcr = Pxcr/(bt). For more types of supporting forms and length/width ratios, one may refer to
Chapter 9 of [Timoshenko 1961].

4.1. A square plate under uniaxial compression. In this example, a simply supported square plate under
uniaxial compression is analyzed. The dimensions of this plate are a = 1, b = 1, t = 0.009, where a, b, t
represent length, width and thickness respectively. All dimensions in this study are in meters unless
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Figure 2. Deflection versus compression loads.

otherwise mentioned. The initial deflection is specified as A0mn = 0.45× 10−3. Pxcr is the critical
compression causing buckling of plate.

To examine the accuracy of the present global Galerkin method, a case of the incremental Galerkin
method developed by Ueda, Rashed and Paik [Ueda et al. 1987] is used to compare with the present
method. Figure 2 plots the load-deflection relationships obtained at different load levels. The compres-
sion load acting on the plate varies from 0.1 to 2 with load step being 0.1. Therefore, there are 20 load
steps and hence 20 sets of NAEs to solve. For the first load step, the initial values are chosen as a set
of small values rather freely, since the expected solution is small. In addition to the first load step, the
initial values to start the NAE solver are obtained through a load marching procedure, where the solution
of the previous load step is used as the initials of the current load step.

It can be seen from Figure 2 that the results of the present Galerkin method and the incremental
Galerkin method are in very good agreement. Figure 2 also reveals that the present method with nine
term (3 × 3) deflection function (labeled as 3 × 3 present method) agrees very well with the 1 × 1
present method. In the square plate case, 1× 1 present method is quite accurate owing to the similarity
between the one half wave plate deflection and the 1× 1 deflection function, which indicates solving the
simply supported square plate is extremely economic via the present global Galerkin method. Numerical
calculations throughout the paper are performed in Matlab on a personal computer with an Intel core
i5 CPU.

4.1.1. Comparative performance of various NAE solvers. Another purpose of the present study is to
evaluate the various kinds of NAE solvers. We employ the 3× 3 present method to solve the von Kármán
plate problem. Thus, a system of nine NAEs is obtained. Table 3 provides the computational information
for solving the resulting system of NAEs via various kinds of solvers. The number of iterations, comput-
ing time, and time per iteration (TPI) are listed in Table 3, from which we can see that DNM2, that is,
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method time(s) iterations TPI(s)

SHM 2923.9 184679 0.0158
MBECA1 289.9 19144 0.0151
MBECA2 859.7 56758 0.0151
DNM1 1.9 76 0.0255
DNM2 1.7 72 0.0233
DJIFM1 26.9 1849 0.0145
DJIFM2 51.8 3419 0.0152

OVDA 20.2 999 0.0202
OIA/ODV[R] 317.4 16142 0.0197
OIA/ODV[F] 26.5 1341 0.0198
OIA(R) 20.2 1020 0.0198
OIA(F) 20.1 1001 0.0201
GOIA 19.6 980 0.0200

Table 3. Example 1: 3× 3 present method.

the classical Newton method, and its variant DNM1 are the fastest ones. It implies that the best driving
vector should employ the inverse of the Jacobian matrix. However, since the DNM1 and DNM2 require
calculating the inverse of the Jacobian matrix, the TPIs of them are expected to be larger than those of
the other methods, which is justified in Table 3. It is emphasized that the larger TPIs do not influence
much the computational costs due to the relatively smaller size of the Jacobian matrix. However, when
the number of NAEs is very large, the initial “guesses” of solution are not easy to generate, and when
the Jacobian matrix is nearly singular or severely ill-conditioned, the advantages of the scalar homotopy
methods such as the GOIA which does not need to invert the Jacobian matrix start becoming apparent.

The FTIM and MNM are applied to the present case; however, neither gives a convergent solution.
The preliminary SHM based on the fixed-point homotopy function converges several times more slowly
than the Newton homotopy methods based on the Newton homotopy function. In general, the number of
iterations of the iterative methods of the lower part table is smaller than that of the continuous methods
of the upper part table. However the OIA/ODV[R] is verified to be an exceptional case in the family of
iterative methods, which costs ten more times iterations than its counterpart OIA/ODV[F]. The iterative
Newton homotopy methods cost less iterations than the continuous Newton homotopy methods in general.
As shown in Table 3, the OVDA, the OIAs and the GOIA are comparable, and promise to be the best
Jacobian-inverse-free methods; they may play an important role in solving a nonlinear problem whose
initial guess is hard to choose, when Jacobian matrix is ill-conditioned or nearly singular, when the num-
ber of NAEs tends to be very large and when the system of NAEs is overdetermined or underdetermined.

4.2. A rectangular plate under uniaxial compression. A simply supported rectangular plate under uni-
axial compression is considered. Its dimensions are a = 1.68, b = 0.98 and t = 0.011. The initial
deflection is given by A011 = 1.1×10−3 and A021 = 0.22×10−3. The present Galerkin method is applied
to solve this rectangular plate. Besides, the analysis is also carried out by the FEM using rectangular,
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Figure 3. Deformation of a rectangular plate under uniaxial compression: load = 2.
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Figure 4. Stress σx versus deflection of point A and B, for the present Galerkin method
and the finite element method.

four node, and nonconforming plate elements with five degrees freedom at each node; 7× 18 elements
for half of the plate.

Figure 3 provides the deformation of the rectangular plate. Figure 4 displays curves that plot the stress
σx against the deflection of two points A (0.25a, 0.5b) and B (0.75a, 0.5b). It reveals that the results
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of the present method and that of the FEM are in good agreement, which confirms the accuracy of the
present method.

Comparing the solutions by the present methods in Figure 4, we see that the global Galerkin method
with 1× 1 term deflection function cannot provide an acceptable solution, Physical intuition tells us that
the deformation of the plate cannot be described by one term deflection function anyway. It can be seen
from Figure 3 that the deformation of the plate has two half waves in the x direction; therefore at least
two terms should be used in x direction. The result of 2× 1 present method is in a very good agreement
with the result of FEM. Figure 4 also displays that solutions by 3× 2 and 2× 1 present methods are
overlapped, which indicates that present method with only a few modes can provide a very accurate
solution for the simply supported von Kármán plate under uniaxial compression.

4.2.1. Performance of solvers. The 3× 2 present method is used to solve the rectangular plate, and
the computation information for various solvers for solving the Galerkin-resultant NAEs is provided in
Table 4.

In accordance with Example 1 (Table 3), the DNM1 and DNM2 involved with the inverse of the
Jacobian matrix have larger TPIs, while the total computing time and consumed iterations of the DNMs
are much more cheap. The reason is that the usage of B−1 provides the best descent direction to reduce
residuals (hence requiring fewer iterations), and the time consumption of inverting the current Jacobian
matrix is not expensive. Although in the present case the slightly different TPIs are not sufficient to
reverse the overall performance of the Newton method and the homotopy methods. It is reasonable to
expect that when the size of Jacobian is very large, the Newton method would suffer from a larger TPI.
Also, the iterative Newton homotopy methods are computationally cheaper than the continuous-type
methods in general, except the OIA/ODV[R].

method time(s) iterations TPI(s)

MBECA∗ 600.7 11208 0.0536
MBECA1 39.4 12555 0.0031
MBECA2 63.3 20537 0.0031
DNM1 0.51 109 0.0047
DNM2 0.55 114 0.0048
DJIFM1 4.6 1424 0.0032
DJIFM2 5.9 1861 0.0032

OVDA∗ 53.2 633 0.0840
OVDA 2.3 663 0.0035
OIA/ODV[R] 20.4 6336 0.0032
OIA/ODV[F] 2.9 866 0.0033
OIA(R) 2.2 636 0.0034
OIA(F) 2.3 659 0.0034
GOIA 2.3 665 0.0035

Table 4. Example 2: 3× 2 present method.
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Figure 5. Square plate: central deflection versus lateral pressure.

In addition, the MBECA* [Dai et al. 2011a] (or named ECSHA) and the OVDA* [Dai et al. 2011b]
using symbolic calculations of the Jacobian matrix at each iteration are also listed in Table 4. We see
that inclusion of the symbolic operations slightly improves the performance of the solvers in terms of the
consumed number of iterations, because using symbolic operations can avoid the cut-off errors which
inherently exist in numerical calculations. Nevertheless, the TPIs of MBECA* and OVDA* are about
ten times larger than those of the MBECA and OVDA, which indicates that the contribution of deriving
the explicit Jacobian matrix is of significant importance. Table 4 shows that the GOIA, the OIAs and
the OVDA are the most efficient Jacobian-inverse-free methods. Next to the above three methods are
the OIA/ODV[F] and the DJIFMs; the OIA/ODV[R] and the MBECAs are several orders of magnitude
more expensive. It is found that Newton homotopy methods having a driving vector with F inside are
superior to those where F is not included.

4.3. A square/rectangular plate subjected to lateral load. A square plate, with geometry a = b= 1 and
t = 0.009, subjected to a uniformly distributed lateral load Q is considered in this example without initial
imperfections.

It indicates in Figure 5 that the present method is quite accurate in solving a plate under lateral load
through a comparison with the incremental Galerkin method [Ueda et al. 1987], and Levy’s method. The
result of 1× 1 present method agrees well with that of 3× 3 present method. We conclude that for a
square plate, the present method with very few terms can be reasonably accurate, due to the similarity
between the real plate deflection and the one half-wave bulge of the assumed function.

Figure 5 also gives the result via a finite difference method proposed by Brown and Harvey [1969].
It is seen that there is a discrepancy between the present method and the finite difference method. The
differences between the solutions, which may be attributed to two different sets of boundary conditions,
both of which might be loosely described as simply supported, indicate the importance of specifying
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Figure 6. Maximum deflection versus lateral pressure for a range of length/width ratios.

plate number a/b b/t E (GPa) ν Q Px

1 1 50 205.8 0.30 varies 0.60Pxcr

2 3 66.7 204.8 0.33 29400 (Pa) varies

3 3 66.7 204.8 0.33 49000 (Pa) varies

4 3 74.7 214.6 0.33 1.43
( Qb4

Et4

)
varies

5 3 74.7 214.6 0.33 4.28
( Qb4

Et4

)
varies

Table 5. Geometries and material properties of plates.

all four boundary conditions. In a further study, we are trying to replace the loose simply supported
conditions used in [Levy 1942b; Ueda et al. 1987; Paik et al. 2001; Dai et al. 2011a] by strict simply
supported conditions using the present method.

Figure 6 shows the deflection-load relationships for various length/width ratios, and the results by the
linear theory are also provided. It can be seen that increasing the ratio of length versus width will lead
to a larger plate deflection, which is in accord with physical intuition. Under the same load situation, we
expect that an infinite large length/width ratio causes the largest deflection of a plate.

4.4. A square/rectangular plate subjected to lateral pressure combined with uniaxial compression.
First, a square plate subjected to lateral pressure combined with uniaxial compression is considered. The
x-direction compression acting on the plate is a constant (see plate 1 in Table 5), and the lateral pressure
acting on the plate increases as shown in Figure 7. The geometric and material properties are listed in
Table 5, and the initial deflection is zero. For comparison purpose, this plate has also been analyzed via
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FEM in ANSYS (brick element with eight node and three degrees freedom at each node, 50× 50× 1
elements for the whole volume).

It is seen from Figure 7 that the results of the present method are quite in accordance with those of
the FEM when the lateral pressure is below approximate 15. As the lateral pressure increases further,
the discrepancy between the two methods increases.
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Figure 9. Uniaxial compression versus maximum deflection with a constant lateral pres-
sure by the present method, the perturbation method [Shen 1989] and the experiment
[Yamamoto et al. 1970]. Axial load versus deflection: plate 2 (left) and plate 3 (right).

Figure 8 shows the deflection versus lateral pressure curves for square plate 1 under a range of edge
compressions. It indicates that as the edge loading increases the plate deflection increases accordingly
under the same lateral pressure.

In the first case of plate 1, the axial compression is kept constant and the lateral pressure is increased
incrementally. We also analyze the cases, rectangular plates 2–5, wherein the lateral pressure is exerted
first and kept constant, and x-direction compression is increased gradually.

Figure 9 shows the comparisons of the load-deflection relationships by the present method, the pertur-
bation method [Shen 1989], and the experiment results [Yamamoto et al. 1970]. We see that the present
method approximately agrees with the perturbation method and the experiment. The present method
is more closer to the experiment than the perturbation method when the compression is relatively low.
However, as the load increases, the deflection by the present method is smaller than that of the pertur-
bation method and the experiment. The discrepancy between the present method and the experiment is
approximately a constant value, larger than the discrepancy between the perturbation method and the
experiment. The present method is simpler than the perturbation method in [Shen 1989]. Because in
[Shen 1989], the Galerkin method is used to first convert lateral pressure into an initial deflection, and
then governing equations are studied using a perturbation method, taking deflection as its perturbation
parameter.

Figure 10 displays the deflection-axial load relations for a range of lateral pressures. The curves are
computed through a load-marching procedure wherein the solution of the previous load step is used as
the initial of the current load step. In Figure 10, both forward marching and backward marching paths
are plotted. It can be seen that with the increase of the lateral pressure, a hysteresis phenomenon may
occur. In this case, Q = 3.7 has no hysteresis while Q = 4 has hysteresis; so the buckling behavior of
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Figure 10. The deflection versus axial load relationships for a range of lateral loading
Qs: Q = 3, 3.7, no hysteresis; Q = 4, 5, hysteresis occurs.
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Figure 12. Deformation of a rectangular plate under uniaxial compression Px = 0.65Pxcr

(applied first and keep constant) and shear τ = 2τcr (applied gradually).

the plate occurs at between Q = 3.7 and Q = 4. By a refined estimation, we determined that Q∗ = 3.75
is the buckling critical value detected by the present method, which is very close to the critical value 3.7
given in [Okada et al. 1979].

When the lateral pressure is small (Q ≤ Q∗= 3.75), the buckling does not occur; that is, there is neither
the bifurcation point nor the unstable paths on the deflection-axial load curves. In fact, the deformation
varies continuously towards the deflection form of triple bulges with the large value of A3, with the
increase of the edge compression from the single bulge deflection form.

When the lateral pressure is large (Q > Q∗ = 3.75), the buckling occurs at a certain edge compression
(the load at point A in Figure 10). In this case, the plate can show a jump behavior from a single bulge
deformation form to a three bulges deformation form once the edge pressure reaches the critical value. In
addition, an external stimulus to the plate may switch the deflection form of the plate when edge pressure
is in between load of point A and load of point B, because in this interval (hysteresis area) this system
has two stable states either of which is physically realizable.

Figure 11 provides the solutions for plates 4 and 5 by the present method and the Rayleigh–Ritz
method [Okada et al. 1979]. It can be seen that both methods can detect the critical buckling points.
However, there exists a discrepancy between the two methods. Similar to the case in Section 4.3, the
differences between the solutions are due to the different sets of boundary conditions, although both of
which might be loosely described as simply supported.

4.5. A rectangular plate subjected to shear and uniaxial compression. A rectangular plate under shear
stress and uniaxial compression is analyzed with dimensions being a = 2, b = 1 and t = 0.009. The
uniaxial compression Px = 0.65Pxcr is exerted first and kept constant. The shear stress is applied in-
crementally from 0.1τcr to 2τcr with a step size 0.1τcr. The final deformation of the plate is shown in
Figure 12.
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Figure 13. Comparisons of load-deflection curves as given by present global Galerkin
method and the incremental Galerkin method [Ueda et al. 1987] under a pure shearing
load.

Load-deflection curves of the rectangular plate under pure shearing load are plotted in Figure 13 via the
present method and the incremental Galerkin method. It is shown that the present method is in accord
with the incremental Galerkin method. The addition of terms in the assumed deflection function can
generate a more accurate result if the result of the incremental Galerkin method is taken as a benchmark.
Also, we can see that the deflection calculated by the present method is smaller than the incremental
Galerkin method in general. It can be seen that the buckling critical value for the plate is about τ ≈ τcr,
since there is no extra force acting on the plate and the initial imperfection is very slight so that it does
not influence much.

Load-deflection curves of the plate under combined uniaxial and shearing loadings are given in
Figure 14. A similar conclusion can be obtained as the above pure shearing case. There is a discrepancy
between the results of the present method and the incremental Galerkin method. As the number of
terms in the deflection function increases, the difference between the present method and the incremental
method decreases. It shows from Figure 14 that the critical shearing value for the plate buckling decreases
from the theoretical value τcr of the pure shearing condition to approximately half of τcr of the combined
load condition. It illustrates that the uniaxial compression acting on the plate can degrade the critical
value for shearing buckling. Plus, with rectangular plates, more terms in the longitudinal direction are
required such that the real deflection shape of the plate can be satisfactorily described.

4.5.1. Comparison of solvers. The consumed computing efforts via different solvers are provided in
Table 6, where eight term (4× 2) deflection function is used in the present Galerkin method.

We see that the DNM2, that is, classical Newton method, is the fastest method both in terms of
iteration numbers and computational time. The DNM1, a variant Newton method, is comparable with
the Newton method. The DNMs are regarded as Newton-type methods, since they involve with the
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Figure 14. Comparisons of load-deflection curves as given by present global Galerkin
method and the incremental Galerkin method [Ueda et al. 1987] under uniaxial compres-
sion combined with a shearing load.

method time(s) iterations TPI

MBECA1 174.07 17394 0.0100
MBECA2 159.4 15938 0.0100
DNM1 5.28 472 0.0112
DNM2 5.05 457 0.0111
DJIFM1 35.68 3479 0.0103
DJIFM2 21.81 2143 0.0102

OVDA 12.96 1298 0.0100
OIA/ODV[R] 95.03 9655 0.0098
OIA/ODV[F] 16.19 1689 0.0096
OIA(R) 12.93 1300 0.0099
OIA(F) 12.94 1300 0.0100
GOIA 12.94 1300 0.0100

Table 6. Example 5: 4× 2 present method.

inverse of Jacobian matrix. The TPIs of the DNM1 and DNM2 are larger than those of other methods,
which can be explained by the need for inverting Jacobian matrix. In general, the iterative methods are
several times faster than the continuous methods except the OIA/ODV[R]. However owing to the small
size of the Jacobian matrix, the TPIs of DNMs are only slightly larger. Therefore the DNMs, which
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converge quadratically fast, are preferable choices for solving the current Galerkin-resultant system of
NAEs which involve only a small number of nonlinear equations.

The prominent Jacobian-inverse-free methods, for example, OVDA, the OIAs and the GOIA, can be
employed in solving nonlinear problems whose initial guess is hard to choose, whose Jacobian matrix
is ill-conditioned or nearly singular, when the number of equations tends to be very large, and when the
system of equations is either over or under determined.

5. Conclusion

In this paper a global Galerkin method is presented for solving the simply supported initially imperfect
von Kármán plate under a combination of in-plane and lateral loads. The coupled nonlinear differential
equations are transformed into a system of NAEs via the global Galerkin method. The explicit form
of the Jacobian matrix (“tangent stiffness” matrix) of the NAEs is derived to eliminate the symbolic
calculations involved in solving the NAEs. Plates subjected to uniaxial compression, or lateral pressure,
or a combination of axial compression and lateral pressure, or a combination of shear stress and axial
compression, are investigated by the present global Galerkin method in numerical examples. Large
deflections of plate under different loading conditions are analyzed, and nonlinear phenomena such as
the buckling behavior and the jump phenomenon are discussed. The present method is validated to be in
agreement with the perturbation method, the incremental Galerkin method, the finite difference method,
the finite element method and the experiments.

The present method is extremely advantageous provided that the deflection shape of a plate can be
accurately expressed by the deflection function with a few terms. Numerical experiments indicate that
the computing effort of the present method would be very economic when less than forty terms are
considered in the assumed deflection function. Also, because of the extremely high accuracy provided
at a very modest cost, the global Galerkin method may also provide the much needed highly accurate
benchmark solutions against which other numerical methods may be validated. While distributed loads
are treated in the present paper using the Galerkin method and trigonometric basis functions, (nonlinear)
plates subjected to concentrated loads at arbitrary locations will be treated in a forthcoming paper using
radial basis functions [Atluri 2005] and a spatial collocation or a Galerkin method. The resulting NAEs
for these point load problems can be solved by the same methods as in the present paper.

On the other hand, a series of scalar homotopy methods (mainly the Newton homotopy methods),
which do not need to invert the Jacobian matrix, are reviewed and used to solve the Galerkin-resulting
system of NAEs. The performance of each method is evaluated. The GOIA, the OIAs and the OVDA
promise to be the best Jacobian-inverse-free methods hitherto. A general form equation is proposed to
incorporate all the existing scalar Newton homotopy methods in a uniform framework. Interestingly, the
classical Newton method (labeled DNM2 in paper) can be generated from this general dynamical system
under a certain condition.
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BIMATERIAL LATTICES WITH ANISOTROPIC THERMAL EXPANSION

MARINA M. TOROPOVA AND CRAIG A. STEEVES

Bimaterial lattices with anisotropic thermal expansion consist of nonidentical cells comprising a skewed
triangle made of one material surrounding an unskewed triangle made of a second material. The two
materials have differing individual coefficients of thermal expansion. The variation in skew angles
makes the thermal expansion of the cell anisotropic. Being composed of anisotropic nonidentical cells,
the assembled lattice is also anisotropic and can be designed to have different coefficients of thermal
expansion on its top and bottom surfaces. Such lattices can be used as transition elements or adapters
to avoid thermal-expansion mismatch between two parts of a structure made of materials with different
coefficients of thermal expansion and subjected to temperature changes. In the present paper, three
nonlinear algebraic equations linking skew angles with the coefficients of thermal expansion in three
directions of a cell are derived, the design of several lattices is performed, the algorithm of lattice design
is elaborated, and some examples are presented.

1. Introduction

Often structures that are used in aerospace, civil engineering, and microelectronics experience large
temperature changes. If connected components of such structures are made of materials with different
coefficients of thermal expansion (CTE), they experience mechanical stresses due to thermal-expansion
mismatch. To eliminate thermal stresses, the parts of the structure with differing CTEs, herein referred
to as the substrates, can be connected to each other through special transition elements or adapters with
anisotropic CTE. Using composite structures with graded CTEs for joining purposes is not a new concept.
For example, Yousefiani et al. [2009a; 2009b] applied it to design a layered injector-chamber attachment
component in rocket engines. In the first of these papers they suggested joining approaches such as
welding, brazing, or solid-state bonding to produce a graded-CTE layered composite. In the second,
they used build-up (bottom-up) fabrication approaches such as metal deposition or powder metallurgy
to produce a graded-CTE layered composite preform, which was consolidated and heat-treated to create
the graded-CTE integrated composite billet of near net shape. In [Dang 2008], the composite adapters
with graded CTE were components of a precision optical assembly to prevent lens misalignment. The
adapter material comprised multiple thin composite material layers, each possessing a CTE slightly
different from its two adjacent layers, bonded to form an adapter with CTE gradually varying in the
direction perpendicular to the bonding interfaces. Such adapters will bend when subjected to temperature
changes, and deformations of the system must be permitted or thermal stresses will arise if the bending is
suppressed. Also, their mechanical properties can be substantially anisotropic, leading to the reduction of
overall stiffness and strength. An alternative to graded systems is a compliant system, where differential

Funding was provided through Natural Sciences and Engineering Research Council Strategic Project Grant 413357-11.
Keywords: composite lattices, graded coefficient of thermal expansion, thermal-mismatch adapters.
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thermal expansion is accommodated by connectors with low stiffness. This has the disadvantage of
reducing the overall stiffness of the structure.

Here, we suggest a way for joining dissimilar parts of a structure using planar composite lattices with
anisotropic CTE: one edge of the lattice has CTE that matches the material of the first substrate, and the
opposite edge of the lattice has a CTE matching the second substrate. In designing such lattices, we rely
on [Sigmund and Torquato 1996; Lakes 1996; Gibiansky and Torquato 1997; Sigmund and Torquato
1997; Jefferson et al. 2009; Steeves et al. 2007; Lehman and Lakes 2013], where it was demonstrated
that a lattice with a desirable isotropic CTE can be constructed from cells incorporating two materials
with widely differing individual CTEs and empty space. A lattice cell consisting of a skewed triangle of
low-CTE material surrounding a triangle of high-CTE material combines high stiffness, simple shape,
and ability to reach desirable CTE [Steeves et al. 2007]. In [Steeves et al. 2007; Berger et al. 2011], a pin-
jointed lattice consisting of these cells is shown to be nearly optimally stiff: the mechanical response of
this type of lattice is dominated by stretching rather than bending. Such lattices are structurally robust and
can be relatively easily manufactured. Gdoutos et al. [2013] designed, fabricated, and tested thermally
stable metastructures consisting of the cells suggested in [Steeves et al. 2007]. These structures were
finely and coarsely tuned by varying the CTE of the constituent materials and the unit cell geometry. The
microscale unit cells were composed of aluminum and titanium and were assembled over a large area to
create thin low-CTE foils.

In this work, the lattice concept created by Steeves et al. is used to design a lattice adapter with
anisotropic CTE. To be anisotropically tunable, each cell can have six different skew angles and therefore
have anisotropic thermal expansion. Also, the cells in the lattice are not identical. As a result, the whole
lattice has anisotropic and graded net CTE. In this paper, the anisotropic thermal expansion of the lattice
is analyzed and the equations connecting the cell skew angles with CTE in three directions are derived.
These equations are used to find desirable skew angles for the design of each cell. Then the design of the
whole lattice is performed: three CTEs in each cell are found as functions of the CTEs of the substrates. A
system for choosing the lattice materials that can provide such CTEs is discussed. Design examples then
show how the choice of materials influences the skewness of the cells. This anisotropic-lattice concept
eliminates both of the problems with other adapter concepts: the lattice remains stiff at all times, and if
pin-connected, differential thermal deformations of the substrates are accommodated without generating
any thermal stresses either in the lattice or the substrates. Moreover, the anisotropic lattices presented
here are scale independent and can be extended to three-dimensional geometries.

2. Formulation of the problem

Consider two adjoining planar parts of a structure; name them Substrate 1 and Substrate 2. Suppose that
Substrates 1 and 2 are made of materials with different CTEs A1 and A2, respectively. We would like
to join these plates by a planar interfacial one-row lattice that has the CTE of the first substrate A1 on
the edge connected to the first plate and the CTE of the second substrate A2 on the edge adjacent to the
second plate; this eliminates thermal stresses in the substrates during thermal excursions. In addition, the
lattice itself should experience no internal thermal stresses during temperature changes. For this purpose,
we use the lattice with cells described in [Steeves et al. 2007]: it is based on a virtual triangle AC E and
consists of a skewed triangle ABC DE F made of a material with lower CTE α1 and connected with an
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θ6
θ1 θ2

θ3

θ4θ5

High CTELow CTE

Figure 1. One cell of a lattice. The members AB, BC , C D, DE , E F , and AF have
low CTE, depicted in black. The members B D, DF , and B F have higher CTE, depicted
in gray. The equilateral triangle upon which the cell is based is shown as a dashed line.
The skew angles, θ1, θ2, θ3, θ4, θ5, and θ6, are the angles by which the unit cell strut
orientation differs from those of an equilateral triangle.

Substrate 1

Substrate 2

Figure 2. A planar anisotropic lattice connecting two substrates with different CTE. The
lattice has net anisotropic CTE, and each individual cell has net anisotropic CTE.

internal unskewed triangle B DF made of a material with higher CTE α2 (Figure 1). The internal triangle
B DF is pin-joined to the skewed triangle. Adjacent cells of the lattice, connected at A, C , and E , also
have pin-joints between each other and with the substrates (Figure 2) such that the whole structure is
free of bending and thermal stresses.

The triangle AC E is equilateral [Steeves et al. 2007]: AC = L1, C E = L2, AE = L3, and L1 =

L2 = L3 = L . Unlike the lattice described in [Steeves et al. 2007], the skew angles θ1, θ2, θ3, θ4, θ5,
and θ6 and the lengths of members l1 = AB, l2 = BC , l3 = C D, l4 = DE , l5 = E F , and l6 = AF
may be different. As a result, AC , C E , and AE can expand differently when temperature changes:
d L1 = α1L1dT , d L2 = α2L2dT , and d L3 = α3L3dT , where T is temperature and αi , i = 1, 2, 3, are
the CTEs of the cell along AC , C E , and AE , respectively.

By choosing the angles θi , i = 1, 2, 3, 4, 5, 6, we can influence the change of d L1, d L2, and d L3 in
each cell and provide different changes of distances between vertices of the cells and hence different
CTEs on the bottom and top levels of the lattice (Figure 3). To design such a lattice, we need first to
obtain relations between CTEs αi , i = 1, 2, 3, and angles θ j , j = 1, 2, 3, 4, 5, 6.
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A B
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D

EC'

B'

E'

D'

Substrate 2 with CTE A2

Substrate 1 with CTE A1 

Figure 3. Lattice design: base equilateral triangles of two cells. During thermal expan-
sion, the original points translate from, for example, B to B ′. The lattice cell must be
designed to accommodate the changing distances between the points.

3. General formulae

The undeformed lengths of the constituent members of a cell (Figure 1) are

l1 = L1 f1(θ1, θ2), l2= L1 f2(θ1, θ2), l3 = L2 f3(θ3, θ4),

l4 = L2 f4(θ3, θ4), l5= L3 f5(θ5, θ6), l6 = L3 f6(θ5, θ6),
(1)

where

f1 =
sin θ2

sin(θ1+ θ2)
, f2=

sin θ1

sin(θ1+ θ2)
, f3 =

sin θ4

sin(θ3+ θ4)
,

f4 =
sin θ3

sin(θ3+ θ4)
, f5=

sin θ6

sin(θ5+ θ6)
, f6 =

sin θ5

sin(θ5+ θ6)
.

From (1), we obtain the differential relations

1
L

dl1

(
1−

α1

α1

)
= f ′1θ1 dθ1+ f ′1θ2 dθ2,

1
L

dl2

(
1−

α1

α1

)
= f ′2θ1 dθ1+ f ′2θ2 dθ2,

1
L

dl3

(
1−

α2

α1

)
= f ′3θ3 dθ3+ f ′3θ4 dθ4,

1
L

dl4

(
1−

α2

α1

)
= f ′4θ3 dθ3+ f ′4θ4 dθ4,

1
L

dl5

(
1−

α3

α1

)
= f ′5θ5 dθ5+ f ′5θ6 dθ6,

1
L

dl6

(
1−

α3

α1

)
= f ′6θ5 dθ5+ f ′6θ6 dθ6,

(2)

where f ′iθ j
, i, j = 1, 2, 3, 4, 5, 6, is a partial derivative of the function fi with respect to the angle θ j .

The length of three members of the internal triangle can be expressed as

F B = l7 = (L2
1 f 2

1 + L2
3 f 2

6 − 2L1L3 f1 f6 cos A′)1/2,

B D = l8 = (L2
1 f 2

2 + L2
2 f 2

3 − 2L1L2 f2 f3 cos B ′)1/2,

DF = l9 = (L2
2 f 2

4 + L2
3 f 2

5 − 2L2L3 f4 f5 cos C ′)1/2,

(3)

where
A′ = θ1+ θ6+ 60◦, B ′ = θ2+ θ3+ 60◦, and C ′ = θ4+ θ5+ 60◦.
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From (3), we can find dli , i = 7, 8, 9, as

dl7 = a7dl7+ b7dθ1+ c7dθ2+ d7dθ5+ e7dθ6,

dl8 = a8dl8+ b8dθ1+ c8dθ2+ d8dθ3+ e8dθ4,

dl9 = a9dl9+ b9dθ3+ c9dθ4+ d9dθ5+ e9dθ6,

(4)

where

a7 =
l1

l2
7
(l1− l6 cos A′)

α1

α2
+

l6

l2
7
(l6− l1 cos A′)

α3

α2
,

b7 =
∂l7

∂θ1
=

L
l7
(l1− l6 cos A′) f ′1θ1 +

l1l6

l7
sin A′,

c7 =
∂l7

∂θ2
=

L
l7
(l1− l6 cos A′) f ′1θ2 ,

d7 =
∂l7

∂θ5
=

L
l7
(l6− l1 cos A′) f ′6θ5 ,

e7 =
∂l7

∂θ6
=

L
l7
(l6− l1 cos A′) f ′6θ6 +

l1l6

l7
sin A′.

(5)

The coefficients a8, b8, c8, d8, and e8 can be obtained from previous formulae by replacing l1, l6, l7, α1,
α3, f1, f6, θ1, θ2, θ5, θ6, and A′ by l3, l2, l8, α2, α1, f3, f2, θ3, θ4, θ1, θ2, and B ′, respectively. Similarly,
the coefficients a9, b9, c9, d9, and e9 can be obtained from (5) by replacing l1, l6, l7, α1, α3, f1, f6, θ1,
θ2, θ5, θ6, and A′ by l5, l4, l9, α3, α2, f5, f4, θ5, θ6, θ3, θ4, and C ′, respectively.

Then expressing dθi through dli from (2), substituting them into (4), and performing all necessary
transformations, we obtain three nonlinear equations linking the six skew angles θi with three normalized
thermal-expansion coefficients along the lines AC , C E , and AE in the skewed triangle:(α1

α1
− 1

) f1 cos(θ1+ θ2)+ f2

sin θ2
+

(α3

α1
− 1

) f6 cos(θ5+ θ6)+ f5

sin θ5

=
1

sin A′

(
1−

α2

α1

)( f1

f6
+

f6

f1
− 2 cos A′

)
,

(α1

α1
− 1

) f2 cos(θ1+ θ2)+ f1

sin θ1
+

(α2

α1
− 1

) f3 cos(θ3+ θ4)+ f4

sin θ4

=
1

sin B ′

(
1−

α2

α1

)( f2

f3
+

f3

f2
− 2 cos B ′

)
,

(α3

α1
− 1

) f5 cos(θ5+ θ6)+ f6

sin θ6
+

(α2

α1
− 1

) f4 cos(θ3+ θ4)+ f3

sin θ3

=
1

sin C ′

(
1−

α2

α1

)( f4

f5
+

f5

f4
− 2 cos C ′

)
.

(6)

The equations (6) are scale-independent, contain the ratio α2/α1 as a parameter, and couple three
normalized CTEs in a cell α1/α1, α2/α1, and α3/α1. If the skew angles are known, these three CTEs
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can be calculated using the following formulae:

α1

α1
= 1+

11

1
,

α2

α1
= 1+

12

1
, and

α3

α1
= 1+

13

1
, (7)

where

1= c11c22c33+ c21c32c13,

11 = F1c22c33+ F2c13c32− F3c22c13,

12 = F2c11c33+ F3c13c21− F1c21c33,

13 = F3c11c22+ F1c21c32− F2c11c32,

(8)

c11 = sin θ5 sin(θ5+ θ6)(sin θ2 cos(θ1+ θ2)+ sin θ1),

c13 = sin θ2 sin(θ1+ θ2)(sin θ5 cos(θ5+ θ6)+ sin θ6),

c21 = sin θ4 sin(θ3+ θ4)(sin θ1 cos(θ1+ θ2)+ sin θ2),

c22 = sin θ1 sin(θ1+ θ2)(sin θ4 cos(θ3+ θ4)+ sin θ3),

c32 = sin θ6 sin(θ5+ θ6)(sin θ3 cos(θ3+ θ4)+ sin θ4),

c33 = sin θ3 sin(θ3+ θ4)(sin θ6 cos(θ5+ θ6)+ sin θ5),

(9)

F1 =
1

sin A′

(
1−

α2

α1

)(
sin2 θ2 sin2(θ5+ θ6)+ sin2 θ5 sin2(θ1+ θ2)

− 2 cos A′ sin θ2 sin θ5 sin(θ1+ θ2) sin(θ5+ θ6)
)
,

F2 =
1

sin B ′

(
1−

α2

α1

)(
sin2 θ1 sin2(θ3+ θ4)+ sin2 θ4 sin2(θ1+ θ2)

− 2 cos B ′ sin θ1 sin θ4 sin(θ1+ θ2) sin(θ3+ θ4)
)
,

F3 =
1

sin C ′

(
1−

α2

α1

)(
sin2 θ3 sin2(θ5+ θ6)+ sin2 θ6 sin2(θ3+ θ4)

− 2 cos C ′ sin θ3 sin θ6 sin(θ3+ θ4) sin(θ5+ θ6)
)
.

(10)

On the other hand, in design of anisotropic lattices, we need to solve the inverse problem of finding the
skew angles when the values of three CTEs in each cell are known. In this case, three equations (6)
are insufficient and it is possible to impose additional conditions on the lattice or optimize the lattice
structure using various criteria. If instead we make the simplification θ1 = θ2 = t1, θ3 = θ4 = t2, and
θ5 = θ6 = t3 (Figure 4), the equations (6) take the form(α1

α1
− 1

)
cot t1+

(α3

α1
− 1

)
cot t3 = G1,(α1

α1
− 1

)
cot t1+

(α2

α1
− 1

)
cot t2 = G2,(α2

α1
− 1

)
cot t2+

(α3

α1
− 1

)
cot t3 = G3,

(11)
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t1 t1
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Figure 4. A cell with three skew angles. The original six skew angles are replaced by
θ1 = θ2 = t1, θ3 = θ4 = t2, and θ5 = θ6 = t3.

where

G1 =
1

sin A′′

(
1−

α2

α1

)(cos t1
cos t3

+
cos t3
cos t1

− 2 cos A′′
)
,

G2 =
1

sin B ′′

(
1−

α2

α1

)(cos t1
cos t2

+
cos t2
cos t1

− 2 cos B ′′
)
,

G3 =
1

sin C ′′

(
1−

α2

α1

)(cos t2
cos t3

+
cos t3
cos t2

− 2 cos C ′′
)

and A′′ = t1+ t3+ 60◦, B ′′ = t1+ t2+ 60◦, and C ′′ = t2+ t3+ 60◦.
From (11), αi/α1, i = 1, 2, 3, can be found as

α1

α1
= 1+

G1+G2−G3

2
tan t1,

α2

α1
= 1+

G2+G3−G1

2
tan t2,

α3

α1
= 1+

G1+G3−G2

2
tan t3.

(12)

From (12), it is seen that if any ti = 0, i = 1, 2, 3, then αi = α1 and the two other skew angles do not
influence it. Conversely, if αi = α1, then the two skew angles adjacent to this side must be equal to zero.

If all angles in (6) are equal to θ , the cell is isotropic with a constant coefficient of thermal expansion in
all directions equal to α and these three equations can be transformed into the equation for the expansion
coefficient obtained in [Steeves et al. 2007]:

α

α1
=

1− 0.5(α2/α1) sin(2θ)(1/
√

3+ tan θ)

1− 0.5 sin(2θ)(1/
√

3+ tan θ)
. (13)

In the isotropic configuration, the maximum of the function α/α1 is reached at θ =−15◦; the function
decreases at −15◦ < θ < 90◦ (see Figure 5). For design considerations, to avoid overlapping the cells, we
consider skew angles in the range [−15◦, 30◦]. In this range of skew angle, all values of three normalized
CTEs presented by the formulae (12) belong to the interval �≡ [α(30◦)/α1, α(−15◦)/α1] that depends
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Figure 5. The influence of two skew angles on α3/α1 for α2/α1 = 2.581, which corre-
sponds to the ratio of the CTEs of aluminum and titanium.

on the ratio α2/α1 (Figure 6). Here, α/α1 is calculated from (13). Figure 5 plots the behavior of α3/α1

via t3 at three different sets of values t1 = 30◦, t2 = 20◦; t1 = 15◦, t2 = 20◦; and t1 =−5◦, t2 = 20◦ and
the ratio α2/α1 = 2.581, which corresponds to the ratio of the CTEs of aluminum and titanium. These
do not coincide with the isotropic case, which means that an arbitrary set of three values from � is not
necessarily a solution of the equations (11). In other words, the condition

α1

α1
,
α2

α1
,
α3

α1
∈�

is necessary but not sufficient for the existence of the solution of the equations (11). For example, while
the maximum for t1=−5◦, t2= 20◦ coincides with the maximum for the isotropic case, t1= 15◦, t2= 20◦

has a maximum at t3 = −10◦ and t1 = 30◦, t2 = 20◦ has a maximum at t3 = −5◦. Hence, in the latter
two cases, we need to search for solutions in the interval [−10◦, 30◦] and [−5◦, 30◦], respectively. Also,
the maxima in the three cases are different, so it is not possible to attain the same maximum α3.

In Figure 6, it is seen that the interval � increases with respect to the ratio α2/α1. The higher values
of normalized CTEs can be reached at negative unequal skew angles θ1 6= θ2, θ3 6= θ4, and θ5 6= θ6. This
case will be illustrated in Section 6, Problem 5.

4. Lattice design

In this section, planar, one-row lattices are considered. We can design lattices by designating the points on
the substrates to which the lattice will be attached and following those points as the temperature changes.
This will provide the changes in the lengths of the sides of the equilateral triangles upon which the lattice
cells are based, to which the changing lengths of the lattice cells must be matched. For example, Figure 3
shows the base triangles of two cells. Suppose the point A is fixed. When temperature changes, the other
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points B, C , D, and E move to the positions B ′, C ′, D′, and E ′, respectively. The new distances AB ′,
B ′D′, and C ′E ′ can be expressed in terms of the side length L and three unknown CTEs of each cell. The
following four conditions on the shape of the lattice after temperature changes are sufficient to find them:

(1) the distances between vertices connected to Substrate 1 must be equal to L(1+ A1dT ),

(2) the distances between vertices connected to Substrate 2 must be equal to L(1+ A2dT ),

(3) the height of each triangle must remain constant, i.e., not depend on temperature, and

(4) the lattice must have a line of symmetry.

The third condition is arbitrary: the relative approach or retreat of the substrates depends upon the
materials and the configuration of the overall structure. Here, constant H is chosen although 1H > 0
and 1H < 0 may equivalently be selected.

Using these conditions and deriving formulae for αi , i = 1, 2, 3, we neglect terms with αi
2 (which is

reasonable because αi are small). As a result, the formulae for α1, α2, and α3 in each cell of two-cell,
three-cell, and n-cell lattices as functions of the CTEs of substrates A1 and A2 are obtained.

To work with several cells, denote αi1 = α1, αi2 = α2, and αi3 = α3, where i is the number of the cell
in the row (the skeleton of a lattice is depicted in Figure 7). For example, i = 1 for cell ABC and i = 2
for B DE . Along AB and B D, j = 1; along BC and DE , j = 2; and along AC and B E , j = 3.

Consider a lattice consisting of two cells ABC and B DE (Figure 7). The lattice is pin-joined at A, B,
and D to a substrate with CTE A1 while at points C and E it is pin-joined to a substrate with CTE A2. At
the initial state, AB = BC = AC = B D = DE = B E = L . When the temperature changes, the lengths
of these segments become L(1+αi j dT ). The first substrate and the bottom level of the lattice have the
same CTE (Condition (1)), α11 = α21 = A1. Similarly, when temperature changes, the distance between
points C and E changes following the formula L(1+ A2dT ) (Condition (2)). Denote F B = x . Then for
the first cell,

L2(1+α12dT )2− x2
= L2(1+α13dT )2− (L(1+α11dT )− x)2.
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α11

α12α13

α21

α22α23 αi3

αi1

αi2

line of
symmetry

Figure 7. Designation of CTEs in a multicell lattice. Note that the lines do not represent
actual cell members; these lines refer to the virtual equilateral triangles upon which the
cells are based, shown in Figure 1 as dashed lines. The cell vertices are A to E while
the midpoints on the lower face of the cell are F and G. H is the height of the cells. If
the lattice has a line of symmetry, it would exist as the dashed line with additional cells
to the left.

Neglecting terms with α2
i j , we get

x = 0.5L(1+ (α11+ 2α12− 2α13)dT ).

Using this formula, we can find from the second cell that

BG = 0.5L(1+ (α21− 2α22+ 2α23)dT ).

Thus, when temperature changes, the distance between points C and E changes according to the rule

C E = L(1+ (α12−α13−α22+α23+ A1)dT ).

Hence,

A2 = α12−α13−α22+α23+ A1.

Also, we would like to design a lattice that does not expand along FC and G E so that the lattice
cell height H remains constant when temperature changes (Condition (3)). Applying the approach used
above, we can write, for example, for the first cell

(H + d H)2 = L2(1+α12dT )2− 0.25L2(1+ (2α12− 2α13+α11)dT )2

=
(
0.5
√

3L(1+ 2
3(α12+α13− 0.5α11)dT )

)2
.

Thus, the CTE along cell heights FC and G E is αH =
2
3(α12+α13− 0.5α11). In this case,

α12+α13− 0.5α11 = 0.

Finally, for more uniform deformation of the lattice, symmetry can be imposed through α12 = α23 and
α13 = α22 (Condition (4)).
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For a lattice consisting of two symmetric cells, three CTEs in each cell can be found as functions of
the CTEs of the substrates

α11 = α21 = A1,

α12 = α23 = 0.25A2,

α13 = α22 = 0.5A1− 0.25A2.

(14)

All values must belong to the interval �, and the CTEs, α1 and α2, of the two materials that comprise
the lattice are restricted by the following inequalities:

α2+ A1 > 2α1,

α2+ 0.25A2 > 2α1,

α2+ 0.5A1− 0.25A2 > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1 > 3.48A2,

α2+ 12.93α1 > 6.97A1− 3.48A2.

(15)

From (15), it follows that, in the particular case when the lattice is made of the same materials as
the substrates (α1 = A1 and α2 = A2), the ratio of the lattice material CTEs must lie in the range
2< α2/α1 < 5.20875.

For a three-cell lattice, we obtain similar formulae:

α11 = α21 = α31 = A1,

α12 = α33 = 0.5A2− 0.25A1,

α13 = α32 = 0.75A1− 0.5A2,

α22 = α23 = 0.25A1.

(16)

The conditions on the CTEs of the materials comprising the lattice are:

α2+ 0.25A1 > 2α1,

α2+ 0.5A2− 0.25A1 > 2α1,

α2+ 0.75A1− 0.5A2 > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1 > 6.97A2− 3.48A1,

α2+ 12.93α1 > 10.45A1− 6.97A2.

(17)

From (17), it follows that, if α1 = A1 and α2 = A2, 2.5 < α2/α1 < 2.7515. This is a very narrow
range with few candidate materials, so for the lattices consisting of three or more cells, choosing lattice
materials different from the substrate materials is nearly obligatory. Aluminum and titanium are a rare
combination of common substrate materials that can be connected by a three-cell lattice of the same
materials.
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If the lattice contains 2n cells, n = 2, 3, 4, . . . , and is symmetrical with respect to the vertical line
passing through one of the bottom vertices (see the line of symmetry in Figure 7), the formulae for cells
lying to the right of the symmetry line are

αi1 = A1,

αi2 = 0.5i A1− 0.25(2i − 1)A2,

αi3 = 0.25(2i − 1)A2− 0.5(i − 1)A1,

(18)

where i = 1, 2, . . . , n.
The conditions for the lattice materials are

α2+ A1 > 2α1,

α2− 0.25A2+ 0.5A1+ 0.5i(A2− A1) > 2α1,

α2+ 12.93α1 > 13.93A1,

α2+ 12.93α1+ 6.97i(A2− A1) > 3.48A2.

(19)

Two additional analogous conditions define the maximum number of cells that the lattice made of
these materials can contain:

n <
2α2+ 0.5A2− 4α1

A2− A1
,

n <
0.5A2+ 0.14α2+ 1.86α1− A1

A2− A1
.

(20)

If we need to design a lattice of more complex shape or just a lattice without the vertical line of
symmetry or consisting, for example, of an odd number of cells, the formulae for the cells’ CTEs and the
lattice-material selection can be obtained in similar way. If two substrates are connected by a one-row
lattice with three cells or more, they also can be connected by a lattice containing two or more rows.
This may be advantageous if a lattice possessing a particular ratio of width to height is preferable.

5. General algorithm of lattice design

Assembling all the reasoning presented in the previous sections, this algorithm is effective for lattice-
tailoring:

(1) Choose the initial number of cells in the lattice.

(2) Using the formulae (14), (16), or (18), find the CTEs αi j in all cells of the lattice as functions of the
substrate CTEs A1 and A2.

(3) Choose the materials of the lattice accounting for the relations (15), (17), (19), or (20), and find the
ratio α2/α1.

(4) Check the existence of solutions to equations (6) at calculated values of normalized CTEs of the
current cell αi/α1 = αi j/α1, i = 1, 2, 3, and the chosen ratio of α2/α1.

(5) If the solution exists, find the skew angles of the current cell. Then repeat the previous step with
the next cell of the lattice.
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(6) If the solution does not exist, there are three options:
(a) Choose lattice materials with a higher value of the ratio α2/α1.
(b) Use unequal negative skew angles adjacent to the cell members in order to provide a wider

range of cell CTEs.
(c) Reduce the number of cells in the lattice.

(7) After Step (6), repeat Step (4).

(8) The lattice design halts when this procedure is performed for all cells in the lattice. If the lattice
can be successfully designed, it may be possible to increase the number of units cells and redesign
the lattice, beginning at Step (1).

The initial number of lattice cells is determined heuristically, accounting for the geometry of the substrates
and the difference between their CTEs. The larger the difference, the fewer cells the lattice can contain.
Problem 6 from the next section will illustrate this. The final number of cells is determined through
Step (6)(c) in the design algorithm.

Aluminum substrate
CTE = A2 = 22.2 ppm/C

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Figure 8. Problem 1: Two-cell aluminum-titanium lattice to connect aluminum and
titanium substrates.

6. Examples

Problem 1. This is an example of connecting titanium and aluminum substrates by a two-cell lattice
made also of titanium and aluminum. So α1= A1= 8.6 ppm/C, α2= A2= 22.2 ppm/C, and α2/α1= 2.58.
For these values of α1 and α2, �= [−0.581, 1.1135]. From (14), we find α11/α1 = α21/α1 = A1/α1 = 1,
α12/α1 = α23/α1 = 0.25A2/α1 = 0.64535, and α13/α1 = α23/α1 = 0.5A1/α1−0.25A2 =−0.14535. All
values of αi j belong to �. Now using formulae (11), the skew angles in the left cell can be calculated as
t1 = 0.0◦, t2 = 12.9◦, and t3 = 27.1◦ (Figure 8).

In the problem of the two-cell lattice connecting titanium and aluminum substrates, the inequalities
(15) define a region of allowable values of α1 and α2; the region is plotted in Figure 9. For this case,
the third and fourth inequalities in (15) are the strongest. Their intersection provides a minimum of
α2 = 17.14 ppm/C with corresponding α1 = 7.94 ppm/C.

The utility of the lattice adapter can be illustrated by this example. For comparison, a bimetallic
strip consisting of titanium and aluminum layers of the same thickness welded together and uniformly
heated to 100◦C will be bent due to thermal-expansion mismatch [Timoshenko 1925]. The maximum
stress during heating of this bimetallic strip [Timoshenko 1925] is 70.5 MPa. A pinned lattice adapter
experiences no thermal distortion or thermal stress.
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Figure 9. Problem 1: The white region indicates the ranges for the CTEs of the lattice
materials that can be used to design the lattice for Problem 1. The lines defining the
allowable region are the inequalities in (15). Note the difference in the scales of the two
axes; for small or moderately large values of α1, large values of α2 are implied.

Problem 2. The same lattice materials can be used to connect other substrates that have CTEs that are
more widely different, for example, zirconium and lead. In this case, A1= 5.7 ppm/C and A2= 28 ppm/C
with�=[−0.581, 1.1135]. Then α11/α1=α21/α1= A1/α1= 0.66279, α12/α1=α23/α1= 0.25A2/α1=

0.81395, and α13/α1 = α23/α1 = 0.5A1/α1− 0.25A2 = −0.48256. Again, αi j belong to �. The skew
angles for the left cell are t1 = 12.71◦, t2 = 8.65◦, and t3 = 30.48◦ (Figure 10). It is seen that skew angles
of the lattice cells are greater than those from Problem 1. We have allowed t3 > 30◦ because these are the
exterior sides of the lattice, and hence, there are no adjacent cells to cause interference. It does however
make impossible the addition of further cells.

Lead substrate
CTE = A2 = 28 ppm/C

Zirconium substrate
CTE = A1 = 5.7 ppm/C

Ti

Al

Figure 10. Problem 2: Two-cell aluminum-titanium lattice to connect zirconium and
lead substrates.
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Lead substrate
CTE = A2 = 28 ppm/C

Zirconium substrate
CTE = A1 = 5.7 ppm/C

Ti

Pb

Figure 11. Problem 3: Two-cell lead-titanium lattice to connect zirconium and lead substrates.

Problem 3. We can connect the same substrates as in Problem 2 using other materials for the lattice,
for example, titanium and lead. While these materials are unlikely candidates for lattice construc-
tion, their widely differing CTEs make them good example materials. In this case, α1 = 8.6 ppm/C,
α2 = 28.0 ppm/C, and α2/α1 = 3.25. A1 and A2 and therefore the values of αi j have the same values as
in Problem 2. For this combination of lattice materials, �= [−1.256, 1.162]. All values of αi j belong
to �. From formulae (11), the skew angles in the left cell can be calculated as t1 = 10.0◦, t2 = 6.5◦,
and t3 = 25.7◦ (Figure 11). In this lattice, the ratio α2/α1 is greater than in the lattices of the previous
problems, which is why the lattice cells are less skewed.

Problem 4. In this problem, we design a three-cell aluminum-titanium lattice connecting aluminum and
titanium substrates. It is possible because the ratio of CTEs of the substrates satisfies 2.5< α2/α1 < 2.7515.
Using formulae (16), we find α11/α1=α21/α1=α31/α1= 1, α12/α1=α33/α1= 1.04, α13/α1=α32/α1=

−0.54, and α22/α1=α23/α1= 0.25. The skew angles for the first cell on the left are t1= 0.0◦, t2=−3.0◦,
and t3 = 32.6◦. The skew angles for the second cell are t1 = 0.0◦, t2 = 21.0◦, and t3 = 21.0◦ (Figure 12).
Here, although α2/α1 ∈ �, this ratio is very close to the minimum boundary of �. That is why t3 in
the first cell on the left and t2 in last cell on the right are greater than 30◦. In this case, it is admissible
because these skew angles do not cause overlapping with adjoining lattice cells but force a limit to the
number of cells in this lattice to be three.

Aluminium substrate
CTE = A2 = 22.2 ppm/C

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Figure 12. Problem 4: Three-cell titanium-aluminum lattice to connect titanium and
aluminum substrates.
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Titanium substrate
CTE = A1 = 8.6 ppm/C

Lead substrate
CTE = A2 = 28 ppm/C

Ti

Al

Figure 13. Problem 5: Three-cell titanium-aluminum lattice to connect titanium and
lead substrates. The available range of thermal expansion is expanded by allowing the
six skew angles to be independent.

Problem 5. Suppose there is a need to connect titanium and lead substrates by a three-cell titanium-
aluminum lattice. From formulae (16), we have α11/α1 = α21/α1 = α31/α1 = 1, α12/α1 = α33/α1 =

1.375, α13/α1 = α32/α1 = −0.875, and α22/α1 = α23/α1 = 0.25. For the chosen lattice materials,
�= [−0.581, 1.1135]. As we can see, α12/α1= α33/α1 /∈� and α13/α1= α32/α1 /∈�. To overcome this
for α12/α1, we can use negative nonsymmetric skew angles θ3 6= θ4, and for α13/α1, we can use symmetric
angles greater than 30◦; this will not lead to the overlapping of the cells because these skew angles are
adjacent to the external sides of the lattice. The skew angles for the second cell are the same as in
Problem 4. The solution for the first cell on the left is not unique; for example, the skew angles that satisfy
(6) may be θ1= θ2=0.0◦, θ3=−30.0◦, θ4=−6.2◦, and θ5= θ6=35.3◦. Figure 13 is a sketch of the lattice.

Problem 6. If the substrate materials have CTEs that are relatively similar (A2/A1 . 2), we can design
a lattice consisting of four cells and more. For example, suppose we would like to connect titanium
(A1 = 8.6 ppm/C) and stainless-steel (A2 = 17.3 ppm/C) substrates with an aluminum-titanium lattice.
For such materials, the maximum total number of cells in the lattice according to inequalities (20) is 4.
Using formulae (18), we have α11/α1 = α21/α1 = 1, α12/α1 = 0.5A1/α1− 0.25A2/α1 = 0.03, α13/α1 =

0.25A2/α1 = 0.5, α22/α1 = A1/α1− 0.75A2/α1 = −0.5, and α23/α1 = 0.75A2/α1− 0.5A1/α1 = 1.0.
Now, using (11), for Cell 1, t1 = 0.0◦, t2 = 24.6◦, and t3 = 16.1◦. For Cell 2, t1 = 0.0◦, t2 = 32.0◦, and
t3 = 0.0◦ (Figure 14). Two other cells are symmetric with respect to the vertical line passing through
the middle of the lattice. Note that, if the second substrate is made from ferritic stainless steel with CTE
A2 = 9.9 ppm/C, then the maximum number of the cells in the lattice would be 22.

2

Titanium substrate
CTE = A1 = 8.6 ppm/C

Ti

Al

Stainless steel substrate
CTE = A2 = 17.3 ppm/C

1

Figure 14. Problem 6: Four-cell aluminum-titanium lattice for stainless steel and tita-
nium substrates.
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The solutions to the problems considered above show that, the more the substrates’ CTEs differ, the
more the lattice cells are skewed. On the other hand, the higher the ratio of CTEs of the lattice materials,
the less the cells of the lattice are skewed. Also, different skew angles adjacent to the same side of the
cell can provide a wider range of CTEs compared to corresponding skew angles equal to each other.

7. Conclusion

The anisotropic planar lattices described in this paper provide a structural option for connecting materials
with differing CTEs without generating thermal stresses during temperature excursions. Each cell is
composed of internal and external triangles made of materials with different CTEs and pin-connected at
three locations. The internal triangle is regular whereas the external triangle is deformed with varying
skew angles. As a consequence of the variation in skew angles in a single cell, the cells have anisotropic
CTEs. Combining cells with anisotropic CTEs into a pin-jointed lattice provides the capability to achieve
desirable, and differing, CTEs on the bottom and top edges of the lattice. Such lattices can therefore be
used as transition elements between two parts of a structure (substrates) with different CTEs, and as a
result, the whole structure will be free of thermal stresses. Additionally, these lattices are relatively stiff;
the isotropic variants are nearly optimally stiff for a structure of this nature [Steeves et al. 2007]. Alterna-
tive options for adapters for thermal mismatch mitigation either induce thermal stresses and curvatures
or are very compliant.

The design strategy described herein provides a systematic process for choosing the geometric config-
uration of a single-row lattice that connects substrates of known materials. In particular, guidance on the
choice of the materials that would be appropriate to connect the substrates is given, based upon the CTEs
of the substrate materials. The design process for single rows of lattice can be extended to multiple rows
if that provides a preferable aspect ratio for the adapter. A key limitation to this lattice system is that there
are stringent limits on the maximum number of cells that can be used. As the difference between the
substrate CTEs increases, the maximum number of lattice cells is reduced because the total deflections
that must be accommodated increase with lattice length. An option for mitigating this limitation is to use
multirow lattices and permit rotation of the lattice cells. Such topics are the subject of ongoing research.
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ORIGIN AND EFFECT OF NONLOCALITY IN A COMPOSITE

STEWART A. SILLING

A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the
microscale deformation of a two-component layered medium, it is shown that nonlocal interactions nec-
essarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are
determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The
length scales that emerge involve the constituent material properties as well as their geometrical dimen-
sions. A peridynamic material model for the smoothed displacement field is derived. It is demonstrated
by comparison with experimental data that the incorporation of nonlocality in modeling improves the
prediction of the stress concentration in an open-hole tension test on a composite plate.

1. Introduction

In typical engineering analysis, the elastic response of a heterogeneous material is treated by applying the
classical solid mechanics equations with smoothed (often called “homogenized” or “effective”) material
properties. These properties can be thought of as those that would be measured using a laboratory
test specimen much larger than any internal length scale in the material. For example, we perform an
unconfined compression test on a sample of concrete about 15 cm in diameter and measure the total
force as a function of displacement at the ends. We divide the relative displacement at the ends by the
specimen length and call the result the “strain”. We divide the force by the cross-sectional area and call
the result the “stress”. The ratio of stress to strain is defined to be the Young’s modulus of the material,
which is then treated as homogeneous for purposes of finite element modeling of a structure.

This approximation is adequate for many applications. However, it ignores the reality of how a load
applied on the surface of a concrete body is transmitted internally. Concrete is a heterogeneous material.
It consists of small rocks (aggregate) of length scale about 2 cm held together by a weaker material
(cement or paste). Since the aggregate inclusions may be in contact with each other, or nearly so, the
actual force distribution within the material follows a tortuous path through the aggregate particles and
their points of contact. This results in a quantitative and qualitative disparity between the local equations
of solid mechanics theory using smoothed material properties and the way the material really behaves.
Nonlocality in a random medium such as concrete has been treated in a number of references, for example
[Willis 1985; Drugan and Willis 1996; Drugan 2003].

In the early 1980s, Bažant pioneered the application of nonlocal modeling to materials with damage.
He demonstrated by a simple example that nonlocality is a necessary property of the elastic response
in a material containing distributed defects [Bažant 1991]. In the same general spirit, the present paper

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Keywords: composite, laminate, elasticity, nonlocality, peridynamics.
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derives nonlocal interactions that are implied by the use of a smoothed displacement field to model a
heterogeneous microstructure. Unlike Bažant’s analysis, the discussion here omits cracks and damage,
and treats only the elastic response of the composite.

Nonlocality also arises in the study of plasticity, in which the finite sizes of dislocations and the
distances between them interacts with the geometry of the system, as in the formation of geometrically
necessary dislocations. Strain gradient models of plasticity, which incorporate a kind of weak nonlocal-
ity, have been developed to model such effects [Fleck et al. 1994; Bassani et al. 2000]. Much of the
nonlocal literature concerns nonlocal operations on a damage variable, particularly its beneficial effects
in reducing mesh dependence in numerical modeling [Bažant 1991; de Borst et al. 1995; Geers et al.
1999; Germain et al. 2007]. In a heterogeneous elastic material with a periodic microstructure, it has
also long been recognized that nonlocal interactions may arise as a result of homogenization [Beran and
McCoy 1970a; 1970b; Gambin and Kröner 1989; Boutin 1996; Bellieud and Bouchitté 1998; Fish et al.
2002; Cherednichenko et al. 2006; Chakraborty 2007]. Ben-Amoz [1975; 1976] and Ardiç, Santare, and
Chou [Ardiç et al. 1989] incorporated aspects of nonlocality in models of composite material elasticity.

A large body of literature on nonlocal elasticity, much of which is highly mathematical, has been
developed over the past five decades. In spite of this, nonlocal models are generally not adopted in the
computational and analytical methods that engineers commonly use for applications. A typical analyst
simply does not see why there should be nonlocal forces in a material at any scale above the molecular.
Casual observers may conclude that, in spite of any benefits in regularizing finite element simulations, and
regardless of compelling evidence from mathematical proofs, nonlocal models are not justified physically.

What apparently has been lacking in the nonlocal literature is a convincing mechanical picture of
nonlocal interactions. In the present work, we consider how nonlocality arises in a specific, relatively
simple heterogeneous system, based only on simple mechanical concepts. The micromechanical model
uses only the standard equations of solid mechanics, yet it is shown that nonlocality appears in the
global model derived from it. It is demonstrated that nonlocality arises from the decision to model the
composite in terms of a smoothed displacement field, rather than arising from direct physical interactions
across a finite distance. The nonlocal interaction forces can be included in the displacement equations of
motion in various nonlocal theories. This example also permits us to compute how mesoscale geometrical
dimensions combine with material properties to determine the length scale that applies in the nonlocal
model.

2. Microscale model of a composite

Consider a composite material composed of alternating layers of stiff (s) and compliant (c) materials
(Figure 1). The two constituent materials have the same density. The layers have thickness 2hs and 2hc.
Let Es and Ec denote the Young’s moduli and µs and µc the shear moduli of the materials. It is assumed
that

Es � Ec, µs � µc.

Only the displacements us and uc in the x-direction, that is, parallel to the layers, appear in the following
approximate analysis.

The following analysis is based on a “shear-lag” model of the transfer of forces between the materials
[Nairn 1997]. It is assumed that because of the disparity in elastic constants, us is independent of y. The
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Compliant 

Stiff 

Figure 1. Composite composed of alternating stiff and compliant layers.

following ansatz is adopted: in the compliant material, a displacement field of the form

uc(x, y)= us(x)+ (h2
c − y2)w(x) (2-1)

is assumed, where w is a continuous function and y = 0 is located at the midplane of a typical compliant
layer (Figure 2). The shear traction on either surface of any compliant layer is found from

τ(x)= µc
∂uc

∂y
(x,−hc)= 2µchcw(x). (2-2)

In the absence of body forces, a force balance on the cross-section of a stiff layer yields

hsσ
′

s(x)+ τ(x)= 0, (2-3)

where σs is the normal stress and a prime denotes d/dx . Using (2-2), (2-3), and the Hooke’s law expres-
sion

σs = Esu′s,

the force balance on the stiff layers may be rewritten as

Eshsu′′s (x)+ 2µchcw(x)= 0. (2-4)

Compliant 

Stiff 

tDÖ  

tDæ 

T 

U 

Qæ T  

QÖ Tá U  

Figure 2. Axial displacement fields in the composite layers.
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3. Equilibrium of a smoothed displacement field

Define the smoothed (homogenized) displacement field to be the average at any x over a cross-section
through the layers:

ū(x)=
1

hs + hc

[
hsus(x)+

∫ hc

0
uc(x, y) dy

]
.

Using (2-1), this evaluates to
ū(x)= us(x)+αw(x), (3-1)

where

α =
2h3

c

3(hs + hc)
. (3-2)

Using (3-1) and (3-2), we remove us from the force balance (2-4) and obtain

ū′′(x)= αw′′(x)−
2µchc

Eshs
w(x). (3-3)

Our immediate objective is to analyze the forces in the composite for a prescribed ū function. If ū is
prescribed, then (3-3) is a nonhomogeneous second-order linear ordinary differential equation (ODE) for
w. The homogeneous part of the solution to this ODE (that is, for ū either constant or a linear function
of x) is

wh(x)= Aeλx
+ Be−λx ,

where

λ=

√
2µchc

αEshs
=

√
3µc(hs + hc)

Eshsh2
c

, (3-4)

and where A and B are arbitrary constants.
Of particular interest is the choice of prescribed ū′′ given by

ū′′(x)=1(x), (3-5)

where 1 is the Dirac delta function. Kinematically, this choice means that the homogenized strain field
ū′ is given by the Heaviside step function

ū′(x)= H(x)

(see Figure 3). For this choice, the solution, denoted −G, to the ODE (3-3) is

w(x)=−G(x), G(x)= ke−λ|x |, (3-6)

where
k = 1

2αλ
. (3-7)

The easiest way to confirm that (3-6) and (3-7) provide a solution to (3-3) and (3-5) is to observe that by
integrating (3-3) from 0− to 0+, the jump in ū′ at the origin is given by

[ū′] = α[w′] −
2µchc

Eshs

∫ 0+

0−
w(x) dx . (3-8)
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Figure 3. Strain fields in the stiff and compliant layers resulting from a prescribed
smoothed displacement field in which there is a jump in strain at x = 0.

By (3-6), w is bounded (as well as continuous) everywhere, so the last term vanishes. Differentiation of
w yields

w′(x)= kλ(2H(x)− 1)e−λ|x |.

Evidently this implies [w′] = 2kλ. So, using (3-7), the jump condition (3-8) is satisfied.
Because the ODE (3-3) is linear, and because of the properties of the Dirac delta function, for an

arbitrary prescribed function ū, (3-6) implies

w(x)=−
∫
∞

−∞

ū′′(p)G(x − p) dp. (3-9)

Next we compute the homogenized normal stress σ̄ in the composite. From a force balance on a cross-
section through the point x , this stress is found to be

σ̄ (x)= 1
hs+hc

[
hsσs(x)+

∫ hc

0
σc(x, y) dy

]
, (3-10)

with

σs(x)= Esu′s(x), σc(x)= Ecu′c(x).

Carrying out the integration in (3-10) using (2-1) and (3-1) leads to

σ̄ (x)= Eū′(x)− γw′(x), (3-11)
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where

E =
Eshs + Echc

hs + hc
, (3-12)

γ = αE −
2Ech3

c

3(hs + hc)
=

2hsh3
c(Es − Ec)

3(hs + hc)2
. (3-13)

Rewriting (3-11) using (3-9) and (3-13) leads to

σ̄ (x)= Eū′(x)+ γ
∫
∞

−∞

ū′′(p)G ′(x − p) dp. (3-14)

Note that w no longer appears explicitly in this expression for the homogenized stress. The nonlocality
inherent in modeling heterogeneous materials using a smoothed displacement field is now evident: values
of ū remote from x contribute to the stress at x . This is a type of strong nonlocality. A more suggestive
version of (3-14) may be obtained by integrating the last term by parts:

σ̄ (x)= Eū′(x)+ γ
∫
∞

−∞

ū′(p)G ′′(x − p) dp. (3-15)

Differentiating (3-6) twice yields

G ′′(x)= kλ2e−λ|x |− 2kλ1(x) (3-16)

= λ2G(x)− 2kλ1(x). (3-17)

Substituting (3-17) into (3-15), using the properties of the Dirac delta function, and using (3-7), (3-12),
and (3-13) to simplify the constants yields

σ̄ (x)= Ecū′(x)+ γ λ2
∫
∞

−∞

ū′(p)G(x − p) dp. (3-18)

This expression is similar to the nonlocal stress used in Eringen’s nonlocal theory [Eringen and Edelen
1972], because it involves taking a weighted average of strain.

4. Nonlocal equations of motion

Next we investigate how the nonlocal forces in the homogenized model appear in nonlocal equations
of motion. With this goal in mind, we evaluate the acceleration at x at a given time t . From the linear
momentum balance in the absence of body forces, using the assumption that ρs = ρc, our expression for
the net normal stress (3-18) implies

ρ ¨̄u(x)= σ̄ ′(x)= Ecū′′(x)+ γ λ2
∫
∞

−∞

ū′(p)G ′(x − p) dp.

Integrating the last term by parts,

ρ ¨̄u(x)= Ecū′′(x)+ γ λ2
∫
∞

−∞

ū(p)G ′′(x − p) dp.
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Using (3-16) in the last term, and introducing a body force field b according to d’Alembert’s principle,
yields

ρ ¨̄u(x)= Ecū′′(x)+ γ kλ4
∫
∞

−∞

(ū(p)− ū(x))e−λ|x−p| dp+ b(x). (4-1)

In this form, the model is similar to the nonlocal theory proposed by DiPaola, Failla, and Zingales [2009].
This form, like that of Kröner [1967], retains both local and nonlocal terms.

The peridynamic model seeks to eliminate any reference to strain, because one of its goals is to avoid
using spatial derivatives of the deformation, thus making the theory compatible with discontinuities in
displacement. The general form of the peridynamic equation of motion in one dimension [Silling 2000;
Silling and Lehoucq 2010] is given by

ρü(x)=
∫

Hx

f (p, x, t) dp+ b(x), (4-2)

where Hx is a neighborhood of x called the family of x . The radius of Hx, which is called the horizon,
can be either finite or infinite. The function f is called the bond force density. It can depend quite
generally on the deformation of the family through suitable material models, including the effects of
nonlinearity and damage. The peridynamic model is nonlocal because the family has nonzero size.

In linearized peridynamics [Silling 2010], the equation of motion (4-2) can be approximated by the
following expression, which is formally the same as in the nonlocal theories of Kunin [1982; 1983] and
Rogula [1982]:

ρü(x)=
∫

Hx

C(x, p)(u(p)− u(x)) dp+ b(x), (4-3)

where C is a function called the micromodulus. The equation of motion (4-1) that was derived from
the microstructural model of a composite has strong similarities to the linearized peridynamic expres-
sion (4-3). Both equations contain strongly nonlocal terms; in (4-1) the horizon is infinite, although a
reasonable approximation would be to cut off the nonlocal interactions outside a distance r where the
weighting term e−λr is sufficiently small.

A local term involving u′′ does not appear in the peridynamic equation (4-3). However, with the goal
of representing this term in (4-1), it can be approximated by short-range interactions by using the same
sort of manipulations used above. Using integration by parts, the following identities hold:

u′′(x)=
∫
∞

−∞

u′′(p)1(x − p) dp =
∫
∞

−∞

u′(p)1′(x − p) dp =
∫
∞

−∞

u(p)1′′(x − p) dp. (4-4)

Using the approximation

1(x)≈ φ(x) := τe−τ |x |

2
,

where τ is a large constant, we compute from (4-4)

u′′(x)=
∫
∞

−∞

u(p)1′′(x − p) dp ≈
∫
∞

−∞

u(p)φ′′(x − p) dp

=

∫
∞

−∞

u(p)
(
τ 3e−τ |x−p|

2
− τ 21(x − p)

)
dp = τ

3

2

∫
∞

−∞

(u(p)− u(x))e−τ |x−p| dp.
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Thus, our model for the smoothed composite displacement field, (4-1), can be approximated to any level
of accuracy by choosing a sufficiently large τ in the following model:

ρ ¨̄u(x)=
∫

Hx

(
Ecτ

3

2
e−τ |x−p|

+ γ kλ4e−λ|x−p|
)
(ū(p)− ū(x)) dp+ b(x). (4-5)

This is the peridynamic model (4-3) with the choice of micromodulus function given by

C(x, p)=
Ecτ

3

2
e−τ |x−p|

+ γ kλ4e−λ|x−p|.

The foregoing discussion illustrates many of the key properties in understanding the role of nonlocality
in the modeling of continua:

• Nonlocality is introduced by making the modeling decision to describe the problem using a smoothed
displacement field rather than the detailed microstructural fields.

• Although the underlying microstructural model (in terms of the us and uc fields) is local, the resulting
smoothed model (in terms of ū) is nonlocal.

• Expressions called bond force densities in the peridynamic model of the form

C(x, p)(ū(p)− ū(x))

do not necessarily represent a direct nonlocal physical interaction (such as electrostatic forces) be-
tween p and x .

• The applicable length scale in the nonlocal term, 1/λ, depends not only on the geometrical length
scales (hs and hc), but also on the constituent material properties Es and µc. If Es � µc, then this
length scale can greatly exceed the layer thicknesses. This result is consistent with the computations
by Pipes and Pagano [1970] which show that edge effects on the stresses in plies can extend over
distances that substantially exceed the ply thicknesses.

• A peridynamic model can contain multiple length scales; in the case of the composite model in (4-5)
these are 1/λ and 1/τ .

• By considering a displacement field of the form

ū(x)= ε0x + β
2

x2,

where β is a constant, and applying (4-1), one finds that the quadratic term leads to an acceleration
at x = 0 given by

¨̄u(0)= 4βγ kλ
ρ

.

Since this acceleration is positive whenever the strain gradient β is positive, this result means that
positive strain gradient tends to increase the force on x . This is suggestive of experimental results
that show stresses in real materials increase as the strain gradient is increased [Fleck et al. 1994].

The analogous local model for the composite in terms of the smoothed displacement field is

ρ ¨̄u(x)= Eū′′(x)+ b(x),
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where E is given by (3-12). Comparing this with (4-1), evidently the local term Eū′′ is replaced by a
different local term Ecū′′ plus a nonlocal term. It is possible that a more detailed microstructural model,
for example, a submicrostructural model that considers the features within each of the layers such as
individual fibers, would further resolve the local term in (4-1). Based on the patterns emerging in the
above derivations, it is plausible that a hierarchy of N such submodels could be derived, resulting in a
micromodulus of the form

C(x, p)= C1(x, p; λ1)+C2(x, p; λ2)+ · · ·+CN (x, p; λN ),

where each Ci represents interactions with length scale 1/λi . By inference from (4-5), such terms might
have the form

Ci (x, p; λi )= ai eλi |x−p|,

where the ai are constants.

5. Nonlocality at the macroscale

As noted in the previous section, the operative length scale in a heterogeneous material system depends
on the constituent material properties as well as the geometrical length scale. However, the macroscale
geometry of a body also combines with material properties to provide additional length scales. For
example, consider the classic problem of an anisotropic plate under tension containing an open hole of
radius r (Figure 4). In the local theory, the stress σyy as a function of position x along the midplane was
derived analytically by Lekhnists̄kiĭ [1968]:

σyy =
σ∞

2

{
2+

( r
x

)2
+ 3

( r
x

)4
+ (2− n)

[
5
( r

x

)6
− 7

( r
x

)8 ]}
, (5-1)

where

n =

√
2
(

E1

E2
− ν12

)
+

E1

G12
,

where the subscripts 1 and 2 denote the loading direction and transverse direction, respectively. From
this, the stress concentration at the edge of the hole is found to be

Kπ/2 = 1+ n.

The parameter n tends to increase in anisotropic materials, particularly those that have greater stiffness
in the loading (y) direction. In addition to changing the stress concentration at the edge, anisotropy also
changes the rate at which the stress decays with distance from the edge. Denote by r0 the radius at which
the stress in the classical solution drops off to half of its value at the edge, that is,

σyy(r0)

σyy(r)
=

1
2
.

Typical values of r0 determined from (5-1) are given in Table 1. (Similar decay distance parameters play
an important role in certain laminate failure models that implicitly recognize nonlocality [Whitney and
Nuismer 1974; Ko 1985] by including an explicit length scale.)
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Material n Kπ/2 r0/r
Isotropic 2 3 1.52
Fabric ply 4.16 5.16 1.13
Unidirectional ply 10 11 1.07

Table 1. Stress concentration and decay distance near an open hole in a plate.

Thus, in a unidirectional ply, the stress decays to half its value at the edge over a distance of only 7%
of the hole radius. If the hole radius is r = 2.5 mm, then this distance is r0− r = 0.175 mm, which is on
the order of a typical ply thickness.

To put this result in the context of our previous discussion of length scales and nonlocality in heteroge-
neous media, suppose we compute the length scale implied by (3-4) with hc = hs = 0.1 mm, µc = 4 GPa,
and Es = 150 GPa. The resulting length scale for nonlocal interactions due to transfer of shear load
between the constituent materials is

1
λ
=

√
Eshsh2

c

3µc(hs + hc)
= 0.25 mm.

Comparing this with our stress concentration decay distance (0.175 mm), the two values are similar. From
this similarity, evidently nonlocality in a homogenized model due to the exchange of forces between the
materials could play an important role in modeling the problem.

Toubal, Karama, and Lorrain [Toubal et al. 2005] measured the stress in a fabric composite laminate
near an open hole as a function of position along the midplane of the specimen. They used an electronic
speckle pattern interferometry measurement technique. This technique provides noncontact strain data
with a spatial resolution of about 0.5 mm. Their measurements showed that the actual stress concentration
is much lower than what is predicted by the analytical results from the local theory [Lekhnists̄kiĭ 1968].
Does nonlocality explain this difference?

To investigate this possibility, the peridynamic computational model Emu [Silling and Askari 2005]
was applied to try to reproduce the measured stress concentration reported in [Toubal et al. 2005]. The
material model used in the peridynamic computations was similar to that used in [Xu et al. 2008]. In this
material model, peridynamic bonds parallel to the fibers have much greater stiffness than bonds in any
other direction.

In the experiment, the hole diameter was 5.0 mm, and the specimen width was 25 mm. The specimen
contained six plies, all epoxy reinforced by carbon fabric, with a total thickness of 2.28 mm. The ply
laminate properties were E1 = 51 GPa, E2 = 50 GPa, ν12 = 0.06, and G12 = 3.24 GPa. Since all the
plies were identical in the experiment, shear forces between the plies are not significantly involved in
the problem. Therefore, for purposes of estimating the nonlocal interaction distance 1/λ, the applicable
geometric length scale is the fabric tow width. In other words, each tow acts like one of the layers in the
microstructural model developed in Section 2. This view is supported by the X-ray diffraction studies
[Davies et al. 2008] which show that in the vicinity of an open hole, the fabric tows deform more or less
uniformly across the width of each tow. Under this assumption, and setting hc = hs = 1.25 mm, which
is a typical value for tow width, one finds from (3-4) that 1/λ= 2.0 mm. In the computational model,
the mesh spacing was 0.32 mm and the peridynamic horizon was 2.0 mm.
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Figure 4. Stress contours in a simulated open-hole tension test in a composite. Note
the large stress gradients.

As shown in Figure 4, the predicted contours of σyy (the normal stress in the loading direction) show
strong gradients in the vicinity of the hole. In fact, there are large gradients above and below the hole as
well, due primarily to the relatively small shear modulus G12, which is characteristic of fiber and fabric-
reinforced composites. In an isotropic material such as a typical metal, the contours of stress would
be more diffuse. Figure 5 shows a comparison between the optically measured stress σyy and the local
theory of anisotropic media [Toubal et al. 2005]. The figure also shows the results from the peridynamic
computational model. The results in this figure suggest that nonlocality helps improve the agreement
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Figure 5. Comparison of stress along the midplane in an open-hole tension test on
a fabric-reinforced composite. The local theory overpredicts the stress concentration
compared with optically measured data [Toubal et al. 2005]. The peridynamic model
offers improved agreement, apparently due to nonlocality.
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between a continuum model and measured data for stress concentrations in composites. This also helps
explain why failure criteria in composites that rely solely on the predicted stress in the local theory tend
to under-predict the failure load in open-hole tension and compression tests: these criteria are based on
an over-prediction of the stress concentration [Soutis et al. 1991].

6. Conclusions

The purpose of this work is to show how a nonlocal model arises when we make the modeling decision
to use a smoothed displacement field, rather than a detailed microstructural description. By considering
the micromechanics of a layered composite under uniaxial stress, it was shown that nonuniformity of the
displacement field across any cross-section leads to nonlocality in a homogenized model. The nonlocal
effects appear only when the strain in the smoothed displacement field is nonconstant (that is, when
a strain gradient is present). The nonlocal interactions, in this special case, can be represented using
different nonlocal models, including those of Eringen and Kröner, as well as peridynamics. The peridy-
namic micromodulus function for the nonlocal interactions can be determined explicitly, although there
is some arbitrariness in the kernel used to approximate the local term that appears in the peridynamic
equation of motion. The length scale 1/λ in the peridynamic model is determined not only by the
microscale geometry of the composite, but also by the material properties of the constituent materials. In
the peridynamic expression that was derived, interactions between material points separated by a finite
distance necessarily occur, even though there are no direct physical interactions between these points in
the microstructure.

In summary, nonlocality is not just a property of the physical system; it is also a property of the fields
we choose to model the system with.
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