Recent Issues
Volume 19, 5 issues
Volume 19
Issue 5, 747–835
Issue 4, 541–746
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156
Volume 18, 5 issues
Volume 18
Issue 5, 621–764
Issue 4, 427–565
Issue 3, 293–425
Issue 2, 143–291
Issue 1, 1–141
Volume 17, 5 issues
Volume 17
Issue 5, 403–501
Issue 4, 297–401
Issue 3, 193–296
Issue 2, 97–192
Issue 1, 1–95
Volume 16, 5 issues
Volume 16
Issue 5, 595–696
Issue 4, 389–594
Issue 3, 237–388
Issue 2, 105–235
Issue 1, 1–104
Volume 15, 5 issues
Volume 15
Issue 5, 555–633
Issue 4, 435–554
Issue 3, 291–434
Issue 2, 185–289
Issue 1, 1–184
Volume 14, 5 issues
Volume 14
Issue 5, 601–770
Issue 4, 449–599
Issue 3, 309–448
Issue 2, 193–308
Issue 1, 1–191
Volume 13, 5 issues
Volume 13
Issue 5, 607–714
Issue 4, 421–605
Issue 3, 247–419
Issue 2, 141–246
Issue 1, 1–139
Volume 12, 5 issues
Volume 12
Issue 5, 563–722
Issue 4, 353–561
Issue 3, 249–351
Issue 2, 147–247
Issue 1, 1–146
Volume 11, 5 issues
Volume 11
Issue 5, 491–617
Issue 4, 329–490
Issue 3, 197–327
Issue 2, 91–196
Issue 1, 1–90
Volume 10, 5 issues
Volume 10
Issue 5, 537–630
Issue 4, 447–535
Issue 3, 207–445
Issue 2, 105–206
Issue 1, 1–103
Volume 9, 5 issues
Volume 9
Issue 5, 465–574
Issue 4, 365–463
Issue 3, 259–363
Issue 2, 121–258
Issue 1, 1–119
Volume 8, 8 issues
Volume 8
Issue 8-10, 385–523
Issue 5-7, 247–384
Issue 2-4, 109–246
Issue 1, 1–107
Volume 7, 10 issues
Volume 7
Issue 10, 887–1007
Issue 8-9, 735–885
Issue 7, 613–734
Issue 6, 509–611
Issue 5, 413–507
Issue 4, 309–412
Issue 3, 225–307
Issue 2, 119–224
Issue 1, 1–117
Volume 6, 9 issues
Volume 6
Issue 9-10, 1197–1327
Issue 7-8, 949–1195
Issue 6, 791–948
Issue 5, 641–790
Issue 1-4, 1–639
Volume 5, 6 issues
Volume 5
Issue 6, 855–1035
Issue 5, 693–854
Issue 4, 529–692
Issue 3, 369–528
Issue 2, 185–367
Issue 1, 1–183
Volume 4, 10 issues
Volume 4
Issue 10, 1657–1799
Issue 9, 1505–1656
Issue 7-8, 1185–1503
Issue 6, 987–1184
Issue 5, 779–986
Issue 4, 629–778
Issue 3, 441–627
Issue 2, 187–440
Issue 1, 1–186
Volume 3, 10 issues
Volume 3
Issue 10, 1809–1992
Issue 9, 1605–1807
Issue 8, 1403–1604
Issue 7, 1187–1401
Issue 6, 1033–1185
Issue 5, 809–1031
Issue 4, 591–807
Issue 3, 391–589
Issue 2, 195–389
Issue 1, 1–193
Volume 2, 10 issues
Volume 2
Issue 10, 1853–2066
Issue 9, 1657–1852
Issue 8, 1395–1656
Issue 7, 1205–1394
Issue 6, 997–1203
Issue 5, 793–996
Issue 4, 595–791
Issue 3, 399–594
Issue 2, 201–398
Issue 1, 1–200
Volume 1, 8 issues
Volume 1
Issue 8, 1301–1500
Issue 7, 1097–1299
Issue 6, 957–1095
Issue 5, 837–956
Issue 4, 605–812
Issue 3, 407–604
Issue 2, 205–406
Issue 1, 3–200
Abstract
In this study, a receding contact problem for two elastic layers supported by
a Winkler foundation is handled using two different methods such as an
analytical method and a finite element method. Firstly, the problem is solved
analytically using linear elasticity theory. Then, in order to solve the same
problem in a different way, a finite element model of the problem is created by
ANSYS software, and finite element analysis of the problem is performed. The
contact stresses and the contact areas at the interfaces between punch–Layer 2
and Layer 1–Layer 2 are obtained for both solutions, and it is shown that
the finite element method indicates a good agreement with the analytical
method.
Keywords
finite element method, integral equation, receding contact,
Winkler foundation
Milestones
Received: 6 March 2014
Revised: 21 July 2014
Accepted: 3 August 2014
Published: 4 October 2014