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In this research, the vibration of the functionally graded material (FGM) plates under random excitation
is presented. The FGM plate is assumed to be moderately thick. One of the refined plate theories, the first-
order shear deformable theory (FSDT) is adopted to account for the transverse shear strain. The refined
form of shear correction factor is used. The plate is assumed to be simply supported along all edges with
movable ends. The mechanical properties of the FGM plate are graded in the thickness direction only
according to a simple power-law distribution in terms of volume fraction of constituents. Mechanical
properties of constituents (ceramic and metal) of the FGM plate are assumed temperature-dependent.
The FGM plate is subjected to the random pressure that is considered as a stationary and homogenous
random process with zero mean and Gaussian distribution. Both the spectral density method and Monte
Carlo method are used for the linear responses. Thermal effects are only included in the Monte Carlo
method. The root mean square (RMS) and mean responses of the FGM plate for different plate sizes,
sound pressure levels, volume fractions and temperature distributions are presented.

1. Introduction

Functionally graded materials (FGMs) are advanced inhomogeneous composite materials. The compo-
sitions of the constituents of FGMs vary smoothly and continuously in certain directions (particularly in
the thickness direction), and consequently, the FGMs eliminate the interface problems such as cracks and
stress concentrations encountered in the traditional laminated composite plates. FGM plates are typically
made of a metal and ceramic mixture and used as structural elements in high-temperature environments.

The FGMs have attracted the considerable attention of many researchers since they were first devel-
oped in Japan three decades ago [Koizumi 1997]. To the present, extensive research has been conducted
on the dynamic, static, buckling, vibration and thermal stress analysis of FGM plates. Among them,
Praveen and Reddy [1998] analyzed the static and dynamic response of FGM plates by using the first-
order shear deformation theory (FSDT) and the von Karman strains. The stresses and deflections of the
FGM plates are examined under mechanical and thermal loadings. They found that grading of material
properties is very important for the plate responses. Reddy [2000] presented a formulation for the simply
supported FGM plates based on the third-order shear deformation theory and developed the associated
finite element model, which includes thermomechanical coupling and geometric nonlinearities. Praveen,
Chin and Reddy [Praveen et al. 1999] investigated the response of FGM cylinders to rapid heating of
the inner surface with temperature-dependent material properties. The finite element formulation and
axisymmetric heat equation are used. The temperature and radial/hoop stress distributions versus radial
distance due to rapid heating are reported. Alijani, Bakhtiari and Amabili [Alijani et al. 2011] analyzed
the nonlinear vibrations of simply supported moderately thick FGM plates in a thermal environment by
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using the first-order shear deformation theory. Zhang, Hao, Guo and Chen [Zhang et al. 2012] investi-
gated the nonlinear responses of FGM plates subjected to combined in-plane and transverse excitations
by using Reddy’s third-order plate theory. They found that the nonlinear responses of the FGM plates
are more sensitive to transverse excitation.

Effects of the micromechanics Voigt and Moni–Tanaka models on the vibration responses of FGM
plates are investigated by Shen and Wang [2012]. They used a high-order shear deformation plate theory
to develop the governing equations. Since the differences between two micromechanics models were
small, the Voigt model can be reasonable for finding the responses of FGM plates and shells. Nguyen-
Xuan, Tran, Thai and Nguyen-Thoi [Nguyen-Xuan et al. 2012] presented a finite element approach for
analysis of FGM plates subjected to mechanical and thermal loading. This method is applied in several
static/dynamic problems of FGM plates.

Hosseini and Fazelzadeh [2010] presented the nonlinear vibration and the aerothermoelastic postcrit-
ical analysis of the FGM panels in a supersonic airflow. Temperature-dependent material properties
are considered, and the first-order piston theory is used for the aerodynamics loading. Prakash, Singha
and Ganapathi [Prakash et al. 2012] investigated the nonlinear vibration of the FGM plates by a shear
flexible finite element approach. The FGM plate is modeled with the FSDT, and third-order piston theory
is employed for the aerodynamics loading.

Zhao, Lee and Liew [Zhao et al. 2009] examined the mechanical and thermal buckling behavior of the
FGM plates using the element-free kp-Ritz method. Solid plates and plates with holes are analyzed. It
was determined that the hole size and volume fraction greatly influenced the buckling loads and modes.
Hosseini-Hashemi, Taher, Akhavan and Omidi [Hosseini-Hashemi et al. 2010] analyzed the free vibra-
tion of the moderately thick FGM plates on elastic foundations by using the FSDT. Parametric studies
regarding the elastic foundation stiffness, aspect ratios, gradient indices and thickness to length ratios are
conducted. Ghannadpour, Ovesy and Nassirnia [Ghannadpour et al. 2012] presented a finite strip method
for analyzing the thermal buckling of the FGM plate. The classical plate theory (CPT) is used for the for-
mulations, and three types of thermal loadings are considered. Mohammadi, Saidi and Jomehzadeh [Mo-
hammadi et al. 2010] studied the Levy solution for the mechanical buckling of the FGM plate based on the
CPT. Thai and Choi [2012] presented a refined shear deformation theory, which is used for free vibration
analysis of FGM plates on Pasternak-type foundation. Closed-form solutions for natural frequency with
different boundary conditions are obtained and compared to the natural frequencies found in the literature.
Dynamic, bending, thermal and vibration analysis of FGM plates by using different-order plates theories
are conducted by H.-S. Shen and his associates [Yang and Shen 2003; 2002; Huang and Shen 2004].
Extensive nonlinear analysis of shear deformable FGM plates and shell can be found in [Shen 2009].

Hasheminejad and Gheshlaghi [2012] studied the transient vibration of thick FGM plates resting on the
elastic foundations under blast and moving loads using the linear elasticity theory. Yang and Gao [2013]
studied dynamic stress analysis of the FGM plates with a circular hole under an in-plane compressive
load at infinity. Fakhari, Ohadi and Yousefian [Fakhari et al. 2011] investigated the vibrations of FGM
plates with piezoelectric layers under thermal, electrical and mechanical loadings. They used the finite
element method based on HSDT with geometric nonlinearity. Elishakoff and Gentilini [2005] developed
a three-dimensional linear elasticity solution using the Ritz minimum energy principle for the FGM plates
with all edges clamped. Mantari and Soares [2012] analytically analyzed the bending of the FGM plates
by using a newly developed HSDT. Comparison studies are carried out to validate the present theory.
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Lee, Zhao and Reddy [Lee et al. 2010] analyzed the postbuckling behavior of the FGM plates under
mechanical in-plane edge compressive and thermal loading by using the element-free kp-method. The
FSDT and von Karman–type nonlinearity are employed.

In the present study, the linear vibration of the functionally graded material (FGM) plates under random
excitation is presented. One of the shear deformable plate theories, FSDT, is employed for the formula-
tion. A modified shear correction factor is used to take into account the transverse shear strain effects. It
is assumed that the FGM plate is simply supported with movable edges. The FGM plates are considered
as ceramic–metal mixtures whose mechanical properties vary exponentially through the thickness only.
Temperature dependency of mechanical properties of the constituents are also taken into account for
the random vibration in the thermal environment. Two approaches are used for random responses in
this study. The first approach is based on the normal mode method to determine the spectral density of
the response, and the second approach is based on the Monte Carlo simulation of the external random
pressure, the multimode Galerkin technique and the numerical integration procedure. The temperature
effect is taken into account only in the second approach.

2. Structural formulation

The equations of motion of an FGM plate shown in Figure 1 using the first-order shear deformation
theory (FSDT) in terms of the mid-plane displacements u0(x, y, t), v0(x, y, t) and w0(x, y, t) in the x , y
and z directions, respectively, and the rotations φx(x, y, t) and φy(x, y, t) of the transverse normal about
the y and x axes, respectively, can be written as [Reddy 2004]

A11u0,xx + A12v0,xy + B11φx,xx + B12φy,yy + A66(u0,yy + v0,yx)

+ B66(φx,yy +φy,yx)− N T
xx,x = I0(ü0+ cu̇0)+ I1(φ̈x + cφ̇x), (1)

A22v0,yy + A12u0,yx + B22φy,yy + B12φx,yx + A66(u0,xy + v0,xx)

+ B66(φx,xy +φy,xx)− N T
yy,y = I0(v̈0+ cv̇0)+ I1(φ̈y + cφ̇y), (2)

κA55(w0,xx +φx,x)+ κA44(w0,yy +φy,y)+ θ(w0)+ pr (x, y, t)= I0(ẅ0+ cẇ0), (3)

B11u0,xx + B12v0,xy + D11φx,xx + D12φy,xy + B66(u0,yy + v0,xy)

+ D66(φx,yy +φy,yx)− κA55(w0,x +φx)−MT
xx,x = I2(φ̈x + cφ̇x)+ I1(ü0+ cu̇0), (4)

B22v0,yy + B12u0,xy + D22φy,yy + D12φx,yx + B66(u0,yx + v0,xx)

+ D66(φx,xy +φy,xx)− κA44(w0,y +φy)−MT
yy,y = I2(φ̈y + cφ̇y)+ I1(v̈0+ cv̇0), (5)

where
θ(w0)= (Nxxw0,x + Nxyw0,y),x + (Nxyw0,x + Nyyw0,y),y (6)

with

Nxx(x, y, t)= A11u0,x + A12v0,y + B11φx,x + B12φy,y − N T
xx , (7)

Nyy(x, y, t)= A12u0,x + A22v0,y + B12φx,x + B22φy,y − N T
yy, (8)

Nxy(x, y, t)= A66(u0,y + v0,y)+ B66(φx,y +φy,x), (9)

in which a subscript comma denotes the partial derivative with respect to the indicated coordinates and
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Figure 1. Shear deformable FGM plate geometry, loading and coordinate system.

time t , κ is the shear correction factor, pr (x, y, t) is the random pressure, c is the viscous damping
coefficient and I0, I1 and I2 are the mass inertias defined as

(I0, I1, I2)=

∫ h/2

−h/2
ρ(z, T ) · (1, z, z2) dz, (10)

in which ρ is the mass density and h is the thickness of the FGM plate. Furthermore,

(Ai j , Bi j,Di j )=

∫ h/2

−h/2
Qi j · (1, z, z2) dz, i, j = 1, 2, 6, (11)

Ai j =

∫ h/2

−h/2
Qi j dz, i, j = 4, 5, (12)

where

Q11 = Q22 =
E(z, T )

1− ν2(z, T )
, Q12 =

ν(z, T )E(z, T )
1− ν2(z, T )

,

Q16 = Q26 = 0, Q44 = Q55 = Q66 =
E(z, T )

2[1+ ν(z, T )]
,

(13)

where the elasticity modulus E(z, T ), the density of the plate ρ(z, T ), Poisson’s ratio ν(z, T ) and the
thermal expansion coefficient α(z, T ) are all assumed to be functions of temperature T and coordinate z
in the thickness direction according to a power law distribution as [Praveen and Reddy 1998; Reddy
2000; Shen 2009]

E(z, T )= (Et(T )− Eb(T ))
(2z+ h

2h

)n
+ Eb(T ), (14)

ρ(z, T )= (ρt(T )− ρb(T ))
(2z+ h

2h

)n
+ ρb(T ), (15)

ν(z, T )= (νt(T )− νb(T ))
(2z+ h

2h

)n
+ νb(T ), (16)

α(z, T )= (αt(T )−αb(T ))
(2z+ h

2h

)n
+αb(T ), (17)
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Figure 2. Volume fraction of ceramic through the thickness for the different volume
fraction n.

where subscripts t and b denote the top and bottom of the plate and n is the material distribution parameter.
When the material distribution parameter n increases, the volume fraction of ceramic diminishes and
the FGM plate becomes more metal-rich as shown in Figure 2. The temperature dependent material
properties P(T ) of the constituents of the FGM plate can be expressed by [Reddy and Chin 1998]

P(T )= P0(P−1T−1
+ 1+ P1T + P2T 2

+ P3T 3), (18)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T (in K) in the cubic fit of the material
property and are unique to the materials.

The shear correction factor for an FGM plate can be defined as [Efraim and Eisenberger 2007; Efraim
2011]

κ(T )=
5

6− (ν1(T )V1− ν2(T )V2)
, (19)

where V1 and V2 are the volume fractions of constituents in the whole cross-section.
In this study, a simply supported FGM plate with movable ends is considered. For an FSTD plate, the

boundary conditions are given as follows. At x = 0, a,

v0(x, y, t)= w0(x, y, t)= φy(x, y, t)= 0, (20)

Nxx(x, y, t)= A11u0,x + A12v0,y + B11φx,x + B12φy,y − N T
xx = 0, (21)

Mxx = B11u0,x + B12v0,y + D11φx,x + D12φy,y −MT
xx = 0. (22)

At y = 0, b,

u0(x, y, t)= w0(x, y, t)= φx(x, y, t)= 0, (23)

Nyy(x, y, t)= A12u0,x + A22v0,y + B12φx,x + B22φy,y − N T
yy = 0, (24)

Myy = B12u0,x + B22v0,y + D12φx,x + D22φy,y −MT
yy = 0, (25)
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where the thermal force and moment resultants are
N T

xx
N T

yy
N T

xy

 ,


MT
xx

MT
yy

MT
xy


= ∫ h/2

−h/2


(Q11+ Q12)α(z, T )
(Q12+ Q22)α(z, T )

0

 ·1T (x, y, z) · (1, z) dz, (26)

where 1T is the temperature change from a stress-free state.

3. Solution procedure

For undamped free vibration analysis, by setting all mechanical and thermal loads to zero, it can be
shown that the following functions satisfy the boundary conditions (20)–(25) [Reddy 2000]:

u0(x, y, t)= Û cos(αm x) sin(βn y)eiωt , (27)

v0(x, y, t)= V̂ sin(αm x) cos(βn y)eiωt , (28)

w0(x, y, t)= Ŵ sin(αm x) sin(βn y)eiωt , (29)

φx(x, y, t)= X̂ cos(αm x) sin(βn y)eiωt , (30)

φy(x, y, t)= Ŷ sin(αm x) cos(βn y)eiωt , (31)

where
αm =

mπ
a

and βn =
nπ
b
. (32)

By substituting (27)–(31) into the equations of motion, (1)–(5), one can obtain

([K ] −ω2
[M]){ψ} = 0, (33)

where
{ψ} = {Û , V̂ , Ŵ , X̂ , Ŷ }T (34)

and [K ] and [M] are the stiffness and mass matrices, and ω is the natural frequency of the vibration.
Elements of the stiffness and mass matrices are given in Appendix A.

For each (m, n), there are five natural frequencies ω2
mni and corresponding natural modes {Ûmni , V̂mni ,

Ŵmni , X̂mni , Ŷmni }
T (i = 1, 2, 3, 4, 5).

Random vibration.

Isothermal case. For the random forced vibration without thermal effect, the responses are expanded in
terms of natural modes [Cederbaum et al. 1992; Elishakoff 1999]

u0(x, y, t)=
∑

m

∑
n

5∑
i=1

Umni (x, y)qmni (t), (35)

v0(x, y, t)=
∑

m

∑
n

5∑
i=1

Vmni (x, y)qmni (t), (36)

w0(x, y, t)=
∑

m

∑
n

5∑
i=1

Wmni (x, y)qmni (t), (37)
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φx(x, y, t)=
∑

m

∑
n

5∑
i=1

Xmni (x, y)qmni (t), (38)

φy(x, y, t)=
∑

m

∑
n

5∑
i=1

Ymni (x, y)qmni (t), (39)

where

Umni (x, y)= Ûmni cos(αm x) sin(βn y), (40)

Vmni (x, y)= V̂mni sin(αm x) cos(βn y), (41)

Wmni (x, y)= Ŵmni sin(αm x) sin(βn y), (42)

Xmni (x, y)= X̂mni cos(αm x) sin(βn y), (43)

Ymni (x, y)= Ŷmni sin(αm x) cos(βn y) (44)

by introducing (35)–(39) into (1)–(5); and using free vibration analysis and orthogonality of eigenmodes,
one can obtain

q̈mni + 2ξmniωmni q̇mni +ω
2
mni qmni = Qr

mni , (45)

where

2ξmniωmni = c (46)

and the generalized random force

Qr
mni (t)=

1
Mmni

∫ a

0

∫ b

0
pr (x, y, t)Wmni (x, y) dx dy, (47)

where the generalized mass

Mmni =

∫ a

0

∫ b

0

{
I0(U 2

mni +V 2
mni +W 2

mni )+2I1(XmniUmni +Ymni Vmni )+ I2(X2
mni +Y 2

mni )
}

dx dy. (48)

By using random vibration theory [Lin 1976; Elishakoff 1999; Maymon 1998], the deflection response
spectral density for w0(x, y, t) can be derived as

SW W (x1, y1, x2, y2, ω)=
∑
mni

∑
rs j

Wmni (x1, y1)Wrs j (x2, y2)Hmni (ω)H∗rs j (ω)SQr
mni Qr

rs j
(ω), (49)

where

SQr
mni Qr

rs j
(ω)=

1
Mmni

1
Mrs j

∫ a

0

∫ b

0

∫ a

0

∫ b

0
Sp(x1, y1, x2, y2, ω)Wmni (x1, y1)Wrs j (x2, y2) dx1 dy1 dx2 dy2

(50)
and

Hmni (ω)=
1

ω2
mni [ω

2
mni −ω

2+ 2iξmniωmniω]
, (51)
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and ∗ indicates a complex conjugate. We define

RW W (x1, y1, x2, y2, τ )=

∫
∞

−∞

SW W (x1, y1, x2, y2, ω)eiωτ dω. (52)

The root mean square (RMS) values of deflection at a point (x = x1 = x2 and y = y1 = y2) can be
computed from

RMS=

√∫
∞

−∞

Sww(x, y, ω) dω. (53)

Thermal case. When thermal effects are included, due to multiplication of thermal terms and deflection
terms, a time domain approach is used to develop the solution. For the time domain solution, displace-
ments are expanded into double Fourier series as

u0(x, y, t)=
∑

m

∑
n

Umn(t) cos(αm x) sin(βn y), (54)

v0(x, y, t)=
∑

m

∑
n

Vmn(t) sin(αm x) cos(βn y), (55)

w0(x, y, t)=
∑

m

∑
n

Wmn(t) sin(αm x) sin(βn y), (56)

φx(x, y, t)=
∑

m

∑
n

Xmn(t) cos(αm x) sin(βn y), (57)

φy(x, y, t)=
∑

m

∑
n

Ymn(t) sin(αm x) cos(βn y), (58)

where
αm =

mπ
a

and βn =
nπ
b
. (59)

Temperature in (26) is also expanded in a double Fourier sine series as

T (x, y, z)=
∑
m=1

∑
n=1

Tmn(z) sin(αm x) sin(βn y), (60)

where

Tmn(z)=
4

a · b

∫ a

0

∫ b

0
T (x, y, z) sin(αm x) sin(βn y) dx dy. (61)

It is also assumed that temperature varies only in the z direction or uniformly throughout the plate. Then
the temperature change can be written in the form

1T (x, y, z)=1T (z)
∑

m

∑
n

1
m · n

sin(αm x) sin(βn y), (62)

where
1T (z)= T (z)− T0, (63)

where T0 is a stress-free reference temperature (T0 = 300 K is taken).
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The following temperature distributions through the thickness (z direction) in (63) are considered. For
linear distribution,

T (z)= Tb+ (Tt − Tb)
(2z+ h

2h

)
, (64)

where Tb and Tt are the temperatures of the bottom and top of the FGM plate, respectively. For nonlinear
distribution of the temperature through the thickness, the heat conduction equation

−
d
dz

(
k(z)

dT
dz

)
= 0 (65)

is solved, where the temperature dependency of the thermal conductivity k is not considered. Solution
of (65) is carried out by using polynomial series as [Javaheri and Eslami 2002]

T (z)= Tb+
Tt − Tb

Ctb

[
V −

ktb

(n+ 1)kb
V n+1

+
k2

tb

(2n+ 1)k2
b

V 2n+1

−
k3

tb

(3n+ 1)k3
b

V 3n+1
+

k4
tb

(4n+ 1)k4
b

V 4n+1
−

k5
tb

(5n+ 1)k5
b

V 5n+1
]
, (66)

where

Ctb = 1−
ktb

(n+ 1)kb
+

k2
tb

(2n+ 1)k2
b
−

k3
tb

(3n+ 1)k3
b

+
k4

tb

(4n+ 1)k4
b
−

k5
tb

(5n+ 1)k5
b

(67)

and

V =
2z+ h

2h
and ktb = kt − kb, (68)

where kb and kt are the thermal conductivity of the bottom and top surfaces of the plate, respectively.
Above, n is the material distribution parameter as used in (14)–(17).

The assumed solutions that satisfy the boundary conditions, (20)–(25), are substituted into (1)–(5),
then Galerkin’s method is employed and the following sets of equations in time domain are obtained:

Ümn + 2ξmnωmnU̇mn +
I1
I0
(Ẍmn + 2ξmnωmn Ẋmn)

+
1
I0

(
k11Umn + k12Vmn + k14 Xmn + k15Ymn + N T

xx
π

n ·a

∣∣∣
n odd

)
= 0, (69)

V̈mn + 2ξmnωmn V̇mn +
I1
I0
(Ÿmn + 2ξmnωmnẎmn)

+
1
I0

(
k21Umn + k22Vmn + k24 Xmn + k25Ymn + N T

yy
π

m ·b

∣∣∣
m odd

)
= 0, (70)

Ẅmn + 2ξmnωmnẆmn +
1
I0
(k33Wmn + k34 Xmn + k35Ymn)

+ N T
xx

∑
k odd

∑
l odd

∑
r

∑
s

Wrs
αr

k · l
ξ1(l, s, n)[αrγ1(k, r,m)−αkγ2(k, r,m)]

+ N T
yy

∑
k odd

∑
l odd

∑
r

∑
s

Wrs
βs

k · l
γ1(k, r,m)[βsξ1(l, s, n)−βlξ2(l, s, n)] = Qmn(t), (71)
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Ẍmn + 2ξmnωmn Ẋmn +
I1
I2
(Ümn + 2ξmnωmnU̇mn)

+
1
I2

(
k41Umn + k42Vmn + k43Wmn + k44 Xmn + k45Ymn +MT

xx
π

n ·a

∣∣∣
n odd

)
= 0, (72)

Ÿmn + 2ξmnωmnẎmn +
I1
I2
(V̈mn + 2ξmnωmn V̇mn)

+
1
I2

(
k51Umn + k52Vmn + k53Wmn + k54 Xmn + k55Ymn +MT

yy
π

m ·a

∣∣∣
m odd

)
= 0, (73)

where the generalized random load

Qmn(t)=
4

a · b · I0

∫ a

0

∫ b

0
pr (x, y, t) sin(αm x) sin(βn y) dx dy (74)

the coefficients γ1, γ2, ξ1 and ξ2 are given in Appendix B and
N T

xx
N T

yy
N T

xy

 ,


MT
xx

MT
yy

MT
xy


= ∫ h/2

−h/2


(Q11+ Q12)α(z, T )
(Q12+ Q22)α(z, T )

0

 ·1T (z) · (1, z) dz. (75)

In order to solve (69)–(73), the random pressure is first simulated in the space-time domain and then the
generalized random load in (74) is evaluated numerically. The integration can be carried out in a closed
form for some special cases. In this study, uniformly distributed random pressure is considered.

4. Numerical examples and discussion

A moderately thick square FGM plate shown in Figure 1 is considered in this section. The square
plate has a length of a = b = 0.5 m and a thickness of h = 0.025 m. The FGM plate is assumed
to be simply supported with movable edges. First nine modes are retained in the serial expansion to
estimate the deflection responses. Deflection responses are computed at the center of the plate (i.e.,
x = a/2 and y = b/2). The plate is made of the functionally graded material that is a mixture of the
material combination of zirconia (ZrO2) and titanium alloy (Ti-6Al-4V). Temperature-dependent material
properties of these constituents are presented in Table 1 and used in (18).

Materials Property P0 P−1 P1 P2 P3

Zirconia E 244.27× 109 0 −1.371× 10−3 1.214× 10−6
−3.681× 10−10

ν 0.2882 0 −1.133× 10−4 0 0
α 12.766× 10−6 0 −1.491× 10−3 1.006× 10−5

−6.778× 10−11

ρ 5700 0 0 0 0

Ti-6Al-4V E 122.56× 109 0 −4.586× 10−4 0 0
ν 0.2884 0 1.121× 10−4 0 0
α 7.5788× 10−6 0 6.638× 10−4

−3.147× 10−6 0
ρ 4429 0 0 0 0

Table 1. Temperature-dependent material properties of ceramic (zirconia) and metal
(titanium) [Praveen et al. 1999; Shen 2009; Reddy and Chin 1998].
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Figure 3. Displacement time histories for uniform random pressure (SPL= 160 dB and
n = 0.7).

The random pressure acting on the top of the plate (ceramic-rich part) is simulated by using the Monte
Carlo simulation technique. Uniformly distributed stationary Gaussian random pressure can be simulated
as [Shinozuka and Jan 1972]

pr (tq)= Re

[
M−1∑
r=0

Ar eiφr eiωr tq

]
, (76)

where the φr are independent random phase angles uniformly distributed between 0 and 2π , the ωr are
the frequencies at which the values of spectral density are selected, M = 2m is the number of simulated
points in time, m is a positive integer, tq = q1t , where1t is time interval and q = 0, 1, 2, . . . ,M−1, and

Ar = [2Sp(ω)1ω]
1/2, (77)

where Sp is the spectral density corresponding to random pressure and 1ω is the frequency bandwidth.
The spectral density of the random pressure that is considered uniformly distributed stationary truncated
Gaussian white noise is

Sp =

{
S0 for 0≤ ω ≤ ωu,

0 otherwise,
(78)

where S0 represents random loading intensities, ω is the frequency and ωu is the upper cut-off frequency.
The random load intensities are expressed as

S0 =


p2

0

1ω
10SPL/10 for 0≤ ω ≤ ωu,

0 otherwise,
(79)

where p0 is the reference pressure (p0 = 2× 10−5 Pa) and SPL is the sound pressure level expressed in
decibels.

In the numerical examples, the random pressure is simulated by using M = 32768, 1t = 0.0000305 s,
ωu = 2π × 8192 rad/s and 1ω = 2π rad/s.
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Figure 4. Spectral density of deflection response under random pressure of SPL =
160 dB (n = 0.7).

Figure 3 shows the midpoint deflection response history of the FGM plate for SPL= 160 dB without
a temperature effect (i.e., at a reference temperature of T0 = 300 K). The random response peak can
reach wmax/h = 0.053 at t = 0.65 s and wmin/h =−0.056 at t = 0.058 s; and “the average values” of
the responses are RMS/h = 0.00148 and MEAN/h ∼= 0. It is evident that the plate vibrates about the
plate neutral position since the random input pressure has a Gaussian distribution with zero mean.

The spectral density of the deflection response is displayed in Figure 4. This figure is plotted using (49).
There are three peaks that correspond to four natural frequencies of ω11 = 3048 rad/s, ω13 = ω31 =

14816 rad/s and ω33 = 25911 rad/s. Even modes do not contribute to the response at the midpoint since
the plate is a square. To demonstrate the contribution of different modes to the RMS response, the area
under SW W (as in (53)) is plotted in Figure 5 by integrating the curve in Figure 4 in the frequency domain.
It is clear that contribution of the higher modes is very small since the area is not notably increased by
increased frequencies beyond the fundamental frequency ω11.
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Figure 5. Integration of spectral density function.
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Figure 6. Displacement time history for uniform elevated temperature (1T = 300 K)
and random pressure (SPL= 160 dB and n = 0.7).

The deflection response for random pressure of SPL= 160 dB at the uniformly elevated temperature
throughout the plate (1T = 300 K) is presented in Figure 6. As can be seen from the figure, temperature
rise in the inhomogeneous FGM plate with movable ends causes the plate to bend, and consequently,
the mean value of the vibration is no longer zero. The plate first is bent due to elevated temperature to
MEAN/h =−0.0424, and then it continues to vibrate about this mean value with RMS/h = 0.049 due
to the random pressure.

Similar behavior is seen under the linearly varying temperature through thickness at the same random
pressure (SPL= 160 dB) as displayed in Figure 7. In this case, temperature at the top face of the plate
is Tt = 850 K and temperature at the bottom face of the plate is Tb = 350 K, and temperature variation
from top to bottom is linear with ambient temperature T0 = 300 K. In this case too, the plate bends due
to temperature rise in the inhomogeneous FGM plate to a new position where it continues to vibrate
randomly. The response averages are MEAN/h =−0.0086 and RMS/h = 0.024.
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Figure 7. Displacement time history for linear temperature rise (Ttop = 850 K and Tb =

350 K) and uniform random pressure (SPL= 160 dB, n = 0.7 and T0 = 300 K).



378 VEDAT DOGAN

 

Time, s

D
is

p
la

e
m

e
n
t 

/ 
T

h
ic

kn
e
ss

 (
w

/h
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 8. Displacement time history for uniform elevated temperature (1T = 300 K)
and random pressure (SPL= 140 dB and n = 0.7).

The displacement response history of the FGM plate under the random pressure (SPL= 140 dB) at
uniformly elevated temperature (1T = 300 K) is illustrated in Figure 8. In this case, the temperature rise
is the same, but random pressure is lower compared to Figure 6. Therefore, the mean deflection response
of the FGM plate is the same, but the amplitudes of the random vibration are much smaller. It turns to
be like a static response as time goes. Similar behavior, but to a lesser degree, is observed for linearly
varying temperature rise as shown in Figure 9. This can be realized by comparing Figures 7 and 9. It is
obvious that the response is dominated by the thermal deflections when the random load density is low.

The deflection average responses of the FGM plate under different random loading at different uni-
formly elevated temperature are plotted in Figure 10. For without thermal effect, the mean response
is almost zero, and the RMS value varies linearly with random sound pressure level as is expected for
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350 K) and uniform random pressure (SPL= 140 dB, n = 0.7 and T0 = 300 K).



RANDOM VIBRATION OF SHEAR DEFORMABLE FGM PLATES 379

 

 

Sound Pressure Level(SPL), dB

M
E

A
N

 / 
h,

  R
M

S
 / 

h

100 110 120 130 140 150 160 170 180 190 200
1E-8

1E-7

1E-6

1E-5

0.0001

0.001

0.01

0.1

1

MEAN/h (nulll)  and RMS/h (filled)
'7 � K
'7 ����.

'7 ����.

'7 ��.

'7 ����.

'7 ����.

Figure 10. Deflection RMS and MEAN values versus sound pressure levels at different
uniformly elevated temperatures (n = 0.7).

a linear structure. For other elevated temperature cases, when the SPL is less than 140 dB, thermal
deflection dominates the response with the mean. However, random loading response turns out to be
predominant after SPL= 140 dB at 1T = 100 K and after SPL= 160 dB at 1T = 500 K.

Similar RMS responses are obtained for linearly elevated temperatures as shown in Figure 11. The
bottom temperature is kept constant at Tb = 350 K, and the top temperature is elevated from the ambient
temperature (i.e., 1Tt = Tt − T0). The results reveal that the RMS responses increase for all linearly
elevated temperatures when the sound pressure level is greater than 140 dB.

The effect of the material distribution parameter n on the RMS/h response under random pressure
without thermal influence is presented in Table 2. Both the Monte Carlo method and spectral density
method results are tabulated. It is obvious that the two methods agree quite well. The FGM plate trans-
forms from the ceramic-rich plate to the metal-rich plate with increased material distribution parameter n.
Consequently, it yields greater RMS responses.
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Figure 11. Deflection RMS values versus sound pressure levels at different linearly
elevated temperatures (n = 0.7).
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Method SPL n = 0.1 n = 0.5 n = 1 n = 5 n = 10

Monte Carlo 160 dB 0.0130 0.0143 0.0152 0.0167 0.0172
Spectral density 160 dB 0.0129 0.0143 0.0151 0.0166 0.0172

Monte Carlo 180 dB 0.1302 0.1434 0.1523 0.1675 0.1728
Spectral density 180 dB 0.1296 0.1430 0.1517 0.1669 0.1729

Table 2. The effect of the material distribution parameter n on the RMS/h response
(1T = 0).

The effect of the material distribution parameter n on the nondimensional RMS and MEAN responses
under random loading in a thermal environment is given in Table 3. Temperature distribution through
thickness is assumed to be linear with Tt = 850 K and Tb = 350 K. The mean responses are due to
temperature since MEAN responses are almost the same for SPL= 160 dB and SPL= 180 dB for each
n value. The RMS values increase with increased n values as the FGM plate becomes more metal-rich.

The effect of the plate thickness to random response for SPL= 160 dB is presented in Table 4. Isother-
mal, uniformly elevated temperature and linearly elevated temperature cases are considered. For the
isothermal vibration case, MEAN responses are zero, and the RMS responses increase with the length-
to-thickness ratio. For vibration in a thermal environment, when the plate is very thick (e.g., a/h = 5),
the response is mainly MEAN response due to elevated temperature, and fluctuations about the mean
response due to random loading is very small. When the FGM plate is moderately thick, fluctuations
become relatively important for the linearly elevated temperature case but not important for uniformly
elevated temperatures.

Sound pressure n = 0.1 n = 0.5 n = 1 n = 5 n = 10

160 dB RMS/h 0.0218 0.0215 0.0271 0.0285 0.0306
MEAN/h 0.0114 −0.0034 −0.0139 −0.0079 0.0089

180 dB RMS/h 0.1868 0.2129 0.2325 0.2739 0.2926
MEAN/h 0.0115 −0.0034 −0.0138 −0.0079 0.0089

Table 3. The effect of the material distribution parameter n on the response averages
for linearly elevated temperature.

a/h = 5 a/h = 10 a/h = 20

Isothermal RMS/h 0.000132 0.00134 0.0148
1T = 0 K MEAN/h 0 0 0

Uniform temperature rise RMS/h 0.00127 0.00596 0.04893
1T = 300 K MEAN/h −0.00126 −0.00571 −0.04238

Linear temperature rise RMS/h 0.00036 0.00218 0.02326
Tt = 850 K, Tb = 350 K MEAN/h −0.00033 −0.00146 −0.00861

Table 4. Random responses of the FGM plates with various length-to-thickness ratios
(n = 0.7 and a = 0.5 m).
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Figure 12. Displacement time history for nonlinear temperature rise (Tt = 850 K and
Tb = 350 K) and random pressure (SPL= 160 dB, n = 0.7 and T0 = 300 K).

Random response with nonlinear temperature distribution across the thickness is shown in Figure 12.
In this case, temperatures of the top and bottom faces are taken to be the same as in the linear temperature
distribution case shown in Figure 6. That is, temperature at the top face of the plate is Tt = 850 K and
temperature at the bottom face of the plate is Tb = 350 K, and temperature variation from top to bottom is
nonlinear with ambient temperature T0 = 300 K, kb = 6.112 W/mK and kt = 1.775 W/mK in Figure 12.
The response averages are found as MEAN/h = −0.0058 and RMS/h = 0.021. It can be seen that
random deflection responses for linear temperature distribution (Figure 7) and nonlinear temperature
distribution (Figure 12) across the plate thickness are nearly identical. It is clear that the nonlinear
temperature distribution on the random response has no pronounced effect.

5. Conclusion

The transverse vibration of the functionally graded material plates under random excitation is presented.
The first-order shear deformation (FSDT) plate theory is used for the equation of motion. The FGM plates
are assumed as ceramic-metal mixtures, and their mechanical properties vary exponentially through the
thickness. All mechanical properties of the constituents are also considered temperature-dependent. Both
the spectral density method (frequency domain) and Monte Carlo method (time domain) are used for
investigation. It was found that when the input is uniformly distributed random pressure with zero mean
in an isothermal environment, the response is also random with zero mean. Both methods predict the
same average values (RMS and MEAN). It was shown that contribution to the random response is mostly
coming from the first mode. Therefore, a good estimate can be done by considering the fundamental mode
only. Temperature and distribution of temperature also significantly affect the response, particularly the
MEAN response. The effect of the material distribution parameter is investigated. When the FGM plate
becomes metal-rich (n > 1), deflection responses become greater. Influence of the length-to-thickness
ratio is also investigated. It was shown that when the FGM plate is very thick, the RMS response to
acoustic random pressure is very small. The effect of temperature is found only on the mean responses.
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Appendix A

The elements of the stiffness matrix [K ] = [ki j ] are

k11 = A11α
2
m + A66β

2
n , (A-1)

k12 = (A12+ A66)αmβn, (A-2)

k13 = 0, (A-3)

k14 = B11α
2
m + nB66β

2
n , (A-4)

k15 = (B12+ B66)αmβn, (A-5)

k22 = A22β
2
n + A66α

2
m, (A-6)

k23 = 0, (A-7)

k24 = (B12+ B66)αmβn, (A-8)

k25 = B22β
2
n + B66α

2
m, (A-9)

k33 = κ(A55α
2
m + A44β

2
n ), (A-10)

k34 = κA55αm, (A-11)

k35 = κA44βn, (A-12)

k44 = D11α
2
m + D66β

2
n + κA55, (A-13)

k45 = (D12+ D66)αmβn, (A-14)

k55 = D22β
2
n + D66α

2
m + κA44. (A-15)

The elements of the mass matrix [M] = [mi j ] are

m11 = m22 = m33 = I0, (A-16)

m44 = m55 = I2, (A-17)

m14 = m25 = I1. (A-18)

Others are zero.

Appendix B

The coefficients γ1, γ2, ξ1 and ξ2 are defined as

γ1(k, r,m)=
a

4π

{ 1
k+ r +m

((−1)k+r+m
− 1)−

1
k+ r −m

((−1)k+r−m
− 1)

−
1

k− r +m
((−1)k−r+m

− 1)+
1

k+ r +m
((−1)k+r+m

− 1)
}
, (B-1)

γ2(k, r,m)=
a

4π

{
−1

k+ r +m
((−1)k+r+m

− 1)+
1

k+ r −m
((−1)k+r−m

− 1)

−
1

k− r +m
((−1)k−r+m

− 1)+
1

k− r −m
((−1)k−r−m

− 1)
}
, (B-2)
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ξ1(l, s, n)=
b

4π

{ 1
l + s+ n

((−1)l+s+n
− 1)−

1
l + s− n

((−1)l+s−n
− 1)

−
1

l − s+ n
((−1)l−s+n

− 1)+
1

l + s+ n
((−1)l+s+n

− 1)
}
, (B-3)

ξ2(l, s, n)=
b

4π

{
−1

l + s+ n
((−1)l+s+n

− 1)+
1

l + s− n
((−1)l+s−n

− 1)

−
1

l − s+ n
((−1)l−s+n

− 1)+
1

l + s+ n
((−1)l+s+n

− 1)
}
. (B-4)
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