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A NONLINEAR STRESS-STRETCH RELATIONSHIP
FOR A SINGLE COLLAGEN FIBRE IN TENSION

FRANCESCO GENNA

A new stress-strain equation for a single, stretched collagen fibre (bundle) is developed, based on the sta-
tistical description of the fibre microstructure, down to the tropocollagen molecule level. The derivation
follows previous work of Annovazzi and Genna (2010), but the modifications reported here both simplify
and improve the final result. The model is governed by physically meaningful parameters. Comparisons
between the model predictions and some available experimental results suggest that the proposed model
could be of value in bioengineering applications.

1. Introduction

In [Annovazzi and Genna 2010] (hereafter referred to as [AG]), a constitutive model for a single collagen
fibre was derived on the basis of assumptions concerning both the fibre microstructure and the mechanical
behaviour of the tropocollagen molecule. The present paper aims at simplification, improvement, and
better internal consistency with respect to what done in [AG].

The main motivation for this work is the relative scarcity of constitutive models for the stress-stretch
behaviour of a single collagen fibre in tension. The most commonly adopted assumptions for the collagen
fibre constitutive law are in fact still not fully adequate. They might be either unrealistic, such as linear
elasticity, or purely phenomenological, such as linear or nonlinear viscoelasticity, or hyperelasticity,
based on the definition of potential functions that depend on parameters having no physical meaning.
One reason for this could be the fact that the interest is often focussed on tissue analysis, so complicated
in itself that it leaves little space for an accurate description of the underlying constituents, i.e., the single
fibres. Examples of this type of difficulty can be found in [Grytz and Meschke 2009; Cacho et al. 2007;
Wang et al. 1997; Limbert 2011].

To the best of our knowledge, only one attempt — that of [AG] — has been made at deriving a micro-
structurally based stress-stretch law for a single collagen fibre. This could cover the whole range of
possible tensile loading, and described the microstructure of the fibre itself, which includes several levels
of subcomponents, down to the molecular level [Kastelic et al. 1978]. The fibre stress-strain relationship
presented in [AG] was based on the statistical description of the crimp properties of all the internal
levels — four, according to the available information — of the fibre itself. The results obtained in [AG],
however, could be improved in several respects:
• in the absence of data concerning the tropocollagen molecule, the equation for the elastic behaviour

at the molecular level was taken, in [AG], from a model developed for a DNA molecule, an extension
of the so-called WLC model of [Bustamante et al. 2000];
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• the failure of the tropocollagen molecule was described in [AG] on the basis of uncertain force data
concerning the DNA molecule;

• the assumptions regarding the statistics of the waviness at the molecular level were inconsistent, in
[AG], which resulted in needless analytical complications;

• crosslinking was ignored;

• all the subfibrils, at all the sublevels, were assumed to be continuous and stress-carrying, ignoring
the existence of both interrupted subfibrils and of extra fibrous matter/voids;

• all the probability density functions for all the random variables, in [AG], were taken as Gaussian;
this created some inconsistency in the definition of the governing parameters.

Here, a modification of the model of [AG] is presented. It overcomes the quoted problems and, at the
same time, it is much simpler, and is better suited to be adopted even in large-scale applications, as
shown in an accompanying paper [Genna and Paganelli 2014]. The main features of the constitutive
model described here are of two types: those that follow what was already presented in [AG], and those
which modify and improve the previous approach. In summary:

Retained features:

• a collagen fibre, or bundle, is seen as having an internal hierarchy of 4 sublevels of wavy or crimped
subfibres, arranged in parallel at each sublevel; the waviness at each level is treated as a random
variable;

• all the random variables are considered as stochastically independent;

• no compressive or bending stiffness is considered;

• the tropocollagen molecules are seen as forming wavy cables, of which the stress-carrying ones are
treated as continuous, running from end to end of the bundle, and having an elastic-brittle behaviour.

New features:

• a bilinear elastic law is adopted for the tropocollagen molecule, as suggested in [Buehler and Wong
2007];

• the statistical aspects of the molecular failure are based on a simpler yet more consistent assumption,
expressed in terms of displacement instead of force;

• crosslinking is accounted for;

• a beta probability density function is chosen for the statistics of all the random quantities;

• account is taken of the possible coexistence, at any sublevel, of stress-carrying and non-stress-
carrying material.

The model herein proposed is valid for any material — and specially for soft tissues or tissue compo-
nents — whose internal microstructure is made by nested wavy thin cables. Its effectiveness, in the
context of collagen, is tested by comparing its predictions with the results of experiments available in
the literature for single collagen fibres. An indirect verification is also presented, obtained by inserting
the new fibre stress-stretch equation into a previously developed model for the mechanical behaviour in
tension of the periodontal ligament (PDL) [Genna 2006].
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2. Theory: the constitutive model

Figure 1 shows a sketch of the assumed hierarchy of subcomponents inside a collagen fibre, based on
the description presented, for instance, in [Kastelic et al. 1978]. This follows [AG]; Figure 1 also shows
the approximate geometrical scales of each level. The nomenclature adopted here is the following:

• Collagen fibre (or bundle, or fascicle): this is called here “level 0”, and it is the component for
which we desire to obtain a stress-stretch equation, starting from its uncoiled, unstretched configu-
ration. Its characteristic diameter is, for collagen types I, II, and III, of about 100µm. The uncoiled,
unstretched length of the fibre, inside the proposed model, is taken as deterministic, denoted by Lb.

• Fibril: this is called here “level 1”, and has a typical diameter of about 10 to 500 nm. This component
exhibits a typical banded structure, with a period of about 65 nm, that derives from the features of
the molecular arrangement [Petruska and Hodge 1964].

• Subfibril: this is called here “level 2”. According to [Kastelic et al. 1978], this entity, of diameter
ranging from 10 to 20 nm, has been described in previous literature; it seems hard to be distinguished
from the next one (see also [AG]).

• Microfibril, formed by five tropocollagen units joined together: this is called here “level 3”, and has
a typical diameter of 3.5 nm;

• Tropocollagen molecule, having a diameter of 1.5 nm: this is the lowest level considered here, i.e.,
“level 4”.

Level 3: microfibril
8= 3.5 nm

Level 2: subfibril
8= 20 nm

Level 4: molecule
8= 1.5 nm

Level 1: fibril
8= 100 nm

Level 2: subfibril
8= 20 nm

Level 0: fibre bundle/fascicle
8= 100µm

Figure 1. Schematic representation of the internal structure of a fibre-forming collagen
fibre, as proposed for instance in [Kastelic et al. 1978].
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List of abbreviations
Am Molecular cross-section area 1.7671 nm2

fi Volume fraction of fibrous matter in cable i
Fs Molecular force at the end of stiffness stage 2
Fm Molecular force

F4,A Force in cable 4 during molecular stiffness stage 2
F4,B Force in cable 4 during molecular stiffness stage 3

Ks Molecular stiffness in molecular stiffness stage 2 10 pN/nm
Km Molecular stiffness in molecular stiffness stage 3 30 pN/nm
L0,i Coiled end-to-end distance of a cable at level i Random

L0,m Coiled end-to-end distance of a single molecule Random
Lb Unstretched uncoiled length of a collagen fibre

Ld,i Unstretched uncoiled length of a cable at level i Random
Lm Unstretched uncoiled length of a single molecule 301.7 (204.9) nm
M Number of molecules in cable at level 4 Random
N Total number of levels (cables) in the cable microstructure 4 for a fibre of collagen

type I, II, and III
s Molecular displacement range spanned by stiffness stage 2

u1 Deterministic value of the displacement that stretches a collagen fibre
u f Failure molecular displacement Random
u∗f Difference between failure molecular displacement and displacement

at the end of the first (entropic) stiffness stage
ui Displacement of cable at level i starting from situation

when cable i−1 is uncoiled and unstretched
ui Displacement ui corresponding to complete uncoiling,

but with no stretching, of cable at level i
um Molecular displacement starting from rest (coiled) configuration
um Molecular displacement um corresponding to complete uncoiling,

but with no stretching, of a single molecule
us Molecular displacement um corresponding to the end of stiffness

stage 2 of a single molecule Random
X f Crosslink parameter affecting molecular failure

Xks Crosslink parameter affecting the stiffness in molecular stiffness stage 2
Xkm Crosslink parameter affecting the stiffness in molecular stiffness stage 3

yi Ratio between coiled end-to-end distance and unstretched uncoiled
length of cable at level i Random

z4 Product y1 y2 y3 y4 Random
z A Current value of variable z4 at the beginning of molecular

stiffness stage 2 for cable 4
zB Current value of variable z4 at the transition between molecular

stiffness stages 2 and 3 for cable 4
zC Current value of variable z4 at failure for cable 4

zC,0 Value of variable z4 at failure for cable 4 with zero crosslinking
8m Molecular diameter 1.5 nm
σ0 Cauchy stress in a collagen fibre Random
σ e

i Stress in the non-fibrous matter in a cable at level i 0
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Level 0

Level 1

Level 0

Tissue level

u1

Level 1

L0,0

Ld,0 = Lb = L0,1

u0

Figure 2. Symbols adopted for the top two levels in the assumed hierarchy. Level 0 is
the collagen fibre; level 1 is a collagen fibril; u1 is the deterministic input displacement
value, corresponding to actual stretching of the collagen fibre.

In the model presented here, all the stress-carrying subcomponents, at all levels, are assumed to be
continuous wavy cables, running from end to end of the collagen fibre. At each level i , a random number
of stress-carrying extensible cables exist, with a wavy/crimped geometry. They are characterised by their
uncoiled, unstretched length Ld,i , and by their coiled end-to-end distance, denoted by L0,i , never longer
than Ld,i . Both Ld,i and L0,i are defined in an undeformed configuration, taken at the instant when the
upper level, i − 1, is fully uncoiled but unstretched. Figure 2 shows the geometry assumed for the first
two levels, 0 and 1, defined above. A list of all the symbols adopted in the rest of this work is provided
on the previous page for convenience.

The constitutive equation derived here concerns level 0, starting from the instant at which, upon a
prescribed fibre displacement, the fibre has become completely uncoiled. What happens before must be
described at the tissue level, since it concerns geometrical properties of the collagen fibre itself. Therefore,
the displacement of interest here, taken as the main input data of deterministic value, is the one denoted
as u1 in Figure 2, i.e., the displacement that causes an actual stretch in the collagen fibre. We assume
that if u1 ≤ 0, no stress exists in the fibre.

Figure 3 shows the geometrical features of the considered problem at a generic level i . At each
level, the subfibril displacement ui is defined starting from the coiled, unstretched configuration with
end-to-end distance L0,i . For each level i one has

Ld,i = L0,i+1, i = 0, . . . , N − 1, (1)

where N indicates the total number of sublevels in the considered microstructure; for a collagen fibre,
N will always be set equal to 4. Equation (1) implies, as shown in Figure 2, that the deterministic input
length Lb corresponds to

Lb = Ld,0 = L0,1. (2)
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Level i , coiled, unstretched

ui

Level i , uncoiled, unstretched

Level i , uncoiled, stretched

L0,i

Ld,i

ui

Figure 3. Symbols adopted for a generic internal level of the assumed microstructure.

The displacement ui contains a part that uncoils the subcomponent i without stretching it: this part is
denoted by ui , defined as

ui = Ld,i − L0,i ≥ 0. (3)

For each level i , the following nondimensional quantity is defined:

yi =
L0,i

Ld,i
, 0< yi ≤ 1, (4)

i.e., the ratio between the coiled end-to-end distance and the uncoiled, unstretched length of the subfibrils
at that level. The quantities yi are assumed to be random variables, governed by a probability density
function of the beta type [Ross 2004], because of their taking values in the interval [0, 1]. It is assumed
that (i) the quantities yi , for all i , are stochastically independent, and that (ii) a mean value E(yi ) and a
variance Var(yi ) of each yi are both known.

Exploiting (1)–(4), and following the same path taken in [AG] (where, though, a different definition
of the random variables was adopted), the following results can be obtained:

Ld,i =
Lb∏i
j=1 y j

, 1≤ i ≤ N , (5)

ui − ui = u1+ Lb

(
1− 1∏i

j=1 y j

)
, 1≤ i ≤ N . (6)

It is now necessary to define the mechanical behaviour at the tropocollagen molecule level, herein called
“level 4”.
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Single molecule, coiled, unstretched

um

Single molecule,
uncoiled, unstretched

Single molecule,
stretched

Single molecule,
failure point

L0,m

Ld,m = Lm

um

u∗f

u f

Figure 4. Symbols adopted for the displacements of a single tropocollagen molecule.
The uncoiled, unstretched length Ld,m of a single molecule coincides with its contour
length Lm .

Figure 4 shows the geometry and the symbology adopted for a single molecule. Note that all the
symbols previously introduced refer to continuous subcomponents, at all levels, running from end to end
of the collagen fibre. In Figure 4, the subscripts m and f refer instead to a single molecule, and um is
the molecular displacement defined from the coiled, unstretched configuration of a single molecule.

The contour length Lm is the uncoiled, unstretched length of the molecule, usually (but not always)
taken equal to Lm = 301.7 nm (see for instance [Buehler and Wong 2007]). It is the sum of the end-to-end
distance of the coiled molecule, L0,m , with the displacement um necessary to fully uncoil the molecule.
Both these quantities are assumed to be random variables. The displacement u∗f that brings the molecule
from its uncoiled state up to the brittle failure point (see for instance [Bozec and Horton 2005] and
[Buehler and Wong 2007] for experimental evidence of the aspect of a stress-strain curve in tension of
a tropocollagen molecule) is assumed to have a deterministic value; yet, the total failure displacement
u f = um + u∗f , defined as starting from the coiled configuration, is also a random variable.

The mechanical properties of a single molecule are defined on the basis of results presented in [Buehler
and Wong 2007], where three stages are recognised in the tensile force-displacement behaviour: a first
one, of entropic elasticity, up to an axial force of about 10–15 pN; a second one, corresponding to the
uncoiling of the molecule triple helix; and a third stage, where the molecular bonds are stretched, that
ends with brittle fracture, at a displacement u∗f of about 150 nm.

Here, the first stage is neglected, assuming that, for um ≤ um , the molecular force is zero. Next,
a bilinear elastic-brittle force-displacement law is assumed, illustrated in Figure 5. The molecule starts
furnishing stiffness when um > um ; at this instant a second stiffness stage begins, spanning a displacement
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Fm

Fs

Stage 1

Stage 2

Stage 3

Km

Ks

um s
us

u∗f

u f
um

Figure 5. Bilinear force-displacement law adopted for a single tropocollagen molecule.
Fm is the molecular force; um is the molecular displacement, defined from the initial
(coiled) state; u f indicates the brittle failure point. Both s and u∗f are assumed to be
deterministic quantities. Stage 1 corresponds to entropic elasticity, herein neglected.
Stage 2 corresponds to the helix uncoiling phase. Stage 3 corresponds to actual molecular
stretching.

range denoted by s. This stage 2 ends at a displacement us given by

us = um + s. (7)

During this stage 2, for um ≤ um ≤ us the molecular stiffness is denoted by Ks . For us < um ≤ u f the
molecular behaviour is in a third and final stiffness stage, still linear elastic, but governed by a different
stiffness value, indicated by Km .

We assume as deterministic, and known, beside the value of u∗f = u f − um , also (i) the two stiffnesses
Ks and Km , and (ii) the displacement interval s spanning the stiffness stage 2. Also the molecular
diameter 8m is assumed as deterministic and known, of value 8m = 1.5 nm; this value is assumed to
remain constant during the deformation.

The assumed force-displacement law for a single tropocollagen molecule is then as follows:

Fm = 0, um ≤ um (entropic elasticity, neglected);

Fm = Ks(um − um), um < um ≤ us (uncoiling);

Fm = Fs + Km(um − us), us < um ≤ u f = (um + u∗f ) (stretching);

Fm = 0, um > u f (failed),

(8)
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with
Fs = Kss = Ks(us − um). (9)

One needs next to describe the mechanical behaviour of a full cable at the molecular level, assumed
to run continuously from end to end of the considered collagen fibre. This subcomponent is made of a
series of a number M of tropocollagen molecules, given by

M =
Ld,4

Lm
� 1, (10)

which, accounting for (5), can also be written as

M =
Lb

Lm
∏4

i=1 yi
=

Lb

Lmz4
, (11)

where the new random quantity z4 was defined as

z4 =

4∏
i=1

yi , 0< z4 ≤ 1. (12)

In the lack of precise information, it is assumed that the molecules are connected sequentially in a
line which, however, has a waviness whose statistical properties are independent from those of a single
molecule; furthermore, it is assumed that the polymerisation along the whole collagen fibre is equal to
that of the molecule itself, and that both the stiffness and strength of the connection between molecules
are the same as those of the molecule itself.

It is now possible to write the force-displacement equations for a single, continuous cable, at level 4,
on the basis of the molecular equations (8), because the following hold:

u4 = Mum, (13)

u4 = Mum, (14)

u4− u4 = u1+ Lb

(
1− 1

z4

)
, (15)

(see (6)),
F4 = Fm . (16)

Hence, denoting by F4,A and F4,B the forces in molecular stiffness stages 2 and 3, respectively, one has:

F4,A = Ks(um − um)=
Ks

M
(u4− u4)= Ks Lm

[( u1
Lb
+ 1

)
z4− 1

]
, u4 < u4 ≤ us4, (17)

with us4 = Mus ;

F4,B = Fs + Km(um − us)= Fs +
Km

M
(u4− us4)

= Fs + Km Lm

[( u1
Lb
+ 1

)
z4−

(
1+

s
Lm

)]
, us4 < u4 ≤ Mu f ; (18)

and
F4 = 0, u4− u4 ≤ 0 or u4− u4 > Mu∗f . (19)
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From (17) and (18), it becomes apparent that the only random quantity that governs the mechanical
behaviour of each cable at level 4 is z4, defined by (12). The probability density function of z4 cannot be
defined in closed form, but it is assumed to be also a beta function, with known mean value and variance,
that can be computed, for the product of stochastically independent random variables, exploiting the
following expressions:

if x = yi y j , then E(x)= E(yi )E(y j ); (20)

if x = yi y j , then Var(x)= [E(yi )]
2 Var(y j )+ [E(y j )]

2 Var(yi )+Var(yi )Var(y j ) (21)

(see for instance [Goodman 1960; 1962]).
Denoting now by fz4(z4) the probability density function for z4, the expected value of F4, for each

assigned value of the collagen fibre displacement u1, must be computed through an integration over the
admissible values of z4, as follows:

E[F4(u1, z4)] =

∫ 0<zB≤1

0<z A≤1
F4,A(z4) fz4(z4) dz4+

∫ 0<zC≤1

0<zB≤1
F4,B(z4) fz4(z4) dz4 (22)

The integration limits z A, zB , and zC , all deterministic, are to be computed as follows:

• from (15) and (19) one has

F4,A 6= 0 if u1+ Lb

(
1− 1

z4

)
> 0 =⇒ z4 >

Lb

u1+ Lb
= z A; (23)

• from (17) it is seen that the transition from F4,A to F4,B occurs for u4 = us4, i.e., for

u4 = Mus = u4+Ms, (24)

which, recalling (11) and again (15), gives

zB =
Lb

u1+ Lb

(
1+ s

Lm

)
; (25)

• and from (11), (15), and (18) one has

F4,B 6= 0 if u1+ Lb

(
1− 1

z4

)
<

Lb

Lmz4
u∗f =⇒ z4 <

Lb

u1+ Lb

(
1+

u∗f
Lm

)
= zC . (26)

Note that, in order to account for the irreversibility of failure, in the calculation of integral (22) the upper
integration limit zC can not increase with increasing u1, i.e., one must always set dzC/du1 ≤ 0.

It is now possible to introduce into the previous equations some simple modifications in order to
account for the possible presence of crosslinking. For this complex aspect, no attempt is made here at
describing any physical feature of the substructural arrangement. The purpose is to model the main me-
chanical effects of crosslinking in a phenomenological way, through equations void of physical meaning,
but as simple as possible.

The main effects of crosslinking considered herein are (i) the increase of the apparent stiffness of a
single cable (see, for instance, [Thompson and Czernuszka 1995]); (ii) the influence of the brittle failure
of a cable on the surrounding ones.
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The first effect is described in a trivial way: the basic molecular stiffnesses, Ks and Km , are introduced
into the governing equations each multiplied by an independent dimensionless factor, denoted by Xks ≥ 1
and Xkm ≥ 1 respectively.

The second effect of crosslinking is recognised to be of reducing the failure displacement of the whole
collagen fibre. Such a reduction is quite significant, according to [Pins et al. 1997]: non-crosslinked fibres
are reported to fail at a strain (probably Biot, although this is not reported in [Pins et al. 1997]) that can
reach values up to 0.68, whereas crosslinked ones fail at strains of the order of 0.15. This phenomenon
could be explained considering that brittle failure is associated to a sudden release of elastic energy: if
the failed cable is crosslinked to other parallel cables, the surrounding ones might absorb a portion of
the released energy, and fail themselves, thus leading to a premature failure of the whole collagen fibre.

This effect has been taken into account by defining a progressive reduction of the upper integration
limit in (22), i.e., zC of (26). This reduction is proportional to the current value of the input displace-
ment u1 through a new nondimensional parameter X f ≥ 0. We have redefined zC as follows:

zC = zC,0− f (X f , u1),
dzC

du1
≤ 0, with zC,0 =

Lb

u1+ Lb

(
1+

u∗f
Lm

)
, (27)

and with

f (X f , u1)=
2 arctan(u1 X f /Lb)(zC,0− z A)

π
. (28)

These equations, which have no physical basis, when inserted into the governing equations allow one to
obtain the desired effect: with increasing u1, the upper integration limit zC tends to approach the lowest
one, z A. This reflects the progressive disappearance, among the various subcomponents, of the shorter
ones, at a rate that increases with increasing values of the parameter X f .

The expected value of the axial stress in a cable at level 4, i.e., in a cable made by a sequence of
tropocollagen molecules, for a given value of the collagen fibre displacement u1, is then

E(σ4)=
E(F4)

Am
=

4E(F4)

π82
m
. (29)

Elementary homogenisation theory is finally exploited to compute the corresponding expected value
of the macroscopic axial stress in the collagen fibre at level 0 of the assumed hierarchy, as shown in
Figure 1. At each level, in fact, the stress-carrying subfibrils coexist with noncontinuous subfibrils, with
some extra-fibrous (ground) matter, and with no matter at all.

Denote by σ e
i the tensile stress possibly transmitted by the nonfibrous matter at each level i , and by fi

the volume fraction of stress-carrying fibrous matter at each level i . Then fi = A f
i /Ai , where Ai is the

total area of a cable at level i , and A f
i is the area occupied by continuous fibrous matter in that very cable.

Then the elementary homogenisation theory allows one to calculate the average macroscopic stress σ0

at level 0 as follows:

σ0 = E(σ4) f3 f2 f1 f0+ σ
e
3 (1− f3) f2 f1 f0++σ

e
2 (1− f2) f1 f0+ σ

e
1 (1− f1) f0+ σ

e
0 (1− f0). (30)

From now on, for simplicity, we always assume that the extra-fibrous matter does not carry any mechan-
ical stress in tension, even though it could do so in compression. Therefore, we will set σ e

i = 0 for each
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i = 0, . . . , 3 in (30), which then reduces to

σ0 = E(σ4) f3 f2 f1 f0, (31)

with E(σ4) given by (29), with (22) and following. This is an explicit expression for the axial stress in a
single stretched collagen fibre for any corresponding value of the prescribed value of u1; this last could
be related to any conventional strain value through standard theory.

We note, finally, that the obtained stress-stretch equation, here derived explicitly for the case of N = 4,
could be easily extended to any other structural component, biological or not, having the same type
of microstructure of nested wavy cables, with any number N of subcomponents. Once the mechanical
properties of the most microscopic level — i.e., level N — are known, a straightforward extension of the
above equations will furnish the desired stress-stretch relationship. The only statistics to be described
would be that of a variable zN , defined as the product of the N random variables yi , defined by (4).
The expression for the average macroscopic stress that extends result (30) to an arbitrary number N of
sublevels is the following:

σ0 = E(σN )

N−1∏
i=0

fi +

N−1∑
i=0

[
σ e

i (1− fi )

i−1∏
j=0

f j

]
. (32)

The proposed stress-stretch equation, with the force-displacement law of (17) and (18), and with the mod-
ifications of (27) and (28), included to account for crosslinking, requires a total number of constitutive
parameters equal to 7+ 3N in general, and equal to 19 for the case N = 4.

3. Applicative examples

3.1. Sea cucumber collagen fibril, from [Eppell et al. 2006]. The first example considers a collagen
fibril, i.e., the subcomponent at level 1 of the hierarchy considered so far. Therefore, to obtain the
corresponding results one must adopt N = 3, and the molecular level corresponds now to i = 3 in (5)
and (6). This example was chosen both because it helps in setting a basis for the data concerning the
statistics at the lower levels of a fibre, and because there are experimental results available [loc. cit.].

Figure 6 shows tensile stress-strain curves: one as presented in [loc. cit.] (continuous), the other
(with white circles) as obtained from the analytical approach proposed here. In this case, unlike all the
remaining ones, the molecular length Lm has been set equal to Lm = 204.9 nm, instead of the commonly
adopted value Lm = 301.7 nm, following the results presented in [loc. cit.]. We note (we will return to
this in the next section) that a substantial uncertainty about experimentally measured quantities exists
already for the “simple” molecular length Lm . The Almansi strain employed for the abscissa, as done in
[loc. cit.], is defined as

εAlmansi =
λ2
− 1

2λ2 , λ=
Lb+ u1

Lb
. (33)

Table 1 shows the set of parameters adopted to obtain the analytical results for this and the next three
examples. The first ten parameters have values that will remain fixed in all the presented examples; the
remaining nine will have different values for each example. Note that, for (31), we have not defined
individual values for the stress-carrying fibrous matter volume fractions fi , but rather a single value for
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Material Sea cucumber fibril Engineered Rat tail Rabbit patellar tendon
parameter [Eppell et al. 2006] [Gentleman [Gentleman [Yamamoto et al. 1999]

et al. 2003] et al. 2003]

E(y2) 0.9952 0.9952 0.9952 0.9952
E(y3) 0.99779 0.99779 0.99779 0.99779
E(y4) 0.9979 0.9979 0.9979 0.9979

Var(y2) 4.9·10−5 4.9·10−5 4.9·10−5 4.9·10−5

Var(y3) 6.561·10−7 6.561·10−7 6.561·10−7 6.561 ·10−7

Var(y4) 2.5027·10−6 2.5027·10−6 2.5027·10−6 2.5027·10−6∏
fi 0.0768 0.05 0.05 0.05

Ks (pN/nm) 10 10 10 10
Km (pN/nm) 30 30 30 30

8m (nm) 1.5 1.5 1.5 1.5

Lm (nm) 204.9 301.7 301.7 204.9/301.7
u∗f (nm) 265 167 167 75

E(y1) - 0.99 0.99 0.99
Var(y1) - 1.7742·10−4 1.7742·10−4 8.281 ·10−5

Lb (mm) 5 76 76 15
Xks 1.8 3.64 15 6.5
Xkm 5 2.25 2 1

X f 0.12 9.85 6.8 15
s (nm) 115 23 32 5

Table 1. Values adopted for the material parameters of the collagen fibril and collagen fibres.
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Figure 6. Stress-strain curves in uniaxial tension for the collagen fibril studied in [Eppell
et al. 2006]. The blue curve is experimental [loc. cit.]; the red curve is obtained from the
proposed equations. The Almansi strain is defined as in (33). Material data as in Table 1.
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their product, based on the considerations presented in Section 4. A good agreement between experi-
mental and analytical results could be found for this special example. The analytical result provides the
expected value for the fibril stress; for this example, the peak stress expected value is 884 MPa, to which
a predicted standard deviation of 4157 MPa corresponds.

3.2. Engineered collagen fibre, from [Gentleman et al. 2003]. The next example concerns the engi-
neered collagen fibre studied in [loc. cit.]. Figure 7 shows tensile stress-strain curves: one as presented
in [loc. cit.], and the others as obtained from the proposed analytical approach. The Biot strain in the
abscissa — the same adopted in [loc. cit.] — is defined as

εBiot =
u1

Lb
. (34)

A good agreement between experimental results and analytical predictions can be observed. In this case,
the peak stress expected value is 70.8 MPa, and the corresponding standard deviation is 419.5 MPa.

The other curves, with white markers, refer to analytical results obtained from different choices of
material parameters, in order to provide a brief sensitivity analysis: each curve refers to the modification
of a single parameter, with respect to those listed in Table 1. The following effects, easy to predict on
the basis of the meaning of the considered parameters, are visible:

• a reduction of the molecular failure displacement, u∗f , causes a reduction of both the global peak
stress and strain, leaving the overall shape of the stress-strain curve unaltered;

• a reduction of the size of stage 2 of the molecular stiffness, through parameter s (see Figure 5),
causes a corresponding increase of the overall stiffness, as well as of the global peak stress;
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Figure 7. Stress-strain curves in uniaxial tension for the engineered collagen fibre stud-
ied in [Gentleman et al. 2003]. The solid curve is experimental, from [loc. cit.]; all the
other curves, with markers, are obtained from the proposed equations. The Biot strain
is defined in (34). Material data as in Table 1.
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Figure 8. Stress-strain curves in uniaxial tension for the rat tail collagen fibre studied
in [Gentleman et al. 2003]. The solid curve is experimental, from [loc. cit.]; the curve
with circles is obtained from the proposed equations. Material data as in Table 1.

• a reduction of the molecular stiffness Km has the opposite effect;

• a reduction of the expected value for the variable y1 of (4) causes a change of shape of the stress-
strain curve, as well as a reduction of the peak stress for the fibre;

• an increase of the parameter X f causes a significant loss of ductility, as expected.

The model is relatively insensitive to small variations of the variances for the single variables yi of (4).

3.3. Rat tail tendon collagen fibre, from [Gentleman et al. 2003]. Figure 8 shows a similar comparison,
concerning now a single collagen fibre extracted from a rat tail tendon, as reported in [loc. cit.]. In this
case, the peak stress expected value is 178.7 MPa, and the corresponding standard deviation is 1049 MPa.

3.4. Rabbit patellar tendon sample, from [Yamamoto et al. 1999]. Figure 9 illustrates results similar
to the previous ones for a collagen fibre taken from a rabbit patellar tendon, for which experimental
results are provided in [loc. cit.]. The figure shows two analytical curves, of which only the one adopting
Lm = 204.9 nm, as done for the fibril example, corresponds well to the experimental result. In this case,
the peak nominal stress (nominal stresses are shown in [loc. cit.]) expected value is 19.62 MPa, and the
corresponding standard deviation is 116 MPa.

3.5. Periodontal ligament sample, from [Genna et al. 2008]. Figure 10 shows again a stress-strain plot,
that now concerns the behaviour in tension of a small sample of swine periodontal ligament (PDL).
The details of the sample and of the testing modalities are described in [loc. cit.]. In this case, the
experiment concerns a tissue, not a single collagen fibre, and one has only an indirect validation of the
model proposed herein.
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Figure 9. Stress-strain curves in uniaxial tension for the rabbit patellar collagen fibre
studied in [Yamamoto et al. 1999]. The solid curve is experimental, from [loc. cit.]; the
curves with markers are obtained from the proposed equations, and refer to different
molecular lengths Lm as indicated. The nominal stress is force divided by initial cross-
section area. Material data as in Table 1.
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Figure 10. Stress-strain curves in uniaxial tension for one of the periodontal ligament
samples studied in [Genna et al. 2008]. The solid curve is experimental, from [loc. cit.];
the curve with circles is obtained by means of the model of [Genna 2006], in which the
equations developed in the present work have been inserted for the behaviour in tension
of a single collagen fibre. The Green–Lagrange strain is defined as in (35) of the text.
Material data as in Table 2.
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The Green–Lagrange strain plotted in abscissa in Figure 10, as adopted in [loc. cit.], is defined as

εGL =
1
2

[(
Lb+ u1

Lb

)2

− 1
]
. (35)

In this case, (31) is inserted into an interface model, presented in [Genna 2006], that allows one, by
means of yet another statistical integration over the waviness of the collagen fibres, to describe the tissue
features. The accompanying paper [Genna and Paganelli 2014] makes extensive use of this model for
studying the extraction of a tooth from its socket; we refer to [Genna 2006] and [Genna and Paganelli
2014] for more details of the interface description.

The main parameters required by the PDL model of [Genna 2006] are:

• the thickness w0 of the PDL layer;

• the angle β0 that defines the inclination of the collagen fibres in a longitudinal section of the tooth;

• the angle θ0 that defines the inclination of the collagen fibres in a transversal section of the tooth;

• the volume fraction fc of stress-carrying collagen fibres inside the PDL;

• statistical properties of the collagen fibres waviness in the PDL, described by the variable xc which
is the ratio between the uncoiled, unstretched length of a collagen fibre and its end-to-end distance
at rest, governed by w0, β0, and θ0;

• data for the constitutive law of a single collagen fibre, that here correspond to the 19 parameters
required by the proposed stress-stretch model;

• other parameters that define the compressive behaviour of the PDL, of no interest here.

Table 2 reports all the relevant data adopted to obtain the result shown in Figure 10. In Table 2 the
parameter Lb, denoting the uncoiled length of a collagen fibre at rest, is marked as a random variable,
since its value now depends on the statistics of the waviness of the fibre, i.e., on the current values of xc

during the integration process.

E(y2) 0.9952 u∗f 167 nm w0 0.66 mm
E(y3) 0.99779 E(y1) 0.995 β0 34◦

E(y4) 0.9979 Var(y1) 1.2078·10−4 θ0 76.8◦

Var(y2) 4.9·10−5 Lb random variable fc 0.05
Var(y3) 6.561·10−7 Xks 1 E(xc) 1.093
Var(y4) 2.5027·10−6 Xkm 1 Var(xc) 0.00397

f0 f1 f2 f3 0.05 X f 0
Ks 10 pN/nm s 50 nm
Km 30 pN/nm
8m 1.5 nm
Lm 301.7 nm

Table 2. Adopted values for the material parameters of the periodontal ligament sample
studied in [Genna et al. 2008].
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Figure 11. Stress-strain curves in shear for one of the periodontal ligament samples
studied in [Genna et al. 2008]. The solid curve is experimental, from [loc. cit.]; the curve
with circles is obtained by means of the model of [Genna 2006], in which the equations
developed in the present work have been inserted for the behaviour in tension of a single
collagen fibre. The shear strain is defined as the ratio between the displacement and the
width at rest of the sample. Material data as in Table 2 except for w0 = 0.33 mm and
β0 =−7◦.

It is worth remarking, here, that the failure Biot strain of a single collagen fibre, with the data adopted
to obtain the result of Figure 10, is εf ≈ 0.55. As already observed, this quite large value is an indication
of the probable lack of crosslinking in the PDL collagen.

Finally, Figure 11 shows a comparison obtained in the same way as the previous one, but on a different
swine PDL sample, and for a different type of loading, i.e., shear in a plane normal to the tooth axis
[Genna et al. 2008]. The curves in Figure 11 show a shear stress in ordinate, and, in abscissa, a shear
strain defined as the ratio between the shear displacement and the width w0 of the PDL sample. For
this case the adopted data are the same as in Table 2, with the exception of w0 and β0, which are now
w0 = 0.33 mm and β0 =−7◦.

4. Discussion

A main source of difficulty for the model proposed here is the choice of the material parameter values.
Results of a detailed sensitivity analysis, beside what was shown in Figures 7 and 9, are not reported
here for the sake of brevity.

All the data concerning the statistics of the quantities yi of (4), shown in Tables 1 and 2, have been
rederived following the same approach adopted in [AG]. A partial confirmation of their usability derives
from the result shown in Figure 6, which refers to a subcomponent of the fibres.

A precise evaluation of the volume fractions fi of stress-carrying cables at the various sublevels can
hardly be given. The following approach was therefore followed: a single cable at level i is assumed to
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have a circular cross-section; fibrous matter is assumed to be present in cables, at level i + 1, also having
a circular cross-section. For a full packing of infinite equal circles, the volume fraction of fibrous matter
would be equal to π/

√
12 ≈ 0.907, at each sublevel. Assuming a large but finite number of internal

circles, one can adopt a smaller value, that we chose equal to 0.85. Furthermore, it was necessary to
define what part of the fibrous subcomponents, at each level, was continuous, i.e., stress-carrying: we
assumed that only one half of the fibrous matter was continuous, thus obtaining a value fi ≈ 0.425.
Therefore, one finds f0 f1 f2 f3 ≈ 0.4254

= 0.033, rounded to f0 f1 f2 f3 = 0.05, and f1 f2 f3 = 0.0768 for
the fibril, with N = 3, as shown in Tables 1 and 2.

More difficulties arise in defining several molecular parameters. We started by reasoning on the case
of the periodontal ligament (PDL), in order to exclude the effects of crosslinking: in this tissue, in fact,
the stress-carrying fibres seem to behave as if little or no crosslinking at all were present. This could
be inferred from (i) the very low stiffness values, and the very large failure strains, compared to other
tissues, observed in PDL samples [AG], and (ii) as said in Section 3.3, from the high value of the single
fibre failure strain. No quantitative description of this aspect could be found; [Berkovitz et al. 1995]
reports that PDL has “unique” crosslinking features, with respect to all other tissues, but no information
is given about the relevance of this property with respect to mechanical behaviour.

Thus, the stress-carrying collagen fibres of the PDL were assumed to be uncrosslinked. This implies,
in the approach illustrated here, to adopt Xks = Xkm = 1 and X f = 0, which allows one to reason about
raw molecular data.

In order to obtain a good match with the experimental result in tension of Figure 10, the values
Ks = 10 pN/nm, Km = 30 pN/nm, u∗f = 167 nm, and s = 50 nm were adopted (see Table 2).

The displacement values agree reasonably well with the corresponding ones reported in [Buehler and
Wong 2007], which are u∗f = 150 nm and s = 90 nm. On the contrary, the molecular stiffness ones do
not, since our Km is ten times smaller than the one obtained in [Buehler and Wong 2007], and Ks is
about 1/5. It is extremely difficult to obtain coherent information about these data from the literature,
for several reasons. A relationship exists that relates the bending stiffness of a tropocollagen molecule
to its persistence length, but this seems to hold for the entropic regime only, neglected here. Another
relationship which provides the molecular stiffness in the stretching range derives from standard truss
theory, and is

Km =
Em Am

Lm
, (36)

where Em denotes the molecule Young modulus. According to several sources (see, for instance, [Gau-
tieri et al. 2012]), the Young modulus of a collagen molecule takes values in the range Em = 300–
16000 pN/nm2 (i.e., MPa), depending both on the evaluation modalities and on the considered strain rate,
both in experiments and in numerical simulations based on molecular dynamics theory.

Adopting an average value Em = 5000 pN/nm2, equation (36) yields Km = 29.98 pN/nm. On the other
hand, a value Em = 5000 pN/nm2 hardly agrees with further data reported in [Buehler and Wong 2007],
where the bending stiffness of a single molecule is reported to vary between Em Im = 1.247× 10−29 Nm2

and Em Im = 1.2× 10−28 Nm2, depending on the assumed strain rate, Im denoting the molecule moment
of inertia around its neutral axis. Assuming for the molecule a circular cross-section with diameter
8m = 1.5 nm, the first value corresponds to Em ≈ 50 pN/nm2, and the second to Em ≈ 500 pN/nm2.
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On yet another hand, in order to obtain the stiffness value Km = 294.8 pN/nm proposed in [Buehler and
Wong 2007] for the molecular stretching regime, (36) would require a value Em ≈ 50000 pN/nm2, well
outside the reported range of values. This uncertainty on the value of Km may arise from the intrinsic mea-
surement difficulties, from confusion between entropic and energetic behaviour, from presence/absence
of crosslinking, strain-rate effects, solvated/dry conditions during the test, and so on.

In order to obtain results from the stress-stretch model proposed in this work, it was arbitrarily decided
to assume as valid the average value Em = 5000 pN/nm2, which corresponds to Km ≈ 30 pN/nm, for the
uncrosslinked, basic molecular stiffness. All the choices for the molecular parameters are made very
difficult by the lack of reliable experimental results; even the basic molecular length Lm does not see
agreement on its values (here we have been forced to adopt the values Lm = 204.9 nm or Lm = 301.7 nm
in different cases.)

As for Ks , the molecular stiffness associated to the chain uncoiling, the situation is even less clear
than for Km . Its value could only be identified, and it was taken equal to Ks = 10 pN/nm, in a proportion
to Km about twice as that indicated in [Buehler and Wong 2007].

The numerical values of the three parameters Xks, Xkm , and X f , that govern crosslinking, in the results
of Figures 7, 8, and 9, had to be identified case by case.

As for the last rows in Table 2, that concern the data defining the PDL behaviour, we refer to [Genna
2006], except for fc of Section 3.3. In [loc. cit.] every single collagen fibre was supposed to run continu-
ously from end to end of the PDL layer, and the value for the fibre volume fraction fc was taken from the
literature as equal to fc = 0.5. Recent work [Trombetta and Bradshaw 2010] confirms that fc = 0.5 is a
reasonable estimate of the average value for the volume fraction of the fibrous component in the PDL. In
the new model, only the stress-carrying portion of it is considered, which, at least according to available
images of the PDL, is only a small fraction of the total. In order to obtain a good match with the
experimental stress-strain results, the value fc = 0.05 had to be adopted, as shown in Table 2.

An uncertainty remains about the shape of the stress-strain curves of both Figures 8 and 9, and the
relevant material data, shown in Table 1. Work by Gutsmann et al. [2004] suggests that a plateau in the
stress-strain curve of collagen might be due to crosslinking; the model proposed here might reproduce this
effect through the reduction of the upper integration limit zC ((27) and (28)), for increasing displacement
u1, until the stiffer portion of the molecular behaviour disappears from the picture. Nevertheless, with
the set of material parameters herein adopted, and especially in view of the narrow extension of the
molecular force-displacement law covered by the statistics of the variable z4 of (12), it was impossible
to obtain such an effect automatically. The only way to reproduce it was to adopt Xks Ks < Xkm Km as
shown by Table 1, whose meaning remains unclear.

The simplicity of the model proposed herein allows one to consider any type of mechanical behaviour
at the lowermost level — for instance, viscosity — with no conceptual difficulty.

Other considerations, similar to those already reported in [AG], remain still valid also for this modified,
simplified, and improved version of the same approach.

5. Conclusions

No attempt has been made, here, to propose a complete and accurate representation of the physical
microstructure of a single collagen fibre. The aim has been to obtain a simple and engineering-usable
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(for instance, in large-scale 3D finite element calculations) set of equations that describe the nonlinear
mechanical behaviour of this important biological component, based on a set of parameters having,
where possible, a clear physical meaning. Several features of the real arrangement of subcomponents are
explicitly taken into account, but several other important details still require more study. The ability to
reproduce experimental results on the basis of reasonable values of the material parameters is however
encouraging. An accompanying paper [Genna and Paganelli 2014] illustrates the performance of the
model presented herein in the context of finite element simulations at the macroscopic scale.
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