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A model for the finite transient viscoplastic response of thin membranes is derived from three-dimensional
viscoplasticity theory for isotropic materials. This accommodates large elastic strains and is not limited
to conventional Kirchhoff–Love kinematics. In particular, we show that the Kirchhoff–Love hypothesis
need not obtain in the presence of plastic deformation. Numerical experiments exhibit large transient
elastic strains accompanied by small deviations from Kirchhoff–Love kinematics.

1. Introduction

The problem of the dynamic viscoplastic response of thin metallic sheets to impact and blast loads is
thoroughly reviewed in the classic monograph [Cristescu 1967]. In addition to a detailed overview of
experimental methods, a description of theoretical and numerical analyses of transient finite axisymmetric
motions is given in the setting of rate-independent and rate-dependent response. The present work may
be viewed as a further development of this subject, cast in the setting of the modern theory of finite
elastic-viscoplastic deformations.

In rate-independent plasticity theory the elastic strain is bounded by the diameter of an elastic range
associated with a yield criterion. Typically, this implies that elastic strains are small enough to justify the
use of classical linear relations between elastic strain and an appropriate measure of stress. In contrast,
formulations of viscoplasticity theory to model rate-dependent behavior are characterized by significant
excursions of the elastic strain (and associated stress) from the elastic range [Malvern 1951; Prager 1961;
Perzyna 1962/1963; 1966]. In this case the elastic strain cannot be regarded as small a priori and so
there is a need for an extended framework that accommodates finite elastic strain. To this end we adopt
the finite-elastic-strain model for isotropic materials proposed in [Krishnan and Steigmann 2014].

The basic framework of finite elastoplasticity theory is recalled in Section 2, both for the sake of
completeness and to set the stage for its subsequent application, in Section 3, to the dynamics of thin
sheets. We show that the kinematics of the sheet do not conform to classical Kirchhoff–Love kinemat-
ics, even in the case of isotropy. In Section 4 we describe numerical experiments conducted using a
two-dimensional spatial finite difference scheme based on Green’s theorem in conjunction with explicit
timewise integration of the equations of motion. This is applied to the simulation of the response of a
plane sheet to transverse blast pressure. The predictions exhibit small deviations from Kirchhoff–Love
kinematics and substantial transient elastic strains.

From the theoretical point of view it is advantageous to base the theory on the elastic stretch tensor
rather than conventional measures of elastic strain; this is explained in Section 2. Typically the use of
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stretch tensors is avoided in numerical work as they are not rational functions of the deformation gradient.
However, as shown in Section 4, this issue is easily addressed by using an appropriate version of the
Cayley–Hamilton formula.

We use standard notation such as At , A−1, A∗,Dev A, tr A and JA. These are, respectively, the trans-
pose, the inverse, the cofactor, the deviatoric part, the trace and the determinant of a tensor A, regarded
as a linear transformation from a three-dimensional vector space to itself, the latter being identified with
the translation space of the usual three-dimensional Euclidean point space. We also use Sym to denote
the linear space of symmetric tensors, Sym+ the positive-definite symmetric tensors and Orth+ the group
of rotation tensors. If JA > 0 then we have the unique polar decompositions A= RAUA = VA RA, with
RA ∈ Orth+ and UA, VA ∈ Sym+. The tensor product of 3-vectors is indicated by interposing the symbol
⊗, and the Euclidean inner product of tensors A, B is denoted and defined by A · B = tr(ABt); the
associated norm is |A| =

√
A · A. Finally, the notation FA, with a bold subscript, stands for the tensor-

valued derivative of a scalar-valued function F(A).

2. Elastoviscoplasticity theory for isotropic materials

In this section we recount the basic elements of the three-dimensional theory underpinning this work. Fur-
ther background may be found in [Cleja-T, igoiu and Soós 1990; Epstein and Elżanowski 2007; Rajagopal
and Srinivasa 1998; Gurtin et al. 2010; Gupta et al. 2007; Bigoni 2012].

2.1. Basic theory. The fields to be determined are the motion χ(x, t) and the plastic deformation ten-
sor K (x, t), where x is the position of a material point in a fixed reference placement κr of the body.
Commonly, the plastic deformation is identified with G = K−1. The values y = χ(x, t) are the positions
of material points at time t and generate the current placement κt of the body as x ranges over κr . The
deformation gradient, denoted by F, is the gradient of χ with respect to x; this is assumed to be invertible
with JF > 0. These variables combine to yield the elastic deformation

H = F K . (1)

Here we impose JH > 0 and thus require that JK > 0.
The basic elements of this framework were laid down by Bilby [1960], Kröner [1960], Noll [1967/1968]

and Lee [1969]. Reference may be made to [Gurtin et al. 2010] for a thorough and modern account of
the subject.

The strain energy of the body is

E =
∫
κt

ψ(H) dv, (2)

where ψ is the spatial strain-energy density. We consider materials that are uniform in the sense that this
function, and further constitutive functions to be discussed, do not involve x explicitly.

The local equations of motion, in the absence of body forces, are

Div P = ρr ÿ, P Ft
∈ Sym in κr , (3)

where P is the Piola stress, ρr is the fixed referential mass density, Div is the referential divergence (i.e.,
the divergence with respect to x), and superposed dots are used to denote material derivatives (∂/∂t at



TRANSIENT ELASTIC-VISCOPLASTIC DYNAMICS OF THIN SHEETS 559

fixed x). The Piola stress is defined in terms of the Cauchy stress T by

P = T F∗. (4)

The strain-energy function referred to the local intermediate configuration κi is

W (H)= JHψ(H), (5)

and it generates the Cauchy stress via the formula [Gupta et al. 2007]

T H∗ =WH . (6)

Accordingly,
WH = P K ∗ (7)

Necessary and sufficient for the symmetry condition (3)2 is that W depend on H through the elastic
Cauchy–Green deformation tensor

CH = H t H . (8)

Thus,
W (H)= Ŵ (CH ). (9)

The associated second Piola–Kirchhoff stress, referred to κi , is S= Ŝ(CH ), where

Ŝ(CH )= 2ŴCH . (10)

We assume the local configuration κi to be natural in the sense that Ŝ(I) = 0; realistic constitutive
hypotheses [Gupta et al. 2007] then associate it with an undistorted state, in the sense of an undistorted
crystal lattice. The relevant symmetry group is thus a subgroup of the proper orthogonal group; i.e.,

W (H)=W (H R), (11)

where R ∈ Orth+. For isotropic materials the symmetry group coincides with the proper orthogonal
group, implying that this is satisfied for all R ∈ Orth+ .

The sum of the kinetic and strain energies of an arbitrary part p ⊂ κt of the body is∫
π

8 dv; 8=9 + 1
2ρr | ẏ|2, (12)

where π is the region occupied by p in κr , and

9(F, K )= J−1
K W (F K ) (13)

is the referential strain-energy density. In terms of this the Piola stress is given simply by [Epstein and
Elżanowski 2007; Gupta et al. 2007]

P =9F. (14)

The dissipation D is the difference between the mechanical power P supplied to p and the rate of
change of the total energy in p. Thus,

D= P − d
dt

∫
π

8 dv, (15)
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which may be reduced to [Gupta et al. 2011]

D=

∫
π

D dv, (16)

where
D = E · K̇ K−1, (17)

in which
E=9 I − Ft P (18)

is Eshelby’s energy-momentum tensor.
The dissipation is thus nonnegative for every sub-body if and only if D ≥ 0. It is convenient to use (17)

in the form
JK D = E′ · K−1 K̇ , (19)

where
E′ = JK K t EK−t (20)

is the pushforward of the Eshelby tensor to κi . This satisfies [Gupta et al. 2007]

E′ = Ŵ (CH )I −CH Ŝ(CH ), (21)

and is therefore purely elastic in origin.
In [Gupta et al. 2007] it is further demonstrated that if the strain energy and the dissipation are invariant

under superposed rigid-body motions with uniform rotation Q(t), and if plastic evolution is strictly
dissipative in the sense that D > 0 if and only if K̇ 6= 0, then the transformation rules for the elastic and
plastic deformations under superposed rigid-body motions are

H→ Q(t)H and K → K . (22)

These imply that CH , S and E′ are invariant.
In this work we consider strain-energy functions 9 that satisfy the strong ellipticity condition

a⊗ b ·9F F(F, K )[a⊗ b]> 0 for all a⊗ b 6= 0, (23)

and for all deformations. This is equivalent to [Sfyris 2011; Steigmann 2014]

a⊗m ·WH H(H)[a⊗m]> 0 for all a⊗m 6= 0, with m = K t b. (24)

It follows that 9 is strongly elliptic at F if and only if W is strongly elliptic at H = F K .

2.2. Isotropy. Isotropy of the constitutive response implies that the strain-energy function satisfies (11)
for all rotations R. The choice R= Rt

H yields the necessary condition W (H)=W (VH ). Invariance of W
under superposed rigid-body motions imposes the further restriction (see (22)1) W (VH )=W (QVH Qt)

for all rotations Q, which is satisfied if and only if W is expressible in the form

W (H)= w(h1, h2, h3), (25)
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where hi are the principal invariants of the elastic left-stretch VH . Because these are isotropic functions,
they are also the invariants of the elastic right-stretch UH ; i.e.,

h1 = tr UH , h2 = tr U∗H , h3 = det UH = JH , (26)

and this of course is a special case of (9) because UH is determined by CH . Equation (25) thus yields
the canonical representation of an isotropic, frame-invariant strain-energy function. A representation
formula derived in [Steigmann 2002] may then be used to arrive at

WH = RHσ , (27)

where
σ = (w1+ h1w2)I −w2UH +w3U∗H , (28)

in which
wi =

∂w

∂hi
(29)

is the Biot stress based on the use of κi as reference [Ogden 1997]. Using (7), (10) and (27) we have
CH S= UHσ , yielding (21) in the form

E′ =W I −UHσ = (w− h3w3)I − (w1+ h1w2)UH +w2U2
H . (30)

Our preference for a framework based on the stretch tensor and associated invariants is due to the
availability of simple sufficient conditions, expressed in terms of these variables, for the condition of
polyconvexity. This in turn guarantees strong ellipticity, which plays an important role in the considera-
tions of Section 3.

To elaborate, we write the strain energy of the body in the form

E =
∫
κr

9(∇χ , K ) dv, (31)

where (cf. (13))
9(∇χ , K )= J−1

K W ((∇χ)K ). (32)

The function 9( · , K ), with K (x) fixed, delivers the strain energy of an inhomogeneous elastic body.
Polyconvexity is the condition that there exists a (possibly nonunique) function 8(x)(F, F∗, JF ),

jointly convex in each argument, such that 8(x)(F, F∗, JF )=9(F, K (x)). This in turn is equivalent to
the polyconvexity of the function8′(x)=W , where8′(x)(H,H∗, JH )= JK8(x)(HK−1, (HK−1)∗, JH J−1

K )

with K fixed [Neff 2003]. In the case of isotropy, sufficient conditions are [Steigmann 2003]

(i) w(h1, h2, h3) is a convex function of all three arguments jointly,

(ii) w is an increasing function of h1 and h2;
(33)

that is,

w(h̄1, h̄2, h̄3)−w(h1, h2, h3) > (h̄1− h1)
∂w

∂h1
+ (h̄2− h2)

∂w

∂h2
+ (h̄3− h3)

∂w

∂h3
, (34)

together with
∂w

∂h1
> 0 and ∂w

∂h2
> 0, (35)
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in which hk and h̄k , respectively, are the invariants associated with H and the comparison deformation H ,
and the derivatives are evaluated at hk .

For example, strain energies of the form

w = c1(h1− 3)+ c2(h2− 3)+ g(h3), (36)

with c1 and c2 constant, have yielded explicit solutions to some boundary-value problems [Carroll 1988]
in the setting of finite elasticity theory. These satisfy (33) — and thus yield polyconvexity — if and only
if c1 > 0, c2 > 0 and g′′(h3) > 0. An example of such a function g( · ) is

g(h3)=−c3 log h3, (37)

with c3 a positive constant, and the associated Biot stress is (cf. (28))

σ = (c1+ h1c2)I − c2UH − c3U−1
H . (38)

To ensure that the intermediate configuration κi is stress-free, as required, and that the asymptotic for-
mula

σ = λ(tr ε)I + 2µε+ o(|ε|) (39)

is satisfied for small |ε|, where
ε = UH − I (40)

is the elastic Biot strain and where λ and µ are the usual Lamé moduli, we impose

c3 = c1+ 2c2, c2 = λ and 1
2(c1+ c2)= µ. (41)

The polyconvexity criteria (33) then imply the classical inequalities µ > 0 and κ > 0, where µ and
κ
(
= λ + 2

3µ
)
, respectively, are the conventional shear and bulk moduli. Accordingly, for materials

possessing a positive modulus λ, equations (36), (37) and (41) provide a simple nonlinear, polyconvex
extension of the strain-energy function of linear elasticity theory to finite elastic strains.

Finally, following [Krishnan and Steigmann 2014], we adopt the isotropic viscoplastic flow rule

ν ĠG−1
= F Dev(σUH ); F > 0, where F = 1−

√
2K

|Dev(σUH )|
, (42)

ν(> 0) is a material viscosity and K is the static yield stress in shear. This is an extension of the classical
over-stress models pioneered by Malvern [1951], Prager [1961] and Perzyna [1962/1963; 1966]. We
impose Ġ = 0 if UH belongs to the elastic range, defined by F ≤ 0. In the case of nontrivial plastic
evolution the elastic stretch is not bounded by the elastic range, in contrast to the situation in rate-
independent plasticity. For this reason it is generally necessary to account for finite elastic strain in the
presence of viscoplasticity.

We note that the skew part of ĠG−1, the so-called plastic spin, is suppressed in (42). That this entails
no loss of generality in the case of isotropic response has been established in [Epstein and Elżanowski
2007] and [Gurtin et al. 2010]. A general framework for addressing issues of this kind is discussed in
[Steigmann and Gupta 2011].
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Using K−1 K̇ =−ĠG−1, the dissipation D, defined by (19), is easily shown to vanish if F ≤ 0, and
to satisfy

D > 2F K 2/ν if F > 0, (43)

ensuring that plastic evolution is indeed strictly dissipative.

3. Membrane dynamics

We identify the reference configuration κr with the prismatic region �×
[
−

1
2 h, 1

2 h
]
, where � is the

midplane of the sheet and h is its thickness. To obtain the relevant model we restrict the exact equations
of motion (3) to � and invoke the exact traction conditions at the lateral surfaces ς =± 1

2 h. The resulting
system delivers equations of motion for the sheet valid to leading order in h [Steigmann 2009].

3.1. Equations of motion. Let k be a unit vector that orients the plane �. The associated projection
operator is

1= I − k⊗ k, (44)

where I is the identity for 3-space. This generates the orthogonal decomposition

P = P1+ P k⊗ k (45)

of the Piola stress, which may be used to cast the equation of motion (3) in the form

div(P1)+ P ′k = ρr ÿ, (46)

where div( · ) is the two-dimensional divergence with respect to position u ∈�, and ( · )′ = ∂( · )/∂ς is
the derivative with respect to the linear coordinate ς orthogonal to � in the representation x = u+ ςk.

This holds at all points in the interior of the body and hence at the midplane � defined by ς = 0; thus,

div(P01)+ P ′0k = ρr r̈, (47)

where r = χ0 and ( · )0 is used to denote the restriction of the enclosed variable to �. Here,

P0 =9F(F0, K0), (48)

where
F0 =∇r + d⊗ k, (49)

in which d = χ ′0 is the membrane director field and ∇( · ) is the two-dimensional gradient with respect
to u. This follows easily from the decomposition F = F1+ Fk⊗ k.

Equation (47) is the exact equation of motion for the midplane �. Approximations arise when using
it to represent material response in �×

[
−

1
2 h, 1

2 h
]
. Here we seek the leading-order model for small

thickness h, which is assumed to be much smaller than any other length scale in the considered problem.
The smallest of these is used as the unit of length, so that h� 1 when nondimensionalized. To this end
we impose lateral traction data at ς =± 1

2 h, obtaining [Steigmann 2009]

p++ p− = h P ′0k+ o(h) and p+− p− = 2P0k+ o(h), (50)

where p± =±P±k are the tractions at the major surfaces.
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In this work we prescribe

p+ = 0 and p− = p(F∗)−k, with p = h P + o(h) and P = O(1), (51)

corresponding to a pressure p of order O(h) acting at ς = −1
2 h. This is reconciled with (50) if and

only if
P0k = 0 and P ′0k = Pαn+ o(h)/h, (52)

where n is the unit normal to the image ω = χ(�, t) of the midplane after deformation and α is the areal
stretch, defined by Nanson’s formula

αn= F∗0 k, with α = |F∗0 k|. (53)

Here we have used the fact — valid for smooth deformations — that (F∗)− is approximated by F∗0 with
an error of order O(h).

Substitution of (52) into (47) delivers

div(P01)+ Pαn+ o(h)/h = ρr r̈, (54)

and passage to the limit yields the leading-order differential-algebraic system

div(P01)+ Pαn= ρr r̈ and P0k = 0. (55)

Combining this with (14) and the restriction to � of the flow rule (42), we arrive at a system for the
determination of the plastic deformation K0, the midplane motion r and the director field d.

To address the requirement JF0 > 0, we observe that

JF0 = F∗0 k · F0k. (56)

Accordingly, JF0 > 0 if and only if
d · n> 0. (57)

Henceforth we work exclusively with functions defined on � and thus drop the subscript ( · )0 for the
sake of convenience.

3.2. Elimination of the director field. The second equation in (55) requires that � be in a state of plane
stress. Using (7), this is seen to be equivalent to

{WH(H)}l = 0, where l = K t k. (58)

To prove that this system yields a unique d, we first show that any solution, d̄ say, minimizes W .
To this end we fix ∇r and K and define R(d) = W (H) with H = (∇r + d ⊗ k)K . Let d(t) be a
one-parameter family belonging to the half-space S+(d) defined by d · n> 0. This is the admissible set
associated with the restriction JF > 0. The derivatives of σ(t)= R(d(t)) are

σ̇ = ḋ · {WH(H)}l = ḋ · Rd (59)

and
σ̈ = d̈ · {WH(H)}l + ḋ⊗ l ·WH H(H)[ḋ⊗ l] = d̈ · Rd + ḋ · (Rdd)ḋ. (60)
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It follows that
Rd(d̄)= {WH(H)}l, (61)

with H = (∇r + d̄⊗ k)K , vanishes, and that Rdd(d) satisfies

{Rdd(d)}v = {WH H(H)[v⊗ l]}l, (62)

implying, by the strong ellipticity (cf. (24)) of the polyconvex energy (36), that it is positive definite.
Because S+(d) is a convex set, it contains the straight line d(t)= t d2+ (1− t)d1 with d1,2 ∈ S+(d)

and t ∈ [0, 1]. We have σ̈ > 0 on this line and hence σ̇ (t) > σ̇ (0) for t ∈ (0, 1]. Then σ(1)−σ(0) > σ̇ (0),
implying that the function R(d) is convex on S+; that is,

R(d2)− R(d1) > Rd(d1) · (d2− d1). (63)

Because such functions have unique stationary points, it follows that there exists a unique solution
d = d̄(∇r, K ) to (58), corresponding to the global minimizer of R(d).

Plastic deformation generally prevents the solution from conforming to classical Kirchhoff–Love kine-
matics with d = µn, where µ is the thickness distension. This stands in contrast to the ubiquitous
imposition of the constraint of Kirchhoff–Love kinematics throughout the literature on theories for the
plastic deformation of membranes and shells derived from three-dimensional considerations [Cristescu
1967; Lubliner 2008].

To prove the claim we invoke (58) in the form (cf. (27))

σ l = 0, (64)

where σ is the Biot stress. Thus, l is an eigenvector of σ with vanishing eigenvalue. Henceforth we
normalize l to be a unit vector without loss of generality. It follows from (38) that σ and UH are coaxial
in the case of isotropy, and hence that l is also an eigenvector of UH . The standard representation
H =

∑
λi mi ⊗ li , where λi (> 0) are the eigenvalues of UH , li are the associated (orthonormal) eigen-

vectors and mi = RH li , follows from the polar decomposition theorem and yields H∗ =
∑
λ∗i mi ⊗ li ,

where λ∗i = λi/JH .

Because l ∈ {li } we have H∗l = λ∗m, with λ∗ ∈ {λ∗i } and m ∈ {mi }. Using H∗ = F∗K ∗ we obtain
λ∗m = (JK /|K t k|)F∗k, which furnishes λ∗ = α JK /|K t k| and m = n. Accordingly, it follows from
λm = Hl and d = Fk (cf. (49)) that

(λ/|K t k|)n= F K K t F−1d, (65)

implying that d is not generally aligned with n. Exceptionally, such alignment occurs — and the director
then conforms to Kirchhoff–Love kinematics — if K is a rotation composed with a dilation, including
the case of pure elasticity; i.e., K = I .

Equation (65) does not account fully for the restrictions embodied in (64). In Section 4, (64) is solved
directly for d by using an iterative method.

The present formulation does not yield energetically optimal solutions in the specialization to equilib-
rium problems. This is due to the potential of the constitutive relations to supply a compressive state of
(plane) stress, in violation of a necessary condition for the existence of an energy-minimizing membrane
deformation [Pipkin 1986]. In such circumstances the model may be replaced by its quasiconvexification
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i, j +1

i + ½, j + ½

Figure 1. A unit cell of the finite-difference mesh.

[Dacorogna 1989], yielding states that automatically satisfy relevant necessary conditions for energy
minimizers. This is the conceptual basis of tension-field theory [Steigmann 1990], a model that accom-
modates finely wrinkled equilibrium states in the context of membrane theory. The same model follows
from the method of gamma convergence [Le Dret and Raoult 1996] in the zero-thickness limit. We
forego such modifications here, however, as we are concerned exclusively with dynamical states, which
of course are not energy minimizers. In particular, the method of gamma convergence is not applicable
in this setting. A similar point of view was adopted in [Yokota et al. 2001] in connection with a model
for the dynamics of nonlinearly elastic strings. There, dynamics characterized by transient compressive
states of stress were obtained via a direct numerical simulation, despite the intermittently nonhyperbolic
character of the equations. The present work proceeds in the same spirit.

4. Numerical experiments

4.1. Finite differences. We discretize (55)1 using a finite-difference scheme derived from Green’s theo-
rem. Applications to plane-strain problems in nonlinear elasticity theory are described in [Silling 1988].
The method was first applied by Wilkins [1963] to the simulation of plane plastic flow. Its application to
static problems in membrane theory is developed in [Haseganu and Steigmann 1994; Atai and Steigmann
1998]. Here, we present a brief outline of the method and its adaptation to the description of three-
dimensional viscoplastic membrane deformations.

The reference plane � is covered by a grid consisting of cells of the kind depicted in Figure 1. Nodes
are labeled using integer superscripts (i, j). Thus, ui, j

α are the referential Cartesian coordinates of node
(i, j), where uα = u · iα; α = 1, 2, and {iα} is an orthonormal basis in �. The four regions adjoining a
node and its nearest neighbors are called zones. Zone-centered points, identified by open circles in the
figure, are labeled using half-integer superscripts.

Green’s theorem may be stated in the form∫
D
σα,α da = eαβ

∫
∂D
σα duβ, (66)
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where σα(u1, u2) is a smooth two-dimensional vector field, eαβ is the two-dimensional permutation
symbol (e12 = +1, etc.), D is an arbitrary simply connected subregion of � and commas followed
by subscripts are partial derivatives with respect to the coordinates. To approximate the divergence σα,α
at node (i, j) we identify D with the quadrilateral bounded by the dashed contour of Figure 1. The
left-hand side of (66) is estimated as the nodal value of the integrand multiplied by the area of D; the
right-hand side as the zone-centered values of the integrand on each of the four edges of ∂D multiplied
by the appropriate length. Thus [Silling 1988],

2Ai, j (σα,α)
i, j
= eαβ

[
σ i+1/2, j+1/2
α (ui, j+1

β − ui+1, j
β )+ σ i−1/2, j+1/2

α (ui−1, j
β − ui, j+1

β )

+ σ i−1/2, j−1/2
α (ui, j−1

β − ui−1, j
β )+ σ i+1/2, j−1/2

α (ui+1, j
β − ui, j−1

β )
]
, (67)

where
Ai, j
=

1
4

[
(ui−1, j

2 − ui+1, j
2 )(ui, j+1

1 − ui, j−1
1 )− (ui−1, j

1 − ui+1, j
1 )(ui, j+1

2 − ui, j−1
2 )

]
(68)

is one half the area of the quadrilateral.
We also require gradients of functions at zone-centered points. These are derived from the integral

formula ∫
D
σ,α da = eαβ

∫
∂D
σ duβ . (69)

We now identify D with the shaded region in the figure. The left-hand side is estimated as the product of
the shaded area with the integrand, evaluated at the zone-centered point, and the four edge contributions
to the right-hand side are approximated by replacing the integrand in each with the average of the nodal
values at the endpoints. This furnishes [Silling 1988]

2Ai+1/2, j+1/2(σ i+1/2, j+1/2
,α )

= eαβ
[
(σ i+1, j+1

− σ i, j )(ui, j+1
β − ui+1, j

β )− (σ i, j+1
− σ i+1, j )(ui+1, j+1

β − ui, j
β )
]
, (70)

where

Ai+1/2, j+1/2
=

1
2

[
(ui, j+1

2 − ui+1, j
2 )(ui+1, j+1

1 − ui, j
1 )− (u

i, j+1
1 − ui+1, j

1 )(ui+1, j+1
2 − ui, j

2 )
]
. (71)

The term αn in (55) associated with the applied pressure may be expressed as a divergence on �
[Taylor and Steigmann 2009]. Thus, n= nk ik , with i3 = k, where

αnk =
1
2 ei jkeαβri,αr j,β = Gkβ,β (72)

and
Gkβ =

1
2 ei jkeαβri,αr j , (73)

in which ei jk is the three-dimensional permutation symbol (e123 =+1). For uniformly distributed pres-
sures (55) is thus equivalent to the system

Tkα,α = ρr r̈k, where Tkα = Pkα + P(t)Gkα, (74)

where Pkα = P · ik ⊗ iα are the components of P1 and rk = ik · r are the Cartesian coordinates of a
material point after deformation.
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Each of the equations (74) is of the form

σα,α = ρr σ̈ , (75)

where σα = Tkα and σ = rk ; k = 1, 2, 3. This is integrated over the region containing the node, enclosed
by the quadrilateral of Figure 1, yielding

6i, j,n
= mi, j σ̈ i, j,n, (76)

where n is the time step,
6i, j,n

= 2Ai, j (σα,α)
i, j,n, (77)

and
mi, j
= 2Ai, jρr (78)

is the nodal mass.
The right-hand side of (76) is evaluated in terms of the zone-centered values of σα via (67). The

latter depend constitutively on corresponding zone-centered values of the gradients σ,α which, in turn,
are determined via (70) by the values of σ at the nodes located at the vertices of the shaded region of
Figure 1. The scheme requires one degree of differentiability less than that required by the local differ-
ential equations. Discussions of the associated truncation errors are given in [Silling 1988; Herrmann
and Bertholf 1983].

We observe that the matrix Gkβ associated with lateral pressure (not to be confused with the plastic
deformation) is evaluated at zone-centered points (cf. (72)). However, this involves the deformation rk

(cf. (73)), a nodal variable; in place of this we substitute the average of the deformations at the four
adjacent nodes.

The time derivatives in (76) are approximated by the central differences

σ̇ n
=

1
2(σ̇

n+1/2
+ σ̇ n−1/2), σ̈ n

=
1
ε
(σ̇ n+1/2

− σ̇ n−1/2), σ̇ n−1/2
=

1
ε
(σ n
− σ n−1), (79)

where ε is the time increment and the node label (i, j) has been suppressed. Substitution into (76)
furnishes the explicit, decoupled system

mi, j σ̇ i, j,n+1/2
= mi, j σ̇ i, j,n−1/2

+ ε6i, j,n,

σ i, j,n+1
= σ i, j,n

+ εσ̇ i, j,n+1/2,
(80)

which is used to advance the solution in time node-by-node.
The starting procedure is derived from the quiescent initial conditions r = u and ṙ = 0 for t ≤ 0, and

the initial values of the director and plastic deformation fields are d = k and K = I , corresponding to
χ = x and H = F = I ; the constitutive equations then require that the initial value of the Biot stress
vanish. The boundary condition is r(u, t)= u on ∂�, for all t .

Stability of the scheme is ensured by using sufficiently small time steps selected on the basis of
successive trials based on a sequence of values of ε.

Our procedure presumes a degree of regularity for the solution that is not consistent with the existence
of shocks. Accordingly, we do not append associated discontinuity relations. The inclusion of such
conditions would be appropriate in a numerical scheme based on the method of characteristics, such as
described in [Cristescu 1967] in the setting of axisymmetry involving a single spatial dimension (the
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radius). In contrast, the present procedure is a direct numerical simulation in the spirit of conventional
structural dynamics. A similar approach was used to describe the potentially nonhyperbolic dynamics
of elastic strings in [Yokota et al. 2001], where, with sufficient mesh refinement, it was shown to furnish
close approximations to solutions containing genuine shocks obtained by characteristic-based methods
[Beatty and Haddow 1985]. Nevertheless this issue furnishes a logical point of departure for further
study, and it is in this sense that our simulations may be regarded as preliminary numerical experiments.

4.2. Updating the director, the stress and the plastic deformation. Given the nodal deformation r(u, tn),
we use (70) to compute ∇r(u, tn) at zone-centered points. The zone-centered values of K (u, tn) are
combined with (1) to express the elastic deformation H(u, tn) in terms of d(u, tn), which remains to be
determined. To this end we form the elastic Cauchy–Green deformation CH and compute the associated
invariants H1 = tr CH , H2 =

1
2 [I

2
1 − tr(CH )

2
] and H3 = det CH ; these are used to obtain the elastic

principal stretches [Rivlin 2004]

λk =
1
√

3

{
H1+ 2A cos

[ 1
3(φ− 2πk)

]}1/2
; k = 1, 2, 3, (81)

where
A = (H 2

1 − 3H2)
1/2 and

φ = cos−1
[ 1

2A3 (2H 3
1 − 9H1 H2+ 27H3)

]
,

(82)

and then the invariants
h1 = λ1+ λ2+ λ3,

h2 = λ1λ2+ λ1λ3+ λ2λ3,

h3 = λ1λ2λ3

(83)

of the elastic right stretch tensor UH .

With these in hand we form the strain-energy function w(h1, h2, h3) from (36) and (37). The resulting
expression is identified with the function R(d) of Section 3. We have shown there that a solution to the
plane-stress condition (55)2 (or (64)) furnishes the unique minimizer of this function. Being strictly
convex, the latter meets the hypotheses of convergence theorems for iterative gradient minimization
algorithms such as the Cauchy–Goldstein method of steepest descents [Saaty and Bram 1964; Goldstein
1962].

With d(u, tn) thus determined, we use the Cayley–Hamilton formula [Steigmann 2002]

hUH = h1h3 I + (h2
1− h2)CH −C2

H (84)

to compute the elastic stretch directly, where

h = h1h2− h3 = (λ1+ λ2)(λ1+ λ3)(λ2+ λ3), (85)

which is strictly positive. This is used to compute the zone-centered value of σ nUn
H via (38) and (41).

We then check the sign of the function Fn
= F(tn) in (42) and decide accordingly whether or not to

update the plastic deformation. If Fn
≤ 0 we set K n+1

= K n at zone-centered points; otherwise we
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evaluate K n+1
= K n

+ ε K̇ n , where (cf. (42) with G K = I)

K̇ n
=−(Fn/ν)K n Dev(σ nUn

H ). (86)

4.3. Examples. We conclude by presenting the results of some simulations. Our purpose is to demon-
strate that the present model is amenable to computation, and that it furnishes realistic predictions. We
make no effort to simulate actual experimental data or to benchmark our predictions against alternative
simulations. Indeed, we have not found any alternative simulations in the literature.

In the examples considered the membrane is subjected to a suddenly applied spatially uniform pres-
sure that decays exponentially in time. A spanwise dimension, L , of the reference plane � is used
to define dimensionless initial and final position vectors u and r . Nondimensional time is defined by
t̄ =
√
λ/ρr (t/L), where t is physical time, λ is a Lamé modulus (cf. (41)) and ρr is the referential

mass density occurring in (55)1. All stress measures are nondimensionalized by λ, and the dimension-
less shear modulus is µ̄ = µ/λ. We also use the dimensionless yield stress K = K/λ and viscosity
ν̄ =
√
ρr/λ(νL/λ) in the flow rule. The term P in (55)1, representing the actual pressure divided by

initial membrane thickness h, is given by P(t)= (λ/L)P(t̄), where P is a dimensionless function; the
actual pressure is p(t)= λ(h/L)P(t̄), to leading order in h/L . Here, for illustrative purposes, we impose
P(t̄)= P0 exp(−t̄), where P0 is a constant.

Figures 2 and 3 depict the response of an initially square membrane. Here L is taken to be the length of
a side, and L/h= 100. The selected parameter values are K = 4.93×10−4, µ̄= 0.470 and ν̄= 5.00×105,
and the pressure intensity is P0 = 7.04. This is sufficient to induce substantial deformation, shown in
Figure 2 for an interval spanning peak positive and negative vertical displacements, corresponding to
roughly one half of the initial period of oscillation. The pressure induces a wave emanating from the
boundaries of the domain and converging toward the center, followed by an interaction phase and a
subsequent reversal of the direction of motion over most of the domain. The transient elastic strain is
seen to be quite substantial (left image in Figure 3) and well beyond the range of validity of the classical
linear relations typically assumed between stress and elastic strain. Also shown (right image in Figure 3)
is the history of the norm of the cross product d × n; this is nonzero whenever the Kirchhoff–Love
hypothesis fails. The substantial plastic distortion generated in this example is such as to lead to a slight
deviation from Kirchhoff–Love kinematics.

We emphasize the fact that the parameters of the model may require adjustment to enhance the simula-
tions from the quantitative standpoint. Here we have simply chosen the parameter values for the purpose
of illustrating the general nature of the transient response predicted by the model.

In the second example a circular disc of radius L is subjected to the same pressure distribution, but
of a smaller intensity P0 = 2.82. All other parameters are as in the first example, and again L/h = 100.
Snapshots of the motion and the histories of the norms of the elastic strain and d× n are displayed in
Figures 4 and 5. The elastic strain is again seen to be substantial, but the deviation from Kirchhoff–Love
kinematics is reduced, due to the diminished plastic distortion attending the smaller pressure pulse.
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Figure 2. Configurations of a square membrane subjected to blast pressure at a sequence
of times.
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