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THERMAL AND MAGNETIC EFFECTS ON THE VIBRATION
OF A CRACKED NANOBEAM EMBEDDED IN AN ELASTIC MEDIUM

DANILO KARLIČIĆ, DRAGAN JOVANOVIĆ, PREDRAG KOZIĆ AND MILAN CAJIĆ

In this study, we develop a model to describe the free vibration behavior of a cracked nanobeam em-
bedded in an elastic medium by considering the effects of longitudinal magnetic field and tempera-
ture change. In order to take into account the small-scale and thermal effects, the Euler–Bernoulli
beam theory based on the nonlocal elasticity constitutive relation is reformulated for one-dimensional
nanoscale systems. In addition, the effect of a longitudinal magnetic field is introduced by considering
the Lorenz magnetic force obtained from the classical Maxwell equation. To develop a model of a
cracked nanobeam, we suppose that a nanobeam consists of two segments connected by a rotational
spring that is located in the position of the cracked section. The surrounding elastic medium is repre-
sented by the Winkler-type elastic foundation. Influences of the nonlocal parameter, stiffness of rota-
tional spring, temperature change and magnetic field on the system frequencies are investigated for two
types of boundary conditions. Also, the first four mode shape functions for the considered boundary
conditions are shown for various values of the crack position.

1. Introduction

Recently, there has been a growing interest among scientists to study the influence of various multiphysics
phenomena on the vibration behavior of nanostructures such as nanorods [Murmu et al. 2014; Alper
and Hamad-Schifferli 2010; Martín et al. 2012], nanobeams [Kiani 2012; Youssef and Elsibai 2011;
Firouz-Abadi and Hosseinian 2012], nanoplates [Murmu et al. 2013; Arani et al. 2013; Kiani 2014a;
A. Haghshenas and Arani 2013], etc. Often, such studies are related to the application of nanostructures
in nanoelectromechanical systems (NEMS) [Batra et al. 2007; Popov et al. 2007]. Understanding the
dynamic behavior of such systems is of prime importance in design procedures and the practical appli-
cation of NEMS devices. Materials such as carbon, zinc-oxide, gold, silver and boron-nitride nanotubes
[Xie et al. 2000; 2004; Wu et al. 2005; Yum and Yu 2006] and also graphene sheets [Gómez-Navarro
et al. 2008; Schniepp et al. 2006; Niyogi et al. 2006] have superior mechanical, physical and thermal
properties, which have lately become very important in nanoengineering practice. For the analysis of
nanostructures, there are three basic approaches: experimental analysis [Meyer et al. 2007; Jensen 1999],
molecular dynamic simulation [Park et al. 2005; Bershtein et al. 2002] and the continuum mechanics
approach [Eringen 1972; 1983; Reddy and Pang 2008; Ansari et al. 2012; Jam et al. 2012]. Experimental
studies of nanostructures are very important for determining their physical properties. However, direct
measurement of properties is difficult due to very small dimensions of structures and weak control of
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experimental parameters, which makes this approach very expensive. On the other hand, molecular
dynamics is a highly developed method to simulate the dynamic behavior of nanostructures. However,
this approach is applicable only to nanostructures with a small number of atoms and molecules whereas
for large-sized nanoscale systems, such as nanocomposites and multiple nanostructure systems, it is
time-consuming and computationally prohibitive. All this leads to the conclusion that continuum-based
theories need to be considered. Since the mechanical behavior of nanostructures strongly depends on
the size effects when the system is very small compared to the molecular distances, classical continuum
theories need to be modified in order to consider small-scale effects. In the nonlocal theory of Eringen,
small-scale effects are introduced into a constitutive equation via a single material parameter. The main
assumption of this theory is that the stress at a point is a function of strains at all other points in the
continuum body. According to Eringen [1972; 1983], the excellent approximation can be provided for
a large class of multiphysics phenomena with internal length scale ranging from the atomistic to the
macroscopic scale. Thus, using the classical continuum theory and ignoring the small-scale effects and
atomic forces when analyzing the nanostructures may lead to inaccurate results and hence erroneous
designs.

In recent years, a large number of researchers have investigated the influence of different physical
effects on the dynamic behavior of one-dimensional nanostructures. Murmu and Pradhan [2009] in-
vestigated the influence of thermal and nonlocal effects on the free vibration of a single-walled carbon
nanotube (CNT) embedded in an elastic medium. In [Murmu and Pradhan 2010], they also examined
the stability of CNT in an elastic medium under the influence of temperature change. In both cases, they
used nonlocal Euler–Bernoulli beam theory. Benzair et al. [2008] reformulated the classical Timoshenko
beam theory by using the nonlocal elasticity. In addition, they introduced thermal effects through the
constitutive relation for vibration analysis of CNT. In [Ke and Wang 2012], governing equations of mo-
tion were derived by using the Hamilton principle and nonlocal elasticity for thermoelectromechanical
vibration of the piezoelectric nanobeams with various boundary conditions. In addition, they inves-
tigated the influence of the nonlocal parameter, temperature change, external electric voltage and axial
force on the thermoelectromechanical vibration characteristics of the piezoelectric nanobeams. Hosseini-
Hashemi et al. [2014] considered surface effects on the free vibration of piezoelectric functionally graded
nanobeams by using the nonlocal elasticity theory. Further, they investigated the influences of the surface
and nonlocal effects on the piezoelectric field and the static and dynamic behavior of the nanobeam. Kiani
[2014b] investigated the influence of a three-dimensional magnetic field on the vibration and instability
of a single-walled CNT. The equations of motion were obtained from the nonlocal Rayleigh beam
theory and Maxwell equations. In addition, the author derived an expression for a critical transverse
magnetic field associated with the lateral buckling of the single-walled CNT. Li et al. [2011] obtained
coupled dynamic equations of multiwalled CNTs subjected to a transverse magnetic field by considering
the Lorentz magnetic forces. In addition, they showed the influence of van der Waals force on the
dynamic characteristics of multiwalled CNTs. Further, they examined the effects of the van der Waals
forces on vibration characteristics of a multiwalled CNT under a transverse magnetic field, where the
CNT was represented by a cylindrical shell. Wei and Wang [2004] investigated the wave propagation
in a single-wall carbon nanotube for two different propagating modes, i.e., the transverse electric and
transverse magnetic modes. Recently, Karličić et al. [2014] studied the influence of an axial magnetic
field on vibration of multiple coupled viscoelastic CNTs embedded in a viscoelastic medium. The authors
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determined complex and critical values of natural frequencies of the system and performed a detailed
parametric study.

The study of the vibration behavior of cracked CNTs is of great theoretical and practical interest
for better understanding of the mechanical response of nanostructures. Based on a growing number
of experimental studies, it was found that the CNT is not a perfect nanostructure as it seems at the
beginning of investigations. Different types of defects cause a local change in stiffness of CNTs that
may have significant influence on natural frequencies and mode shapes. Moreover, researchers have
considered two types of initial defects in carbon nanostructures. In the first group are topological defects
related to bonds between atoms in an atomic network. This includes Stone–Wales defects [Zhou and
Shi 2003; Charlier 2002] causing irregularities in the hexagonal network of carbon-carbon bonds in
CNTs, which leads to a disturbance in local stiffness. In the second group are point defects related
to creating single and multiple vacancies [Charlier 2002; Sammalkorpi et al. 2004; Belytschko et al.
2002] in the atomic network, which leads to degradation of mechanical characteristics of the crystal
lattice. In this case, local change in stiffness of CNTs also occurs. From the standpoint of continuum
mechanics, this change of local stiffness of CNT can be modeled as a change in the strain energy of
a nanobeam. The flexural vibration behavior of a cracked nanobeam based on the nonlocal elasticity
theory was investigated by Loya et al. [2009]. They proposed the model of a cracked nanobeam con-
sisting of two segments connected by a rotational spring located at the cracked section. In addition,
the authors showed the influence of crack severity, the nonlocal parameter and boundary conditions on
natural frequencies of the cracked nanobeam. Torabi and Dastgerdi [2012] investigated the free vibration
of a cracked nanobeam modeled via nonlocal elasticity and Timoshenko beam theory, where the cracked
nanobeam is represented by two segments connected by a rotational spring. They analyzed the effects
of crack position, ratio and the nonlocal parameter on the vibration mode and frequency parameter. The
bending vibrations of a cracked nanobeam with surface effects were studied in [Hasheminejad et al.
2011]. In [Yang and Chen 2008], the free vibration and stability of the beam made of functionally
graded materials containing an open crack were investigated by using Euler–Bernoulli beam theory
and the rotational spring model at the cracked section. Roostai and Haghpanahi [2014] discussed the
vibration behavior of a nanobeam with multiple cracks for various boundary conditions. They showed
the influence of changing the number of cracks on dimensionless frequencies for change in boundary
conditions.

As stated in [Yang and Chen 2008], models of cracked nanobeams can be divided into two groups:
“continuous” models and “lumped flexibility” models. In this paper, we use the technique that belongs
to the method of “lumped flexibility” models, whose main characteristic is that the presence of a crack
is modeled via change of the stiffness of beams at the position of the crack, which is equivalent to
the stiffness of an inserted spring. The main objective of this paper is to present an analytical model
and analyze the vibrational behavior of a cracked nanobeam embedded in an elastic medium by taking
into account the magnetic field and thermal effects. In addition, different boundary conditions of the
cracked nanobeam are also considered. The governing equation of motion is derived by using the Euler–
Bernoulli beam theory, nonlocal thermoelastic constitutive relation and Maxwell relation. The frequency
equation is derived and numerically solved for different boundary conditions, and the obtained results
are compared to the corresponding ones in the literature. In the parametric study, the effects of various
physical parameters on natural frequencies and mode shape functions are also investigated.
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2. Problem formulation

2.1. Nonlocal constitutive relation. In this subsection, we will provide the fundamental constitutive
relation of the nonlocal elasticity and thermoelasticity theory. The basic form of the nonlocal elastic
relation for a three-dimensional linear, homogeneous isotropic body is given as

σi j (x)=
∫
α(|x − x ′|, τ )Ci jklεkl(x ′) dV (x ′) for all x ∈ V , (1a)

σi j, j = 0, (1b)

εi j =
1
2(ui, j + u j,i ), (1c)

where Ci jkl is the elastic modulus tensor for classical isotropic elasticity; σi j and εi j are the stress and the
strain tensors, respectively, and ui is the displacement vector. With α(|x− x ′|, τ ), we denote the nonlocal
modulus or attenuation function, which incorporates nonlocal effects into the constitutive equation at a
reference point x produced by the local strain at a source x ′. The above absolute value of the difference
|x − x ′| denotes the Euclidean metric. The parameter τ = (e0a)/ l, where l is the external characteristic
length (crack length and wave length), a describes the internal characteristic length (lattice parameter,
granular size and distance between C-C bonds) and e0 is a constant appropriate to each material that can be
identified from atomistic simulations or by using the dispersive curve of the Born–von Kármán model of
lattice dynamics. Since it is difficult to use constitutive relations in the integral form for solving practical
problems, simplified constitutive relations in the differential form were developed. Based [Eringen 1972;
1983], constitutive relations in the differential form for the one-dimensional case are

σxx −µ
d2σxx

dx2 = Eεxx , (2a)

σxz −µ
d2σxz

dx2 = Gγxz, (2b)

where E and G are the elastic modulus and the shear modulus of the beam, respectively; µ = (e0a)2

is the nonlocal parameter (length scales); σxx and σxz are the normal and the shear nonlocal stresses,
respectively, and εxx = u− z ∂

2w
∂x2 is the axial deformation. Nanomaterials such as CNTs, ZnO nanotubes

and other one-dimensional structures are modeled as nanobeams and nanorods by using the nonlocal
theory, where internal characteristic lengths (e0a) are often assumed to be in the range 0–2 nm. When
e0a = 0, the nonlocal constitutive relation is reduced to the classical constitutive relation of the elastic
body. The nonlocal thermoelastic constitutive relation model proposed by Zhang et al. [2008] and Murmu
and Pradhan [2009; 2010] is a combination of nonlocal elasticity and classical thermoelasticity theory.
Therefore, for one-dimensional nonlocal viscoelastic solids, constitutive relations are given by

σxx −µ
d2σxx

dx2 = E
(
εxx −

αxθ

1− 2ν

)
, (3)

where αx is the coefficient of thermal expansion in the direction of the x axis, ν is the Poisson ratio and
θ denotes the change in temperature. If θ = 0, i.e., there is no influence of change in temperature, we
then return to the constitutive relation for nonlocal elasticity. It should be noted that Young’s modulus
of some types of nanomaterials, for example CNT, is insensitive to temperature changes in the tube at
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temperatures less than nearly 1100 K, but it decreases at higher temperatures [Hsieh et al. 2006]. In what
follows, we will use the constitutive relation for nonlocal thermoelasticity to derive governing equations
of motion.

2.2. Maxwell’s relation. According to the classical electromagnetic theory [Narendar et al. 2012], the
Maxwell equations in differential form are given as

J =∇ × h, ∇ × e =−η
∂h
∂t
, ∇ · h = 0, (4)

where J is the current density, h is the distributing vector of the magnetic field, e is the strength vector
of the electric fields and η is the magnetic field permeability. In addition, we define the vectors for
distributing magnetic field h and electric field e as

h =∇ × (U × H), e =−η
(
∂U
∂t
× H

)
, (5)

in which ∇ = ∂
∂x i + ∂

∂y j + ∂
∂z k is the Hamilton operator, U = (x, y, z) is the displacement vector and

H = (Hx , 0, 0) is the vector of the longitudinal magnetic field, and (i, j, k) are unit vectors. In the
present study, we assume that the longitudinal magnetic field acts on the cracked nanobeam in the axial
direction. Now, we can write the vector of the distributing magnetic field in the form

h =−Hx

(
∂v

∂y
+
∂w

∂z

)
i + Hx

∂v

∂x
j + Hx

∂w

∂x
k. (6)

Then, we introduce (6) into the first expressions of (4):

J =∇×h= Hx

(
−
∂2v

∂x ∂z
+
∂2w

∂x ∂y

)
i−Hx

(
∂2v

∂y ∂z
+
∂2w

∂x2 +
∂2w

∂z2

)
j+Hx

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
k. (7)

Substituting (7) into the expressions for the Lorentz forces induced by the longitudinal magnetic field
yields

f ( fx , fy, fz)= η(J × H)= η
[

0i + H 2
x

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
j + H 2

x

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2v

∂z ∂y

)
k
]
, (8)

where fx , fy and fz express the Lorentz force along the x , y and z directions as

fx = 0, (9a)

fy = ηH 2
x

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
, (9b)

fz = ηH 2
x

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2v

∂z ∂y

)
. (9c)

In this study, we assume that the displacement of nanobeam w(x, t) and the Lorentz force act only in
the z direction, which can be written as

fz = ηH 2
x
∂2w

∂x2 . (10)
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Finally, it is possible to obtain force per unit length of the nanobeam in the form

q̃(x, t)=
∫

A
fz d A = ηAH 2

x
∂2w

∂x2 . (11)

2.3. Mathematical model of a cracked nanobeam. Zhang et al. [2005] have introduced one type of
vacancy defect in CNTs known as a slit defect. Under certain assumptions, the slit defect, resulting
from removing C-C atom pairs in the circumferential direction of the regular lattice of CNTs, can be
observed as cracks (Figure 1a). Thus, we consider SWCNT with a slit defect, which is embedded in
an elastic medium, as a cracked nanobeam by using the nonlocal continuum model with two types of
boundary conditions as shown in Figure 1b–d. The cracked nanobeam is represented by two beam
segments connected with a rotational spring of stiffness c, where the left segment is before the crack
section and the right segment is after the crack section. Both nanobeam segments have the same material
properties: Young’s modulus E , mass density ρ, cross-section area A, moment of inertia I and the
nonlocal parameter µ. Moreover, the nanobeam is under the influence of Lorentz magnetic force induced
by the longitudinal magnetic field. These parameters are assumed to be constant along the nanobeam.
The nanobeam is considered to be of length L with crack-position L∗. The transversal displacements over
the two defined segments of the nanobeam are denoted by w1(x, t) and w2(x, t), i.e., the left segment
and the right segment, respectively. The nanobeam model is described by using the nonlocal Euler–
Bernoulli beam theory, where the effect of the temperature change is introduced through the constitutive
relation. The elastic medium is modeled by a Winkler-type elastic foundation, which is represented by

Figure 1. (a) SWCNT with defects. (b) Axial magnetic field exerted on the cracked
SWCNT embedded in an elastic medium, physical model; equivalent nonlocal mechan-
ical model of the cracked nanobeam coupled with the Winkler elastic foundation in the
axial magnetic field for various boundary conditions. (c) Simply supported. (d) Clamped-
clamped.
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continuously distributed springs of stiffness k. In the present study, two types of boundary conditions
are considered: simply supported (Figure 1c) and clamped-clamped (Figure 1d).

According to Newton’s second law, the equilibrium equations for the differential element of the
nanobeam can be expressed in the similar manner as in [Kozić et al. 2014], which gives

∂FT

∂x
− kw+ q̃ + N

∂2w

∂x2 = ρA
∂2w

∂t2 , (12a)

∂N
∂x
= ρA

∂2u
∂t2 , (12b)

FT =
∂M f

∂x
, (12c)

where u is the axial displacement and M f and N are the moment and axial force stress resultants, re-
spectively, defined as

M f =

∫ A

0
zσxx d A, (13a)

N =
∫ A

0
σxx d A, (13b)

where q̃ is the magnetic force per unit length defined in (11).
By using the nonlocal constitutive relation from (3) with expressions (12) and (13) and assuming that

the axial displacement u is zero, we can get the equations

M f = µ

[
kw− q̃ − N

∂2w

∂x2 + ρA
∂2w

∂t2

]
− E I

∂2w

∂x2 , i = 1, 2, (14a)

N =−E A
αxθ

1− 2ν
. (14b)

The equation of motion of the nanobeam in terms of transversal displacements w(x, t) is obtained by
introducing (14a), (14b) and (12c) into (12a) in the form

ρA
∂2w

∂t2 + kw− ηAH 2
x
∂2w

∂x2 + E A
αxθ

1− 2ν
∂2w

∂x2 + E I
∂4w

∂x4

= µ
∂2

∂x2

[
ρA

∂2w

∂t2 + kw− ηAH 2
x
∂2w

∂x2 + E A
αxθ

1− 2ν
∂2w

∂x2

]
(15)

or in the dimensionless form

∂2w

∂τ 2 + Kw+ (N θ −MP)
∂2w

∂ξ 2 +
∂4w

∂ξ 4 = ν
2 ∂

2

∂ξ 2

[
∂2w

∂τ 2 + Kw+ (N θ −MP)
∂2w

∂ξ 2

]
, (16a)

where

w =
w

L
, ξ =

x
L
, K = k

L4

E I
, MP=

ηAH 2
x

E I
L2,

ν2
=
µ

L2 , τ =
t

L2

√
E I
ρA

, N θ = E A
αxθ

1− 2ν
L2

E I
.

(16b)
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K , MP, N θ and ν are the dimensionless spring coefficient, magnetic parameter, thermal axial force and
nonlocal parameter, respectively.

Now, we can solve the equation of motion (16a) by assuming the solution is in the form

w(ξ, τ )=

∞∑
n=1

Wn(ξ)ei�nτ , n = 1, 2, 3, . . . , (17)

where i =
√
−1, Wn are the mode functions and �n are the dimensionless natural frequencies for n

vibration modes. Introducing the assumed solutions (17) into (16a), we obtain the ordinary differential
equation

W IV
n (ξ)+ b̃W II

n (ξ)− c̃Wn(ξ)= 0, (18)

where ( · )I represents the derivative with respect to ξ and ã, b̃ and c̃ are constants defined by

ã = 1− ν2(N θ −MP), (19a)

b̃ =
N θ −MP

ã
+ ν2

(
λ4

n −
K
ã

)
, (19b)

c̃ =
(
λ4

n −
K
ã

)
, (19c)

λ4
n =

�2
n

ã
. (19d)

Introducing the assumed solutions Wn(ξ)= Desξ into (18), we obtain a characteristic equation

s4
+ b̃s2

− c̃ = 0, (20)

where the solutions are given as

sn1/2 =±

√
−b̃+

√
b̃2+ 4c̃

2
=±αn, (21a)

sn3/4 =±

√
−b̃−

√
b̃2+ 4c̃

2
=±iβn. (21b)

Finally, the general solution of spatial differential equation (18) is written as

Wn(ξ)= Dn1 sinh(αnξ)+ Dn2 cosh(αnξ)+ Dn3 sin(βnξ)+ Dn4 cos(βnξ), (22)

where Dni , i = 1, 2, 3, 4, are the unknown constants that are determined from the boundary conditions
of the nanobeam.

Now, we consider the case of the nanobeam with a crack, which is located at the distance L∗ from the
left support, where the term b = L∗/L denotes the dimensionless variable (Figure 1c–d). According to
the methodology developed in [Loya et al. 2009; 2006; Fernández-Sáez et al. 1999; Fernández-Sáez and
Navarro 2002; Torabi and Dastgerdi 2012], we modeled a cracked nanobeam with two beam segments
connected by one linear and one rotational spring positioned at the site of a crack. In this model, we
assume that both springs provide additional strain energy in the system caused by the presence of a crack.
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Therefore, we obtain total strain energy as the sum of deformation energy of the nanobeam and additional
strain energy from the springs in the form

U =
1
2

∫
V
(σxx · εxx) dV +1Uc|x=L∗, (23)

where σxx is the stress given by the expression (3), εxx is the axial deformation and 1Uc is the increment
of strain energy. The total strain energy (23) can be written in the expansion form by using (13) as

U =
1
2

∫
V

(
N
∂u
∂x
−M f

∂2w

∂x2

)
dV +

( 1
2 N1u+ 1

2 M f1θ
)∣∣

x=L∗, (24)

in which the term (1
2 N1u)|x=L∗ represents the strain energy from a linear spring and (1

2 M f1θ)|x=L∗

represents the strain energy from a rotational spring. The relative axial displacement 1u of a linear
spring and rotation angle 1θ of the rotational spring, i.e., horizontal displacement and rotation of the
edge crack section, are defined as

1u = r
∂u
∂x
+ kN M

∂2w

∂x2 , (25a)

1θ = c
∂2w

∂x2 + kM N
∂u
∂x
, (25b)

where r , c, kN M and kM N are the flexibility constants. It should be noted that the constants kN M and kM N

represent coupling effects between the axial force and bending moment. In this paper, we analyzed only
the free transversal vibrations where the axial displacement is neglected (u(x, t)= 0). Because of that,
the flexibility constants kN M and kM N are assumed to be small compared to constants c and they are
neglected as well [Torabi and Dastgerdi 2012]. Introducing these assumptions into the expression (25),
we obtain the axial displacement 1u, angle of rotation 1θ (slope) and increment of the strain energy as

1u = 0, 1θ = c
∂2w

∂x2 = C
∂2w

∂ξ 2 , 1Uc|x=L∗ =
(1

2 M f1θ
)∣∣

x=L∗, (26)

where C = c/L is the crack severity or dimensionless flexibility constant [Loya et al. 2009; Torabi
and Dastgerdi 2012; Hasheminejad et al. 2011]. In general, flexibility constant C is the function of
crack depth and geometry of the cracked section and nanobeam. However, in this analysis, we consider
the flexibility constant C as a dimensionless parameter, but its value needs to be determined from the
molecular dynamics model [Torabi and Dastgerdi 2012; Kisa and Gurel 2006; Loya et al. 2014]. In
addition, it should be emphasized that increment of the strain energy 1Uc in a cracked nanobeam or
other nanostructure could be also determined by using the molecular dynamics model. In this study,
values of crack severity are adopted based on the works found in the literature and the main attention
is devoted to the investigation of their influence on dynamical behavior of a cracked nanobeam model
subjected to the longitudinal magnetic field and temperature change.
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Since the cracked nanobeam is modeled as a system of two nanobeams connected in series by a
rotational spring, from (16) and (18), we can write the equations for each part of the nanobeam as

W IV
n1 (ξ)+ b̃W II

n1(ξ)− c̃Wn1(ξ)= 0, 0≤ ξ ≤ b, (27a)

W IV
n2 (ξ)+ b̃W II

n2(ξ)− c̃Wn2(ξ)= 0, b ≤ ξ ≤ 1, (27b)

where the influence of the crack is given via internal boundary conditions of the system. For such a
system of equations, we can write the solution in the form

Wn1(ξ)= Dn1 sinh(αnξ)+ Dn2 cosh(αnξ)+ Dn3 sin(βnξ)+ Dn4 cos(βnξ), (28a)

Wn2(ξ)= Dn5 sinh(αnξ)+ Dn6 cosh(αnξ)+ Dn7 sin(βnξ)+ Dn8 cos(βnξ), (28b)

where unknown constants Dni , i = 1, 2, . . . , 8, are determined from boundary conditions of the system
of nanobeams. In this paper, we consider two types of boundary conditions as shown in Figure 1c–d.
They can be mathematically expressed as:

(a) for simply supported boundary conditions (Figure 1c), at ξ = 0,

w1(0, τ )= 0 =⇒ W1n(0)= 0, (29a)

M1 f |ξ=0 =

[
−ν2

(
λ4

n −
K
ã

)
ãW1n − ãW II

1n

]
ξ=0
= 0 (29b)

and, at ξ = 1,

w2(1, τ )= 0 =⇒ W2n(1)= 0, (30a)

M2 f |ξ=1 =

[
−ν2

(
λ4

n −
K
ã

)
ãW2n − ãW II

2n

]
ξ=1
= 0, (30b)

(b) for clamped-clamped boundary conditions (Figure 1d), at ξ = 0,

w1(0, τ )= 0 =⇒ W1n(0)= 0, (31a)

∂w1(0, τ )
∂ξ

= 0 =⇒ W I
1n(0)= 0 (31b)

and, at ξ = 1,

w2(1, τ )= 0 =⇒ W2n(1)= 0, (32a)

∂w2(1, τ )
∂ξ

= 0 =⇒ W I
2n(1)= 0. (32b)

For the crack section (ξ = b), we have compatibility conditions that are expressed as

• transversal displacement

w2(b, τ )= w1(b, τ ) =⇒ W2n(b)=W1n(b), (33a)

• bending slope

∂w2(b, τ )
∂ξ

−
∂w1(b, τ )

∂ξ
=1θ =⇒ W I

2n(b)−W I
1n(b)= CW II

1n(b), (33b)
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• bending moment

M1 f |ξ=b = M2 f |ξ=b

=⇒

[
−ν2

(
λ4

n −
K
ã

)
ãW2n − ãW II

2n

]
ξ=b
=

[
−ν2

(
λ4

n −
K
ã

)
ãW1n − ãW II

1n

]
ξ=b
, (34a)

• transversal force

F1T |ξ=b = F2T |ξ=b

=⇒

[
−ν2

(
λ4

n −
K
ã

)
ãW I

2n − ãW III
2n

]
ξ=b
=

[
−ν2

(
λ4

n −
K
ã

)
ãW I

1n − ãW III
1n

]
ξ=b
, (34b)

where C = c/L denotes the dimensionless stiffness parameter of rotational springs.

Introducing (28) into (29)–(30) and (33)–(34), we obtain a matrix equation consisting of eight homo-
geneous algebraic equations for simply supported boundary conditions in the form

[G(λn)]{ψ} = {0}, (35)

where [G(λn)] is the matrix of natural frequency parameters λn and the term {ψ} is the vector composed
of eight unknown constants Dni , i = 1, 2, . . . , 8. The nontrivial solution of the system (35) is obtained
when the determinant of the system is equal to zero:

det[G(λn)] = |G(λn)| = 0. (36)

Solving these transcendent equations, we get the value of natural frequency and mode shape functions of
the system for simply supported boundary conditions. Using the same methodology as in the previous
case, substituting (28) into (31)–(32) and (33)–(34), we can obtain the frequency determinate for clamped-
clamped boundary conditions in the form

|H(λn)| = 0. (37)

The frequency determinants of the embedded nanotube for simply supported |G(λn)| and clamped-
clamped |H(λn)| boundary conditions are given in the Appendix.

3. Numerical results and discussion

In order to perform a parametric study, we consider the following ranges of the dimensionless parameters:
crack position b = 0.25–0.5, nonlocal parameter ν = 0–0.6, crack severity C = 0–2 and stiffness of
surrounding medium K = 0–1. These material and geometric parameters are adopted from [Loya et al.
2009]. In Tables 1 and 2, values of dimensionless natural frequencies of the cracked nanobeam are
given for changes of nonlocal parameter ν, crack severity C and stiffness of surrounding medium K
for various values of crack position b. Results for the simply supported boundary conditions are given
in Table 1 while those for the clamped-clamped boundary conditions are shown in Table 2. By comparing
the results obtained in this study with the results found in [Loya et al. 2009], it can be noticed that an
excellent agreement is achieved for both cases of boundary conditions. Further, the influence of crack
position on mode shape functions is presented in Figure 2. In addition, the effects of a longitudinal
magnetic field and change in temperature on natural frequencies are shown in Figures 3 and 4.
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b = 0.5 b = 0.25

K ν C = 0 C = 0.5 C = 1 C = 2 C = 0 C = 0.5 C = 1 C = 2

0 0 3.14159 2.63931 2.38319 2.09598 3.14159 2.82690 2.61743 2.34925
0.2 2.89083 2.41902 2.17779 1.90983 2.89083 2.58446 2.37535 2.11337
0.4 2.47903 2.06456 1.85242 1.61949 2.47903 2.19762 2.00246 1.76604
0.6 2.15067 1.78664 1.60037 1.39708 2.15067 1.89756 1.72163 1.51254

0.5 0 3.14562 2.64609 2.39237 2.10943 3.14562 2.83242 2.62438 2.35883
0.2 2.89599 2.42780 2.18979 1.92753 2.89599 2.59167 2.38463 2.12649
0.4 2.48719 2.07862 1.87178 1.64815 2.48719 2.20930 2.01785 1.78830
0.6 2.16313 1.80817 1.63003 1.44082 2.16313 1.91560 1.74562 1.54743

1 0 3.14962 2.65281 2.40145 2.12262 3.14962 2.83790 2.63127 2.36830
0.2 2.90113 2.43649 2.20160 1.94475 2.90113 2.59882 2.39379 2.13937
0.4 2.49528 2.09240 1.89055 1.67539 2.49528 2.22080 2.03289 1.80977
0.6 2.17537 1.82895 1.65816 1.48091 2.17537 1.93314 1.76866 1.58012

Table 1. Values of the dimensionless natural frequency λn for the simply supported
cracked nanobeam with different nonlocal parameter ν, crack severity C , stiffness of
surrounding medium K and crack position b. (Compare to [Loya et al. 2009] especially
for K = 0.)

From Table 1, it can be noticed that an increase in crack severity decreases the natural frequency
parameter of the cracked nanobeam. Moreover, it can be observed that an increase in the nonlocal
parameter causes a decrease in the natural frequency as expected. This implies that the small-scale effect
reduces the rigidity of the system so that the nanobeam becomes “softer”. An increase in the stiffness
coefficients has very weak influence on natural frequency of the system, and it causes a slight increase

b = 0.5 b = 0.25

K ν C = 0 C = 0.5 C = 1 C = 2 C = 0 C = 0.5 C = 1 C = 2

0 0 4.73004 4.27235 4.10790 3.97023 4.73004 4.71675 4.71144 4.70681
0.2 4.27661 3.79523 3.62032 3.47640 4.27661 4.26860 4.26418 4.25949
0.4 3.59232 3.12694 2.96127 2.82852 3.59232 3.58948 3.58662 3.58104
0.6 3.08370 2.66026 2.51211 2.39485 3.08370 3.08271 3.08094 3.06902

0.5 0 4.73122 4.27395 4.10970 3.97222 4.73122 4.71794 4.71263 4.70801
0.2 4.27821 3.79751 3.62295 3.47937 4.27821 4.27021 4.26580 4.26110
0.4 3.59501 3.13102 2.96607 2.83403 3.59501 3.59218 3.58932 3.58376
0.6 3.08795 2.66688 2.51995 2.40390 3.08795 3.08697 3.08521 3.07334

1 0 4.73240 4.27555 4.11150 3.97422 4.73240 4.71913 4.71383 4.70920
0.2 4.27981 3.79979 3.62558 3.48233 4.27981 4.27181 4.26740 4.26272
0.4 3.59770 3.13509 2.97085 2.83950 3.5977 3.59488 3.59202 3.58647
0.6 3.09219 2.67344 2.52773 2.41285 3.09219 3.09121 3.08946 3.07764

Table 2. Values of the dimensionless natural frequency λn for the clamped-clamped
cracked nanobeam with different nonlocal parameter ν, crack severity C , stiffness of
surrounding medium K and crack position b. (Compare to [Loya et al. 2009] especially
for K = 0.)
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Figure 2. First four mode shapes of the simply supported nanobeam with (a) b = 0.25
and (b) b= 0.5 and of the clamped-clamped nanobeam with (c) b= 0.25 and (d) b= 0.5.

in the frequency as shown in Table 1. Also, it should be noted that when the crack severity is equal to
zero we obtain natural frequencies of the embedded nanobeam without a crack. Comparing the natural
frequencies from Table 1 for different crack positions, we can observe that, for a movement of crack
position from the symmetric position at the middle of the nanobeam towards the boundaries, the natural
frequency of the system decreases. This implies that the crack position has small influence on natural
frequency when the crack is closer to the nanobeam boundaries.

In the case of clamped-clamped boundary conditions, we obtained higher values of natural frequencies
due to the “stronger” constraints as shown in Table 2. Here, effects similar to those for the previous
boundary conditions can be observed. An increase in crack severity as well as an increase in the nonlocal
parameter causes a decrease in natural frequency while an increase in the medium’s stiffness causes a
slight increase in natural frequency. The C = 0 columns in Table 2 show natural frequencies of the
clamped-clamped nanobeam without a crack. Considering the different crack positions in Table 2, we
find that the natural frequency is higher for the case when the crack is closer to the boundaries while it
decreases as the crack moves to the middle of the nanobeam.

It should be noted that the values of natural frequencies in this case reduce towards the values obtained
in [Loya et al. 2009] when the longitudinal magnetic field, temperature change and stiffness of the elastic
medium are equal to zero.

Mode shape functions of the cracked nanobeam for the first four vibration modes and two different
boundary conditions and crack positions b = 0.5 and b = 0.25 are shown in Figure 2. For a simply
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Figure 3. The first-mode natural frequency for a simply supported nanobeam with two
crack positions.

supported nanobeam, in Figure 2a–b, we can observe that the differences of mode shape curves are
localized near the crack position. When the crack is located at the middle of the nanobeam, we can notice
the difference between symmetric and antisymmetric modes; i.e., differences of mode shape curves are
visible only in the first and the third vibration mode and not for the second and the fourth mode. This is the
case because the crack is located at the vibrational node, which is dependent on the mode number. It can
be concluded that the crack does not affect the mode shape curve of the fourth vibration mode when the
crack is located at a quarter of the length of the nanobeam (Figure 2a) and the second and fourth vibration
modes when the crack is at the middle of the nanobeam (Figure 2b). In the next case, we analyze the
clamped-clamped nanobeam in which a crack is located at b = 0.25 as shown in Figure 2c and at b = 0.5
in Figure 2d. As in the previous case, the crack causes changes in the mode shape functions. Also, it
can be observed that deviations of mode shape curves allow us to detect surface defects in nanobeams
and their control in the propagation.

Further, we examine the influence of thermal and magnetic field effects on the dimensionless natural
frequency parameter of the cracked nanobeam embedded in an elastic medium. The following ranges
of the dimensionless material and geometrical parameters of the cracked nanobeam are adopted: crack
position b = 0.25–0.5, nonlocal parameter ν = 0.4, crack severity C = 0.5–2, stiffness of surrounding
medium K = 1, magnetic field parameter MP= 0–2 and thermal parameter N θ = 0–2. In Figure 3, we



EFFECTS ON THE VIBRATION OF A CRACKED NANOBEAM EMBEDDED IN AN ELASTIC MEDIUM 57

Figure 4. First natural frequency parameter for a clamped-clamped nanobeam with two
crack positions.

plot the changes in the natural frequency parameter for different crack positions and simply supported
boundary condition for two cases. In the first case, we consider the influence of thermal effect on the
natural frequency parameter for MP = 0 (Figure 3a–b). Here, we can observe that an increase in the
thermal coefficient causes a decrease in the natural frequency parameter for all values of crack severity
and positions. This implies that the influence of thermal effect reduces the stiffness of the embedded
nanobeam. From a physical point of view, the thermal parameter has damping effects on the vibration
behavior of the cracked nanobeam. In the second case, we consider only the effect of the longitudinal
magnetic field parameter on natural frequency as shown in Figure 3c–d. We can notice that an increase
in the magnetic field parameter causes an increase in natural frequency for both cases of crack position
in the nanobeam. Since an increase in the magnetic field parameter increases the rigidity of the system,
it consequently increases the natural frequency parameter as well.

For further analysis of nonlocal vibration behavior of the cracked nanobeam embedded in an elastic
medium, we will consider the systems with different crack positions and clamped-clamped boundary
conditions. In addition, we adopt the same geometric and material parameters for the cracked nanobeam
as in the previous case. Figure 4 shows changes in the natural frequency parameter for the clamped-
clamped boundary condition case. It can be observed that for the crack position b = 0.25 there is
no significant difference between natural frequencies with different crack severities. Further, it can be
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noticed that an increase in the thermal coefficient causes a decrease in natural frequency for all cases.
However, it can be noticed that the influence of crack stiffness is much smaller than in the case of the
simply supported nanobeam. In addition, Figure 4b shows that for b = 0.5 the natural frequency slightly
decreases for an increase in the thermal coefficient at the lowest value of crack severity but it slightly
increases for an increase in the thermal coefficient when crack severities are higher. Figure 4c shows that
for the crack position b = 0.25 natural frequencies are increasing for an increase in the magnetic field
parameter in all cases. However, this is not the case when b = 0.5 as shown in Figure 4d. Here, it can
be observed that the natural frequency slightly decreases for an increase of the magnetic field parameter
at the lowest value of crack severity. However, it does not change for C = 1, and it slightly decreases
for an increase in magnetic field parameter when C = 2. Finally, it should be noted that the system has
a behavior similar to that of the case of the simply supported nanobeam for increased crack severity.

Analyzing the influence of external field parameters on the dynamic behavior of the cracked nanobeam
structure, the following conclusion can be drawn. In the proposed model, the possibility of changing
the natural frequency by variation of only external field parameters such as thermal and longitudinal
magnetic field has a practical importance in design of NEMS devices. Choosing the proper magnitude
of the external magnetic field in a certain range, it is possible to avoid the resonance state and increase
the vibration amplitude at a given temperature. Moreover, this possibility allows us to control the crack
propagation in a dynamic state of a nanostructure by controlling the total stiffness of a system. This study
can be used as a starting point for the future investigation of vibration behavior of coupled nanobeams
with cracks or in design procedures of nanodevices under the influence of various physical effects.

Conclusion

The main objective of this paper was to examine the influences of a magnetic field and thermal effects on
the free vibration behavior of a cracked nanobeam. It can be concluded that natural frequency parameters
of nanobeams are strongly influenced by the crack existence in the nanostructure. Various positions of
the crack, different crack severities and different boundary conditions can change the values of natu-
ral frequencies or mode shape curves significantly. The influences of the two most commonly used
boundary conditions in nanoengineering practice on the dynamic behavior of the embedded nanobeam
were considered. It was found that the nanobeam with clamped-clamped boundary conditions has larger
natural frequencies, and it is less sensitive to a change of parameters of the external magnetic field and
temperature change. Thermal and longitudinal magnetic field effects on natural frequencies of cracked
nanobeams were also investigated. Their influences are not negligible and can essentially change the
vibration properties of nanobeams. This implies that the natural frequencies can be varied by a change
in longitudinal magnetic field or temperature parameters without the necessity of changing the material
and geometrical parameters of the nanosystem. These possibilities have great practical importance in the
design of NEMS devices. A numerical parametric study was performed, and influences of various system
parameters, such as the crack severities and position, nonlocality, longitudinal magnetic field, change in
temperatures and stiffness of the elastic medium, on the natural frequency were investigated. It was
found that the nonlocal parameter and crack severities have dampening effects on the natural frequency
for both boundary conditions. Moreover, it can be seen that an increase in stiffness of the elastic medium
leads to an increase in natural frequency, which implies an increase in the total stiffness of the system. In
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addition, it is indicated that the influence of the crack position on the vibration mode is very important
and significant for studying. The presented theoretical study can be very useful as a starting point in
future analysis of dynamic and stability behaviors of more complex nanostructure systems with defects.

Appendix A

Let

X = ν2
(
λ4

n −
K
ã

)
.

The frequency determinant in vibration analysis of the cracked nanobeam embedded in an elastic medium
with simply supported boundary conditions is

|G(λn)| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1
0 X+α2
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The frequency determinant in vibration analysis of the cracked nanobeam embedded in an elastic medium
with clamped-clamped boundary conditions is

|H(λn)| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The vector {ψ} is composed of eight unknown constants Dni , i = 1, 2, . . . , 8, defined as

{ψ}T = {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6, Dn7, Dn8}
T .
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DRAGAN JOVANOVIĆ: jdragan@masfak.ni.ac.rs
Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
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