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STABILITY OF DISCRETE TOPOLOGICAL DEFECTS IN GRAPHENE

MARIA PILAR ARIZA AND JUAN PEDRO MENDEZ

While improving graphene production techniques seems to be critical for the successful development
of practical graphene-based devices, another technological bottleneck stems from the fact that not all
mechanisms controlling the coupled thermal-mechanical-electrical behavior of graphene-based materials
are fully known at present. In this work, we specifically aim to propose a methodology to investigate the
behavior of controlled distributions of point defects in graphene. We present a bondwise force-constant
model derived from the adaptive intermolecular reactive empirical bond-order (AIREBO) potential and
compare the force-constant values with those obtained from other interatomic potentials. In addition, we
present a particular computational scheme that, while preserving the advantages of discrete dislocation
theory, allows the assessment of the stability of discrete defects. In particular, we study two dislocation
dipole configurations: glide and shuffle.

1. Introduction

Ever since its meteoric rise to prominence, graphene has been touted as a promising novel material,
owing to its extraordinary mechanical, electrical, optical and thermal properties. In addition to its high
breaking strength and high Young’s modulus (42 N/m and 1 TPa [Lee et al. 2008]), graphene exhibits
high thermal mobility (> 4000 W/mK [Balandin et al. 2008]), low resistivity (≈ 30�−1 [Bae et al. 2010])
and high electronic conductivity (> 15000 cm2/(V · s) [Geim and Novoselov 2007]); i.e., electrons in
graphene are allowed to travel long distances without scattering. Other features that have made this
material deeply peculiar are its low weight (0.77 mg/m2), its capability to absorb a fraction of incident
white light (around 2.3% [Nair et al. 2008]) and its impermeability to gases [Bunch et al. 2008], among
other intriguing properties.

By virtue of these features, today graphene offers a wide range of benefits, and indeed new innovative
applications of graphene come to light every day. For instance, graphene has been thought to be an
ideal alternative to carbon fibers for structural applications in aeronautics or a substitute of indium tin
oxide (ITO) in touchscreens or flexible panel displays [Bae et al. 2010], liquid crystal displays (LCD)
[Jung et al. 2014; Blake et al. 2008] and organic light emitting diodes (OLED) [Wu et al. 2010] in
optoelectronics. Unfortunately, it was recognized early on [Novoselov et al. 2005; Zhang et al. 2005]
that pristine defect-free graphene has no band gap and, therefore, is of limited use for semiconductor-
based electronics. Immediately thereafter, many attempts were made to engineer band gaps in graphene,
for example by using doped graphene, nanoribbons, electric fields, mechanical strain or engineering
defects, among other means [Yazyev and Louie 2010a; Zhang et al. 2012].
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Graphene material properties and, in particular, experimentally observed topological defects have been
analyzed by using different interatomic potentials and computational approaches ranging from ab initio
to molecular dynamics. Furthermore, empirical tight-binding models have been applied, allowing for a
proper description of the electronic structure of graphene. In particular, Jeong et al. [2008] have studied
the stability of dislocation dipoles with 5–7 core structures using ab initio calculations whereas Yazyev
and Louie [2010b] have focused on the thermodynamics and electronic properties of dislocations and
grain boundaries. Molecular dynamics simulations carried out by Liu et al. [2011] investigated the atomic
structures and energies of symmetric tilt grain boundaries using the empirical AIREBO potential. The
aforementioned potential is an extension of the reactive empirical bond-order REBO potential developed
by Brenner [1990], which additionally includes torsion, dispersion and nonbonded repulsion interactions.
Thus, the AIREBO potential [Stuart et al. 2000] is suitable for modeling chemical reactions.

We have previously presented [Ariza and Ortiz 2010; Ariza et al. 2010] an analysis of discrete dislo-
cations in graphene based on the discrete dislocation theory in crystals [Ariza and Ortiz 2005]. This said
theory combines lattice harmonics, the theory of eigendeformations and the discrete Fourier transform,
leading to analytically tractable expressions of the stored energy of defective graphene. In contrast, owing
to its reliance on force constants, the theory of discrete dislocations provides harmonic defect structures
and their corresponding energies. Therefore, the anharmonic part of the interatomic potentials should
be included for the sake of completeness. In this work, we present fully nonlinear solutions obtained
by the method of forces, i.e., by appending unknown forces to the discrete dislocation energy so as to
equilibrate the lattice with respect to the fully nonlinear potential. Specifically, we have first computed
the harmonic dislocation core structures and energies predicted by the force constants model obtained
from the AIREBO potential and then studied their dynamic stability taking into account the full potential.
We have focused on two dislocation dipole configurations: glide and shuffle.

2. The discrete dislocation theory

A general discrete dislocation theory in crystal, and its specialization to graphene, has been presented by
Ariza and Ortiz [2005; 2010]. In this section, we present a brief summary of the discrete dislocation (DD)
theory extended to graphene. Following this theory, we regard the graphene lattice as a collection of
cells C of different dimensions, endowed with discrete differential operators, discrete codifferential oper-
ators and a discrete integral. In particular, the graphene complex is bidimensional and consists of: atoms,
or 0-cells; atomic bonds, or 1-cells; and hexagonal cells, or 2-cells (Figure 1). For ease of indexing, we
denote by E p(C) the set of cells of dimension p in the graphene complex and by ep(l, α) the p-cell of
type α and integer coordinates l ∈ Z2.

1 2

2

3
1

1

Figure 1. The oriented 0-, 1- and 2-cells of graphene grouped by type.
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Figure 2. Diagram for the definition of the discrete differential operators of graphene.

These cells provide the support for defining functions, or forms, of different dimensions. Thus, we
refer to a function defined over the atoms (or 0-cells), over the atomic bonds (or 1-cells) or over the
hexagonal areas (or 2-cells) as a 0-form, 1-form or 2-form, respectively. As we shall see, forms provide
the vehicle for describing the behavior of graphene lattice, including displacements, eigendeformations
and dislocation densities.

In order to define differential operators, we need to orient all cells; see Figure 2. Suppose that ω is a
0-form defined over the atoms and eab is an atomic bond defined by atoms a and b and oriented from b
to a (Figure 2). Then, the differential dω(eab) of ω at eab is defined as

dω(eab)= ω(ea)−ω(eb). (2-1)

Similarly, for 1-forms and 2-forms, we have

dω(eabcde f )=−ω(eab)+ω(ebc)−ω(ecd)+ω(ede)−ω(ee f )+ω(e f a) (2-2)

and
dω =

∑
e2∈E2(C)

ω(e2). (2-3)

Thus, the differential operator maps: 0-forms, defined over atoms, to 1-forms, defined over atomic
bonds; 1-forms, defined over atomic bonds, to 2-forms, defined over hexagonal cells; and 2-forms, de-
fined over hexagonal cells, to vectors. Thus, the defined discrete differential operators may be regarded
as the discrete counterparts of the familiar gradient, curl and divergence of vector calculus. It is readily
verified from the definition of the discrete differential operators [Munkres 1984] that

d2
= 0, (2-4)

which is the discrete counterpart of the identities rot ◦ grad= 0 and div ◦ rot= 0.
Next, by grouping cells of C by types, one might notice that cells of the same type are translations of

each other, and therefore, they are arranged as simple Bravais lattices (Figure 3). Graphene lattice has
two different atoms (labeled as 1 and 2), three different atomic bonds (labeled as 1, 2 and 3) and one
hexagonal area (labeled as 1). Owing to the translation invariance of the cells, we can take advantage of
the definition of the discrete Fourier transform (DFT) and its properties such as the discrete Parseval’s
identity and the discrete convolution theorem. Thus, the DFT of a p-form ω is

ω̂(θ , α)=
∑
l∈Z2

ω(l, α)e−iθ ·l , (2-5)
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Figure 3. The simple Bravais lattices defined by the atoms, atomic bonds and hexagonal
cells of graphene.

where l ∈ Z2 are the integer coordinates of the Bravais lattice and α takes the values of 1 or 2 for 0-forms,
1, 2, or 3 for 1-forms and 1 for 2-forms.

Similarly, the DFT of a differential p-form dω is

d̂ω(θ , α)=
Np∑
β=1

Q
(
θ

α β

)
ω̂(θ , β), (2-6)

where the coefficients Q
(

θ
α β

)
represent the differential structure of the lattice. For the graphene differ-

ential structure defined in (2-1) and (2-2),

Q1(θ)=

1 −eiθ2

1 −1
1 −e−iθ3

 , (2-7a)

Q2(θ)= (eiθ3 − 1, 1− eiθ1, eiθ1 − eiθ3), (2-7b)

where
θ3 = θ2− θ1. (2-8)

Equations (2-7) define the differential of 0- and 1-forms in their Fourier representations, respectively.
Within this differential operator framework and by the translational invariance of the energy of lattice,
we can write the energy of a harmonic crystal as

E(u)=
1
2

∑
e1∈E1

∑
e′1∈E1

Bi j (e1, e′1) dui (e1) du j (e′1)≡
1
2〈B du, du〉, (2-9)

where Bi j (e1, e′1) are bondwise force constants, giving the interaction energy resulting from a unit dif-
ferential displacement in the j-th coordinate direction at bond e′1 and a unit differential displacement in
the i-th coordinate direction at bond e1.

Equivalently,

E(u)=
1
2

∑
e0∈E0

∑
e′0∈E0

Ai j (e0, e′0)ui (e0)u j (e′0)≡
1
2〈A u, u〉, (2-10)
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Figure 4. Resulting slip lines and Burger vectors, defining the operative slip systems of graphene.

where Ai j (e0, e′0) are atomic force constants, giving the interaction energy resulting from a unit differen-
tial displacement in the j-th coordinate direction at atom e′0 and a unit differential displacement in the
i-th coordinate direction at atom e0.

Moreover, by the translation invariance of lattice, we can express B du and Au in convolution form,
and then using the Parseval’s identity and the convolution theorem, we express the DFT representation
of the harmonic energy as

E(u)=
1

(2π)2

∫
[−π,π ]2

1
2〈9̂(θ) d̂u(θ), d̂u∗(θ)〉 d2θ , (2-11a)

E(u)=
1

(2π)2

∫
[−π,π ]2

1
2〈8̂(θ) û(θ), û∗(θ)〉 d2θ . (2-11b)

The preceding representations show that the force-constant fields are related by

8̂i j = QT
1 9̂i j Q∗1. (2-12)

Moreover, it is possible now to achieve an expression for the energy of a defective crystal including
dislocations. To accomplish this, we include in (2-9) the eigendeformations β corresponding to crystal
slips [Mura 1987]

E(u, β)=
1
2

∑
e1∈E1

∑
e′1∈E1

B(e1, e′1)(du(e1)−β(e1))(du(e′1)−β(e
′

1))

≡
1
2〈B(du−β), (du−β)〉, (2-13)

where the sums take place over the atomic bonds of the crystal lattice, u(e0) is the atomic displacement
of atom e0, du(e1) is the deformation of atomic bond e1, β(e1) is the eigendeformation at bond e1

and B(e1, e′1) are bondwise force constants. The local values β(e1) of the eigendeformation field are
constrained to defining lattice-invariant deformations; see Figure 4. And finally, the stored energy of a
crystal and the respective displacement field is obtained by minimizing (2-13) with respect to u:

inf
u

E(u,β)= E(β). (2-14)
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3. Harmonic graphene model

Bond-order potentials have widely been employed to model complex materials, including C-based mate-
rials, e.g., graphite, diamond and graphene. Tersoff potentials [1988] are a clear example of bond-order
potentials among others such as Finnis–Sinclair potentials [1984], ReaxFF potential [van Duin et al.
2001] and REBO potentials [Brenner 1990]. The latter one is based on Tersoff potentials with additional
terms that correct for an inherent overbinding of radicals and that include nonlocal effects. However,
REBO potentials include neither torsion of bonds nor nonbonded interactions; both contributions are
crucial to model correctly the behavior of graphene. The AIREBO potential [Stuart et al. 2000], which
is derived from the REBO potential, includes these effects through the addition of two new terms: a
Lennard-Jones potential, ELJ, accounting for long-range interaction, and a torsion term, E tors.

3.1. AIREBO potential. In this section, the AIREBO potential is briefly described and particularized to
graphene. This empirical potential consists of a sum of different terms

E =
1
2

∑
i

∑
j 6=i

[
EREBO

i j + ELJ
i j +

∑
k 6=i, j

∑
l 6=i, j,k

E tors
ki jl

]
, (3-1)

where EREBO
i j is the REBO interaction, ELJ

i j is the Lennard-Jones interaction and E tors
ki jl is the torsion

interaction.
The REBO part combines the repulsive and the attractive terms as

EREBO
i j = V R

i j (ri j )+ bi j V A
i j (ri j ), (3-2)

where bi j is the bonding term that specifies the interaction between atoms i and j and their respective
neighbors, i.e., bi j depends on the bond angles between the bonding environment surrounding atoms i
and j and the bond i j and is a monotonic decreasing function with respect to the coordination number N
as b ∼ N−1/2:

bi j =
1
2 [p

σπ
i j + pσπj i ] +π

rc
i j +π

dh
i j . (3-3)

The repulsive term exclusively depends on the atom types i and j through the Qi j , Ai j and αi j

parameters (Table 1) and the bond length ri j :

V R
i j = wi j (ri j )

[
1+

Qi j

ri j

]
Ai j e−αi j ri j , (3-4)

where wi j is a bond weighting factor. Notice that the repulsive term tends to infinity as the bond length
between atoms i and j goes to zero.

Parameter Qi j (Å) αi j (Å
−1

) Ai j (eV) B(1)i j (eV) B(2)i j (eV) B(3)i j (eV)
CC 0.313460 4.7465391 10953.544 12388.792 17.567065 30.714932

Parameter β
(1)
i j (Å

−1
) β

(2)
i j (Å

−1
) β

(3)
i j (Å

−1
) εi j (eV) σ

(2)
i j (Å) εiccj (eV)

CC 4.7204523 1.4332132 1.3826913 0.00284 3.40 0.3079

Table 1. AIREBO parameters for the attractive, repulsive, LJ and torsion terms.
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Parameter rcc (Å) Nc N s r ′cc (Å) rLJ
cc (Å) bcc

Minimum 1.7 3.2 2 0.1 1.7 σcc 0.77
Maximum 2 3.7 3 0.1 2 21/6σcc 0.81

Table 2. Switching parameters between CC bonds.

Similarly, the attractive term also depends on the atom types i and j (B(n)i j and β(n)i j ) and the bond
length as

V A
i j =−wi j

3∑
n=1

B(n)i j e−β
(n)
i j ri j . (3-5)

The bond weighting factor wi j (ri j ) smoothly switches off the REBO interaction when the atom pairs
exceed the typical bonding distance between carbon atoms for graphene (Table 2):

wi j (ri j )= S′(tc(ri j )), (3-6)

where S′(t) is
S′(t)=2(−t)+ 1

22(t)2(1− t)[1+ cosπ t] (3-7)

and tc(ri j ) is given by

tc(ri j )=
ri j − rmin

i j

rmax
i j − rmin

i j
. (3-8)

The pσπi j and pσπj i terms in (3-3) take into account the covalent bond interaction:

pσπi j =
1√

1+
∑

k 6=i, j wk(rk)gi (cos θ j ik)+ Pi j (N C
i j )
, (3-9)

pσπj i =
1√

1+
∑

l 6=i, j wl(rl)gi (cos θi jl)+ Pj i (N C
i j )
, (3-10)

gC(cos θ j ik)= g(1)C (cos θ j ik)+ S′(tN (Ni j ))
[
g(2)C (cos θ j ik)− g(1)C (cos θ j ik)

]
, (3-11)

where gi is a penalty function that penalizes the bonds that are very close to one another and θ j ik and θi jl

(Figure 5) are the bond angles between the vectors (ri , rik) and (ri , r jl), respectively:

cos θ j ik =
ri · rik

ririk
, (3-12)

cos θi jl =
ri · r jl

rir jl
. (3-13)

The scaling function tN (Ni j ) in (3-11) is a function of the local coordination number, Ni j , and the
upper and lower bound coordination numbers, N max

i j and N min
i j , which are related to the material:

tN (Ni j )=
Ni j − N min

i j

N max
i j − N min

i j
. (3-14)
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r jrik

r jlθi jl

θ j ik

Figure 5. Angle convection.

cos θ gi ∂gi/∂ cos θ ∂2gi/∂(cos θ)2

−1 −0.010000 0.104000 0.000000

−
2
3 0.028207 0.131443 0.140229

g(1)C −
1
2 0.052804 0.170000 0.370000

−
1
3 0.097321 0.400000 1.98000

1 1.00000 2.83457 10.2647

−1 −0.010000 0.104000 0.000000

−
2
3 0.028207 0.131443 0.140229

g(2)C −
1
2 0.052804 0.170000 0.370000

−
1
3 0.097321 0.400000 1.98000

1 8.00000 20.2436 43.9336

Table 3. Interpolation points for the function gC .

In particular, for graphene,

Ni j = N C
i j =

(∑
k 6=i

δkCwk(rk)

)
− δ jCwi (ri ). (3-15)

The g(1)C (cos θ j ik) and g(2)C (cos θ j ik) values and their respective first and second derivatives with respect
to the angle in (3-11) are known values and are listed in Table 3.

The third term in (3-3), πrc
i j , depends on the coordination numbers. Particularly, πrc

i j is zero for
graphene lattice with periodic boundary conditions. And the fourth term in (3-3), πdh

i j , is based on the
torsion angles, wki jl :

πdh
i j = Ti j (Ni j , N j i , N conj

i j )
∑

k 6=i, j

∑
l 6=i, j

(1− cos2 ωki jl)

×w′ik(rik)w
′

jl(r jl)2(sin θ j ik − smin)2(sin θi jl − smin) (3-16)

with
w′i j (ri j )= S′(t ′c(ri j )) (3-17)
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and

t ′c(ri j )=
ri j − rmin

i j

rmax′
i j − rmin

i j

. (3-18)

The torsion angle, wki jl , is defined as the angle between the plane defined by the vectors (r j i , rik)

and (ri j , r jl):

cosωki jl =
r j i ∧ rik

r j irik
·

ri j ∧ r jl

ri jr jl
. (3-19)

The Lennard-Jones term, ELJ
i j , in (3-1) includes the long-range interaction between pairs of atoms

ELJ
i j = S(tr (ri j ))S(tb(b∗i j ))+ [1− S(tr (ri j ))]CLJ

i j (ri j )V LJ
i j , (3-20)

where V LJ
i j is a Lennard-Jones potential, 6-12 type,

V LJ
i j = 4εi j

[(
σi j

ri j

)12

−

(
σi j

ri j

)6 ]
(3-21)

and S(t) is a switching function

S(t)=2(−t)+2(t)2(1− t)[1− t2(3− 2t)]. (3-22)

Finally, the torsion term in (3-1), E tors
ki jl , considers the torsion long-range interaction as a function of

the dihedral angle determined by atoms i , j , k and l:

E tors
i j =

∑
k 6=i, j

∑
l 6=i, j,k

wi j (ri j )w jk(r jk)wkl(rkl)V tors
i jkl , (3-23)

where
V tors

i jkl = εi jkl

[
256
405 cos10

(ωi jkl

2

)
−

1
10

]
. (3-24)

3.2. Force-constant model. As proved in Section 2, the energy of a defective crystal lattice can be
written in terms of either bondwise force constants, 9, or atomic force constants, 8. The former can be
obtained through the second linearization of a given interatomic potential; thus, the latter ones are derived
by means of relation (2-12). In general, given a potential E , the atomic force constants are obtained by

9i j

(
l − l ′

ab cd

)
=

∂2 E
∂r(l ′, cd) j ∂r(l, ab)i

, (3-25)

where r(l, ab)i is the i-th component of the vector corresponding to the atomic bond between atoms a and
b with label l and r(l ′, cd) j is the j -th component of the vector between atoms c and d with label l ′. Once
the bondwise force constants are computed by using the above equation, a straightforward calculation
using (2-12) provides the corresponding atomic force constants 8.

In this section, we tackle the definition of a bondwise force-constants model from the AIREBO po-
tential, and thus, first and second linearizations of energy (3-1) are needed. In order to accomplish an
accurate description of interatomic forces in graphene, our model encompasses atomic interactions up to
second-nearest neighbors for the REBO term and up to fourth-nearest neighbors for the LJ and torsion
terms. The analytical expressions of the first and second derivatives of the functions defining the AIREBO
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(a) (b) (c) (d) (e)

α1 364.0 497.2 527.7 409.7 399.0
β1 247.0 173.8 68.1 145.0 135.7
δ1 100.5 107.0 118.3 98.9 292.8

α2 −30.8 −41.4 5.8 −40.8 −79.6
β2 72.3 58.1 32.7 74.2 67.8
γ2 −17.8 −3.0 26.7 −9.1 39.2
δ2 −11.5 −15.9 −16.9 −8.2 0.9

α3 −20.6 0.0 −33.2 0.0
β3 34.5 0.0 50.1 0.0
δ3 9.1 3.7 5.8 −34.3

α4 0.0 10.5 0.0
β4 0.0 5.0 0.0
γ4 0.0 2.2 0.0
δ4 −1.8 −5.2 17.1

Table 4. Comparison of force-constants values obtained from different interatomic po-
tentials and considering interactions (a) up to second neighbors [Ariza and Ortiz 2010],
(b) up to third neighbors [Mendez and Ariza 2015] and (c)–(e) up to fourth neighbors
[Ariza et al. 2011; Tewary and Yang 2009; Wirtz and Rubio 2004].

potential have been provided in [Ariza et al. 2011]. Table 4 shows a comparison of the force-constants
values we have obtained from the linearization of different interatomic potentials, i.e., a harmonic model
[Aizawa et al. 1990], a reactive empirical bond-order potential [Stuart et al. 2000] and a tight binding po-
tential [Xu et al. 1992]. These computed force constants have been validated against experimental phonon
dispersion curves and previous force-constants models for graphene. Wirtz and Rubio [2004] have ob-
tained their force constants model by fitting to density-functional theory (generalized-gradient approxi-
mation) quantum-mechanics calculations of the phonon dispersion curves of graphene whereas Tewary
and Yang [2009] employed a potential based on the Tersoff potential and added a term of radial energy.

4. Anharmonic contribution of the AIREBO potential

The discrete dislocation theory in crystals combines lattice harmonics, the theory of eigendeformations
[Mura 1987] and the discrete Fourier transform, leading to analytically tractable expressions of the stored
energy of defective graphene (see (2-13)). However, despite its robustness and accuracy, a question of
interest concerns the formulation of convergent schemes that relax discrete dislocation structures in ac-
cordance to a full interatomic potential. A particular scheme that preserves the advantages of the discrete
dislocation theory, and in particular the ability to use Green’s functions, was proposed by [Gallego and
Ortiz 1993]. In this scheme, the fully nonlinear solution is obtained by the method of forces, i.e., by
appending unknown forces to the discrete dislocation energy so as to equilibrate the lattice with respect
to the fully nonlinear atomistic potential.

Thus, given an eigendeformation field, β, constrained to defining lattice-invariant deformations, the
discrete dislocation theory provides a harmonic displacement field, uH , that minimizes the harmonic part
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of the potential such that
DEH (uH )= 0, (4-1)

where EH is the harmonic part of the full potential, D f ( · ) denotes the derivative of f with respect to
its argument and uH represents the harmonic displacement field corresponding to the eigendeformation
field, β. The total harmonic energy including applied forces f is given by

EH (u,β)= 1
2〈B(du−β), (du−β)〉− 〈 f , u〉 = 1

2〈Au, u〉− 〈δ(Bβ), u〉+ 1
2〈Bβ,β〉− 〈 f , u〉. (4-2)

Next, minimization of EH with respect to u at fixed β yields the equilibrium equation

u∗H = A−1( f E
+ f ), (4-3)

where
f E
= δBβ (4-4)

is the distribution of eigenforces corresponding to β. We thus continue to apply forces f such that
the entire lattice can be equilibrated, and therefore, the resulting harmonic field u∗H minimizes a given
anharmonic energy E . The equilibrium equations for the equilibrating forces f are

DE(A−1( f E
+ f ))= 0. (4-5)

Because of the good starting accuracy of the discrete dislocation theory, the corrective forces decay very
rapidly away from the core of defects and, hence, represent highly localized corrections.

5. Glide and shuffle dislocation dipoles in graphene

Slip in graphene occurs on three different planes defined by their normal vectors, mi , i = 1, 2, 3, (see
Figure 4) which correspond to the close-packed atomic planes in graphene. At first glance, for each slip
plane, gliding might occur across either a zigzag chain of bonds or across parallel bonds (Figure 6). The
first case defines the so-called glide dislocations whereas the latter one refers to shuffle dislocations.

In a previous work, we have investigated two mechanisms of crystallographic slip in graphene, cor-
responding to glide and shuffle generalized stacking faults [Ariza et al. 2012]. The calculations were

b
b

b

b

b

b

Figure 6. Detail of the distribution of eigendeformation β, consisting of one Burgers
vector over (left) a chain of three zigzag bonds and (right) three consecutive parallel
bonds.
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Figure 7. Dislocation core structures predicted by DD theory (left) glide dislocation
dipole (L = 3) and (right) shuffle dislocation dipole (L = 3).

Figure 8. Dislocation core structure after relaxation obtained by means of the anhar-
monic extension of the DD theory (left) glide dislocation dipole (L = 3) and (right)
shuffle dislocation dipole (L = 3).

performed using the Sandia National Laboratories Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) and two different interatomic reactive potentials: AIREBO and ReaxFF [Stuart et al.
2000; van Duin et al. 2001]. The γ -surfaces of a crystal shed useful light on the structure and stability of
extended defects such as dislocation dipoles and dissociated cores. The outcome of the aforementioned
study was that glide dislocation dipoles are stable in graphene down to exceedingly small separations
of the order of a few lattice spacings and dissociation of perfect dislocations into partial dislocations
are unlikely in both configurations. The assessment of the dynamical stability of partial dislocations was
carried out by inserting the discrete dislocation configurations predicted by the DD theory into molecular
dynamics calculations as initial conditions.

In this section, the stability analysis of discrete dislocation structures is achieved by using the compu-
tational scheme outlined above. For ease of indexing, we denote by L = n the length of the dislocation
and it represents that the distribution of eigendeformations is applied over n atomic bonds. In this work,
we endeavor to assess the stability of glide and shuffle dislocation dipoles. We start by predicting the
harmonic core structures and energies of these two dislocations by means of DD theory (see Figure 7).
In particular, for configurations corresponding to L = 3, we aim to validate our computational scheme
by studying whether glide and shuffle dislocation dipoles are metastable or not. Thus, the initial discrete
configuration is allowed to relax in accordance to the full interatomic potential AIREBO as was described
in Section 4.

Figure 8 shows the computed relaxed configurations and confirms the known metastable character of
very short glide dislocations in graphene. Moreover, Table 5 compares the defect energies of the two
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Dipole L = 3 DD theory (eV) After relaxation (eV)
Glide 17.07 5.87

Shuffle 20.20 ∼ 0

Table 5. Computed energies initially predicted by DD theory and obtained after relax-
ation considering the full interatomic potential for a glide and shuffle dislocation dipole
(L=3).

Figure 9. Dislocation core predicted by DD theory (left) glide dislocation dipole (L = 5)
and (right) glide dislocation dipole (L = 7).

Figure 10. Dislocation core after relaxation (left) glide dislocation dipole (L = 5) and
(right) glide dislocation dipole (L = 7), computed using the extension of the DD theory.

Glide dipole DD theory (eV) After relaxation (eV)
L = 5 19.87 10.93
L = 7 21.74 19.49

Table 6. Stored energies initially predicted by DD theory and those obtained after relax-
ation considering the full interatomic potential for a glide and shuffle dislocation dipole
(L = 5, 7).

different dipoles, before and after relaxation. For the shuffle configuration, the stored energy decreases
during the relaxation process down to zero.

Next, following the same procedure, we have investigated the relaxed configurations corresponding
to two glide dislocation dipoles with L = 5 and L = 7 (Figures 9 and 10). The stored energies computed
before and after relaxation are included in Table 6; these values are in agreement with similar calculations
reported in the literature. The relaxed dislocation core structures shown in Figure 10 also agree with those
observed in molecular dynamics calculations.
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6. Conclusions

We have presented an assessment of the stability of discrete dislocations in graphene. The assessment is
based on an extension of the discrete dislocation theory that takes into account the anharmonic part of the
interatomic potentials. Thus, we have obtained fully nonlinear solutions by using the method of forces,
i.e., by appending unknown forces to the discrete dislocation energy so as to equilibrate the lattice with
respect to the fully nonlinear potential. Specifically, we have first computed the harmonic dislocation
core structures and energies predicted by the force constants model obtained from the AIREBO potential
and then studied their dynamic stability.
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