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ON THE STRONG INFLUENCE OF IMPERFECTIONS UPON
THE QUICK DEVIATION OF A MODE I+III CRACK FROM COPLANARITY

JEAN-BAPTISTE LEBLOND AND VÉRONIQUE LAZARUS

This work explores the possibility that quick deviations of cracks loaded in mode I+III from coplanarity
may be greatly facilitated by inevitable fluctuations of the fracture toughness. The idea is that such
fluctuations must induce in-plane undulations of the crack front resulting, because of the presence of
the mode III load, in nonzero values of the local stress intensity factor of mode II, implying future local
out-of-plane deviations of the crack which might be “unstable” in Cotterell and Rice’s sense if the local
nonsingular stress parallel to the direction of propagation is positive.

Exploration of this idea implies evaluation of the variations of the local stress intensity factors and
nonsingular stresses arising from a slight but otherwise arbitrary in-plane perturbation of a semi-infinite
crack. These quantities were calculated in works of Gao and Rice, but the evaluation of the nonsingular
stresses was incomplete, and is supplemented here by using the theory of 3D weight functions due to
Rice and Bueckner.

Inspection of the results shows that for in-plane sinusoidal undulations of the crack front of sufficient
(though still small) amplitude, the conditions of nonzero local stress intensity factor of mode II and
positive local nonsingular stress parallel to the direction of propagation are simultaneously met on some
parts of the front, implying the possibility of future local deviations of the crack from coplanarity that
are “unstable” in Cotterell and Rice’s sense, and thus confirming the idea investigated.

1. Introduction

The propagation of cracks loaded in mixed-mode I+III has been investigated in various materials: inor-
ganic glass [Sommer 1969], polymeric glass [Knauss 1970], epoxy resin [Hull 1995], PMMA [Lazarus
et al. 2008], Homalite [Lin et al. 2010], alumina [Suresh and Tschegg 1987], steels [Hourlier and Pineau
1979; Yates and Miller 1989; Lazarus 1997; Lazarus et al. 2001b], rocks [Pollard et al. 1982; Pollard
and Aydin 1988; Cooke and Pollard 1996], gypsum and cheese [Goldstein and Osipenko 2012], to name
just a few experimental papers on the subject. In all cases, it was observed that the crack propagates
through formation of small fracture facets which may either abruptly “tilt” or gradually “twist” about the
direction of propagation.

It has been remarked by Hourlier and Pineau [1979] that two types of facets are in fact formed:
“type A” ones, rotating in such a way that the local stress intensity factor (SIF) of mode I increases with
the distance of propagation while that of mode III decreases, and “type B” ones rotating oppositely so
that the behavior of the local SIF is the reverse. Hourlier and Pineau also noted that the crack propagates
preferentially along type A facets. A rationale for this observation was provided by Lazarus et al. [2001a;
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2001b], who showed, using theoretical estimates of the SIF after some short continuous twisting, that for
a given facet length, the energy release rate is larger at the center of type A facets than at that of type B
facets, implying that propagation of the former facets is more “energetically favored” than that of the
latter ones.

Pons and Karma [2010] performed numerical simulations of crack propagation in mode I+III based on
a “phase field” model developed by Karma et al. [2001], which included a phenomenological description
of failure mechanisms in the process zone around the crack front. These simulations reproduced both
the gradual deviation of the crack from its original plane through formation of an array of inclined facets,
and the quicker propagation of type A facets as compared to type B ones, in a remarkable way.

Although the theoretical framework employed in [Pons and Karma 2010] differed from standard linear
elastic fracture mechanics (LEFM), it has been shown by Hakim and Karma [2009] that in the limit where
the system size becomes much larger than the process zone size, Karma et al.’s phase field model [2001]
in fact predicts that quasistatic crack propagation in isotropic media is governed by a combination of two
classical LEFM criteria: a condition of uniform energy release rate along the front (Griffith’s criterion
[1921]), and a condition of zero SIF of mode II (Goldstein and Salganik’s principle of local symmetry
[1974]). This was the motivation for Leblond et al.’s theoretical analysis [2011], within the framework
of LEFM, of the possible bifurcation from coplanar to noncoplanar propagation of cracks loaded in
mode I+III. This analysis combined assumptions of constant value of the local energy release rate and
zero value of the local mode II SIF all along the crack front, in line with the findings of Hakim and
Karma [2009] and Pons and Karma [2010], with technical results of Gao and Rice [1986] and Movchan
et al. [1998] on in-plane and out-of-plane perturbations of a plane crack. A bifurcation from coplanar
to noncoplanar propagation was concluded to exist for values of the ratio of the mode III to mode I SIF
larger than some threshold depending on Poisson’s ratio.

However, the threshold was found to be of the order of 0.5 for standard values of Poisson’s ratio. The
bifurcation analysis could therefore not explain the fact that deviations of the crack from its original plane
are currently observed for much smaller values of the ratio of the mode III to mode I SIF — a threshold
of the order of 0.05 was mentioned in [Sommer 1969], and Pham and Ravi-Chandar [2014] have even
claimed that there is no threshold at all.

The aim of this paper is to propose a possible explanation for this observation. The idea is that even for
low values of the ratio of the mode III to mode I SIF, for which no bifurcation is predicted, deviations from
coplanarity might occur because of a strong influence of imperfections upon the propagation path — quite
in the same way as the influence of imperfections explains, for thin shells, the quick deviations from the
fundamental deformed state currently observed for loads much lower than the theoretical buckling load.
A typical example of inevitable imperfections consists of random fluctuations of the fracture toughness
within the crack plane. Such fluctuations are bound to generate in-plane undulations of the crack front.
It is intuitively obvious, and has been proved rigorously by Gao and Rice [1986], that the mode III load
must generate nonzero and opposite local mode II SIF on the two sides of a local coplanar protrusion of
the front; this implies that the crack will tend to extend out of its original plane in opposite directions on
these two sides, thus giving birth to an incipient noncoplanar facet. If, in addition, Cotterell and Rice’s
well-known “directional stability criterion” [1980] happens to be violated because of a locally positive
nonsingular stress in the direction of crack propagation, the deviation of this facet from the original crack
plane may quickly increase as the crack propagates, even in the absence of a true bifurcation.
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Figure 1. Slight in-plane perturbation of a plane crack in an arbitrary body.

Investigation of this idea, in the typical case of a semi-infinite crack in some infinite body, requires
that the local SIF and nonsingular stresses be known for such a crack, endowed with a slightly, coplanarly
perturbed front. The calculation of the SIF was carried out in [Rice 1985] and [Gao and Rice 1986], with
definitive results. That of the nonsingular stresses was carried out in [Gao 1992], but with restrictive
hypotheses and incomplete results, making the completion of the task an indispensable prerequisite.

The paper is organized as follows:

• Section 2 briefly recalls some elements of the theory of 3D weight functions [Rice 1985; Bueckner
1987], which serve as a basis in the analysis to follow.

• From there, Section 3 presents the calculation of the first-order variation of the stresses on the crack
plane resulting from some small but otherwise arbitrary in-plane perturbation of the crack front.

• We then derive from there, in Section 4, the first-order variations of the nonsingular stresses under
similar conditions.

• Section 5 briefly recalls Leblond’s 3D extension [1999] of Cotterell and Rice’s original 2D di-
rectional stability analysis of a propagating crack [1980], indispensable for the application of the
preceding results to crack propagation in mode I+III.

• Finally, Section 6 considers the case of a sinusoidal in-plane perturbation of the crack front, and
examines whether Cotterell and Rice’s directional stability criterion [1980] (as extended to the 3D
case) is met or not, distinguishing between those parts of the undulated front about to give birth to
type A and type B facets.

2. Elements of Rice and Bueckner’s 3D weight function theory

Consider an arbitrary body � made of some linear elastic isotropic material, and containing an arbitrary
planar crack (Figure 1). Assume that prescribed displacements are imposed on the portion ∂�u of the
boundary of this body, while prescribed tractions are imposed on the complementary portion ∂�T . This
loading generates a distribution of SIF K 0

I (s), K 0
II(s), K 0

III(s), where s denotes a curvilinear abscissa
along the crack front C, on this front.
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Now slightly perturb C within the crack plane, while keeping the loading applied on ∂�u and ∂�T

unchanged. Let εφ(s), where ε is a small parameter and φ(s) a given, fixed function, denote the distance
from the original front to the perturbed one, as measured perpendicularly to the former front. The compo-
nents δui (r), in an arbitrary orthonormal basis (e1, e2, e3), of the resulting variation of displacement δu
at the point r of the body, are given to first order by Rice’s formula [1985]:

δui (r)=
∫

C
23αβhiα(r, s)K 0

β(s)εφ(s) ds. (1)

In this expression:

• the indices α and β take the values I, II and III, and Einstein’s implicit summation convention is
used for them;

• the coefficients 3αβ are those appearing in the quadratic form of the SIF defining the energy release
rate, given by1

3I,I =3II,II =
1−ν2

E
, 3III,III =

1+ν
E
, other 3αβ = 0, (2)

where E and ν denote Young’s modulus and Poisson’s ratio;

• finally, the hiα(r, s) are the 3D weight functions of the cracked geometry considered [Rice 1985;
Bueckner 1987]; hiα(r, s) represents the α-th SIF generated at the point s of the crack front by
a unit point force applied in the direction ei at the point r of the body, zero displacements being
simultaneously prescribed on ∂�u and zero tractions on ∂�T .

Now, f being an arbitrary function of position and r an arbitrary point on the crack plane lying inside
the crack contour, let

〈 f 〉(r)≡ 1
2 [ f (r

+)+ f (r−)] (3)

denote the average of the values of this function at the points r+, r− of the upper (+) and lower (−)
faces of the crack. With this notation, application of (1) on the crack faces yields

〈δui 〉(r)=
∫

C
23αβ〈hiα〉(r, s)K 0

β(s)εφ(s) ds, (4)

where 〈hiα〉(r, s), a crack-face weight function (CFWF), now represents the α-th SIF generated at the
point s of the crack front by two half-unit point forces applied in the direction ei at the points r+, r− of
the crack faces, zero displacements being simultaneously prescribed on ∂�u and zero tractions on ∂�T .

3. First-order variation of the stresses on the crack faces

3.1. Generalities. Consider now, more specifically, a semi-infinite crack located in some infinite body
subjected to prescribed forces only (Figure 2). Following the usual convention, define a Cartesian frame
(O, x, y, z) with O on the unperturbed crack front, x in the direction of propagation, y in the direction
of the normal to the crack plane, and z in the direction of the crack front. Also, characterize the position
of the unperturbed front Oz through its distance a to some fixed “reference line” parallel to it in the
crack plane.

1For the sake of clarity, commas separating the indices are exceptionally introduced into this equation.
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Figure 2. Slight in-plane perturbation of a semi-infinite crack loaded arbitrarily.

Equation (4) then takes the special form, with obvious notations,

〈δui 〉(x, z)=
∫
+∞

−∞

23αβ〈hiα〉(x, z; z′)K 0
β(z
′)εφ(z′) dz′. (5)

The aim of this section is to derive from there the expressions of the average variations 〈δσxx 〉, 〈δσzz〉

and 〈δσxz〉 of the in-plane stresses on the crack faces. When (5) is used for this sole purpose, some
simplifications arise:

• It is enough to know the in-plane components 〈δux 〉, 〈δuz〉 of the average variation of displace-
ment 〈δu〉; the out-of-plane component 〈δu y〉 is not needed.

• The expressions of these in-plane components involve the CFWFs 〈hxα〉 and 〈hzα〉, which are
nonzero only for α = I, since the loadings implied, consisting of half-unit point forces applied
on the crack faces in the directions x and z, are symmetric with respect to the crack plane and
therefore do not generate any mode II or III.

The formulae required therefore simply read, by (2),
〈δux 〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈hx I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′,

〈δuz〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈hz I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′.

(6)

3.2. Variations of the displacement components and their spatial derivatives. The CFWFs 〈hx I 〉, 〈hz I 〉

for a semi-infinite crack have been calculated in [Bueckner 1987; Kuo 1993; Movchan et al. 1998]. The
simplest way of expressing the results is as follows [Kuo 1993]: assume that point forces of intensities Fx

and Fz are simultaneously applied in the directions x and z on the points (x, y= 0+, z) and (x, y= 0−, z)
of the upper and lower crack faces; these forces together generate a mode I SIF kI at the point z′ of the
crack front given by
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kI(z′)≡ 2Fx 〈hx I 〉(x, z; z′)+ 2Fz〈hz I 〉(x, z; z′)= 1
4
√
π

1−2ν
1−ν

Re
{

Fx + i Fz

[−x + i(z′− z)]3/2

}
, (7)

where the cut of the complex power function is along the half-line of nonpositive reals. Since this
compact formula “couples” the CFWFs 〈hx I 〉 and 〈hz I 〉, it seems appropriate, when inserting it into the
expressions (6) of 〈δux 〉 and 〈δuz〉, to introduce arbitrary real parameters α, β and consider the single
quantity 〈αδux +βδuz〉 rather than 〈δux 〉 and 〈δuz〉 individually. One thus gets

〈αδux +βδuz〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈αhx I +βhz I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′

=
(1+ν)(1−2ν)

4
√
π E

Re
{∫
+∞

−∞

α+ iβ
[−x + i(z′− z)]3/2

K 0
I (z
′)εφ(z′) dz′

}
,

or, equivalently, after integration by parts,

〈αδux +βδuz〉(x, z)= (1+ν)(1−2ν)
2
√
π E

Re
{∫
+∞

−∞

β − iα
[−x + i(z′− z)]1/2

(K 0
I εφ)

′(z′) dz′
}
. (8)

Differentiating this equation with respect to x and z, and then ascribing the values (1, 0) and (0, 1) to
the pair (α, β), one gets the average spatial derivatives of the components of the variation of displacement:

〈
∂δux
∂x

〉
(x, z)=−

〈
∂δuz
∂z

〉
(x, z)= (1+ν)(1−2ν)

4
√
π E

Im
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
,〈

∂δux
∂z

〉
(x, z)=

〈
∂δuz
∂x

〉
(x, z) = (1+ν)(1−2ν)

4
√
π E

Re
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
.

(9)

3.3. Variations of the stress components. The stress components σyx , σyy and σyz being zero on the
crack faces, the average variations 〈δσxx 〉, 〈δσzz〉, 〈δσxz〉 of the in-plane stresses on these faces may be
obtained from the expressions (9) through application of the plane stress elastic stiffness tensor:

〈δσxx 〉(x, z)=−〈δσzz〉(x, z)= 1−2ν
4
√
π

Im
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
,

〈δσxz〉(x, z) =
1−2ν
4
√
π

Re
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
.

(10)

Equation (10)1 implies in particular that the average variation 〈δσxx + δσzz〉 is zero whatever the
perturbation of the crack front; this means that at a given point of the broken region of the crack plane,
the average 2D trace of the stress tensor, 〈σxx + σzz〉, is independent of the position and shape of the
crack front. This remarkable property is noted here in the special case of a semi-infinite crack, but was
shown by Gao [1992] to in fact hold for any planar crack of arbitrary contour in some infinite body.

The variations of the nonsingular stresses will be deduced from the asymptotic behavior of 〈δσxx 〉,
〈δσzz〉, 〈δσxz〉 near the crack front, that is in the limit x → 0−. This makes it necessary to evaluate
the limit

lim
x→0−

∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′.
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In order to do so, rewrite the integral as∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′

=

∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
[−x + i(z′− z)]3/2

dz′+ (K 0
I εφ)

′(z)
∫
+∞

−∞

dz′

[−x + i(z′− z)]3/2
.

The second integral in the right-hand side is obviously zero, and the first one goes to the limit∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
[i(z′− z)]3/2

dz′

as x → 0−. (Note that this integral is convergent at the point z′ = z since the integrand behaves like
|z′ − z|−1/2 near it.) Evaluating [i(z′ − z)]3/2 using the definition of the complex power function and
distinguishing between the cases z′ < z and z′ > z, one concludes that

lim
x→0−

∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x+i(z′−z)]3/2

dz′ =− 1
√

2

∫
+∞

−∞

(K 0
I εφ)

′(z′)−(K 0
I εφ)

′(z)
|z′−z|3/2

dz′

−
i
√

2

∫
+∞

−∞

sgn(z′− z)
(K 0

I εφ)
′(z′)−(K 0

I εφ)
′(z)

|z′−z|3/2
dz′, (11)

where sgn(x) denotes the sign of x .
Inserting (11) into the expressions (10) of 〈δσxx 〉, 〈δσzz〉, 〈δσxz〉, one finally gets the desired limits:

〈δσxx 〉(0−, z)=−〈δσzz〉(0−, z)

=−
1−2ν
4
√

2π

∫
+∞

−∞

sgn(z′− z)
(K 0

I εφ)
′(z′)− (K 0

I εφ)
′(z)

|z′− z|3/2
dz′,

〈δσxz〉(0−, z)=− 1−2ν
4
√

2π

∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
|z′− z|3/2

dz′.

(12)

4. First-order variations of the nonsingular stresses

4.1. Special case of an immobile point of the crack front. In a first step, we wish to derive the variations
of the nonsingular stresses for an immobile point of the crack front, having φ(z) = 0. In such a case
the point of observation of the in-plane stresses to be used to define the nonsingular stresses, located
just behind the crack front, does not move when this front is perturbed; hence the local variations of the
nonsingular stresses are simply related to the local average variations of the in-plane stresses.

More specifically, define a Cartesian frame (P, x1, x2≡ y, x3) “adapted” to the perturbed crack front at
the immobile point P considered (Figure 3). To first order in the perturbation, the unit vectors e1, e2, e3

corresponding to the coordinates x1, x2, x3 are related to the vectors ex , ey , ez corresponding to the
coordinates x , y, z adapted to the unperturbed front through the relations

e1 = ex − εφ
′(z)ez, e2 = ey, e3 = ez + εφ

′(z)ex . (13)

In the local frame, the average in-plane stress components 〈σ11〉, 〈σ33〉, 〈σ13〉

• are zero for the first, singular term of the Williams expansion of the stresses;



306 JEAN-BAPTISTE LEBLOND AND VÉRONIQUE LAZARUS

y = x2

O x

x1

P

εφ′(z)

x3

z

Figure 3. Definition of local axes for the perturbed front.

• are equal to the nonsingular stresses T11, T33, T13 for the second term;

• vanish close to the crack front for the next terms.

Hence T11, T33, T13 may be identified to the limits of 〈σ11〉, 〈σ33〉, 〈σ13〉 when the point of observation of
these quantities gets infinitely close to the crack front. Therefore, unperturbed values and variations of
quantities being denoted with symbols 0 and δ respectively, the average perturbed stress tensor 〈σ 0

+ δσ 〉

on the crack faces close to the front may be expressed as

〈σ 0
+ δσ 〉(0−, z)= [T 0

11(z)+ δT11(z)]e1⊗ e1+ [T 0
33(z)+ δT33(z)]e3⊗ e3

+ [T 0
13(z)+ δT13(z)](e1⊗ e3+ e3⊗ e1)

= [T 0
11(z)+ δT11(z)]ex ⊗ ex + [T 0

33(z)+ δT33(z)]ez ⊗ ez

+ [T 0
13(z)+ δT13(z)](ex ⊗ ez + ez ⊗ ex)

+ 2T 0
13(z)εφ

′(z)ex ⊗ ex − 2T 0
13(z)εφ

′(z)ez ⊗ ez

+ [T 0
33(z)− T 0

11(z)]εφ
′(z)(ex ⊗ ez + ez ⊗ ex),

where (13) has been used.
But, on the other hand, this average perturbed stress tensor may also be expressed as

〈σ 0
+ δσ 〉(0−, z)=

〈σ 0
xx + δσxx 〉(0−, z)ex ⊗ ex +〈σ

0
zz + δσzz〉(0−, z)ez ⊗ ez +〈σ

0
xz + δσxz〉(0−, z)(ex ⊗ ez + ez ⊗ ex).

Comparison of these two formulae and identification of the first-order terms yields the following expres-
sions for the variations of the nonsingular stresses:

δT11(z)=−2T 0
13(z)εφ

′(z)+〈δσxx 〉(0−, z),

δT33(z)= 2T 0
13(z)εφ

′(z)+〈δσzz〉(0−, z),

δT13(z)= [T 0
11(z)− T 0

33(z)]εφ
′(z)+〈δσxz〉(0−, z),

(14)

where the average variations of the stresses are given by the equations (12).
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4.2. General case. In order to now evaluate the variations of the nonsingular stresses in the general case
where φ(z) 6= 0, we use the same trick as in [Rice 1985; Gao and Rice 1986] on the variations of the
SIF: we decompose the perturbation εφ in the form

εφ(z′)= εφ(z)+ εφ(z′), where φ(z′)≡ φ(z′)−φ(z). (15)

• The first term of the decomposition represents a translation of the unperturbed crack front by the
distance εφ(z), which generates a variation of the nonsingular stress Ti j equal to (∂T 0

i j/∂a)(z)εφ(z),
where (∂T 0

i j/∂a)(z) is the derivative of the unperturbed nonsingular stress T 0
i j with respect to the

position a of the straight crack front; see Figure 2.2

• The second term represents a motion in which the point z remains immobile. Therefore, the
equations (14) may be used, with φ(z′) instead of φ(z′), to evaluate the resulting variations of
the nonsingular stresses.

Adding the contributions of the two terms, and using the equations (12) for the average variations of
the stresses and the definition (15)2 of the function φ, one finally gets the following formulae for the
variations of the nonsingular stresses in the general case:

δT11(z)=
∂T 0

11

∂a
(z)εφ(z)− 2T 0

13(z)εφ
′(z)−

1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

}sgn(z′− z)
|z′− z|3/2

dz′; (16)

δT33(z)=
∂T 0

33

∂a
(z)εφ(z)+ 2T 0

13(z)εφ
′(z)+

1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

}sgn(z′− z)
|z′− z|3/2

dz′; (17)

δT13(z)=
∂T 0

13

∂a
(z)εφ(z)+ [T 0

11(z)− T 0
33(z)]εφ

′(z)−
1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

} dz′

|z′− z|3/2
. (18)

It is worth noting that, unlike the average variation 〈δσxx + δσzz〉, the variation δT11+ δT33 is nonzero
in general. The effect arises solely from the terms (∂T 0

11/∂a)(z)εφ(z) and (∂T 0
33/∂a)(z)εφ(z) in the

right-hand sides of (16) and (17), the sum of which has no reason to be zero. In physical terms, even
though 〈σxx + σzz〉, at a given, fixed point of the broken region of the crack plane, is independent of the
position and shape of the crack front, evaluating the variation of T11+ T33 implies following the point of
observation of 〈σxx + σzz〉 as the front moves, which inevitably entails a variation of this quantity.

4.3. Comparison with the work of Gao. Gao [1992] did not consider only the case of an initially straight
crack front as in the present work, but also that of a circular one. However, he introduced a number of
restrictive hypotheses not made here:

2The additional dependence of this quantity and other ones upon the argument a is omitted to alleviate the notation.
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• A pure mode I loading was assumed. However, our general expressions (16), (17) and (18) for
δT11, δT33 and δT13, respectively, show that considering more general mixed-mode loadings would
not in fact have changed anything, since the unperturbed SIFs K 0

II, K 0
III of modes II and III do not

appear in them.

• The unperturbed SIF K 0
I of mode I was assumed to be independent of the position z along the crack

front. The possible variation of K 0
I along this front does modify the expressions (16)–(18) through

the term (K 0
I )
′(z′)[εφ(z′)− εφ(z)] appearing in the integrand in each of them.

• The perturbation of the crack front was assumed to be sinusoidal. This was in fact equivalent to
providing the expressions for δT11, δT33, δT13 in Fourier space. However, our expressions (16), (17),
(18) in the physical space are interesting in themselves, and getting them from those of [Gao 1992]
through inverse Fourier transform is not a completely straightforward operation.

With these hypotheses, Gao obtained expressions for δT11, δT33, δT13 coinciding exactly with the
integral terms in the right-hand sides of our equations (16), (17), (18), as evaluated for a sinusoidal per-
turbation. However all additional terms proportional to the ∂T 0

i j/∂a and T 0
i j were absent. These terms were

apparently really missing in the sense that the hypotheses made did not seem to permit discarding them.

5. Cotterell and Rice’s directional stability criterion for 3D cracks

In this section, we briefly recall, as a prerequisite for Section 6, Leblond’s 3D extension [1999] of
Cotterell and Rice’s classical 2D analysis of directional stability of a propagating crack [1980].

We therefore consider, within an arbitrary 3D body, an initially planar crack of arbitrary contour, and
denote by s some curvilinear abscissa along this contour. This crack is loaded through some system of
prescribed forces and/or displacements generating distributions of SIF KI(s), KII(s), KIII(s) and non-
singular stresses T11(s), T33(s), T13(s) along its front. These distributions are arbitrary except that the
mode II SIF KII(s) is assumed to be everywhere small.

Because of the presence of mode II, the crack propagates in a slightly noncoplanar way. More specif-
ically, at each point P(s) of the original crack front, propagation of the crack results in the creation of
some small, slightly kinked and curved extension; the length of this extension is ηψ(s) where η is a small
parameter and ψ a given function, and its equation reads, in the local “adapted” frame (P(s), x1, x2, x3)

defined as in Figure 3,
x2 = θ(s)x1+ a(s)x3/2

1 + O(x2
1), (19)

where θ(s) (� 1) is the local “kink angle” and a(s) a local “curvature parameter” (Figure 4, where KII(s)
is assumed to be negative in order for θ(s) to be positive; see (21) below). The peculiar shape of the
curve defined by (19), resulting from the term proportional to x3/2

1 instead of simply x2
1 , will be seen to

be necessary for the propagation criterion to be satisfied.
Leblond [1999] and Leblond et al. [1999] have derived, under such conditions, the expansions of

the SIFs KI(s; η), KII(s; η), KIII(s; η) along the extended front in powers of η. At order η1/2, these
“extended SIFs” depend upon the geometrical and mechanical parameters only through their local values
at that point where they are evaluated,3 and are given by formulae very similar to those of [Cotterell

3This does not remain true at order η1
= η: the expressions of the extended SIF at a given point depend at that order upon

the whole distribution of geometrical and mechanical parameters on the crack front; see [Leblond et al. 1999].
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mode II

mode I

x3

x2

ηψ(s)

P(s)

θ(s)

θ(s)x1+a(s)x3/2
1 +O(x2

1)

x1

Figure 4. Geometric hypotheses and notations for Cotterell and Rice’s directional sta-
bility analysis of a propagating crack.

and Rice 1980] for the 2D case, except for the extra dependence of all quantities on s. In particular, the
expansion of KII(s; η) reads

KII(s; η)= KII(s)+ 1
2θ(s)KI(s)+

[
−2
√

2/π θ(s)T11(s)+ 3
4 a(s)KI(s)

]√
ηψ(s)+ O(η). (20)

(Note that limη→0+ KII(s; η) differs from KII(s) because of the kink.) This equation may be used to
predict the values of the local kink angle θ(s) and curvature parameter a(s), assuming the shape of the
propagating crack to be governed by Goldstein and Salganik’s principle of local symmetry [1974], which
demands that KII(s; η) be constantly zero after the initial kink. This condition yields:

• at order η0
= 1,

θ(s)=−2
KII(s)
KI(s)

; (21)

• at order η1/2,

a(s)= 8
3

√
2/π

T11(s)
KI(s)

θ(s). (22)

Equation (22) permits us to discuss the local directional stability of crack propagation. Cotterell and Rice
[1980] indeed consider that directional stability prevails if the effect of the curvature parameter a(s) tends
to counterbalance that of the kink angle θ(s) and bring the crack back to its original plane, that is, if these
quantities are of opposite signs.4 This leads to the following criterion (since necessarily KI(s) > 0):

directional stability ⇐⇒ T11(s) < 0. (23)

6. Application to deviation of a mode I+III crack from coplanarity

6.1. Position of the problem. We now consider a semi-infinite crack loaded in mode I+III in an infinite
body (Figure 5). The unperturbed SIFs K 0

I , K 0
III on the straight configuration of the crack front are

assumed to be uniform along this front. Inevitable fluctuations of the fracture toughness within the crack
plane are assumed to generate small in-plane undulations of the front depicted by the typically sinusoidal
perturbation

εφ(z)≡ ε cos(kz) (k > 0). (24)

4Though reasonable, this condition does not result from some fundamental stability theory, but simply from some ad hoc
postulate; this is why such prudent expressions as “directional stability in the sense of Cotterell and Rice” and “Cotterell and
Rice’s directional stability criterion” are used in this paper.
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mode I

mode III

x

y

z

O

ε cos(kz)

A

B

A

B

Figure 5. In-plane sinusoidal perturbation of a semi-infinite crack loaded in mode I+III.

In Figure 5, the zones of the perturbed crack front having cos(kz) > 0 and < 0 are indicated with the
symbols A and B, respectively, meaning that they are anticipated to generate future noncoplanar facets
of these types. Indeed, the former, more advanced zones will generate facets lying ahead of the mean po-
sition of the front, which is a typical property of type A ones (see the introduction); conversely, the latter,
less advanced zones will generate facets lying behind the same position, which is typical of type B ones.

Making use of the results of the preceding sections, we wish to study the deviation from coplanarity and
directional stability of the incipient facets on the two types of zones. This first requires us to determine
the distributions of the second SIF KII and first nonsingular stress T11 along the coplanarly perturbed
crack front.

6.2. Expression of the perturbed mode II stress intensity factor. Gao and Rice [1986] have calculated,
for the semi-infinite crack considered, the variations of the SIF resulting from some arbitrary coplanar
perturbation of the front; their result for the mode II SIF reads

δKII(z)=
∂K 0

II

∂a
(z)εφ(z)− 2

2−ν
K 0

III(z)εφ
′(z)+ 1

2π
2−3ν
2−ν

PV
∫
+∞

−∞

K 0
II(z
′)
εφ(z′)− εφ(z)
(z′− z)2

dz′, (25)

where (∂K 0
II/∂a)(z) is the derivative of the unperturbed mode II SIF K 0

II with respect to the position a
of the straight crack front (see Figure 2) and the symbol PV

∫
denotes the Cauchy principal value of

an integral. In the special case considered here, where K 0
II and K 0

III are, respectively, zero and uniform
along the unperturbed front and the perturbation εφ is of the form (24), this yields

KII(z)= δKII(z)=
2

2−ν
K 0

III kε sin(kz) (26)

for the mode II SIF KII along the perturbed front.

6.3. Expression of the perturbed first nonsingular stress. In order to now evaluate the nonsingular
stress T11 along the coplanarly perturbed crack front, we introduce the following hypotheses:
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• The unperturbed SIFs K 0
I and K 0

III are comparable in magnitude. Also, the unperturbed nonsingular
stresses T 0

i j and their derivatives ∂T 0
i j/∂a with respect to the position of the straight crack front are

of the order of K 0
I L−1/2 and K 0

I L−3/2, respectively, where L is the characteristic length defined by
the loading (in the absence of any characteristic length scale defined by the geometry itself).

• The characteristic length L is much larger than the typical distance of fluctuation of the fracture
toughness, and therefore than the wavelength λ ≡ 2π/k of the perturbation resulting from the
nonuniformity of this toughness.

The perturbation εφ and its derivative εφ′ being of the order of ε and kε, respectively, it follows from
the first hypothesis that the first, second and third terms in the right-hand side of the expression (16) of
δT11 are of the order of K 0

I L−3/2ε, K 0
I L−1/2 kε and K 0

I k3/2ε, respectively. Since the second hypothesis
implies that kL � 1, the first and second terms are negligible compared to the third one. It follows that,
for the sinusoidal perturbation considered,

δT11(z)'−
1− 2ν

4
√

2π

∫
+∞

−∞

K 0
I [−kε sin(kz′)+ kε sin(kz)]

sgn(z′− z)
|z′− z|3/2

dz′

=
1− 2ν

4
√

2π
K 0

I kε Im
[∫
+∞

−∞

(eikz′
− eikz)

sgn(z′− z)
|z′− z|3/2

dz′
]

=
1− 2ν

4
√

2π
K 0

I kε Im
[

eikz
∫
+∞

−∞

(eikζ
− 1)

sgn(ζ )
|ζ |3/2

dζ
]

=
1− 2ν

2
√

2π
K 0

I kε Im
[

ieikz
∫
+∞

0
sin(kζ )

sgn(ζ )
ζ 3/2 dζ

]
,

where use has been made of the change of variable ζ ≡ z′− z and parity properties. Calculation of the
last integral using [Gradshteyn and Ryzhik 1980, formulae (3.7614) and (8.338.3)] then yields

δT11(z)'
( 1

2 − ν
)
K 0

I k3/2ε cos(kz). (27)

This expression happens to exactly coincide with [Gao 1992, formula (44)]. This means that the terms
disregarded by Gao without proper justification (see Section 4.3 above) are indeed negligible with the
hypotheses introduced above.

Equation (27) confirms that δT11 is of order K 0
I k3/2ε, as anticipated, whereas T 0

11 is of order K 0
I L−1/2.

We therefore introduce the following final hypothesis:

• The characteristic length L defined by the loading, and the fluctuations of toughness generating
the in-plane undulations of the crack front, are sufficiently large for the dimensionless quantity
k3/2εL1/2

= kε
√

kL to be much larger than unity. (Note that this hypothesis does not contradict
that of smallness of the perturbation: indeed, one may have |εφ′| ∼ kε� 1 but kε

√
kL � 1, since

kL is assumed to be much larger than unity.)

Then the unperturbed nonsingular stress T 0
11 is negligible compared to its variation δT11, so that

T11(z)' δT11(z)'
( 1

2 − ν
)
K 0

I k3/2ε cos(kz). (28)
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6.4. Analysis of deviation from coplanarity and directional stability. As remarked by Gao and Rice
[1986], (26) implies that the mode II SIF KII(z) takes nonzero and opposite values on the two sides of a
local bump or hollow of the coplanarly perturbed crack front. It then follows from (21) (with KI(z), KII(z)
instead of KI(s), KII(s)) that the subsequent kink angle θ(z) will also take nonzero and opposite values
on these two sides, implying formation of an incipient noncoplanar facet gradually rotating about the
direction of propagation of the crack.

To pursue the analysis, assume for instance K 0
III to be positive and consider a zone of the coplanarly

perturbed crack front having cos(kz) > 0, thus lying ahead of its mean position. Over such a zone, the
function sin(kz) increases so that, by (21) and (26), the kink angle θ(z) of the future noncoplanar facet is
a decreasing function of z. Looking at Figure 5 and imagining a facet with this property, one easily sees
that it tends to rotate in time in the positive direction about the axis Ox , and that this rotation tends to
gradually enhance the local value of the mode I SIF and lower that of the mode III SIF. Such evolutions
of the SIF are, as explained in the introduction, typical of type A facets. This confirms the anticipated
property that a facet formed from a locally more advanced zone of the crack front must be of this type.

Conversely, over a zone having cos(kz) < 0, thus lying behind the mean position of the front, sin(kz)
decreases, θ(z) increases, the facet rotates in the negative direction about the axis Ox , so that the mode I
SIF decreases in time, whereas that of mode III increases. Such evolutions are typical of type B facets.
This again confirms the anticipated property that facets formed from less advanced zones of the crack
front must be of that other type.

The preceding analysis, however, says nothing about the directional stability of the facets. To examine
this question, consider the expression (28) for the nonsingular stress T11(z) on the coplanarly perturbed
crack front. On a zone having cos(kz) > 0, about to generate a type A facet, this nonsingular stress is
positive, so that Cotterell and Rice’s directional stability criterion (23) is violated, implying directional
instability; conversely, on a zone having cos(kz) < 0, about to generate a type B facet, Cotterell and Rice’s
criterion is met, implying directional stability. This suggests that, in addition to the tendency of type A
facets to propagate ahead of type B ones, there is a tendency of the former facets to deviate more and more
in time from the original crack plane, versus of the latter ones to come back to it. These elements provide
some theoretical ground for the intuitive idea that the crack would ideally like to develop exclusively
along noncoplanar facets of type A, type B ones being present only because they are geometrically
necessary to join them.

It is important to note that the tendencies just mentioned are completely independent of the value of
the ratio K 0

III/K 0
I (as long as K 0

III is nonzero, which is a necessary condition for out-of-plane deviations of
the crack to appear). Thus, increasing deviations from coplanarity of type A facets generated by in-plane
fluctuations of the fracture toughness are probable because of a Cotterell–Rice-type instability, even for
low values of this ratio. An instability of this type is therefore a good candidate for the explanation
of increasing deviations of mode I+III cracks from coplanarity observed experimentally for values of
K 0

III/K 0
I smaller, or even much smaller than Leblond et al.’s theoretical threshold for occurrence of a

bifurcation [2011].5

One may analyze in more detail the importance of the Cotterell–Rice-type instability as a function of

5It cannot be the sole explanation, however, since such deviations could be observed in Pons and Karma’s numerical simu-
lations [2010] of crack propagation in mode I+III based on Karma et al.’s phase field model [2001], though they did not include
fluctuations of the fracture toughness.
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Figure 6. Fracture facets in mode I+III. Experiment by Buchholz, photograph by Lazarus.

the wavelength λ= 2π/k of the coplanar crack front perturbation. This requires comparing the values of
the curvature parameter a(z) of the incipient facets for various initial in-plane sinusoidal perturbations
of the crack front, having different wavelengths. Combination of equations (21) and (22) (with KI(z),
KII(z), T11(z) instead of KI(s), KII(s), T11(s)), (26) and (28) yields

a(z)=−16
3

√
2
π

1−2ν
2−ν

K 0
III

K 0
I

k5/2ε2 sin(kz) cos(kz). (29)

This expression makes it clear that, when comparing the curvature parameters a(z) of various perturba-
tions, one should fix their amplitude ε in some way, otherwise the obvious effect of this amplitude will
mask that of the wavenumber k. A logical way of doing so is to consider “homothetic” perturbations
identical in shape but not in size, that is, sinusoidal fronts having the same maximal “slope” kε in the
crack plane but different wavenumbers k. Equation (29) shows that a(z) is proportional to (kε)2

√
k, that

is, to
√

k or 1/
√
λ for a given value of kε. Therefore, the smaller the value of λ, the larger that of a(z) in

absolute value; in other words, the smaller the wavelength of the initial in-plane perturbation, the more
directionally unstable the incipient facets it generates, if of type A, and the more directionally stable these
facets, if of type B. This theoretical conclusion finds some experimental support in the fact that incipient
facets actually observed are generally of tiny initial wavelength, apparently limited in smallness only
by the microstructure of the material. This is illustrated in Figure 6, which shows a photograph taken
by Lazarus of a mode I+III fracture surface generated in a glass specimen by Buchholz, where the
initial crack is located at the very top and propagates toward the bottom. (The photograph also shows
that the wavelength of the facets does not remain small when their length increases, due to the gradual
“coarsening” resulting from their progressive coalescence; such a phenomenon of course completely
eludes the present analysis limited to incipient facets.)

7. Conclusion

This paper was devoted to the investigation of the idea that quick deviations of cracks loaded in mode I+III
from their original plane might be made much easier by a strong influence of imperfections. Such an
influence could stand as a plausible explanation for the fact that, as reported notably by Sommer [1969]
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and Pham and Ravi-Chandar [2014], such deviations are frequently observed experimentally for small
values of the ratio of the mode III to mode I unperturbed SIFs, lying below or even much below the
theoretical threshold for occurrence of a bifurcation calculated by Leblond et al. [2011].

A typical example of inevitable imperfections consists of small fluctuations of the fracture toughness
within the initial crack plane, which generate small in-plane undulations of the crack front. Rice [1985]
and Gao and Rice [1986] calculated the distributions of the SIFs of the three modes resulting from a slight
but otherwise arbitrary in-plane perturbation of the front of a semi-infinite crack loaded arbitrarily; in
particular, Gao and Rice showed that the local mode II SIF takes nonzero and opposite values on the two
sides of a local protrusion of this front, implying future local deviations of the propagating crack from
coplanarity of opposite signs on these two sides, giving birth to an incipient “fracture facet” gradually
rotating about the direction of propagation.

Gao and Rice, however, left open the question of the “directional stability” of these facets. It was pre-
cisely the main purpose of the present paper to complement their work by analyzing this question, using
Cotterell and Rice’s well-known “directional stability criterion” [1980] (duly extended to the 3D case by
Leblond [1999]).

Since Cotterell and Rice’s stability condition is on the sign of the nonsingular stress parallel to the
direction of propagation, its application to the analysis of directional stability of the facets requires
knowledge of the distributions of the nonsingular stresses for a crack with a slightly, coplanarly perturbed
front. The necessary calculations were performed by Gao [1992], but with some restrictive hypotheses
and unjustifiably omitting some terms, which made it necessary to revisit the problem. This has been done
here by using the theory of 3D weight functions [Rice 1985; Bueckner 1987]. Fully general formulae
have been obtained for the variations of the nonsingular stresses resulting from some slight but otherwise
arbitrary in-plane perturbation of a semi-infinite crack, confirming and completing the partial results of
[Gao 1992].

The formula obtained for the variation of the nonsingular stress parallel to the direction of crack
propagation was then applied to a typically sinusoidal coplanar perturbation of the front. A distinction
was made between the more advanced zones of the front, about to generate an incipient facet of “type A”
rotating about the direction of propagation, so as to raise the local proportion of mode I versus mode
III, and the less advanced ones, about to generate a facet of “type B”, rotating oppositely so as to lower
this proportion.

It has been found that, provided that the length scale defined by the loading and the fluctuations of
the fracture toughness are large enough, the nonsingular stress parallel to the direction of propagation is
positive on the former zones, implying directional instability, and negative on the latter ones, implying
directional stability. This shows that even for low values of the ratio of the mode III to mode I unperturbed
SIFs, crack propagation in mode I+III may occur through preferential formation of noncoplanar facets
of type A, because of a local Cotterell–Rice-type instability — which confirms the idea investigated.

It has also been found that the smaller the wavelength of the initial in-plane perturbation, the stronger
Cotterell and Rice’s instability on the resulting incipient facets of type A. This implies preferential de-
velopment of type A facets of small initial wavelength, in agreement with experimental observations.
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