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INTEGRAL EQUATIONS FOR 2D AND 3D PROBLEMS OF
THE SLIDING INTERFACE CRACK BETWEEN ELASTIC AND RIGID BODIES

ABDELBACET OUESLATI

This paper revisits the sliding interface crack problem between elastic and rigid half-planes studied by
Bui and Oueslati and provides an alternative method of derivation of the solution, which will then be
extended to three-dimensional (3D) crack problems. Based upon the displacement continuation tech-
nique of complex potentials, an appropriate Green function for the isolated edge dislocation dipole at the
interface is given. Then by considering the sliding condition along the interface crack, the field equations
can be obtained for the two-dimensional (2D) problem. Furthermore, it is shown that the edge dislocation
dipole in 2D appears to be a particular form of the fundamental Kupradze–Basheleishvili tensor in 3D,
which provides a method for deriving the coupled nonlinear integral equations for the same frictional
interface plane crack of an arbitrary shape. The present work describes how the 3D sliding interface
crack is related to the same problem in 2D.

1. Introduction

Cracks lying along the bonds between dissimilar materials or between elastic and rigid bodies are called
interface cracks. They are encountered in delamination of composites, film-substrate combinations, fiber-
reinforced materials, etc. Consequently, they are of great practical and theoretical importance and have
been widely investigated in the literature.

It is well known that, in opening mode under tensile remote stress, there are overlaps of the interface
crack faces due to the oscillatory behavior for the stress ahead of the crack tips [Williams 1959; England
1965; Rice 1988; Willis 1971]. To overcome this physical inconsistency, Comninou [1977; Comninou
and Dundurs 1980] introduced a contact region behind the crack tip. If the compressive normal load
is high enough, then the contact zone is the entire crack faces. Thus, the closed interface crack model
combined with unilateral contact with friction must be considered. In the literature, many works are
devoted to asymptotic solutions, including the effect of Coulomb’s law of dry friction [Deng 1994;
Audoly 2000; Bui and Oueslati 2005; Bui 1975; Bui and Oueslati 2004]. It is worth noting that analysis
of frictional cracks is rather complex because firstly the problem is nonlinear and secondly the solution
is not generally unique when no information is available on the crack history.

Crack problems have been often analyzed on the basis of Green’s function or distribution of disloca-
tions [Weertman 1996; Hills et al. 1996]. For interface cracks in bimaterials, the Green function is based
on the solution of an edge dislocation at the interface, provided by [Nakahara et al. 1972]. Interface edge
dislocation between two elastic layers was also studied by Suo and Hutchinson [1990]. In these solutions,
the singularities of displacement and stresses are merely of the same nature as in the homogeneous case
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with a little change in some coefficients: with displacement u ∼= O(log r) and u1 discontinuous (term in
atan(x2/x1)) and with stress σ ∼= O(1/r).

When the crack problems become 3D, the conventional methods such as Muskhelishvili’s complex
potentials can no longer be applied and appropriate methods have been developed. Without being ex-
haustive, it can be mentioned that the Neuber–Papkovich representation has been used [Kassir and Sih
1973]. An elegant and powerful tool is provided by the potential theory introduced by Kupradze [1963].
This method was used by Bui [1975] and Kossecka [1971] for deriving the integral equation for the crack
opening displacement. Later Bui [1977] and Weaver [1977] proposed an integral equations method for
the plane crack problem with an arbitrary shape. Furthermore, the weight functions for cracked bodies,
introduced by Bueckner [1973], are often used for obtaining the stress intensity factors (SIFs) for 3D
cracks. Fukuama and Madariaga [1995] derived a boundary integral equation for plane cracks in the
static and dynamic cases. It is worth noting that few 3D crack problems have been solved analytically
and the trend is to use numerical computations.

In the present work, we revisit the problem of the interface crack between an elastic half-plane and a
rigid one in the presence of Coulomb’s law of dry friction. The study is limited to the sliding branch of
the friction law. In [Bui and Oueslati 2005], the solutions in complex form for nonhomogeneous loading
at infinity were worked out. Here we derive this solution in a different manner by considering distri-
bution of edge dislocation dipoles that correspond to the 2D expression of the fundamental Kupradze–
Basheleishvili tensor in 3D. This remark allows us to extend the approach of solution to the 3D interface
crack. A set of coupled integral equations for the crack displacement discontinuities is obtained.

2. Basic equations for the 2D sliding interface crack

Consider an elastic solid, with Lamé coefficient µ and λ, occupying the upper half-space �+ and bonded
to the lower rigid half-plane �− along the x1 axis, except on the crack [b, a]. We do not know the location
of the crack tips b and a, which have to be determined by the solution of the equations.

Following [Bui and Oueslati 2005], let the uncracked system be subjected to some remote, not nec-
essarily homogeneous, stress fields σ∞i j (x). Let the resulting stress field near the interface, prior to
delamination, such that u1= u2= 0 at the interface be noted σ 0

i j (x). We consider that σ 0
i j (x) is prescribed

load at the interface level, prior to delamination.
Localized shear stress and normal stress at the interface will likely cause delamination if the magnitude

of the shear stress is high enough. It should be noted that the inhomogeneous applied stress field has
been considered by Simonov [1990] for a frictionless interface crack. Note that, prior to delamination,
no slip occurs if the excess stress Q := f σ 0

22(x1, 0)− σ 0
12(x1, 0) is negative. This is the no-slip condition.

Consider the equations in quasistatic plane strain elasticity with the complex variable z = x1+ i x2.
Displacements and stresses are expressed in terms of analytical functions φ(z) and ψ(z) in �+ with
possible poles at infinity and singularities at the crack tips [Muskhelishvili 1977]:

2µ(u1− iu2)= {κφ(z)− zφ′(z)−ψ(z)}, (1)

(σ11+ σ22)= 4 Re{φ′(z)}, (2)

(σ22+ iσ12)= φ′(z)+φ′(z)+ zφ′′(z)+ψ ′(z). (3)
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The boundary conditions are

u1 = u2 = 0 on the bonded zone, (4)

u2 = 0, |σ12| = − f σ22 (σ22 ≤ 0) on the sliding crack (5)

with the following conditions at infinity:

σ(x)→ σ∞(x) for |x| →∞ in �+, (6)

φ′(z→∞)= 1
4(σ
∞

11 + σ
∞

22 )−
i

1+ κ
σ∞12 , (7)

ψ ′(z→∞)= 1
2(σ
∞

22 − σ
∞

11 )+ iσ∞12 , (8)

where κ = 3− 4ν in plane strain (ν is the Poisson ratio) and f is the friction coefficient. In (5), the
inequality σ22 ≤ 0 is not prescribed but has to be checked a posteriori. The crack is defined by the cut
along [b, a]. Particles of �+along the cut can move horizontally.

Equations (1)–(8) are strictly defined in the upper plane. However, we assume that φ(z) and ψ(z)
can be extended to the whole plane with a cut along the crack by analytical continuations across the
bonded zones. Of course, expressions in the right-hand sides of (1)–(3) have no physical meaning in
the lower half-plane for the problem considered. They are introduced for mathematical purposes in the
derivation of the solution. Nevertheless, we shall see that the formal solution obtained in the lower half-
plane corresponds to a similar problem of the elastic half-plane �− adhering on the rigid upper body �+.
These solutions for the displacement fields in both problems are linked together by antisymmetry.

From condition (4) on the bonded zone, we obtain

2µ(u1− iu2)= {κ8(z)− zφ′(z)−ψ(z)}

= {κ8(z)− zφ′(z)−ψ(z)} = 0 (on the unbroken zone).

This equation suggests the following definition for the function ψ(z) not only in �+ but also in �−:

ψ(z) := κφ(z)− zφ′(z). (9)

The continuation used in (9) is normally referred to as a displacement continuation (rather than the more
common stress continuation). Using (9) for (3) and (1), we find on the real axis z = z

σ22− iσ12 = φ
′(z)+ κφ′(z), (10)

2µ(u1− iu2)= {κφ(z)− zφ′(z)−ψ(z)} = κ{φ(z)−φ(z)}, (11)

2µ(u1+ iu2)= {κφ(z)− zφ′(z)−ψ(z)} = κ{φ(z)−φ(z)}. (12)

We recover the adherence condition u1 − iu2 = 0 on the bonded zone where the function φ(z) is
continuous φ(z)= φ(z). The condition that u2 = 0, on the cut, corresponds to the imaginary part of the
right-hand side of (12) being zero on the cut.

We introduce the auxiliary stress field θi j (x), the corresponding auxiliary displacement field q(x), and
the associate auxiliary complex functions 2(z) and 4(z) by putting

θ = σ − σ 0. (13)
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layer 1

Figure 1. Atoms of layer 1 stuck on the rigid interface, except the black atom.

On the crack, since the displacement components associated to σ 0(x) vanish, the auxiliary displace-
ment fields q1(x1, 0) and q2(x1, 0) coincide with the current displacement fields u1(x1, 0) and u2(x1, 0).
At infinity, the stress field θi j (x) vanishes; hence, the function 2′(z) vanishes at infinity:

2′(z)∼= O(1/z) at infinity. (14)

Moreover, the continuity condition (or the compatibility condition) on the displacement (12) holds for
the auxiliary fields q and gives

2µ(q1+ iq2)= κ{2(z)−2(z)} for z = z. (15)

3. The isolated edge dislocation dipole

Let us consider an atomic model of defect at the interface between an elastic medium and a rigid body
shown in Figure 1. Suppose that all atoms of layer 1 are fixed, being stuck on the rigid interface, except
the black atom, which is debonded from the substratum and can glide to the left.

When we move around the black atom along the lattice, from one atom of layer 1 to another one in the
same layer 1, we recover the same unchanged positions of atoms. It is expected that displacement and
stress fields in the upper half-plane are more singular than in the case of edge dislocation in homogeneous
medium. To investigate the mathematical nature of such an isolated “defect” at the origin of the real axis
as shown in Figure 1, where q2 = 0 on the real axis, q1 = 0 for (x1 6= 0, x2 = 0), and q1 6= 0 at (x1 = 0,
x2 = 0), we consider the displacement on the real axis from the �+ side, given as

2µ(q1+ iq2)= k{2(z)−2(z)} (z = z). (16)

In the continuation of functions in �− through the bonded zone, we may consider the lower half-plane
as an elastic medium stuck on the rigid upper half-plane, except along the crack; in �−, the displacement
field is antisymmetric. Therefore, the defect shown in Figure 1 corresponds to the solution in �+ of an
edge dislocation dipole in shear mode as in Figure 2 (left). The edge dislocation dipole in the opening
mode is depicted in Figure 2 (right).

Consider the function defined in the whole space (upper and lower complex plane �+ and �−) as

2(h)(z)= χ
1

2ihπ
{log(z+ h)− log(z)} (17)

with complex χ = c1+ ic2, c1 > 0 and c2 < 0, and the cut along (−h, 0).
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layer 1

Figure 2. Edge dislocation dipoles in shear mode (left) and opening mode (right).
Atoms of layer 1 are fixed, except the (double) black atoms moving in opposite directions
in �+ and �−.

Outside the cut, 2(h)(z) is continuous so that q(h)1 + iq(h)2 = 0 on the part of the real axis where x2 = 0,
x1 <−h, and x1 > 0.

On the upper face of the cut, we find

2µ(q(h)1 + iq(h)2 )= k(2(h)(z+)−2(h)(z−))=−
k
h
(c1+ ic2). (18)

Now taking the limit of (17) as h→ 0, we obtain firstly the derivative of the logarithm function:

2(0)(z)= χ
1

2iπ
1
z
. (19)

Secondly, the limit of the constant function (18) over the interval [−h, 0] of vanishing length h→ 0,
which is nothing but the Dirac delta function:

2µ(q(0)1 + iq(0)2 )=−k(c1+ ic2)δ(x1). (20)

The displacement singularity given in �+ by the function (19) is higher than that of an isolated edge
dislocation in homogeneous medium. At the defect itself, the displacement (20) can be considered as
the Green function. Note that, for an edge dislocation in a bimaterial, the Dirac delta function appears
in the stresses at the interface: σ22+ iσ12 = 2B(1/x1+ π iβ ′µδ(x1)) (for x2 = 0), where B and β ′ are
some bimaterial constants [Suo and Hutchinson 1990]. Here the Dirac delta function is found in the
displacement at the interface. The components of the displacement at x in the upper half-plane, x2 > 0,
due to an isolated edge dislocation dipole at the origin y = 0, in the pure shear mode χ = c1 (c2 = 0),
are given as (with 2(z)=20(z)= c1/2iπ z and 2′(z)=−c1/2iπ z2)

2µ(q1+ iq2)= k{2(z)−2(z)}+ (z− z)2′(z) for x2 > 0, (21)

2µq1(x1+ i0)=−kc1δ(x1) and 2µq2 = 0 for x2 = 0+. (22)

Thus, we obtain for x2 > 0

2µ(q1+ iq2)=−c1
k
π

x2

x2
1 + x2

2
− c1

x2(x2
1 − x2

2)

π(x2
1 + x2

2)
2
− 2ic1

x1x2
2

π(x2
1 + x2

2)
2
. (23)
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Figure 3. Contours of the displacement field given by (23) (c1 = 1): on the left 2µq1

and on the right 2µq2.

The contours of the displacement field in the upper half-plane due to an isolated dipole dislocation
given by (23) are depicted in Figure 3.

The displacement at x = (x1, x2) in the entire plane due to an edge dislocation dipole at y = (y1, 0)
on the real axis (of normal e2), not necessarily at the origin, satisfies the elastic equilibrium equation and
the following boundary condition on the real axis (x± = (x1,±0)):

−
2µ
kc1

q(0)(x±, y, e2)=±δ(x− y)e1 (x2 = y2 = 0). (24)

We recover in (20), (21), (22), and (24) the particular 2D form of the Kupradze–Basheleishvili fun-
damental tensor B(x, y, nP) given for 3D solids [Kupradze 1963] with components (see Appendix A)

B j
i (x, y, n( y))=

1
2π(λ+ 3µ)

{2µδi j + 3(λ+µ)(xi − y j )(x j − y j )ρ
−2
}
∂

∂ny

1
ρ
, (25)

where ρ =
√
(xi − yi )(xi − yi ). The elastic displacement vector B j (x, y, nP) at point x is discontinuous

at x = y on the plane P of normal nP . The discontinuity along the unit vector e j is given by

B j (x±, y, nP)=±δP(x− y)e j , (26)

where δP(x− y) is the Dirac delta function on the plane P . Therefore, the vector q(0)(x±, y, e2) is the
particular form in 2D of the vector B1(x±, y, e2) in 3D with x± = (x1, x2,±0).

By integrating (25) with respect to y3, −∞< y3 <∞, we obtain the 2D singular defect q(0)(x±, y, e2)

for P normal to e2. Point defects with properties (24) or (26) are purely mathematical. They are boundary
Green functions for determining the displacement field in 2D and 3D.

4. Solution of the Dirichlet boundary value problem
and the singular integral equation for the 2D sliding crack

Consider the following boundary value problem of the elastic half-plane x2 > 0, where both components
of displacement q1(t) and q2(t)= 0 are prescribed on the interface (x2 = 0) with q1(±∞)= 0. Find the
stresses on x2 = 0.
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Using results of the previous section, in the pure shear mode and from (19) and (20), the solution is

2(z)=
1

2iπ

∫
+∞

−∞

−2µq1(t)
κ

dt
z− t

. (27)

Remark. It is possible to derive the potential 2(z) given by (27) by another method. To this end, we
search for a solution of (15) using the Cauchy integral kernel 1/(z − t) and by considering χ(t) as
unknown density:

2(z)=
1

2iπ

∫
+∞

−∞

χ(t)
dt

z− t
=−

1
2iπ

∫
+∞

−∞

χ(t)
dt

t − z
. (28)

Thus, using 2µ(q1+ iq2)= κ{2(z)−2(z)} (z = z), we obtain the density as χ(t)=−2µq1(t)/κ .

The stress in x2 > 0 is then given by (10) as

θ22(x1)− iθ12(x1)=2
′(z)+ κ2′(z)

=−
1

2iπ

∫
+∞

−∞

χ ′(t)
dt

t − z
−

κ

2iπ

∫
+∞

−∞

χ ′(t)
dt

t − z

=
2µ
κ

{
1

2iπ

∫
+∞

−∞

q ′1(t)
dt

t − z
+ κ

1
2iπ

∫
+∞

−∞

q ′1(t)
dt

t − z

}
.

Using Plemelj formulas (z = x1+ i0 and z = x1− i0), we then obtain the solution (pv= principal value)
for the stress at the interface as

θ12(x1)=
µ

κπ
(1+ κ)(pv)

∫
+∞

−∞

q ′1(t)
dt

t − x1
, (29)

θ22(x1)=
µ

κ
(1− κ)q ′1(x1). (30)

Equations (29) and (30) are particular forms (for q2(t)= 0) of the general solution derived in [Bui 1968],
where general boundary conditions q1(t) 6= 0 and q2(t) 6= 0 are considered and where the Kupradze–
Basheleishvili tensor B(x, y, n) has been used.

Equations (5), (29), and (30) allow us to establish the integral equation for the unknown q ′1(x1) in the
frictional sliding interface crack problem considered in this paper with data σ 0

12 and σ 0
22. To this end, we

have to express the friction condition on the current stresses σ12 = f σ22, with σ = σ 0
+ θ , as

θ12− f θ22 = f σ 0
22− σ

0
12

and then obtain the integral equation

− f
µ

κ
(1− κ)q ′1(x1)+

µ

κπ
(1+ κ)(pv)

∫ a

b
q ′1(t)

dt
t − x1

= f σ 0
22(x1)− σ

0
12(x1). (31)

It is a Carleman integral equation with the unknown q ′1(x), the gradient of the horizontal displacement
on the sliding crack lip. The general theory of such integral equations is provided in [Muskhelishvili
1977; Tricomi 1985] for example.

Let us introduce the coefficients A=− f (µ/κ)(1−κ) and B= i(µ/κ)(1+κ). The index of this integral
equation is τ = (1/2iπ) log G, where G= (A−B)/(A+B)=−((κ+1)+i f (κ−1))/((κ+1)−i f (κ−1)).
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According to [Muskhelishvili 1977], the solution of the integral equation (31) vanishing at infinity is

q ′1(x1)=
X+(x1)+ X−(x1)

2(A+ B)X+(x1)
( f σ 0

22(x1)− σ
0
12(x1))

+
X+(x1)− X−(x1)

2iπ
(pv)

∫ a

b

f σ 0
22(t)− σ

0
12(t)

(A+ B)X+(t)
dt

(t − x1)
, (32)

where X (z)= (z−b)n/2−τ (z−a)m/2+τ is the fundamental solution of the homogenous Riemann–Hilbert
problem X+(z)= G X−(z).

The closed-form expression of (32) gives

q ′1(x1)=
f κ(κ − 1)

µ((κ + 1)2+ f 2(κ − 1)2)
( f σ 0

22(x1)− σ
0
12(x1))

−
κ(κ − 1)X+(x1)

µπ
(
(κ + 1)2+ f 2(κ − 1)2

)(pv)
∫ a

b

f σ 0
22(t)− σ

0
12(t)

X+(t)
dt

(t − x1)
. (33)

Some noticeable features are that G is equal to g, the coefficient of the Hilbert problem established in
[Bui and Oueslati 2005, (22)], the index τ coincides with the coefficient α, and

f σ 0
22(x1)− σ

0
12(x1)

A+ B
=

k
µ

E0(x),

where E0(x) is the second member of the Hilbert problem derived in [Bui and Oueslati 2005].
The closed form and physical solution (square-integrable solution) of the integral equation (33) for a

polynomial remote loading (σ 0
22, σ

0
12) for example can be found in [Bui and Oueslati 2005].

5. Integral equations for the sliding planar crack of an arbitrary shape

Analysis of the 3D problem of sliding delamination between an elastic half-space �+ (x3 > 0) and a
rigid body under Coulomb’s friction is very difficult. We do not attempt to solve this problem and restrict
ourselves simply to the following one: given the auxiliary shear stresses θ31(x1, x2, 0) and θ32(x1, x2, 0)
and normal stress θ33(x1, x2, 0) on the interface plane P (x3 = 0), prior to delamination, find the integral
equations for tangential auxiliary displacements ϕ1(x1, x2) := q1(x1, x2, 0) and ϕ2(x1, x2) := q2(x1, x2, 0)
in the planar crack S.

First of all, we generalize (29) and (30) to 3D problems. Let x = (x1, x2, x3), y = (y1, y2, 0), and
z = (z1, z2, 0). The fundamental Kupradze–Basheleishvili tensor (25) gives the displacement field in �+:

qi (x)=
∫

S
B j

i (x, y, e3)ϕ j ( y) d Sy . (34)

To verify that, we take the limit x→ y+ = (y1, y2, 0+) and using (26) obtain q j ( y+)= ϕ j ( y). Note that
the displacement of points in P lying outside S vanishes. This means that (34) corresponds exactly to
the displacement field of the elastic body �+ stuck on the rigid surface P , except on the crack S.

The density ϕ j ( y) of the double layer potential (34) (see Appendix C) is exactly the displacement
in S. For convenience, the displacement representation in terms of the single layer potential is outlined
in Appendix B.
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From (34), we can calculate the stress field in �+ and also on P . Such a calculation is somewhat
delicate because of strongly singular kernels. However, explicit formulas for the stresses on P have been
given in [Bui 1968; 1977]:

• tangential stresses

θ3α( y)=
µ

2π
(pv)

∫
S

∂ϕα

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
∂

∂yα

1
ρ( y, z)

d Sz, (35)

• normal stress

θ33( y)=
2µ2

λ+ 3µ

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
. (36)

We are now in a position to derive the integral equations for the frictional interface crack S with
prescribed stresses (σ 0

31, σ
0
32, σ

0
33) on the plane P . Assume that σ 0

31 < 0, σ 0
32 < 0, and σ 0

33 < 0. Such an
assumption can only be verified a posteriori so that the friction law can be written as σ31− f σ33 cos(ψ)= 0
and σ32 − f σ33 sin(ψ) = 0, where ψ = atan(ϕ2/ϕ1). We then obtain the coupled nonlinear integral
equations for ϕα, which are the generalizations of (31) to 3D problems:

µ

2π
(pv)

∫
S

∂ϕ1

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
+

∂

∂y1

1
ρ( y, z)

d Sz

− f
ϕ1√
ϕ2

1 +ϕ
2
2

2µ2

(λ+ 3µ)

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
= f σ 0

33( y)− σ 0
31( y) (37)

and

µ

2π
(pv)

∫
S

∂ϕ2

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
∂

∂y2

1
ρ( y, z)

d Sz

− f
ϕ2√
ϕ2

1 +ϕ
2
2

2µ2

(λ+ 3µ)

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
= f σ 0

33( y)− σ 0
32( y). (38)

It is out of the scope of this paper to derive the solution to (37)–(38), even by a numerical method.
However, it is worth noting that these integral equations extend over the crack surface only, which has
many advantages for numerical analysis.

Finally, if we interpret the SIFs KI and KII along the crack front, as factors of the tangential displace-
ment discontinuity [Bui 2006], then the two sliding modes are nonlinearly coupled in the frictional 3D
crack problems.

6. Conclusion

In this paper, the problem of the frictional sliding interface crack between an elastic half-plane and a rigid
one has been analyzed by considering distribution of edge dislocation dipoles along the crack faces. We
recover the field equations obtained in [Bui and Oueslati 2005] by means of complex potential representa-
tion. Then this approach has been extended to the planar interface crack with an arbitrary shape thanks to
the fundamental Kupradze–Basheleishvili tensor. A couple of nonlinear integral equations for the crack
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displacement discontinuities have been derived. It is worth noting that these integrals are taken only over
the crack face, which will be interesting in numerical computations. This is a topic for future work.

Appendix A: The Kupradze–Basheleishvili tensor

Let � be an elastic solid in 3D space R3 with a piecewise smooth boundary ∂� and x be the Cartesian
coordinates. The elastic operator L is defined such that the Lamé–Navier equation reads

Lu := µ1u+ (λ+µ)∇∇ · u+ f = 0 in �,

where u is the displacement field in the solid � and f denotes for the body force.
The corresponding traction acting on the boundary of ∂� with the outward unit normal n is obtained

from the displacement u by applying the traction operator

T n
:= 2µ

∂

∂n
+ λn div+µn∧ rot .

The fundamental Kupradze–Basheleishvili operator associated to a plane Py , with normal ny at the
point y, is defined by the tensor B satisfying

L Bk(x, y; ny)= 0, k ∈ {1, 2, 3}, x /∈ Py for fixed y ∈ Py,

and the boundary conditions

Bk(x, y; ny)= 0, x, y ∈ Py and x 6= y.

The components of Bk(x, y; ny) read

Bk
i (x, y, ny)=

1
2π(λ+ 3µ)

{2µδik + 3(λ+µ)(xi − yi )(xk − yk)ρ
−2
}
∂

∂ny

1
ρ
,

where ρ =
√
(xi − yi )(xi − yi ) is the Euclidean distance between x and y. It should be noted that

Bk(x, y; ny)=−Bk( y, x; ny).
Following [Bui 2006], it can be shown, for a point x on the plane Py , that the vectors defined by

Bk(x±, y; ny)=±ekδPy ( y− x)

are opposite Dirac delta distributions. Physically, the k-component of the Kupradze–Basheleishvili tensor
is a dislocation dipole in the ek direction. The previous relation is often used to describe the displacement
jump on the crack faces.

Appendix B: Single layer potential

The displacement field solution of the elastic problem in the absence of body force can be obtained in
terms of an integral surface Si (x) with a continuous density ψi and a kernel V k

i (x, z):

Si (x)= 2
∫
∂�

V k
i (x, z)ψk(z) d Sz.
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By analogy with Newton’s potential, this integral is called the single layer potential. It is continuous
across the surface ∂�, but the corresponding stresses with a component along the normal should be
discontinuous.

According to [Kupradze 1963], the stress vector exerted on the boundary ∂� is obtained by using the
traction operator T n to both sides of the previous equation:

T n S( y±)=±ψ( y)+ 2(pv)
∫
∂�

V k
i (x, z)ψk(z) d Sz.

Appendix C: Double layer potential

The displacement field solution of the elastic problem in the absence of body force can be represented
by an elastic potential Di (x) with a continuous density φi :

Di (x)=
∫
∂�

Bk
i (x, z; nz)φk(z) d Sz.

It can be established that D(x) is discontinuous across the surface ∂� [Kupradze 1963]:

D(x+)− D(x−)= 2φ(x).

The limit of D(x) when x tends to x− belonging to the surface ∂� gives

Di (x−)= φi (x−)+
∫
∂�

Bk
i (x, z; nz)φk(z) d Sz.
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