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ASYMPTOTIC STRESS FIELD IN THE VICINITY OF
A MIXED-MODE CRACK UNDER PLANE STRESS CONDITIONS

FOR A POWER-LAW HARDENING MATERIAL

LARISA V. STEPANOVA AND EKATERINA M. YAKOVLEVA

The stress-strain state analysis near the crack tip in a power-law material under mixed-mode loading
conditions is investigated. By the use of the eigenfunction expansion method the stress-strain state near
the mixed-mode crack tip under plane stress conditions is found. The type of the mixed-mode loading
is specified by the mixity parameter, which varies from 0 to 1. The value of the mixity parameter
corresponding to a mode II crack loading is equal to 0, whereas the value corresponding to a mode I
crack loading is equal to 1. It is shown that the eigenfunction expansion method results in a nonlinear
eigenvalue problem. The numerical solutions of the nonlinear eigenvalue problems for all values of the
mixity parameter and for all practically important values of the strain hardening (or creep) exponent
are obtained. It is found that mixed-mode loading of the cracked plate gives rise to a change in the
stress singularity in the vicinity of the crack tip. Mixed-mode loading of the cracked plate results in
new asymptotics of the stress field, which is different from the classical Hutchinson–Rice–Rosengren
(HRR) stress field. The approximate solution of the nonlinear eigenvalue problem is obtained by a
perturbation theory technique (artificial small parameter method). In the framework of the perturbation
theory approach, a small parameter representing the difference between the eigenvalue of the nonlinear
problem and the undisturbed linear problem is introduced. The asymptotic analysis carried out shows
clearly that the stress singularity in the vicinity of the crack tip changes under mixed-mode loading
in the case of plane stress conditions. The angular distributions of the stress and strain components
(eigenfunctions) in the full range of values of the mixity parameter are given.

1. Introduction. Mixed-mode loading of cracked structures
and near crack-tip fields under mixed-mode loading.

Knowledge of stress, strain and displacement fields in the vicinity of the crack tip under mixed-mode
loading conditions is important for the justification of fracture mechanics criteria and has attracted
considerable attention [Berto and Lazzarin 2014; Bui 2011; Kuna 2013; Pestrikov and Morozov 2012;
Vildeman et al. 2012; Wei 2010]. So far, mainly crack problems for pure opening mode I at symmetrical
loading have been thoroughly treated [Bui 2006; Wei 2010; Pestrikov and Morozov 2012]. The corre-
sponding fracture criteria have been obtained on the assumption that the crack continues to extend along
its original line (two-dimensional case) or plane (three-dimensional case) in a straightforward manner
on the ligament. If mode I loading is superimposed with mode II and/or III loading, the symmetry is
violated and the situation is called mixed-mode loading. Stress fields around a mixed-mode crack tip in
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different materials have been investigated by many researchers [Dong and Pan 1990; Smith et al. 2001;
Shlyannikov 2003; Pan and Lin 2006; Shlyannikov and Kislova 2009; Rahman and Hancock 2006; Berto
and Lazzarin 2013; Berto and Lazzarin 2014; Leblond and Frelat 2014; Akbardoost and Ayatollahi 2014].
The study of mixed-mode loads is of particular importance: mixed-mode loading of cracked specimens
is of profound importance from theoretical [Bui 2011; Pestrikov and Morozov 2012; Wei 2010], com-
putational [Kuna 2013] and experimental [Decreuse et al. 2012; Ondraček and Materna 2014; Vildeman
et al. 2012; Wei et al. 2011] points of view. Currently, mixed-mode crack problems in materials with
nonlinear constitutive relations (power law constitutive equations of deformation plasticity theory, steady
state creep Norton’s law) have aroused considerable interest in many areas of fracture mechanics [Berto
and Lazzarin 2013; Botvina et al. 2013; Hello et al. 2012; Richard et al. 2014; Shlyannikov and Kislova
2009; Shlyannikov 2012; 2013; Shlyannikov and Zakharov 2014; Shlyannikov et al. 2014]. Obviously,
the principle of superposition of the solutions for mode I and mode II loadings cannot be applied for
nonlinear materials. For the case of nonlinear material behavior it is necessary to propose new methods
and approaches for the analysis of the near crack tip stress-strain state under mixed-mode loads. In the
present paper, the approximate analysis and numerical analysis of the stress and strain fields ahead of the
crack tip under mixed-mode loading in the case of plane stress conditions are developed. It should be
noted that the angular distributions and the stress singularity in the neighborhood of the crack tip under
mixed-mode loading in the case of plane strain conditions are carefully studied [Loghin and Joseph 2001;
2003; Richard et al. 2014; Shlyannikov and Kislova 2009; Shlyannikov 2012].

Loghin and Joseph [2001] were the first to propose a displacement-based finite element formulation to
determine the leading two terms in the expansions of stresses and strains around singular points in power
law hardening materials. The authors used the approach to study the effects of mixed-mode loading on
the structure. The asymptotic solution for mixed-mode loading of the cracked structure in plane strain
conditions was obtained, but the asymptotic form of the mode I dominant plane stress could not be
determined.

Shlyannikov and Kislova [2009] proposed a method for calculating the elastic-plastic stress intensity
factors for the full range of mixed-mode loading from tensile to shear cracks. The state of an arbitrary
oriented slit-like straight crack in the form of a mathematical notch under biaxial loading was consid-
ered. The solution is based on a combination of both the compatibility strain equation and the Airy
stress potential with its derivatives. The elastic-plastic material behavior is represented by the Ramberg–
Osgood model. On the basis of the results obtained, the influence of both mode-mixity and material
plastic properties on the elastic-plastic stress intensity factors is analyzed. In [Richard et al. 2014],
an overview of theories, experiments and simulations of cracks and crack growth under mixed-mode
loading is given. First some concepts and basic theories are described for two-dimensional and three-
dimensional crack mixed-mode loading situations. Furthermore, several mixed-mode fracture specimens
and loading devices are presented. The theoretical and experimental results are compared with respect
to practical use of the described concepts and theories. Finally, the paper [Richard et al. 2014] presents
crack growth simulations. Shlyannikov [2012] derived equations for ultimate failure strain under com-
plex static and low-cyclic loading and gave experimental verification for different types of biaxial loads.
Experimental and calculation data obtained on the basis of a generalized equivalence condition to solve
problems of crack mechanics for complex stress states are presented [loc. cit.]. Models and methods
for determining the crack direction, path, velocity and time of crack growth under biaxial loading are



ASYMPTOTIC STRESS FIELD IN THE VICINITY OF A MIXED-MODE CRACK 369

considered. Botvina et al. [2013] presented the results of studying the development of plastic flow zones
and damage of steel 20 in conditions of shear, separation, mixed-mode loading and eccentric cyclic
loading. The influence of the shear component on the evolution of plastic strain zones, mechanical and
acoustic properties (parameters of acoustic emission, the velocity and attenuation of ultrasonic waves) is
elucidated. It is shown that an increase in the shear component of the load changes the shape of the zone
of plastic deformation, initiates formation of additional microcracks, increases the total fracture energy,
reduces the slope indices of cumulative distributions of the amplitude of acoustic signals and microcracks,
and also induces an increase in the ultrasonic attenuation coefficient and heat capacity of the samples.
Analysis of changes in the studied parameters of damage and fracture mechanics provided identification
of the main stages of damage accumulation under tensile load. The main aim of the study [Berto and
Lazzarin 2013] is to present a set of equations for accurately describing the crack tip stress components,
particularly for those cases where the modes I and II stress intensity factors, used in combination with
the T-stress component, are unable to capture with satisfying precision the complete stress field ahead
the crack tip. The case of a plate with a central crack under mixed-mode (I+II) loading is discussed
to show the different contributions of the higher-order terms in the overall stress field. In [Berto and
Lazzarin 2014], an extensive review of local approaches applicable near stress raisers, both sharp and
blunt, for mode I, mode II and mode III loading conditions in brittle and quasibrittle failure assessment
is presented. The authors develop a new approach based on the volume strain energy density and show
many applications for assessment of the brittle fracture of a large number of materials and specimens
under mixed-mode loading conditions. In [Hello et al. 2012] there are closed-form expressions for the
whole sequences of coefficients related to the problem of a finite crack in an infinite plane medium with
mode I and mode II remote load.

Fatigue crack paths for inclined cracks are studied in [Shlyannikov 2013] through experiments and
computations under different mixed-mode loading conditions where the elaborated theoretical model is
applied for modeling crack growth trajectories in common experimental fracture mechanics specimen
geometries. For the particular specimen geometries considered, the T-stress distributions are calculated
along the curved crack path. It is shown that there is a greater variation of T-stress along the crack
trajectories under mixed-mode fracture for specimens with different geometries. The experimental re-
sults for mixed-mode fracture trajectories during crack growth are compared with theoretical predictions.
Discrepancies in fatigue crack path have been observed in various specimen configurations. The results
presented in this study for fracture specimens seem to indicate the relevance of the crack tip constraint
parameter, the T-stress, to fatigue crack path behavior that traditional linear fracture mechanics fails to
explain. In [Shlyannikov and Zakharov 2014], fatigue crack growth rate is analyzed through experi-
mental study and numerical computations under different biaxial and mixed-mode loading conditions.
Cruciform specimens under biaxial loading and compact tension-shear specimens are considered. The
different degrees of mode mixity, from pure mode I to pure mode II, are given by combinations of the
far-field stress level, load biaxiality and inclined crack angle. For the particular specimen geometries
considered, the T-stress and the numerical constant of the plastic stress field distributions are obtained
as a function of the dimensionless crack length, load biaxiality and mode mixity. The method is also
suggested for calculating the plastic stress intensity factor for any mixed-mode I/II loading based on the T-
stress and power law solutions. It is either demonstrated that the plastic stress intensity factor accounting
for the in-plane and out-of-plane constraint effect can be used to characterize the multiaxial crack growth
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rate for a variety of specimen geometries. Cruciform specimens of two configurations with an inclined
crack subject to a system of biaxial loads are proposed [Shlyannikov et al. 2014] to study cracks under
mixed-mode loading conditions. A method for infiltrating the mixed-mode displacement of cracks in
the deformed state is suggested. For the particular specimen geometries considered, the T-stress and the
geometry-dependent correction factors, as well as the numerical constant of the plastic stress distributions,
are obtained as a function of the dimensionless crack length, load biaxiality and mode mixity.

Asymptotic representations of the stress, strain rate and continuity fields in the vicinity of the mixed-
mode crack under plane strain conditions are obtained in [Stepanova and Adylina 2014]. On the basis
of the similarity form of the solution and the hypothesis of the completely damaged zone in the crack
tip region, the stress and continuity fields under a complete range of mixed-mode I/II states of loading
(from pure tension to pure shear) are given. Higher-order term asymptotic expansions of the stress
components and the continuity parameter are derived. A new numerical method to tackle nonlinear
eigenvalue problems allowing one to find the whole spectrum of eigenvalues is proposed. However,
several difficulties emerge in analyzing the nonlinear eigenvalue problem arising from the mixed-mode
crack problem under plane stress conditions. The aim of the present study is to give an accurate solution
of the nonlinear eigenvalue problem following from the stress-strain state analysis in the vicinity of the
mixed-mode crack under plane stress conditions. It should be noted that plane stress state problems
for notched bodies and cracked specimens are still not clearly understood. The angular distributions of
the stress components in the vicinity of the mixed-mode crack tip under plane stress conditions have
not been discussed in detail, but clearly this must be done to have an accurate description of the stress
and strain fields in the vicinity of the crack tip. Recently there have been proposed solutions for the
plane stress problems [Lomakin and Melnikov 2009; 2011; Vildeman et al. 2014]. The objective of this
paper is to study the stress singularities in the vicinity of the mixed-mode crack tip under plane stress
conditions. The governing equations for the power law constitutive relations are transformed to nonlinear
eigenvalue problems of ordinary differential equations (ODEs) based on the assumption that the stress
fields are asymptotic near the mixed-mode crack tip. The asymptotic and numerical methods are further
developed in the present work to analyze eigenvalue problems of ODEs.

2. Governing equations and asymptotic analysis. Mixity parameter.

Consider a stationary crack in a power-law material under plane stress conditions. Applied loading is
accounted as mixed-mode I/II loading. Polar coordinates are introduced and centered at the crack tip.
With reference to the polar coordinates, the equilibrium equations can be written as

rσrr,r + σrθ,θ + σrr − σθθ = 0, rσrθ,r + σθθ,θ + 2σrθ = 0. (2-1)

The compatibility condition has the form

2(rεrθ,θ ),r = εrr,θθ − rεrr,r + r(rεθθ ),rr . (2-2)

For a material subjected to a power-law hardening, the constitutive equations for plane stress conditions
can be written as

εrr =
1
2 Bσ n−1

e (2σrr − σθθ ), εθθ =
1
2 Bσ n−1

e (2σθθ − σrr ), εrθ =
3
2 Bσ n−1

e σrθ , (2-3)



ASYMPTOTIC STRESS FIELD IN THE VICINITY OF A MIXED-MODE CRACK 371

where σe =
√

σ 2
rr + σ

2
θθ − σrrσθθ + 3σ 2

rθ is the von Mises equivalent stress, and B, n are the material
constants.

It should be noted that in the case considered the analogy between nonlinear elastic behavior and creep
holds. That implies that all relations and solutions obtained for a nonlinear elastic (plastic) material with
the constitutive equations (2-3) can be transferred to creep processes with the constitutive relations of
Norton’s creep law simply by replacing the strains by strain rates. The solution of equations (2-1)–(2-3)
should satisfy the traditional traction-free boundary conditions on the crack surfaces σrθ (r, θ =±π)= 0,
σθθ (r, θ =±π)= 0. The mixed-mode loading can be characterized in terms of the mixity parameter M p,
which is defined as [Shih 1973; 1974]

M p
= (2/π) arctan

∣∣∣∣ limr→0

σθθ (r, θ = 0)
σrθ (r, θ = 0)

∣∣∣∣. (2-4)

The mixity parameter M p equals 0 for pure mode II, 1 for pure mode I, and 0< M p < 1 for different
mixities of modes I and II. Thus, for combined-mode fracture, the mixity parameter M p completely
specifies the near-crack-tip fields for a given value of the hardening exponent n. By postulating the Airy
stress function χ(r, θ) expressed in the polar coordinate system, the stress components in the plane strain
and the plane stress states are expressed as

σθθ = χ,rr , σrr = χ,r/r −χ,θθ/r2, σrθ =−(χ,θ ),r .

As for the asymptotic stress field at the crack tip r→ 0, one can postulate the Airy stress function

χ(r, θ)= Krλ+1 f (θ), (2-5)

where K is an indeterminate coefficient, λ is an indeterminate exponent and f (θ) is an indeterminate
function of the polar angle. In view of the asymptotic presentation (2-5), the asymptotic stress field at
the crack tip is found to be σi j (r, θ)= Krλ−1σ̃i j (θ), or

σrr (r, θ)= Krλ−1
[(λ+ 1) f (θ)+ f ′′(θ)],

σθθ (r, θ)= Krλ−1(λ+ 1)λ f (θ),

σrθ (r, θ)=−Krλ−1λ f ′(θ),

(2-6)

where λ− 1 denotes the exponent representing the singularity of the stress field, and will be called the
stress singularity exponent hereafter. According to (2-3), the asymptotic strain field as r tends to 0 takes
the form εi j (r, θ)= K nr (λ−1)n ε̃i j (θ), or, in expanded form,

εrr (r, θ)= 1
2 BK nr (λ−1)n f n−1

e [(λ+ 1)(2− λ) f (θ)+ 2 f ′′(θ)],

εθθ (r, θ)= 1
2 BK nr (λ−1)n f n−1

e [(λ+ 1)(2λ− 1) f (θ)− f ′′(θ)],

εrθ (r, θ)=− 3
2 BK nr (λ−1)n f n−1

e λ f ′(θ).

The compatibility condition (2-2) results in the following nonlinear fourth-order ODE for f (θ):
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0= f IV f 2
e
{
(n− 1)

[
(λ+ 1)(2− λ) f + 2 f ′′

]2
+ 2 f 2

e
}

+ 6[(λ)n+ 1]λ
[
(n− 1) f 2

e h f ′+ f 4
e f ′′

]
+ (n− 1)(n− 3)h2[(λ+ 1)(2− λ) f + 2 f ′′

]
+ (n− 1) f 2

e
[
(λ+ 1)(2− λ) f + 2 f ′′

]
×

{[
(λ+ 1) f ′+ f ′′′

]2
+
[
(λ+ 1) f + f ′′

]
(λ+ 1) f ′′+ (λ+ 1)2λ2( f ′2+ f f ′′)

−
1
2(λ+ 1)2λ f f ′′−

[
(λ+ 1) f ′+ f ′′′

]
(λ+ 1)λ f ′

−
1
2

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f ′′+ 3λ2( f ′′2+ f ′ f ′′′)

}
+ f 4

e (λ+ 1)(2− λ) f ′′− (λ− 1)n f 4
e
[
(λ+ 1)(2− λ) f + 2 f ′′

]
+ [(λ−1)n+1](λ−1)n f 4

e
[
(λ+1)(2λ−1) f − f ′′

]
+ 2(n−1) f 2

e h
[
(λ+1)(2−λ) f ′+2 f ′′

]
, (2-7)

where we have adopted the notation

fe =

√[
(λ+ 1) f + f ′′

]2
+ (λ+ 1)2λ2 f 2−

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f + 3λ2 f ′2,

h =
[
(λ+ 1) f + f ′′

][
(λ+ 1) f ′+ f ′′′

]
+ (λ+ 1)2λ2 f f ′− 1

2

[
(λ+ 1) f ′+ f ′′′

]
(λ+ 1)λ f

−
1
2

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f ′+ 3λ2 f ′ f ′′.

The boundary conditions imposed on the function f (θ) follow from the traction-free boundary condi-
tions on the crack surfaces:

f (θ =±π)= 0, f ′(θ =±π)= 0. (2-8)

Thus, the eigenfunction expansion method results in a nonlinear eigenvalue problem: it is necessary
to find eigenvalues λ leading to nontrivial solutions of (2-7) satisfying the boundary conditions (2-8).
Therefore, the order of the stress singularity is the eigenvalue and the angular variations of the field
quantities correspond to the eigenfunctions. When we consider mode I loading or mode II loading
conditions, the symmetry or antisymmetry requirements of the problem with respect to the crack plane
at θ = 0 are utilized. Due to the symmetry (or antisymmetry), the solution is sought for one of the half-
planes, for instance, 0≤ θ ≤ π. In analyzing the crack problem under mixed-mode loading conditions,
the symmetry or antisymmetry arguments cannot be used, and it is necessary to seek the solution in the
whole plane −π ≤ θ ≤ π . To find the numerical solution, one has to take into account the value of the
mixity parameter M p characterizing the mixities of mode I and mode II loadings. For this purpose, in
the framework of the proposed technique, (2-7) is numerically solved on the interval [0, π], and the two-
point boundary value problem is reduced to the initial value problem with the initial conditions reflecting
the value of the mixity parameter:

f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
, f (θ = π)= 0, f ′(θ = π)= 0. (2-9)

The first initial condition is the normalization condition. The second condition follows from (2-4)
specifying the value of the mixity parameter. At the next stage, the numerical solution of (2-7) is found
on the interval [−π, 0], with the following boundary conditions which have to be satisfied:

f (θ =−π)= 0, f ′(θ =−π)= 0, f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
. (2-10)
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An analogous approach was adopted in [Stepanova and Adylina 2014], where the near mixed-mode
crack-tip stress field under plane strain conditions was analyzed. It is assumed that the eigenvalue of the
problem considered equals the eigenvalue of the classical HRR problem, λ= n/(n+ 1); see [Hutchinson
1968b; 1968a; Rice and Rosengren 1968] for pure mode I and pure mode II conditions; [Rice 1967;
1968] for pure mode III conditions. However, it turns out that when we construct the numerical solution
for the mixed-mode crack problem under plane stress conditions the radial stress component σrr (r, θ) at
θ = 0 has a discontinuity, whereas for the cases of pure mode I and pure mode II loadings, when M p

= 1
and M p

= 0 are valid, the radial stress component is continuous at θ = 0. Numerical analysis carried
out previously for mixed-mode crack problem under plane strain conditions leads to the continuous
angular distributions of the radial stress component σrr (r, θ) at θ = 0 [Shlyannikov and Kislova 2009;
Shlyannikov 2012]. In order to obtain the asymptotic solution of the mixed-mode I/II crack problem
under plane stress conditions and to analyze the behavior of the radial stress components, one can use the
artificial small parameter method often used for the solution of nonlinear eigenvalue problems [Andrianov
and Awrejcewicz 2013; Andrianov et al. 2014; Nayfeh 2000; 2011].

3. Nonlinear eigenvalue problem. Perturbation theory method.

One of the effective methods for the solution of nonlinear eigenvalue problems is the perturbation theory
technique based on an artificially introduced small parameter [Andrianov and Awrejcewicz 2013; Andri-
anov et al. 2014; Nayfeh 2000; 2011; Sliva et al. 2010]. An analytical expression for the eigenvalues of
the nonlinear eigenvalue problem (2-7)–(2-8) can be derived by applying the perturbation theory method.
For this purpose, the eigenvalue λ is split up into ε = λ− λ0, where λ0 refers to the “undisturbed” linear
problem and ε is the deviation on account of the nonlinearity. Furthermore, the hardening exponent n
and the stress function f (θ) are represented as power series:

λ= λ0+ ε, f (θ)= f0(θ)+ ε f1(θ)+ ε
2 f2(θ)+ . . . , n = 1+ εn1+ ε

2n2+ . . . , (3-1)

where f0(θ) refers to the solution of the linear problem. Introducing (3-1) into (2-7), grouping together
the terms with the same powers of ε and equating to zero, the set of the boundary value problems for
fk(θ) is obtained.

By equating the coefficients of ε0, we obtain

f IV
0 + 2(λ2

0+ 1) f ′′0 + (λ
2
0− 1)2 f0 = 0,

f0(θ = 0)= 1, f ′0(θ = 0)= (λ0+ 1)/ tan
( 1

2 M pπ
)
, f0(θ = π), f ′0(θ = π),

f0(θ =−π), f ′0(θ =−π), f0(θ = 0)= 1, f ′0(θ = 0)= (λ0+ 1)/ tan
( 1

2 M pπ
)
;

(3-2)

by equating the coefficients of ε1, we obtain

f IV
1 +2(λ2

0+1) f ′′1 +(λ
2
0−1)2 f1 =−n1

[
x0( f IV

0 x0/2+w0)/(2g0)+h0(x ′0g0−x0h0+3λ2
0g0 f ′0)/g2

0

]
−

1
2 f ′′0

[
(λ0− 1)(4λ0− 1)n1+ 8λ0

]
−

1
2 f0(λ

2
0− 1)

[
(λ0− 1)(4λ0+ 1)n1+ 8λ0

]
,

f1(θ = 0)= 0, f ′1(θ = 0)= 1/ tan
( 1

2 M pπ
)
, f1(θ = π), f ′1(θ = π),

f1(θ =−π), f ′1(θ =−π), f1(θ = 0)= 0, f ′1(θ = 0)= 1/ tan
( 1

2 M pπ
)
;

(3-3)
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by equating the coefficients of ε2, we obtain

f IV
2 + 2(λ2

0+ 1) f ′′2 + (λ
2
0− 1)2 f2 =−2g1

[
f IV
1 + 2(λ2

0+ 1) f ′′1 + (λ
2
0− 1)2 f1

]
/g0

− 3λ0[2+ n1(λ0− 1)] f ′′1 −
1
2(1− 2λ0)

[
f ′′1 + (λ0− 1) f1

]
+

1
2 [1+ n1(λ0− 1)]x1

−
1
2λ0(λ0− 1)(4λ0+ 1) f1+

1
2(1− 2λ0)[1+ n1(λ0− 1)]y1

− 3λ0[n1+ n2(λ0− 1)] f ′′1 − 3[1+ n1(λ0− 1)] f ′′0 +
1
2 f ′′0 −

1
2(λ0− 1) f0

+
1
2 [1+ n1(λ0− 1)](1− 2λ0)

[
f0+ (4λ0+ 1) f0

]
− λ0(λ0− 1) f0

−
1
2(2λ0− 1)[n1+ n2(λ0− 1)]y0−

1
2 [1+ n1(λ0− 1)]2 y0+

1
2 [n1+ n2(λ0− 1)]x0

− g1
{
6λ0[2+ n1(λ0− 1)] f ′′0 + (1− 2λ0)

[
f ′′0 − (λ0− 1) f0

]
− [1+ n1(λ0− 1)]x0

}
/g0

− g1
{
λ0(λ0− 1)(4λ0+ 1) f0+ (2λ0− 1)[1+ n1(λ0− 1)]y0

}
/g0

− n2
{

x0
(

f IV
0 x0/2+w0

)
/(2g0)+ h0

(
g0x ′0− x0h0+ 3λ2

0g0 f ′0
)
/g2

0
}

− n1
[
x0g0( f IV

1 x0/2+w1)+ x0g1( f IV
0 x0/2+w0)+ g0x1( f IV

0 x0+w0)
]
/(2g2

0)

− n1
{
h0[x ′1g0− x1h0+ 3λ2

0g0 f ′1] + h0[x ′0g1− x0h1+ 3λ2
0g1 f ′0]

}
/g2

0

− n1
{
6λ0[2+ n1(λ0− 1)]g0h0 f ′0− (1− 2λ0)

[
2h2

0 f0− 2g0h0 f ′0
]
+ n1h2

0x0
}
/(2g2

0)

− n1(1− 2λ0) f0( f IV
0 x0+w0)/(2g0)− n1h1

(
x ′0g0− x0h0+ 3λ2

0g0 f ′0
)
/g2

0;

f2(θ = 0)= 0, f ′2(θ = 0)= 1/ tan
( 1

2 M pπ
)
, f2(θ = π), f ′2(θ = π),

f2(θ =−π), f ′2(θ =−π), f2(θ = 0)= 0, f ′2(θ = 0)= 1/ tan
( 1

2 M pπ
)
,

(3-4)

where we have adopted the notation

xk = (λ0+ 1)(2− λ0) fk + 2 f ′′k , yk = (λ0+ 1)(2λ0− 1) fk − f ′′k , uk = (λ0+ 1) fk + f ′′k ,

vk = (λ0+ 1)λ0 fk, g0 = u2
0+ v

2
0 − u0v0+ 3λ2

0 f ′0
2
,

h0 = u0u′0+ v0v
′

0−
1
2 u′0v0−

1
2 u0v

′

0+ 3λ2
0 f ′0 f ′′0 ,

w0 = u′0
2
+ (λ0+ 1)u0 f ′′0 + v

′

0
2
+ v0v

′′

0 −
1
2(λ0+ 1)v0 f ′′0 − u0v

′

0−
1
2 u0v

′′

0 + 3λ2
0( f ′′0

2
+ f ′0 f ′′′0 ),

g1 = 2u0(u1+ f0)+ 2v0
[
v1+ (2λ+ 1) f0

]
− u0

[
v1+ (2λ+ 1) f0

]
− v0(u1+ f0)

+ 6λ0 f ′0(λ0 f ′1+ f ′0),

h1 = u0(u′1+ f ′0)+ u′0(u1+ f0)+ v0
[
v′1+ (2λ0+ 1) f ′0

]
+ v′0

[
v1+ (2λ0+ 1) f0

]
−

1
2 u′0

[
v1+ (2λ0+ 1) f0

]
−

1
2 u0

[
v′1+ (2λ0+ 1) f ′0

]
−

1
2v0(u′1+ f ′0)−

1
2v
′

0(u1+ f0)

+ 3λ0 f ′0(λ0 f ′′1 + f ′′0 )+ 3λ0 f ′′0 (λ0 f ′1+ f ′0),

w1 = 2u′0(u
′

1+ f ′0)+ u0
[
(λ0+ 1) f ′′1 + f ′′0

]
+ (λ0+ 1) f ′′0 (u1+ f0)+ 2v′0

[
v′1+ (2λ0+ 1) f ′0

]
+ v′0

[
v′′1 + (2λ0+ 1) f ′′0

]
+ v′′0

[
v1+ (2λ0+ 1) f0

]
−

1
2(λ0+ 1) f ′′0

[
v1+ (2λ0+ 1) f0

]
−

1
2v0
[
(λ0+ 1) f ′′1 + f ′′0

]
− v′0(u

′

1+ f ′0)− u′0
[
v′1+ (2λ0+ 1) f ′0

]
−

1
2v
′′

0 (u1+ f0)

−
1
2 u0

[
v′′1 + (2λ0+ 1) f ′′0

]
+ 6λ0 f ′′0 (λ0 f ′′1 + f ′′0 )+ 3λ0 f ′′′0 (λ0 f ′1+ f ′0)+ 3λ0 f ′0(λ0 f ′′′1 + f ′′′0 ).
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The solution of the linear ordinary differential equation (3-2) for the function f0(θ) satisfying the
traction-free boundary conditions has the form

f I
0 = β cos(αθ)−α cos(βθ), α = λ0− 1, β = λ0+ 1,

for the crack opening mode I (for symmetric stress fields), and it has the form

f II
0 = sin(αθ)− sin(βθ)

for the shear crack mode II (the skew-symmetric stress fields), where the spectrum of the eigenvalues is
determined by the characteristic equation sin 2πλ0 = 0, whence one can easily find λ0 =

1
2 m, where m is

an integer. Thus it is shown that an infinite number of eigenvalues exists. In view of the linearity of (3-2)
for the mixed-mode crack problem, the solution is the superposition of the symmetric and antisymmetric
parts of the stress field with respect to the crack plane:

f0(θ)= C1[β cos(αθ)−α cos(βθ)] +C2[sin(αθ)− sin(βθ)], (3-5)

where C1 and C2 are unknown coefficients which have to be determined from the boundary conditions
of the actual crack problem and represent the modes I and II, respectively. In view of (2-4), the unknown
constants C1 and C2 are related to the mixity parameter M p

= 2 arctan[(λ0+ 1)C1/C2]/π . The zeroth-
order problem (3-2) has the nontrivial solution (3-5), hence the inhomogeneous problems (3-3), (3-4) for
the functions f1(θ) and f2(θ) will not have solutions unless a solvability condition is satisfied [Nayfeh
2000; 2011]. Therefore, if λ0 is not an eigenvalue of the homogeneous problem (i.e., the homogeneous
problem has only the trivial solution), the inhomogeneous problem has a unique solution for every con-
tinuous right-hand side Gk(θ) of the differential equation for fk(θ), k > 0. On the other hand, if λ0 is an
eigenvalue of the homogeneous problem (i.e., the homogeneous problem has a nontrivial solution), the
inhomogeneous problem does not have a solution unless [Nayfeh 2000; 2011]∫ π

−π

Gk(θ)u(θ) dθ = 0. (3-6)

That is, Gk(θ) is orthogonal to the eigenfunction u(θ), corresponding to the eigenvalue λ0. These results
constitute the so-called Fredholm alternative theorem: for a given value λ0, either the inhomogeneous
problem has a unique solution for each continuous right-hand side of the equation, or else the homoge-
neous problem has a nontrivial solution [Nayfeh 2000; 2011]. To determine the solvability condition
(3-6) we use the concept of adjoint problems [Stepanova 2008a; 2008b; 2009a; Stepanova and Igonin
2014]. The boundary value problem (3-3) is self-adjoint since the differential equation and the boundary
conditions of the adjoint problem coincide with the differential equation and boundary conditions of
the homogeneous problem (3-2). Therefore, u(θ) = f0(θ), where the function f0(θ) is determined by
(3-5). According to (3-6), the compatibility condition of the boundary value problem (3-3) has the form∫ π
−π

G1(θ) f0(θ) dθ = 0, or, in expanded form,∫ π

−π

{
−n1[x0(

1
2 f IV

0 x0+w0)/(2g0) + h0(g0x ′0− x0h0+ 3λ2
0g0 f ′0)/g2

0]

−
1
2 f ′′0 [(λ0−1)(4λ0−1)n1+8λ0]−

1
2 f0(λ

2
0−1)[(λ0−1)(4λ0+1)n1+8λ0]

}
f0(θ) dθ = 0. (3-7)
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M p n1 n2 M p n1 n2 M p n1 n2

0 4.000000 8.000000 0.3 4.065772 7.941876 0.8 4.224060 7.926086
0.05 4.001766 7.999995 0.4 4.118594 7.804045 0.9 4.084774 7.958755
0.1 4.007088 7.999954 0.5 4.184135 7.749316 0.95 4.023759 7.999543
0.2 4.028722 7.978646 0.6 4.249098 7.600224 1 4.000000 8.000000

0.7 4.279336 7.577773

Table 1. Coefficients of the asymptotic expansion of the hardening exponent n.

The compatibility condition of the boundary value problem for the function f1(θ) (3-7) allows us to
find the coefficient n1. The values of n1 for different values of the mixity parameter are shown in Table 1.
Having obtained the function f1(θ), one can determine the unknown function f2(θ). Using the analogous
reasoning, one can formulate the compatibility condition for the solution of the boundary value problem
for f2(θ) and calculate numerically the values of the coefficient n2 of the asymptotic expansion of the
hardening exponent n for different values of the mixity parameter. Table 1 summarizes the results of
computations and gives the coefficients n1 and n2 for different values of the mixity parameter.

From the results obtained one can see that the mixed-mode loading leads to change of the stress singu-
larity in the vicinity of the crack tip under plane stress conditions. Previously, it was found [Stepanova
2008a; 2009a] that for mode I and mode II crack problems the perturbation theory technique results in
the equation nk = (−1)k+1/(λ0− 1)k+1 (where, for the HRR problem, λ0 =

1
2 ), and the third asymptotic

expansion in (3-1) yields n = λ/(1− λ), or λ= n/(n+ 1). This eigenvalue corresponds to the classical
HRR stress field. The results obtained and given in Table 1 clearly show that the mixed-mode loading
leads to a change in the stress singularity exponent in the vicinity of the crack tip. Otherwise, the values
of the coefficients n1 and n2 were 4 and 8, respectively, as they were in the case of plane strain conditions.
In other words, if the coefficients n1 and n2 were equal to 4 and 8, respectively, then we would have
nk = (−1)k+1/(λ0− 1)k+1, [Stepanova 2008a; 2009a] and we would sum the binomial series for n and
obtain the classical HRR stress field. However, as is indicated by Table 1, the values of n1 and n2 deviate
from 4 and 8, respectively. Thus, mixed-mode loading causes a change in the stress singularity in the
neighborhood of the crack tip. When we analyze the stress-strain state in the vicinity of the crack tip
under mixed-mode loading, it is assumed that the stress singularity does not change and the eigenvalue
corresponds to the HRR problem, λ= n/(n+ 1) (i.e., it is assumed a priori that the eigenvalue equals
λ= n/(n+1) and the hypothesis is confirmed by the solution [Shlyannikov and Kislova 2009]). However,
in the case of plane stress conditions, as the artificial small parameter method shows, the hypothesis
cannot be accepted and it is necessary to find the eigenvalues of the problem as a part of the solution. In
the next part of the paper, the numerical solution of the nonlinear eigenvalue problem will be considered.

4. Numerical solution of the nonlinear eigenvalue problem. Computational scheme.
Eigenvalues and eigenfunctions.

As mentioned earlier, traditionally, it is assumed that the eigenvalue of the nonlinear eigenvalue problem
equals the eigenvalue of the HRR problem: λ = n/(n + 1). However, the assumption results in the
discontinuity of the radial stress component on the line extending the crack. The asymptotic analysis
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based on the artificial small parameter method and described above has shown additionally that the
eigenvalue corresponding to the HRR stress field cannot be the eigenvalue of the mixed-mode crack
problem under plane stress conditions. In view of the above arguments, the eigenvalue of the problem
considered will be determined from the requirement of the continuity of the radial stress component
at θ = 0. The analogous approach for solving the nonlinear eigenvalue problems has been applied in
[Stepanova and Adylina 2014], where the approach allowed the determination of the whole spectrum
of the eigenvalues, resulting in the contours of the completely damaged zone converging to the limit
contour. The procedure of the numerical solution of the nonlinear eigenvalue problem is based on the
following assumptions. In the case of the mixed-mode crack problem the symmetry and antisymmetry
arguments cannot be used, and it is necessary to find the solution on the interval [−π, π]. In conducting
the numerical solution, the interval [−π, π] can be divided into two intervals: [0, π] and [−π, 0]. First,
(2-7) is numerically solved in the interval [0, π], and the two-point boundary value problem (2-7), (2-9)
is reduced to the initial problem with the initial conditions

f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
, f ′′(θ = 0)= A2, f ′′′(θ = 0)= A3. (4-1)

The unknown constants A2 and A3 are determined such that the boundary conditions on the upper crack
surface are satisfied:

f (θ = π)= 0, f ′(θ = π)= 0. (4-2)

The constants A2 and A3 having been obtained, (2-7) is numerically solved on the interval [−π, 0].
For this purpose, the two-point boundary value problem is reduced to the initial problem with the initial
conditions

f (θ =−π)= 0, f ′(θ =−π)= 0, f ′′(θ =−π)= B2, f ′′′(θ =−π)= B3. (4-3)

The unknown constants B2 and B3 are chosen in such a way that the equilibrium equations of the
element belonging to the line θ = 0 are satisfied. The equilibrium equations require the continuity of
the shear and circumferential stress components σrθ (r, θ) and σθθ (r, θ) at θ = 0, which implies the
continuity of the functions f (θ) and f ′(θ) at θ = 0 (and, therefore, the boundary conditions (2-10), and
hence discontinuities of the radial stress components are allowed). Thus, the two unknown constants
B2 and B3 are determined in such a way that the solution on the interval [−π, 0] satisfies the boundary
conditions at θ = 0. When this algorithm is realized, it is usually supposed that the eigenvalue equals
the eigenvalue of the HRR stress field. If it is necessary to find eigenvalues different from λ= n/(n+ 1),
and, as a whole, the spectrum of the eigenvalues, then the question arises: which additional physical and
(or) mathematical reasons need to be invoked for finding the eigenspectrum? If λ is a required value,
then under integration of (2-7) in the interval [0, π] one has the three unknown parameters λ, A2 and A3,
and only the two boundary conditions (4-2) from which the unknowns can be obtained. Obviously, it is
necessary to have an additional condition. For the purpose of determination of the eigenvalue λ one can
analyze the behavior of the radial stress component in the case of plane strain conditions [Shlyannikov and
Kislova 2009; Stepanova and Adylina 2014]. One can see that the radial stress component is continuous
as a function of the polar angle at θ = 0 for the values of the mixity parameter and the hardening
exponent. It should be noted that the continuity of the radial stress component is not a priori required
(i.e., the eigenvalue corresponding to the HRR field λ= n/(n+ 1) has been chosen and the radial stress
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M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.749848 −1.013963 −17.857405 −11.119908 0.112696
0.2 0.749363 −1.009899 −8.639267 −5.450935 0.210905
0.3 0.748445 −1.002588 −5.438885 −3.518917 0.244099
0.4 0.746893 −0.991172 −3.732943 −2.521575 0.262339
0.5 0.744332 −0.974435 −2.613062 −1.898950 0.276300
0.6 0.740101 −0.951096 −1.774144 −1.465507 0.290927
0.7 0.733089 −0.921053 −1.087827 −1.143866 0.311439
0.8 0.721666 −0.889149 −0.501650 −0.898579 0.348145
0.9 0.710960 −0.878015 −0.059127 −0.724120 0.428064

Table 2. New eigenvalues λ for n = 3 for different values of the mixity parameter.

component σrr (r, θ) turned out to be continuous for all the values of the mixity parameter and for all
the values of the hardening exponent). Therefore, the eigenvalue is sought from the requirement of the
continuity of the radial stress component σrr (r, θ) at θ = 0. Thus, the spectrum of the eigenvalues is
numerically obtained.

The numerical integration of differential equation (2-7) to obtain f (θ) for [0, π] is performed by the
fourth-order Runge–Kutta method, using symbolic computation in Mathematica as a powerful, conve-
nient and versatile tool widely used in solid mechanics [Constantinescu and Korsunsky 2007], while the
solution of the simultaneous nonlinear equations

f (π)= F1(A2, A3)= 0, f ′(π)= F2(A2, A3)= 0

for A2, A3 for a prescribed value of λ is obtained by the Gauss–Newton least-square method so that they
satisfy the condition ( f (π))2 + ( f ′(π))2 < 10−7. Next the solution is sought for the interval [−π, 0]
and the numerical integration of (2-7) is performed by the fourth-order Runge–Kutta method whereas
the solution of simultaneous nonlinear equations

f (−π)= F3(B2, B3)= 0, f ′(−π)= F4(B2, B3)= 0

for B2, B3 for the same prescribed value of λ is obtained by Gauss–Newton least-square method so that
they satisfy the condition ( f (−π))2+ ( f ′(−π))2 < 10−7. Then one can compare the values of the radial
stress component at θ = 0: σ̃rr (θ = 0−) and σ̃rr (θ = 0+). The eigenvalue λ is said to be found if the
inequality |(σ̃rr (θ = 0+)− σ̃rr (θ = 0−)|< 10−7 is valid.

Results of computations are shown in Tables 2–7, where the new eigenvalues λ and the values of the
functions f ′′(θ = 0), f ′′′(θ = 0), f ′′(θ = −π) and f ′′′(θ = −π) for the different values of the mixity
parameter M p and the hardening exponent n are given.

Circumferential variations of the stress and strain components obtained are shown in Figures 1–8.
The contours of the equal equivalent stress are shown in Figure 9. It is shown that the angular stress
distributions are fully continuous and do not contain the discontinuities.

In [Ondraček and Materna 2014], FEM evaluation of the dissipated energy in front of a crack tip
under 2D mixed-mode loading conditions was performed. Two different meshes were created to simulate
mode I and mode II fatigue crack growth. In both cases, the plane stress and strain calculations were
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M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.833249 −1.059014 −17.175345 −12.817403 0.217377
0.2 0.832975 −1.054353 −8.270256 −6.295063 0.214040
0.3 0.832434 −1.045751 −5.310084 −4.075287 0.211815
0.4 0.831456 −1.031834 −3.692485 −2.931140 0.210848
0.5 0.829711 −1.010626 −2.474608 −2.217574 0.211543
0.6 0.826595 −0.980308 −1.877300 −1.720923 0.214889
0.7 0.821183 −0.942182 −0.945119 −1.353750 0.223389
0.8 0.813522 −0.910480 −0.379570 −1.085758 0.244019
0.9 0.813057 −0.918935 −0.078809 −0.934756 0.294866

Table 3. New eigenvalues λ for n = 5 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.874951 −1.068014 −16.399514 −14.051259 0.275592
0.2 0.874787 −1.063523 −8.019713 −6.907737 0.218081
0.3 0.874448 −1.054980 −5.004927 −4.477821 0.197231
0.4 0.873779 −1.040530 −3.427356 −3.225923 0.186395
0.5 0.872529 −1.017364 −2.369760 −2.444916 0.180489
0.6 0.870107 −0.983152 −1.789715 −1.900363 0.178418
0.7 0.865837 −0.941813 −0.850487 −1.498387 0.181311
0.8 0.863118 −0.931654 −0.409135 −1.230020 0.194901
0.9 0.863005 −0.939455 −0.117494 −1.070440 0.230710

Table 4. New eigenvalues λ for n = 7 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.899969 −1.067810 −15.870539 −14.973046 0.300772
0.2 0.899986 −1.063699 −7.757085 −7.364961 0.214921
0.3 0.899637 −1.055617 −4.929978 −4.777032 0.184458
0.4 0.899167 −1.041283 −3.428549 −3.445052 0.168585
0.5 0.898187 −1.017020 −2.446724 −2.613278 0.159358
0.6 0.896185 −0.979984 −1.473179 −2.032212 0.154562
0.7 0.892756 −0.938703 −0.786691 −1.605170 0.154589
0.8 0.892187 −0.945074 −0.441700 −1.335332 0.164138
0.9 0.892132 −0.951743 −0.148784 −1.166821 0.191437

Table 5. New eigenvalues λ for n = 9 for different values of the mixity parameter.

performed. The crack zones under conditions of plane stress are rather oval shaped. The shape of the
equal equivalent stress contours shown in the first three rows of Figure 9 is similar to results of [Ondraček
and Materna 2014].



380 LARISA V. STEPANOVA AND EKATERINA M. YAKOVLEVA

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.916646 −1.064886 −15.509504 −15.687120 0.308561
0.2 0.916575 −1.061186 −7.505140 −7.718823 0.207926
0.3 0.916414 −1.053681 −4.740118 −5.009507 0.172524
0.4 0.916060 −1.039712 −3.250966 −3.614202 0.154108
0.5 0.915260 −1.014674 −2.235656 −2.742892 0.143208
0.6 0.913531 −0.975351 −1.415360 −2.133091 0.137003
0.7 0.911361 −0.945900 −0.796175 −1.696655 0.135580
0.8 0.911145 −0.954022 −0.468121 −1.415250 0.142450
0.9 0.911123 −0.959920 −0.172574 −1.239380 0.164364

Table 6. New eigenvalues λ for n = 11 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.928557 −1.061240 −15.147594 −16.257399 0.307317
0.2 0.928507 −1.057923 −7.398140 −8.001191 0.199333
0.3 0.928389 −1.051006 −4.705468 −5.194292 0.161542
0.4 0.928110 −1.037485 −3.273920 −3.748906 0.141919
0.5 0.927433 −1.011819 −2.331595 −2.845877 0.130222
0.6 0.925895 −0.970589 −1.366626 −2.212890 0.123306
0.7 0.924700 −0.958252 −0.8289902 −1.777736 0.121104

0.75 0.924300 −0.965607 −0.634815 −1.606930 0.122390
0.8 0.924467 −0.960475 −0.489375 −1.478170 0.126133
0.9 0.924460 −0.965742 −0.190855 −1.295977 0.144355

0.95 0.924459 −0.967010 −0.044076 −1.245296 0.162210

Table 7. New eigenvalues λ for n = 13 for different values of the mixity parameter.
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Figure 1. Circumferential variations of the stress components σ̃θθ and σ̃rθ for different
values of the mixity parameter. Strain hardening exponent n = 3.



ASYMPTOTIC STRESS FIELD IN THE VICINITY OF A MIXED-MODE CRACK 381

2

1

0

-1

-2

321-1-2-3 0

Mp=1

0.9
0.8
0.7
0.6

Mp=0

0.1
0.2
0.3
0.4
0.5

~
rrσ

θ

0.95 n=3

2.5

2

1

1.5

3

0.5
-3 -2 -1 0 1 2 3

n=3

Mp=1
0.9

0.8
0.7
0.6

Mp=0
0.1
0.2
0.3
0.4
0.5

~
eσ

θ

0.85
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stress σ̃e for different values of the mixity parameter. Strain hardening exponent n = 3.
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values of the mixity parameter. Strain hardening exponent n = 3.
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Figure 5. Circumferential variations of the stress components σ̃θθ and σ̃rθ for different
values of the mixity parameter. Strain hardening exponent n = 13.
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M p
= 0.3 M p

= 0.5 M p
= 0.7 M p

= 0.8
n δ,% n δ,% n δ,% n δ,%

3 0.207 3 0.75 3 2.25 3 3.77
5 0.107 5 0.43 5 1.45 5 2.37
7 0.063 7 0.28 7 1.04 7 1.35
9 0.040 9 0.20 9 0.80 9 0.86

11 0.027 11 0.15 11 0.57 11 0.60
13 0.019 13 0.12 13 0.41 13 0.44

Table 8. The difference between λ and λHRR for M p
= 0.3, 0.5, 0.7, 0.8.

One can evaluate the deviation of the new eigenvalue λ from the eigenvalue corresponding to the
classical HRR stress field λHRR. The discrepancy δ = (λHRR− λ) ∗ 100%/λHRR for different values of
the hardening exponent n and for different values of the mixity parameter M p is given by Table 8.
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One can see from Table 8 that the difference tends to zero as the hardening exponent n increases, for
all values of the mixity parameter. Thus, in the limiting case of perfect plasticity one can obtain the
classical strain singularity r−1 and the vanishing singularity of the stress field in the vicinity of the crack
tip. In the limiting case of perfect plasticity, the stresses should be bounded as r→ 0, and one can obtain
the analytical solution of the problem in the asymptotic form

σi j (r, θ)= σ
(0)
i j (θ)+ rασ (1)i j (θ)+ · · · , σe(r, θ)= 1− rασ (1)(θ)+ · · · , α > 0, r→ 0, (4-4)

where the stresses are normalized by the yield stress. The governing system of equations following from
the equilibrium equations and the Huber–Mises yield criterion can be found for functions σ (0)i j (θ) :

σ
(0)
rθ,θ + σ

(0)
rr − σ

(0)
θθ = 0, σ

(0)
θθ,θ + 2σ (0)rθ = 0, (σ (0)rr )

2
+ (σ

(0)
θθ )

2
− σ (0)rr σ

(0)
θθ + 3(σ (0)rθ )

2
= 1. (4-5)
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The analytical expressions for the angular distributions σ (0)i j (θ) of the stress components for M p
= 0.25 are

given as follows:

• For −π ≤ θ ≤ θα, θα =−2.186257912=−125.26◦, we have

σ (0)rr =
1
2(1+ cos 2θ), σ

(0)
θθ =

1
2(1− cos 2θ), σ

(0)
rθ =−

1
2 sin 2θ,

• For θα ≤ θ ≤ θβ , θβ =−1.686144171=−96.60◦, we have

σ (0)rr =
1
√

3
cos(θ + c3), σ

(0)
θθ =

2
√

3
cos(θ + c3), σ

(0)
rθ =

1
√

3
sin(θ + c3),

where c3 = 1.230959418= 70.53◦.

• For θβ ≤ θ ≤ θγ , θγ =−0.9114267175=−52.22◦, ϑ1 = θβ + c3, we have

σ (0)rr =
√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ1+
1

2
√

3
cosϑ1 cos 2(θ − θβ)− 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ1 sin 2(θ − θβ)+ 1

√
3

sinϑ1 cos 2(θ − θβ).

• For θγ ≤ θ ≤ θδ, θδ = 0.924219118= 52.95◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1),

where c1 = 1.366576756= 78.30◦.

• For θδ ≤ θ ≤ θε, θε = 2.081741596= 119.27◦, ϑ2 = θε+ c2, c2 = 1.910633236= 109.47◦, we have

σ (0)rr =
√

3
2 cosϑ2−

1
2
√

3
cosϑ2 cos 2(θ − θβ)+ 1

√
3

sinϑ2 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ2+
1

2
√

3
cosϑ2 cos 2(θ − θβ)− 1

√
3

sinϑ2 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ2 sin 2(θ − θβ)+ 1

√
3

sinϑ2 cos 2(θ − θβ).

• For θε ≤ θ ≤ θζ , θζ = 2.186257912= 125.26◦, we have

σ (0)rr =
1
√

3
cos(θ + c2), σ

(0)
θθ =

2
√

3
cos(θ + c2), σ

(0)
rθ =

1
√

3
sin(θ + c2).

• For θζ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

Here the approach developed in [Dong and Pan 1990; Rahman and Hancock 2006; Stepanova 2009b]
has been applied. The circumferential distributions of the stress tensor components σ (0)i j (θ) in the neigh-
borhood of the crack tip for M p

= 0.5 are given as follows:

• For −π ≤ θ ≤ θα, θα =−3.082081755=−176.60◦, we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.
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• For θα ≤ θ ≤ θβ , θβ =−2.069949494=−118.60◦, we have

σ (0)rr =
√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ1+
1

2
√

3
cosϑ1 cos 2(θ − θβ)− 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ1 sin 2(θ − θβ)+ 1

√
3

sinϑ1 cos,

where ϑ1 = θβ + c1, c1 = 1.107148718= 63.43◦.

• For θβ ≤ θ ≤ θγ , θγ = 0.988154515= 56.62◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1).

• For θγ ≤ θ ≤ θδ, θδ = 2.232478539= 127.91◦, we have

σ (0)rr = a+ 1
4(1+ cos 2θδ) cos 2(θ − θδ)+ 1

2 sin 2θδ sin 2(θ − θδ),

σ
(0)
θθ = a− 1

4(1+ cos 2θδ) cos 2(θ − θδ)− 1
2 sin 2θδ sin 2(θ − θδ),

σ
(0)
rθ =−

1
4(1+ cos 2θδ) sin 2(θ − θδ)+ 1

2 sin 2θδ cos 2(θ − θδ),

where a = 1
4(−1+ 3 cos 2θδ).

• For θδ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

The circumferential distributions of the stress components σ (0)i j (θ) in the vicinity of the crack tip for
M p
= 0.75 are given as follows:

• For −π ≤ θ ≤ θα, θα =−2.904522467=−166.42◦, we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

• For θα ≤ θ ≤ θβ , θβ =−1.759907174=−100.84◦, we have

σ (0)rr =
√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ1+
1

2
√

3
cosϑ1 cos 2(θ − θβ)− 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ1 sin 2(θ − θβ)+ 1

√
3

sinϑ1 cos 2(θ − θβ),

where ϑ1 = θβ + c1, c1 = 0.6918358137= 39.64◦.

• For θβ ≤ θ ≤ θγ , θγ = 1.119349842= 64.13◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1).
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Figure 10. The angular distributions of the stress tensor components in the vicinity of
the crack tip for M p
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Figure 11. The angular distributions of the stress tensor components in the vicinity of
the crack tip for M p

= 0.5

• For θγ ≤ θ ≤ θδ, θδ = 2.385429690= 136.68◦, we have

σ (0)rr = a+ 1
4(1+ cos 2θδ) cos 2(θ − θδ)+ 1

2 sin 2θδ sin 2(θ − θδ),

σ
(0)
θθ = a− 1

4(1+ cos 2θδ) cos 2(θ − θδ)− 1
2 sin 2θδ sin 2(θ − θδ)

σ
(0)
rθ =−

1
4(1+ cos 2θδ) sin 2(θ − θδ)+ 1

2 sin 2θδ cos 2(θ − θδ),

where a = 1
4(−1+ 3 cos 2θδ).

• For θδ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

The angular distributions of the stress tensor components obtained are shown in Figures 10–12. The
data points are numerical results, while the solid lines represent the analytical solution.

One can see from Figures 10–12 that the radial stress σ̃rr (θ) is continuous at θ = 0. Continuity of the
radial stress σ̃rr (θ) in the limiting case of perfect plasticity confirms the previously accepted assumption.
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5. Conclusions and discussion of results

In the study the asymptotic analysis and numerical solutions of the nonlinear eigenvalue problems arising
from the mixed-mode crack problem in a power law material under plane stress conditions are presented.
The method proposed allows us to find the whole spectrum of eigenvalues for a complete range of
mixed-mode I/II states of loading from tensile to shear crack problems. The solution is based on the
eigenfunction expansion method in the vicinity of the crack tip. The asymptotic presentation of the Airy
stress potential reduces the mixed-mode crack problem considered to a nonlinear eigenvalue problem.
One eigenvalue corresponding to the pure tensile (mode I) and pure shear (mode II) crack problems
is well known and corresponds to the HRR stress field: λ = n/(n+ 1). Following a common practice
[Shlyannikov and Kislova 2009; Shlyannikov 2012], it is conventionally assumed that for combined mode
I–mode II fracture the eigenvalue corresponding to the HRR problem is the eigenvalue of the nonlinear
eigenvalue problem arising from the mixed-mode crack problem. For the case of plane strain conditions,
the assumption is valid. The assumption is confirmed by the asymptotic solutions obtained [Shlyannikov
and Kislova 2009; Shlyannikov 2012]. However, for the case of plane stress conditions, this hypothesis
entails discontinuous radial stress components ahead of the crack tip. All the solutions to the mode I
crack and mode II crack problems for plane stress conditions, as well as the solutions for mixed-mode
loading [Rahman and Hancock 2006; Shlyannikov and Kislova 2009; Shlyannikov 2012; Stepanova and
Adylina 2014], show a continuous radial stress component at θ = 0. In the present paper, it is shown that
the mixed-mode loading of the cracked plate results in a new stress singularity around the crack tip. The
asymptotic analysis and the numerical calculations performed lead to the new stress field asymptotics in
the vicinity of the mixed-mode crack under plane stress conditions. The asymptotic analysis based on
the artificial small parameter method of the perturbation theory provided a possibility to reveal the new
stress singularity in the vicinity of the crack tip. Next, a technique for numerical determination of the
eigenvalues of the nonlinear eigenvalue problem is proposed. Using this technique, the new eigenvalues
resulting in continuous radial stress components at θ = 0 are found. It is shown that the method proposed
gives the eigenvalues corresponding to the HRR problem in particular cases of mode I and mode II crack
problems. The theoretical significance of the present paper is that, from the method described here, one
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can clearly know all the mathematically possible distributions of stress singularities at the crack tip under
mixed-mode loading.

It is important to develop asymptotic analysis methods and their applications for nonlinear eigenvalue
problems in solid mechanics [Andrianov and Awrejcewicz 2013] and, in particular, in nonlinear fracture
mechanics and continuum damage mechanics [Barenblatt 2014; Murakami 2012; Voyiadjis 2014], in
order to find new and better methods to reliably determine fatigue and fracture behavior. In nonlinear
fracture mechanics, the eigenfunction expansion method is one of the most commonly encountered ap-
proaches [Murakami 2012; Stepanova 2008a; 2008b; 2009a; Stepanova and Fedina 2008; Stepanova and
Igonin 2014]. The method leads to nonlinear eigenvalue problems which stipulate the possible distribu-
tions of stress singularities at the crack tip, and the determination of the whole eigenspectrum requires
invoking developed asymptotic and computational techniques and their combinations. For instance, it is
shown [Stepanova 2008a; 2008b; Stepanova and Igonin 2014] that damage accumulation around the crack
tip alters the stress-strain state and results in decreasing the stress singularity in the vicinity of the crack
tip. The asymptotic fields in and around the damage zone are quite different from those under K (or J or
C∗) dominance in both singularity and distributions. The stress singularity exponent is determined from
the nonlinear eigenvalue problem, which needs to be thoroughly solved. The solution of the nonlinear
eigenvalue problems provides the solution of the crack problem as a whole. The approach proposed and
solutions obtained here can be useful either to find the similarity solutions of the second kind (incomplete
similarity) [Barenblatt 2013; 2014; Ritchie 2005] and the solutions of nonlinear eigenvalue problems
related to them [Barenblatt 2014; Sih and Tang 2006; Stepanova 2008a; 2008b; Stepanova and Adylina
2014]. It is shown that the meso-mechanical effect of damage accumulation near the crack tip results
in new intermediate stress field asymptotic behavior and requires the solution of nonlinear eigenvalue
problems. The new eigenvalues can be used for analyzing the near crack tip fields in damaged materials
in coupled formulation [Stepanova and Adylina 2014]

In view of the recent research emphases on multiscaling [Tang and Sih 2005; Sih and Tang 2005;
2006; Sih 2008; Stepanova and Igonin 2014], the multiple singularity solution at a point seems to signify
the inherent characteristics of micro- and meso-defects. Determination of multiple singularity solutions
requires solutions of nonlinear eigenvalue problems. For instance, the model based on the Kachanov–
Rabotnov damage evolution law and the power-law of steady-state creep is an example of a problem with
the inherent property of incomplete similarity [Stepanova and Adylina 2014]. The method proposed in
this paper can be used for the determination of the intermediate asymptotic stress behavior in coupled
creep-damage crack problems under mixed-mode loading conditions, since the equations of the problem
must have similarity form of the solution and we can derive the solution of the crack problem if the
ansatz for the solution of nonlinear eigenvalue problems is obtained. It should be noted also that the
class of nonlinear eigenvalue problems arising in nonlinear fracture mechanics is essential in connection
with creating multiscale models of fracture [Barenblatt 2013; 2014; Stepanova and Adylina 2014] with
multisingularities with different orders at the crack point. A singularity representation scheme has to
be considered where the local damage at the different scales will be modeled by different orders of the
stress singularities. Different stress singularities can be related to different loading type and severity of
material damage.

In [Tang and Sih 2005; Sih and Tang 2005; 2006; Sih 2008], it is elucidated that microscopic effects
can have a significant influence on the macroscopic behavior of material. A new approach is needed to
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describe the multiscale character of the material microstructure. In [Tang and Sih 2005], a singularity
representation scheme where scale effects are modeled by different orders of the stress singularities is
proposed. The degree of damage in the vicinity of the crack tip is reflected by the orders of the stress
singularities.

In accordance with these models, it is necessary to introduce the hierarchy of the zones in the vicinity
of the crack tip with dominating role of different stress asymptotic behavior and to realize the matching
procedures between different stress asymptotic solutions. The accurate construction of all the inter-
mediate zones with one or other stress asymptotics requires the knowledge of the whole spectrum of
eigenvalues, and these problems are still open.
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