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HUY DUONG BUI

JEAN SALENÇON AND ANDRÉ ZAOUI

L’original français se trouve page 212.

Huy Duong Bui, member of the French Academy of Sciences, passed away on May 29, 2013 at
the age of 76. He was a founding member of the French Academy of Technologies, a member of the
European Academy of Sciences and a Fellow of the Institute of Physics (London). He was also a Knight
in the French Ordre national de la Légion d’honneur.

Huy Duong Bui was born in Hanoi on March 16, 1937. As a child in Vietnam, he had been kept
away from town and deprived of schooling for a long time because of harsh years of wars, floods and
famine: a refugee in the countryside with his family, he learned hunting and fishing from his father;
he also learned to gaze at the stars and, above all, he developed the practical turn of mind, manual
skill, intellectual curiosity and ingenuity which would mark his personality. His paternal grandfather, an
educated man, gave him an appetite for studying and
taught him the basics in Vietnamese and arithmetic.
But, having been deprived of schooling up to the age
of 12, he failed the entrance exam to the French Lycée
of Hanoi because his French was not good enough.
Thus, Bui (as we used to call him) attended a private
school for three years and then spent two more years as
a self-educated young man, which resulted in an easy
success at the Baccalauréat exam in 1955. Because he
was noticed as a student of exceptional intelligence
he was awarded one of the few scholarships to study
in France in the preparatory classes for the Grandes
Écoles. So he entered the “Math Sup” class of Profes-
sor Jean Itard (otherwise well-known as a historian of
mathematics) in Lycée Henri IV (Paris), almost one
quarter late due to administrative delays. After one
more quarter, he had made up for this handicap and,
after one year of “Math Spe”, he entered the École
Polytechnique in 1957. He graduated in 1959 and then
entered the École Nationale Supérieure des Mines of
Paris for a two-year specialised program. Bui’s scien-
tific career would then begin.

H. D. Bui (1) and two cousins (2, 3) in 1949.

In a biographical text which he regularly updated until a few months before he died, Bui good-
humouredly reveals that it was his failure to pass the “little psychotechnical tests, really just disjointed
children’s games” that were then much in vogue, during an IBM hiring interview, which led him in
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December 1961 to the Solid Mechanics Laboratory at the École Polytechnique, which Professor Jean
Mandel had just founded.

Bui’s admission to this nascent laboratory was not without practical difficulties, but they were eventu-
ally solved with his hiring by the electric utility company Électricité de France (EDF) to perform studies
in solid mechanics relevant to nuclear power plants, then still in the planning stages. In fact, Bui’s
scientific career is intimately tied to this laboratory, where he remained throughout his life in various
administrative positions. This unusual situation, maintained thanks to the far-sightedness of successive
directors of EDF Direction des Études et Recherches (DER), largely explains the nature of Bui’s scientific
work, which was motivated, if not guided, by the research needs of the French energy supply programme.

Apart from its extent and consistency, Bui’s scientific work has been characterised from the beginning
by its elegance and subtlety. It falls squarely within the mechanics of deformable solids, but not without
incursions into fluid mechanics when necessary for the analysis of coupled problems. His scientific
contributions can be grouped into four main fields: mechanics of materials, fracture mechanics, numerical
methods with a special emphasis on boundary integral equations, and inverse and identification problems.
This classification will serve as a useful guide in this outline, although it tends to hide the logical and
chronological development and interconnected of Bui’s interests, which blends results he obtained in all
these different fields.

Mechanics of materials. Bui’s PhD thesis, defended in 1969, dealt with the elastoplastic behaviour of
metals. Motivated by the research programme linked to the Mediterranean gas pipeline, it contains
in embryo several topics in which Bui was later to excel. First, it was an experimental study which
Bui designed and performed personally: starting from the initial boundary of the elastic domain he
established the work-hardening evolution of the yield surface according to the incremental load applied
to the specimen. For this, Bui devised and carried out combined tension-compression and torsion tests on
aluminium, iron and copper thin tubes; he introduced disruptive metrological advances which allowed
him to gain at least one order of magnitude on the permanent strain offset. This point constituted an
essential breakthrough; it must be well understood that the boundary of the elastic domain in a given
work-hardening state can only be determined from the detection of new permanent strains observed along
various loading paths, and that these new permanent strains themselves modify the hardening state at the
same time! In particular, the results obtained, which were completely novel and are now referred to as
seminal, showed an unexpected behaviour during the early stages of work-hardening which was contrary
to the Bauschinger effect. They also allowed the investigation of the influence of the loading path, the
occurrence of corners on the yield surface and the relevance of the “normality rule”. Moreover Bui
developed in his thesis a theoretical analysis in the same spirit as Hill and Mandel: through a pioneer
approach of “homogenisation of random media” he made up a physical model which could explain the
overall elastoplastic behaviour of the metallic polycrystal he had investigated experimentally, from the
single crystal behaviour.

At the end of the 70s, Bui resumed working in mechanics of materials under the pressure of the
research programme on the constitutive equations of steels used in the EDF power plants, with a special
interest in the critical aspects of damaging and fracture and in the “micro-macro” relationships. Then,
during the 90s, he became interested in the micromechanics of solid surfaces, the discontinuity interfaces
of materials — such as welds — or load discontinuities — such as thermal shocks. Concerning this latter
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topic, he brought to light the (very localised, bounded, discontinuous, with an unbounded gradient) stress
singularity he named “the thorn singularity”; this concept made it possible to explain observed superficial
damaging phenomena, such as thermal crazing, and constituted an advance, followed by others, towards
the control of superficial damaging phenomena of materials.

To finish with this topic, which has essential industrial applications, it is worth mentioning that Bui
made important technical contributions by putting his scientific expertise to use in helping to draft the
building code for the construction of fast neutron nuclear power plants. He was also involved, as the
EDF project manager, in the Brite-Euram contract on fibre-reinforced concrete, a subject motivated by
the early damages observed on some cooling towers. Bui also took part in the investigation of mechanical
and rheological problems posed by the underground storage of radioactive waste; his skills in combining
theory, numerical computations and in situ tests proved very useful in that research.

Fracture mechanics. Bui got interested in fracture mechanics soon after his thesis. Following the main
trend of research at that time, he devoted himself to the characterisation of singularities at the crack tip
in order to derive the stress intensity factors, a key tool in brittle fracture mechanics:

— He stated a conservation law dual to that established by Eshelby in 1956.
— He constructed the invariant integral I dual to the J integral of Rice and Cherepanov, so as to make

it possible to get numerical upper and lower bounds of their common value.
— He constructed two invariant integrals which allowed him to separate fracture modes I and II in

the J integral (these results were implemented in CEA and EDF computer code).
— With a view toward applications to thermoelastic fracture mechanics, he established a method

for the construction of a “divergence-free” conservation law for problems that naturally exhibit a
source term, which makes the accurate computation of singularities easier.

Together with Amestoy and Dang Van, using multiple-scale techniques and matched asymptotic expan-
sions, Bui gave an analytical solution to the problem of
a bifurcated crack, which had only been treated numeri-
cally before; later he completed this result with Amestoy
and Leblond for the case of a curved bifurcated branch.
With Ehrlacher and Nguyen, he stated the logarithmic
singularity of the temperature field due to the point heat
source which appears at the tip of a crack propagating
in an elastic solid — a result that conformed with the ex-
perimental evidence then available, which he confirmed
through his own experiments. The introduction of a deco-
hesion law with a threshold in the constitutive equations
of an elastic material allowed Bui and Ehrlacher to derive
analytical solutions to the quasistatic and dynamic crack
propagation problems in mode III (mathematical prob-
lem of a free boundary between the damaged zone and
the still elastic zone) and, incidentally, to solve Rice’s
paradox in the theory of ductile fracture for a perfectly
plastic material.
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To investigate dynamic fracture, Bui originated what is called the compact compression specimen (also
known as the “clothes peg” specimen), which proved itself a remarkably effective tool of experimental
analysis, and he used it in the study of the leakage flow rate through cracks. So, he was led to study various
aspects of fluid-crack interactions taking surface tension into account, especially for nuclear power plant
safety. Let us briefly quote the results he obtained in the field of hydraulic fracturing: a model of
two-dimensional flow of a viscous fluid at the tip of a motionless crack, which can remove the pressure
singularity induced by classical modelling; a model of the interaction for a propagating crack introducing
the capillary tension and assuming void formation between the fluid convex meniscus and the crack tip:
the coupled problem was solved numerically and brought the flow two-dimensional structure to light.
Bui was recognised as an expert for these problems which now have numerous industrial applications.

Bui was one of the world leaders in the field of brittle fracture mechanics. The book he published in
1978 is still authoritative today.

Boundary integral equation methods. This topic is obviously closely connected to the preceding ones.
First, Bui noticed some anomalies in the numerical results obtained in thermo-elastoplasticity; reconsider-
ing the integral equations currently used by researchers and engineers, he showed that the corresponding
integral kernel was not complete, and restored the exact equations by adding a point distribution. Later on,
he investigated this field again; he tackled dynamic problems and, with Bonnet and Loret, he exhibited a
very simple regularisation method for the singular elastodynamics integral equations, which led to higher
accuracy in its numerical implementation. This method has been used, among others, by Madariaga (IPG,
Institute of Earth Physics of Paris) and Bonnet in a paper published in Wave Motion in 1991. In a later
paper, Bui proposed a nonsingular variational method which saves symmetry and yields an a posteriori
error indicator.

Inverse problems and identification. On this fourth main topic, Bui published the book Inverse problems
in the mechanics of materials: an introduction in 1993. It has been translated from French into, among
other languages, English, Japanese, Chinese and Russian. Paul Germain, who wrote the preface to the
French original, called it a “tour de force”: “The ability to fully expound in under 230 pages such
a difficult body of knowledge can only be the result of wide and deep learning . . . that feeds a thought
process involving the constant reworking of acquired knowledge; it is also founded, crucially, on personal
experience of the applications and methods exposed in this book”. Indeed, Bui did not lack personal
experience in this field, but it is mainly his geometrical mind, rich with the notions of duality, symmetry
and reciprocity, that inspired his dazzling intuitions and his singularly elegant treatments; at the same
time, his mathematical ability allowed him to find disconcertingly simple analytical solutions to problems
where so many others rushed in with numerical approaches. Thus, he was able to solve many problems
related to crack, fault or matter lack detection or the reconstruction of load paths. A few examples:

— a direct analytical derivation of the dynamic stress intensity factor from the experimental measure-
ment of forces and velocities applied at the surface, by solving a convolution equation (Bui and
Maigre);

— the partition of kinetic, elastic and dissipated energies in a problem of crack propagation when the
applied force, associated velocity, and crack length and opening are known experimentally;

— the identification of the elastic moduli tensor field in an inhomogeneous solid body from just
measurements of forces and displacements at the boundary. Up to then, the available results only
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concerned the isotropic material and Bui showed that the identification was possible up to 6 elastic
constants.

It was once more at EDF’s instigation that Bui got involved in the study of the inversion of microgravity
data which were measured on the Pyramid of Cheops: he diagnosed the presence of hollow internal spirals
which, several years later, could be related to the construction theory with spiral internal ramps proposed
by the architects Henri and Jean-Pierre Houdin.

Bui trained a great number of young researchers and engineers. He succeeded in passing on not only
his scientific knowledge and know-how but also his enthusiasm for research and passion for bringing
together science and industry, theory and experiments, and basic and applied research. EDF is in his debt
not only for his contribution to the development of the Mechanics and Numerical Models Department and
the LaMSiD, a mixed EDF-CNRS research unit, and for his scientific expertise and penetrating analyses
of scientific and technological progress, but above all for the exceptional human contingent that he built
up through his research on the key problems of nuclear industry. The author of more than 100 papers and
4 books, some of which were translated into 7 languages, he not only helped advance the state of the art
on most of the great topics in solid mechanics of the last fifty years, but also made a major contribution
to the expansion of nuclear technology and to the success of the French nuclear industry.

His scientific portrait would not be complete if his personality were not evoked too, a personality
made of discretion and scientific curiosity, of reserve and human warmth, of enthusiasm and modesty, of
understanding and compassion towards others. This is unanimously attested to not only by his co-workers,
researchers, students, engineers, technicians and administrative people, but also by a number of doctoral
students under the guidance of other advisors who knew that his office door was always open when they
needed scientific advice or comfort amid difficulties. This is also true for his fellow doctoral students in
the Laboratory of Mechanics, including the undersigned, who, to various degrees, have benefited from
his interest and advice, suggestions or recommendations, concerning theory, bibliography, experiments
or methodology.

Georges Charpak bestowed nobility on the word “handyman”: in this sense, we can qualify Bui as
a “handyman of genius” as well as an outstanding theoretician. We all retain Bui’s memory as a figure
who radiated intelligence and ingenuity as well as kindness and generosity.

Bui had been suffering for a long time from asthma, which gradually made his voice fainter and fainter,
but he died of a serious disease which was only diagnosed in November 2012. He accepted this illness
not with resignation but with philosophy; shortly before he died, he wrote to his dearest and nearest:
“For me, death is the continuation of life in another form.” He passed away with serenity and confidence.

In the conclusion of the 2013 edition of his memoirs, which he gathered under the title “Schrödinger’s
cat in quantum mechanics and its double in solid mechanics”, he thanked all his co-workers and the per-
sonalities who helped him for the progress of his career and he wrote this especially touching dedication:

To the memory of my father and my mother; she was lost with so many other “boat
people” in the China Sea.

Following his wishes, his own ashes were scattered in that same China Sea.

Jean Salençon and André Zaoui
October 2014
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HUY DUONG BUI

Huy Duong BUI, membre de l’Académie des sciences est décédé le 29 mai 2013 à l’âge de 76 ans. Il
était membre fondateur de l’Académie des technologies, membre de l’Acadḿie européenne des sciences
(EURASC) et Fellow de l’Institute of Physics (Londres). Il était aussi Chevalier dans l’Ordre national
de la légion d’honneur.

Huy Duong BUI était né à Hanoi le 18 mars 1937. Enfant, au Vietnam, il fut longtemps tenu éloigné de
la ville et privé d’école par de dures années de guerre, d’inondations et de famine : réfugié à la campagne
avec sa famille, il y avait appris de son père la chasse et la pêche, il avait aussi contemplé les étoiles et,
surtout, développé un sens pratique, une habilité manuelle, une curiosité et une inventivité qui allaient
marquer sa personnalité. Son grand-père paternel, un « lettré », lui donna le goût d’étudier et lui enseigna
les bases du vietnamien et de l’arithmétique. Privé d’école jusqu’à l’âge de 12 ans, son niveau insuffisant
en français lui fermait les portes du lycée français de Hanoï et c’est en suivant pendant 3 ans des cours pri-
vés, puis en étudiant pendant 2 ans en autodidacte, que BUI (c’est ainsi que nous avions coutume de l’ap-
peler) réussit brillamment au bacca-
lauréat en 1955. Remarqué pour son
intelligence exceptionnelle, il obtint
alors une des rares bourses d’étude
en classes préparatoires et intégra le
25 novembre, soit avec presqu’un tri-
mestre de retard, la classe de mathé-
matiques supérieures du lycée Henri
IV du professeur Jean ITARD (bien
connu par ailleurs comme historien
des mathématiques). En un trimestre
ce handicap était rattrapé et, après
une année de mathématiques spéci-
ales, BUI était reçu dans la promo-
tion 1957 de l’École polytechnique.
Sorti en 1959, il entrait à l’École na-
tionale supérieure des mines de Paris
pour une spécialisation de deux ans.
La carrière scientifique de BUI allait
ensuite commencer.

Dans une notice qu’il a tenue à
jour jusque peu de temps avant son
décès, BUI révèle avec amusement
que c’est le fait d’avoir échoué aux
« petits tests psychotechniques, jeux
d’enfants mal enchainés » qui étaient
alors très en vogue, lors de son entre-
tien d’embauche chez IBM qui l’a
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conduit en décembre 1961 au Laboratoire de mécanique de l’École polytechnique que venait de fonder
le professeur Jean Mandel.

L’entrée de BUI dans ce laboratoire naissant posait des difficultés matérielles qui furent opportunément
résolues par EDF en l’embauchant pour réaliser des études en mécanique des solides destinées aux futures
centrales nucléaires. En fait la carrière scientifique de BUI est attachée à ce laboratoire où il a toujours été
présent, dans des positions administratives diverses. Cette situation originale, permise par la clairvoyance
de directeurs successifs de la Direction des Études et Recherches (DER) d’EDF, explique, pour une bonne
part, la nature des travaux scientifiques de BUI : motivés, sinon guidés, par les besoins de recherche du
programme énergétique français.

Indépendamment de son ampleur et de sa cohérence, l’œuvre scientifique de BUI se caractérise, dès
ses premiers travaux, par l’élégance et la subtilité. Elle se situe sans ambiguïté en mécanique des solides
déformables, sans pour autant négliger, lorsque cela se révèle nécessaire, des incursions dans le domaine
de la mécanique des fluides pour l’analyse de problèmes couplés. On peut regrouper ces travaux scienti-
fiques en quatre grands domaines : la mécanique des matériaux, la mécanique de la rupture, les méthodes
numériques par équations intégrales de frontière, les problèmes inverses et les problèmes d’identification.
Une telle classification a certes le mérite de structurer l’exposé mais peut aussi occulter le cheminement
logique et chronologique des travaux de BUI qui mêle les résultats obtenus dans ces domaines.

Mécanique des matériaux. La thèse de BUI, soutenue en 1969, portait sur l’élastoplasticité des métaux.
Motivée par le programme de recherche lié au gazoduc transméditerranéen, on y trouve en germes plu-
sieurs des sujets sur lesquels BUI allait, par la suite, exceller. C’est d’abord une étude expérimentale,
menée par BUI lui-même, pour déterminer l’évolution de la frontière du domaine d’élasticité des métaux
par écrouissage à partir du domaine d’élasticité initial, suivant la nature de la sollicitation incrémentale im-
posée au matériau. BUI avait pour cela conçu et réalisé des expériences en traction-compression et torsion
sur des tubes minces d’aluminium, de fer, de cuivre avec une avancée métrologique significative qui lui
faisait gagner au moins un ordre de grandeur sur l’accroissement de déformation permanente qu’il pouvait
détecter. Il s’agissait là d’une percée essentielle : il faut en effet bien comprendre que la détermination
de la frontière du domaine d’élasticité dans un état d’écrouissage donné ne peut se faire qu’en détectant,
pour divers trajets de chargement, l’apparition de déformations permanentes nouvelles, mais que ces
mêmes déformations permanentes modifient immédiatement l’état d’écrouissage ! Les résultats obtenus,
totalement originaux, auxquels il est encore fait référence à ce jour, ont notamment mis en évidence
dans les tout premiers pas de l’écrouissage un effet inattendu, contraire à l’effet BAUSCHINGER. Ils ont
aussi permis d’examiner l’influence du trajet de charge, l’apparition de point coniques, et la pertinence
de la « règle de normalité ». Dans cette même thèse, BUI a développé une analyse théorique, dans la
ligne des préoccupations de HILL et MANDEL à l’époque, où il a construit, par une démarche pionnière
« d’homogénéisation des milieux aléatoires » un modèle physique expliquant, à partir du comportement
du monocristal, le comportement qu’il avait observé pour le polycristal métallique élastoplastique.

BUI est revenu à la mécanique des matériaux vers la fin des années 70 sous la pression du programme
de recherche sur les lois de comportement des aciers utilisés dans les centrales EDF, en s’intéressant
particulièrement aux aspects cruciaux de l’endommagement et de la rupture et aux relations « micro-
macro ». Puis, dans les années 90, il s’est intéressé à la micromécanique près de la surface d’un solide,
aux interfaces de discontinuités des matériaux — telles que les soudures — ou du chargement — telles que
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le choc thermique. C’est à ce propos qu’il a mis en évidence la singularité de contrainte dite « Épine »,
(très localisée, bornée, discontinue, à gradient non borné) qui permettait d’expliquer les phénomènes de
dégradation superficielle observés, tels que le faïençage thermique, et constituait une avancée, suivie par
d’autres, vers la maîtrise des phénomènes d’endommagement superficiels des matériaux.

Pour en terminer avec ce domaine, dont les applications industrielles sont essentielles, on peut signaler
que BUI a su mettre ses compétences scientifiques au service de l’application technique en participant
à la rédaction du très important code de construction des centrales nucléaires à neutrons rapides. Il a
participé, en tant que Chef de projet EDF, au contrat BRITE-EURAM sur le béton renforcé de fibres,
sujet motivé par la dégradation trop rapide de certaines tours de réfrigération. BUI est aussi intervenu dans
les problèmes mécaniques et rhéologiques liés au stockage souterrain des déchets radioactifs : il a apporté
au groupement d’études concerné son habileté à marier théorie, calculs numériques et essais in situ.

Mécanique de la rupture. BUI s’est intéressé à la mécanique de la rupture dès après sa thèse. Suivant
la ligne de recherche privilégiée à l’époque, il s’est attaché à la caractérisation des singularités en fond
de fissure pour déterminer les facteurs d’intensité de contrainte, essentiels en mécanique de la rupture
fragile. Il a ainsi :

— énoncé la loi de conservation duale de celle établie par ESHELBY en 1956 ;
— construit l’intégrale invariante I duale de l’intégrale J de RICE et CHEREPANOV, permettant ainsi

l’encadrement numérique de leur valeur commune ;
— construit les deux intégrales invariantes qui permettent de découpler, dans l’intégrale J, les modes

de rupture I et II (résultats qui furent implantés dans les codes de calcul CEA, EDF) ;
— établi, pour les applications à la mécanique de la rupture thermoélastique, une méthode de construc-

tion d’une loi de conservation de type « divergence nulle » pour les problèmes qui se présentent
naturellement avec un terme de source, ce qui facilite le calcul précis des singularités.

En appliquant les techniques des échelles multiples et des développements asymptotiques raccordés,
avec AMESTOY et DANG VAN, BUI a résolu analytiquement le problème de la fissure déviée qui n’était
jusque-là abordé que par voie numérique ; il a complété ce résultat par la suite avec AMESTOY et LE-
BLOND dans le cas où la branche déviée est courbe. Avec EHRLACHER et NGUYEN, il a établi la singula-
rité logarithmique du champ de température due à la source ponctuelle de chaleur qui apparaît à la pointe
d’une fissure en propagation dans un solide élastique : résultat conforme aux évidences expérimentales
disponibles alors, qu’il a aussi confirmé par ses propres expériences. Par l’introduction d’une loi de dé-
cohésion à seuil dans les équations de comportement du matériau élastique, BUI et EHRLACHER ont mis
en évidence des solutions analytiques pour les problèmes de propagations quasi-statique et dynamique
des fissures en mode III (problème mathématique à frontière libre séparant la zone endommagée de la
zone encore élastique) levant, à cette occasion, le paradoxe de RICE en théorie de la rupture ductile pour
le matériau parfaitement plastique.

Pour l’étude de la rupture dynamique, BUI a inspiré l’invention de l’éprouvette en « pince à linge »
qui s’est révélée un outil remarquable d’analyse expérimentale, permettant aussi l’étude du débit de
fuite à travers des fissures. C’est ce qui l’a conduit à étudier divers aspects de l’interaction fluide-fissure
en présence de tension superficielle notamment pour la sécurité des centrales nucléaires. Pour être bref
on peut retenir les résultats qu’il a obtenus dans le domaine de la fracturation hydraulique : modèle
d’écoulement bidimensionnel du fluide visqueux à la pointe d’une fissure immobile qui permet de faire
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disparaître la singularité en pression induite par les modèles classiques ; pour la fissure qui se propage,
modélisation de l’interaction en introduisant la tension capillaire et en supposant l’existence d’un vide
entre le ménisque convexe de fluide et la tête de la fissure : le problème couplé a été résolu numériquement,
mettant en évidence la structure bidimensionnelle de l’écoulement. Cette compétence a fait de BUI un
expert reconnu pour ces problèmes dont les applications industrielles sont nombreuses comme l’actualité
ne manque pas de nous le rappeler.

BUI était un des « très grands » de la Mécanique de la rupture fragile. Son livre, publié en 1978 fait
encore autorité de nos jours.

Méthodes des équations intégrales de frontières.
Ce domaine est évidemment très lié aux précé-
dents. En thermo-élasto-plasticité BUI, constatant
les anomalies des résultats numériques, a réexa-
miné les équations intégrales jusque là utilisées
par les chercheurs et les ingénieurs, montré que
le noyau intégral en était incomplet et rétabli les
équations exactes en rajoutant une distribution
ponctuelle. Il a repris ultérieurement ce domaine
de recherche, abordé les problèmes dynamiques
et, avec BONNET et LORET, mis en évidence une
méthode très simple de régularisation des équa-
tions intégrales singulières de l’élastodynamique
aboutissant à une grande précision dans la mise
en œuvre numérique. Cette méthode a été utilisée
notamment par MADARIAGA (IPG) et BONNET

dans un article paru en 1991 dans Wave Motion.
Dans un article ultérieur BUI a proposé une mé-
thode variationnelle, non singulière, qui préserve
la symétrie et fournit un indicateur d’erreur a pos-
teriori.

Problèmes inverses et identification. Sur ce quatrième grand thème, BUI a publié en 1993 un livre
intitulé Introduction aux Problèmes Inverses en Mécanique des Matériaux qui a fait l’objet, notamment,
de traductions en anglais, japonais, chinois et russe, ouvrage qualifié par Paul GERMAIN dans sa préface
de « tour de force » : « exposer en moins de 230 pages et de façon complète un ensemble aussi difficile
ne peut être le fruit que d’une culture vaste et approfondie [...] nourrissant une réflexion personnelle
qui repense constamment toutes les connaissances acquises et aussi, sans doute ici le point essentiel,
d’une expérience personnelle des applications et des méthodes présentées dans l’ouvrage ». Il est de fait
que BUI ne manquait pas sur ce sujet d’expérience personnelle mais c’est bien son esprit géométrique,
nourri des notions de dualité, de symétrie et de réciprocité qui lui a inspiré ses intuitions fulgurantes
et ses traitements d’une rare élégance, en même temps que son habileté mathématique lui a permis de
trouver des solutions analytiques d’une simplicité déconcertante là où d’autres s’engouffraient dans les
seules approches numériques. Il a ainsi pu résoudre quantité de problèmes de détection de fissures, de
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localisation de failles ou de défaut de matière comme de reconstitution de trajets de chargement. À titre
d’exemples :

— l’obtention analytique directe du facteur d’intensité dynamique des contraintes à partir des mesures
expérimentales des forces et des vitesses appliquées à la surface du solide, par la résolution d’une
équation de convolution (BUI et MAIGRE) ;

— la séparation des énergies cinétique, élastique et dissipée dans un problème de propagation de
fissure si l’on connaît expérimentalement la force appliquée et la vitesse correspondante et aussi
la longueur et l’ouverture de la fissure.

— L’identification du tenseur des modules d’élasticité dans un solide non homogène à partir des seules
mesures à la frontière : forces et déplacements connus. Les résultats disponibles se limitaient au
cas du matériau isotrope (2 modules) et BUI a montré que l’identification était possible jusqu’à 6
coefficients d’élasticité.

C’est encore à l’instigation d’EDF que BUI s’est intéressé à l’inversion de données de microgravi-
métrie acquises sur la pyramide de Chéops, diagnostiquant la présence de spirales internes évidées qui,
plusieurs années plus tard, put être mise en relation avec la théorie de la construction par rampe spirale
interne proposée par les architectes Henri et Jean-Pierre HOUDIN.

BUI a formé de très nombreux jeunes chercheurs et ingénieurs, à qui il a su communiquer non seule-
ment son savoir et son savoir-faire scientifiques mais aussi son enthousiasme pour la recherche et sa
passion pour le rapprochement entre science et industrie, entre théorie et expérience, entre recherche
de base et recherche appliquée. À EDF il a apporté, au-delà de sa contribution au développement du
Département Mécanique et Modèles Numériques ou du LaMSiD, Laboratoire commun EDF/CNRS, son
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expertise scientifique, ses analyses visionnaires sur l’évolution des sciences et des techniques et surtout le
capital humain exceptionnel qu’il a su former par la recherche sur des problématiques clés de l’industrie
nucléaire. Auteur de plus de 100 articles et de 4 livres dont certains traduits en sept langues, il a non
seulement fait avancer la plupart des grands thèmes de la mécanique des solides de ces cinquante dernières
années mais aussi apporté une contribution de premier plan à l’essor des technologies nucléaires et aux
succès de l’industrie nucléaire française.

Son portrait scientifique serait incomplet si n’était aussi évoquée sa personnalité, toute de discrétion et
de curiosité scientifique, de réserve et de chaleur humaine, d’enthousiasme et de modestie, de compréhen-
sion et de compassion pour autrui. En témoignent unanimement non seulement ses collaborateurs directs,
chercheurs, doctorants, ingénieurs, techniciens et administratifs, mais aussi nombre d’étudiants en cours
de thèse sous la direction d’autres chercheurs qui savaient trouver sa porte toujours ouverte pour y recevoir
conseils scientifiques mais aussi réconfort face aux difficultés, sans oublier ses premiers condisciples
en cours de thèse, comme lui, au Laboratoire de Mécanique, qui, à des degrés divers, ont, comme les
signataires de cette notice, bénéficié de son intérêt et de ses conseils, suggestions ou recommandations,
tant sur le plan théorique et bibliographique qu’expérimental et méthodologique.

Georges CHARPAK a su donner au mot « bricoleur » des lettres de noblesse qui nous permettent de
qualifier BUI de « Bricoleur de génie » en même temps que de théoricien hors pair. BUI laisse à tous le
souvenir d’une personnalité irradiant l’intelligence et l’ingéniosité en même temps que la bienveillance
et la générosité.

Si BUI souffrait depuis de longues années d’un asthme qui avait peu à peu éteint sa voix, c’est une
grave maladie, diagnostiquée en novembre 2012, qui l’a emporté. Il a accepté cette maladie, non pas
avec résignation mais avec philosophie ; peu avant sa mort il écrivait à ses proches « Pour moi la mort
c’est la continuation de la vie sous une autre forme ». Il s’est éteint en sérénité et en confiance.

En conclusion de l’édition 2013 de ses souvenirs rassemblés sous le titre « Le chat de Schrödinger en
mécanique quantique et son double en mécanique des solides », après avoir remercié tous ses collabora-
teurs et collaboratrices ainsi que les personnalités qui lui avaient apporté leur aide dans le déroulement
de sa carrière, BUI a inscrit la dédicace suivante, particulièrement émouvante :

À la mémoire de mon père et de ma mère, disparue avec tant d’autres « boat people »
en Mer de Chine.

Selon son vœu, ses propres cendres ont été dispersées dans cette même Mer de Chine.

Jean Salençon et André Zaoui
Octobre 2014
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THE RECIPROCITY LIKELIHOOD MAXIMIZATION:
A VARIATIONAL APPROACH OF THE RECIPROCITY GAP METHOD

STÉPHANE ANDRIEUX

We introduce a new concept allowing the recasting of the reciprocity gap method into a variational
method. The reciprocity likelihood functional maximization gives rise to nested approximation proper-
ties when performed on minimization spaces with increasing dimensions and leads to direct identification
methods grounded on the reciprocity property. Application to the identification of point sources is given
for illustration of the solution procedure of identification, and an analysis of the effect of noisy data
shows that the proposed methods exhibit very good robustness.

1. Identification problems and results with the reciprocity gap method

The kind of identification or inverse problems addressed here is the following:

given: a solid � and a physical phenomenon described by a linear “equilibrium” operator A acting
on vector fields u, defined in the solid, and provided a pair of data u = U m and Bu · n = Fm is
known on the whole external boundary of the solid ∂�, with external outside unit normal n, for a
field satisfying Au = 0,

determine: the eventual sources or objects buried inside the solids (cracks, flaws, holes, inclusions, etc.).

Examples of such equilibrium operators are the Laplace operator, describing isotropic conduction of
heat or electricity, the Lamé operator in the elastostatic framework, the Helmholtz operator in acoustics,
the Darcy operator for saturated porous media, etc. Although the reciprocity gap method can be applied
to nonsymmetric or non-self-adjoint operators, where the reciprocity property does not directly hold, the
reciprocity likelihood concept is developed for symmetric or self-adjoint ones.

B is the natural (or Neumann) boundary condition operator associated with A. The data usually comes
from an experiment performed on the solid, for example, by prescribing a flux or an external force on
the solid and measuring the response on the boundary. Unlike other kinds of inverse problems, the
whole Neumann-to-Dirichlet map or Poincaré–Steklov operator is not supposed to be known, even if
one can have access to more than one single experiment (or data pair). On the other hand, data on the
whole boundary is supposed to be available. These data form a redundant data pair with respect to the
operator A (namely Dirichlet and Neumann boundary data available simultaneously on the boundary).

Practical identification is achieved through identification procedures. Various propositions appeared in
the literature; they can be separated into two broad classes that we shall quickly review in the particular
case of crack-identification problems with the Laplace equation although similar methods and results
have been obtained for other operators, namely acting on vector fields, as in elasticity.

Keywords: inverse problems, reciprocity gap, sources identification.
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First are direct iterative methods grounded on a variational property of the solution: after design-
ing a functional of the geometrical parameters describing the cracked domain, iterative resolutions of
Laplace problems are performed in order to minimize (or get a stationary point of) the functional. To
this class belong classical least-squares methods or more sophisticated functional-minimization methods
as adaptations of the functional of [Kohn and Vogelius 1984]. This class relies on a lot of resolutions of
elliptic problems, which are generally costly and always need the introduction of the point of departure
of the algorithm (the initial guess), the choice of which is difficult and can significantly alter the speed
of convergence or even the converged solution itself. Moreover, for the identification of geometries, a
remeshing of the solid is necessary for each iteration.

The second class of methods uses families of particular fields and avoids any resolution of the PDEs
underlying the physical phenomenon used in the identification or uses only a few: auxiliary field methods
[Bui 2011]. The reciprocity gap method belongs to this last class of methods sometimes called sampling
or probe methods in the inverse scattering community because no resolution of any PDE is needed.

To obtain or to approximate the solution of this kind of identification problem, the reciprocity gap con-
cept has been introduced first for the Laplace operator [Andrieux and Ben Abda 1992; 1993], the concept
being suited to symmetric operators as it relies on the reciprocity property. More precisely, the reciprocity
gap RG is a linear form acting on auxiliary fields defined on the safe domain (without flaws or source
distribution) and satisfying the operator equation. For each auxiliary field picked out of the auxiliary field
subspace, the computation of the action of the form RG supplies scalar information on the “difference”
between the actual solid and the safe one. The concept has been extended to general operators by using
auxiliary fields, which are solutions of the adjoint (or conjugate) operator equation [Andrieux 1995]. A
comprehensive introduction to the reciprocity gap concept can be found in [Andrieux and Bui 2011].

Numerous identification results, both theoretical and constructive (identification formulas), have been
obtained by using appropriate auxiliary field families. For planar crack identification, results were ob-
tained for the Laplace and Lamé operators [Andrieux and Ben Abda 1992; 1996; Andrieux et al. 1999],
for the heat equation [Ben Abda and Bui 2001], for viscoelastic media, in inverse scattering [Bui et al.
1999; Ben Abda et al. 2005; Colton and Haddar 2005], and in elastodynamics with the concept of the
instantaneous reciprocity gap [Bui et al. 2004; 2005]. Mention must be made of [Ikehata 1999] using
similar concepts but with a different use. For source distribution identification, [El Badia and Ha Duong
1998; El Badia et al. 2000] gave identification algorithms for point sources with the Laplace equation
and [Alves and Silvestre 2004] for the Stokes equation.

Recently, Shifrin and Shushpannikov [2010; 2011; 2013b; 2013a] derived results in elasticity for
the identification of inclusions in 3D for a single traction experiment, based on approximation of the
solution for an infinite medium. This use of the reciprocity gap with an approximate solution is close to
the assumption of infinite medium taking advantage of the Eshelby results [1957] proposed for inclusion
identification by [Andrieux et al. 2006].

2. Recollection of the reciprocity gap method

Let us recall briefly the reciprocity gap definition and the associated identification method for the simplest
case of a scalar isotropic conduction equation. A is the Laplace operator, u is a scalar field, and B is
the gradient operator so that on the boundary Bu · n = ∇u · n. The bilinear form a associated to the
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operator A is

a(u, v)=
∫
�

∇u · ∇v d�. (1)

A collection of cracks {0i : i = 1, N } can be buried inside the solid, and some source distribution s(x)
can also appear so that we have, inside the domain occupied by the solid, the equations{

−1u = s in � \0i , i = 1, . . . , n,
∇u · ni = 0 on 0i , i = 1, . . . , n.

(2)

The problem of identification of the crack geometry and the source distribution is set provided a pair of
boundary data is available on the whole external boundary of the domain �:

∇u · n = Fm, u =U m on ∂�. (3)

Definition. For any field v belonging to the Sobolev space H 1(�), the reciprocity gap RG is the linear
form defined by

RG(v)=
∫
∂�

(Fmv−∇v · nU m) d S. (4)

The RG definition uses only the known quantities of the identification problem. The term “reciprocity
gap” has been coined after the Betti–Maxwell reciprocity property: for two harmonic fields u and v in
the domain �, one has ∫

∂�

(∇u · nv−∇v · nu) d S = 0. (5)

The idea here is that the form RG is vanishing on every harmonic field v in � if there are neither
cracks nor source distributions in the actual solid; it is on the contrary nonzero if some cracks or source
distributions exist, measuring then in some sense the “difference” between the safe and the actual solids.
More precisely, the following fundamental property of the reciprocity gap holds:

Fundamental property. For every harmonic field v in �, the reciprocity gap has the interpretation

RG(v)=
∫
�

sv d�+
N∑

i=1

∫
0i

∇v · ni [u] d0i . (6)

In (5), [u] stands for the jump of the field u across the cracks.
The reciprocity gap method consists of selecting appropriate auxiliary harmonic fields v, each of them

giving one piece of scalar information about the sources and the cracks or more precisely on the actual
field u on the support of the cracks or of the source distribution. For planar cracks lying in a single
plane 5 with normal N5, and with s = 0, it is easy to see that, using linear fields x i as auxiliary fields,
the normal N5 can be recovered with the explicit formula [Andrieux and Ben Abda 1992]

N5 =
RG(x i )ei√

RG(x1)+RG(x2)+RG(x3)
. (7)

The formula involves only a straightforward computation of the linear form RG on three fields and does
not require any resolution of a partial differential equation. The identification results mentioned in the
introduction have been obtained by such ad hoc choices for the auxiliary fields. For example, the complete
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identification results for infinite-parameter identification such as geometry of the cracks relies on the
choice of a Hilbertian basis of the space of the auxiliary fields fulfilling the operator equation defined by
A (here harmonic fields) in the sound domain. The reciprocity gap method is then a constructive method
of identification, but a general method for choosing the relevant auxiliary fields is still lacking. That is
why we turn to an alternative way of using the reciprocity gap linear form. Before that, a general abstract
setting is introduced in the next section.

3. Abstract general form of the reciprocity gap

The abstract form of the reciprocity gap is built from the weak formulation of the physical problem at
hand. We suppose thus that we have

• a symmetric bilinear form a(u, v), continuous on a functional (Hilbert) space W (� \0), where 0
is a collection of (unknown) cracks, and

• two linear and continuous forms, corresponding respectively to natural boundary conditions on the
external boundary of � and to the interior source distribution,

l f (v)=

∫
∂�

f v d S, ls(v)=

∫
�

sv d� (8)

so that the weak form of the operator equation is

u ∈W (� \0), a(u, v)= l f (v)+ ls(v) for all v ∈W (� \0). (9)

It is assumed here that external solicitation is exerted on neither the crack lips nor the special consti-
tutive equation linking the jumps of the field u to the dual quantity Bu · n so that Bu · n= 0 on the crack
lips. The bilinear form a can vanish on a finite-dimensional subspace R of W (rigid body motions in
mechanics, constant fields for stationary heat conduction, etc.):

r ∈ R =⇒ a(r, v)= 0 for all v ∈W (� \0). (10)

With the bilinear form a coercive on the quotient space of W by R and the operator B on the boundary
defined via a Green formula, the solution of (8) is determined up to a field belonging to R and uniqueness
is obtained by adding a finite set of linear conditions on the solution. Existence of solutions is ensured
provided a compatibility condition on the solicitations f and s is fulfilled:

l f (r)+ ls(r)= 0 for all r ∈ R. (11)

For the identification problem, let us assume that the domain � \0, the bilinear form a, and the source
distribution s are parametrized by a (possibly infinite) set of parameters p belonging to a parameter
space P (we have to assume that when the parameters p are in the space P the coerciveness of a is
preserved). The identification problem addressed here is then to determine a set (or several sets) of
parameters, provided the value of the field u and its dual counterpart Bu · n, (U m, Fm), are given on the
whole external boundary ∂� of the solid:

determine p ∈ P such that


a(u, v; p)= lFm (v)+ ls(p)(v) for all v ∈W (p),
lFm (r)+ ls(p)(r)= 0 for all r ∈ R,
u|∂� =U m .

(12)
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This formulation encompasses the cases of crack identification (the parameters p are describing the
geometry of the cracks), source distribution identification (parameters p describe both geometry of the
support and intensity), and inclusion identification (the parameters p describe the geometry of the support
and value of the contrast of material properties in the bilinear form a).

In this context, a enjoys a reciprocity property

a(u1, v)= l1(v) for all v,
a(u2, v)= l2(v) for all v

}
=⇒ l1(u2)= l2(u1)

and the reciprocity gap is defined by the residual of the reciprocity property:

RG(v)= lFm (v)−

∫
∂�

Bv · nU m d S. (13)

The RG form does not depend on the parameters p as it is assumed that all the heterogeneities or sources
buried inside the solid are strictly in the interior of the domain (the case of an emerging crack has been
addressed in [Andrieux et al. 1998]). The space of auxiliary fields to be used in the reciprocity gap
method is simply W (�), and the fundamental property reads:

Fundamental property. For every v in W (�) fulfilling the equation

a(v,w)= lBv·n(w) for all w ∈W (�), (14)

the reciprocity gap has the interpretation

RG(v)=
N∑

i=1

∫
0i

Bv · ni [u] d0i − ls(p)(v)−1a(u, v; p), (15)

where1a(u, v; p)= a(u, v; p)−a(u, v; 0) with the convention that p= 0 corresponds to the sound solid.

This property is grounded on the symmetry of the bilinear form a. The interpretation of the RG linear
form makes more precise the nature of the information brought by its calculation for every auxiliary
field. The identification procedure is the same as in the preceding section: select an appropriate family
of auxiliary fields and exploit the set of scalar equations obtained by computing the RG form for each
field of the family in order to gain information on the parameters p. As already said, there is not yet a
systematic way to choose the family and to exploit the information gained on p.

4. General definition and properties of the reciprocity likelihood

The general idea is to search for a variational usage of the reciprocity gap linear form in order to derive
the minimization process as the “systematic” way for the identification procedure. For that purpose, we
revisit the exploitation of the reciprocity property by using the reciprocity gap not between the actual and
the safe solids but between the actual solid and a solid where some flaws exist, corresponding here to a
given set of parameters p, say q. It is clear that, if the q parameters coincide with the “true” values p0,
then the reciprocity property is recovered between boundary data and the values on boundary of the
auxiliary fields because they are acting on the same solid. Then the reciprocity gap is the null linear
form on the subspace of auxiliary fields satisfying the operator equation in the solid � with parameters q .
Conversely, if the reciprocity gap is not the null form, then a parameter set leading to a lower value of
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the norm of RG must be preferred to a parameter set leading to higher values of the norm. The opposite
of the square of the norm of RG will be called the reciprocity likelihood, and the proposed identification
procedure will consist of maximizing the reciprocity likelihood over the parameter space P (that is,
minimizing the norm of RG).

Let us define the vector space Vq of auxiliary fields fulfilling the equilibrium equation in the solid �(q)
parametrized by the set of parameters q and furthermore canceling the linear form related to the source
distribution s(q), W0, the space of fields with a null trace on the external boundary:

Vq = {v ∈W [�(q)] : a(v,w; q)= 0 for all w ∈W0[�(q)], ls(q)(v)= 0}, (16a)

W0(q)= {h ∈W [�(q)] : h|∂� = 0}. (16b)

It is now clear that, for any given parameters q, the reciprocity gap does not vanish on Vq , but the
following property establishes that the set of parameters q causing the RG form to vanish on the Vq

space is exactly the set of parameters that are likely with respect to the data or measurements at hand:

Optimality of the reciprocity gap. Let p0 be a set of parameters such that the reciprocity gap vanishes
on Vp0 .

If the source distribution is zero or if the source distribution is nonzero but there exists no field of R
except zero that vanishes on the external boundary ∂� of the solid,

(r ∈ R and r |∂� = 0) =⇒ r = 0, (17)

then there exists a field v0 in W (p0) satisfying{
a(v0, w; p0)= ls(p0)(w) for all w ∈W0(p),
v0|∂� =U m, Bv0 · n|∂� = Fm .

(18)

This property means that, as soon as the reciprocity gap vanishes on the space Vp0 , there exist a
collection of cracks, a source distribution, a set of inclusions (described by p0), and a field v0 that fulfills
the equilibrium equation and meets exactly the values of the given boundary condition pair (U m, Fm).
The proof of this property is given in Appendix A.

The optimality property of RG allows us to propose a new formulation for the identification problem
addressed here: search for the space Vp0 where the reciprocity gap linear form is zero. To obtain a
variational formulation of this problem, i.e., to define a functional or a function on the space P whose
minimization or maximization will furnish candidates for the identified parameters, a natural way is to
use the norm of the linear form RG on the linear space Vp. The lower the value of this norm, the greater
the likelihood of the parameters p with respect to the data at hand so that we shall define the opposite
of the square of the RG norm as the reciprocity likelihood functional (as a function of p). The solution
procedure will be to maximize it over P . In order to give meaning to the norm of RG on the space Vp,
it is necessary to establish the following topological properties:

Topological properties of RG and Vp. Assume the following for every p in P:

(i) W (p) is a Hilbert space with scalar product and norm denoted by

〈u, v〉W (p), ‖u‖W (p) =
√
〈u, u〉W (p).

(ii) The trace operator γ :W (p)→ TW (p) with v 7→ γ v = v|∂� is continuous: ‖γ v‖TW (p) ≤ c‖v‖W (p).
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(iii) The bilinear form a is coercive and continuous on Vp:

there exist α(p) and β(p), 0< α < β <+∞,
such that, for all (u, v) ∈ V 2

p ,

{
α‖v‖2W (p) ≤ a(v, v; p),
a(v, u; p)≤ β‖v‖W (p)‖u‖W (p).

(iv) The linear form ls(p) is continuous on Vp:

there exists η(p) > 0 such that, for all v ∈ Vp, |ls(p)(v)| ≤ η‖v‖W (p).

Then the linear subspace Vp of W (p) is closed, and the linear form RG is continuous on Vp.

The proof of this property is given in Appendix B. We can now define the reciprocity likelihood using
the classical definition of the norm of a linear form.

Definition. For p belonging to P , the reciprocity likelihood RL(p) is the opposite of the square of the
norm of the linear form RG on the space Vp:

RL(p)=−‖RG‖2Vp
(19)

with
Vp = {v ∈W (p) : a(v,w; p)= 0 for all w ∈W0(p), ls(p)(v)= 0},

W0(p)= {w ∈W (p) : γ (p)= 0},

RG(v)=
∫
∂�

(Fmv− Bv · nU m) d S,

‖RG‖Vp = sup
v∈Vp−{0}

RG(v)
‖v‖W (p)

.

Thanks to the optimality property of RG, the identification problem (12) is equivalent to the maxi-
mization of the reciprocity likelihood, and the optimal value of RL is zero:

p = ArgMax
q∈P

RL(q) ⇐⇒ p ∈ P,


a(u, v; p)= lFm (v)+ ls(p)(v) for all v ∈W (p),
lFm (r)+ ls(p)(r)= 0 for all r ∈ R,
u|∂� =U m .

(20)

As it can be seen, the variational formulation of the identification problem is quite general. Some illus-
trations on the specific identification problems for point source distributions will be given in the sequel.
Let us have two preliminary remarks.

Remark 1. The reciprocity likelihood maximization method enables one to determine a solution to the
identification problem even if the model used (bilinear form a and linear form ls(p)) or the parameter space
chosen (geometry of the cracks or inclusions, etc.) are only approximations that are not totally compatible
with the experimental data (U m, Fm). Indeed, the maximization will produce a set of parameters that are
the most likely in the actual context even if the maximum will not be zero. Moreover, one can determine
nested approximations for the parameters p (with growing reciprocity likelihood) by using nested subsets
of the global parameter space:

Ph
1 ⊂ Ph

2 ⊂ P,
ph

i = ArgMaxq∈Ph
i

RL(q)

}
=⇒ RL(ph

1 )≤ RL(ph
2 ) =⇒ ph

2 is a better identification than ph
1 .
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Remark 2. The practical calculation of the RL functional is generally not achievable because the space Vp

is generally non-finite-dimensional so that the norm of the reciprocity gap cannot be computed exactly in
most cases. Nevertheless, it is possible to compute an approximation of RL by using a finite-dimensional
space with dimension nd V nd

p approximating Vp:

RLnd (p)=−
[

sup
v∈V ndp −{0}

RG(v)
‖v‖W (p)

]2

. (21)

When the space Vp is approximated by the finite-dimensional space V nd
p , the reciprocity property will

not be fulfilled (for the optimal parameter set) for all the auxiliary fields but for only on a subspace of
the auxiliary fields space. But again the nested approximation spaces for Vp (with increasing dimension)
lead to increasing quality of the identification results.

In current applications, two approximations are then made: one on the parameters space and the other
on the linear space of the auxiliary fields, approximated by a finite-dimensional space, so that the RL
maximization would generally read

ph
nd
= ArgMax

q∈Ph
RLnd (q). (22)

The following result can prove useful in the applications when computing the norm of RLnd :

Norm of a linear form on a finite-dimensional vector space. Let V n be a vector space of dimension n
with scalar product 〈 · , · 〉, (φα)α=1,...,n a linearly independent family of vectors of V n , and l a linear
form on V n . The norm of l is given by

‖l‖V n =

√
t l M−1l, Mαβ

= 〈φα, φβ〉, lα = l(φα). (23)

The reciprocity likelihood maximization method can then be summarized by:

RLM method. (1) Choose a finite set of independent auxiliary fields (φα)α=1,...,nd satisfying

a(φα, w; p)= 0 for all w ∈W0(p), ls(p)(φ
α)= 0,

providing a vector basis for the approximated space of auxiliary fields V nd
p .

(2) Maximize the approximated reciprocity likelihood function defined by

popt
= ArgMin

q∈P
M−1
αβ (q)RG(φα(q))RG(φβ(q)), Mαβ(q)= 〈φα(q), φβ(q)〉.

5. Application to the identification of point source distributions for a conduction equation

This 2D problem has been addressed by [El Badia and Ha Duong 1998; El Badia et al. 2000] with the
reciprocity gap functional, by a direct approach, similar to the one described in Section 2. Consider the
problem 

−1u = λ
∑i=S

i=1 δX i in �,
∇u · n= Fm on ∂�,
u =U m on ∂�.

(24)
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The inverse problem consists in determining the location X i of the sources whose intensity λ is known
from the redundant boundary data (U m, Fm). El Badia and Ha-Duong proved that, if an upper bound of
the number of sources S is known, then the redundant boundary data pair determines exactly the source
locations. They also give an identification algorithm. The reciprocity gap is given here by (4) as in
Section 2.

An alternative algorithm based on the reciprocity likelihood method is the following. First, the inten-
sity λ of the point sources being known, the number of sources is determined by computing the reciprocity
gap on the constant (harmonic) field v = 1:

S =−
1
λ

RG(1). (25)

From now on, λ is set at the value λ= 1. The space Vp is parametrized by the positions of the sources
p = (xi , yi )i=1,...,S

Vp = {v ∈W [�(p)] : a(v,w; p)= 0 for all w ∈W0[�(p)], ls(p)(v)= 0},

W0(p)= {h ∈W [�(p)] : h|∂� = 0},

namely here

Vq =

{
v ∈ H 1(�) :

∫
�

∇v∇w d�= 0 for all w ∈ H 1
0 (�),

S∑
i=1

v(xi , yi )= 0
}
. (26)

To build a finite-dimensional approximation V nd
p of this space, we have to choose a linearly independent

family of nd functions (φα)α=1,...,nd in Vp. For that, it suffices to select a family of nd independent
harmonic fields (ψα)α=1,...,nd and to take as the (φα)α=1,...,nd family

φα(x, y)= ψα(x, y)− σ α(q),

σ α(q)=
1
S

S∑
i=1

ψα(xi , yi ).
(27)

Remark that the family (ψα)α=1,...,n is independent of the parameters q . To derive the matrix M appearing
in the RLM for finite-dimensional Vq spaces (see the RLM method), we just calculate

Mαβ
= 〈φα, φβ〉

=

∫
�

∇φα ·1φβ +φαφβ

=

∫
�

ψαψβ +
1
2

∫
∂�

(∇ψα · nψβ +∇ψβ · nψα)+ σ ασ β −
∫
�

σ αψβ + σ βψα. (28)

Only the last two terms (involving the σ quantities) in the last expression are functions of the parameters p.
Once the matrix M is built, the RL function

RL(p)=−M−1
αβ (p)RG(φα(p))RG(φβ(p)) (29)
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θ

S1

S2

S3

Figure 1. Unit disc with three point sources.

is computed by the following scheme, which requires solving the same linear system (p-dependent) nd

times:
Xα(p)= RG(φα(p)), M(p)Y (p)= X (p), RL(p)=−X (p) · Y (p). (30)

The computation of the RL function is then very cost-effective because, as for the reciprocity gap methods,
no resolution of any PDE is needed.

As an example, consider the identification of a source distribution in the unit disc as depicted in
Figure 1.

Choose the (ψα)α=1,...,2nd family in the polar coordinate system centered at the disc center:

ψα(r, θ)=

√
2π(α+ 1)

1+ 2α(α+ 1)
rα cos(αθ), α = 1, . . . , nd ,

ψα(r, θ)=

√
2π(β + 1)

1+ 2β(β + 1)
rβ sin(βθ), α = nd + 1, . . . , 2nd with β = α− nd .

(31)

These functions are obviously harmonic, and because they form a orthonormal family for the H 1(�)

scalar product, the M matrix and its inverse turn out to have very simple expressions:

M = Ind + σ ⊗ σ, M−1
= Ind −

1
1+‖σ‖2

σ ⊗ σ. (32)

It is thus possible to have a closed-form expression for the RL functional

−RL(p)=
2n∑
α=1

(RG(ψα)+ Sσ α)2−
∑
α,β

σ ασ β

1+‖σ‖2
(RG(ψα)+ Sσ α)(ER(ψβ)+ Sσ β), (33)

where only the σ terms depend on the parameters p.
To study the overall performance of the reciprocity likelihood maximization method, three cases are

examined with one, two, and six sources. The data (U m, Fm) on the boundary of the unit disc are
provided by the closed-form solution to the Laplace equation with point source distribution

u(X)=
1

2π

S∑
i=1

log‖X − X i‖. (34)
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Figure 2. The function J (x)=−RL(x) for dimensions nd = 1, 2, 3, 6, respectively, of
the space V nd

p .

Identification of a single point source. The source is located on the Ox axis with x = 0.21. The
parameters p reduce to the abscissa x of the source. Figure 2 displays the function J (x) = −RL(x)
when the dimension 2nd of the approximation space of Vp is varied from 2 to 12, that is, when one to
six auxiliary functions are used or when the dimension of the matrix M follows the same way (2× 2
to 12× 12). The symmetry of the solution leads to a symmetry that can be observed on the data on the
boundary so that the reciprocity gap vanishes on the half-part of the function set. The effective dimension
used for the approximation space for Vp is only nd and can then take odd values.

The behavior of the J = −RL function is very good even for a single auxiliary function (nd = 1)
where the computation time is negligible, the matrix M being reduced to a single scalar. When the
number of functions increases, the computation of the RL function, which remains very quick, leads to
sharper minima and a stabilization of the local form of the function around its minimum (maximum of
the RL function).

Identification of two point sources. Let us now consider the case of two point sources in the unit disc:
S = 2, (x1, y1) = (0.21, 0.0), and (x2, y2) = (−0.70, 0.0), which corresponds to the temperature field
plotted in Figure 3. If the ordinates of the sources are known or more simply by exploiting the symmetry
of the measurements with respect to the Oy axis, the RL function becomes a function of the abscissae
of the sources RL = RL(x1, x2). Because the identification problems have families of solutions that

Figure 3. Level lines of the temperature within the unit disc with the two point sources
to be identified.
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n

Figure 4. Level lines of the reciprocity likelihood function on the square (x1, x2) =

[−0.8, 0.3] × [−0.8, 0.3] for dimensions n = 2, 4, 8, 12, respectively, of the space V n
p

(number of ψ functions). The dots correspond to the exact locations of the sources.

are symmetric with respect to the line x1 = x2 in the parameter space (x1, x2), the maximization of the
reciprocity likelihood function (or the minimization of its opposite J ) has to be conducted in only one
half of the square, say x1 < x2.

One can notice here again an almost convex behavior of the RL function on each triangle except for
the first case (n = 1), where the use of only one auxiliary field (dim V n

p = 1) is obviously insufficient to
capture the details of the temperature field. Here the information given by the boundary data is evidently
underexploited.

In the other cases, the identification via an optimization procedure is quite easy and the addition of
new auxiliary fields seems to have no significant effect for n > 4, showing then the sharpness of the
reciprocity likelihood concept.

Identification of point sources by direct maximization of RL. The general problem of identification of
S sources by direct maximization of the reciprocity likelihood is now addressed, that is, the determination
of the locations of the sources q = [Xk]k=1,...,S = [(xk, yk)]k=1,...,S . As seen in the preceding case, the
order of the sources is irrelevant so that there exist several maxima in [−1, 1]2S corresponding to the
same family of sources with the same value of the maximum RL(pmax). The selected (converged) family
depends on the starting point of the descent algorithm (initial guess). Here the departure locations of the
six sources are disposed on a spiral curve in order to have a good initial distribution (Figure 5).

Figure 5. Initial distribution of the six sources to be identified by the RLM.
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Figure 6. Identified (circles) and real (squares) locations of six sources with 2nd = 12, 8
auxiliary functions, respectively.

The gradient of the RL functional with respect to the source locations is straightforward to calculate
and is given by

∇ RL(q)=−2
n∑
α=1

(RL(ψα)+ Sσ α)∇σ α

− 2
∑
α,β

σ α

1+‖σ‖2
[
(RL(ψα)+ Sσ α)(RL(ψβ)+ Sσ β)+ Sσ β(RL(ψα)+ Sσ α)

]
∇σ β

+ 2
[∑
α,β

σ ασ β(RL(ψα)+ Sσ α)(RL(ψβ)+ Sσ β)
]∑n

α=1 σ
α
∇σ α

[1+‖σ‖2]2
(35)

with ∇σ β =
∑m

i=1 ∇ψ
β(Si ).

The computation of the function RL and its gradients is very cost-effective as it requires only integrals
over the boundary of the unit disc of products of the data and the trace of the auxiliary fields. For six
sources, the number of parameters to be identified is twelve. Figure 6 (left) displays the converged
locations of the sources in the unit disc when the initial guess is the spiral distribution of Figure 5. The
dimension of the space V nd

p is also 12, that is, nd = 6 (results are identical with nd = 7). The locations
are perfectly recovered with only one data pair (U m, Fm). The number of iterations with the line search
option of MATLAB [2000] is 123 (194 for n = 7) with a tolerance on the gradient of 10−6.

We shall note in particular that the two very close sources situated on the horizontal axis are very well
separated. On the other hand, with a lower number of auxiliary functions, eight for example (nd = 4),
the maximization stops after 36 iterations because of a too low value of the gradient: the source locations
are very badly estimated as seen in Figure 6 (right).

In this case, the RL functional does not contain enough information (or enough probing of the reci-
procity property) so that it is too “flat” in a large vicinity of the eventual maxima.

6. Analysis of the effect of noisy data

In this part, the effect of noise on the Cauchy data (u and ∂r u) on the boundary is analyzed for the last
example (identification of a six-source distribution). The noise is added to the data with the form

f noisy(θ)= f (θ)(1+ εnoise rand θ), (36)
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Figure 7. Identified (circles) and real (squares) location of six sources with noisy data
(1%, 10%, and 25% noise, respectively).

where rand is the uniform distribution on the segment [−0.5, 0.5] and εnoise is the noise level.
One can observe that up to 25% noise the sources are very well recovered except for the two close

sources situated on the Ox axis, where the estimation of the location of these sources degrades with the
increase of the noise in a symmetric way with regard to the axis Ox . This robustness can be explained by
Figure 8. Indeed, the method uses computations of the RG form on auxiliary fields that are very regular
and with increasing “space frequency” (with α). It is then clear that the product of the noisy data fields
(u and ∂r u) with these auxiliary fields is insensitive to the high-frequency noise for the lowest value of α
in (30) and more and more sensitive with growing values of α.

Then the low value of the number of auxiliary fields needed for the identification (as mentioned in
Section 5) ensure the good robustness of the identification procedure. For this reason, significantly better

Figure 8. Plot of the noisy data (15% noise) and of two auxiliary fields (α = 1 and
α = 5) on the external boundary.
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Figure 9. Plots of the noisy data (25% noise) and the regularized data obtained by a
Tikhonov regularization. Left: U m . Right: Fm .

results cannot be expected when using a smoothing of the noisy data with a regularization before pro-
cessing it with the reciprocity likelihood method. This regularization enables one to compute a smoothed
version f r of a function f over an interval I via the regularized projection

f r
= ArgMin

g

∫
I
[ f (x)− g(x)]2 dx + ηS(g), (37)

where S(g) is a stabilizing functional (Tikhonov [Tikhonov and Arsenin 1977] or total variation [Rudin
et al. 1992]) and η the regularization parameter. Here a Tikhonov regularization must be preferred to the
total variation regularization because the real data exhibits no discontinuities or strong gradient zones,
and only oscillations due to the noise on each measurement points have to be damped out. An example
of Tikhonov regularization is displayed in Figure 9 for a noise level of 25%.

The comparison of the results with and without prior regularization shows that they are indeed quite
similar.

Figure 10. Identified (circles) and real (squares) location of six sources with noisy data.
Left: 25% noise with prior Tikhonov regularization. Right: 25% noise without prior
regularization.
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Nevertheless, the prior regularization would prove useful for the case of more numerous sources
because the identification procedure would have to involve more auxiliary fields and then more compu-
tations of the RG linear form on fields with higher spatial wave number.

7. Conclusion

We derived a new identification method with the reciprocity gap that produces a systematic way for
addressing the identification problem of sources and cracks of inclusion in a solid provided redundant data
are available on the whole external boundary. The concept of reciprocity likelihood has been designed and
is applicable to any symmetric elliptic operator. The minimization of the reciprocity likelihood function
provides a systematic way for using the reciprocity gap concept by avoiding the choice of auxiliary
fields and the design of a method for exploiting the information given by the value of the reciprocity gap
on it. On the other hand, it is necessary to carefully define the parametrization of objects to be identified.
Very good performance and robustness with respect to the noise in the data have been observed for the
identification of point source distributions. Applications to crack detection and inclusion identification
are in progress.

Appendix A: Proof of the optimality property of the reciprocity gap

Let v0 be the field in W (p0) meeting the Dirichlet boundary condition on ∂� and satisfying the equilib-
rium condition with the source distribution s(p0). The existence of v0 is ensured by the Lax–Milgram
theorem [Brezis 2011] applied to the linear problem{

a(v0, w; p0)= ls(p0)(w) for all w ∈W0(p0),

v0|∂� =U m .
(A-1)

To prove the optimality property of RG, it remains to show that v0 also meets the Neumann boundary
condition: Bv0 · n= Fm on ∂�. For that purpose, let us remark that the following reciprocity property
holds, thanks to the symmetry of the bilinear form a( · , · ; p0) and to the fact that the fields in the
space Vp0 are canceling the linear form ls(p0):∫

∂�

Bv0 · nv d S =
∫
∂�

Bv · nv0 d S for all v ∈ Vp0 . (A-2)

Indeed,

a(v0, w; p)= ls(p0)(w)+ lBv0·n(w) for all w ∈W (p0),

a(v,w; p)= lBv0·n(w) for all w ∈W (p0) and v ∈ Vp0,

ls(p0)(v)= 0 for all v ∈ Vp0


=⇒ lBv0·n(v)= lBv·n(v0) for all v ∈ Vp0 . (A-3)

Because of the condition (A-1), the reciprocity property involves the data U m :∫
∂�

Bv0 · nv d S =
∫
∂�

Bv · nU m d S for all v ∈ Vp0 . (A-4)
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Using now the assumption that the reciprocity gap vanishes on the space Vp0 ,∫
∂�

Fmv d S =
∫
∂�

Bv · nU m d S for all v ∈ Vp0, (A-5)

one obtains by subtracting the two last equalities∫
∂�

(Fm
− Bv0 · n)v d S = 0 for all v ∈ Vp0 . (A-6)

The result Bv0 · n= Fm would follow, by duality arguments, if equality (A-6) can be extended to all the
external traces g of fields in W (p0), namely if

for all g ∈ TW (p0) there exists vg ∈W (p0) such that


a(vg, w; p)= 0 for all w ∈W0(p0),

ls(p0)(vg)= 0,
vg|∂�ext = g.

(A-7)

To prove this last property, and for a given g in TW (p0), let us define the unique field vg in W (p0) to be
the solution of the problem{

a(vg, w; p0)= ls(p0)(w) for all w ∈W0(p0),

vg
|∂� = g.

(A-8)

Existence and uniqueness of vg follow again by the Lax–Milgram theorem. Two cases are now possible:

(i) ls(p0)(v
g)= 0; then vg is in Vp0 and we can take vg = v

g.

(ii) ls(p0)(v
g) 6= 0; then define vg by vg = v

g
− (ls(p0)(v

g)/ ls(p0)(v
0))v0.

For this last case, it is straightforward to verify that vg belongs to in Vp0 and that its trace is g:

ls(p0)(vg)= ls(p0)(v
g)−ls(p0)(v

g)
ls(p0)(v

0)

ls(p0)(v
0)
=0, vg|∂�=v

g
|∂�−

ls(p0)(v
g)

ls(p0)(v
0)
v0
|∂�= g−0= g. (A-9)

Furthermore, ls(p0)(v
0) cannot vanish because ls(p0)(v

0)= a(v0, v0
; p0) so that the only possibility would

be that v0 belongs to R. With the assumption that only the null field in R can vanish on the boundary,
this leads to a contradiction because the source distribution is not zero.

If there is no source, only case one is relevant.

Appendix B: Proof of the topological properties of Vp and RG

The proof of the closure of Vp contains two steps. First, we build a characterization of this space. Let
T ∗e(p)W (p) be the closed subspace of the dual of TW (p), where the compatibility conditions (10) for the
equilibrium are met:

T ∗e(p)W (p) = {g ∈ T ∗W (p) : lg(r)+ ls(p)(r)= 0 for all r ∈ R}. (B-1)

Define the function L as

L : T ∗e(p)W (p) → Vp with g 7→ v(g) such that a(v,w; p)= lg(w)+ls(p)(w) for all w ∈W (p). (B-2)
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This function associates with any loading g on ∂� the equilibrium solution in the solid �(p) submitted
to the source s(p). L is surjective (just take g = Bv · n for v in Vp; g fulfills the compatibility condition
because R ⊂W ) and injective by the Lax–Milgram theorem.

The second step is to show that L is continuous, leading then to the conclusion. Indeed, for every
convergent sequence vn in W (p) of vectors of Vp, one can associate to L a convergent sequence gn in
T ∗e(p)W (p) because strong convergence in W (p) implies the weak convergence and then the convergence
of a(vn, w) for every w. The limit of gn is necessarily in T ∗e(p)W (p) as it is a closed space. Finally, the image
of this limit of L is in Vp and corresponds to the limit of vn . So the limits of convergent sequences of Vp

are in Vp, which shows that it is closed.
Let us now show that L is continuous. For any g1 and g2 in T ∗e(p)W (p) , we have with vi = L(gi )

a(v1− v2, w; p)= lg1−g2(w) for all w ∈W (p). (B-3)

Thanks to the coerciveness of a and the continuity of the trace operator γ , one can obtain the inequality

α‖v1− v2‖
2
W (p) ≤ a(v1− v2, v1− v2; p)≤ β‖g1− g2‖T∗W (p)‖γ v1− γ v2‖TW (p)

≤ βc‖g1− g2‖W (p)‖v1− v2‖TW (p),
(B-4)

showing that L is continuous. The continuity of RG results from the Schwartz inequality

|RG(v)| ≤ ‖Fm
‖T∗W (p)‖v‖TW (p) +‖Bv · n‖T∗W (p)‖U

m
‖TW (p) (B-5)

as well as the continuity of g, a and ls(p) because we have

lBv·n(w)= a(v,w; p)− ls(p)(w) for all w ∈W (p). (B-6)
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STABILITY OF DISCRETE TOPOLOGICAL DEFECTS IN GRAPHENE

MARIA PILAR ARIZA AND JUAN PEDRO MENDEZ

While improving graphene production techniques seems to be critical for the successful development
of practical graphene-based devices, another technological bottleneck stems from the fact that not all
mechanisms controlling the coupled thermal-mechanical-electrical behavior of graphene-based materials
are fully known at present. In this work, we specifically aim to propose a methodology to investigate the
behavior of controlled distributions of point defects in graphene. We present a bondwise force-constant
model derived from the adaptive intermolecular reactive empirical bond-order (AIREBO) potential and
compare the force-constant values with those obtained from other interatomic potentials. In addition, we
present a particular computational scheme that, while preserving the advantages of discrete dislocation
theory, allows the assessment of the stability of discrete defects. In particular, we study two dislocation
dipole configurations: glide and shuffle.

1. Introduction

Ever since its meteoric rise to prominence, graphene has been touted as a promising novel material,
owing to its extraordinary mechanical, electrical, optical and thermal properties. In addition to its high
breaking strength and high Young’s modulus (42 N/m and 1 TPa [Lee et al. 2008]), graphene exhibits
high thermal mobility (> 4000 W/mK [Balandin et al. 2008]), low resistivity (≈ 30�−1 [Bae et al. 2010])
and high electronic conductivity (> 15000 cm2/(V · s) [Geim and Novoselov 2007]); i.e., electrons in
graphene are allowed to travel long distances without scattering. Other features that have made this
material deeply peculiar are its low weight (0.77 mg/m2), its capability to absorb a fraction of incident
white light (around 2.3% [Nair et al. 2008]) and its impermeability to gases [Bunch et al. 2008], among
other intriguing properties.

By virtue of these features, today graphene offers a wide range of benefits, and indeed new innovative
applications of graphene come to light every day. For instance, graphene has been thought to be an
ideal alternative to carbon fibers for structural applications in aeronautics or a substitute of indium tin
oxide (ITO) in touchscreens or flexible panel displays [Bae et al. 2010], liquid crystal displays (LCD)
[Jung et al. 2014; Blake et al. 2008] and organic light emitting diodes (OLED) [Wu et al. 2010] in
optoelectronics. Unfortunately, it was recognized early on [Novoselov et al. 2005; Zhang et al. 2005]
that pristine defect-free graphene has no band gap and, therefore, is of limited use for semiconductor-
based electronics. Immediately thereafter, many attempts were made to engineer band gaps in graphene,
for example by using doped graphene, nanoribbons, electric fields, mechanical strain or engineering
defects, among other means [Yazyev and Louie 2010a; Zhang et al. 2012].

We gratefully acknowledge the support of the Ministerio de Educación, Cultura y Deporte of Spain (FPU2009) and the Conse-
jería de Economía, Innovación, Ciencia y Empleo of Junta de Andalucía (P12-TEP-850). We would like to thank Prof. Michael
Ortiz for his fruitful participation on the development of the anharmonic extension of discrete dislocation theory.
Keywords: graphene, discrete dislocations, AIREBO potential, defects.
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Graphene material properties and, in particular, experimentally observed topological defects have been
analyzed by using different interatomic potentials and computational approaches ranging from ab initio
to molecular dynamics. Furthermore, empirical tight-binding models have been applied, allowing for a
proper description of the electronic structure of graphene. In particular, Jeong et al. [2008] have studied
the stability of dislocation dipoles with 5–7 core structures using ab initio calculations whereas Yazyev
and Louie [2010b] have focused on the thermodynamics and electronic properties of dislocations and
grain boundaries. Molecular dynamics simulations carried out by Liu et al. [2011] investigated the atomic
structures and energies of symmetric tilt grain boundaries using the empirical AIREBO potential. The
aforementioned potential is an extension of the reactive empirical bond-order REBO potential developed
by Brenner [1990], which additionally includes torsion, dispersion and nonbonded repulsion interactions.
Thus, the AIREBO potential [Stuart et al. 2000] is suitable for modeling chemical reactions.

We have previously presented [Ariza and Ortiz 2010; Ariza et al. 2010] an analysis of discrete dislo-
cations in graphene based on the discrete dislocation theory in crystals [Ariza and Ortiz 2005]. This said
theory combines lattice harmonics, the theory of eigendeformations and the discrete Fourier transform,
leading to analytically tractable expressions of the stored energy of defective graphene. In contrast, owing
to its reliance on force constants, the theory of discrete dislocations provides harmonic defect structures
and their corresponding energies. Therefore, the anharmonic part of the interatomic potentials should
be included for the sake of completeness. In this work, we present fully nonlinear solutions obtained
by the method of forces, i.e., by appending unknown forces to the discrete dislocation energy so as to
equilibrate the lattice with respect to the fully nonlinear potential. Specifically, we have first computed
the harmonic dislocation core structures and energies predicted by the force constants model obtained
from the AIREBO potential and then studied their dynamic stability taking into account the full potential.
We have focused on two dislocation dipole configurations: glide and shuffle.

2. The discrete dislocation theory

A general discrete dislocation theory in crystal, and its specialization to graphene, has been presented by
Ariza and Ortiz [2005; 2010]. In this section, we present a brief summary of the discrete dislocation (DD)
theory extended to graphene. Following this theory, we regard the graphene lattice as a collection of
cells C of different dimensions, endowed with discrete differential operators, discrete codifferential oper-
ators and a discrete integral. In particular, the graphene complex is bidimensional and consists of: atoms,
or 0-cells; atomic bonds, or 1-cells; and hexagonal cells, or 2-cells (Figure 1). For ease of indexing, we
denote by E p(C) the set of cells of dimension p in the graphene complex and by ep(l, α) the p-cell of
type α and integer coordinates l ∈ Z2.

1 2

2

3
1

1

Figure 1. The oriented 0-, 1- and 2-cells of graphene grouped by type.
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a b

a b

c

de

f

Figure 2. Diagram for the definition of the discrete differential operators of graphene.

These cells provide the support for defining functions, or forms, of different dimensions. Thus, we
refer to a function defined over the atoms (or 0-cells), over the atomic bonds (or 1-cells) or over the
hexagonal areas (or 2-cells) as a 0-form, 1-form or 2-form, respectively. As we shall see, forms provide
the vehicle for describing the behavior of graphene lattice, including displacements, eigendeformations
and dislocation densities.

In order to define differential operators, we need to orient all cells; see Figure 2. Suppose that ω is a
0-form defined over the atoms and eab is an atomic bond defined by atoms a and b and oriented from b
to a (Figure 2). Then, the differential dω(eab) of ω at eab is defined as

dω(eab)= ω(ea)−ω(eb). (2-1)

Similarly, for 1-forms and 2-forms, we have

dω(eabcde f )=−ω(eab)+ω(ebc)−ω(ecd)+ω(ede)−ω(ee f )+ω(e f a) (2-2)

and
dω =

∑
e2∈E2(C)

ω(e2). (2-3)

Thus, the differential operator maps: 0-forms, defined over atoms, to 1-forms, defined over atomic
bonds; 1-forms, defined over atomic bonds, to 2-forms, defined over hexagonal cells; and 2-forms, de-
fined over hexagonal cells, to vectors. Thus, the defined discrete differential operators may be regarded
as the discrete counterparts of the familiar gradient, curl and divergence of vector calculus. It is readily
verified from the definition of the discrete differential operators [Munkres 1984] that

d2
= 0, (2-4)

which is the discrete counterpart of the identities rot ◦ grad= 0 and div ◦ rot= 0.
Next, by grouping cells of C by types, one might notice that cells of the same type are translations of

each other, and therefore, they are arranged as simple Bravais lattices (Figure 3). Graphene lattice has
two different atoms (labeled as 1 and 2), three different atomic bonds (labeled as 1, 2 and 3) and one
hexagonal area (labeled as 1). Owing to the translation invariance of the cells, we can take advantage of
the definition of the discrete Fourier transform (DFT) and its properties such as the discrete Parseval’s
identity and the discrete convolution theorem. Thus, the DFT of a p-form ω is

ω̂(θ , α)=
∑
l∈Z2

ω(l, α)e−iθ ·l , (2-5)
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Figure 3. The simple Bravais lattices defined by the atoms, atomic bonds and hexagonal
cells of graphene.

where l ∈ Z2 are the integer coordinates of the Bravais lattice and α takes the values of 1 or 2 for 0-forms,
1, 2, or 3 for 1-forms and 1 for 2-forms.

Similarly, the DFT of a differential p-form dω is

d̂ω(θ , α)=
Np∑
β=1

Q
(
θ

α β

)
ω̂(θ , β), (2-6)

where the coefficients Q
(

θ
α β

)
represent the differential structure of the lattice. For the graphene differ-

ential structure defined in (2-1) and (2-2),

Q1(θ)=

1 −eiθ2

1 −1
1 −e−iθ3

 , (2-7a)

Q2(θ)= (eiθ3 − 1, 1− eiθ1, eiθ1 − eiθ3), (2-7b)

where
θ3 = θ2− θ1. (2-8)

Equations (2-7) define the differential of 0- and 1-forms in their Fourier representations, respectively.
Within this differential operator framework and by the translational invariance of the energy of lattice,
we can write the energy of a harmonic crystal as

E(u)=
1
2

∑
e1∈E1

∑
e′1∈E1

Bi j (e1, e′1) dui (e1) du j (e′1)≡
1
2〈B du, du〉, (2-9)

where Bi j (e1, e′1) are bondwise force constants, giving the interaction energy resulting from a unit dif-
ferential displacement in the j-th coordinate direction at bond e′1 and a unit differential displacement in
the i-th coordinate direction at bond e1.

Equivalently,

E(u)=
1
2

∑
e0∈E0

∑
e′0∈E0

Ai j (e0, e′0)ui (e0)u j (e′0)≡
1
2〈A u, u〉, (2-10)
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b1

b2b3

m1

m2 m3

Figure 4. Resulting slip lines and Burger vectors, defining the operative slip systems of graphene.

where Ai j (e0, e′0) are atomic force constants, giving the interaction energy resulting from a unit differen-
tial displacement in the j-th coordinate direction at atom e′0 and a unit differential displacement in the
i-th coordinate direction at atom e0.

Moreover, by the translation invariance of lattice, we can express B du and Au in convolution form,
and then using the Parseval’s identity and the convolution theorem, we express the DFT representation
of the harmonic energy as

E(u)=
1

(2π)2

∫
[−π,π ]2

1
2〈9̂(θ) d̂u(θ), d̂u∗(θ)〉 d2θ , (2-11a)

E(u)=
1

(2π)2

∫
[−π,π ]2

1
2〈8̂(θ) û(θ), û∗(θ)〉 d2θ . (2-11b)

The preceding representations show that the force-constant fields are related by

8̂i j = QT
1 9̂i j Q∗1. (2-12)

Moreover, it is possible now to achieve an expression for the energy of a defective crystal including
dislocations. To accomplish this, we include in (2-9) the eigendeformations β corresponding to crystal
slips [Mura 1987]

E(u, β)=
1
2

∑
e1∈E1

∑
e′1∈E1

B(e1, e′1)(du(e1)−β(e1))(du(e′1)−β(e
′

1))

≡
1
2〈B(du−β), (du−β)〉, (2-13)

where the sums take place over the atomic bonds of the crystal lattice, u(e0) is the atomic displacement
of atom e0, du(e1) is the deformation of atomic bond e1, β(e1) is the eigendeformation at bond e1

and B(e1, e′1) are bondwise force constants. The local values β(e1) of the eigendeformation field are
constrained to defining lattice-invariant deformations; see Figure 4. And finally, the stored energy of a
crystal and the respective displacement field is obtained by minimizing (2-13) with respect to u:

inf
u

E(u,β)= E(β). (2-14)
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3. Harmonic graphene model

Bond-order potentials have widely been employed to model complex materials, including C-based mate-
rials, e.g., graphite, diamond and graphene. Tersoff potentials [1988] are a clear example of bond-order
potentials among others such as Finnis–Sinclair potentials [1984], ReaxFF potential [van Duin et al.
2001] and REBO potentials [Brenner 1990]. The latter one is based on Tersoff potentials with additional
terms that correct for an inherent overbinding of radicals and that include nonlocal effects. However,
REBO potentials include neither torsion of bonds nor nonbonded interactions; both contributions are
crucial to model correctly the behavior of graphene. The AIREBO potential [Stuart et al. 2000], which
is derived from the REBO potential, includes these effects through the addition of two new terms: a
Lennard-Jones potential, ELJ, accounting for long-range interaction, and a torsion term, E tors.

3.1. AIREBO potential. In this section, the AIREBO potential is briefly described and particularized to
graphene. This empirical potential consists of a sum of different terms

E =
1
2

∑
i

∑
j 6=i

[
EREBO

i j + ELJ
i j +

∑
k 6=i, j

∑
l 6=i, j,k

E tors
ki jl

]
, (3-1)

where EREBO
i j is the REBO interaction, ELJ

i j is the Lennard-Jones interaction and E tors
ki jl is the torsion

interaction.
The REBO part combines the repulsive and the attractive terms as

EREBO
i j = V R

i j (ri j )+ bi j V A
i j (ri j ), (3-2)

where bi j is the bonding term that specifies the interaction between atoms i and j and their respective
neighbors, i.e., bi j depends on the bond angles between the bonding environment surrounding atoms i
and j and the bond i j and is a monotonic decreasing function with respect to the coordination number N
as b ∼ N−1/2:

bi j =
1
2 [p

σπ
i j + pσπj i ] +π

rc
i j +π

dh
i j . (3-3)

The repulsive term exclusively depends on the atom types i and j through the Qi j , Ai j and αi j

parameters (Table 1) and the bond length ri j :

V R
i j = wi j (ri j )

[
1+

Qi j

ri j

]
Ai j e−αi j ri j , (3-4)

where wi j is a bond weighting factor. Notice that the repulsive term tends to infinity as the bond length
between atoms i and j goes to zero.

Parameter Qi j (Å) αi j (Å
−1

) Ai j (eV) B(1)i j (eV) B(2)i j (eV) B(3)i j (eV)
CC 0.313460 4.7465391 10953.544 12388.792 17.567065 30.714932

Parameter β
(1)
i j (Å

−1
) β

(2)
i j (Å

−1
) β

(3)
i j (Å

−1
) εi j (eV) σ

(2)
i j (Å) εiccj (eV)

CC 4.7204523 1.4332132 1.3826913 0.00284 3.40 0.3079

Table 1. AIREBO parameters for the attractive, repulsive, LJ and torsion terms.
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Parameter rcc (Å) Nc N s r ′cc (Å) rLJ
cc (Å) bcc

Minimum 1.7 3.2 2 0.1 1.7 σcc 0.77
Maximum 2 3.7 3 0.1 2 21/6σcc 0.81

Table 2. Switching parameters between CC bonds.

Similarly, the attractive term also depends on the atom types i and j (B(n)i j and β(n)i j ) and the bond
length as

V A
i j =−wi j

3∑
n=1

B(n)i j e−β
(n)
i j ri j . (3-5)

The bond weighting factor wi j (ri j ) smoothly switches off the REBO interaction when the atom pairs
exceed the typical bonding distance between carbon atoms for graphene (Table 2):

wi j (ri j )= S′(tc(ri j )), (3-6)

where S′(t) is
S′(t)=2(−t)+ 1

22(t)2(1− t)[1+ cosπ t] (3-7)

and tc(ri j ) is given by

tc(ri j )=
ri j − rmin

i j

rmax
i j − rmin

i j
. (3-8)

The pσπi j and pσπj i terms in (3-3) take into account the covalent bond interaction:

pσπi j =
1√

1+
∑

k 6=i, j wk(rk)gi (cos θ j ik)+ Pi j (N C
i j )
, (3-9)

pσπj i =
1√

1+
∑

l 6=i, j wl(rl)gi (cos θi jl)+ Pj i (N C
i j )
, (3-10)

gC(cos θ j ik)= g(1)C (cos θ j ik)+ S′(tN (Ni j ))
[
g(2)C (cos θ j ik)− g(1)C (cos θ j ik)

]
, (3-11)

where gi is a penalty function that penalizes the bonds that are very close to one another and θ j ik and θi jl

(Figure 5) are the bond angles between the vectors (ri , rik) and (ri , r jl), respectively:

cos θ j ik =
ri · rik

ririk
, (3-12)

cos θi jl =
ri · r jl

rir jl
. (3-13)

The scaling function tN (Ni j ) in (3-11) is a function of the local coordination number, Ni j , and the
upper and lower bound coordination numbers, N max

i j and N min
i j , which are related to the material:

tN (Ni j )=
Ni j − N min

i j

N max
i j − N min

i j
. (3-14)
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i

j

k

l

ri

r jrik

r jlθi jl

θ j ik

Figure 5. Angle convection.

cos θ gi ∂gi/∂ cos θ ∂2gi/∂(cos θ)2

−1 −0.010000 0.104000 0.000000

−
2
3 0.028207 0.131443 0.140229

g(1)C −
1
2 0.052804 0.170000 0.370000

−
1
3 0.097321 0.400000 1.98000

1 1.00000 2.83457 10.2647

−1 −0.010000 0.104000 0.000000

−
2
3 0.028207 0.131443 0.140229

g(2)C −
1
2 0.052804 0.170000 0.370000

−
1
3 0.097321 0.400000 1.98000

1 8.00000 20.2436 43.9336

Table 3. Interpolation points for the function gC .

In particular, for graphene,

Ni j = N C
i j =

(∑
k 6=i

δkCwk(rk)

)
− δ jCwi (ri ). (3-15)

The g(1)C (cos θ j ik) and g(2)C (cos θ j ik) values and their respective first and second derivatives with respect
to the angle in (3-11) are known values and are listed in Table 3.

The third term in (3-3), πrc
i j , depends on the coordination numbers. Particularly, πrc

i j is zero for
graphene lattice with periodic boundary conditions. And the fourth term in (3-3), πdh

i j , is based on the
torsion angles, wki jl :

πdh
i j = Ti j (Ni j , N j i , N conj

i j )
∑

k 6=i, j

∑
l 6=i, j

(1− cos2 ωki jl)

×w′ik(rik)w
′

jl(r jl)2(sin θ j ik − smin)2(sin θi jl − smin) (3-16)

with
w′i j (ri j )= S′(t ′c(ri j )) (3-17)
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and

t ′c(ri j )=
ri j − rmin

i j

rmax′
i j − rmin

i j

. (3-18)

The torsion angle, wki jl , is defined as the angle between the plane defined by the vectors (r j i , rik)

and (ri j , r jl):

cosωki jl =
r j i ∧ rik

r j irik
·

ri j ∧ r jl

ri jr jl
. (3-19)

The Lennard-Jones term, ELJ
i j , in (3-1) includes the long-range interaction between pairs of atoms

ELJ
i j = S(tr (ri j ))S(tb(b∗i j ))+ [1− S(tr (ri j ))]CLJ

i j (ri j )V LJ
i j , (3-20)

where V LJ
i j is a Lennard-Jones potential, 6-12 type,

V LJ
i j = 4εi j

[(
σi j

ri j

)12

−

(
σi j

ri j

)6 ]
(3-21)

and S(t) is a switching function

S(t)=2(−t)+2(t)2(1− t)[1− t2(3− 2t)]. (3-22)

Finally, the torsion term in (3-1), E tors
ki jl , considers the torsion long-range interaction as a function of

the dihedral angle determined by atoms i , j , k and l:

E tors
i j =

∑
k 6=i, j

∑
l 6=i, j,k

wi j (ri j )w jk(r jk)wkl(rkl)V tors
i jkl , (3-23)

where
V tors

i jkl = εi jkl

[
256
405 cos10

(ωi jkl

2

)
−

1
10

]
. (3-24)

3.2. Force-constant model. As proved in Section 2, the energy of a defective crystal lattice can be
written in terms of either bondwise force constants, 9, or atomic force constants, 8. The former can be
obtained through the second linearization of a given interatomic potential; thus, the latter ones are derived
by means of relation (2-12). In general, given a potential E , the atomic force constants are obtained by

9i j

(
l − l ′

ab cd

)
=

∂2 E
∂r(l ′, cd) j ∂r(l, ab)i

, (3-25)

where r(l, ab)i is the i-th component of the vector corresponding to the atomic bond between atoms a and
b with label l and r(l ′, cd) j is the j -th component of the vector between atoms c and d with label l ′. Once
the bondwise force constants are computed by using the above equation, a straightforward calculation
using (2-12) provides the corresponding atomic force constants 8.

In this section, we tackle the definition of a bondwise force-constants model from the AIREBO po-
tential, and thus, first and second linearizations of energy (3-1) are needed. In order to accomplish an
accurate description of interatomic forces in graphene, our model encompasses atomic interactions up to
second-nearest neighbors for the REBO term and up to fourth-nearest neighbors for the LJ and torsion
terms. The analytical expressions of the first and second derivatives of the functions defining the AIREBO
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(a) (b) (c) (d) (e)

α1 364.0 497.2 527.7 409.7 399.0
β1 247.0 173.8 68.1 145.0 135.7
δ1 100.5 107.0 118.3 98.9 292.8

α2 −30.8 −41.4 5.8 −40.8 −79.6
β2 72.3 58.1 32.7 74.2 67.8
γ2 −17.8 −3.0 26.7 −9.1 39.2
δ2 −11.5 −15.9 −16.9 −8.2 0.9

α3 −20.6 0.0 −33.2 0.0
β3 34.5 0.0 50.1 0.0
δ3 9.1 3.7 5.8 −34.3

α4 0.0 10.5 0.0
β4 0.0 5.0 0.0
γ4 0.0 2.2 0.0
δ4 −1.8 −5.2 17.1

Table 4. Comparison of force-constants values obtained from different interatomic po-
tentials and considering interactions (a) up to second neighbors [Ariza and Ortiz 2010],
(b) up to third neighbors [Mendez and Ariza 2015] and (c)–(e) up to fourth neighbors
[Ariza et al. 2011; Tewary and Yang 2009; Wirtz and Rubio 2004].

potential have been provided in [Ariza et al. 2011]. Table 4 shows a comparison of the force-constants
values we have obtained from the linearization of different interatomic potentials, i.e., a harmonic model
[Aizawa et al. 1990], a reactive empirical bond-order potential [Stuart et al. 2000] and a tight binding po-
tential [Xu et al. 1992]. These computed force constants have been validated against experimental phonon
dispersion curves and previous force-constants models for graphene. Wirtz and Rubio [2004] have ob-
tained their force constants model by fitting to density-functional theory (generalized-gradient approxi-
mation) quantum-mechanics calculations of the phonon dispersion curves of graphene whereas Tewary
and Yang [2009] employed a potential based on the Tersoff potential and added a term of radial energy.

4. Anharmonic contribution of the AIREBO potential

The discrete dislocation theory in crystals combines lattice harmonics, the theory of eigendeformations
[Mura 1987] and the discrete Fourier transform, leading to analytically tractable expressions of the stored
energy of defective graphene (see (2-13)). However, despite its robustness and accuracy, a question of
interest concerns the formulation of convergent schemes that relax discrete dislocation structures in ac-
cordance to a full interatomic potential. A particular scheme that preserves the advantages of the discrete
dislocation theory, and in particular the ability to use Green’s functions, was proposed by [Gallego and
Ortiz 1993]. In this scheme, the fully nonlinear solution is obtained by the method of forces, i.e., by
appending unknown forces to the discrete dislocation energy so as to equilibrate the lattice with respect
to the fully nonlinear atomistic potential.

Thus, given an eigendeformation field, β, constrained to defining lattice-invariant deformations, the
discrete dislocation theory provides a harmonic displacement field, uH , that minimizes the harmonic part
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of the potential such that
DEH (uH )= 0, (4-1)

where EH is the harmonic part of the full potential, D f ( · ) denotes the derivative of f with respect to
its argument and uH represents the harmonic displacement field corresponding to the eigendeformation
field, β. The total harmonic energy including applied forces f is given by

EH (u,β)= 1
2〈B(du−β), (du−β)〉− 〈 f , u〉 = 1

2〈Au, u〉− 〈δ(Bβ), u〉+ 1
2〈Bβ,β〉− 〈 f , u〉. (4-2)

Next, minimization of EH with respect to u at fixed β yields the equilibrium equation

u∗H = A−1( f E
+ f ), (4-3)

where
f E
= δBβ (4-4)

is the distribution of eigenforces corresponding to β. We thus continue to apply forces f such that
the entire lattice can be equilibrated, and therefore, the resulting harmonic field u∗H minimizes a given
anharmonic energy E . The equilibrium equations for the equilibrating forces f are

DE(A−1( f E
+ f ))= 0. (4-5)

Because of the good starting accuracy of the discrete dislocation theory, the corrective forces decay very
rapidly away from the core of defects and, hence, represent highly localized corrections.

5. Glide and shuffle dislocation dipoles in graphene

Slip in graphene occurs on three different planes defined by their normal vectors, mi , i = 1, 2, 3, (see
Figure 4) which correspond to the close-packed atomic planes in graphene. At first glance, for each slip
plane, gliding might occur across either a zigzag chain of bonds or across parallel bonds (Figure 6). The
first case defines the so-called glide dislocations whereas the latter one refers to shuffle dislocations.

In a previous work, we have investigated two mechanisms of crystallographic slip in graphene, cor-
responding to glide and shuffle generalized stacking faults [Ariza et al. 2012]. The calculations were

b
b

b

b

b

b

Figure 6. Detail of the distribution of eigendeformation β, consisting of one Burgers
vector over (left) a chain of three zigzag bonds and (right) three consecutive parallel
bonds.
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Figure 7. Dislocation core structures predicted by DD theory (left) glide dislocation
dipole (L = 3) and (right) shuffle dislocation dipole (L = 3).

Figure 8. Dislocation core structure after relaxation obtained by means of the anhar-
monic extension of the DD theory (left) glide dislocation dipole (L = 3) and (right)
shuffle dislocation dipole (L = 3).

performed using the Sandia National Laboratories Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) and two different interatomic reactive potentials: AIREBO and ReaxFF [Stuart et al.
2000; van Duin et al. 2001]. The γ -surfaces of a crystal shed useful light on the structure and stability of
extended defects such as dislocation dipoles and dissociated cores. The outcome of the aforementioned
study was that glide dislocation dipoles are stable in graphene down to exceedingly small separations
of the order of a few lattice spacings and dissociation of perfect dislocations into partial dislocations
are unlikely in both configurations. The assessment of the dynamical stability of partial dislocations was
carried out by inserting the discrete dislocation configurations predicted by the DD theory into molecular
dynamics calculations as initial conditions.

In this section, the stability analysis of discrete dislocation structures is achieved by using the compu-
tational scheme outlined above. For ease of indexing, we denote by L = n the length of the dislocation
and it represents that the distribution of eigendeformations is applied over n atomic bonds. In this work,
we endeavor to assess the stability of glide and shuffle dislocation dipoles. We start by predicting the
harmonic core structures and energies of these two dislocations by means of DD theory (see Figure 7).
In particular, for configurations corresponding to L = 3, we aim to validate our computational scheme
by studying whether glide and shuffle dislocation dipoles are metastable or not. Thus, the initial discrete
configuration is allowed to relax in accordance to the full interatomic potential AIREBO as was described
in Section 4.

Figure 8 shows the computed relaxed configurations and confirms the known metastable character of
very short glide dislocations in graphene. Moreover, Table 5 compares the defect energies of the two
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Dipole L = 3 DD theory (eV) After relaxation (eV)
Glide 17.07 5.87

Shuffle 20.20 ∼ 0

Table 5. Computed energies initially predicted by DD theory and obtained after relax-
ation considering the full interatomic potential for a glide and shuffle dislocation dipole
(L=3).

Figure 9. Dislocation core predicted by DD theory (left) glide dislocation dipole (L = 5)
and (right) glide dislocation dipole (L = 7).

Figure 10. Dislocation core after relaxation (left) glide dislocation dipole (L = 5) and
(right) glide dislocation dipole (L = 7), computed using the extension of the DD theory.

Glide dipole DD theory (eV) After relaxation (eV)
L = 5 19.87 10.93
L = 7 21.74 19.49

Table 6. Stored energies initially predicted by DD theory and those obtained after relax-
ation considering the full interatomic potential for a glide and shuffle dislocation dipole
(L = 5, 7).

different dipoles, before and after relaxation. For the shuffle configuration, the stored energy decreases
during the relaxation process down to zero.

Next, following the same procedure, we have investigated the relaxed configurations corresponding
to two glide dislocation dipoles with L = 5 and L = 7 (Figures 9 and 10). The stored energies computed
before and after relaxation are included in Table 6; these values are in agreement with similar calculations
reported in the literature. The relaxed dislocation core structures shown in Figure 10 also agree with those
observed in molecular dynamics calculations.
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6. Conclusions

We have presented an assessment of the stability of discrete dislocations in graphene. The assessment is
based on an extension of the discrete dislocation theory that takes into account the anharmonic part of the
interatomic potentials. Thus, we have obtained fully nonlinear solutions by using the method of forces,
i.e., by appending unknown forces to the discrete dislocation energy so as to equilibrate the lattice with
respect to the fully nonlinear potential. Specifically, we have first computed the harmonic dislocation
core structures and energies predicted by the force constants model obtained from the AIREBO potential
and then studied their dynamic stability.
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A NOTE ON WEAR OF ELASTIC SLIDING PARTS
WITH VARYING CONTACT AREA

MICHELE CIAVARELLA AND NICOLA MENGA

Wear of sliding parts in the transient regime depends on elastic behavior of the bulk of the materials, and
in general the contact area cannot be assumed to be constant, so that the problem is nonlinear. Here we
look at the simple example of the classical Hertzian geometry, obtaining a simple solution for transient
to uniform pressure (which is also the “rigid” limit solution) assuming out-of-plane sliding, and the
approximation of the “Winkler foundation” in plane strain. Wear is assumed to vary according to the
Reye–Archard law, which applies locally and only to the wearing indenter. As a further improvement,
we give a more refined solution using a Winkler constant which adapts to the changing size of the contact.

1. Introduction

Wear, together with fatigue, is one of the major causes of malfunctioning and disservice of engineering
components. As such, the literature on wear is huge, particularly on the experimental side. Well known
are Ashby’s wear maps [Lim and Ashby 1987], which fit a large number of experiments and permit
estimation of different regimes of wear, which depend on temperature at the interface and in the bulk,
and, correspondingly, the orders of magnitude of variation in the wear coefficient, mainly dependent on
pressure and relative speed.

Even for a constant speed, we generally distinguish two different phases: “running-in”, in which
transient processes occur, and “steady state”. It should be remarked that there are different possible
definitions of “running-in”. Some authors suggest a running-in phase in which essentially the roughness
is altered, and there is a departure from the later regime of “linear behavior”, described by the Reye–
Archard law [Reye 1860; Archard and Hirst 1956]. Another interpretation of “running-in”, more relevant
to the present paper, describes the phase where the pressure distribution changes in time due to elasticity
effects. For a contact which changes pressure and also size in time, both phenomena may in principle be
at work, but we shall concentrate in this paper on the second meaning of running-in, assuming the Reye–
Archard law to apply throughout the process. It is perhaps interesting to remark that Reye’s work, though
earlier, remained somehow unnoticed in the English-speaking literature, which tends to cite Archard’s
work [Archard and Hirst 1956].1 Both describe the dependence of worn volume V on normal load as
linear and on hardness as inverse:

V =
kPS
HB

, (1-1)

Keywords: wear, contact mechanics, finite element method, Archard wear law, Hertzian plane contact, transient wear.
1As Villaggio [2001] says, “Reye’s model became very popular in Europe (in Italy was promulgated by Panetti [1947]),

and it is still taught in university courses of applied mechanics. But, strangely enough, this theory has been totally ignored in
English and American literature.”
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where S is sliding distance, P is normal load, and HB is Brinell hardness. In this form, k is a di-
mensionless constant which, in the original Archard model, expresses the (unknown a priori) proba-
bility of an asperity to wear when sliding it by a length equal to twice its contact diameter (see also
http://en.wikipedia.org/wiki/Archard_equation). It varies from about 10−2 for mild steel on mild steel
to 2–3 orders of magnitude less for tool steels on metals, and even lower on plastic. Some values for
ceramic on ceramic are as low as 10−6. Notice that this law holds until the nominal pressure is lower
than the yield. Above that, k grows with P , and hence we depart from linearity. Naturally, the many
orders of magnitude of variation in k hide many possible changes of mechanisms and dependence on
other constants, for example, toughness of the materials; and indeed the wear rate in certain ranges can
increase, be independent of, or decrease with hardness depending on the particular toughness [Hornbogen
1975].

Often, as said before, running-in is associated to elasticity-dominated effects (see, for example, [Gory-
acheva 1998]). One class of problem is when the contact area is fixed in time, which permits special linear
techniques to be used, like the eigenfunction expansion of the transient pressure distribution. However,
another important class of problem does not neglect the change of contact area during the wear process,
and hence cannot rely on linearity and the superposition principle.

Most of the present literature is concerned with FEM implementation of Archard’s law (see, for ex-
ample, [Mattei et al. 2011; Põdra and Andersson 1999; Sfantos and Aliabadi 2007]), and therefore the
computational cost of a reasonably complex problem is significant. An approximate solution using the
Winkler approximation for the contact, namely that the displacement is a local function of the pressure, is
possible in closed form. In particular, here we extend the 2D treatment of [Goryacheva 1998] to provide
full solutions also for pressure distribution. In common with Goryacheva, we shall assume wear is only
acting on the indenter, and not in the half-plane. Finally, as a further extension, a section is added on an
“adaptive” Winkler solution, in which the modulus is corrected for the changing contact area. This gives
some hint of the degree of approximation of the solution. That the results with Winkler models can be
very good compared to the full continuum problem is known in the literature (see, for example, [Põdra
and Andersson 1997]).

2. General formulation

The problem we plan to solve is that of an elastic indenter that slides out-of-plane, over a Winkler
half-plane. The indenter can also be elastic but, without loss of generality, we shall assume it is rigid.
The half-plane is wearing much more slowly than the punch, so that we can neglect its wear process
altogether. This is clearly not correct in general, but is a limit approximation when the wear coefficient
of the indenter is much larger than that of the half-plane. If the contact repeats itself in some patterns,
like in the case of a pin-on-disk situation, or pad-disk assembly, this amounts to assuming that wear of
the disk is negligible compared to that of the pin or pad. The geometry and the symbols are described in
Figure 1, where d(t) is the indentation depth, b(t) is the contact semiwidth, u(x, t) is the displacement
of the Winkler foundation, w(x, t) is the indenter wear, and g0(x) is the initial gap function.

We shall consider the most interesting case, that of contact area growing in time, which is typical if the
contact load is constant or increasing in time, although the more general cases of decreasing or variable
loads require similar considerations (see, for example, [Goryacheva 1998] for the more general case).
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2b(t)

u(x, t) d(t)

w(x, t)
g0(x, t)

x

Figure 1. Indenter geometry and symbols. The figure takes into account the Winkler
behavior for a contact area 2b(t) that is expanding in time. Triangles are used to indicate
the elastic material in the half-plane.

2A. Formulation. With reference to Figure 1, inside the contact area the displacement field is

u(x, t)= d(t)− g0(x)−w(x, t). (2-1)

As in the classical Winkler model, simple proportionality of pressure and displacement is assumed:

p(x, t)= k(t)u(x, t), (2-2)

where k(t) is the proportionality coefficient, or Winkler constant, having units of pressure per unit dis-
placement — time-dependent in the most general formulation.

The Winkler model permits us to solve the pressure distribution in the contact area. In fact, inside the
contact region, using (2-2) in (2-1) we have

p(x, t)= k(t)[d(t)− g0(x)−w(x, t)]. (2-3)

By integrating (2-3) over the contact length [−b(t), b(t)], we find the state equation of the problem,
which relates the contact evolution (constants b, d), the indenter wear, and the external load per unit
length P(t):

P(t)
k(t)
= 2b(t)d(t)−

∫ b(t)

−b(t)
[g0(x)+w(x, t)] dx . (2-4)

2B. Indentation evolution. The profile wear is modeled by the Reye–Archard law. Hence, if v(t) is the
relative slip velocity, f is the friction coefficient, and β is the wear coefficient, we can write

∂w(x, t)
∂t

= β f v(t)p(x, t)= α(t)p(x, t), (2-5)
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where α(t)= β f v(t) is a parameter which takes into account the generally time-dependent velocity and
w(t) is the profile wear in the normal direction with respect to the contact area.

The indentation evolution d(t) is obtained by differentiating (2-4) with respect to time. Using (2-5)
and the condition that the edges of the contact region are progressively entering contact and hence have
no wear, i.e., w(b(t), t)= w(−b(t), t)= 0, we find that

P ′(t)= d ′(t)2k(t)b(t)−
[

k(t)α(t)−
k ′(t)
k(t)

]
P(t), (2-6)

which can be easy integrated to give d(t) and then b(t)= g−1
0 [d(t)].

2C. Pressure field evolution. Let us now look at the pressure behavior at a fixed position x̄ ,

p(x̄, t)= p(t).

The pressure field evolution is governed by (2-3). Differentiating it with respect to time and using (2-5),
we find

p′(t)+
[

k(t)α(t)−
k ′(t)
k(t)

]
p(t)= k(t)d ′(t), (2-7)

that is, a first-order ODE which can be solved by the variation of constants method, finding

p(t)= q(t)e−B(t), (2-8)

where B(t) is a general primitive of the coefficient,

B(t)=
∫ [

k(t)α(t)−
k ′(t)
k(t)

]
dt, (2-9)

and where

q(t)=
∫

k(t)d ′(t)eB(t) dt +C, (2-10)

with C an arbitrary constant of integration.
The initial condition to find the correct value of C depends on whether the particular value of x̄ is

inside or outside the original contact area. In particular,{
if x̄ ∈ [−b(0), b(0)], then p(x̄, 0)= k[d(0)− g0(x̄)];
else p(x̄, t)= 0 for t < t̄ ,

(2-11)

where t̄ is the time at which |x̄ | = b(t).

3. Constant P , k, α

In order to develop analytical results, we will now focus on classical Hertzian indenters, although the
approach to be described does not need any kind of limitation in terms of indenter geometry. The Hertzian
indenter is characterized by its curvature radius R and

g0(x)=
x2

2R
. (3-1)
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Figure 2. Dimensionless contact area vs. dimensionless time; b0 is the initial contact area.

Assuming the load, the Winkler constant and the relative sliding speed between the indenter and the
half-plane are all constant,

P(t)= P, k(t)= k, α(t)= α, (3-2)

after some algebra (2-6) can be solved, finding

d(t)=
(

3P

4k
√

2R

)2/3

(1+αkt)2/3. (3-3)

The initial condition depends on the Winkler constant k, but the steady state does not — and this
explains the success of rigid models, which predict the steady state from purely kinematic considerations.
For example, the design of brakes systems is classically based upon rigid models (see [Sfantos and
Aliabadi 2007]). This important simplification is valid for every indenter shape described by g0(x), not
only for the Hertzian case, but it requires the assumptions of constant normal load and constant relative
sliding speed.

Further, by (3-1), the contact area evolution is

b(t)=
√

2R
(

3P

4k
√

2R

)1/3

(1+αkt)1/3, (3-4)

and it is shown in Figure 2. The “cross-over” time is a characteristic time of the process defined as

τ =
1

kα
. (3-5)

3A. Pressure field. The pressure field evolution is a little more complex to evaluate. Using the above
assumptions, (2-10) can be solved by differentiating (3-3) in time, finding

q(t)=
2αk2

3

(
3P

4k
√

2R

)2/3∫ eαkt

(1+αkt)1/3
dt +C,
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Figure 3. Pressure evolution vs. time. (a) x = 1
3 b0 and (b) x = 3

2 b0. Pressure values are
nondimensionalized to the Hertzian initial peak pressure.

and the integral can be solved in terms of the exponential integral function:∫
eαkt

(1+αkt)1/3
dt =−

(1+αkt)2/3 Ei1/3(−1−αkt)
αke

.

Therefore, according to (2-8), the pressure trend in time will be

p(t)=−
2αk2

3

(
3P

4k
√

2R

)2/3
(1+αkt)2/3 Ei1/3(−1−αkt)

αke
e−αkt

+Ce−αkt ,

where the initial condition C can be found by (2-11).
Figure 3 shows the pressure evolution in time for different fixed x̄ . As expected, inside the initial

contact area (curve (a)) the pressure is monotonically decreasing and the reduction ratio is also mono-
tonically decreasing. This is obviously due to the increase of the contact area in time because of wear.
Outside the initial contact area, the pressure is initially zero (curve (b)), because the point is not yet in
contact. When, due to wear of the indenter, contact occurs, the contact pressure suddenly increases. The
pressure increase ratio is not only influenced by the rate of wear, but also by the local slope of the unworn
profile which comes into contact. Both curves converge on the uniform pressure final stage.

4. The Winkler adaptive model

Winkler’s model can be applied to Hertzian contact as described in [Johnson 1985], which suggests that
in our case a time-varying Winkler modulus can be defined by considering the time variation of the
contact area and using the value suggested by Johnson which would give the best fit for the contact area
semiwidth in the Hertzian case. Specifically,

k(t)= m
E∗

bad(t)
(plane contact), (4-1)
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where bad(t) is the semiwidth of the contact in our case, and E∗ = E/(1−ν2) is the plain strain modulus.
The numerical coefficient m can be chosen in order to match the initial Hertzian contact solution in terms
of the contact semiwidth

bad(0)= aH , (4-2)

which gives m = 3π
8 , or the contact pressure peak

dad(0)k(0)= pH , (4-3)

which gives m = 8
3π .

Hence, (2-6) becomes

d ′ad(t)=
dad(t)P ′(t)+m Ed1/2

ad (t)αP(t)

2
√

2Rm E
[

d(t)− P(t)
4m E

] . (4-4)

Following the procedure used in the main part of the paper, it is possible to evaluate the trend of
penetration and contact area for constant normal load. After some algebra, we find that the implicit
expression for penetration is

32R
9α2 P2 d3

ad −
16R

3Pα2m E
d2

ad +
2R

α2m2 E2 dad = t2.

In Figure 4, the contact semiwidth is plotted as a function of time for both adaptive (solid line) and
constant (dashed line) Winkler modulus models. In particular, the results are obtained choosing the
coefficient m according to (2-8). As expected, the behavior is different only at small times, while the
long time limit does not depend on the Winkler stiffness, and thus the trend is the same.

The adaptive Winkler enhancement clearly affects the contact pressure evolution in time, which can
be evaluated numerically by (2-7).
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Figure 4. The comparison between contact semiwidths b obtained with constant (solid)
and adaptive (dashed) Winkler models; aH is the Hertzian contact semiwidth.
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Figure 5. The pressure distribution inside the contact area for different times. Dashed
lines give the solution obtained with constant Winkler modulus. Solid lines are obtained
by introducing the adaptive Winkler model. The quantities pH and aH represent the
Hertzian peak pressure and initial contact area.

Figure 5 shows this evolution in the cases of constant Winkler modulus (dashed line) and adaptive
Winkler model (solid line). As in the Winkler approximation, the pressure distribution is proportional to
the shape of indenter; the initial distribution is obviously parabolic, and as wear proceeds, the pressure
distribution tends towards the uniform condition. It is also possible to see that the effect of the adaptive
correction is to round the pressure distribution.

5. FEM comparison

A detailed comparison between simple and adaptive Winkler solutions and a FEM model was performed
in order to study the accuracy of the Winkler solutions. In particular, we developed an ANSYS Parametric
Design Language model of a half-cylinder with about 1000 elements. The contact between the cylinder
and the rigid plane surface was modeled using CONTA178 elements, in which the gap of each element in
contact is varied during the wear process by adding an artificial length corresponding to the progressive
wear, proportional to the local pressure at the given iteration. This process corresponds to an Euler
forward integration of the wear equations, and thus it was expected to be stable only for sufficiently small
wear coefficient. To the best of the authors’ knowledge, this FEM procedure has not been previously
suggested. However, it is extremely simple to implement, does not require remeshing of the worn profiles,
and in principle could be also used together with substructuring-superelement formulations in which only
the degrees of freedom of the nodes in contact are active.

In Figure 6 the solutions of the Winkler models (dashed= simple, solid= adaptive) are compared to
the FEM results (circles) for the contact area evolution as a function of time.

The adaptive Winkler model prediction clearly shows an improved fitting of FEM results compared
with the simple Winkler model. In particular, after a brief time interval, the adaptive Winkler model
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Figure 6. The dimensionless contact area semiwidth vs. the dimensionless time for dif-
ferent models. The circles are the FEM result, the solid line shows the adaptive Winkler
result, and the dashed line shows the simple Winkler result.

correctly matches the solution obtained by FEM simulation in terms of contact area evolution, despite
that the constants in the adaptive model are, strictly speaking, valid for a Hertzian pressure distribution.

Further, in Figure 7, the pressure distribution within the contact area is shown for the Winkler models
and the FEM elastic model, for a particular time t/τ = 0.8. As expected, the adaptive Winkler model,
while it improves the prediction of contact area size, is still somewhat far from the “exact” pressure
distribution shape obtained by FEM simulations. However, this is intrinsic from the beginning, when the
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Figure 7. The dimensionless pressure distribution within the contact area at t/τ = 0.8.
The circles are the FEM result, the solid line shows the adaptive Winkler result, and the
dashed line shows the simple Winkler result.
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Hertzian elliptical distribution cannot match the parabolic Winkler distribution. In this respect, the error
tends to be reduced from the initial value.

6. Conclusions

We have obtained some simple analytical results for 2D Hertzian rigid indenters sliding on a Winkler
half-plane, on the assumption that only one of the bodies (the indenter) wears out. The full solutions for
pressure distribution, contact area, and indentation depth have been obtained. The Winkler modulus can
be also changed in time in an “adaptive” way, considering the varying dimension of the contact area, so
as to improve the solution.

A comparison with a full continuum problem has been performed by means of FEM simulation using
a very simple yet effective method to model wear, which adds wear in the “initial gap” of the contact
elements. It is found that the introduction of the adaptive Winkler model improves the fixed load contact
area prediction in time, and that generally the Winkler model shows a reasonable solution, considering
the inevitable error intrinsic in the assumption of the pressure distribution shape.
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FRACTURE DEVELOPMENT ON A WEAK INTERFACE NEAR A WEDGE

ALEXANDER N. GALYBIN, ROBERT V. GOLDSTEIN AND KONSTANTIN B. USTINOV

Formation of a fracture consisting in shear-opening delamination and Coulomb’s frictional sliding zones
along a weak interface in an elastic isotropic homogeneous plane subjected to wedging and external com-
pression is studied. The shear-opening delamination is modelled by a mixed-mode crack; the frictional
sliding zones are modelled by pure shear cracks. The interface is assumed to be much weaker than the
material of the plane, so that only interface cracks are considered. The wedge is modelled by a pair
of edge dislocations. Two particular cases have been considered: far-field and near-field asymptotics,
corresponding to the cases of large and small ratios of the distance between the wedge and the interface
and the distance between two dislocations modelling the wedge, respectively.

The possibility of formation of finite sliding zones ahead of the delamination on the weak interface
is demonstrated. It is shown that, depending on the combination of external parameters (ratio of the
dislocation burgers vector and elastic modulus, distance from the dislocation to the interface, magnitude
of applied compression, cohesion and friction angle of the interface), two configurations of cracks may
be observed: one mixed-mode crack, and three cracks — one central mixed mode crack and two external
symmetrical shear cracks. The central part of the sliding zone is also open.

1. Introduction

Delamination occurring on a part of a weak interface ahead of an approaching fracture is explained
by the presence of the tensile stress component parallel to the fracture; see [Cook et al. 1964]. This
phenomenon is observed in various materials in lab experiments as well as in nature; e.g., dyke-sill
transformations; see [Gudmundsson 2011]. It is widely accepted (see the references above) that the
delamination can affect the crack propagation throughout the interface or serve as a barrier for crack
arrest. Besides crack growth, there are other situations that may also lead to interface destruction, such
as, for instance, wedging due to thermal expansion or rockmass fracturing near excavations. It should
be understood that, in addition to tensile stresses, the interface is also subjected to shear stresses that can
be high enough to affect the fracture processes developing on the interface. Experiments [Goldstein and
Osipenko 2012; 2015] have shown that the appearance of sliding zones over the interface is capable of
initiating secondary cracks perpendicular to the interface. Somewhat similar mechanisms are reported
in [Zhou et al. 2010] for hydrofracture modelling.

There are numerical studies of fracture development on weak interfaces; e.g., [Cooke and Underwood
2001; Akulich and Zvyagin 2008]. These studies model both delamination and slip on the interface
without employing any fracture characteristics (e.g., stress intensity factors or energy release rate) that
control fracture, which is a serious drawback. Early work by Galybin [1997] takes into account fracture
characteristics for the determination of the length of the sliding zones but do not consider delamination.

Keywords: mixed-mode interface crack, edge dislocation, delamination, sliding, singular integral equations.
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Figure 1. Geometry and loads.

Cracks at the interface of Coulomb’s friction type between elastic and rigid bodies were considered in
works by Bui and Oueslati [2004; 2005] and Bui [2006] with and without delamination. They obtained
analytical solutions, with the emphasis on possible nonuniqueness arising from nonlinearity of the fric-
tional contact crack problem and dependency of the solution on the (unspecified) loading history. The
nonuniqueness and path dependence of the solution for problems involving Coulomb’s friction contact
was also emphasised in works of Dundurs and Comninou [1981; 1983] and Mendelsohn and Whang
[1988].

In this study we model both delamination (as combined mode I-mode II cracks) and sliding zones
(mode II cracks) caused by a wedge (modelled by edge dislocations) in a compressed elastic plane with
a weak interface (which is considered as a plane of reduced strength). The sizes of opening and sliding
zones are found from the solution. The back influence of the interface cracks on the dislocations is not
taken into account, which allows one to apply the method suggested in [Galybin and Mukhamediev 2012;
2014] for estimation of the size of the delamination and the length of the pure sliding zones. The case
with both opening and shear zones along the interface was studied before, for example by Gorbatikh et al.
[2001]. Their work deals with the case when a part of the contour is traction-free under compressive
normal loads at infinity, and the size of this traction-free zone is prescribed by the geometry of the
problem. Such a formulation makes sense when a narrow cavity of certain special form is cut out from
the plane.

The configuration shown in Figure 1 is studied. The ends of the delamination zone (−L0, L0) are
determined from the condition KI = 0, and the ends of the pure sliding zones (−L , L) (“shear crack” in
the figure) from the condition KII = 0, where KI and KII are the stress intensity factors for opening and
transverse shear modes, respectively. Moreover, a more general case is considered, for which the shear
zones appear also on two symmetric intervals outside the interval (−L , L). For this case a system of
three nonlinear equations will be examined.
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2. Wedge in elastic plane

The complex potentials that characterise the stress field of an isotropic elastic plane with an edge dislo-
cation of magnitude h = hx + ih y whose core is placed at a point z0 have the form [Muskhelishvili 1977]

8(z)=
H

z− z0
, 9(z)=

H̄
z− z0

+
z̄0 H

(z− z0)2
, (1)

where, for the condition of plane strain, one has

H =−
iG(hx + ih y)

π(1+ κ)
, κ = 3− 4ν, (2)

where G is the shear modulus of the plane and ν is Poisson’s ratio. Note that the minus sign in (2) is due
to the assumption that the cut is made to the left from the core, which can be directly checked by using
the Kolosov–Muskhelishvili formulas for the displacements.

Let us assume that z0 = a, hx = 0 and h y = h > 0; this also means that H = H̄ > 0, which results in
the following expressions for the complex potentials:

81(z)=
H

z− a
, 91(z)=−z8′1(z)=

zH
(z− a)2

. (3)

Let us introduce the second dislocation, with the core at the point z0 =−a and with magnitude hx = 0
and h y = −h > 0 (thus, H in (3) should be replaced by −H ); then the previous expressions for the
complex potentials yield

82(z)=
−H
z+ a

, 92(z)=−z8′2(z)=
−zH
(z+ a)2

. (4)

The superposition of the stress fields (3) and (4) gives

8wedge(z)=
S

z2− a2 , 9wedge(z)=−z8′wedge(z)=
2z2S

(z2− a2)2
, S = 2aH. (5)

The complex potentials in (5) give the solution for the wedge of finite length inserted into the elastic
plane. Here S is a parameter that has dimension of force, and it is proportional to the area of the wedge
penetrated into the plane. We further assume this value to be a constant.

By using the Kolosov–Muskhelishvili formulas one obtains the following expressions for the mean
stresses P = 0.5(σx + σy) and for the complex stress deviator function D = 0.5(σy − σx)+ iσxy :

P(z, z̄)=8+ 8̄=
S

z2− a2 +
S

z̄2− a2 , D(z, z̄)= z̄8′+9 = (z̄− z)8′ =
2z(z− z̄)S
(z2− a2)2

. (6)

The normal (σnn) and shear (σnt ) stresses acting on an inclined plane (at an angle θ0 to the x-axis) are
given by

σn − iσt = P(z, z̄)+ e2iθ0 D(z, z̄)= 2S
[

Re
1

z2− a2 + e2iθ0
z(z− z̄)
(z2− a2)2

]
. (7)

Let us assume that a weak interface is located on a line (see Figure 1) specified by

z = a+w, w = d + reiθ , θ = const, (8)
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where the value of r = 0 corresponds to the point of intersection of the interface with the continuation
of the wedge line, the point z = a+ d in Figure 1.

Then the stresses on the interface can be presented in the form

σn − iσt =
2S

(a+ d)2

[
Re

1
(1+ ρeiθ )2− δ2 +

2iρ sin θe2iθ (1+ ρeiθ )

((1+ ρeiθ )2− δ2)2

]
, ρ =

r
a+ d

, δ =
a

a+ d
. (9)

Hereafter, σn and σt are the normal and shear components of stress along the interface.
We consider two configurations:

Configuration 1 (far field asymptotics). Assume that a � |w| (a � d). Then the complex potentials
in (5) become

8wedge(z)=
S
z2 , 9wedge(z)=−z8′wedge(z)=

2S
z2 , S = const . (10)

This asymptotic behavior coincides with the far field asymptotics for a mode I crack of length 2a and
average opening S/G.

The stresses on the interface are found from (9) to be

σn − iσt =
2S
d2

[
Re

1
(1+ ρeiθ )2

+
2iρ sin θe2iθ

(1+ ρeiθ )3

]
, ρ =

r
d
. (11)

The expression in brackets in (11) represents dimensionless stresses (normalised by 2S/d2) acting on
the interface far from the wedge. They are shown in Figure 2 as functions of ρ for different interface
inclinations.

Configuration 2 (near field asymptotics). Let us assume that |w| � a (d � a). Then the stress functions
in (6) take the form

P(w, w̄)=
S

2a
w+ w̄

ww̄
, D(w, w̄)=

S
2a
w− w̄

w2 . (12)

It should be noted that these functions correspond to the case of a single dislocation with the core at the
origin (they can also be found from (3) by assuming that a = 0, because 2aH = S). The stresses on the
interface are obtained from (12) in the form

σn − iσt =
S

ad

[
Re

1
1+ ρeiθ +

iρe2iθ sin θ
(1+ ρeiθ )2

]
, ρ =

r
d
. (13)

The dimensionless (normalised by S/(ad)) stresses on the interface located close to the right end of the
wedge are shown in Figure 3 for various interface inclinations as functions of ρ.

Comparing the stress profiles in Figures 2 and 3, one can notice that the stress distributions look
qualitatively similar to each other. For the general configuration they differ only quantitatively from
those depicted in Figures 2 and 3 for the full range of the parameters a, d and R. It should be noted
that the dimensional magnitudes of the stresses near the wedge are much greater than their values far
from the wedge. Thus, interface fracturing due to the stresses induced by the wedge is most likely to
occur close to the wedge. Therefore, we further restrict our consideration to Configuration 2, which also
allows one to reduce the number of parameters controlling the stress field.
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Figure 2. Profiles of dimensionless stresses caused by the wedge on the interface in-
clined at (a) θ = π/2, (b) θ = π/3, (c) θ = π/4, (d) θ = π/6 for Configuration 1 as
functions of the parameter ρ; solid lines are normal stresses, dashed lines are shear
stresses.

The total stresses should also reflect the remote loads, which create the following stresses on the
interface:

σ 0
n − iσ 0

t =
σ∞yy + σ

∞
xx

2
+ e2iθ σ

∞
yy − σ

∞
xx

2
= σ∞yy cos2 θ + σ∞xx sin2 θ + i(σ∞yy − σ

∞

xx ) cos θ sin θ. (14)

It is evident from (14) that, for the case of compressive loads at infinity, the shear stresses on the interface
can be of any sign depending on the difference of principal stresses at infinity, while the normal stress is
always negative. The latter means that the external stress can compensate for the tensile normal stresses
on the interface caused by the wedge. However, when the distance d is small, the stress magnitudes are
unbounded, which indicates that the remote stresses cannot compensate for the stress concentration near
the wedge, and hence a delamination zone should appear on the interface regardless of compression at
infinity. The position of this zone depends on the interface inclination angle. As is evident from the
profiles of normal stresses in Figure 3, for steep angles the delamination zone has to appear close to the
point z = a+d , while for shallow angles the middle of this zone should be shifted to the left and down as
shown in Figure 1. This delamination zone is also subjected to shear stresses that induce relative slip of
the delamination surfaces. The direction of the slip is defined by the sign of the total shear stress, which
can alternate. If the shear stresses due to remote loads are negative (vertical compression dominates) then
the slip in the leftward direction should dominate (as the peak of the shear stresses caused by the wedge
is also negative). In general, the slip zone can be longer than the delamination zone, and includes some
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Figure 3. Profiles of dimensionless stresses caused by the wedge on the interface in-
clined at (a) θ = π/2, (b) θ = π/3, (c) θ = π/4, (d) θ = π/6 for Configuration 2 as
functions of the parameter ρ; solid lines are normal stresses, dashed lines are shear
stresses.

parts with pure slip, as shown in Figure 1. Therefore one arrives at the problem, in which the opening
zone is placed within the shear zone.

We further model the delamination zone as a combined mode I–mode II crack (contour 00) and the
pure slip zones as mode II cracks (contour 01). In the latter case there is no crack opening, which means
that the normal displacement un is continuous across the crack contour 01. For simplicity we assume
that the slip is subjected to the Mohr–Coulomb criteria. The boundary conditions of the problem can be
presented in terms of total stresses as follows:

σn − iσt = 0 on 00,

|σt | = C − σn tanφ, σn < 0, u+n = u−n on 01,

σi j → σ∞i j at infinity.

(15)

Here C is cohesion and φ is the friction angle along the weak interface; plus and minus stand for the
upper and lower surfaces of the crack, respectively.

For simplicity we will further study the symmetric case of the perpendicular interface θ = π/2; in
this case the centre of the crack is placed at the point z = d + i0 and the contours are represented by the
symmetric intervals 00 = (−L0, L0) and 01 = (−L ,−L0)∪ (L0, L) of the range of the dimensionless
parameter ρ. The total contour is further denoted as 0 = 00 ∪01 = (−L , L).
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By introducing the dimensionless parameter

H̃ =
1

π(1+ κ)
G
|σ∞xx |

h y

d
, (16)

one can present the dimensionless stresses (normalised by σ∞xx ) on the interface as

σ̃xx(ρ)= 2H̃
1− ρ2

(1+ ρ2)2
, σ̃xy(ρ)= 2H̃

ρ(1− ρ2)

(1+ ρ2)2
, −∞< ρ <+∞. (17)

Later on, the tilde sign over the dimensionless stresses and parameters is removed. The remote vertical
compression does not play any role in symmetric arrangement, therefore σ∞yy = 0.

It follows from (17) that the normal stresses due to the wedge are tensile on the interval (−1, 1),
with the maximum at ρ = 0, while the shear stresses change sign three times when crossing the points
corresponding the values of the parameter ρ =−1, 0, 1; they have extrema of the same magnitudes at
the points specified by the values ρ =±

√
2± 1. The profiles of (17) are shown in Figure 3a for H = 1.

As mentioned, the maximum normal stresses on the interface are unbounded when d tends to zero. In
the meantime, the size of the zone with tensile stresses also tends to zero when d tends to zero.

3. Singular integral equations for the cracks on the interface

Since the interface is subjected to tension and shear, it is possible that a combined open-shear crack
appears in the central part and pure shear cracks at the periphery. These cracks can be considered
separately because the normal opening does not induce shear stresses on the interface and the jump of
the tangential displacement does not cause normal stresses.

The boundary conditions for the determination of the dimensionless normal stresses caused by crack
opening, σ crack

xx , on the interval (−L0, L0) have the form

σ crack
xx (y)− 1+ 2H

1− y2

(1+ y2)2
= 0, |y|< L0. (18)

The second boundary condition in (15) for the determination of the dimensionless shear stresses caused
by the crack opening, σ crack

xy , on the interval (−L , L) can be expressed in the piecewise form

σ crack
xy (y)+ 2H

y(1− y2)

(1+ y2)2
= 0, |y|< L0,∣∣∣σ crack

xy (y)+ 2H
y(1− y2)

(1+ y2)2

∣∣∣= C − kσ total
xx (y), σ total

xx (y) < 0, |y|> L0, y ∈ 0,

(19)

where k = tanφ is the friction coefficient and we have introduced the notation

σ total
xx (y)= σ crack

xx (y)− 1+ 2H
1− y2

(1+ y2)2
, |y|> L0. (20)

A singular integral equation (SIE) for the problem in (18) has the form

1
π

∫ L0

−L0

u(t)
t − y

dt = 1− 2H
1− y2

(1+ y2)2
, |y|< L0. (21)
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Here u(t) is a sought function proportional to the density of the normal displacement discontinuity on
(−L0, L0) that satisfies the condition of single-valuedness of the normal displacements∫ L0

−L0

u(t) dt = 0. (22)

When deriving the SIE for the boundary value problem (19), one has to remove the absolute value sign
in the left-hand side of the second equation in (19). This can be done by examining the directions of the
total shear stresses. The shear stresses caused by the shear crack should have the opposite signs as those
caused by the wedge in order to compensate for the excess in the left-hand side of the second formula
in (19). Thus, the absolute value sign can be removed by introducing the step-like function

χ(y)=
{

0 |y|< L0,

sgn[y(1− y2)] |y|> L0.
(23)

As the result, the SIE for the problem specified by (19) takes the form

1
π

∫
0

v(t)
t − y

dt =−2H
y(1− y2)

(1+ y2)2
+χ(y)(C − kσ total

xx (y)), y ∈ 0. (24)

Here v(t) is a sought function proportional to the density of the tangential displacement discontinuity
on (−L , L) that satisfies the condition of single-valuedness of the tangential displacements. The form
of this condition depends on the number of pure slip zones of the entire contour. It is obvious that, due
to the lack of friction on the central part, on the interval (−L0, L0) the shear crack in the centre always
has length greater than the length of the open zone. We further assume that the slip is on (−L , L) and
L0 < L .

If the resistance to shear stresses is small, then the slip can also grow outside (−L , L), where the
intensity of the shear stresses is the same as in the middle, but they decay slowly (see Figure 3a). Let us
further assume that the slip develops on the intervals A < |y|< B, such that the inequalities

0< L0 < L ≤ A ≤ B (25)

hold and the entire contour 0 is given by

0 = (−B,−A)∪ (−L , L)∪ (A, B). (26)

Then the conditions of single-valuedness for the SIE (24) take the form∫
−A

−B
v(t) dt = 0,

∫ L

−L
v(t) dt = 0,

∫ B

A
v(t) dt = 0. (27)

Note that if A = B then it is necessary to satisfy the second condition in (27) only.
The mode I–mode II crack length can be estimated from a criterion of crack growth, in particular by

knowing fracture toughness of the interface material, which requires calculation of the stress intensity
factors (KI, KII), respectively, at the ends of all cracks. For the estimation of the maximum L0 one
can use the condition KI = 0, otherwise the Mohr–Coulomb friction condition cannot be satisfied in the
vicinity of the mode I crack end due to unbounded tensile normal stresses, which violates the inequality
σ total

xx (y) < 0 in the second condition in (19).
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For the determination of the ends of the slip zones it is also reasonable to use the condition KII = 0,
which allows one to determine the maximum possible lengths of all slip zones. As the stress intensity
factors (SIFs) can be determined from the asymptotics of the sought function at the crack ends, one can
employ the following conditions that address KI = 0 and KII = 0:

U (L0)= 0, V (L)= 0, V (A)= 0, V (B)= 0, (28)

where
U (t)= u(t)

√
L2

0− t2, V (t)= v(t)
√
(L2− t2)(t2− B2)(t2− A2). (29)

In the next section we find analytical expressions for the SIFs in both problems (21)–(22) and (24), (27).

4. Solution for the delamination zone

The solution of the SIE (21) unbounded at the ends and satisfying (22) is given by the formula (see for
example [Muskhelishvili 1977])

u(t)=
−1

π
√

L2
0− t2

∫ L0

−L0

√
L2

0− x2

x − t

(
1− 2H

1− x2

(1+ x2)2

)
dx, |t |< L0. (30)

The integral in the right-hand side of (30) can be evaluated analytically; the solution assumes the form

u(t)=
t√

L2
0− t2

(
1+

2H√
L2

0+ 1

t2
− 2L2

0− 1
(t2+ 1)2

)
. (31)

The mode I SIF obtained from (31) has the form

KI

σ∞xx
√
πL0
= 1− 2H(L2

0+ 1)−3/2. (32)

The length of the crack is determined from the condition KI = 0. This leads to the following relationships
between the half-length L0 and the parameter H :

2H = (L2
0+ 1)3/2, L0 =

√
(2H)2/3− 1. (33)

One of these parameters can be considered as independent; let it be L0 from now on.
Then the solution bounded at both ends is given by the formula

u(t)=−t
t2
+ 2L2

0+ 3
(t2+ 1)2

√
L2

0− t2. (34)

Note that this solution exists for 2H > 1, which holds if

1
2π(1− ν)

G
|σ∞x |

>
d
h y
. (35)

It is evident from (35) that the solution does not exist only if the distance between the wedge and the
interface is essentially greater than the wedge magnitude, i.e., if the shear modulus is greater than the
remote compression.



274 ALEXANDER N. GALYBIN, ROBERT V. GOLDSTEIN AND KONSTANTIN B. USTINOV

−5 −4 −3 −2 −1

−0.5

−1

0 1 2 3 4

y

σ

Figure 4. The stresses on the interface after delamination for L0 = 0.5, 1, 2; dots are
normal stress for L0 = 0.5, solid line is normal stress for L0 = 1, dashed line is normal
stress for L0 = 2, dash-dotted line is shear stress.

The crack growth is stable if d KI/d L0 < 0 and unstable if d KI/d L0 > 0. This derivative is always
positive, because

d KI

d L0
= σ∞x

d
d L0

[(
1− 2H(L2

0+ 1)−3/2)√πL0
]
= 3σ∞x

√
π

L0

L2
0

L2
0+ 1

> 0. (36)

This indicates that the growth is unstable.
The normal stresses on the interface caused by the mode I crack are found from the solution (34) by

means of the integral

σ crack
xx (y)=

1
π

∫ L0

−L0

u(t)
t − y

dt =
−1
π

∫ L0

−L0

t
t − y

t2
+ 2L2

0+ 3
(t2+ 1)2

√
L2

0− t2 dt. (37)

Evaluation of the integral in the right-hand side of (37) yields

σ crack
xx (y)=

−1
(1+ y2)2

[
(1− (2L2

0+ 1)y2)
(√

L2
0+ 1− 1

)
+ L2

0

√
L2

0+ 1(1+ y2)

+ (2L2
0+ 3+ y2)

(√
1− L2

0/y2
− 1

)]
, |y|> L0. (38)

The total stresses on the interfaces are found by substitution of (38) into (20) followed by simplifications:

σ total
xx (y)=

−y2(y2
+ 2L2

0+ 3)
(1+ y2)2

√
1− L2

0/y2, |y|> L0. (39)

Figure 4 shows the profiles of the dimensionless (divided by 2H ) shear (dash-dotted curve) and normal
stresses after appearance of the delamination zone for L0 = 0.5, 1, 2.

The normal stress attains its minimum at the point

ymin =

√√√√3L4
0+ 5L2

0+ 3+
√

9L4
0+ 6L2

0+ 9(L2
0+ 1)

3L2
0+ 2

. (40)

The minimal values of the normal stresses, σmin, are shown in Figure 5 as a function of the half-length
of the delamination zone, L0. Note that ymin =

√
3 at L0 = 0, hence min σ total

xx =−
9
8 .
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Figure 5. Minimum of normal stresses on the interface as a function of the half-length
of the delamination L0.

5. Solution for the slip zones

Let us introduce the function
F(y)= |σxy(y)| + kσ total

xx (y)−C, (41)

where σxy(y)=−(L2
0+1)3/2 y(1− y2)(1+ y2)−2 is the dimensionless shear stress on the interface caused

by the wedge with the delamination zone of the length determined with the use of (33).
The function F(y) in (41) is actually the right-hand side of the SIE in (24). It should be positive

(F(y) > 0) at least at one point in order for slip zones to appear over the interface. Three situations are
shown in Figure 6 (L0 = 0.5, 1, 2) to illustrate possible profiles of the function F(y) for the strength
parameters k = tan 15◦ and C = 0.

As is evident from Figure 6, up to three sliding zones can be formed. For instance, at L0 = 0.5 (dotted
line), F(y) < 0 outside the central part, i.e., resistance to slip at the periphery is higher than the shear
stress, thus one can expect the appearance of a single shear zone. At L0 = 1 (solid line), two symmetric
intervals exist where F(y) > 0, which indicates a possibility of three nonconnecting shear zones. When
L0 = 2 (dashed line), F(y) > 0, which corresponds to the case in which three pure shear cracks may
coalesce into one (the slip directions could be different in different parts of this zone).

Let us consider the most typical cases.
It is seen from the figures above that the slip resistance depends on the half-length L0 essentially.

Thus, at L0 > 2 one observes that min |σ total
xx |< 0.12, which, taking into account the friction coefficient

�� �� �� �� ��

����

���

���

����

� � � � � y

F(y)

Figure 6. The function in (41) for the cases L0 = 0.5, 1, 2 at k = tan 15◦ and C =
0.1; dashed line corresponds to L0 = 2, solid line corresponds to L0 = 1, dotted line
corresponds to L0 = 0.5.
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in the Mohr–Coulomb criterion, makes the term kσ total
xx insignificant as compared to the shear stresses,

which vary within the range 0.18< |σxy|< 0.25 for 2< y < 5. If the remote compression is greater than
cohesion then the term C in the SIE (24) is also small. Then the slip zones are mostly defined by the
magnitudes of the shear stresses caused by the wedge; hence, the second term in (24) can be neglected.
This means that the slip occurs over the interval (−L , L), L > L0 > 2, and L = B; see (25)–(26).

The mode II SIF at the right end of the slip zone can be found analytically as follows:

KII

|σ∞x |
√
πL
= 2H

∫ L

−L

√
L + y
L − y

y(1− y2)

(1+ y2)2
dy =−2Hπ

(
1−

2L2
+ 1

(L2+ 1)3/2

)
. (42)

The right-hand side of (42) is zero at

L∗ =
√

1
2(1+

√
5)≈ 1.272,

which indicates that for the range L > 2 one has KII < 0, i.e., the theoretical length of the sliding zone
obtained by the condition KII = 0 is infinite. In practice it can essentially exceed the length of the
delamination zone provided that the latter is greater than the distance from the wedge to the interface.

One should note that the value L∗ = 1.272 is the maximum possible half-length of the central mode II
crack in the absence of friction and cohesion. In principle, it is possible that L∗ = L0 = 1.272 and
simultaneously that KI = KII = 0, which is true if H = 2.118.

Let us analyse another limiting case, when the shear resistance on A< |y|< B is greater than the shear
stresses. Then the slip can occur only in the middle part (−L , L). Moreover, on the interval (−L0, L0),
shear resistance is absent due to delamination. The dimensionless mode II SIF at the right end in this
case is found by substituting (24) into the integral in (42):

K̃II =
KII

|σ∞x |
√
πL
= 2H

∫ L

−L

√
L + y
L − y

y(1− y2)

(1+ y2)2
dy−

∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy. (43)

Since the function χ(y) is odd (see (23)) and the term in the brackets is even, one can present the second
integral in (43) in the form

∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy = 2

∫ L

L0

y(C − kσ total
xx (y))√

L2− y2
dy. (44)

The single shear crack can propagate inside different zones; for example, for L0 = 0.5 in Figure 6 the slip
can begin within the interval (−1, 1), where the shear stress changes its direction at the origin. However,
it is also possible that the slip could take place over the large zone including the interval (−1, 1), as
is shown, for example, for the case L0 = 1.5, k = tan 15◦, C = 0.2 in Figure 7. In this case the slip
directions will be different on opposite sides of the points y =−1,+1.

Therefore, the following three scenarios are possible:
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Figure 7. The function (41) for L0 = 1.5 at k = tan 15◦ and C = 0.2.

(1) If L0 > 1, then χ(y)=−1 and (44) takes the form∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy =−

∫ L

L0

2y(C − kσ total
xx (y))√

L2− y2
dy

=−2C
√

L2
− L2

0+ kG1(L0, L), (45)

where

G1(L0, L)=
2

(1+ L2
0)

3/2

∫ L

L0

√
y2
− L2

0√
L2− y2

y2(y2
+ 2L2

0+ 3)
(y2+ 1)2

dy. (46)

In this case the final expression for KII can be presented in the form

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
+ 2C

√
L2
− L2

0+ kG1(L0, L). (47)

(2) If L0 < L < 1, then χ(y)= 1 and (44) has a form similar to (45) but with the opposite sign, hence
the expression for KII takes the form

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
− 2C

√
L2
− L2

0− kG1(L0, L). (48)

(3) If L0 < 1, then χ(y) can alter its sign, and if L > 1, then it is necessary to consider two integrals,
hence (44) takes the form∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy

=

∫ 1

L0

2y(C − kσ total
xx (y))√

L2− y2
dy−

∫ L

1

2y(C − kσ total
xx (y))√

L2− y2
dy

=

∫ L

L0

2y(C − kσ total
xx (y))√

L2− y2
dy− 2

∫ L

1

2y(C − kσ total
xx (y))√

L2− y2
dy

= 2C
(√

L2
− L2

0− 2
√

L2− 1
)
− k(G1(L0, L)− 2G2(L0, L)), (49)
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Figure 8. The integrals Gk(L0, L) as functions of L (solid curve for G1, dashed curve
for G2). Left: L0 = 0.1. Right: L0 = 0.5.

where

G2(L0, L)=
2

(1+ L2
0)

3/2

∫ 1

L0

√
y2
− L2

0√
L2− y2

y2(y2
+ 2L2

0+ 3)
(y2+ 1)2

dy. (50)

If L0 < 1 and L > 1, then the final expression for KII is

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
− 2C

(√
L2
− L2

0− 2
√

L2− 1
)

− k(G1(L0, L)− 2G2(L0, L)). (51)

The integrals Gk(L0, L), k = 1, 2, can be expressed as elliptical integrals or computed numerically. Their
typical behaviour is illustrated in Figure 8.

The dependence of KII on L is shown in Figures 9–11 for the various strength parameters (cohesion
and friction coefficient) at L0 = 0.5.

The nearest root of the equation that comes from the condition KII = 0 should be selected for the
determination of the mode II crack length. It is evident from the figure that for L0 = 0.5 the sliding zone
length is usually less than one, apart from the case when the shear resistance is absent (solid curve in
Figure 9, left) or cohesion is negligible for low friction angles (solid curve in Figure 9, right). In the
latter case the length of the zone is greater than L∗ = 1.252.

The half-length of the sliding zones determined by the condition KII = 0 are shown in Figure 11 for
various lengths of the delamination zones, for k = tan 30◦.

0 0.5 1

1.272

2 2.51.5

1

−1

−2

KII

L 0 0.5

1

−1

−2

1.272

2 2.51.51

KII

L

Figure 9. Dependence of dimensionless KII on L for various values of the friction angle
(left) and the cohesion (right), for L0 = 0.5 and C = 0; dash-dotted line corresponds to
ρ = 0◦, dashed line to ρ = 15◦, solid line to ρ = 30◦.
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Figure 10. Dependence of dimensionless KII on L for various combinations of the fric-
tion angles and cohesion for L0 = 0.5; dash-dotted line corresponds to ρ = 0◦, dashed
line corresponds to ρ = 15◦, solid line corresponds to ρ = 30◦.
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L

Figure 11. The half-length of the sliding zone L as a function of the half-length of the
delamination zone L0 for various cohesions at k = tan 30◦; dash-dotted line corresponds
to C = 0.5, dashed line corresponds to C = 0.1, solid line corresponds to C = 0.5.

6. Three sliding zones

In order to find the length of the sliding zones one can employ the solution presented in [Gakhov 1966]
for the inversion of the Cauchy integrals on m open contours:

1
π

∫
0

ϕ(t)
t − τ

dt = f (τ ). (52)

The solution bounded at all ends has the form

ϕ(t)=−R(t)
1
π

∫
0

f (τ )
R(τ )

dτ
τ − t

. (53)

This is possible if the following conditions are satisfied:∫
0

f (τ )
R(τ )

τ j−1 dτ = 0, j = 1, . . . ,m, (54)

where R(z) is a complex-valued function defined by

R(z)=
m∏

k=1

√
(z− ak)(z− bk). (55)
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In the case considered it is possible that three symmetric slip zones can appear on a straight line; therefore
formula (55) takes the form

R(t)=
√
(t2− A2)(t2− B2)(L2− t2), Im t = 0. (56)

The right-hand side of (24) should be used as the function f (t) in (54). The conditions in (54) are
automatically satisfied for j = 1, 3 due to the odd right-hand side in (33). The rest take the form∫ L

0

h(y)
R(y)

y dy+
∫ B

A

h(y)
R(y)

y dy = 0, (57)

where we denote

h(y)= 1
2( f (y)− f (−y))=−(L2

0+ 1)3/2
y(1− y2)

(1+ y2)2
+χ(y)(C − kσ total

xx (y)). (58)

The conditions for single-valuedness of the tangential displacements should also be satisfied. Since the
right-hand side in (24) is odd, the solution of (53) is even, i.e., can be presented in the form

ϕ(t)=−R(t)
1
π

∫
0

h(y)y
R(y)

dy
y2− t2 . (59)

Therefore in (27) only two independent conditions remain, namely∫ L

0
ϕ(t) dt = 0,

∫ B

A
ϕ(t) dt = 0. (60)

Substitution of (59) in (60) leads to the following system of equations:∫ L

0
R(t)

∫ L

0

h(y)y
R(y)

dy
y2− t2 dt +

∫ L

0
R(t)

∫ B

A

h(y)y
R(y)

dy
y2− t2 dt = 0,∫ B

A
R(t)

∫ L

0

h(y)y
R(y)

dy
y2− t2 dt +

∫ B

A
R(t)

∫ B

A

h(y)y
R(y)

dy
y2− t2 dt = 0.

(61)

Therefore one has three nonlinear equations (equations (57) and (61)) for the determination of the three
unknowns L , A, B. The solution obviously depends on the parameters L0, C and k = tan ρ. The form
of the right-hand side indicates that some solutions may exist; however, the uniqueness is not obvious.
The solution of the system has been obtained numerically. Figure 12 shows the results for L0 = 0.8. In
particular, it is seen from Figure 12 that the length of the internal shear zone L is rather weakly influenced
by the values of cohesion and friction, while the influence of these parameters on the positions of the
tips of the external shear zone is much stronger, especially the influence on the position of the external
tip of the zone. It is seen that for given values of L0 and k = tan ρ the sizes of the external shear zones
decrease with increasing cohesion (which is predictable), and at some critical value of cohesion these
zones vanish. However, the numerical procedure became extremely unstable for values approaching
these critical points.
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Figure 12. Equilibrium positions of the crack tips depending on relative cohesion C
for various k: solid lines correspond to k = 0; dashed lines correspond to k = 0.1;
dash-dotted lines correspond to k = 0.33.

7. Conclusion

The problem of wedging of an elastic isotropic homogeneous plane with a weak interface has been solved
analytically. The wedge has been modelled by a pair of edge dislocations. The possibility of appearance
of either one or three sliding zones (modelled by pure shear cracks) and a delamination zone (combined
open-shear crack) along the weak interface has been demonstrated. The positions of the tips of the sliding
zones depend on the stresses due to the dislocation, external stress field and the length of the delamination
zone, which in turn is determined by the externally applied stress and stresses induced by the dislocation.
The positions of the tips of the sliding zones have been computed for a specific configuration.
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EDGE FLUTTER OF LONG BEAMS UNDER FOLLOWER LOADS

EMMANUEL DE LANGRE AND OLIVIER DOARÉ

The linear instability of a beam tensioned by its own weight is considered. It is shown that for long
beams, in the sense of an adequate dimensionless parameter, the characteristics of the instability caused
by a follower force do not depend on the length. The asymptotic regime significantly differs from that of
short beams: flutter prevails for all types of follower loads, and flutter is localised at the edge of the beam.
An approximate solution using matched asymptotic expansion is proposed for the case of a semi-infinite
beam. Using a local criterion based on the stability of waves, the characteristics of this regime as well as
its range of application can be well predicted. These results are finally discussed in relation with cases
of flow-induced instabilities of slender structures.

1. Introduction

The linear stability of a beam under the action of a follower force exerted at one of its extremities has
been the subject of intensive research, as can be seen from the extensive review in [Langthjem and
Sugiyama 2000]. The interest in this problem lies in its potential applications and also in the large
variety of fundamental topics of mechanics involved in the solution method. Practical examples of
direct application in the field of fluid-structure interactions are numerous: fluid-conveying pipes, plates
subjected to axial flow and towed cylindrical bodies are modelled by equations that are similar, though
not identical, to those of a beam under a compressive follower force [Païdoussis 1998; 2003]. More
generally, follower forces have been extensively discussed in the literature, including in terms of their
physical reality; see [Elishakoff 2005] for a full review. The case of a cantilevered beam of finite length
under a partial follower force is well documented [Bolotin 1963], with many results on the effect of
characteristics of the beam or of the load on the critical load that causes instability, and on the nature of
the instability, be it divergence (buckling) or flutter.

We seek here to establish the characteristics of instability of a beam in the case where its length is
much larger than the region where an unstable motion will develop. This arises when a constant load,
such as gravity acting on a vertically hanging beam, produces a tension that increases along the beam,
from zero at the lower free end to a maximum at the upper fixed end. The increasing tension induces
a corresponding increasing stiffness. Motion is then confined to the lower end, corresponding to edge
flutter. This has been studied both experimentally and numerically in three of the problems of flow-
induced vibrations mentioned above: hanging fluid-conveying pipes [de Langre et al. 2001; Doaré and
de Langre 2002], hanging ribbons under axial flow [Lemaitre et al. 2005] and towed cylinders under
axial flow [de Langre et al. 2007; Obligado and Bourgoin 2013]. In all these systems it was observed
that there exists a limit state in which the length does not affect the stability. This limit state is found for

Keywords: follower force, flutter instability, semi-infinite, matched asymptotic expansion.
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length larger than a limit value given by simple considerations on the local stability of bending waves
[Doaré and de Langre 2002; de Langre et al. 2007].

The objective of this paper is to establish similar results in the generic case of a beam under a partial
follower force (or subtangential force), tensioned by a load such as gravity.

In Section 2 we shall recall the equations of motion and the possible choices of dimensionless variables.
The effect of the beam length on stability is analysed in Section 3, using numerical computations of the
eigenmodes. In Section 4 we address the particular case of a semi-infinite beam, using various types of
modelling. The application of the results given in the paper to problems of flow-induced instabilities is
discussed in Section 5.

2. Equations of motion

We consider a vertical beam of length L loaded by its own weight; see Figure 1.

Y (Z, T )

Z

g

(1− η)P

ηP

Figure 1. Semi-infinite hanging beam with a partial follower force.

A partial follower force is applied at its lower end [Langthjem and Sugiyama 2000]. The linear
equation governing the in-plane lateral deflection Y (Z , T ) reads

EI
∂4Y
∂Z4 +

∂

∂Z

[
(P −mgZ)

∂Y
∂Z

]
+m

∂2Y
∂T 2 = 0, (1)

where EI is the flexural rigidity, P is the load, g is gravity and m is the mass per unit length. No damping
is considered here, though it is known to significantly influence some aspects of the problem; see, for
instance, [Detinko 2003]. The boundary conditions at the lower end, Z = 0, are

EI
∂2Y
∂Z2 (0)= 0, EI

∂3Y
∂Z3 (0)+ (1− η)P

∂Y
∂Z
(0)= 0, (2)
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where η is a coefficient that expresses the part of the loading that follows the beam slope; η = 0 corre-
sponds to a nonfollower force and η= 1 to a pure follower force. At the upper end, we assume a clamped
condition,

Y (L)= 0,
∂Y
∂Z
(L)= 0. (3)

Using the length of the beam, L , as a reference, we define the dimensionless variables

z =
Z
L
, y =

Y
L
, t =

(
EI
m

)1/2 1
L2 T, p =

PL2

EI
, γ =

mgL3

EI
. (4)

Then (1) may be rewritten in dimensionless form as

∂4 y
∂z4 +

∂

∂z

[
(p− γ z)

∂y
∂z

]
+
∂2 y
∂t2 = 0, (5)

with the boundary conditions

∂2 y
∂z2 (0)= 0,

∂3 y
∂z3 (0)+ (1− η)p

∂y
∂z
(0)= 0, y(1)= 0,

∂y
∂z
(1)= 0. (6)

This dimensionless set of equations is adequate to analyse the effect of γ on the critical loading, but
only if the length L is kept constant. As we need to vary the length L , it is necessary to define a new
set of dimensionless parameters. We now use a length scale defined by the ratio of the two stiffnesses of
the beam, namely the flexural rigidity and the stiffness related to tension induced by gravity [Doaré and
de Langre 2002],

Lg =

(
EI
mg

)1/3

, (7)

which will be referred to as the gravity length. This length scales like the critical length that causes
buckling of the beam under its own weight. Using Lg as the reference length to define dimensionless
variables, we have

x =
Z
Lg
, y =

Y
Lg
, τ =

(
EI
m

)1/2 1
L2

g
T, q =

PL2
g

EI
, `=

L
Lg
, (8)

where Lg has been substituted for L . These are related to the previous set of variables by

x = z`, τ = t`2, q =
p
`2 , `= γ 1/3. (9)

Equation (1) now becomes
∂4 y
∂x4 +

∂

∂x

[
(q − x)

∂y
∂x

]
+
∂2 y
∂τ 2 = 0, (10)

and the corresponding boundary conditions are

∂2 y
∂x2 (0)= 0,

∂3 y
∂x3 (0)+ (1− η)q

∂y
∂x
(0)= 0, y(`)= 0,

∂y
∂x
(`)= 0. (11)
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Figure 2. (a) Critical load and (b) frequency at instability, for short beams. Dashed
vertical lines are guides for the eyes that do not correspond to calculations.

3. Stability of finite beams

3.1. Solution for short beams. For short beams, in the sense that `� 1, the critical load qc may be
derived by considering that γ � 1, so that (5) becomes

∂4 y
∂z
+ p

∂2 y
∂z2 +

∂2 y
∂t2 = 0. (12)

The corresponding stability diagram of pc versus η is that of the generalised Beck’s column [Langthjem
and Sugiyama 2000], and is shown in Figure 2(a). For η < 0.5, instability arises in the form of a
divergence, whereas flutter prevails for η > 0.5. The corresponding frequency at the flutter limit is
shown in Figure 2(b). The critical load and frequency at flutter expressed in the dimensionless variables
of (8) are

qc(η, `)=
pc(η)

`2 , ωc(η, `)=
�c(η)

`2 . (13)

3.2. Effect of length. We now investigate the effect of the length ` on the stability threshold and the
nature of the instability. The numerical method utilised to this end is the finite difference method, as in
[Sugiyama and Kawagoe 1975]. It allows us to compute the eigenvalues ω and the eigenvectors ϕ, such
that

ϕ(4)+ [(q − x)ϕ′]′−ω2ϕ = 0 (14)

with
ϕ′′(0)= ϕ(3)(0)+ (1− η)qϕ′(0)= ϕ(`)= ϕ′(`)= 0. (15)

The critical load and the nature of the corresponding instability can be determined from the evolution of
the real and imaginary parts of the frequency. The beam is unstable if the frequency ω has a negative
imaginary part. If the real part is zero, the instability results in an exponential growth in time of the
deformation, without oscillation, and the instability is of the divergence type. If the real part is nonzero,
the instability results in an exponential growth of oscillations, and the instability is of the flutter type.
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Figure 3 shows the evolution of the critical load with length, for several values of η of particular
interest.

For η= 0, Figure 3(a), which is the case of a nonfollower force, the critical load decreases steeply with
length up to about `= 5, where it reaches a limit value and does not change when the length is increased
further. Instability is of the divergence type for all lengths. In the same figure are shown computations
from [Naguleswaran 2004; Triantafyllou and Chryssostomidis 1984] for intermediate values of the length.
In [Triantafyllou and Chryssostomidis 1984], the static instability of a towed beam is considered, which
yields equations similar to those used here. Details of the equivalence are discussed in Section 5, but
suffice it to say here that we may use the results in Figure 4 of [Triantafyllou and Chryssostomidis 1984]
with the change of variables `= ελ2/3 and q = λ2/3. It is seen that those results and those of this paper
are in very good agreement. For η = 0.2, Figure 3(b), the critical load for divergence also decreases and
reaches a limit value, but the flutter threshold becomes lower than that for divergence for beams longer
than `= 5. For η = 0.3, Figure 3(c), no divergence is found for ` > 3. Instability in that range of ` is of
the flutter type. For η = 1, Figure 3(d), the system loses stability by flutter, similarly to Beck’s column;
the critical load for flutter decreases with ` until it reaches a limit value.

From these four cases it can be stated that there exists a limit configuration for all long beams, say
` > 10. For these lengths, the type of instability, flutter or divergence, may differ from that observed for
short beams at the same value of η.

This is further confirmed in the evolutions of the stability diagram qc(η) shown in Figure 4. At `= 1,
the diagram is similar, though not identical, to that for short beams; since `= 1, we have here qc = pc,
and Figures 2 and 4(a) can be directly compared. At `= 100, Figure 4(b), a limit state is almost reached,
where stability is always lost by flutter, for all values of η.

Figure 5 shows the mode shape at the critical load, which may be a divergence or a flutter instability
depending on the values of η and `, as shown above. Note that at the instability threshold ϕ is real, even
for flutter instability. In fact, in (14), when ω is real, so is ϕ. For η= 0, Figure 5(a), the mode shape, here
for divergence, becomes independent of the length when ` > 3. This is consistent with Figure 3(a), where
the critical load was found to be stationary in this range. For η = 0.3 and η = 1, Figures 5(b) and (c),
the mode shapes also converge to a constant shape as the length is increased. There, the displacement is
confined to the lower part of the beam. Note that the instability is of the flutter type, except for η = 0.3
at `= 1. Yet the limit mode shape closely resembles that of the divergence instability at η = 0.

4. Stability of a semi-infinite beam

4.1. Boundary conditions. We now seek to determine the characteristics of the instability when the
beam is assumed to be of infinite length in the X axis. This is expected to be the solution to which the
results of the preceding section converge as ` is increased. Whereas the boundary condition at the lower
end is unchanged, the condition that the beam is clamped at X = L needs to be replaced by the conditions
that the displacement remains finite as X goes to infinity and that in this limit, propagating waves only
radiate in the direction of increasing X . These conditions, in dimensionless form, read

lim
x→∞
|y| = 0 lim

x→∞

∂y
∂x
∂y
∂t
< 0. (16)
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Figure 3. Effect of length on the critical load for divergence and flutter instabilities:
(a) η = 0, (b) η = 0.2, (c) η = 0.3, (d) η = 1. The notation (—) represents results
for divergence; (· · ·), results for flutter; (◦), computations by [Naguleswaran 2004];
(1), computations by [Triantafyllou and Chryssostomidis 1984].

4.2. Divergence instability. The case of divergence instability may be analysed by neglecting all time
derivatives in the equations, so that (10) becomes

∂4 y
∂x4 +

∂

∂x

[
(q − x)

∂y
∂x

]
= 0 (17)

and the boundary conditions are only

∂2 y
∂x2 (0)= 0,

∂3 y
∂x3 (0)+ (1− η)q

∂y
∂x
(0)= 0, lim

x→∞
|y| = 0. (18)
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Figure 4. Effect of the ratio η on the critical load for divergence (—) and flutter (· · ·).
(a) Short beam, `= 1, (b) long beam, `= 100.
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Figure 5. Mode shape at the critical load. (a) η= 0, (b) η= 0.3, (c) η= 1. (· · ·), `= 1;
(− −), `= 3; (− ·−), `= 5; (—), `= 10.

By defining λ = q3/2 and Z = x − q, this set of equations is identical to that solved by Triantafyllou
and Chryssostomidis [1984] for the case of a towed cylinder. Using their solution with our variables, the
critical load for divergence qc(η) is found to satisfy

Ai′(−qc)− qcη

[
1
3
−

∫
−qc

0
Ai(s) ds

]
= 0, (19)

where Ai is the Airy function [Abramowitz and Stegun 1972].
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4.3. Flutter instability. We give here an approximate solution for the critical load for flutter of a semi-
infinite beam, which is an extension of [de Langre et al. 2001] for a purely follower force, η = 1.
The approach used in the matched asymptotic expansions follows that proposed in [Triantafyllou and
Triantafyllou 1991] for the dynamics of vibrating strings tensioned by gravity.

We consider (10), with the boundary conditions (11) at the bottom end and (16) for a semi-infinite
beam. We seek harmonic solutions of this set of equations, of the form

y(x, t)= Real[ϕ(x)eiωt
] (20)

as a function of the follower force magnitude q. Instability will be associated with Im(ω) < 0. The
variation in space of the solution satisfies

ϕ(4)+ [(q − x)ϕ′]′−ω2ϕ = 0, (21)

with boundary conditions

ϕ(2)(0)= 0, ϕ(3)(0)+ (1− η)qϕ′(0)= 0, (22)

where the prime denotes derivation with respect to x . The condition for radiating waves reads

lim
x→∞

(
Real[ϕ′(x)eiωt

]Real[iωϕ(x)eiωt
]
)
< 0. (23)

Let us consider first the lower part of the beam, where x is of the order of q. In this “inner” domain
of length q, we may derive an approximate solution ϕi (x) by simply lumping all its inertia at the lower
end of the beam, so that the boundary conditions at x = 0 read now

ϕ
(2)
i (0)= 0, ϕ

(3)
i (0)+ (1− η)qϕ′i (0)= qω2ϕi (0), (24)

and (21) reduces to
ϕ
(4)
i + [(q − x)ϕ′i ]

′
= 0. (25)

The corresponding solution reads

ϕi (x)= a+
∫ x

0

[
b Ai(s− q)+ c Bi(s− q)+ d Gi(s− q)

]
ds, (26)

where Ai, Bi and Gi are the Airy functions, a, b, c, d being four coefficients. For the sake of clarity, we
now use the notation F(x) =

∫ x
0 F(s) ds and F for F(−q) unless otherwise specified, where F could

be any of the Airy functions above.
In terms of the coefficients a, b, c, d , the boundary conditions at the lower end are

b Ai′ + c Bi′ + d Gi′ = 0, (27)

b Ai′′ + c Bi′′ + d Gi′′ + (1− η)q(b Ai + c Bi + d Gi)= aqω2. (28)

Conversely, in the upper part of the beam, that is, where x � q, we rescale the equations by using
new variables in space and time, namely

χ = xε, r =
ω
√
ε
, (29)
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where ε = Lg/3, the length 3 being an arbitrary large length scale. Using this set of variables, (21)
reads

ε3ϕ(4)+ [(ε2q − εχ)ϕ′]′− εr2ϕ = 0, (30)

where the prime now denotes differentiation with respect to χ . This allows us to derive the equation at
the leading order in the “outer” domain,

(−χϕ′e)
′
− r2ϕe = 0, (31)

the solution of which, in terms of Bessel functions, is (see also in [Elishakoff and Pellegrini 1987])

ϕe(χ)= α J0(2r
√
χ)+βY0(2r

√
χ). (32)

The radiation condition, (23), implies that

α− iβ = 0. (33)

We may now match the inner and outer solutions by considering their respective limits [Abramowitz
and Stegun 1972; Triantafyllou and Triantafyllou 1991]. Equating these two limits yields three conditions
for the coefficients defining the inner and outer solutions, namely

c = 0, d = β, a+ b
[

1
3
−Ai

]
+ d

[
2γ + ln 3

3π
−Gi

]
= α+β

2
π
(lnω+ γ ), (34)

where γ is Euler’s constant. The set of boundary conditions (27), (28), (33), with the three matching
conditions (34), are six linear equations between the six coefficients α, β, a, b, c, d. This defines an
implicit relationship between the two parameters ω and q , so that there exists a nontrivial solution

−ηq[Gi′Ai−Gi Ai′]− 1
π

Ai′+qω2
[(

1
3
−Ai

)
Gi′−

(
ln 3− 4γ − 3iπ − 6 lnω

3π
−Gi

)
Ai′
]
= 0. (35)

The particular value of the flutter instability threshold qc may be directly derived by assuming that ω
is real in (35). As all functions of q in (35) are real, this implies that

Ai′(−qc)= 0, qc ' 1.02. (36)

The real part of the frequency at the instability threshold is then derived using (35) and (36) as

ω2
c = η

Ai(−qc)

1
3 −Ai(−qc)

. (37)

At η = 0, the solution of [Triantafyllou and Chryssostomidis 1984] for divergence is recovered, both
in terms of critical load and frequency. Using this approximate solution, flutter is found to exist for all
values of η, and the corresponding critical load does not vary with η. In Figure 6(a) this is compared
with the numerical solution for very long beams, ` = 100. The approximate solution, (36), predicts a
lower bound, qc = 10.2, equal to that for η = 0. The flutter frequency is very well predicted, as may be
seen in Figure 6(b). At the instability threshold, the modal shape ϕ is real and reduces to

ϕ(x)=
∫ x

0
Ai(s− p) ds− 1

3 . (38)
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Figure 6. (a) Critical load qc and (b) frequency ωc of flutter of a long beam. (—),
numerical results for `= 100; (− ·−) solution for the semi-infinite beam using matched
asymptotic expansions; see (36) and (37).
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Figure 7. Mode shape at the critical load for a long beam. (a) η = 0, (b) η = 0.3,
(c) η = 1. (—), numerical results for ` = 10; (◦), solution for the semi-infinite beam
using matched asymptotic expansions; see Equation (38).

This is compared in Figure 7 with the computed mode shapes at `= 10. For η = 0, Figure 7(a), (38) is
actually the exact solution for a semi-infinite beam, which derives from the results of [Triantafyllou and
Chryssostomidis 1984]. For η = 0.3 and even η = 1, it is remarkable that (38) stills gives a very good
approximation of the mode shape at the flutter threshold; see Figures 7(b) and (c).
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4.4. A model based on local wave stability. Following [Doaré and de Langre 2002], we consider now
a criterion based on the local characteristics of waves, at a given position x . From (10), the dispersion
relation is

k4
− (q − x)k2

−ω2
= 0, (39)

where k is the wavenumber and ω is the frequency of the wave. All points such that x < q bear unstable
waves. Beams of length ` larger than q are expected to have a behaviour not affected by length, as waves
are damped above x = q.

In dimensional variables, this allows us to define the length L N for neutral stability,

L N =
P

mg
, (40)

above which the medium only bears stable waves. In (1) this is the point where the local tension goes
through zero. Considering that the part of the beam above this, Z > L N , plays a negligible role in the
instability, we may approximate the critical load for the semi-infinite beam by that for a finite beam of
length L N : a beam of length L N , without gravity, has a dimensional critical load

Pc =
EI
L2

N
pc, (41)

where pc is the dimensionless critical load for short beams. As the length L N varies with the load P ,
this results in

P3
c = EI (mg)2 pc. (42)

Using now dimensionless variables pertaining to the case of long beams, this reads

qc = p1/3
c ; (43)

similarly, we have

ωc =
�c

p2/3
c
. (44)

In Figure 8(a), this is plotted for comparison with numerical results for the very long beam. The
order of magnitude of the critical load is well recovered. Yet divergence is predicted for η < 0.5, instead
of flutter. Note also that the critical load at η = 1 is very well predicted. Figure 8(b) summarises this
approach: the limit line `= q is found to be a good approximation of the transition between the behaviour
of short beams, which depends on length, and that of long beams, which does not. For short beams, the
approximation (13) applies. For long beams, (43) is a good approximation.

5. Discussion

5.1. Domains of instability. In the results presented in this paper, two regions can be identified in a
beam tensioned by a load such as gravity. In the part near the free end, x � 1 in our dimensionless
variables, that is, Z � Lg = (EI/Mg)1/3, the stiffness that opposes lateral displacement is dominantly
that of the flexural rigidity. Conversely, for x � 1, the stiffness is due to the tension that results from
gravity.
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Figure 8. Models for the critical load based on local wave stability. (a) Critical load
numerical results (—) for `= 100; (− −), model based on local wave stability; see (43)
and (44). (b) Effect of length η = 1. (—), computations of Section 3.2; (− −), short
beam model; (· · ·), transition line; (− ·−), long beam model.

For a given beam, if its length L is much smaller than Lg, or `� 1, gravity effects can be neglected
everywhere. In terms of stability the behaviour is that of short beams in our denomination. The upper
boundary condition, here clamping, plays a crucial role, and the instability may be divergence or flutter.
If the length is much larger than Lg, so that `� 1, gravity effects dominate in all the upper part. This
results in a confinement of the instability in the lower part of the beam, which appears in all the mode
shapes. The upper boundary condition plays a lesser role. It is remarkable that the characteristics of the
instability of these long beams seem to be much simpler than that of short beams: flutter prevails in all
cases, and the critical load, the frequency and the mode shape have very simple evolutions.

For long beams flutter is reached when the load q is of order 1. In that range of loading, the neutral
point where tension vanishes, at x = q, is located near the limit between the two regions, x = 1. The
critical load is then such that, in dimensionless variables,

P ' (EI )1/3(mg)2/3, (45)

which shows the balance between the loading P and the two stiffnesses of the systems, EI for the flexural
rigidity and mg for the tension induced by gravity.

It should be recalled here that damping was not considered in our calculations. Damping may sig-
nificantly modify the critical value for flutter instability even when small [Langthjem and Sugiyama
2000], and has been found to have both stabilising and destabilising effects. In some cases, such as that
of Beck’s column, it has been found that addition of damping destabilises the system and changes the
instability type from flutter to buckling. In gyroscopic systems such as fluid-conveying pipes or plates
in axial flows, damping was found to destabilise neutral waves at zero frequency [Doaré 2010; 2014],
which may also cause the instability to change from flutter to buckling in finite length systems. The
generalisation to the present case of a semi-infinite system tensioned by gravity needs to be addressed to
see how damping could alter the buckling/flutter stability maps, and if it prevents flutter from prevailing
for all values of the follower force coefficient η.
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5.2. Relation to flow-induced instabilities. The equivalence between the loading produced by the flow
along a structure and a follower force exerted at its free end is discussed in [Païdoussis 1998; 2003].
Depending on the geometry of the problem, the load may be either a fully follower load (fluid-conveying
pipe) or partially a follower load (cylinder with axial flow). In the latter case, the shape of the downstream
free end strongly influences the value of η.

For systems mainly tensioned by gravity, such as hanging fluid-conveying pipes or hanging ribbons
under axial flow [Doaré and de Langre 2002; Lemaitre et al. 2005], the equations of motion can be put
in the common dimensionless form

∂4 y
∂x4 +

∂

∂x

[
(v2
− x)

∂y
∂x

]
+ 2v

√
β
∂2 y
∂x∂τ

+
∂2 y
∂τ 2 = 0, (46)

where the dimensionless variables have been defined using the length Lg, as we did in the present paper.
Here v is a dimensionless flow velocity and β expresses the proportion of the fluid mass in the total mass.
The boundary conditions at the lower end read

∂2 y
∂x2 (0)= 0,

∂3 y
∂x3 (0)= 0, (47)

which expresses the case of a purely follower load. Equation (46) is identical to (10), except for the
gyroscopic term which is dependent on β. The stability diagram for the case of a long hanging pipe was
analysed in [Doaré and de Langre 2002] and for long hanging ribbons in [Lemaitre et al. 2005]. The
critical velocity vc was found to depend on the length in a manner very similar to that found in this paper.
For very long pipes, flutter arises at a critical velocity vc that depends only on β. Defining qc = v

2, and
in the particular limit of β = 0, the results of [Doaré and de Langre 2002] should converge to those found
in this paper for η = 1. This is not exactly the case when the results of [Doaré and de Langre 2002] are
used, as there calculations have been done for small but nonvanishing values of β. It is a well known
feature that the case β = 0 is only found as the limit of very small values (10−3) of β [Païdoussis 1998].

If the tensioning load is not gravity but a flow-induced friction on the slender structure, the form of the
problem is changed in several ways [Païdoussis 2003]. First, the tensioning load increases with the flow
velocity, which does not allow one to define an equivalent to the length Lg, as for gravity. The reference
length that can then be defined scales the flow-induced forces that are proportional to volume (added
stiffness forces) and those that are proportional to surface area (friction). Second, the friction load is not
constant in direction, as is gravity, but acts tangentially to the instantaneous position of the beam. Third,
in the case of axial flow outside of a structure, the flow may also induce forces perpendicular to the
instantaneous position of the beam, in the form of a transverse drag. Moreover, the boundary condition
at the free end includes other terms that depend on the local geometry of the flow. If all time-dependent
terms are neglected, to determine the static stability of the beam under flow, the equation defining the
deflection reads [Triantafyllou and Chryssostomidis 1984]

∂4 y
∂s4 + v

2 ∂

∂s

[
(1− s)

∂y
∂s

]
= 0. (48)
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Upon defining x = v2/3s and q = v2/3, the equation for the static behaviour of the beam, (17), is recovered.
If the end condition sustains a force only in the beam axis, as in [Naguleswaran 2004], the results at η= 0
are recovered. For the analysis of dynamic instability, not only inertial terms need to be considered, as in
the case of this paper. A gyroscopic term, as in (46), and a damping term appear, further complicating the
behaviour of the system. In the analysis of a long towed cylinder edge flutter was also found [de Langre
et al. 2007], confirming the generality of the results presented here in a generic case.
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ON THE STRONG INFLUENCE OF IMPERFECTIONS UPON
THE QUICK DEVIATION OF A MODE I+III CRACK FROM COPLANARITY

JEAN-BAPTISTE LEBLOND AND VÉRONIQUE LAZARUS

This work explores the possibility that quick deviations of cracks loaded in mode I+III from coplanarity
may be greatly facilitated by inevitable fluctuations of the fracture toughness. The idea is that such
fluctuations must induce in-plane undulations of the crack front resulting, because of the presence of
the mode III load, in nonzero values of the local stress intensity factor of mode II, implying future local
out-of-plane deviations of the crack which might be “unstable” in Cotterell and Rice’s sense if the local
nonsingular stress parallel to the direction of propagation is positive.

Exploration of this idea implies evaluation of the variations of the local stress intensity factors and
nonsingular stresses arising from a slight but otherwise arbitrary in-plane perturbation of a semi-infinite
crack. These quantities were calculated in works of Gao and Rice, but the evaluation of the nonsingular
stresses was incomplete, and is supplemented here by using the theory of 3D weight functions due to
Rice and Bueckner.

Inspection of the results shows that for in-plane sinusoidal undulations of the crack front of sufficient
(though still small) amplitude, the conditions of nonzero local stress intensity factor of mode II and
positive local nonsingular stress parallel to the direction of propagation are simultaneously met on some
parts of the front, implying the possibility of future local deviations of the crack from coplanarity that
are “unstable” in Cotterell and Rice’s sense, and thus confirming the idea investigated.

1. Introduction

The propagation of cracks loaded in mixed-mode I+III has been investigated in various materials: inor-
ganic glass [Sommer 1969], polymeric glass [Knauss 1970], epoxy resin [Hull 1995], PMMA [Lazarus
et al. 2008], Homalite [Lin et al. 2010], alumina [Suresh and Tschegg 1987], steels [Hourlier and Pineau
1979; Yates and Miller 1989; Lazarus 1997; Lazarus et al. 2001b], rocks [Pollard et al. 1982; Pollard
and Aydin 1988; Cooke and Pollard 1996], gypsum and cheese [Goldstein and Osipenko 2012], to name
just a few experimental papers on the subject. In all cases, it was observed that the crack propagates
through formation of small fracture facets which may either abruptly “tilt” or gradually “twist” about the
direction of propagation.

It has been remarked by Hourlier and Pineau [1979] that two types of facets are in fact formed:
“type A” ones, rotating in such a way that the local stress intensity factor (SIF) of mode I increases with
the distance of propagation while that of mode III decreases, and “type B” ones rotating oppositely so
that the behavior of the local SIF is the reverse. Hourlier and Pineau also noted that the crack propagates
preferentially along type A facets. A rationale for this observation was provided by Lazarus et al. [2001a;

Keywords: imperfections, deviation from coplanarity, mode I+III crack, nonsingular stresses, Cotterell and Rice’s directional
stability criterion.
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2001b], who showed, using theoretical estimates of the SIF after some short continuous twisting, that for
a given facet length, the energy release rate is larger at the center of type A facets than at that of type B
facets, implying that propagation of the former facets is more “energetically favored” than that of the
latter ones.

Pons and Karma [2010] performed numerical simulations of crack propagation in mode I+III based on
a “phase field” model developed by Karma et al. [2001], which included a phenomenological description
of failure mechanisms in the process zone around the crack front. These simulations reproduced both
the gradual deviation of the crack from its original plane through formation of an array of inclined facets,
and the quicker propagation of type A facets as compared to type B ones, in a remarkable way.

Although the theoretical framework employed in [Pons and Karma 2010] differed from standard linear
elastic fracture mechanics (LEFM), it has been shown by Hakim and Karma [2009] that in the limit where
the system size becomes much larger than the process zone size, Karma et al.’s phase field model [2001]
in fact predicts that quasistatic crack propagation in isotropic media is governed by a combination of two
classical LEFM criteria: a condition of uniform energy release rate along the front (Griffith’s criterion
[1921]), and a condition of zero SIF of mode II (Goldstein and Salganik’s principle of local symmetry
[1974]). This was the motivation for Leblond et al.’s theoretical analysis [2011], within the framework
of LEFM, of the possible bifurcation from coplanar to noncoplanar propagation of cracks loaded in
mode I+III. This analysis combined assumptions of constant value of the local energy release rate and
zero value of the local mode II SIF all along the crack front, in line with the findings of Hakim and
Karma [2009] and Pons and Karma [2010], with technical results of Gao and Rice [1986] and Movchan
et al. [1998] on in-plane and out-of-plane perturbations of a plane crack. A bifurcation from coplanar
to noncoplanar propagation was concluded to exist for values of the ratio of the mode III to mode I SIF
larger than some threshold depending on Poisson’s ratio.

However, the threshold was found to be of the order of 0.5 for standard values of Poisson’s ratio. The
bifurcation analysis could therefore not explain the fact that deviations of the crack from its original plane
are currently observed for much smaller values of the ratio of the mode III to mode I SIF — a threshold
of the order of 0.05 was mentioned in [Sommer 1969], and Pham and Ravi-Chandar [2014] have even
claimed that there is no threshold at all.

The aim of this paper is to propose a possible explanation for this observation. The idea is that even for
low values of the ratio of the mode III to mode I SIF, for which no bifurcation is predicted, deviations from
coplanarity might occur because of a strong influence of imperfections upon the propagation path — quite
in the same way as the influence of imperfections explains, for thin shells, the quick deviations from the
fundamental deformed state currently observed for loads much lower than the theoretical buckling load.
A typical example of inevitable imperfections consists of random fluctuations of the fracture toughness
within the crack plane. Such fluctuations are bound to generate in-plane undulations of the crack front.
It is intuitively obvious, and has been proved rigorously by Gao and Rice [1986], that the mode III load
must generate nonzero and opposite local mode II SIF on the two sides of a local coplanar protrusion of
the front; this implies that the crack will tend to extend out of its original plane in opposite directions on
these two sides, thus giving birth to an incipient noncoplanar facet. If, in addition, Cotterell and Rice’s
well-known “directional stability criterion” [1980] happens to be violated because of a locally positive
nonsingular stress in the direction of crack propagation, the deviation of this facet from the original crack
plane may quickly increase as the crack propagates, even in the absence of a true bifurcation.
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�

C
εφ(s)

Figure 1. Slight in-plane perturbation of a plane crack in an arbitrary body.

Investigation of this idea, in the typical case of a semi-infinite crack in some infinite body, requires
that the local SIF and nonsingular stresses be known for such a crack, endowed with a slightly, coplanarly
perturbed front. The calculation of the SIF was carried out in [Rice 1985] and [Gao and Rice 1986], with
definitive results. That of the nonsingular stresses was carried out in [Gao 1992], but with restrictive
hypotheses and incomplete results, making the completion of the task an indispensable prerequisite.

The paper is organized as follows:

• Section 2 briefly recalls some elements of the theory of 3D weight functions [Rice 1985; Bueckner
1987], which serve as a basis in the analysis to follow.

• From there, Section 3 presents the calculation of the first-order variation of the stresses on the crack
plane resulting from some small but otherwise arbitrary in-plane perturbation of the crack front.

• We then derive from there, in Section 4, the first-order variations of the nonsingular stresses under
similar conditions.

• Section 5 briefly recalls Leblond’s 3D extension [1999] of Cotterell and Rice’s original 2D di-
rectional stability analysis of a propagating crack [1980], indispensable for the application of the
preceding results to crack propagation in mode I+III.

• Finally, Section 6 considers the case of a sinusoidal in-plane perturbation of the crack front, and
examines whether Cotterell and Rice’s directional stability criterion [1980] (as extended to the 3D
case) is met or not, distinguishing between those parts of the undulated front about to give birth to
type A and type B facets.

2. Elements of Rice and Bueckner’s 3D weight function theory

Consider an arbitrary body � made of some linear elastic isotropic material, and containing an arbitrary
planar crack (Figure 1). Assume that prescribed displacements are imposed on the portion ∂�u of the
boundary of this body, while prescribed tractions are imposed on the complementary portion ∂�T . This
loading generates a distribution of SIF K 0

I (s), K 0
II(s), K 0

III(s), where s denotes a curvilinear abscissa
along the crack front C, on this front.
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Now slightly perturb C within the crack plane, while keeping the loading applied on ∂�u and ∂�T

unchanged. Let εφ(s), where ε is a small parameter and φ(s) a given, fixed function, denote the distance
from the original front to the perturbed one, as measured perpendicularly to the former front. The compo-
nents δui (r), in an arbitrary orthonormal basis (e1, e2, e3), of the resulting variation of displacement δu
at the point r of the body, are given to first order by Rice’s formula [1985]:

δui (r)=
∫

C
23αβhiα(r, s)K 0

β(s)εφ(s) ds. (1)

In this expression:

• the indices α and β take the values I, II and III, and Einstein’s implicit summation convention is
used for them;

• the coefficients 3αβ are those appearing in the quadratic form of the SIF defining the energy release
rate, given by1

3I,I =3II,II =
1−ν2

E
, 3III,III =

1+ν
E
, other 3αβ = 0, (2)

where E and ν denote Young’s modulus and Poisson’s ratio;

• finally, the hiα(r, s) are the 3D weight functions of the cracked geometry considered [Rice 1985;
Bueckner 1987]; hiα(r, s) represents the α-th SIF generated at the point s of the crack front by
a unit point force applied in the direction ei at the point r of the body, zero displacements being
simultaneously prescribed on ∂�u and zero tractions on ∂�T .

Now, f being an arbitrary function of position and r an arbitrary point on the crack plane lying inside
the crack contour, let

〈 f 〉(r)≡ 1
2 [ f (r

+)+ f (r−)] (3)

denote the average of the values of this function at the points r+, r− of the upper (+) and lower (−)
faces of the crack. With this notation, application of (1) on the crack faces yields

〈δui 〉(r)=
∫

C
23αβ〈hiα〉(r, s)K 0

β(s)εφ(s) ds, (4)

where 〈hiα〉(r, s), a crack-face weight function (CFWF), now represents the α-th SIF generated at the
point s of the crack front by two half-unit point forces applied in the direction ei at the points r+, r− of
the crack faces, zero displacements being simultaneously prescribed on ∂�u and zero tractions on ∂�T .

3. First-order variation of the stresses on the crack faces

3.1. Generalities. Consider now, more specifically, a semi-infinite crack located in some infinite body
subjected to prescribed forces only (Figure 2). Following the usual convention, define a Cartesian frame
(O, x, y, z) with O on the unperturbed crack front, x in the direction of propagation, y in the direction
of the normal to the crack plane, and z in the direction of the crack front. Also, characterize the position
of the unperturbed front Oz through its distance a to some fixed “reference line” parallel to it in the
crack plane.

1For the sake of clarity, commas separating the indices are exceptionally introduced into this equation.



THE INFLUENCE OF IMPERFECTIONS ON THE DEVIATION OF A MODE I+III CRACK FROM COPLANARITY 303

mode I

mode II
mode III

x

y

z

O

a
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Figure 2. Slight in-plane perturbation of a semi-infinite crack loaded arbitrarily.

Equation (4) then takes the special form, with obvious notations,

〈δui 〉(x, z)=
∫
+∞

−∞

23αβ〈hiα〉(x, z; z′)K 0
β(z
′)εφ(z′) dz′. (5)

The aim of this section is to derive from there the expressions of the average variations 〈δσxx 〉, 〈δσzz〉

and 〈δσxz〉 of the in-plane stresses on the crack faces. When (5) is used for this sole purpose, some
simplifications arise:

• It is enough to know the in-plane components 〈δux 〉, 〈δuz〉 of the average variation of displace-
ment 〈δu〉; the out-of-plane component 〈δu y〉 is not needed.

• The expressions of these in-plane components involve the CFWFs 〈hxα〉 and 〈hzα〉, which are
nonzero only for α = I, since the loadings implied, consisting of half-unit point forces applied
on the crack faces in the directions x and z, are symmetric with respect to the crack plane and
therefore do not generate any mode II or III.

The formulae required therefore simply read, by (2),
〈δux 〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈hx I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′,

〈δuz〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈hz I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′.

(6)

3.2. Variations of the displacement components and their spatial derivatives. The CFWFs 〈hx I 〉, 〈hz I 〉

for a semi-infinite crack have been calculated in [Bueckner 1987; Kuo 1993; Movchan et al. 1998]. The
simplest way of expressing the results is as follows [Kuo 1993]: assume that point forces of intensities Fx

and Fz are simultaneously applied in the directions x and z on the points (x, y= 0+, z) and (x, y= 0−, z)
of the upper and lower crack faces; these forces together generate a mode I SIF kI at the point z′ of the
crack front given by
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kI(z′)≡ 2Fx 〈hx I 〉(x, z; z′)+ 2Fz〈hz I 〉(x, z; z′)= 1
4
√
π

1−2ν
1−ν

Re
{

Fx + i Fz

[−x + i(z′− z)]3/2

}
, (7)

where the cut of the complex power function is along the half-line of nonpositive reals. Since this
compact formula “couples” the CFWFs 〈hx I 〉 and 〈hz I 〉, it seems appropriate, when inserting it into the
expressions (6) of 〈δux 〉 and 〈δuz〉, to introduce arbitrary real parameters α, β and consider the single
quantity 〈αδux +βδuz〉 rather than 〈δux 〉 and 〈δuz〉 individually. One thus gets

〈αδux +βδuz〉(x, z)= 21−ν2

E

∫
+∞

−∞

〈αhx I +βhz I 〉(x, z; z′)K 0
I (z
′)εφ(z′) dz′

=
(1+ν)(1−2ν)

4
√
π E

Re
{∫
+∞

−∞

α+ iβ
[−x + i(z′− z)]3/2

K 0
I (z
′)εφ(z′) dz′

}
,

or, equivalently, after integration by parts,

〈αδux +βδuz〉(x, z)= (1+ν)(1−2ν)
2
√
π E

Re
{∫
+∞

−∞

β − iα
[−x + i(z′− z)]1/2

(K 0
I εφ)

′(z′) dz′
}
. (8)

Differentiating this equation with respect to x and z, and then ascribing the values (1, 0) and (0, 1) to
the pair (α, β), one gets the average spatial derivatives of the components of the variation of displacement:

〈
∂δux
∂x

〉
(x, z)=−

〈
∂δuz
∂z

〉
(x, z)= (1+ν)(1−2ν)

4
√
π E

Im
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
,〈

∂δux
∂z

〉
(x, z)=

〈
∂δuz
∂x

〉
(x, z) = (1+ν)(1−2ν)

4
√
π E

Re
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
.

(9)

3.3. Variations of the stress components. The stress components σyx , σyy and σyz being zero on the
crack faces, the average variations 〈δσxx 〉, 〈δσzz〉, 〈δσxz〉 of the in-plane stresses on these faces may be
obtained from the expressions (9) through application of the plane stress elastic stiffness tensor:

〈δσxx 〉(x, z)=−〈δσzz〉(x, z)= 1−2ν
4
√
π

Im
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
,

〈δσxz〉(x, z) =
1−2ν
4
√
π

Re
{∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′
}
.

(10)

Equation (10)1 implies in particular that the average variation 〈δσxx + δσzz〉 is zero whatever the
perturbation of the crack front; this means that at a given point of the broken region of the crack plane,
the average 2D trace of the stress tensor, 〈σxx + σzz〉, is independent of the position and shape of the
crack front. This remarkable property is noted here in the special case of a semi-infinite crack, but was
shown by Gao [1992] to in fact hold for any planar crack of arbitrary contour in some infinite body.

The variations of the nonsingular stresses will be deduced from the asymptotic behavior of 〈δσxx 〉,
〈δσzz〉, 〈δσxz〉 near the crack front, that is in the limit x → 0−. This makes it necessary to evaluate
the limit

lim
x→0−

∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′.
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In order to do so, rewrite the integral as∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x + i(z′− z)]3/2

dz′

=

∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
[−x + i(z′− z)]3/2

dz′+ (K 0
I εφ)

′(z)
∫
+∞

−∞

dz′

[−x + i(z′− z)]3/2
.

The second integral in the right-hand side is obviously zero, and the first one goes to the limit∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
[i(z′− z)]3/2

dz′

as x → 0−. (Note that this integral is convergent at the point z′ = z since the integrand behaves like
|z′ − z|−1/2 near it.) Evaluating [i(z′ − z)]3/2 using the definition of the complex power function and
distinguishing between the cases z′ < z and z′ > z, one concludes that

lim
x→0−

∫
+∞

−∞

(K 0
I εφ)

′(z′)
[−x+i(z′−z)]3/2

dz′ =− 1
√

2

∫
+∞

−∞

(K 0
I εφ)

′(z′)−(K 0
I εφ)

′(z)
|z′−z|3/2

dz′

−
i
√

2

∫
+∞

−∞

sgn(z′− z)
(K 0

I εφ)
′(z′)−(K 0

I εφ)
′(z)

|z′−z|3/2
dz′, (11)

where sgn(x) denotes the sign of x .
Inserting (11) into the expressions (10) of 〈δσxx 〉, 〈δσzz〉, 〈δσxz〉, one finally gets the desired limits:

〈δσxx 〉(0−, z)=−〈δσzz〉(0−, z)

=−
1−2ν
4
√

2π

∫
+∞

−∞

sgn(z′− z)
(K 0

I εφ)
′(z′)− (K 0

I εφ)
′(z)

|z′− z|3/2
dz′,

〈δσxz〉(0−, z)=− 1−2ν
4
√

2π

∫
+∞

−∞

(K 0
I εφ)

′(z′)− (K 0
I εφ)

′(z)
|z′− z|3/2

dz′.

(12)

4. First-order variations of the nonsingular stresses

4.1. Special case of an immobile point of the crack front. In a first step, we wish to derive the variations
of the nonsingular stresses for an immobile point of the crack front, having φ(z) = 0. In such a case
the point of observation of the in-plane stresses to be used to define the nonsingular stresses, located
just behind the crack front, does not move when this front is perturbed; hence the local variations of the
nonsingular stresses are simply related to the local average variations of the in-plane stresses.

More specifically, define a Cartesian frame (P, x1, x2≡ y, x3) “adapted” to the perturbed crack front at
the immobile point P considered (Figure 3). To first order in the perturbation, the unit vectors e1, e2, e3

corresponding to the coordinates x1, x2, x3 are related to the vectors ex , ey , ez corresponding to the
coordinates x , y, z adapted to the unperturbed front through the relations

e1 = ex − εφ
′(z)ez, e2 = ey, e3 = ez + εφ

′(z)ex . (13)

In the local frame, the average in-plane stress components 〈σ11〉, 〈σ33〉, 〈σ13〉

• are zero for the first, singular term of the Williams expansion of the stresses;
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y = x2

O x

x1

P

εφ′(z)

x3

z

Figure 3. Definition of local axes for the perturbed front.

• are equal to the nonsingular stresses T11, T33, T13 for the second term;

• vanish close to the crack front for the next terms.

Hence T11, T33, T13 may be identified to the limits of 〈σ11〉, 〈σ33〉, 〈σ13〉 when the point of observation of
these quantities gets infinitely close to the crack front. Therefore, unperturbed values and variations of
quantities being denoted with symbols 0 and δ respectively, the average perturbed stress tensor 〈σ 0

+ δσ 〉

on the crack faces close to the front may be expressed as

〈σ 0
+ δσ 〉(0−, z)= [T 0

11(z)+ δT11(z)]e1⊗ e1+ [T 0
33(z)+ δT33(z)]e3⊗ e3

+ [T 0
13(z)+ δT13(z)](e1⊗ e3+ e3⊗ e1)

= [T 0
11(z)+ δT11(z)]ex ⊗ ex + [T 0

33(z)+ δT33(z)]ez ⊗ ez

+ [T 0
13(z)+ δT13(z)](ex ⊗ ez + ez ⊗ ex)

+ 2T 0
13(z)εφ

′(z)ex ⊗ ex − 2T 0
13(z)εφ

′(z)ez ⊗ ez

+ [T 0
33(z)− T 0

11(z)]εφ
′(z)(ex ⊗ ez + ez ⊗ ex),

where (13) has been used.
But, on the other hand, this average perturbed stress tensor may also be expressed as

〈σ 0
+ δσ 〉(0−, z)=

〈σ 0
xx + δσxx 〉(0−, z)ex ⊗ ex +〈σ

0
zz + δσzz〉(0−, z)ez ⊗ ez +〈σ

0
xz + δσxz〉(0−, z)(ex ⊗ ez + ez ⊗ ex).

Comparison of these two formulae and identification of the first-order terms yields the following expres-
sions for the variations of the nonsingular stresses:

δT11(z)=−2T 0
13(z)εφ

′(z)+〈δσxx 〉(0−, z),

δT33(z)= 2T 0
13(z)εφ

′(z)+〈δσzz〉(0−, z),

δT13(z)= [T 0
11(z)− T 0

33(z)]εφ
′(z)+〈δσxz〉(0−, z),

(14)

where the average variations of the stresses are given by the equations (12).
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4.2. General case. In order to now evaluate the variations of the nonsingular stresses in the general case
where φ(z) 6= 0, we use the same trick as in [Rice 1985; Gao and Rice 1986] on the variations of the
SIF: we decompose the perturbation εφ in the form

εφ(z′)= εφ(z)+ εφ(z′), where φ(z′)≡ φ(z′)−φ(z). (15)

• The first term of the decomposition represents a translation of the unperturbed crack front by the
distance εφ(z), which generates a variation of the nonsingular stress Ti j equal to (∂T 0

i j/∂a)(z)εφ(z),
where (∂T 0

i j/∂a)(z) is the derivative of the unperturbed nonsingular stress T 0
i j with respect to the

position a of the straight crack front; see Figure 2.2

• The second term represents a motion in which the point z remains immobile. Therefore, the
equations (14) may be used, with φ(z′) instead of φ(z′), to evaluate the resulting variations of
the nonsingular stresses.

Adding the contributions of the two terms, and using the equations (12) for the average variations of
the stresses and the definition (15)2 of the function φ, one finally gets the following formulae for the
variations of the nonsingular stresses in the general case:

δT11(z)=
∂T 0

11

∂a
(z)εφ(z)− 2T 0

13(z)εφ
′(z)−

1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

}sgn(z′− z)
|z′− z|3/2

dz′; (16)

δT33(z)=
∂T 0

33

∂a
(z)εφ(z)+ 2T 0

13(z)εφ
′(z)+

1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

}sgn(z′− z)
|z′− z|3/2

dz′; (17)

δT13(z)=
∂T 0

13

∂a
(z)εφ(z)+ [T 0

11(z)− T 0
33(z)]εφ

′(z)−
1− 2ν

4
√

2π

∫
+∞

−∞

{
(K 0

I εφ
′)(z′)− (K 0

I εφ
′)(z)

+ (K 0
I )
′(z′)[εφ(z′)− εφ(z)]

} dz′

|z′− z|3/2
. (18)

It is worth noting that, unlike the average variation 〈δσxx + δσzz〉, the variation δT11+ δT33 is nonzero
in general. The effect arises solely from the terms (∂T 0

11/∂a)(z)εφ(z) and (∂T 0
33/∂a)(z)εφ(z) in the

right-hand sides of (16) and (17), the sum of which has no reason to be zero. In physical terms, even
though 〈σxx + σzz〉, at a given, fixed point of the broken region of the crack plane, is independent of the
position and shape of the crack front, evaluating the variation of T11+ T33 implies following the point of
observation of 〈σxx + σzz〉 as the front moves, which inevitably entails a variation of this quantity.

4.3. Comparison with the work of Gao. Gao [1992] did not consider only the case of an initially straight
crack front as in the present work, but also that of a circular one. However, he introduced a number of
restrictive hypotheses not made here:

2The additional dependence of this quantity and other ones upon the argument a is omitted to alleviate the notation.
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• A pure mode I loading was assumed. However, our general expressions (16), (17) and (18) for
δT11, δT33 and δT13, respectively, show that considering more general mixed-mode loadings would
not in fact have changed anything, since the unperturbed SIFs K 0

II, K 0
III of modes II and III do not

appear in them.

• The unperturbed SIF K 0
I of mode I was assumed to be independent of the position z along the crack

front. The possible variation of K 0
I along this front does modify the expressions (16)–(18) through

the term (K 0
I )
′(z′)[εφ(z′)− εφ(z)] appearing in the integrand in each of them.

• The perturbation of the crack front was assumed to be sinusoidal. This was in fact equivalent to
providing the expressions for δT11, δT33, δT13 in Fourier space. However, our expressions (16), (17),
(18) in the physical space are interesting in themselves, and getting them from those of [Gao 1992]
through inverse Fourier transform is not a completely straightforward operation.

With these hypotheses, Gao obtained expressions for δT11, δT33, δT13 coinciding exactly with the
integral terms in the right-hand sides of our equations (16), (17), (18), as evaluated for a sinusoidal per-
turbation. However all additional terms proportional to the ∂T 0

i j/∂a and T 0
i j were absent. These terms were

apparently really missing in the sense that the hypotheses made did not seem to permit discarding them.

5. Cotterell and Rice’s directional stability criterion for 3D cracks

In this section, we briefly recall, as a prerequisite for Section 6, Leblond’s 3D extension [1999] of
Cotterell and Rice’s classical 2D analysis of directional stability of a propagating crack [1980].

We therefore consider, within an arbitrary 3D body, an initially planar crack of arbitrary contour, and
denote by s some curvilinear abscissa along this contour. This crack is loaded through some system of
prescribed forces and/or displacements generating distributions of SIF KI(s), KII(s), KIII(s) and non-
singular stresses T11(s), T33(s), T13(s) along its front. These distributions are arbitrary except that the
mode II SIF KII(s) is assumed to be everywhere small.

Because of the presence of mode II, the crack propagates in a slightly noncoplanar way. More specif-
ically, at each point P(s) of the original crack front, propagation of the crack results in the creation of
some small, slightly kinked and curved extension; the length of this extension is ηψ(s) where η is a small
parameter and ψ a given function, and its equation reads, in the local “adapted” frame (P(s), x1, x2, x3)

defined as in Figure 3,
x2 = θ(s)x1+ a(s)x3/2

1 + O(x2
1), (19)

where θ(s) (� 1) is the local “kink angle” and a(s) a local “curvature parameter” (Figure 4, where KII(s)
is assumed to be negative in order for θ(s) to be positive; see (21) below). The peculiar shape of the
curve defined by (19), resulting from the term proportional to x3/2

1 instead of simply x2
1 , will be seen to

be necessary for the propagation criterion to be satisfied.
Leblond [1999] and Leblond et al. [1999] have derived, under such conditions, the expansions of

the SIFs KI(s; η), KII(s; η), KIII(s; η) along the extended front in powers of η. At order η1/2, these
“extended SIFs” depend upon the geometrical and mechanical parameters only through their local values
at that point where they are evaluated,3 and are given by formulae very similar to those of [Cotterell

3This does not remain true at order η1
= η: the expressions of the extended SIF at a given point depend at that order upon

the whole distribution of geometrical and mechanical parameters on the crack front; see [Leblond et al. 1999].
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mode II

mode I

x3

x2

ηψ(s)
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θ(s)

θ(s)x1+a(s)x3/2
1 +O(x2

1)

x1

Figure 4. Geometric hypotheses and notations for Cotterell and Rice’s directional sta-
bility analysis of a propagating crack.

and Rice 1980] for the 2D case, except for the extra dependence of all quantities on s. In particular, the
expansion of KII(s; η) reads

KII(s; η)= KII(s)+ 1
2θ(s)KI(s)+

[
−2
√

2/π θ(s)T11(s)+ 3
4 a(s)KI(s)

]√
ηψ(s)+ O(η). (20)

(Note that limη→0+ KII(s; η) differs from KII(s) because of the kink.) This equation may be used to
predict the values of the local kink angle θ(s) and curvature parameter a(s), assuming the shape of the
propagating crack to be governed by Goldstein and Salganik’s principle of local symmetry [1974], which
demands that KII(s; η) be constantly zero after the initial kink. This condition yields:

• at order η0
= 1,

θ(s)=−2
KII(s)
KI(s)

; (21)

• at order η1/2,

a(s)= 8
3

√
2/π

T11(s)
KI(s)

θ(s). (22)

Equation (22) permits us to discuss the local directional stability of crack propagation. Cotterell and Rice
[1980] indeed consider that directional stability prevails if the effect of the curvature parameter a(s) tends
to counterbalance that of the kink angle θ(s) and bring the crack back to its original plane, that is, if these
quantities are of opposite signs.4 This leads to the following criterion (since necessarily KI(s) > 0):

directional stability ⇐⇒ T11(s) < 0. (23)

6. Application to deviation of a mode I+III crack from coplanarity

6.1. Position of the problem. We now consider a semi-infinite crack loaded in mode I+III in an infinite
body (Figure 5). The unperturbed SIFs K 0

I , K 0
III on the straight configuration of the crack front are

assumed to be uniform along this front. Inevitable fluctuations of the fracture toughness within the crack
plane are assumed to generate small in-plane undulations of the front depicted by the typically sinusoidal
perturbation

εφ(z)≡ ε cos(kz) (k > 0). (24)

4Though reasonable, this condition does not result from some fundamental stability theory, but simply from some ad hoc
postulate; this is why such prudent expressions as “directional stability in the sense of Cotterell and Rice” and “Cotterell and
Rice’s directional stability criterion” are used in this paper.
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Figure 5. In-plane sinusoidal perturbation of a semi-infinite crack loaded in mode I+III.

In Figure 5, the zones of the perturbed crack front having cos(kz) > 0 and < 0 are indicated with the
symbols A and B, respectively, meaning that they are anticipated to generate future noncoplanar facets
of these types. Indeed, the former, more advanced zones will generate facets lying ahead of the mean po-
sition of the front, which is a typical property of type A ones (see the introduction); conversely, the latter,
less advanced zones will generate facets lying behind the same position, which is typical of type B ones.

Making use of the results of the preceding sections, we wish to study the deviation from coplanarity and
directional stability of the incipient facets on the two types of zones. This first requires us to determine
the distributions of the second SIF KII and first nonsingular stress T11 along the coplanarly perturbed
crack front.

6.2. Expression of the perturbed mode II stress intensity factor. Gao and Rice [1986] have calculated,
for the semi-infinite crack considered, the variations of the SIF resulting from some arbitrary coplanar
perturbation of the front; their result for the mode II SIF reads

δKII(z)=
∂K 0

II

∂a
(z)εφ(z)− 2

2−ν
K 0

III(z)εφ
′(z)+ 1

2π
2−3ν
2−ν

PV
∫
+∞

−∞

K 0
II(z
′)
εφ(z′)− εφ(z)
(z′− z)2

dz′, (25)

where (∂K 0
II/∂a)(z) is the derivative of the unperturbed mode II SIF K 0

II with respect to the position a
of the straight crack front (see Figure 2) and the symbol PV

∫
denotes the Cauchy principal value of

an integral. In the special case considered here, where K 0
II and K 0

III are, respectively, zero and uniform
along the unperturbed front and the perturbation εφ is of the form (24), this yields

KII(z)= δKII(z)=
2

2−ν
K 0

III kε sin(kz) (26)

for the mode II SIF KII along the perturbed front.

6.3. Expression of the perturbed first nonsingular stress. In order to now evaluate the nonsingular
stress T11 along the coplanarly perturbed crack front, we introduce the following hypotheses:
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• The unperturbed SIFs K 0
I and K 0

III are comparable in magnitude. Also, the unperturbed nonsingular
stresses T 0

i j and their derivatives ∂T 0
i j/∂a with respect to the position of the straight crack front are

of the order of K 0
I L−1/2 and K 0

I L−3/2, respectively, where L is the characteristic length defined by
the loading (in the absence of any characteristic length scale defined by the geometry itself).

• The characteristic length L is much larger than the typical distance of fluctuation of the fracture
toughness, and therefore than the wavelength λ ≡ 2π/k of the perturbation resulting from the
nonuniformity of this toughness.

The perturbation εφ and its derivative εφ′ being of the order of ε and kε, respectively, it follows from
the first hypothesis that the first, second and third terms in the right-hand side of the expression (16) of
δT11 are of the order of K 0

I L−3/2ε, K 0
I L−1/2 kε and K 0

I k3/2ε, respectively. Since the second hypothesis
implies that kL � 1, the first and second terms are negligible compared to the third one. It follows that,
for the sinusoidal perturbation considered,

δT11(z)'−
1− 2ν

4
√

2π

∫
+∞

−∞

K 0
I [−kε sin(kz′)+ kε sin(kz)]

sgn(z′− z)
|z′− z|3/2

dz′

=
1− 2ν

4
√

2π
K 0

I kε Im
[∫
+∞

−∞

(eikz′
− eikz)

sgn(z′− z)
|z′− z|3/2

dz′
]

=
1− 2ν

4
√

2π
K 0

I kε Im
[

eikz
∫
+∞

−∞

(eikζ
− 1)

sgn(ζ )
|ζ |3/2

dζ
]

=
1− 2ν

2
√

2π
K 0

I kε Im
[

ieikz
∫
+∞

0
sin(kζ )

sgn(ζ )
ζ 3/2 dζ

]
,

where use has been made of the change of variable ζ ≡ z′− z and parity properties. Calculation of the
last integral using [Gradshteyn and Ryzhik 1980, formulae (3.7614) and (8.338.3)] then yields

δT11(z)'
( 1

2 − ν
)
K 0

I k3/2ε cos(kz). (27)

This expression happens to exactly coincide with [Gao 1992, formula (44)]. This means that the terms
disregarded by Gao without proper justification (see Section 4.3 above) are indeed negligible with the
hypotheses introduced above.

Equation (27) confirms that δT11 is of order K 0
I k3/2ε, as anticipated, whereas T 0

11 is of order K 0
I L−1/2.

We therefore introduce the following final hypothesis:

• The characteristic length L defined by the loading, and the fluctuations of toughness generating
the in-plane undulations of the crack front, are sufficiently large for the dimensionless quantity
k3/2εL1/2

= kε
√

kL to be much larger than unity. (Note that this hypothesis does not contradict
that of smallness of the perturbation: indeed, one may have |εφ′| ∼ kε� 1 but kε

√
kL � 1, since

kL is assumed to be much larger than unity.)

Then the unperturbed nonsingular stress T 0
11 is negligible compared to its variation δT11, so that

T11(z)' δT11(z)'
( 1

2 − ν
)
K 0

I k3/2ε cos(kz). (28)
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6.4. Analysis of deviation from coplanarity and directional stability. As remarked by Gao and Rice
[1986], (26) implies that the mode II SIF KII(z) takes nonzero and opposite values on the two sides of a
local bump or hollow of the coplanarly perturbed crack front. It then follows from (21) (with KI(z), KII(z)
instead of KI(s), KII(s)) that the subsequent kink angle θ(z) will also take nonzero and opposite values
on these two sides, implying formation of an incipient noncoplanar facet gradually rotating about the
direction of propagation of the crack.

To pursue the analysis, assume for instance K 0
III to be positive and consider a zone of the coplanarly

perturbed crack front having cos(kz) > 0, thus lying ahead of its mean position. Over such a zone, the
function sin(kz) increases so that, by (21) and (26), the kink angle θ(z) of the future noncoplanar facet is
a decreasing function of z. Looking at Figure 5 and imagining a facet with this property, one easily sees
that it tends to rotate in time in the positive direction about the axis Ox , and that this rotation tends to
gradually enhance the local value of the mode I SIF and lower that of the mode III SIF. Such evolutions
of the SIF are, as explained in the introduction, typical of type A facets. This confirms the anticipated
property that a facet formed from a locally more advanced zone of the crack front must be of this type.

Conversely, over a zone having cos(kz) < 0, thus lying behind the mean position of the front, sin(kz)
decreases, θ(z) increases, the facet rotates in the negative direction about the axis Ox , so that the mode I
SIF decreases in time, whereas that of mode III increases. Such evolutions are typical of type B facets.
This again confirms the anticipated property that facets formed from less advanced zones of the crack
front must be of that other type.

The preceding analysis, however, says nothing about the directional stability of the facets. To examine
this question, consider the expression (28) for the nonsingular stress T11(z) on the coplanarly perturbed
crack front. On a zone having cos(kz) > 0, about to generate a type A facet, this nonsingular stress is
positive, so that Cotterell and Rice’s directional stability criterion (23) is violated, implying directional
instability; conversely, on a zone having cos(kz) < 0, about to generate a type B facet, Cotterell and Rice’s
criterion is met, implying directional stability. This suggests that, in addition to the tendency of type A
facets to propagate ahead of type B ones, there is a tendency of the former facets to deviate more and more
in time from the original crack plane, versus of the latter ones to come back to it. These elements provide
some theoretical ground for the intuitive idea that the crack would ideally like to develop exclusively
along noncoplanar facets of type A, type B ones being present only because they are geometrically
necessary to join them.

It is important to note that the tendencies just mentioned are completely independent of the value of
the ratio K 0

III/K 0
I (as long as K 0

III is nonzero, which is a necessary condition for out-of-plane deviations of
the crack to appear). Thus, increasing deviations from coplanarity of type A facets generated by in-plane
fluctuations of the fracture toughness are probable because of a Cotterell–Rice-type instability, even for
low values of this ratio. An instability of this type is therefore a good candidate for the explanation
of increasing deviations of mode I+III cracks from coplanarity observed experimentally for values of
K 0

III/K 0
I smaller, or even much smaller than Leblond et al.’s theoretical threshold for occurrence of a

bifurcation [2011].5

One may analyze in more detail the importance of the Cotterell–Rice-type instability as a function of

5It cannot be the sole explanation, however, since such deviations could be observed in Pons and Karma’s numerical simu-
lations [2010] of crack propagation in mode I+III based on Karma et al.’s phase field model [2001], though they did not include
fluctuations of the fracture toughness.
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Figure 6. Fracture facets in mode I+III. Experiment by Buchholz, photograph by Lazarus.

the wavelength λ= 2π/k of the coplanar crack front perturbation. This requires comparing the values of
the curvature parameter a(z) of the incipient facets for various initial in-plane sinusoidal perturbations
of the crack front, having different wavelengths. Combination of equations (21) and (22) (with KI(z),
KII(z), T11(z) instead of KI(s), KII(s), T11(s)), (26) and (28) yields

a(z)=−16
3

√
2
π

1−2ν
2−ν

K 0
III

K 0
I

k5/2ε2 sin(kz) cos(kz). (29)

This expression makes it clear that, when comparing the curvature parameters a(z) of various perturba-
tions, one should fix their amplitude ε in some way, otherwise the obvious effect of this amplitude will
mask that of the wavenumber k. A logical way of doing so is to consider “homothetic” perturbations
identical in shape but not in size, that is, sinusoidal fronts having the same maximal “slope” kε in the
crack plane but different wavenumbers k. Equation (29) shows that a(z) is proportional to (kε)2

√
k, that

is, to
√

k or 1/
√
λ for a given value of kε. Therefore, the smaller the value of λ, the larger that of a(z) in

absolute value; in other words, the smaller the wavelength of the initial in-plane perturbation, the more
directionally unstable the incipient facets it generates, if of type A, and the more directionally stable these
facets, if of type B. This theoretical conclusion finds some experimental support in the fact that incipient
facets actually observed are generally of tiny initial wavelength, apparently limited in smallness only
by the microstructure of the material. This is illustrated in Figure 6, which shows a photograph taken
by Lazarus of a mode I+III fracture surface generated in a glass specimen by Buchholz, where the
initial crack is located at the very top and propagates toward the bottom. (The photograph also shows
that the wavelength of the facets does not remain small when their length increases, due to the gradual
“coarsening” resulting from their progressive coalescence; such a phenomenon of course completely
eludes the present analysis limited to incipient facets.)

7. Conclusion

This paper was devoted to the investigation of the idea that quick deviations of cracks loaded in mode I+III
from their original plane might be made much easier by a strong influence of imperfections. Such an
influence could stand as a plausible explanation for the fact that, as reported notably by Sommer [1969]
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and Pham and Ravi-Chandar [2014], such deviations are frequently observed experimentally for small
values of the ratio of the mode III to mode I unperturbed SIFs, lying below or even much below the
theoretical threshold for occurrence of a bifurcation calculated by Leblond et al. [2011].

A typical example of inevitable imperfections consists of small fluctuations of the fracture toughness
within the initial crack plane, which generate small in-plane undulations of the crack front. Rice [1985]
and Gao and Rice [1986] calculated the distributions of the SIFs of the three modes resulting from a slight
but otherwise arbitrary in-plane perturbation of the front of a semi-infinite crack loaded arbitrarily; in
particular, Gao and Rice showed that the local mode II SIF takes nonzero and opposite values on the two
sides of a local protrusion of this front, implying future local deviations of the propagating crack from
coplanarity of opposite signs on these two sides, giving birth to an incipient “fracture facet” gradually
rotating about the direction of propagation.

Gao and Rice, however, left open the question of the “directional stability” of these facets. It was pre-
cisely the main purpose of the present paper to complement their work by analyzing this question, using
Cotterell and Rice’s well-known “directional stability criterion” [1980] (duly extended to the 3D case by
Leblond [1999]).

Since Cotterell and Rice’s stability condition is on the sign of the nonsingular stress parallel to the
direction of propagation, its application to the analysis of directional stability of the facets requires
knowledge of the distributions of the nonsingular stresses for a crack with a slightly, coplanarly perturbed
front. The necessary calculations were performed by Gao [1992], but with some restrictive hypotheses
and unjustifiably omitting some terms, which made it necessary to revisit the problem. This has been done
here by using the theory of 3D weight functions [Rice 1985; Bueckner 1987]. Fully general formulae
have been obtained for the variations of the nonsingular stresses resulting from some slight but otherwise
arbitrary in-plane perturbation of a semi-infinite crack, confirming and completing the partial results of
[Gao 1992].

The formula obtained for the variation of the nonsingular stress parallel to the direction of crack
propagation was then applied to a typically sinusoidal coplanar perturbation of the front. A distinction
was made between the more advanced zones of the front, about to generate an incipient facet of “type A”
rotating about the direction of propagation, so as to raise the local proportion of mode I versus mode
III, and the less advanced ones, about to generate a facet of “type B”, rotating oppositely so as to lower
this proportion.

It has been found that, provided that the length scale defined by the loading and the fluctuations of
the fracture toughness are large enough, the nonsingular stress parallel to the direction of propagation is
positive on the former zones, implying directional instability, and negative on the latter ones, implying
directional stability. This shows that even for low values of the ratio of the mode III to mode I unperturbed
SIFs, crack propagation in mode I+III may occur through preferential formation of noncoplanar facets
of type A, because of a local Cotterell–Rice-type instability — which confirms the idea investigated.

It has also been found that the smaller the wavelength of the initial in-plane perturbation, the stronger
Cotterell and Rice’s instability on the resulting incipient facets of type A. This implies preferential de-
velopment of type A facets of small initial wavelength, in agreement with experimental observations.
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INTERACTION BETWEEN A CIRCULAR INCLUSION
AND A CIRCULAR VOID

UNDER PLANE STRAIN CONDITIONS

VLADO A. LUBARDA

The interaction force between a circular inclusion characterized by uniform eigenstrain and a nearby
circular void is determined by evaluating the J -integral around the void. The Kienzler–Zhuping formula
was used to determine the hoop stress along the boundary of the void in terms of the infinite-medium
solution to the inclusion problem. Specific results are given for the inclusion with dilatational eigenstrain.
The M-integrals around the void and inclusion are then evaluated, the former being proportional to the
energy release rates associated with a self-similar expansion of the void. The energy rate associated with
an isotropic expansion of the inclusion differs from the M-integral around the inclusion. The relationship
between the two is derived. It is shown that the greater the distance from the void, the greater the energy
associated with the presence of the inclusion and the greater the energy rate associated with its growth,
which suggests that the presence of nearby free surfaces facilitates the eigenstrain transformations. The
attraction exerted on a circular inclusion with a uniform shear eigenstrain by the free surface of a half-
space is also evaluated. Peculiar variation of this configurational force with the distance between the
inclusion and the free surface is noted and discussed.

1. Introduction

Kienzler and Zhuping [1987] derived an appealing formula for the hoop stress along the boundary of
a circular void of radius a in an infinite medium under plane stress or plane strain conditions, due to
remote loading or an internal source of stress, which reads

σθ (a, θ)= 2[σ 0
θ (a, θ)− σ

0
r (a, θ)] +

1
2 [σ

0
θ (0, θ)+ σ

0
r (0, θ)]. (1)

The stress field in an infinite medium without a void due to the same source of stress is denoted by the
superscript 0, and (r, θ) are the polar coordinates with the origin at the center of the void. This formula
received relatively little attention in the literature, although it did stimulate research efforts that led to the
formulation of the so-called heterogenization procedure [Honein and Herrmann 1988; 1990], according
to which the solution to the problem of two or more inhomogeneities under remote or other types of
loading is expressed in terms of the solution to the corresponding homogeneous problem. An important
part of the latter analysis is that the elastic field produced by the prescribed tractions or displacements
over the boundary of a circular hole in an infinite medium can be expressed in terms of the elastic field
produced by the same quantities acting on the boundary of a circular disk, and vice versa. We use the
Kienzler–Zhuping formula in this paper to evaluate the J -integral along the boundary of a circular void, or

Keywords: configurational force, conservation integrals, dilatation, eigenstrain, half-space, inclusion, plane strain, shear, void.
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along the straight edge of a half-space, without using or deriving the solution to the entire boundary value
problem at hand. Based on this, we determine the configurational force exerted by the free surface on a
nearby source of internal stress. The latter is taken to be a circular inclusion with a uniform dilatational
eigenstrain. The M-integrals around the void and the inclusion are evaluated. The MO -integral around
the void is proportional to the energy release rate associated with a self-similar expansion of the void,
if the surface of the void is traction-free. The energy rate associated with an isotropic expansion of the
inclusion differs from the ratio MC/b, where the MC -integral is evaluated around the boundary of the
inclusion of radius b. The relationship between the two quantities is derived. The attraction exerted on
a circular inclusion with a uniform shear eigenstrain by the free surface of a half-space is also evaluated.
Peculiar variation of this configurational force with the distance between the inclusion and the free surface
is noted and discussed.

The determination of physical quantities, such as the dislocation interaction force or the stress-intensity
factor in various dislocation and fracture mechanics problems, without solving the corresponding bound-
ary value problems, was earlier considered by Eshelby [1975], Freund [1978], Rice [1985], Kienzler and
Kordisch [1990], and Lubarda and Markenscoff [2007], among others. More recently, Lubarda [2015]
employed the antiplane-strain version of the Kienzler–Zhuping formula, first recognized by Lin et al.
[1990], to determine the configurational force between a circular void and inclusion characterized by
uniform eigenshear. The study of inclusions and interactions among them plays an important role in
materials science problems concerned with displacive transformations and transformation toughening
mechanisms in crystalline metallic materials and ceramics. A comprehensive review of recent works on
inclusions can be found in [Zhou et al. 2013].

2. Circular inclusion near a circular void

Suppose that a circular cylinder of radius b is taken out from an infinite medium and given a uniform
plane eigenstrain (ε•x , ε

•

y, ε
•

xy). When the cylinder is inserted back into the medium, with their interface
perfectly bonded, the stress fields expressed in polar coordinates (ρ, ϕ) with respect to the center C of
the inclusion (Figure 1), are

σ 0,in
ρ =−2k

[
(ε•ρ + ε

•

ϕ)+
1
2 (ε

•

ρ − ε
•

ϕ)
]
,

σ 0,in
ϕ =−2k

[
(ε•ρ + ε

•

ϕ)−
1
2 (ε

•

ρ − ε
•

ϕ)
]
,

σ 0,in
ρϕ =−2kε•ρϕ,

(2)

where ε•ρ + ε
•

ϕ = ε
•

x + ε
•

y , k = µ/[4(1− ν)], and

ε•ρ − ε
•

ϕ = (ε
•

x − ε
•

y) cos 2ϕ+ 2ε•xy sin 2ϕ,

2ε•ρϕ =−(ε
•

x − ε
•

y) sin 2ϕ+ 2ε•xy cos 2ϕ.
(3)

The expressions (2) are obtained from the results for circular inclusions presented in [Lubarda 1998]
and [Lubarda and Markenscoff 1999], which were derived by using the Papkovich–Neuber potentials.
They can also be obtained from the general ellipsoidal inclusion analysis in [Eshelby 1957; 1959]. The
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Figure 1. A circular inclusion of radius b in an infinite medium near the void of radius a.
The eigenstrain of the inclusion is (ε•x , ε

•

y, ε
•

xy). The centers of the inclusion and void
are separated by the distance d. The distance from the center C of the inclusion to an
arbitrary point on the boundary of the void is ρa. The polar coordinates (ρ, ϕ) are with
respect to the point C , and (r, θ) with respect to the point O .

in-plane stress components outside of the inclusion are

σ 0,out
ρ =−2k

b2

ρ2

[
(ε•ρ + ε

•

ϕ)+
1
2

(
4− 3

b2

ρ2

)
(ε•ρ − ε

•

ϕ)

]
,

σ 0,out
ϕ = 2k

b2

ρ2

[
(ε•ρ + ε

•

ϕ)−
3
2

b2

ρ2 (ε
•

ρ − ε
•

ϕ)

]
,

σ 0,out
ρϕ = 2k

b2

ρ2

(
2− 3

b2

ρ2

)
ε•ρϕ.

(4)

When rewritten in terms of the polar coordinates (r, θ) with respect to the point O , the outside stress
field (omitting the superscript “out”) is

σ 0
r + σ

0
θ = σ

0
ρ + σ

0
ϕ ,

σ 0
r − σ

0
θ = (σ

0
ρ − σ

0
ϕ ) cos 2(ϕ− θ)− 2σ 0

ρϕ sin 2(ϕ− θ),

2σ 0
rθ = (σ

0
ρ − σ

0
ϕ ) sin 2(ϕ− θ)+ 2σ 0

ρϕ cos 2(ϕ− θ).

(5)

In these expressions,

sinϕ = r sin θ
ρ

, cosϕ = r cos θ−d
ρ

,

sin(ϕ− θ)= d sin θ
ρ

, cos(ϕ− θ)= r−d cos θ
ρ

,

ρ2
= r2
+ d2
− 2rd cos θ.

(6)

The total strain energy in the entire medium (inside and outside of the inclusion, per unit thickness)
can be determined from the equation [Lubarda and Markenscoff 1999]

E0
T =−

1
2

∫
Ain
σ

0,in
i j ε•i j dA =− 1

2

(
σ 0,in
ρ ε•ρ + σ

0,in
ϕ ε•ϕ + 2σ 0,in

ρϕ ε
•

ρϕ

)
b2π, (7)
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which gives
E0

T = πkb2{(ε•x + ε•y)2+ 1
2

[
(ε•x − ε

•

y)
2
+ 4ε• 2

xy
]}
. (8)

The rate of energy change associated with an infinitesimal increase of the inclusion radius δb is

δE0
T

δb
= 2πkb

{
(ε•x + ε

•

y)
2
+

1
2

[
(ε•x − ε

•

y)
2
+ 4ε• 2

xy
]}
. (9)

This can also be deduced from the expression for the specific configurational force ( f 0) (per unit length
of the circumference of the inclusion, at each point orthogonal to the circumference), defined such that
[Gavazza 1977]

δE0
T =−(2πb) f 0δb, f 0

=
1
2(σ

0,in
i j + σ

0,out
i j )ρ=bε

•

i j . (10)

This formula has recently been extended to problems of dynamically expanding inclusions in a compre-
hensive sequence of papers by Markenscoff and Ni [2010; 2011].

2.1. Dilatational eigenstrain. If the inclusion is given a purely dilatational eigenstrain ε•x = ε
•

y = ε
• and

ε•xy = 0, the outside stress field in polar coordinates (ρ, ϕ), relative to the center of the inclusion, is

σ 0,out
ϕ =−σ 0,out

ρ = 4kε•
b2

ρ2 , σ 0,out
ρϕ = 0. (11)

When this is substituted into (5), the outside stress field in polar coordinates (r, θ), relative to the center
of the void, becomes

σ 0
θ (r, θ)=−σ

0
r (r, θ)= 4kε•

b2

ρ2

(
1−

2d2 sin2 θ

ρ2

)
,

σ 0
rθ (r, θ)=−8kε•

b2d
ρ3 (r − d cos θ) sin θ.

(12)

The outside stress field is deviatoric (σ 0
r + σ

0
θ = 0). Thus, from the Kienzler–Zhuping formula (1), it

follows that along the boundary of the void r = a, the hoop stress due to inserted inclusion is

σθ (a, θ)= 2[σ 0
θ (a, θ)− σ

0
r (a, θ)] = 4σ 0

θ (a, θ); (13)

that is, in view of (12),

σθ (a, θ)=
4µε•

1− ν
b2

ρ2
a

(
1−

2d2 sin2 θ

ρ2
a

)
, ρ2

a = a2
+ d2
− 2ad cos θ. (14)

The total strain energy (per unit thickness) due to inserted inclusion in an infinite medium, and its
rate, are

E0
T =

πµb2ε• 2

1− ν
,

δE0
T

δb
=

2πµbε• 2

1− ν
, (15)

which follows from (8) and (9). Thus, from (10), the configurational force per unit length of the circum-
ference of the inclusion is f 0

=−p0ε•, and p0
= µε•/(1− ν) is the interface pressure.
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Figure 2. The closed contour around the void of radius a and its center at O , and the
inclusion of radius b and its center at C , used to evaluate the J - and M-integrals. The
radius R of the remote circle tends to infinity.

3. Configurational force between the inclusion and void

The Jβ-integral for the plane strain elasticity problems can be expressed in terms of the Eshelby’s energy
momentum tensor Pαβ [Eshelby 1956; 1957] as

Jβ =
∮

Pαβnα dl, Pαβ =Wδαβ − σαγ uγ,β, (α, β = x, y). (16)

In particular,

Jx =

∮
(W nx − tx ux,x − tyu y,x) dl, (17)

where tx = σx nx + σxyny and ty = σyx nx + σyny are the traction components over the contour whose
outward normal has the components (nx , ny). An analysis based on dual conservation integrals, originally
introduced by Bui [1973; 1974], could also be used, but is not pursued in this paper; see [Lubarda and
Markenscoff 2007] and [Lubarda 2012] for its application to other problems. When evaluated over a
closed contour which does not embrace a singularity or a defect, the integral in (17) vanishes. Such a
contour, going around the void and the inclusion, along the positive x-axis, and around a remote circle
of large radius R� (a, b, d), is shown in Figure 2. The contributions to Jx along the lines just above
and below the x-axis cancel each other, and the contribution from the remote circle vanishes because
the stresses fall off as 1/R2 in the limit R→∞, as in an unvoided infinite medium, because for large
R the stress field becomes increasingly unaware of the presence of the void near the inclusion. Thus,
Jx = J void

x + J incl
x = 0; i.e.,

J incl
x =−J void

x . (18)

The Jx -integral along the boundary of the void (r = a, nx = cos θ , ny = sin θ ) is

J void
x = a

∫ 2π

0
W (a, θ) cos θ dθ =

1− ν
4µ

a
∫ 2π

0
σ 2
θ (a, θ) cos θ dθ, (19)
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because σx nx +σxyny = 0, σyx nx +σyny = 0, and W = σθεθ/2= (1−ν)σ 2
θ /(4µ) along the traction-free

boundary of the void. By incorporating the stress expression (14) into (19), it follows that

J void
x =

8µaε• 2

1− ν

(
b
a

)4[
I1− 4

(
d
a

)2

I2+ 4
(

d
a

)4

I3

]
, (20)

where

I1 =

∫ π

0

cos θ dθ
ρ4

0
=

2π(d/a)
[(d/a)2− 1]3

,

I2 =

∫ π

0

sin2 θ cos θ dθ
ρ6

0

=
π [3(d/a)2− 1]

4(d/a)3[(d/a)2− 1]3
,

I3 =

∫ π

0

sin4 θ cos θ dθ
ρ8

0

=
π [2(d/a)2− 1]

4(d/a)5[(d/a)2− 1]3
,

(21)

and ρ2
0 = 1−2(d/a) cos θ+(d/a)2. These integral expressions were derived by using the general formula

[Gradshteyn and Ryzhik 1965]∫ π

0

cos nθ dθ
(1− 2α cos θ +α2)m

=
π

αn(α2− 1)2m−1

m−1∑
k=0

(m+n−1
k

)(2m−k−2
m−1

)
(α2
− 1)k, (22)

valid for α2 > 1, in conjunction with the appropriate integration by parts. The trigonometric identity
8 sin4 θ = 3− 4 cos 2θ + cos 4θ was also conveniently utilized. The expressions were also verified by the
Matlab evaluation of integrals. Consequently, by substituting (21) into (20), the J -integral around the
void becomes

J void
x = J x

(
b
a

)4 d/a
[(d/a)2− 1]3

, J x =
8πµaε• 2

1− ν
. (23)

This represents the material or configurational force exerted on the void by a nearby inclusion (per
unit length in the z-direction). It represents the energy release rate associated with an imagined void
translation within the material toward the inclusion (by diffusion or otherwise), keeping the position of
the inclusion fixed. The opposite force of the same magnitude is exerted on the inclusion by the surface
of the void. The maximum value of the force is reached at the minimum distance between the centers of
the inclusion and the void for which the presented analysis applies (dmin = a+ b), and is equal to

J void
x,max = J x

(b/a)(1+ b/a)
(2+ b/a)3

. (24)

The variation of J void
x (normalized by J x ) versus d/a for several values of b/a is shown in Figure 3.

In the limit of infinitely large radius of the void, the inclusion behaves as if it is near the free surface
of a half-space. If the distance from the center of the inclusion to that surface is denoted by c, the force
on the inclusion is found to be

J incl
x =−

πµε• 2

1− ν
b4

c3 . (25)

The force on an ellipsoidal inclusion with uniform dilatational eigenstrain near the free surface of a
half-space was evaluated and discussed by Mura [1987]. More recently, Zhou et al. [2013] provided
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Figure 3. Left: the variation of the strain energy ET /E0
T with d/a, according to (29),

for the indicated values of the ratio b/a. Right: the variation of the configurational
forces J void

x with d/a, according to (23), for the same values of the ratio b/a. The
scaling force parameter is J x = 8πµaε• 2/(1− ν). The left endpoints of the curves (at
d/a = 1+ b/a, when the inclusion is tangent to the void) specify the minimum strain
energy and maximum configurational force corresponding to a selected value of the
ratio b/a.

a comprehensive survey of recent works on inclusions and inhomogeneities in an infinite space and a
half-space, addressing the problems of a single inclusion, two inclusions, and multiple inclusions, as
well as dislocations and cracks.

4. Total strain energy

The total strain energy in the medium with inserted inclusion near a traction-free void is the sum of the
strain energy term corresponding to the inclusion inserted in an infinite medium far away from the void,
thus given by the first expression in (15), and the term dependent on d which accounts for the interaction
between the void and inclusion. The latter includes the strain energy of the auxiliary (image) field and
the cross term due to energy of the auxiliary σ̂i j field on the infinite-medium strain field, as well as the
energy of the infinite-medium stress field on the auxiliary ε̂i j strain field. Thus,

ET =
πµb2ε• 2

1− ν
+ ÊT (d, b). (26)

The energy ÊT can be conveniently determined by noting that its negative gradient with respect to the
distance between the inclusion and the void must be equal to the configurational force on the void, as
given by the expression (23):

−
∂ÊT

∂d
=

8πµε• 2

1− ν
adb4

(d2− a2)3
. (27)

Upon integration, this gives

ÊT =−
2πµε• 2

1− ν
a2b4

(d2− a2)2
, (28)
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up to an immaterial constant term. Consequently, by substituting (28) into (26), the total strain energy
becomes

ET = E0
T

[
1−

2a2b2

(d2− a2)2

]
, E0

T =
πµb2ε• 2

1− ν
. (29)

Therefore, the introduction of the void in an infinite medium with the inserted inclusion decreases the
strain energy, the decrease being greater for larger voids that are closer to the inclusion. This is sketched
in Figure 3 (left image).

For later use, we also evaluate from (29) the following quantities:

−a
∂ET

∂a
=

4πµa2ε• 2

1− ν

(
b
a

)4
(d/a)2+ 1
[(d/a)2− 1]3

, (30)

−b
∂ET

∂b
=

2πµa2ε• 2

1− ν

[
−

(
b
a

)2

+

(
b
a

)4 4
[(d/a)2− 1]2

]
, (31)

which will be discussed in relation to M-integrals in the next two sections.

5. M-integral around the void

The M-integral of the plane strain elasticity with respect to the coordinate origin at the point O can be
expressed as [Knowles and Sternberg 1972; Budiansky and Rice 1973]

MO =

∮
Pαβxβnα dl =

∮ [
x(Pxx nx + Pyx ny)+ y(Pxynx + Pyyny)

]
dl; (32)

that is,

MO =

∮ [
W (xnx + yny)− tx(xux,x + yux,y)− ty(xu y,x + yu y,y)

]
dl. (33)

By using the same closed contour from Figure 2, as in the evaluation of the Jx -integral, the contribution
from the remote circle M R

O tends to 0 as R tends to∞, because the stresses decay as 1/R2 far away from
the inclusion. Thus, Mvoid

O +M incl
O = 0, where

Mvoid
O = a2

∫ 2π

0
W (a, θ) dθ =

(1− ν)a2

4µ

∫ 2π

0
σ 2
θ (a, θ) dθ. (34)

Upon using the circumferential stress expression (14), the integration in (34) gives

Mvoid
O =

8µa2ε• 2

1− ν

(
b
a

)4[
K1− 4

(
d
a

)2

K2+ 4
(

d
a

)4

K3

]
, (35)

where

K1 =

∫ π

0

dθ
ρ4

0
=
π [(d/a)2+ 1]
[(d/a)2− 1]3

,

K2 =

∫ π

0

sin2 θ dθ
ρ6

0

=
π

2[(d/a)2− 1]3
,

K3 =

∫ π

0

sin4 θ dθ
ρ8

0

=
π [3(d/a)2− 1]

8(d/a)4[(d/a)2− 1]3
.

(36)
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Figure 4. The variation of Mvoid
O (left) and Mvoid

C (right) with d/a for the indicated
values of the ratio b/a. The scaling factor for both plots is M O = MC , as defined in (37).

The substitution of (36) into (35) yields

Mvoid
O = M O

(
b
a

)4
(d/a)2+ 1
[(d/a)2− 1]3

, M0 =
1
2

J xa =
4πµa2ε• 2

1− ν
. (37)

Physically, the ratio Mvoid
O /a represents the energy release rate associated with isotropic void growth (by

material absorption over the surface of the void), keeping the position of the inclusion fixed relative to
the center of the void. Indeed, the comparison of (37) with (30) shows that Mvoid

O =−a(∂ET /∂a).

6. M integral around the inclusion

By using the well-known relationship between the M-integrals relative to the coordinate origins at O
and C [Rice 1985],

M incl
O = M incl

C + d · J incl
x , (38)

and in view of the relationship Mvoid
O +M incl

O = 0, it follows that

M incl
C =−(Mvoid

O + d · J incl
x ). (39)

Consequently, by substituting into (39) the expression for Mvoid
O from (37) and the expression for J incl

x =

−J void
x from (23), the MC integral around the inclusion is found to be

M incl
C = MC

(
b
a

)4 1
[(d/a)2− 1]2

, MC = M O . (40)

If d � a, then M incl
C approaches zero, as if the inclusion was in an infinite medium without the void

(M incl,∞
C = 0). The variation of Mvoid

O and M incl
C with d/a for several values of the ratio b/a is shown in

Figure 4. In the limit of infinitely large radius of the void, the M-integral around the inclusion is

M incl
C =

πµε• 2

1− ν
b4

c2 , (41)

in duality with (25) through the relation M incl
C =−cJ incl

x .
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Figure 5. Left: the variation of the strain energy ET , given by (29) and normalized
by MC , with b/a in the case d = 2a. Right: the corresponding variation of δET /δb and
M incl

C /b, given by (42) and normalized by MC/b, where b = a.

6.1. Expansion of the inclusion. The ratio M incl
C /b does not represent the energy rate associated with

the isotropic growth (self-similar expansion) of the inclusion (δET /δb), which is given by (31). In fact,
the two are related by

δET

δb
=

2πµbε• 2

1− ν
−

2M incl
C

b
. (42)

Figure 5 (right image) shows the variation of δET /δb and M incl
C /b (both normalized by MC/b) with b/a,

in the case d = 2a. The energy (ET ) plot itself is shown in Figure 5 (left image). The maximum value
of the rate δET /δb is 0.2887 MC/a, taking place for b = 0.866a. The energy rate in the case when the
inclusion is tangent to the void (b= a) is 0.2778 MC/a. Figure 6 shows the variation of the energy ET and
the energy rate δET /δb with the distance d/a in the case of a circular inclusion of radii b = a, b = 3a/4,
and b = a/2. In the limit as d→∞, the energy ET approaches the value E0

T according to (29), while
the energy rate δET /δb approaches the value 1

2(b/a)
2 times MC/b, according to (42). Therefore, the

greater the distance from the void, the greater the energy ET associated with the presence of the inclusion,
and the greater the rate of energy δET /δb associated with the increase of the inclusion. This suggests
that the presence of a nearby free surface facilitates the eigenstrain transformation, which may be of
importance for the study of displacive transformations and transformation toughening mechanisms in
crystalline metallic materials and ceramics.

If the specific configurational force f is introduced, the rate of total strain energy associated with a
uniform expansion of inclusion can be expressed as

δET

δb
=−

∫ 2π

0
f (b, θ)b dθ, f =

[ 1
2(σ

0,in
i j + σ

0,out
i j )ρ=b+ σ̂i j (b, θ)

]
ε•i j , (43)

where σ̂i j (b, θ) are the stress components of the auxiliary problem around the inclusion. This type
of expression for f was originally derived by Gavazza [1977]. For the dilatational eigenstrain, (43)
reduces to

δET

δb
=

2πµbε• 2

1− ν
− bε•

∫ 2π

0
σ̂kk(b, θ) dθ. (44)
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Figure 6. Left: the variation of the strain energy ET , given by (29) and normalized
by MC , with the normalized distance d/a, for the three indicated radii of the inclusion.
Right: the corresponding variation of δET /δb, given by (42) and normalized by MC/b,
where b = a.

To evaluate σ̂kk(b, θ), one would have to solve the auxiliary boundary-value problem, which was circum-
vented in the earlier derivation of the rate δET /δb. The average normal stress around the inclusion can,
however, be determined immediately by comparing (44) with (31):

1
2π

∫ 2π

0
σ̂kk(b, θ) dθ =

4µε• 2

1− ν
a2b2

(d2− a2)2
. (45)

7. Circular inclusion in a half-space

Figure 7 (left image) shows a circular inclusion of radius b whose center is at distance c from the free
surface (x = 0) of a half-space. If the inclusion was given a uniform shear eigenstrain ε•xy , the longitudinal
stress along the free surface can be calculated from

σy(0, y)= 2[σ 0
y (0, y)− σ 0

x (0, y)], (46)

where the infinite medium stress field outside the inclusion is specified in Section 2. Upon using the
stress-transformation formulas between the (ρ, ϕ) and (x, y) coordinate systems, it follows that

σy(0, y)=−σ ycb2
(

2−
3b2

c2+ y2

)
y(c2
− y2)

(c2+ y2)3
, σ y =

8µε•xy

1− ν
. (47)

The plot of this stress along the y-axis for several values of the ratio c/b is shown in Figure 8.
The configurational force between the inclusion and the free surface of a half-space is determined from

J incl
x =−

∫
∞

−∞

W (0, y) dy =−
1− ν
4µ

∫
∞

−∞

σ 2
y (0, y) dy. (48)

Upon the substitution of (47) and integration, (48) becomes

J incl
x = J x

32(c/b)4− 72(c/b)2+ 45
5(c/b)7

, J x =−
5πµ

32(1− ν)
bε• 2

xy , (49)
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Figure 7. Left: a circular inclusion of radius b with its center at the distance c from the
free surface of the half-space. Right: the variation of Jx with c/b. The scaling factor is
J x =−5πµε•xy/[32(1− ν)].

where J x is the value of Jx when c = b. In the evaluation of integrals, the following recursive relations
were used [Gradshteyn and Ryzhik 1965]:∫

∞

0

ym dy
(1+ y2)n

=
m− 1

2n−m− 1

∫
∞

0

ym−2 dy
(1+ y2)n

, n > m/2,∫
∞

0

dy
(1+ y2)n

=
2n− 3
2n− 2

∫
∞

0

dy
(1+ y2)n−1 , n > 1.

(50)

The variation of J incl
x with c/b is shown in Figure 7 (right image). For the values of the ratio c/b

between 1.1794 and 1.5359 there is a peculiar increase of the force with the increase of c/b, after which
the configurational force resumes its expected decay with the increase of c/b. The brief interruption
of the force decay in this region with the increase of the ratio c/b is a consequence of the markedly
different nature of the stress variation σy(0, y), corresponding to different values of the ratio c/b, as
shown in Figure 8.

8. Conclusion

The J - and M-integrals along the boundary of a circular void, or along the straight edge of a half-space,
due to a nearby circular inclusion with uniform dilatational or shear eigenstrain, are evaluated by using
the Kienzler–Zhuping formula, without solving the entire boundary value problem at hand. Three types
of interactions between inclusion and void are considered. First, the configurational force exerted on the
void by the inclusion is determined by means of the J -integral evaluation. This represents the energy
release rate associated with an imagined void translation within the material toward the inclusion (by
diffusion or otherwise), keeping the position of the inclusion fixed. Second, the energy release rate is
evaluated associated with a self-similar expansion of the void (by material absorption over the surface of
the void), keeping the position of the inclusion fixed relative to the center of the void. This energy rate is
related to the M-integral around the void. Third, the energy rate associated with an isotropic expansion of
the inclusion is evaluated and related to the M-integral around the inclusion. The former differs from the
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Figure 8. The variation of the stress component σ(0, y) along the y-axis for several
values of the ratio c/b. The left image is for the values of c/b corresponding to the
local minimum and maximum of Jx , and the right image is for three other values of
c/b. The utilized scaling factor is 8µε•xy/(1− ν). The values of the ratio c/b at which
the configurational force has a local maximum and minimum are the roots of (c/b)2 =
(15±

√
15)/8. The corresponding force values are 0.5280J x and 0.4262J x .

latter. The relationship between the two quantities is derived and discussed. It is shown that the greater
the distance from the void, the greater the energy associated with the presence of the inclusion and the
energy rate associated with its growth. This suggests that the presence of a nearby free surface facilitates
the eigenstrain transformation, which may be of importance for the study of displacive transformations
and transformation toughening mechanisms in crystalline metallic materials and ceramics. The attraction
exerted on a circular inclusion with a uniform shear eigenstrain by the free surface of a half-space is also
evaluated. Peculiar variation of this configurational force with the distance between the inclusion and
the free surface is noted and discussed.
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DYNAMIC CONSERVATION INTEGRALS AS DISSIPATIVE MECHANISMS
IN THE EVOLUTION OF INHOMOGENEITIES

XANTHIPPI MARKENSCOFF AND SHAILENDRA PAL VEER SINGH

By the application of Noether’s theorem, conservation laws in linear elastodynamics are derived by
invariance of the Lagrangian functional under a class of infinitesimal transformations. The recent work
of Gupta and Markenscoff (2012) providing a physical meaning to the dynamic J -integral as the varia-
tion of the Hamiltonian of the system due to an infinitesimal translation of the inhomogeneity if linear
momentum is conserved in the domain, is extended here to the dynamic M- and L-integrals in terms of
the “if” conditions. The variation of the Lagrangian is shown to be equal to the negative of the variation
of the Hamiltonian under the above transformations for inhomogeneities, which provides a physical
meaning to the dynamic J -, L- and M-integrals as dissipative mechanisms in elastodynamics. We prove
that if linear momentum is conserved in the domain, then the total energy loss of the system per unit
scaling under the infinitesimal scaling transformation of the inhomogeneity is equal to the dynamic M-
integral, and if linear and angular momenta are conserved then the total energy loss of the system per
unit rotation under the infinitesimal rotational transformation is equal to the dynamic L-integral.

1. Introduction

Conservation laws can be expressed as dissipative mechanisms related to the variation of the energy of the
system due to infinitesimal configurational variations in the inhomogeneities. Eshelby [1951] used the
energy momentum tensor to define the force on an elastic singularity as a variation of the total energy
of the body due to the infinitesimal displacement of the defect. Furthermore, he provided additional
insights by extending this idea in a series of papers [Eshelby 1956; 1970; 1975] through his ingenious
cutting and rewelding thought experiment. Rice [1968] independently discovered the two-dimensional
path-independent J -integral for a crack. Günther [1962] and Knowles and Sternberg [1972] derived two
additional nontrivial conservation laws (M- and L-integrals) by applying Noether’s theorem [Noether
1918] in linear elastostatics. Rice and Drucker [1967] calculated the energy changes during the growth
of voids and cracks. Budiansky and Rice [1973] interpreted these new laws as energy release rates
associated with the expansion and the rotation rates of a cavity or a crack. Rice [1985] provided further
applications of these integrals to the defects.

Fletcher [1976] extended the application of Noether’s theorem to derive the conservation laws in
linear elastodynamics, and established the completeness of the corresponding conservation laws under a
certain group of the infinitesimal transformations. Hermann [1981; 1982] presented a unified formulation
to recover the conservations laws by employing different vector calculus operations on the Lagrangian

This research was supported by the NSF grant No. CMS-1129888.
Keywords: elastodynamics, conservation laws, Noether’s theorem, dissipative mechanism, dynamic J -integral, dynamic

L-integral, dynamic M-integral, inhomogeneity.
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density. Eischen and Herrmann [1987] extended this formulation to account for material inhomogeneity
temperature gradients, anisotropy, and body forces. Herrmann and Kienzler [1999] represented these
balance laws of continuum mechanics by 4× 4 tensors.

Markenscoff [2006] expressed the conservation integrals as a variation of the total energy of the system
by extending Eshelby’s thought experiment to elastodynamics. In elastostatics, Gupta and Markenscoff
[2008] showed that the total energy dissipation due to material translation of the inhomogeneity equals
the configurational force (J -integral) times the infinitesimal displacement of the inhomogeneity, if and
only if equilibrium is preserved in the domain. They extended the proof to elastodynamics [Gupta and
Markenscoff 2012], where the variation of the Lagrangian or the Hamiltonian is equal to the dynamic
J -integral if and only if the linear momentum is conserved in the domain.

In elastodynamics, Fletcher [1976] proved that the Lagrangian functional was invariant under a certain
group of infinitesimal transformations; Kienzler and Herrmann [2000, p. 66] also have a detailed proof for
elastostatics, which we extend to elastodynamics. We impose the scaling transformation to derive the M-
integral, and for infinitesimal rotational transformation we derive the dynamic L-integral. Furthermore,
we also relate the variation of the Lagrangian to the variation of the Hamiltonian for scaling and rotation of
the inhomogeneity. This allows us to give an energy dissipative meaning to the above “if” statements and
to the dynamic J -, L-, and M-integrals as dissipated energy by mechanisms not considered in elasticity
theory [Eshelby 1951, p. 108].

2. Mathematical framework

We briefly present the mathematical framework of the derivation of the conservation integrals from
Noether’s theorem in linear elastodynamics.

Consider the Lagrangian functional [Gelfand et al. 2000; Fletcher 1976]

5L
=

∫
R

L(xα, ui , uixα
) dx1 dx2 dx3 dx4, i = 1, 2, 3, α = 1, 2, 3, 4, (1)

where R is the region of integration. In elastodynamics, the independent variables are the material
coordinates x1, x2, x3 and x4 is the time variable, and the dependent variable ui is the displacement field.
For the infinitesimal transformations on the independent and the dependent variables,

x∗α = xα + εφα(xβ, ui , ui,β)+O(ε2), i = 1, 2, 3, α, β = 1, 2, 3, 4, (2a)

u∗j = u j + εψ j (xβ, ui , ui,β)+O(ε2), i, j = 1, 2, 3, β = 1, 2, 3, 4, (2b)

where ε is the infinitesimal transformation parameter. The variation of the functional (1) is written as

δ5L
=

∫
R∗

L(x∗α, u∗i , u∗ix∗α
) dx∗1 dx∗2 dx∗3 dx∗4 −

∫
R

L(xα, ui , uixα
) dx1 dx2 dx3 dx4, (3)

where R∗ is a new region of integration. In view of equations (2a)–(2b), Equation (3) can be further
written as [Gelfand et al. 2000, p. 176]

δ5L
=

∫
R

{
∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

}
δu j dx1 dx2 dx3 dx4+

∫
R

∂

∂xα

{
∂L
∂u j,α

δu j +Lδxα
}

dx1 dx2 dx3 dx4, (4)
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where (see also [Gelfand et al. 2000, Figure 10, p. 171])

δu j = u∗j (x
∗

α)−u j (xα)= {u∗j (x
∗

α)−u∗j (xα)}+{u
∗

j (xα)−u j (xα)} ≈
∂u∗j
∂xα

δxα+δu j ≈
∂u j

∂xα
δxα+δu j (5)

or
δu j = δu j − u j,αδxα. (6)

Furthermore, in terms of the transformations φα and ψ j , (4) becomes

δ5L
= ε

∫
R

{
∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

}
ψ j dx1 dx2 dx3 dx4+ ε

∫
R

∂

∂xα

{
∂L
∂u j,α

ψ j +Lφα

}
dx1 dx2 dx3 dx4, (7)

where, from relation (6),
ψ j = ψ j − u j,αφα. (8)

Note that, above and in the sequel, the partial derivatives with respect to xi and t , for any A(x j , u j , u̇ j , u j,k),
are defined as

∂(A)
∂xi
=
∂(A)
∂xi

∣∣∣
exp
+
∂(A)
∂ul

ul,i +
∂(A)
∂ u̇l

u̇l,i +
∂(A)
∂ul,m

ul,mi (9a)

and
∂(A)
∂t
=
∂(A)
∂t

∣∣∣
exp
+
∂(A)
∂ul

u̇l +
∂(A)
∂ u̇l

ül +
∂(A)
∂ul,m

u̇l,m . (9b)

Under the infinitesimal transformations (2a)–(2b), the functional 5L is said to be invariant at u if

δ5L
= 0. (10)

Furthermore, if u satisfies the Euler–Lagrange equations [Gelfand et al. 2000]

∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

= 0, (11)

then the first term in (7) vanishes, and it yields∫
R

∂

∂xα

{
∂L
∂u j,α

ψ j +Lφα

}
dx1 dx2 dx3 dx4 = 0. (12)

Let � be a region in three-dimensional space occupied by a linearly elastic solid, undergoing small
deformations and containing an inhomogeneity which is a surface of discontinuity in the strain and
velocity. Let u j (xi , t) denote the displacement, εi j the small strains, Ci jkl the components of the elasticity
tensor, ρ the density — which in linear elasticity is assumed constant, independent of time — and ( · ) the
time derivative, and denote the Cauchy stress by σi j = Ci jklεkl . The Lagrange density is defined as

L= T −W (13)

where the strain energy density is

W = 1
2Ci jklεi jεkl =

1
2Ci jklui, j uk,l, (14)

and the specific kinetic energy is
T = 1

2ρu̇i u̇i . (15)
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We write the total Lagrangian functional for � ⊂ R3 and [0, t] ⊂ R, and assume further L ∈ C∞,
so that L possesses continuous partial derivatives of all orders with respect to the element of its matrix
arguments on its domain of definition:

5L(ui, j , u̇i )=

∫ t

0

∫
�

L(ui, j , u̇i ) dV dt =
∫ t

0

∫
�

{T (u̇i )−W (ui, j )} dV dt. (16)

For L= T −W , the Euler–Lagrange equations (11) give

∂σi j

∂xi
−
∂(ρu̇ j )

∂t
= 0, (17)

which represents the conservation of the linear momentum. If the Euler–Lagrange equations (11) are
satisfied, then (12) should be satisfied in order for the Lagrangian functional 5L to be invariant under the
transformations (2a)–(2b). This will give the equations to derive the families φα and ψ j of infinitesimal
transformations.

Equation (12) is expanded in space and time variables as∫ t

0

∫
�

[
∂

∂xi

{
∂L
∂u j,i

ψ j +Lφi

}
+
∂

∂t

{
∂L
∂ u̇ j

ψ j +Lφ4

}]
dV dt = 0. (18)

Using (13), (18) is written∫ t

0

∫
�

[
∂

∂xi
{−σi jψ j +Lφi }+

∂

∂t
{ρu̇ jψ j +Lφ4}

]
dV dt = 0. (19)

The above relation applied to infinitesimal transformations given by equations (2a)–(2b) provides the
corresponding conservation laws for translation, scaling and rotation of the inhomogeneities (under which
the Lagrangian remains invariant), which are additional field equations and are derived in the following
section.

3. Family of infinitesimal transformations and dynamic conservation laws

In this section we extend the work of Kienzler and Herrmann [2000, p. 66] to elastodynamics in order
to obtain the family of infinite transformations under which the Lagrangian remains invariant. In this
section, for the sake of notational simplicity, we define and use

d
dxi
≡

∂

∂xi
, (20a)

d
dt
≡
∂

∂t
, (20b)

where the partial derivatives with respect to xi and t are taken as in equations (9a)–(9b), respectively.
Equation (19) is true for any arbitrary volume � and any arbitrary time interval, so we can write

d
dxi
{−σi jψ j +Lφi }+

d
dt
{ρu̇ jψ j +Lφ4} = 0. (21)
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Next, using ψ j from (8), expanded in space and time variables ψ j = ψ j − u j,lφl − u̇ jφ4, we rewrite
(21) as

d
dxi
{−σi j (ψ j − u j,lφl − u̇ jφ4)+Lφi }+

d
dt
{ρu̇ j (ψ j − u j,lφl − u̇ jφ4)+Lφ4} = 0, (22)

and we employ linear momentum balance to obtain

−σi j
d

dxi
(ψ j − u j,lφl − u̇ jφ4)+

d
dxi
(Lφl)δil + ρu̇ j

d
dt
(ψ j − u j,lφl − u̇ jφ4)+

d
dt
(Lφ4)= 0. (23)

Differentiating explicitly the terms on the left-hand side of (23) with the derivatives

dL

dxi
=
∂L

∂xi
+

∂L

∂uk, j

∂uk, j

∂xi
+
∂L

∂ u̇k

∂ u̇k

∂xi
=−σ jkuk, j i + ρu̇k u̇k,i , (24a)

dL

dt
=
∂L

∂t
+

∂L

∂uk, j

∂uk, j

∂t
+
∂L

∂ u̇k

∂ u̇k

∂t
=−σ jk u̇k, j + ρu̇k ük, (24b)

dφ j

dxi
=
∂φ j

∂xi
+
∂φ j

∂uk
uk,i ,

dφ4

dxi
=
∂φ4

∂xi
+
∂φ4

∂uk
uk,i , (24c)

dφ j

dt
=
∂φ j

∂t
+
∂φ j

∂uk
u̇k,

dφ4

dt
=
∂φ4

∂t
+
∂φ4

∂uk
u̇k, (24d)

dψ j

dxi
=
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i

dψ j

dt
=
∂ψ j

∂t
+
∂ψ j

∂uk
u̇k . (24e)

Therefore, (23) becomes

− σi j

(
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i

)
+ σi j u j,l

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
+φlσi j u j,li + σi j u̇ j

(
∂φ4

∂xi
+
∂φ4

∂uk
uk,i

)
+φ4σi j u̇ j,i +L

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
δil +φlδil(−σ jkuk, j i + ρu̇k u̇k,i )+ ρu̇ j

(
∂ψ j

∂t
+
∂ψ j

∂uk
u̇k

)
− ρu̇ j u j,l

(
∂φl

∂t
+
∂φl

∂uk
u̇k

)
−φlρu̇ j u̇ j,l − ρu̇ j u̇ j

(
∂φ4

∂t
+
∂φ4

∂uk
u̇k

)
−φ4ρu̇ j ü j

+L

(
∂φ4

∂t
+
∂φ4

∂uk
u̇k

)
+φ4(−σ jk u̇k, j + ρu̇k ük)= 0. (25)

Rearranging this equation as in [Kienzler and Herrmann 2000, p. 64] leads to

0=
∂φl

∂uk
[σi j u j,luk,l −W uk,iδil] [∼ u3

i,l] (26a)

+
∂φl

∂uk
[T uk,iδil − ρu̇ j u̇ku j,l] [∼ u j,l u̇2

k] (26b)

+
∂φ4

∂uk
[σi j u̇ j uk,l −W u̇k] [∼ u2

i, j u̇k] (26c)

+
∂φ4

∂uk
[T u̇k − ρu̇ j u̇ j u̇k] [∼ u̇3

k] (26d)

+
∂ψ j

∂uk
[−uk,iσi j ] +

∂φl

∂xi
[σi j u j,l −Wδil] +

∂φ4

∂t
[−W ] [∼ u2

j,k] (26e)
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+
∂ψ j

∂uk
[ρu̇ j u̇k] +

∂φl

∂xi
[T δil] +

∂φ4

∂t
[−ρu̇ j u̇ j + T ] [∼ u̇2

k] (26f)

+
∂φl

∂t
[−ρu̇ j u j,l] +

∂φ4

∂xi
[σi j u̇ j ] [∼ u j,l u̇ j ] (26g)

+
∂ψ j

∂xi
[σi j ] [∼ ui, j ] (26h)

+
∂ψ j

∂t
[−ρu̇ j ]. [∼ u̇ j ] (26i)

Setting all the coefficients equal to zero leads to the requirement that the functions φl , φ4 and ψ j satisfy
an overdetermined system of linear differential equations.

From (26a) it follows that φl must not be a function of u j . Thus,

φl = φl(xk, t); (27)

with this, part (26b) is also satisfied. From (26c) it follows that φ4 must not be a function of uk . Thus,

φ4 = φ4(xk, t); (28)

with this, part (26d) is also satisfied. From (26i) it follows that ψ j must not be a function of t . Thus,

ψ j = ψ j (xk, ul). (29)

Using relations (27)–(29), from (26e) or (26f) it follows that

∂ψ j

∂uk
= h jk(xl), (30)

that is,
ψ j = h jk(xl)uk + g j (xl). (31)

From (26h) it follows that the functions h jk(xl) are actually constants, and, due to the symmetry of the
stress tensor, the terms ∂g j/∂xi form a skew-symmetric constant matrix. Thus,

ψ j = α jkuk +�kεkil xi + r j . (32)

Because ∂ψ j/∂uk is matrix of constant coefficients, from (26e) or (26f), we further conclude that φl

must not be a function of t as well; thus,

φl = φl(xk); (33)

furthermore, φ4 must not be a function of xi as well; thus,

φ4 = φ4(t). (34)

With this, (26g) is also satisfied. Therefore, we can write

ψ j = α jkuk +�kεkil xi + r j , (35a)

φ j = β jk xk + a j , (35b)

φ4 = l0t + t0. (35c)
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Now we split the constant matrices αi j and βi j into symmetric and antisymmetric parts and, further, the
symmetric parts into spherical and deviatoric parts, as follows:

β j i = lδi j +β
′

j i +mnεni j , (36a)

α jk = lγ δk j +α
′

jk +ωnεnk j , (36b)

with l, γ , mn , ωn , β ′j i , α
′

jk being constant parameters or matrices of constant coefficients, satisfying

β ′j i = β
′

i j , α′jk = α
′

k j , β ′j j = α
′

j j = 0. (37)

With this, using (26e) and (26f) we obtain

(lγ δk j+α
′

jk+ωnεnk j )[−uk,iσi j+ρu̇ j u̇k]+(lδil+β
′

li+mnεnil)[σi j u j,l+Lδil]+l0[−ρu̇ j u̇ j+L]=0; (38)

after rearranging, we can write

l(−γ δk j uk,iσi j + γ δk jρu̇ j u̇k + δilσi j u j,l + δilLδil)+ l0(−2T +L)+ωnεnk j (−uk,iσi j + ρu̇ j u̇k)

+mnεnil(σi j u j,l +Lδil)+α
′

jk(−uk,iσi j + ρu̇ j u̇k)+β
′

il(σi j u j,l +Lδil)= 0, (39)

and we further simplify to write

l[−γ 2W + γ 2T + 2W + n(T −W )] + l0(−2T +L) (40a)

+ εnpqσi p(ωnuq,i +mnui,q) (40b)

+ (β ′ilσi j u j,l −α
′

jkuk,iσi j )+α
′

jkρu̇ j u̇k = 0, (40c)

where n = δi i is the number of space dimensions. If l0 = l, then, for the first term (40a) to vanish, we have

−2γW + 2γ T + 2W + n(T −W )− 2T + T −W = 0 =⇒ γ = 1
2(1− n), (41)

and the second term (40b) vanishes if
mn = ωn, (42)

provided that the material is isotropic, i.e., εnpqσi p[uq,i + ui,q ] = 0 [Eshelby 1975]. The third term (40c)
vanishes only if α′jk = β

′

il = 0, which means that

β j i = lδi j +ωnεni j , α j i =
1
2 l(1− n)δi j +ωnεni j and φ4 = lt + t0. (43)

Hence, we state the suitable infinitesimal transformations

φ j = ωnεni j xi + lx j + a j , (44a)

φ4 = lt + t0, (44b)

ψ j = ωnεni j ui +
1
2 l(1− n)u j +�nεni j xi + r j , (44c)

or

x∗j = x j + ε(ωnεni j xi + lx j + a j ), (45a)

t∗ = t + ε(lt + t0), (45b)
u∗j = u j + ε

(
ωnεni j ui +

1
2 l(1− n)u j +�nεni j xi + r j

)
, (45c)
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where l, t0 are constant parameters and ωn, a j , �n, r j are vectors with constant components. The vec-
tors r j and �n describe a rigid-body translation and rotation, respectively, while a j and ωn describe
material translation (coordinate translation) and material rotation (coordinate rotation), respectively, and
the parameter l represents the scaling. The above family of transformations agrees with [Fletcher 1976]
in three dimensions (n = 3). Applying the transformations indicated by equations (45a)–(45c) for the
material translation, scaling and rotation separately to (19), the conservation laws for elastodynamics are
derived in the following subsections.

3.1. Invariance of the Lagrangian under translation. For the infinitesimal translation of the material,
we utilize the transformation [Fletcher 1976] such that the new coordinates are x∗i = xi + εai and the new
time and displacement field remain invariant (t∗ = t , u∗i = ui ), where εai is the infinitesimal translation.
After comparing the transformation with equations (45) and (44), we have

φi = ai , φ4 = 0, and ψ j = 0; (46)

therefore, from (8),

ψ j =−u j,kak . (47)

Inserting the above transformation in (19) to obtain the conservation law for translation, we obtain∫ t

0

∫
�

[
∂

∂xi
{(Lδik + σi j u j,k)ak}−

∂

∂t
{ρu̇ j u j,kak}

]
dV dt = 0. (48)

The relation is true for any ak ; therefore, we get∫ t

0

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV dt = 0. (49)

Equation (49) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k} = 0, (50)

which is in agreement with [Fletcher 1976, Equation 3.4]. Equation (50) is an additional field equation
valid anywhere in the domain of analyticity. Ni and Markenscoff [2009] have used (50) as a field equation
to obtain the logarithmic singularity of the near field of an accelerating (generally moving) dislocation
rather than by singular asymptotics of the full solution [Callias and Markenscoff 1988].

Analogously to statics, for linear elastodynamics we define the dynamic J -integral as [Bui 1978;
Maugin 1993; Markenscoff 2006]

J dyn
k ≡−

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (51)

The dynamic J -integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes it. The above expression for the dynamic J -integral agrees in the static
case with [Eshelby 1959; Günther 1962; Rice 1968; Knowles and Sternberg 1972].
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3.1.1. Relation of J dyn
k with the energy release rate. If � is a region of analyticity excluding the inho-

mogeneity then, from (50), using relation (13), we can write∫
�

[
∂

∂xi
{(T −W )δik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV = 0, (52)

which, equivalently, is written as∫
�

[
∂

∂xi
{(W + T )δik − σi j u j,k}− 2 ∂T

∂xk
+
∂

∂t
{ρu̇ j u j,k}

]
dV = 0. (53)

We may write this in a form similar to [Gupta and Markenscoff 2012, Equation 10], as∫
�

∂

∂xi
{(W + T )δik − σi j u j,k} dV +

∫
�

[ρü j u j,k − ρu̇i u̇i,k] dV = 0. (54)

By considering the region of analyticity � as �=�2−�1, i.e., as the difference between two regions �2

and �1 (with �1 ⊂�2) that include the inhomogeneity, and by using the divergence theorem to convert
the first volume integral into a surface integral, we have∫

S1+S2

{(W + T )nk − σi j u j,kni } dS+
∫
�2−�1

[ρü j u j,k − ρu̇i u̇i,k] dV = 0, (55)

where ni is the outward unit normal vector to the surface S1+ S2. It follows that∫
S1

{(W + T )nk − σi j u j,kni } dS+
∫
�1

[ρü j u j,k − ρu̇i u̇i,k] dV

=

∫
S2

{(W + T )nk − σi j u j,kni } dS+
∫
�2

[ρü j u j,k − ρu̇i u̇i,k] dV = J dyn
k . (56)

We now consider the volume �1 to shrink to zero as the contour S1 shrinks onto the moving inhomo-
geneity and moves with it. As the volume �1 shrinks to zero, in view of the fact that “the elastic field
in the immediate vicinity of the moving inhomogeneity at any instant is indistinguishable from the local
field of an appropriate steady state moving inhomogeneity, for which ∂/∂t =−v∂/∂x” [Freund 1972],
the volume integral in the region �1 vanishes, so that (55) yields the expression for J dyn

k as

J dyn
k = lim

S1→0

∫
S1

{(W + T )nk − σi j u j,kni } dS, (57)

where S1 is an arbitrary surface surrounding the inhomogeneity, moving with it and shrinking upon it.
The above relation of J dyn

k agrees with [Freund 1990, p. 269] and [Markenscoff 2006, Equation 14].
This expression will relate J dyn

k to the energy release rate for the moving inhomogeneity, as treated in
Section 5.1 (see (116)).

3.2. Invariance of the Lagrangian under scaling. For the self-similar expansion of the material, con-
sider the smooth scaling such that the new coordinates and time are x∗i = xi + εlxi and t∗ = t + εlt ,
respectively, and the new displacement field is u∗i = ui +

1
2(1− n)εlui , where l is the scaling parame-

ter and n is the number of space dimensions. After comparing the transformation with equations (45)
and (44), we have

φi = lxi , φ4 = lt and ψ j =
1
2(1− n)lu j ; (58)
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therefore, from (8),
ψ j = l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
. (59)

Substituting the above transformation in (19) to obtain the conservation law for scaling, we write∫ t

0

∫
�

[
∂

∂xi

{
−σi j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llxi

}
+
∂

∂t
{
ρu̇ j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llt

}]
dV dt = 0. (60)

The relation is true for any scaling parameter l, therefore we get∫ t

0

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV dt = 0. (61)

Equation (61) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
= 0. (62)

Equation (62) is compared to [Fletcher 1976, Equation 3.5] for a three-dimensional case (n = 3) and it
is an additional field equation valid anywhere in the domain of analyticity.

Analogously to statics, for linear elastodynamics we define the dynamic M-integral as

Mdyn
≡−

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

(1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV . (63)

The dynamic M-integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes the inhomogeneity. The above expression for the dynamic M-integral
agrees in the static case with [Günther 1962; Knowles and Sternberg 1972]. After further rearrangements,
we may write the M-integral as

Mdyn
=−

∫
�

xα
[
∂

∂xi
{Lδiα + σi j u j,α}−

∂

∂t
{ρu̇ j u j,α}

]
dV, (64)

where the xi are the material coordinates for i = 1, 2, 3, and x4 = t (time variable).

3.3. Invariance of the Lagrangian under rotation. From the family of transformations we have two
types of rotation: one is rigid-body rotation (�n) and the other is material rotation (ωn). By choosing
nonzero physical rotation in equations (45) and (44) we obtain the angular momentum balance law, and
by choosing nonzero material rotation we obtain the expression for the dynamic L-integral.

3.3.1. Rigid-body rotation: �n 6= 0, ωn = 0. In the case of a rigid-body rotation of the material, consider
the smooth transformation in xi and ui such that the coordinates and the time variable remain unchanged
(x∗i = xi , t∗ = t), and the new displacement field is u∗i = ui + εilmε�m xl , where ε�m is the infinitesimal
physical rotation. After comparing the transformation with equations (45) and (44), we have

φi = 0, φ4 = 0 and ψ j = ε jlm�m xl; (65)
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therefore, from (8),
ψ j =�mε jlm xl . (66)

Inserting the above transformation in (19) to obtain the conservation law for rotation, we obtain∫ t

0

∫
�

[
∂

∂t
{ρu̇ j�mε jlm xl}+

∂

∂xi
{−σi j�mε jlm xl}

]
dV dt = 0. (67)

The relation is true for any �m ; therefore, the expression for the conservation of angular momentum is

ε jlm

∫ t

0

∫
�

[
∂

∂t
(ρu̇ j xl)−

∂

∂xi
(σi j xl)

]
dV dt = 0. (68)

The above equation holds true for any arbitrary volume � and arbitrary time interval, so we have

∂

∂t
(ε jlmρu̇ j xl)−

∂

∂xi
(ε jlmσi j xl)= 0, (69)

which is the field equation for the angular momentum balance.

3.3.2. Material or coordinate rotation: �n = 0, ωn 6= 0. In case of the material or coordinate rotation
of an isotropic material, consider the smooth transformation in xi and ui such that the new coordinates
are x∗i = xi + εilmεωm xl , new time remains unchanged (t∗ = t), and the new displacement field is
u∗i = ui+εilmεωmul , where εωm is the infinitesimal material rotation. After comparing the transformation
with equations (45) and (44), we have

φi = εilmωm xl, φ4 = 0 and ψ j = ε jlmωmul; (70)

therefore, from (8),
ψ j = ωm(ε jlmul − εklmu j,k xl). (71)

Inserting the above transformation in (19) to obtain the conservation law for rotation, we obtain∫ t

0

∫
�

[
∂

∂t
{
ρu̇ jωm(ε jlmul − εklmu j,k xl)

}
+

∂

∂xi

{
−σi jωm(ε jlmul − εklmu j,k xl)+Lεilmωm xl

}]
dV dt = 0. (72)

The relation is true for any ωm ; therefore we get∫ t

0

∫
�

[
∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)]
dV dt = 0. (73)

Equation (73) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)
= 0. (74)

Equation (74) is compared to [Fletcher 1976, Equation 3.6]; however, Fletcher’s expression has a negative
sign in front of the second term of the first integrand on the left-hand side. In addition to equations
(50) and (62), (74) is an additional field equation of elastodynamics valid anywhere in the domain of
analyticity.
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Analogously to statics, for linear elastodynamics we define the dynamic L-integral as

Ldyn
m ≡−

∫
�

[
∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)]
dV . (75)

The dynamic L-integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes the inhomogeneity. The above expression for the dynamic L-integral
agrees in the static case with [Günther 1962; Knowles and Sternberg 1972]. After further rearrangements,
for an isotropic material, we may write the L-integral as

Ldyn
m =−

∫
�

εmkl xl

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (76)

In the next section, we present these conservation laws as dissipative mechanisms for the correspond-
ing infinitesimal transformations of translation, scaling and rotation of the inhomogeneities.

4. Conservation integrals as dissipative mechanisms

With the objective of relating the conservation integrals J , M and L to the corresponding energy loss of
the system, in this section we express the variation of the Lagrangian in terms of balance laws of linear
and angular momenta and the “conserved” integrals. Subsequently, the variation of the Lagrangian will
be related to the variation of the Hamiltonian, which, in term, will be related to the total energy loss of
the system.

Equation (7) is written, after expanding in space and time variables,

δ5L
= ε

∫ t

0

∫
�

{
∂L
∂u j
−

∂

∂xi

∂L
∂u j,i

−
∂

∂t
∂L
∂ u̇ j

}
ψ j dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi

{
∂L
∂u j,i

ψ j +Lφi

}
+
∂

∂t

{
∂L
∂ u̇ j

ψ j +Lφ4

}]
dV dt, (77)

In view of equations (13)–(15), the term ∂L/∂u j vanishes, ∂L/∂u j,i = −σi j , and ∂L/∂ u̇ j = ρu̇ j ;
therefore, (77) can be written as

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi
{−σi jψ j +Lφi }+

∂

∂t
{ρu̇ jψ j +Lφ4}

]
dV dt. (78)

Next, (78) is applied to the infinitesimal transformations φ and ψ corresponding to translation, scaling
and rotation of the inhomogeneities.

4.1. Translation of the inhomogeneity. For translation of the inhomogeneity, we utilize the transforma-
tion [Fletcher 1976] such that the new coordinates are x∗i = xi + εai and the new time and displacement
field remain invariant (u∗i = ui ), where εai is the infinitesimal translation of the inhomogeneity. After
comparing the transformation with equations (45) and (44), we have

φi = ai , φ4 = 0 and ψ j = 0; (79)
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therefore, from (8),
ψ j = ψ j − u j,αφα =−u j,kak . (80)

Substituting the above transformation in (78) gives [Gupta and Markenscoff 2012]

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
(−u j,kak) dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi
{(Lδik + σi j u j,k)ak}+

∂

∂t
{−ρu̇ j u j,kak}

]
dV dt. (81)

Taking the translation vector ak out of the second integral of the right-hand side, we write

δ5L
=−ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV dt

+ εak

∫ t

0

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV dt. (82)

Taking the time derivative of the above equation, we obtain

˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (83)

From (51), the integral in the second term of the right-hand side of (83) is −J dyn
k , so we can rewrite

(83) as

˙δ5L =−

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV − εak J dyn

k . (84)

In (84), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which vanishes by the Euler–Lagrange equations applied to the Lagrangian.

4.2. Scaling of the inhomogeneity. For the self-similar expansion, consider the smooth scaling such that
the new coordinates and time are x∗i = xi + εlxi and t∗ = t + εlt , respectively, and the new displacement
field is u∗i = ui +

1
2(1−n)εlui , where l is the scaling parameter and n is the number of space dimensions.

After comparing the transformation with equations (45) and (44), we have

φi = lxi , φ4 = lt and ψ j =
1
2(1− n)lu j ; (85)

therefore, from (8), we have

ψ j = ψ j − u j,αφα = l
( 1

2(1− n)u j − u j,k xk − t u̇ j
)
. (86)

Substituting the above transformation in (78) to obtain the variation of the Lagrangian for scaling of the
inhomogeneity, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

[
∂

∂xi

{
−σi j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llxi

}
+
∂

∂t

{
ρu̇ j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llt

}]
dV dt . (87)
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Taking the scaling parameter l out of the second integral on the right-hand side, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt+εl

∫ t

0

∫
�

[
∂

∂xi

{
Lxi+σi j

(1
2(n−1)u j+u j,k xk+t u̇ j

)}
+
∂

∂t

{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV dt. (88)

Taking the time derivative of the above equation, we write

˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t

{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV . (89)

From (63), the integral in the second term of the right-hand side of (89) is −Mdyn, so we can rewrite
(89) as

˙δ5L =

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV − εl Mdyn. (90)

In (90), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which vanishes by the Euler–Lagrange equations applied to the Lagrangian.

4.3. Rotation of the inhomogeneity. Following the lever arm (ul + xl) described by Eshelby [1956,
p. 106], and taking �n = ωn in (45) for the rotation of the inhomogeneity in an isotropic material, we
consider the smooth transformation in xi and ui such that the new coordinates are x∗i = xi + εilmεωm xl ,
new time remains unchanged (t∗ = t), and the new displacement field is u∗i = ui + εilmεωm(ul + xl),
where ωm is the rotation vector. After comparing the transformation with equations (45) and (44), we have

φi = εilmωm xl, φ4 = 0 and ψ j = ε jlmωm(ul + xl); (91)

therefore, from (8), we have

ψ j = ψ j − u j,kφk = ωm
(
ε jlm(ul + xl)− εklmu j,k xl

)
. (92)

Substituting the above transformation into (78) to obtain the variation of the Lagrangian for rotation of
the inhomogeneity, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

[
∂

∂t

{
ρu̇ jωm(ε jlm(ul + xl)− εklmu j,k xl)

}
+

∂

∂xi

{
−σi jωm(ε jlm(ul + xl)− εklmu j,k xl)+Lεilmωm xl

}]
dV dt, (93)

after collecting the angular momentum balance terms, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt−εωm

∫ t

0

∫
�

[
∂

∂xi
(ε jlm xlσi j )−

∂

∂t
(ρε jlm xl u̇ j )

]
dV dt

+εωm

∫ t

0

∫
�

[
∂

∂xi
(−ε jlmulσi j+εklm xlu j,kσi j+εilm xlL)+

∂

∂t
(ρε jlmul u̇ j−ρεklm xl u̇ j u j,k)

]
dV dt, (94)
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after further rearrangements we obtain

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt−εωm

∫ t

0

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV dt

+εωm

∫ t

0

∫
�

[
∂

∂xi
(εml j ulσi j+εmkl xlu j,kσi j−εmli xlL)+

∂

∂t
(ρεmjlul u̇ j+ρεmlk xl u̇ j u j,k)

]
dV dt. (95)

Taking the time derivative of the above equation, we write

˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV − εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV

+ εωm

∫
�

[
∂

∂xi
(εml j ulσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k)

]
dV . (96)

From (75), the integral in the third term of the right-hand side of (96) is −Ldyn
m , so we can rewrite (96) as

˙δ5L= ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV −εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV −εωm Ldyn

m . (97)

In (97), the term in the curly brackets in the first integrand is the linear momentum balance expression
(Equation (17)) and the second integrand on the right-hand side is the angular momentum expression
(Equation (69)).

It may be noted that we obtain both the expression for the angular moment balance and the dynamic L-
integral from the variation of the Lagrangian functional because the rigid-body rotation (Equation (65))
and the material rotation (Equation (70)) are both considered. The transformation of rigid-body rota-
tion (Section 3.3.1) by itself leads to the expression for the angular momentum balance [Fletcher 1976,
Equation 3.3], and the transformation of material rotation (Section 3.3.2) leads to the expression for the
dynamic L-integral [Fletcher 1976, Equation 3.6]. By using both together we are able to obtain the
dissipative statement (97), as further discussed in the following sections.

5. Relation of the variations of the Lagrangian and Hamiltonian under the transformations of
translation, scaling and rotation of inhomogeneities

In the previous sections, Noether’s theorem was applied to the Lagrangian functional of the system from
which the conservation of linear momentum is derived as the Euler–Lagrange equations (11). In this
section, we relate the variation of the Lagrangian to the variation of the Hamiltonian under translation,
scaling and rotation of the inhomogeneities so that we can explicitly relate the conservation integrals
with energy release rates ([Gupta and Markenscoff 2012]; and private communication with Gupta).

The Hamiltonian density is defined as

H= T +W, (98)

where the strain energy density is W = 1
2Ci jklεi jεkl =

1
2Ci jklui, j uk,l and the specific kinetic energy is

T = 1
2ρu̇i u̇i . We consider the total Hamiltonian functional for �⊂ R3 and [0, t] ⊂ R:

5H(ui, j , u̇i )=

∫ t

0

∫
�

H(ui, j , u̇i ) dV dt =
∫ t

0

∫
�

{T (u̇i )+W (ui, j )} dV dt. (99)
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The functional (99) represents the total mechanical energy stored in an arbitrary part � of the body during
the time interval [0, t]. Applying (7) to the Hamiltonian (98) and expanding in space and time variables,
we write (similarly to (77) for the Lagrangian L= T −W ) the variation of the Hamiltonian functional
(99) under the infinitesimal transformation (2a)–(2b) as

δ5H
= ε

∫ t

0

∫
�

{
∂H

∂u j
−

∂

∂xi

∂H

∂u j,i
−
∂

∂t
∂H

∂ u̇ j

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi

{
∂H

∂u j,i
ψ j +Hφi

}
dV dt

+ ε

∫ t

0

∫
�

∂

∂t

{
∂H

∂ u̇ j
ψ j +Hφ4

}
dV dt. (100)

In view of equations (98), (14) and (15), the term ∂H/∂u j vanishes and ∂H/∂u j,i = σi j , and ∂H/∂ u̇ j =

ρu̇ j ; therefore, the above equation can be written as

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W + T )φi } dV dt

+ ε

∫ t

0

∫
�

∂

∂t
{ρu̇ jψ j + (W + T )φ4} dV dt. (101)

Note that the first term on the right-hand side of the above equation is not the same as the first term of
the variation of the Lagrangian (Equation (78)), which is the linear momentum balance term. Next, we
rearrange the terms so as to produce the linear momentum balance expression in the first integrand and
make a connection to the variation of the Lagrangian:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W + T )φi } dV dt

+ ε

∫ t

0

∫
�

{
−ψ j

∂

∂t
(ρu̇ j )+ ρu̇ j

∂

∂t
ψ j +

∂

∂t
[(W + T )φ4]

}
dV dt. (102)

We further rearrange as to produce terms with (W − T ) in the remaining terms on the right-hand side:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W − T )φi } dV dt

+ ε

∫ t

0

∫
�

{
−ψ j

∂

∂t
(ρu̇ j )− ρu̇ j

∂

∂t
ψ j +

∂

∂t
[(W − T )φ4]

}
dV dt

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt. (103)

We further rewrite this expression using (13), so that the expression in the variation of the Hamiltonian
involves the Lagrangian:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j −Lφi } dV dt

+ ε

∫ t

0

∫
�

d
dt
{−ρu̇ jψ j −Lφ4} dV dt + 2ε

∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt. (104)
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Using (78), which is the expression for the variation of the Lagrangian, we have

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt, (105)

which can be written, using (8), as

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
(ψ j − u j,iφi − u̇ jφ4)

}
dV dt, (106)

Now we employ the relation (106) of the variations of the Lagrangian and Hamiltonian to the correspond-
ing infinitesimal transformations of translation, rotation, and scaling of the inhomogeneity.

5.1. Translation of the inhomogeneity. In this case we use the transformation such that φi = ai , φ4 = 0
and ψ j = 0, i.e., translation of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T ai )+ ρu̇ j

∂

∂t
(−u j,i ai )

}
dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{ρu̇k u̇k,i ai − ρu̇ j u̇ j,i ai } dV dt

=−δ5L. (107)

Thus, under an infinitesimal translation of the inhomogeneity, the variation of the Lagrangian is equal to
the negative variation of the Hamiltonian, which was already shown by Gupta and Markenscoff [2012].
Taking the time derivative of (107), we can write

˙δ5H =− ˙δ5L, (108)

which, using (84), can be written as

˙δ5H =− ˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak J dyn

k , (109)

where J dyn
k is defined by (51). Considering the definition of the Hamiltonian 5H(ui, j , u̇i ) according to

(99), we define δEtot as
δEtot
≡ ˙δ5H, (110)

where δEtot is the change of the total energy in the volume � under the infinitesimal transformations of
(45), evaluated at time t . The external forces are assumed to be absent. Now, from equations (110) and
(109) we can write

δEtot
= ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak J dyn

k . (111)

In (111), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which will vanish due to conservation of linear momentum. So, if linear momentum is
conserved in the whole domain, then (111) can be written as

δEtot
= εak J dyn

k . (112)
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Moreover, as shown in [Gupta and Markenscoff 2012], if δEtot
= εak J dyn

k then the first term on the
right-hand side of (111) will vanish, and, if u j,k is invertible, then the term in the curly brackets (linear
momentum balance expression) will vanish since the integral is valid for any arbitrary volume �. There-
fore, (111) can be stated as the proposition that, under an infinitesimal translation of the inhomogeneity
(transformation (79)), the change of the total energy of the system per unit infinitesimal translation of
the inhomogeneity is equal to the dynamic J -integral if and only if linear momentum is conserved in the
whole domain [Gupta and Markenscoff 2012], provided that u j,k is invertible.

If the inhomogeneity is moving with the velocity ˙εak ≡ vk , then we can write the rate of the total
energy change ˙δEtot as

˙δEtot = vk J dyn
k . (113)

The above equation agrees in the static case with [Budiansky and Rice 1973; Lubarda and Markenscoff
2007]. With the expression for J dyn

k given in (57), Equation (113) yields

˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )nkvk − σi j u j,knivk

}
dS, (114)

where Sd is an arbitrary surface surrounds the inhomogeneity, moving with it and shrinking on it, and
the nk are the components of the unit outward normal n to the surface Sd . Furthermore, near the core
of the moving inhomogeneity, leading-order terms of the fields satisfy the relation ∂/∂t = −vk∂/∂xk

[Freund 1972], so we can write u j,kvk =−u̇ j in (114) to obtain

˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )vn + σi j u̇ j ni

}
dS, (115)

where vn is the component of the velocity of the inhomogeneity in the direction of the outward normal n
to the surface Sd . In agreement with the expression for the energy release rate into the core of the moving
inhomogeneity as given by Eshelby [1970, Equation 78] we define the energy release rate G by

vG≡ ˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )vn + σi j u̇ j ni

}
dS, (116)

which represents rate of energy loss of the system flowing into the inhomogeneity under translation.
Equation (116) is in agreement with the energy release for a moving crack by [Atkinson and Eshelby 1968,
Equation 9; Freund 1972, Equation 13; Freund 1990, p. 262], for dislocations [Clifton and Markenscoff
1981] and moving phase boundaries [Markenscoff and Ni 2010; Ni and Markenscoff 2015]. As proven
in [Freund 1972], the above expression is path-independent for a crack, and will also be now for an
inhomogeneity, since it is a weaker singularity.
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5.2. Scaling of the inhomogeneity. In this case we use the transformation such that φi = lxi , φ4 = lt
and ψ j =

1
2(1− n)lu j , i.e., scaling of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T lxi )+

∂

∂t
(T lt)+ ρu̇ j

∂

∂t
( 1

2(1− n)lu j − u j,i lxi − u̇ j lt
)}

dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
lxiρu̇k u̇k,i + nlT + ltρu̇k ük + T l + 1

2(1− n)lρu̇ j u̇ j − lxiρu̇ j u̇ j,i

− ltρu̇ j ü j − lρu̇ j u̇ j
}

dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
nT l + T l + (1− n)T l − 2T l

}
dV dt

=−δ5L, (117)

where n is equal to number of spatial dimensions.
Thus, under an infinitesimal scaling of the inhomogeneity, the variation of the Lagrangian is equal to

the negative variation of the Hamiltonian. Taking the time derivative of (117), we can write

˙δ5H =− ˙δ5L, (118)

which, using (90), can be written as

˙δ5H =− ˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl Mdyn, (119)

where Mdyn is defined by (63). Now, from (99) and (119), we can define

δEtot
≡ ˙δ5H =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl Mdyn, (120)

where δEtot is the change of the total energy in the volume � due to the scaling of the inhomogene-
ity evaluated at time t . In (120), the term in the curly brackets in the integrand is the linear mo-
mentum balance expression (Equation (17)). Therefore, (120) can be stated as the proposition that if
linear momentum is conserved in the whole domain, then the change of the total energy of the sys-
tem per unit infinitesimal scaling εl, under the scaling transformation (85), is equal to the dynamic
M-integral.

5.3. Rotation of the inhomogeneity. In this case we use the transformation such that φi = εilmωm xl ,
φ4 = 0 and ψ j = ε jlmωm(ul + xl), i.e., rotation of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T εilmωm xl)+ ρu̇ j

∂

∂t
(ε jlmωm(ul + xl)− u j,iεilmωm xl)

}
dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
εilmωm xlρu̇k u̇k,i + T εilmωmδil

+ ρu̇ jε jlmωm u̇l − ρu̇ j u̇ j,iεilmωm xl
}

dV dt. (121)

The first term of the integrand on the right-hand side cancels with the fourth term, the second term is
zero because δil is symmetric in i and l but εilm is skew-symmetric in i and l, and similarly the third
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term is also zero because u̇ j u̇l is symmetric in j and l but ε jlm is skew-symmetric in j and l. Hence,
we obtain

δ5H
=−δ5L. (122)

Thus, under an infinitesimal rotation of the inhomogeneity, for an isotropic material the variation of the
Lagrangian is equal to the negative variation of the Hamiltonian. Taking the time derivative of (122), we
can write

˙δ5H =− ˙δ5L, (123)

which, using (97), can be written as

˙δ5H =− ˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV

+ εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV + εωm Ldyn

m , (124)

where Ldyn
m is defined by (75). Now, from (99) and (124), we can define

δEtot
≡ ˙δ5H =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV

+ εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV + εωm Ldyn

m , (125)

where δEtot is the change of the total energy in the volume � due to the rotation of the inhomogeneity
evaluated at time t . In (125), the term in the curly brackets in the first integrand is the linear momen-
tum balance expression (Equation (17)) and the second integrand on the right hand side is the angular
momentum expression (Equation (69)). Therefore, (125) can be stated as the proposition that, for an
isotropic material, if linear and angular momenta are conserved in the whole domain, then the change of
the total energy of the system per unit infinitesimal rotation εωm , under the rotation transformation (91)
with “lever arm xi + ui ” is equal to the dynamic L-integral.

6. Dissipative propositions

6.1. Translation of the inhomogeneity. From relation (111), we state the following proposition:

Proposition 1 [Gupta and Markenscoff 2012]. Under the translation transformation of Equation (79),
the total energy loss of the system per unit infinitesimal translation is equal to the dynamic J -integral if
and only if linear momentum is conserved in the domain, provided that ui, j is invertible.

This proposition extends to elastodynamics the earlier proposition for the static J -integral [Gupta and
Markenscoff 2008].

6.2. Scaling of the inhomogeneity. From relation (120), we state the following proposition:

Proposition 2. If linear momentum is conserved in the domain, under the scaling transformation of
Equation (85) the total energy loss of the system per unit infinitesimal scaling parameter is equal to the
dynamic M-integral.

This proposition is immediately extended to elastostatics for the static M-integral.
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6.3. Rotation of the inhomogeneity. From relation (125), we state the following proposition:

Proposition 3. If linear and angular momenta are conserved in the domain, for an isotropic material un-
der the rotation transformation of Equation (91) the total energy loss of the system per unit infinitesimal
rotation is equal to the dynamic L-integral.

This proposition is immediately extended to elastostatics for the static L-integral.
These propositions express the fact that, when analyticity is lost due to the inhomogeneity (inhomo-

geneities create discontinuities in the stress), the classical energy conservation of elasticity theory is not
valid any longer. Extending his famous result (force on an elastic singularity) to the other transformations,
we quote here Eshelby [1951, p. 108]: “When all sources of internal stress and inhomogeneity within 6
are given a small displacement δξl , the energy Flδξl is available for conversion into kinetic energy or
dissipation by some process not considered in the elastic theory.”

7. Conclusions

By applying Noether’s theorem, we derived the group of infinitesimal transformations of translation,
scaling and rotation in elastodynamics under which the Lagrangian functional remains invariant and
obtained the corresponding conservation laws. For inhomogeneities, we demonstrated that, under these
transformations, the variation of the Lagrangian is equal to the negative of the variation of the Hamil-
tonian, and this provide the relations between the conservation integrals and the total energy loss of the
system due to these transformations. This leads to the propositions that, under scaling of the inhomo-
geneity, if linear momentum is conserved in the domain, then the total energy loss of the system per
unit infinitesimal scaling is equal to the dynamic M-integral, and under rotation, if linear and angular
momenta are conserved in the domain, then the total energy loss of the system per unit infinitesimal
rotation is equal to the dynamic L-integral. Thus, the propositions are physically interpreted as dissi-
pative mechanisms for the loss of the Hamiltonian energy due to translation, scaling or rotation of the
inhomogeneity; these propositions extend the static counterparts [Budiansky and Rice 1973] to elastody-
namics.
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INTEGRAL EQUATIONS FOR 2D AND 3D PROBLEMS OF
THE SLIDING INTERFACE CRACK BETWEEN ELASTIC AND RIGID BODIES

ABDELBACET OUESLATI

This paper revisits the sliding interface crack problem between elastic and rigid half-planes studied by
Bui and Oueslati and provides an alternative method of derivation of the solution, which will then be
extended to three-dimensional (3D) crack problems. Based upon the displacement continuation tech-
nique of complex potentials, an appropriate Green function for the isolated edge dislocation dipole at the
interface is given. Then by considering the sliding condition along the interface crack, the field equations
can be obtained for the two-dimensional (2D) problem. Furthermore, it is shown that the edge dislocation
dipole in 2D appears to be a particular form of the fundamental Kupradze–Basheleishvili tensor in 3D,
which provides a method for deriving the coupled nonlinear integral equations for the same frictional
interface plane crack of an arbitrary shape. The present work describes how the 3D sliding interface
crack is related to the same problem in 2D.

1. Introduction

Cracks lying along the bonds between dissimilar materials or between elastic and rigid bodies are called
interface cracks. They are encountered in delamination of composites, film-substrate combinations, fiber-
reinforced materials, etc. Consequently, they are of great practical and theoretical importance and have
been widely investigated in the literature.

It is well known that, in opening mode under tensile remote stress, there are overlaps of the interface
crack faces due to the oscillatory behavior for the stress ahead of the crack tips [Williams 1959; England
1965; Rice 1988; Willis 1971]. To overcome this physical inconsistency, Comninou [1977; Comninou
and Dundurs 1980] introduced a contact region behind the crack tip. If the compressive normal load
is high enough, then the contact zone is the entire crack faces. Thus, the closed interface crack model
combined with unilateral contact with friction must be considered. In the literature, many works are
devoted to asymptotic solutions, including the effect of Coulomb’s law of dry friction [Deng 1994;
Audoly 2000; Bui and Oueslati 2005; Bui 1975; Bui and Oueslati 2004]. It is worth noting that analysis
of frictional cracks is rather complex because firstly the problem is nonlinear and secondly the solution
is not generally unique when no information is available on the crack history.

Crack problems have been often analyzed on the basis of Green’s function or distribution of disloca-
tions [Weertman 1996; Hills et al. 1996]. For interface cracks in bimaterials, the Green function is based
on the solution of an edge dislocation at the interface, provided by [Nakahara et al. 1972]. Interface edge
dislocation between two elastic layers was also studied by Suo and Hutchinson [1990]. In these solutions,
the singularities of displacement and stresses are merely of the same nature as in the homogeneous case

Keywords: interface crack, edge dislocation dipole, Kupradze–Basheleishvili tensor, singular integral equation.
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with a little change in some coefficients: with displacement u ∼= O(log r) and u1 discontinuous (term in
atan(x2/x1)) and with stress σ ∼= O(1/r).

When the crack problems become 3D, the conventional methods such as Muskhelishvili’s complex
potentials can no longer be applied and appropriate methods have been developed. Without being ex-
haustive, it can be mentioned that the Neuber–Papkovich representation has been used [Kassir and Sih
1973]. An elegant and powerful tool is provided by the potential theory introduced by Kupradze [1963].
This method was used by Bui [1975] and Kossecka [1971] for deriving the integral equation for the crack
opening displacement. Later Bui [1977] and Weaver [1977] proposed an integral equations method for
the plane crack problem with an arbitrary shape. Furthermore, the weight functions for cracked bodies,
introduced by Bueckner [1973], are often used for obtaining the stress intensity factors (SIFs) for 3D
cracks. Fukuama and Madariaga [1995] derived a boundary integral equation for plane cracks in the
static and dynamic cases. It is worth noting that few 3D crack problems have been solved analytically
and the trend is to use numerical computations.

In the present work, we revisit the problem of the interface crack between an elastic half-plane and a
rigid one in the presence of Coulomb’s law of dry friction. The study is limited to the sliding branch of
the friction law. In [Bui and Oueslati 2005], the solutions in complex form for nonhomogeneous loading
at infinity were worked out. Here we derive this solution in a different manner by considering distri-
bution of edge dislocation dipoles that correspond to the 2D expression of the fundamental Kupradze–
Basheleishvili tensor in 3D. This remark allows us to extend the approach of solution to the 3D interface
crack. A set of coupled integral equations for the crack displacement discontinuities is obtained.

2. Basic equations for the 2D sliding interface crack

Consider an elastic solid, with Lamé coefficient µ and λ, occupying the upper half-space �+ and bonded
to the lower rigid half-plane �− along the x1 axis, except on the crack [b, a]. We do not know the location
of the crack tips b and a, which have to be determined by the solution of the equations.

Following [Bui and Oueslati 2005], let the uncracked system be subjected to some remote, not nec-
essarily homogeneous, stress fields σ∞i j (x). Let the resulting stress field near the interface, prior to
delamination, such that u1= u2= 0 at the interface be noted σ 0

i j (x). We consider that σ 0
i j (x) is prescribed

load at the interface level, prior to delamination.
Localized shear stress and normal stress at the interface will likely cause delamination if the magnitude

of the shear stress is high enough. It should be noted that the inhomogeneous applied stress field has
been considered by Simonov [1990] for a frictionless interface crack. Note that, prior to delamination,
no slip occurs if the excess stress Q := f σ 0

22(x1, 0)− σ 0
12(x1, 0) is negative. This is the no-slip condition.

Consider the equations in quasistatic plane strain elasticity with the complex variable z = x1+ i x2.
Displacements and stresses are expressed in terms of analytical functions φ(z) and ψ(z) in �+ with
possible poles at infinity and singularities at the crack tips [Muskhelishvili 1977]:

2µ(u1− iu2)= {κφ(z)− zφ′(z)−ψ(z)}, (1)

(σ11+ σ22)= 4 Re{φ′(z)}, (2)

(σ22+ iσ12)= φ′(z)+φ′(z)+ zφ′′(z)+ψ ′(z). (3)
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The boundary conditions are

u1 = u2 = 0 on the bonded zone, (4)

u2 = 0, |σ12| = − f σ22 (σ22 ≤ 0) on the sliding crack (5)

with the following conditions at infinity:

σ(x)→ σ∞(x) for |x| →∞ in �+, (6)

φ′(z→∞)= 1
4(σ
∞

11 + σ
∞

22 )−
i

1+ κ
σ∞12 , (7)

ψ ′(z→∞)= 1
2(σ
∞

22 − σ
∞

11 )+ iσ∞12 , (8)

where κ = 3− 4ν in plane strain (ν is the Poisson ratio) and f is the friction coefficient. In (5), the
inequality σ22 ≤ 0 is not prescribed but has to be checked a posteriori. The crack is defined by the cut
along [b, a]. Particles of �+along the cut can move horizontally.

Equations (1)–(8) are strictly defined in the upper plane. However, we assume that φ(z) and ψ(z)
can be extended to the whole plane with a cut along the crack by analytical continuations across the
bonded zones. Of course, expressions in the right-hand sides of (1)–(3) have no physical meaning in
the lower half-plane for the problem considered. They are introduced for mathematical purposes in the
derivation of the solution. Nevertheless, we shall see that the formal solution obtained in the lower half-
plane corresponds to a similar problem of the elastic half-plane �− adhering on the rigid upper body �+.
These solutions for the displacement fields in both problems are linked together by antisymmetry.

From condition (4) on the bonded zone, we obtain

2µ(u1− iu2)= {κ8(z)− zφ′(z)−ψ(z)}

= {κ8(z)− zφ′(z)−ψ(z)} = 0 (on the unbroken zone).

This equation suggests the following definition for the function ψ(z) not only in �+ but also in �−:

ψ(z) := κφ(z)− zφ′(z). (9)

The continuation used in (9) is normally referred to as a displacement continuation (rather than the more
common stress continuation). Using (9) for (3) and (1), we find on the real axis z = z

σ22− iσ12 = φ
′(z)+ κφ′(z), (10)

2µ(u1− iu2)= {κφ(z)− zφ′(z)−ψ(z)} = κ{φ(z)−φ(z)}, (11)

2µ(u1+ iu2)= {κφ(z)− zφ′(z)−ψ(z)} = κ{φ(z)−φ(z)}. (12)

We recover the adherence condition u1 − iu2 = 0 on the bonded zone where the function φ(z) is
continuous φ(z)= φ(z). The condition that u2 = 0, on the cut, corresponds to the imaginary part of the
right-hand side of (12) being zero on the cut.

We introduce the auxiliary stress field θi j (x), the corresponding auxiliary displacement field q(x), and
the associate auxiliary complex functions 2(z) and 4(z) by putting

θ = σ − σ 0. (13)
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layer 1

Figure 1. Atoms of layer 1 stuck on the rigid interface, except the black atom.

On the crack, since the displacement components associated to σ 0(x) vanish, the auxiliary displace-
ment fields q1(x1, 0) and q2(x1, 0) coincide with the current displacement fields u1(x1, 0) and u2(x1, 0).
At infinity, the stress field θi j (x) vanishes; hence, the function 2′(z) vanishes at infinity:

2′(z)∼= O(1/z) at infinity. (14)

Moreover, the continuity condition (or the compatibility condition) on the displacement (12) holds for
the auxiliary fields q and gives

2µ(q1+ iq2)= κ{2(z)−2(z)} for z = z. (15)

3. The isolated edge dislocation dipole

Let us consider an atomic model of defect at the interface between an elastic medium and a rigid body
shown in Figure 1. Suppose that all atoms of layer 1 are fixed, being stuck on the rigid interface, except
the black atom, which is debonded from the substratum and can glide to the left.

When we move around the black atom along the lattice, from one atom of layer 1 to another one in the
same layer 1, we recover the same unchanged positions of atoms. It is expected that displacement and
stress fields in the upper half-plane are more singular than in the case of edge dislocation in homogeneous
medium. To investigate the mathematical nature of such an isolated “defect” at the origin of the real axis
as shown in Figure 1, where q2 = 0 on the real axis, q1 = 0 for (x1 6= 0, x2 = 0), and q1 6= 0 at (x1 = 0,
x2 = 0), we consider the displacement on the real axis from the �+ side, given as

2µ(q1+ iq2)= k{2(z)−2(z)} (z = z). (16)

In the continuation of functions in �− through the bonded zone, we may consider the lower half-plane
as an elastic medium stuck on the rigid upper half-plane, except along the crack; in �−, the displacement
field is antisymmetric. Therefore, the defect shown in Figure 1 corresponds to the solution in �+ of an
edge dislocation dipole in shear mode as in Figure 2 (left). The edge dislocation dipole in the opening
mode is depicted in Figure 2 (right).

Consider the function defined in the whole space (upper and lower complex plane �+ and �−) as

2(h)(z)= χ
1

2ihπ
{log(z+ h)− log(z)} (17)

with complex χ = c1+ ic2, c1 > 0 and c2 < 0, and the cut along (−h, 0).
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layer 1

Figure 2. Edge dislocation dipoles in shear mode (left) and opening mode (right).
Atoms of layer 1 are fixed, except the (double) black atoms moving in opposite directions
in �+ and �−.

Outside the cut, 2(h)(z) is continuous so that q(h)1 + iq(h)2 = 0 on the part of the real axis where x2 = 0,
x1 <−h, and x1 > 0.

On the upper face of the cut, we find

2µ(q(h)1 + iq(h)2 )= k(2(h)(z+)−2(h)(z−))=−
k
h
(c1+ ic2). (18)

Now taking the limit of (17) as h→ 0, we obtain firstly the derivative of the logarithm function:

2(0)(z)= χ
1

2iπ
1
z
. (19)

Secondly, the limit of the constant function (18) over the interval [−h, 0] of vanishing length h→ 0,
which is nothing but the Dirac delta function:

2µ(q(0)1 + iq(0)2 )=−k(c1+ ic2)δ(x1). (20)

The displacement singularity given in �+ by the function (19) is higher than that of an isolated edge
dislocation in homogeneous medium. At the defect itself, the displacement (20) can be considered as
the Green function. Note that, for an edge dislocation in a bimaterial, the Dirac delta function appears
in the stresses at the interface: σ22+ iσ12 = 2B(1/x1+ π iβ ′µδ(x1)) (for x2 = 0), where B and β ′ are
some bimaterial constants [Suo and Hutchinson 1990]. Here the Dirac delta function is found in the
displacement at the interface. The components of the displacement at x in the upper half-plane, x2 > 0,
due to an isolated edge dislocation dipole at the origin y = 0, in the pure shear mode χ = c1 (c2 = 0),
are given as (with 2(z)=20(z)= c1/2iπ z and 2′(z)=−c1/2iπ z2)

2µ(q1+ iq2)= k{2(z)−2(z)}+ (z− z)2′(z) for x2 > 0, (21)

2µq1(x1+ i0)=−kc1δ(x1) and 2µq2 = 0 for x2 = 0+. (22)

Thus, we obtain for x2 > 0

2µ(q1+ iq2)=−c1
k
π

x2

x2
1 + x2

2
− c1

x2(x2
1 − x2

2)

π(x2
1 + x2

2)
2
− 2ic1

x1x2
2

π(x2
1 + x2

2)
2
. (23)
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Figure 3. Contours of the displacement field given by (23) (c1 = 1): on the left 2µq1

and on the right 2µq2.

The contours of the displacement field in the upper half-plane due to an isolated dipole dislocation
given by (23) are depicted in Figure 3.

The displacement at x = (x1, x2) in the entire plane due to an edge dislocation dipole at y = (y1, 0)
on the real axis (of normal e2), not necessarily at the origin, satisfies the elastic equilibrium equation and
the following boundary condition on the real axis (x± = (x1,±0)):

−
2µ
kc1

q(0)(x±, y, e2)=±δ(x− y)e1 (x2 = y2 = 0). (24)

We recover in (20), (21), (22), and (24) the particular 2D form of the Kupradze–Basheleishvili fun-
damental tensor B(x, y, nP) given for 3D solids [Kupradze 1963] with components (see Appendix A)

B j
i (x, y, n( y))=

1
2π(λ+ 3µ)

{2µδi j + 3(λ+µ)(xi − y j )(x j − y j )ρ
−2
}
∂

∂ny

1
ρ
, (25)

where ρ =
√
(xi − yi )(xi − yi ). The elastic displacement vector B j (x, y, nP) at point x is discontinuous

at x = y on the plane P of normal nP . The discontinuity along the unit vector e j is given by

B j (x±, y, nP)=±δP(x− y)e j , (26)

where δP(x− y) is the Dirac delta function on the plane P . Therefore, the vector q(0)(x±, y, e2) is the
particular form in 2D of the vector B1(x±, y, e2) in 3D with x± = (x1, x2,±0).

By integrating (25) with respect to y3, −∞< y3 <∞, we obtain the 2D singular defect q(0)(x±, y, e2)

for P normal to e2. Point defects with properties (24) or (26) are purely mathematical. They are boundary
Green functions for determining the displacement field in 2D and 3D.

4. Solution of the Dirichlet boundary value problem
and the singular integral equation for the 2D sliding crack

Consider the following boundary value problem of the elastic half-plane x2 > 0, where both components
of displacement q1(t) and q2(t)= 0 are prescribed on the interface (x2 = 0) with q1(±∞)= 0. Find the
stresses on x2 = 0.
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Using results of the previous section, in the pure shear mode and from (19) and (20), the solution is

2(z)=
1

2iπ

∫
+∞

−∞

−2µq1(t)
κ

dt
z− t

. (27)

Remark. It is possible to derive the potential 2(z) given by (27) by another method. To this end, we
search for a solution of (15) using the Cauchy integral kernel 1/(z − t) and by considering χ(t) as
unknown density:

2(z)=
1

2iπ

∫
+∞

−∞

χ(t)
dt

z− t
=−

1
2iπ

∫
+∞

−∞

χ(t)
dt

t − z
. (28)

Thus, using 2µ(q1+ iq2)= κ{2(z)−2(z)} (z = z), we obtain the density as χ(t)=−2µq1(t)/κ .

The stress in x2 > 0 is then given by (10) as

θ22(x1)− iθ12(x1)=2
′(z)+ κ2′(z)

=−
1

2iπ

∫
+∞

−∞

χ ′(t)
dt

t − z
−

κ

2iπ

∫
+∞

−∞

χ ′(t)
dt

t − z

=
2µ
κ

{
1

2iπ

∫
+∞

−∞

q ′1(t)
dt

t − z
+ κ

1
2iπ

∫
+∞

−∞

q ′1(t)
dt

t − z

}
.

Using Plemelj formulas (z = x1+ i0 and z = x1− i0), we then obtain the solution (pv= principal value)
for the stress at the interface as

θ12(x1)=
µ

κπ
(1+ κ)(pv)

∫
+∞

−∞

q ′1(t)
dt

t − x1
, (29)

θ22(x1)=
µ

κ
(1− κ)q ′1(x1). (30)

Equations (29) and (30) are particular forms (for q2(t)= 0) of the general solution derived in [Bui 1968],
where general boundary conditions q1(t) 6= 0 and q2(t) 6= 0 are considered and where the Kupradze–
Basheleishvili tensor B(x, y, n) has been used.

Equations (5), (29), and (30) allow us to establish the integral equation for the unknown q ′1(x1) in the
frictional sliding interface crack problem considered in this paper with data σ 0

12 and σ 0
22. To this end, we

have to express the friction condition on the current stresses σ12 = f σ22, with σ = σ 0
+ θ , as

θ12− f θ22 = f σ 0
22− σ

0
12

and then obtain the integral equation

− f
µ

κ
(1− κ)q ′1(x1)+

µ

κπ
(1+ κ)(pv)

∫ a

b
q ′1(t)

dt
t − x1

= f σ 0
22(x1)− σ

0
12(x1). (31)

It is a Carleman integral equation with the unknown q ′1(x), the gradient of the horizontal displacement
on the sliding crack lip. The general theory of such integral equations is provided in [Muskhelishvili
1977; Tricomi 1985] for example.

Let us introduce the coefficients A=− f (µ/κ)(1−κ) and B= i(µ/κ)(1+κ). The index of this integral
equation is τ = (1/2iπ) log G, where G= (A−B)/(A+B)=−((κ+1)+i f (κ−1))/((κ+1)−i f (κ−1)).
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According to [Muskhelishvili 1977], the solution of the integral equation (31) vanishing at infinity is

q ′1(x1)=
X+(x1)+ X−(x1)

2(A+ B)X+(x1)
( f σ 0

22(x1)− σ
0
12(x1))

+
X+(x1)− X−(x1)

2iπ
(pv)

∫ a

b

f σ 0
22(t)− σ

0
12(t)

(A+ B)X+(t)
dt

(t − x1)
, (32)

where X (z)= (z−b)n/2−τ (z−a)m/2+τ is the fundamental solution of the homogenous Riemann–Hilbert
problem X+(z)= G X−(z).

The closed-form expression of (32) gives

q ′1(x1)=
f κ(κ − 1)

µ((κ + 1)2+ f 2(κ − 1)2)
( f σ 0

22(x1)− σ
0
12(x1))

−
κ(κ − 1)X+(x1)

µπ
(
(κ + 1)2+ f 2(κ − 1)2

)(pv)
∫ a

b

f σ 0
22(t)− σ

0
12(t)

X+(t)
dt

(t − x1)
. (33)

Some noticeable features are that G is equal to g, the coefficient of the Hilbert problem established in
[Bui and Oueslati 2005, (22)], the index τ coincides with the coefficient α, and

f σ 0
22(x1)− σ

0
12(x1)

A+ B
=

k
µ

E0(x),

where E0(x) is the second member of the Hilbert problem derived in [Bui and Oueslati 2005].
The closed form and physical solution (square-integrable solution) of the integral equation (33) for a

polynomial remote loading (σ 0
22, σ

0
12) for example can be found in [Bui and Oueslati 2005].

5. Integral equations for the sliding planar crack of an arbitrary shape

Analysis of the 3D problem of sliding delamination between an elastic half-space �+ (x3 > 0) and a
rigid body under Coulomb’s friction is very difficult. We do not attempt to solve this problem and restrict
ourselves simply to the following one: given the auxiliary shear stresses θ31(x1, x2, 0) and θ32(x1, x2, 0)
and normal stress θ33(x1, x2, 0) on the interface plane P (x3 = 0), prior to delamination, find the integral
equations for tangential auxiliary displacements ϕ1(x1, x2) := q1(x1, x2, 0) and ϕ2(x1, x2) := q2(x1, x2, 0)
in the planar crack S.

First of all, we generalize (29) and (30) to 3D problems. Let x = (x1, x2, x3), y = (y1, y2, 0), and
z = (z1, z2, 0). The fundamental Kupradze–Basheleishvili tensor (25) gives the displacement field in �+:

qi (x)=
∫

S
B j

i (x, y, e3)ϕ j ( y) d Sy . (34)

To verify that, we take the limit x→ y+ = (y1, y2, 0+) and using (26) obtain q j ( y+)= ϕ j ( y). Note that
the displacement of points in P lying outside S vanishes. This means that (34) corresponds exactly to
the displacement field of the elastic body �+ stuck on the rigid surface P , except on the crack S.

The density ϕ j ( y) of the double layer potential (34) (see Appendix C) is exactly the displacement
in S. For convenience, the displacement representation in terms of the single layer potential is outlined
in Appendix B.



INTEGRAL EQUATIONS FOR 2D AND 3D PROBLEMS OF THE SLIDING INTERFACE CRACK 363

From (34), we can calculate the stress field in �+ and also on P . Such a calculation is somewhat
delicate because of strongly singular kernels. However, explicit formulas for the stresses on P have been
given in [Bui 1968; 1977]:

• tangential stresses

θ3α( y)=
µ

2π
(pv)

∫
S

∂ϕα

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
∂

∂yα

1
ρ( y, z)

d Sz, (35)

• normal stress

θ33( y)=
2µ2

λ+ 3µ

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
. (36)

We are now in a position to derive the integral equations for the frictional interface crack S with
prescribed stresses (σ 0

31, σ
0
32, σ

0
33) on the plane P . Assume that σ 0

31 < 0, σ 0
32 < 0, and σ 0

33 < 0. Such an
assumption can only be verified a posteriori so that the friction law can be written as σ31− f σ33 cos(ψ)= 0
and σ32 − f σ33 sin(ψ) = 0, where ψ = atan(ϕ2/ϕ1). We then obtain the coupled nonlinear integral
equations for ϕα, which are the generalizations of (31) to 3D problems:

µ

2π
(pv)

∫
S

∂ϕ1

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
+

∂

∂y1

1
ρ( y, z)

d Sz

− f
ϕ1√
ϕ2

1 +ϕ
2
2

2µ2

(λ+ 3µ)

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
= f σ 0

33( y)− σ 0
31( y) (37)

and

µ

2π
(pv)

∫
S

∂ϕ2

∂zβ

∂

∂yβ

1
ρ( y, z)

d Sz +
µ(λ+µ)

2π(λ+ 3µ)
(pv)

∫
S

(
∂ϕ1

∂z1
+
∂ϕ2

∂z2

)
∂

∂y2

1
ρ( y, z)

d Sz

− f
ϕ2√
ϕ2

1 +ϕ
2
2

2µ2

(λ+ 3µ)

(
∂ϕ1

∂y1
+
∂ϕ2

∂y2

)
= f σ 0

33( y)− σ 0
32( y). (38)

It is out of the scope of this paper to derive the solution to (37)–(38), even by a numerical method.
However, it is worth noting that these integral equations extend over the crack surface only, which has
many advantages for numerical analysis.

Finally, if we interpret the SIFs KI and KII along the crack front, as factors of the tangential displace-
ment discontinuity [Bui 2006], then the two sliding modes are nonlinearly coupled in the frictional 3D
crack problems.

6. Conclusion

In this paper, the problem of the frictional sliding interface crack between an elastic half-plane and a rigid
one has been analyzed by considering distribution of edge dislocation dipoles along the crack faces. We
recover the field equations obtained in [Bui and Oueslati 2005] by means of complex potential representa-
tion. Then this approach has been extended to the planar interface crack with an arbitrary shape thanks to
the fundamental Kupradze–Basheleishvili tensor. A couple of nonlinear integral equations for the crack
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displacement discontinuities have been derived. It is worth noting that these integrals are taken only over
the crack face, which will be interesting in numerical computations. This is a topic for future work.

Appendix A: The Kupradze–Basheleishvili tensor

Let � be an elastic solid in 3D space R3 with a piecewise smooth boundary ∂� and x be the Cartesian
coordinates. The elastic operator L is defined such that the Lamé–Navier equation reads

Lu := µ1u+ (λ+µ)∇∇ · u+ f = 0 in �,

where u is the displacement field in the solid � and f denotes for the body force.
The corresponding traction acting on the boundary of ∂� with the outward unit normal n is obtained

from the displacement u by applying the traction operator

T n
:= 2µ

∂

∂n
+ λn div+µn∧ rot .

The fundamental Kupradze–Basheleishvili operator associated to a plane Py , with normal ny at the
point y, is defined by the tensor B satisfying

L Bk(x, y; ny)= 0, k ∈ {1, 2, 3}, x /∈ Py for fixed y ∈ Py,

and the boundary conditions

Bk(x, y; ny)= 0, x, y ∈ Py and x 6= y.

The components of Bk(x, y; ny) read

Bk
i (x, y, ny)=

1
2π(λ+ 3µ)

{2µδik + 3(λ+µ)(xi − yi )(xk − yk)ρ
−2
}
∂

∂ny

1
ρ
,

where ρ =
√
(xi − yi )(xi − yi ) is the Euclidean distance between x and y. It should be noted that

Bk(x, y; ny)=−Bk( y, x; ny).
Following [Bui 2006], it can be shown, for a point x on the plane Py , that the vectors defined by

Bk(x±, y; ny)=±ekδPy ( y− x)

are opposite Dirac delta distributions. Physically, the k-component of the Kupradze–Basheleishvili tensor
is a dislocation dipole in the ek direction. The previous relation is often used to describe the displacement
jump on the crack faces.

Appendix B: Single layer potential

The displacement field solution of the elastic problem in the absence of body force can be obtained in
terms of an integral surface Si (x) with a continuous density ψi and a kernel V k

i (x, z):

Si (x)= 2
∫
∂�

V k
i (x, z)ψk(z) d Sz.
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By analogy with Newton’s potential, this integral is called the single layer potential. It is continuous
across the surface ∂�, but the corresponding stresses with a component along the normal should be
discontinuous.

According to [Kupradze 1963], the stress vector exerted on the boundary ∂� is obtained by using the
traction operator T n to both sides of the previous equation:

T n S( y±)=±ψ( y)+ 2(pv)
∫
∂�

V k
i (x, z)ψk(z) d Sz.

Appendix C: Double layer potential

The displacement field solution of the elastic problem in the absence of body force can be represented
by an elastic potential Di (x) with a continuous density φi :

Di (x)=
∫
∂�

Bk
i (x, z; nz)φk(z) d Sz.

It can be established that D(x) is discontinuous across the surface ∂� [Kupradze 1963]:

D(x+)− D(x−)= 2φ(x).

The limit of D(x) when x tends to x− belonging to the surface ∂� gives

Di (x−)= φi (x−)+
∫
∂�

Bk
i (x, z; nz)φk(z) d Sz.
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ASYMPTOTIC STRESS FIELD IN THE VICINITY OF
A MIXED-MODE CRACK UNDER PLANE STRESS CONDITIONS

FOR A POWER-LAW HARDENING MATERIAL

LARISA V. STEPANOVA AND EKATERINA M. YAKOVLEVA

The stress-strain state analysis near the crack tip in a power-law material under mixed-mode loading
conditions is investigated. By the use of the eigenfunction expansion method the stress-strain state near
the mixed-mode crack tip under plane stress conditions is found. The type of the mixed-mode loading
is specified by the mixity parameter, which varies from 0 to 1. The value of the mixity parameter
corresponding to a mode II crack loading is equal to 0, whereas the value corresponding to a mode I
crack loading is equal to 1. It is shown that the eigenfunction expansion method results in a nonlinear
eigenvalue problem. The numerical solutions of the nonlinear eigenvalue problems for all values of the
mixity parameter and for all practically important values of the strain hardening (or creep) exponent
are obtained. It is found that mixed-mode loading of the cracked plate gives rise to a change in the
stress singularity in the vicinity of the crack tip. Mixed-mode loading of the cracked plate results in
new asymptotics of the stress field, which is different from the classical Hutchinson–Rice–Rosengren
(HRR) stress field. The approximate solution of the nonlinear eigenvalue problem is obtained by a
perturbation theory technique (artificial small parameter method). In the framework of the perturbation
theory approach, a small parameter representing the difference between the eigenvalue of the nonlinear
problem and the undisturbed linear problem is introduced. The asymptotic analysis carried out shows
clearly that the stress singularity in the vicinity of the crack tip changes under mixed-mode loading
in the case of plane stress conditions. The angular distributions of the stress and strain components
(eigenfunctions) in the full range of values of the mixity parameter are given.

1. Introduction. Mixed-mode loading of cracked structures
and near crack-tip fields under mixed-mode loading.

Knowledge of stress, strain and displacement fields in the vicinity of the crack tip under mixed-mode
loading conditions is important for the justification of fracture mechanics criteria and has attracted
considerable attention [Berto and Lazzarin 2014; Bui 2011; Kuna 2013; Pestrikov and Morozov 2012;
Vildeman et al. 2012; Wei 2010]. So far, mainly crack problems for pure opening mode I at symmetrical
loading have been thoroughly treated [Bui 2006; Wei 2010; Pestrikov and Morozov 2012]. The corre-
sponding fracture criteria have been obtained on the assumption that the crack continues to extend along
its original line (two-dimensional case) or plane (three-dimensional case) in a straightforward manner
on the ligament. If mode I loading is superimposed with mode II and/or III loading, the symmetry is
violated and the situation is called mixed-mode loading. Stress fields around a mixed-mode crack tip in

The authors would like to acknowledge the financial support of the Russian foundation of basic research, project 13-01-97009-a.
Keywords: stress-strain state near the crack tip, mixed-mode loading, mixity parameter, nonlinear eigenvalue problem,

perturbation technique.

367

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2015.10-3
http://dx.doi.org/10.2140/jomms.2015.10.367
http://msp.org


368 LARISA V. STEPANOVA AND EKATERINA M. YAKOVLEVA

different materials have been investigated by many researchers [Dong and Pan 1990; Smith et al. 2001;
Shlyannikov 2003; Pan and Lin 2006; Shlyannikov and Kislova 2009; Rahman and Hancock 2006; Berto
and Lazzarin 2013; Berto and Lazzarin 2014; Leblond and Frelat 2014; Akbardoost and Ayatollahi 2014].
The study of mixed-mode loads is of particular importance: mixed-mode loading of cracked specimens
is of profound importance from theoretical [Bui 2011; Pestrikov and Morozov 2012; Wei 2010], com-
putational [Kuna 2013] and experimental [Decreuse et al. 2012; Ondraček and Materna 2014; Vildeman
et al. 2012; Wei et al. 2011] points of view. Currently, mixed-mode crack problems in materials with
nonlinear constitutive relations (power law constitutive equations of deformation plasticity theory, steady
state creep Norton’s law) have aroused considerable interest in many areas of fracture mechanics [Berto
and Lazzarin 2013; Botvina et al. 2013; Hello et al. 2012; Richard et al. 2014; Shlyannikov and Kislova
2009; Shlyannikov 2012; 2013; Shlyannikov and Zakharov 2014; Shlyannikov et al. 2014]. Obviously,
the principle of superposition of the solutions for mode I and mode II loadings cannot be applied for
nonlinear materials. For the case of nonlinear material behavior it is necessary to propose new methods
and approaches for the analysis of the near crack tip stress-strain state under mixed-mode loads. In the
present paper, the approximate analysis and numerical analysis of the stress and strain fields ahead of the
crack tip under mixed-mode loading in the case of plane stress conditions are developed. It should be
noted that the angular distributions and the stress singularity in the neighborhood of the crack tip under
mixed-mode loading in the case of plane strain conditions are carefully studied [Loghin and Joseph 2001;
2003; Richard et al. 2014; Shlyannikov and Kislova 2009; Shlyannikov 2012].

Loghin and Joseph [2001] were the first to propose a displacement-based finite element formulation to
determine the leading two terms in the expansions of stresses and strains around singular points in power
law hardening materials. The authors used the approach to study the effects of mixed-mode loading on
the structure. The asymptotic solution for mixed-mode loading of the cracked structure in plane strain
conditions was obtained, but the asymptotic form of the mode I dominant plane stress could not be
determined.

Shlyannikov and Kislova [2009] proposed a method for calculating the elastic-plastic stress intensity
factors for the full range of mixed-mode loading from tensile to shear cracks. The state of an arbitrary
oriented slit-like straight crack in the form of a mathematical notch under biaxial loading was consid-
ered. The solution is based on a combination of both the compatibility strain equation and the Airy
stress potential with its derivatives. The elastic-plastic material behavior is represented by the Ramberg–
Osgood model. On the basis of the results obtained, the influence of both mode-mixity and material
plastic properties on the elastic-plastic stress intensity factors is analyzed. In [Richard et al. 2014],
an overview of theories, experiments and simulations of cracks and crack growth under mixed-mode
loading is given. First some concepts and basic theories are described for two-dimensional and three-
dimensional crack mixed-mode loading situations. Furthermore, several mixed-mode fracture specimens
and loading devices are presented. The theoretical and experimental results are compared with respect
to practical use of the described concepts and theories. Finally, the paper [Richard et al. 2014] presents
crack growth simulations. Shlyannikov [2012] derived equations for ultimate failure strain under com-
plex static and low-cyclic loading and gave experimental verification for different types of biaxial loads.
Experimental and calculation data obtained on the basis of a generalized equivalence condition to solve
problems of crack mechanics for complex stress states are presented [loc. cit.]. Models and methods
for determining the crack direction, path, velocity and time of crack growth under biaxial loading are
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considered. Botvina et al. [2013] presented the results of studying the development of plastic flow zones
and damage of steel 20 in conditions of shear, separation, mixed-mode loading and eccentric cyclic
loading. The influence of the shear component on the evolution of plastic strain zones, mechanical and
acoustic properties (parameters of acoustic emission, the velocity and attenuation of ultrasonic waves) is
elucidated. It is shown that an increase in the shear component of the load changes the shape of the zone
of plastic deformation, initiates formation of additional microcracks, increases the total fracture energy,
reduces the slope indices of cumulative distributions of the amplitude of acoustic signals and microcracks,
and also induces an increase in the ultrasonic attenuation coefficient and heat capacity of the samples.
Analysis of changes in the studied parameters of damage and fracture mechanics provided identification
of the main stages of damage accumulation under tensile load. The main aim of the study [Berto and
Lazzarin 2013] is to present a set of equations for accurately describing the crack tip stress components,
particularly for those cases where the modes I and II stress intensity factors, used in combination with
the T-stress component, are unable to capture with satisfying precision the complete stress field ahead
the crack tip. The case of a plate with a central crack under mixed-mode (I+II) loading is discussed
to show the different contributions of the higher-order terms in the overall stress field. In [Berto and
Lazzarin 2014], an extensive review of local approaches applicable near stress raisers, both sharp and
blunt, for mode I, mode II and mode III loading conditions in brittle and quasibrittle failure assessment
is presented. The authors develop a new approach based on the volume strain energy density and show
many applications for assessment of the brittle fracture of a large number of materials and specimens
under mixed-mode loading conditions. In [Hello et al. 2012] there are closed-form expressions for the
whole sequences of coefficients related to the problem of a finite crack in an infinite plane medium with
mode I and mode II remote load.

Fatigue crack paths for inclined cracks are studied in [Shlyannikov 2013] through experiments and
computations under different mixed-mode loading conditions where the elaborated theoretical model is
applied for modeling crack growth trajectories in common experimental fracture mechanics specimen
geometries. For the particular specimen geometries considered, the T-stress distributions are calculated
along the curved crack path. It is shown that there is a greater variation of T-stress along the crack
trajectories under mixed-mode fracture for specimens with different geometries. The experimental re-
sults for mixed-mode fracture trajectories during crack growth are compared with theoretical predictions.
Discrepancies in fatigue crack path have been observed in various specimen configurations. The results
presented in this study for fracture specimens seem to indicate the relevance of the crack tip constraint
parameter, the T-stress, to fatigue crack path behavior that traditional linear fracture mechanics fails to
explain. In [Shlyannikov and Zakharov 2014], fatigue crack growth rate is analyzed through experi-
mental study and numerical computations under different biaxial and mixed-mode loading conditions.
Cruciform specimens under biaxial loading and compact tension-shear specimens are considered. The
different degrees of mode mixity, from pure mode I to pure mode II, are given by combinations of the
far-field stress level, load biaxiality and inclined crack angle. For the particular specimen geometries
considered, the T-stress and the numerical constant of the plastic stress field distributions are obtained
as a function of the dimensionless crack length, load biaxiality and mode mixity. The method is also
suggested for calculating the plastic stress intensity factor for any mixed-mode I/II loading based on the T-
stress and power law solutions. It is either demonstrated that the plastic stress intensity factor accounting
for the in-plane and out-of-plane constraint effect can be used to characterize the multiaxial crack growth
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rate for a variety of specimen geometries. Cruciform specimens of two configurations with an inclined
crack subject to a system of biaxial loads are proposed [Shlyannikov et al. 2014] to study cracks under
mixed-mode loading conditions. A method for infiltrating the mixed-mode displacement of cracks in
the deformed state is suggested. For the particular specimen geometries considered, the T-stress and the
geometry-dependent correction factors, as well as the numerical constant of the plastic stress distributions,
are obtained as a function of the dimensionless crack length, load biaxiality and mode mixity.

Asymptotic representations of the stress, strain rate and continuity fields in the vicinity of the mixed-
mode crack under plane strain conditions are obtained in [Stepanova and Adylina 2014]. On the basis
of the similarity form of the solution and the hypothesis of the completely damaged zone in the crack
tip region, the stress and continuity fields under a complete range of mixed-mode I/II states of loading
(from pure tension to pure shear) are given. Higher-order term asymptotic expansions of the stress
components and the continuity parameter are derived. A new numerical method to tackle nonlinear
eigenvalue problems allowing one to find the whole spectrum of eigenvalues is proposed. However,
several difficulties emerge in analyzing the nonlinear eigenvalue problem arising from the mixed-mode
crack problem under plane stress conditions. The aim of the present study is to give an accurate solution
of the nonlinear eigenvalue problem following from the stress-strain state analysis in the vicinity of the
mixed-mode crack under plane stress conditions. It should be noted that plane stress state problems
for notched bodies and cracked specimens are still not clearly understood. The angular distributions of
the stress components in the vicinity of the mixed-mode crack tip under plane stress conditions have
not been discussed in detail, but clearly this must be done to have an accurate description of the stress
and strain fields in the vicinity of the crack tip. Recently there have been proposed solutions for the
plane stress problems [Lomakin and Melnikov 2009; 2011; Vildeman et al. 2014]. The objective of this
paper is to study the stress singularities in the vicinity of the mixed-mode crack tip under plane stress
conditions. The governing equations for the power law constitutive relations are transformed to nonlinear
eigenvalue problems of ordinary differential equations (ODEs) based on the assumption that the stress
fields are asymptotic near the mixed-mode crack tip. The asymptotic and numerical methods are further
developed in the present work to analyze eigenvalue problems of ODEs.

2. Governing equations and asymptotic analysis. Mixity parameter.

Consider a stationary crack in a power-law material under plane stress conditions. Applied loading is
accounted as mixed-mode I/II loading. Polar coordinates are introduced and centered at the crack tip.
With reference to the polar coordinates, the equilibrium equations can be written as

rσrr,r + σrθ,θ + σrr − σθθ = 0, rσrθ,r + σθθ,θ + 2σrθ = 0. (2-1)

The compatibility condition has the form

2(rεrθ,θ ),r = εrr,θθ − rεrr,r + r(rεθθ ),rr . (2-2)

For a material subjected to a power-law hardening, the constitutive equations for plane stress conditions
can be written as

εrr =
1
2 Bσ n−1

e (2σrr − σθθ ), εθθ =
1
2 Bσ n−1

e (2σθθ − σrr ), εrθ =
3
2 Bσ n−1

e σrθ , (2-3)
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where σe =
√

σ 2
rr + σ

2
θθ − σrrσθθ + 3σ 2

rθ is the von Mises equivalent stress, and B, n are the material
constants.

It should be noted that in the case considered the analogy between nonlinear elastic behavior and creep
holds. That implies that all relations and solutions obtained for a nonlinear elastic (plastic) material with
the constitutive equations (2-3) can be transferred to creep processes with the constitutive relations of
Norton’s creep law simply by replacing the strains by strain rates. The solution of equations (2-1)–(2-3)
should satisfy the traditional traction-free boundary conditions on the crack surfaces σrθ (r, θ =±π)= 0,
σθθ (r, θ =±π)= 0. The mixed-mode loading can be characterized in terms of the mixity parameter M p,
which is defined as [Shih 1973; 1974]

M p
= (2/π) arctan

∣∣∣∣ limr→0

σθθ (r, θ = 0)
σrθ (r, θ = 0)

∣∣∣∣. (2-4)

The mixity parameter M p equals 0 for pure mode II, 1 for pure mode I, and 0< M p < 1 for different
mixities of modes I and II. Thus, for combined-mode fracture, the mixity parameter M p completely
specifies the near-crack-tip fields for a given value of the hardening exponent n. By postulating the Airy
stress function χ(r, θ) expressed in the polar coordinate system, the stress components in the plane strain
and the plane stress states are expressed as

σθθ = χ,rr , σrr = χ,r/r −χ,θθ/r2, σrθ =−(χ,θ ),r .

As for the asymptotic stress field at the crack tip r→ 0, one can postulate the Airy stress function

χ(r, θ)= Krλ+1 f (θ), (2-5)

where K is an indeterminate coefficient, λ is an indeterminate exponent and f (θ) is an indeterminate
function of the polar angle. In view of the asymptotic presentation (2-5), the asymptotic stress field at
the crack tip is found to be σi j (r, θ)= Krλ−1σ̃i j (θ), or

σrr (r, θ)= Krλ−1
[(λ+ 1) f (θ)+ f ′′(θ)],

σθθ (r, θ)= Krλ−1(λ+ 1)λ f (θ),

σrθ (r, θ)=−Krλ−1λ f ′(θ),

(2-6)

where λ− 1 denotes the exponent representing the singularity of the stress field, and will be called the
stress singularity exponent hereafter. According to (2-3), the asymptotic strain field as r tends to 0 takes
the form εi j (r, θ)= K nr (λ−1)n ε̃i j (θ), or, in expanded form,

εrr (r, θ)= 1
2 BK nr (λ−1)n f n−1

e [(λ+ 1)(2− λ) f (θ)+ 2 f ′′(θ)],

εθθ (r, θ)= 1
2 BK nr (λ−1)n f n−1

e [(λ+ 1)(2λ− 1) f (θ)− f ′′(θ)],

εrθ (r, θ)=− 3
2 BK nr (λ−1)n f n−1

e λ f ′(θ).

The compatibility condition (2-2) results in the following nonlinear fourth-order ODE for f (θ):
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0= f IV f 2
e
{
(n− 1)

[
(λ+ 1)(2− λ) f + 2 f ′′

]2
+ 2 f 2

e
}

+ 6[(λ)n+ 1]λ
[
(n− 1) f 2

e h f ′+ f 4
e f ′′

]
+ (n− 1)(n− 3)h2[(λ+ 1)(2− λ) f + 2 f ′′

]
+ (n− 1) f 2

e
[
(λ+ 1)(2− λ) f + 2 f ′′

]
×

{[
(λ+ 1) f ′+ f ′′′

]2
+
[
(λ+ 1) f + f ′′

]
(λ+ 1) f ′′+ (λ+ 1)2λ2( f ′2+ f f ′′)

−
1
2(λ+ 1)2λ f f ′′−

[
(λ+ 1) f ′+ f ′′′

]
(λ+ 1)λ f ′

−
1
2

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f ′′+ 3λ2( f ′′2+ f ′ f ′′′)

}
+ f 4

e (λ+ 1)(2− λ) f ′′− (λ− 1)n f 4
e
[
(λ+ 1)(2− λ) f + 2 f ′′

]
+ [(λ−1)n+1](λ−1)n f 4

e
[
(λ+1)(2λ−1) f − f ′′

]
+ 2(n−1) f 2

e h
[
(λ+1)(2−λ) f ′+2 f ′′

]
, (2-7)

where we have adopted the notation

fe =

√[
(λ+ 1) f + f ′′

]2
+ (λ+ 1)2λ2 f 2−

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f + 3λ2 f ′2,

h =
[
(λ+ 1) f + f ′′

][
(λ+ 1) f ′+ f ′′′

]
+ (λ+ 1)2λ2 f f ′− 1

2

[
(λ+ 1) f ′+ f ′′′

]
(λ+ 1)λ f

−
1
2

[
(λ+ 1) f + f ′′

]
(λ+ 1)λ f ′+ 3λ2 f ′ f ′′.

The boundary conditions imposed on the function f (θ) follow from the traction-free boundary condi-
tions on the crack surfaces:

f (θ =±π)= 0, f ′(θ =±π)= 0. (2-8)

Thus, the eigenfunction expansion method results in a nonlinear eigenvalue problem: it is necessary
to find eigenvalues λ leading to nontrivial solutions of (2-7) satisfying the boundary conditions (2-8).
Therefore, the order of the stress singularity is the eigenvalue and the angular variations of the field
quantities correspond to the eigenfunctions. When we consider mode I loading or mode II loading
conditions, the symmetry or antisymmetry requirements of the problem with respect to the crack plane
at θ = 0 are utilized. Due to the symmetry (or antisymmetry), the solution is sought for one of the half-
planes, for instance, 0≤ θ ≤ π. In analyzing the crack problem under mixed-mode loading conditions,
the symmetry or antisymmetry arguments cannot be used, and it is necessary to seek the solution in the
whole plane −π ≤ θ ≤ π . To find the numerical solution, one has to take into account the value of the
mixity parameter M p characterizing the mixities of mode I and mode II loadings. For this purpose, in
the framework of the proposed technique, (2-7) is numerically solved on the interval [0, π], and the two-
point boundary value problem is reduced to the initial value problem with the initial conditions reflecting
the value of the mixity parameter:

f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
, f (θ = π)= 0, f ′(θ = π)= 0. (2-9)

The first initial condition is the normalization condition. The second condition follows from (2-4)
specifying the value of the mixity parameter. At the next stage, the numerical solution of (2-7) is found
on the interval [−π, 0], with the following boundary conditions which have to be satisfied:

f (θ =−π)= 0, f ′(θ =−π)= 0, f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
. (2-10)
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An analogous approach was adopted in [Stepanova and Adylina 2014], where the near mixed-mode
crack-tip stress field under plane strain conditions was analyzed. It is assumed that the eigenvalue of the
problem considered equals the eigenvalue of the classical HRR problem, λ= n/(n+ 1); see [Hutchinson
1968b; 1968a; Rice and Rosengren 1968] for pure mode I and pure mode II conditions; [Rice 1967;
1968] for pure mode III conditions. However, it turns out that when we construct the numerical solution
for the mixed-mode crack problem under plane stress conditions the radial stress component σrr (r, θ) at
θ = 0 has a discontinuity, whereas for the cases of pure mode I and pure mode II loadings, when M p

= 1
and M p

= 0 are valid, the radial stress component is continuous at θ = 0. Numerical analysis carried
out previously for mixed-mode crack problem under plane strain conditions leads to the continuous
angular distributions of the radial stress component σrr (r, θ) at θ = 0 [Shlyannikov and Kislova 2009;
Shlyannikov 2012]. In order to obtain the asymptotic solution of the mixed-mode I/II crack problem
under plane stress conditions and to analyze the behavior of the radial stress components, one can use the
artificial small parameter method often used for the solution of nonlinear eigenvalue problems [Andrianov
and Awrejcewicz 2013; Andrianov et al. 2014; Nayfeh 2000; 2011].

3. Nonlinear eigenvalue problem. Perturbation theory method.

One of the effective methods for the solution of nonlinear eigenvalue problems is the perturbation theory
technique based on an artificially introduced small parameter [Andrianov and Awrejcewicz 2013; Andri-
anov et al. 2014; Nayfeh 2000; 2011; Sliva et al. 2010]. An analytical expression for the eigenvalues of
the nonlinear eigenvalue problem (2-7)–(2-8) can be derived by applying the perturbation theory method.
For this purpose, the eigenvalue λ is split up into ε = λ− λ0, where λ0 refers to the “undisturbed” linear
problem and ε is the deviation on account of the nonlinearity. Furthermore, the hardening exponent n
and the stress function f (θ) are represented as power series:

λ= λ0+ ε, f (θ)= f0(θ)+ ε f1(θ)+ ε
2 f2(θ)+ . . . , n = 1+ εn1+ ε

2n2+ . . . , (3-1)

where f0(θ) refers to the solution of the linear problem. Introducing (3-1) into (2-7), grouping together
the terms with the same powers of ε and equating to zero, the set of the boundary value problems for
fk(θ) is obtained.

By equating the coefficients of ε0, we obtain

f IV
0 + 2(λ2

0+ 1) f ′′0 + (λ
2
0− 1)2 f0 = 0,

f0(θ = 0)= 1, f ′0(θ = 0)= (λ0+ 1)/ tan
( 1

2 M pπ
)
, f0(θ = π), f ′0(θ = π),

f0(θ =−π), f ′0(θ =−π), f0(θ = 0)= 1, f ′0(θ = 0)= (λ0+ 1)/ tan
( 1

2 M pπ
)
;

(3-2)

by equating the coefficients of ε1, we obtain

f IV
1 +2(λ2

0+1) f ′′1 +(λ
2
0−1)2 f1 =−n1

[
x0( f IV

0 x0/2+w0)/(2g0)+h0(x ′0g0−x0h0+3λ2
0g0 f ′0)/g2

0

]
−

1
2 f ′′0

[
(λ0− 1)(4λ0− 1)n1+ 8λ0

]
−

1
2 f0(λ

2
0− 1)

[
(λ0− 1)(4λ0+ 1)n1+ 8λ0

]
,

f1(θ = 0)= 0, f ′1(θ = 0)= 1/ tan
( 1

2 M pπ
)
, f1(θ = π), f ′1(θ = π),

f1(θ =−π), f ′1(θ =−π), f1(θ = 0)= 0, f ′1(θ = 0)= 1/ tan
( 1

2 M pπ
)
;

(3-3)
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by equating the coefficients of ε2, we obtain

f IV
2 + 2(λ2

0+ 1) f ′′2 + (λ
2
0− 1)2 f2 =−2g1

[
f IV
1 + 2(λ2

0+ 1) f ′′1 + (λ
2
0− 1)2 f1

]
/g0

− 3λ0[2+ n1(λ0− 1)] f ′′1 −
1
2(1− 2λ0)

[
f ′′1 + (λ0− 1) f1

]
+

1
2 [1+ n1(λ0− 1)]x1

−
1
2λ0(λ0− 1)(4λ0+ 1) f1+

1
2(1− 2λ0)[1+ n1(λ0− 1)]y1

− 3λ0[n1+ n2(λ0− 1)] f ′′1 − 3[1+ n1(λ0− 1)] f ′′0 +
1
2 f ′′0 −

1
2(λ0− 1) f0

+
1
2 [1+ n1(λ0− 1)](1− 2λ0)

[
f0+ (4λ0+ 1) f0

]
− λ0(λ0− 1) f0

−
1
2(2λ0− 1)[n1+ n2(λ0− 1)]y0−

1
2 [1+ n1(λ0− 1)]2 y0+

1
2 [n1+ n2(λ0− 1)]x0

− g1
{
6λ0[2+ n1(λ0− 1)] f ′′0 + (1− 2λ0)

[
f ′′0 − (λ0− 1) f0

]
− [1+ n1(λ0− 1)]x0

}
/g0

− g1
{
λ0(λ0− 1)(4λ0+ 1) f0+ (2λ0− 1)[1+ n1(λ0− 1)]y0

}
/g0

− n2
{

x0
(

f IV
0 x0/2+w0

)
/(2g0)+ h0

(
g0x ′0− x0h0+ 3λ2

0g0 f ′0
)
/g2

0
}

− n1
[
x0g0( f IV

1 x0/2+w1)+ x0g1( f IV
0 x0/2+w0)+ g0x1( f IV

0 x0+w0)
]
/(2g2

0)

− n1
{
h0[x ′1g0− x1h0+ 3λ2

0g0 f ′1] + h0[x ′0g1− x0h1+ 3λ2
0g1 f ′0]

}
/g2

0

− n1
{
6λ0[2+ n1(λ0− 1)]g0h0 f ′0− (1− 2λ0)

[
2h2

0 f0− 2g0h0 f ′0
]
+ n1h2

0x0
}
/(2g2

0)

− n1(1− 2λ0) f0( f IV
0 x0+w0)/(2g0)− n1h1

(
x ′0g0− x0h0+ 3λ2

0g0 f ′0
)
/g2

0;

f2(θ = 0)= 0, f ′2(θ = 0)= 1/ tan
( 1

2 M pπ
)
, f2(θ = π), f ′2(θ = π),

f2(θ =−π), f ′2(θ =−π), f2(θ = 0)= 0, f ′2(θ = 0)= 1/ tan
( 1

2 M pπ
)
,

(3-4)

where we have adopted the notation

xk = (λ0+ 1)(2− λ0) fk + 2 f ′′k , yk = (λ0+ 1)(2λ0− 1) fk − f ′′k , uk = (λ0+ 1) fk + f ′′k ,

vk = (λ0+ 1)λ0 fk, g0 = u2
0+ v

2
0 − u0v0+ 3λ2

0 f ′0
2
,

h0 = u0u′0+ v0v
′

0−
1
2 u′0v0−

1
2 u0v

′

0+ 3λ2
0 f ′0 f ′′0 ,

w0 = u′0
2
+ (λ0+ 1)u0 f ′′0 + v

′

0
2
+ v0v

′′

0 −
1
2(λ0+ 1)v0 f ′′0 − u0v

′

0−
1
2 u0v

′′

0 + 3λ2
0( f ′′0

2
+ f ′0 f ′′′0 ),

g1 = 2u0(u1+ f0)+ 2v0
[
v1+ (2λ+ 1) f0

]
− u0

[
v1+ (2λ+ 1) f0

]
− v0(u1+ f0)

+ 6λ0 f ′0(λ0 f ′1+ f ′0),

h1 = u0(u′1+ f ′0)+ u′0(u1+ f0)+ v0
[
v′1+ (2λ0+ 1) f ′0

]
+ v′0

[
v1+ (2λ0+ 1) f0

]
−

1
2 u′0

[
v1+ (2λ0+ 1) f0

]
−

1
2 u0

[
v′1+ (2λ0+ 1) f ′0

]
−

1
2v0(u′1+ f ′0)−

1
2v
′

0(u1+ f0)

+ 3λ0 f ′0(λ0 f ′′1 + f ′′0 )+ 3λ0 f ′′0 (λ0 f ′1+ f ′0),

w1 = 2u′0(u
′

1+ f ′0)+ u0
[
(λ0+ 1) f ′′1 + f ′′0

]
+ (λ0+ 1) f ′′0 (u1+ f0)+ 2v′0

[
v′1+ (2λ0+ 1) f ′0

]
+ v′0

[
v′′1 + (2λ0+ 1) f ′′0

]
+ v′′0

[
v1+ (2λ0+ 1) f0

]
−

1
2(λ0+ 1) f ′′0

[
v1+ (2λ0+ 1) f0

]
−

1
2v0
[
(λ0+ 1) f ′′1 + f ′′0

]
− v′0(u

′

1+ f ′0)− u′0
[
v′1+ (2λ0+ 1) f ′0

]
−

1
2v
′′

0 (u1+ f0)

−
1
2 u0

[
v′′1 + (2λ0+ 1) f ′′0

]
+ 6λ0 f ′′0 (λ0 f ′′1 + f ′′0 )+ 3λ0 f ′′′0 (λ0 f ′1+ f ′0)+ 3λ0 f ′0(λ0 f ′′′1 + f ′′′0 ).
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The solution of the linear ordinary differential equation (3-2) for the function f0(θ) satisfying the
traction-free boundary conditions has the form

f I
0 = β cos(αθ)−α cos(βθ), α = λ0− 1, β = λ0+ 1,

for the crack opening mode I (for symmetric stress fields), and it has the form

f II
0 = sin(αθ)− sin(βθ)

for the shear crack mode II (the skew-symmetric stress fields), where the spectrum of the eigenvalues is
determined by the characteristic equation sin 2πλ0 = 0, whence one can easily find λ0 =

1
2 m, where m is

an integer. Thus it is shown that an infinite number of eigenvalues exists. In view of the linearity of (3-2)
for the mixed-mode crack problem, the solution is the superposition of the symmetric and antisymmetric
parts of the stress field with respect to the crack plane:

f0(θ)= C1[β cos(αθ)−α cos(βθ)] +C2[sin(αθ)− sin(βθ)], (3-5)

where C1 and C2 are unknown coefficients which have to be determined from the boundary conditions
of the actual crack problem and represent the modes I and II, respectively. In view of (2-4), the unknown
constants C1 and C2 are related to the mixity parameter M p

= 2 arctan[(λ0+ 1)C1/C2]/π . The zeroth-
order problem (3-2) has the nontrivial solution (3-5), hence the inhomogeneous problems (3-3), (3-4) for
the functions f1(θ) and f2(θ) will not have solutions unless a solvability condition is satisfied [Nayfeh
2000; 2011]. Therefore, if λ0 is not an eigenvalue of the homogeneous problem (i.e., the homogeneous
problem has only the trivial solution), the inhomogeneous problem has a unique solution for every con-
tinuous right-hand side Gk(θ) of the differential equation for fk(θ), k > 0. On the other hand, if λ0 is an
eigenvalue of the homogeneous problem (i.e., the homogeneous problem has a nontrivial solution), the
inhomogeneous problem does not have a solution unless [Nayfeh 2000; 2011]∫ π

−π

Gk(θ)u(θ) dθ = 0. (3-6)

That is, Gk(θ) is orthogonal to the eigenfunction u(θ), corresponding to the eigenvalue λ0. These results
constitute the so-called Fredholm alternative theorem: for a given value λ0, either the inhomogeneous
problem has a unique solution for each continuous right-hand side of the equation, or else the homoge-
neous problem has a nontrivial solution [Nayfeh 2000; 2011]. To determine the solvability condition
(3-6) we use the concept of adjoint problems [Stepanova 2008a; 2008b; 2009a; Stepanova and Igonin
2014]. The boundary value problem (3-3) is self-adjoint since the differential equation and the boundary
conditions of the adjoint problem coincide with the differential equation and boundary conditions of
the homogeneous problem (3-2). Therefore, u(θ) = f0(θ), where the function f0(θ) is determined by
(3-5). According to (3-6), the compatibility condition of the boundary value problem (3-3) has the form∫ π
−π

G1(θ) f0(θ) dθ = 0, or, in expanded form,∫ π

−π

{
−n1[x0(

1
2 f IV

0 x0+w0)/(2g0) + h0(g0x ′0− x0h0+ 3λ2
0g0 f ′0)/g2

0]

−
1
2 f ′′0 [(λ0−1)(4λ0−1)n1+8λ0]−

1
2 f0(λ

2
0−1)[(λ0−1)(4λ0+1)n1+8λ0]

}
f0(θ) dθ = 0. (3-7)
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M p n1 n2 M p n1 n2 M p n1 n2

0 4.000000 8.000000 0.3 4.065772 7.941876 0.8 4.224060 7.926086
0.05 4.001766 7.999995 0.4 4.118594 7.804045 0.9 4.084774 7.958755
0.1 4.007088 7.999954 0.5 4.184135 7.749316 0.95 4.023759 7.999543
0.2 4.028722 7.978646 0.6 4.249098 7.600224 1 4.000000 8.000000

0.7 4.279336 7.577773

Table 1. Coefficients of the asymptotic expansion of the hardening exponent n.

The compatibility condition of the boundary value problem for the function f1(θ) (3-7) allows us to
find the coefficient n1. The values of n1 for different values of the mixity parameter are shown in Table 1.
Having obtained the function f1(θ), one can determine the unknown function f2(θ). Using the analogous
reasoning, one can formulate the compatibility condition for the solution of the boundary value problem
for f2(θ) and calculate numerically the values of the coefficient n2 of the asymptotic expansion of the
hardening exponent n for different values of the mixity parameter. Table 1 summarizes the results of
computations and gives the coefficients n1 and n2 for different values of the mixity parameter.

From the results obtained one can see that the mixed-mode loading leads to change of the stress singu-
larity in the vicinity of the crack tip under plane stress conditions. Previously, it was found [Stepanova
2008a; 2009a] that for mode I and mode II crack problems the perturbation theory technique results in
the equation nk = (−1)k+1/(λ0− 1)k+1 (where, for the HRR problem, λ0 =

1
2 ), and the third asymptotic

expansion in (3-1) yields n = λ/(1− λ), or λ= n/(n+ 1). This eigenvalue corresponds to the classical
HRR stress field. The results obtained and given in Table 1 clearly show that the mixed-mode loading
leads to a change in the stress singularity exponent in the vicinity of the crack tip. Otherwise, the values
of the coefficients n1 and n2 were 4 and 8, respectively, as they were in the case of plane strain conditions.
In other words, if the coefficients n1 and n2 were equal to 4 and 8, respectively, then we would have
nk = (−1)k+1/(λ0− 1)k+1, [Stepanova 2008a; 2009a] and we would sum the binomial series for n and
obtain the classical HRR stress field. However, as is indicated by Table 1, the values of n1 and n2 deviate
from 4 and 8, respectively. Thus, mixed-mode loading causes a change in the stress singularity in the
neighborhood of the crack tip. When we analyze the stress-strain state in the vicinity of the crack tip
under mixed-mode loading, it is assumed that the stress singularity does not change and the eigenvalue
corresponds to the HRR problem, λ= n/(n+ 1) (i.e., it is assumed a priori that the eigenvalue equals
λ= n/(n+1) and the hypothesis is confirmed by the solution [Shlyannikov and Kislova 2009]). However,
in the case of plane stress conditions, as the artificial small parameter method shows, the hypothesis
cannot be accepted and it is necessary to find the eigenvalues of the problem as a part of the solution. In
the next part of the paper, the numerical solution of the nonlinear eigenvalue problem will be considered.

4. Numerical solution of the nonlinear eigenvalue problem. Computational scheme.
Eigenvalues and eigenfunctions.

As mentioned earlier, traditionally, it is assumed that the eigenvalue of the nonlinear eigenvalue problem
equals the eigenvalue of the HRR problem: λ = n/(n + 1). However, the assumption results in the
discontinuity of the radial stress component on the line extending the crack. The asymptotic analysis
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based on the artificial small parameter method and described above has shown additionally that the
eigenvalue corresponding to the HRR stress field cannot be the eigenvalue of the mixed-mode crack
problem under plane stress conditions. In view of the above arguments, the eigenvalue of the problem
considered will be determined from the requirement of the continuity of the radial stress component
at θ = 0. The analogous approach for solving the nonlinear eigenvalue problems has been applied in
[Stepanova and Adylina 2014], where the approach allowed the determination of the whole spectrum
of the eigenvalues, resulting in the contours of the completely damaged zone converging to the limit
contour. The procedure of the numerical solution of the nonlinear eigenvalue problem is based on the
following assumptions. In the case of the mixed-mode crack problem the symmetry and antisymmetry
arguments cannot be used, and it is necessary to find the solution on the interval [−π, π]. In conducting
the numerical solution, the interval [−π, π] can be divided into two intervals: [0, π] and [−π, 0]. First,
(2-7) is numerically solved in the interval [0, π], and the two-point boundary value problem (2-7), (2-9)
is reduced to the initial problem with the initial conditions

f (θ = 0)= 1, f ′(θ = 0)= (λ+ 1)/ tan
( 1

2 M pπ
)
, f ′′(θ = 0)= A2, f ′′′(θ = 0)= A3. (4-1)

The unknown constants A2 and A3 are determined such that the boundary conditions on the upper crack
surface are satisfied:

f (θ = π)= 0, f ′(θ = π)= 0. (4-2)

The constants A2 and A3 having been obtained, (2-7) is numerically solved on the interval [−π, 0].
For this purpose, the two-point boundary value problem is reduced to the initial problem with the initial
conditions

f (θ =−π)= 0, f ′(θ =−π)= 0, f ′′(θ =−π)= B2, f ′′′(θ =−π)= B3. (4-3)

The unknown constants B2 and B3 are chosen in such a way that the equilibrium equations of the
element belonging to the line θ = 0 are satisfied. The equilibrium equations require the continuity of
the shear and circumferential stress components σrθ (r, θ) and σθθ (r, θ) at θ = 0, which implies the
continuity of the functions f (θ) and f ′(θ) at θ = 0 (and, therefore, the boundary conditions (2-10), and
hence discontinuities of the radial stress components are allowed). Thus, the two unknown constants
B2 and B3 are determined in such a way that the solution on the interval [−π, 0] satisfies the boundary
conditions at θ = 0. When this algorithm is realized, it is usually supposed that the eigenvalue equals
the eigenvalue of the HRR stress field. If it is necessary to find eigenvalues different from λ= n/(n+ 1),
and, as a whole, the spectrum of the eigenvalues, then the question arises: which additional physical and
(or) mathematical reasons need to be invoked for finding the eigenspectrum? If λ is a required value,
then under integration of (2-7) in the interval [0, π] one has the three unknown parameters λ, A2 and A3,
and only the two boundary conditions (4-2) from which the unknowns can be obtained. Obviously, it is
necessary to have an additional condition. For the purpose of determination of the eigenvalue λ one can
analyze the behavior of the radial stress component in the case of plane strain conditions [Shlyannikov and
Kislova 2009; Stepanova and Adylina 2014]. One can see that the radial stress component is continuous
as a function of the polar angle at θ = 0 for the values of the mixity parameter and the hardening
exponent. It should be noted that the continuity of the radial stress component is not a priori required
(i.e., the eigenvalue corresponding to the HRR field λ= n/(n+ 1) has been chosen and the radial stress
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M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.749848 −1.013963 −17.857405 −11.119908 0.112696
0.2 0.749363 −1.009899 −8.639267 −5.450935 0.210905
0.3 0.748445 −1.002588 −5.438885 −3.518917 0.244099
0.4 0.746893 −0.991172 −3.732943 −2.521575 0.262339
0.5 0.744332 −0.974435 −2.613062 −1.898950 0.276300
0.6 0.740101 −0.951096 −1.774144 −1.465507 0.290927
0.7 0.733089 −0.921053 −1.087827 −1.143866 0.311439
0.8 0.721666 −0.889149 −0.501650 −0.898579 0.348145
0.9 0.710960 −0.878015 −0.059127 −0.724120 0.428064

Table 2. New eigenvalues λ for n = 3 for different values of the mixity parameter.

component σrr (r, θ) turned out to be continuous for all the values of the mixity parameter and for all
the values of the hardening exponent). Therefore, the eigenvalue is sought from the requirement of the
continuity of the radial stress component σrr (r, θ) at θ = 0. Thus, the spectrum of the eigenvalues is
numerically obtained.

The numerical integration of differential equation (2-7) to obtain f (θ) for [0, π] is performed by the
fourth-order Runge–Kutta method, using symbolic computation in Mathematica as a powerful, conve-
nient and versatile tool widely used in solid mechanics [Constantinescu and Korsunsky 2007], while the
solution of the simultaneous nonlinear equations

f (π)= F1(A2, A3)= 0, f ′(π)= F2(A2, A3)= 0

for A2, A3 for a prescribed value of λ is obtained by the Gauss–Newton least-square method so that they
satisfy the condition ( f (π))2 + ( f ′(π))2 < 10−7. Next the solution is sought for the interval [−π, 0]
and the numerical integration of (2-7) is performed by the fourth-order Runge–Kutta method whereas
the solution of simultaneous nonlinear equations

f (−π)= F3(B2, B3)= 0, f ′(−π)= F4(B2, B3)= 0

for B2, B3 for the same prescribed value of λ is obtained by Gauss–Newton least-square method so that
they satisfy the condition ( f (−π))2+ ( f ′(−π))2 < 10−7. Then one can compare the values of the radial
stress component at θ = 0: σ̃rr (θ = 0−) and σ̃rr (θ = 0+). The eigenvalue λ is said to be found if the
inequality |(σ̃rr (θ = 0+)− σ̃rr (θ = 0−)|< 10−7 is valid.

Results of computations are shown in Tables 2–7, where the new eigenvalues λ and the values of the
functions f ′′(θ = 0), f ′′′(θ = 0), f ′′(θ = −π) and f ′′′(θ = −π) for the different values of the mixity
parameter M p and the hardening exponent n are given.

Circumferential variations of the stress and strain components obtained are shown in Figures 1–8.
The contours of the equal equivalent stress are shown in Figure 9. It is shown that the angular stress
distributions are fully continuous and do not contain the discontinuities.

In [Ondraček and Materna 2014], FEM evaluation of the dissipated energy in front of a crack tip
under 2D mixed-mode loading conditions was performed. Two different meshes were created to simulate
mode I and mode II fatigue crack growth. In both cases, the plane stress and strain calculations were
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M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.833249 −1.059014 −17.175345 −12.817403 0.217377
0.2 0.832975 −1.054353 −8.270256 −6.295063 0.214040
0.3 0.832434 −1.045751 −5.310084 −4.075287 0.211815
0.4 0.831456 −1.031834 −3.692485 −2.931140 0.210848
0.5 0.829711 −1.010626 −2.474608 −2.217574 0.211543
0.6 0.826595 −0.980308 −1.877300 −1.720923 0.214889
0.7 0.821183 −0.942182 −0.945119 −1.353750 0.223389
0.8 0.813522 −0.910480 −0.379570 −1.085758 0.244019
0.9 0.813057 −0.918935 −0.078809 −0.934756 0.294866

Table 3. New eigenvalues λ for n = 5 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.874951 −1.068014 −16.399514 −14.051259 0.275592
0.2 0.874787 −1.063523 −8.019713 −6.907737 0.218081
0.3 0.874448 −1.054980 −5.004927 −4.477821 0.197231
0.4 0.873779 −1.040530 −3.427356 −3.225923 0.186395
0.5 0.872529 −1.017364 −2.369760 −2.444916 0.180489
0.6 0.870107 −0.983152 −1.789715 −1.900363 0.178418
0.7 0.865837 −0.941813 −0.850487 −1.498387 0.181311
0.8 0.863118 −0.931654 −0.409135 −1.230020 0.194901
0.9 0.863005 −0.939455 −0.117494 −1.070440 0.230710

Table 4. New eigenvalues λ for n = 7 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.899969 −1.067810 −15.870539 −14.973046 0.300772
0.2 0.899986 −1.063699 −7.757085 −7.364961 0.214921
0.3 0.899637 −1.055617 −4.929978 −4.777032 0.184458
0.4 0.899167 −1.041283 −3.428549 −3.445052 0.168585
0.5 0.898187 −1.017020 −2.446724 −2.613278 0.159358
0.6 0.896185 −0.979984 −1.473179 −2.032212 0.154562
0.7 0.892756 −0.938703 −0.786691 −1.605170 0.154589
0.8 0.892187 −0.945074 −0.441700 −1.335332 0.164138
0.9 0.892132 −0.951743 −0.148784 −1.166821 0.191437

Table 5. New eigenvalues λ for n = 9 for different values of the mixity parameter.

performed. The crack zones under conditions of plane stress are rather oval shaped. The shape of the
equal equivalent stress contours shown in the first three rows of Figure 9 is similar to results of [Ondraček
and Materna 2014].
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M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.916646 −1.064886 −15.509504 −15.687120 0.308561
0.2 0.916575 −1.061186 −7.505140 −7.718823 0.207926
0.3 0.916414 −1.053681 −4.740118 −5.009507 0.172524
0.4 0.916060 −1.039712 −3.250966 −3.614202 0.154108
0.5 0.915260 −1.014674 −2.235656 −2.742892 0.143208
0.6 0.913531 −0.975351 −1.415360 −2.133091 0.137003
0.7 0.911361 −0.945900 −0.796175 −1.696655 0.135580
0.8 0.911145 −0.954022 −0.468121 −1.415250 0.142450
0.9 0.911123 −0.959920 −0.172574 −1.239380 0.164364

Table 6. New eigenvalues λ for n = 11 for different values of the mixity parameter.

M p λ f ′′(θ = 0) f ′′′(θ = 0) f ′′(θ =−π) f ′′′(θ =−π)

0.1 0.928557 −1.061240 −15.147594 −16.257399 0.307317
0.2 0.928507 −1.057923 −7.398140 −8.001191 0.199333
0.3 0.928389 −1.051006 −4.705468 −5.194292 0.161542
0.4 0.928110 −1.037485 −3.273920 −3.748906 0.141919
0.5 0.927433 −1.011819 −2.331595 −2.845877 0.130222
0.6 0.925895 −0.970589 −1.366626 −2.212890 0.123306
0.7 0.924700 −0.958252 −0.8289902 −1.777736 0.121104

0.75 0.924300 −0.965607 −0.634815 −1.606930 0.122390
0.8 0.924467 −0.960475 −0.489375 −1.478170 0.126133
0.9 0.924460 −0.965742 −0.190855 −1.295977 0.144355

0.95 0.924459 −0.967010 −0.044076 −1.245296 0.162210

Table 7. New eigenvalues λ for n = 13 for different values of the mixity parameter.

1

2

3

-1

-2

-3 -2 -1

0

10 2 3 θ

σ
θθ

~

Mp=1

0.9
0.8
0.7
0.6

Mp=0
0.1
0.2
0.3
0.4
0.5

n=3

0.95

-3 -2 -1

0

0 1

1

0.5

32

-1

-0.5

-1.5

Mp=1

0.8
0.7
0.6

Mp=0
0.1
0.2
0.3
0.4
0.5

σrθ
~

0.9

θ

0.95

n=3

Figure 1. Circumferential variations of the stress components σ̃θθ and σ̃rθ for different
values of the mixity parameter. Strain hardening exponent n = 3.
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M p
= 0.3 M p

= 0.5 M p
= 0.7 M p

= 0.8
n δ,% n δ,% n δ,% n δ,%

3 0.207 3 0.75 3 2.25 3 3.77
5 0.107 5 0.43 5 1.45 5 2.37
7 0.063 7 0.28 7 1.04 7 1.35
9 0.040 9 0.20 9 0.80 9 0.86

11 0.027 11 0.15 11 0.57 11 0.60
13 0.019 13 0.12 13 0.41 13 0.44

Table 8. The difference between λ and λHRR for M p
= 0.3, 0.5, 0.7, 0.8.

One can evaluate the deviation of the new eigenvalue λ from the eigenvalue corresponding to the
classical HRR stress field λHRR. The discrepancy δ = (λHRR− λ) ∗ 100%/λHRR for different values of
the hardening exponent n and for different values of the mixity parameter M p is given by Table 8.
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One can see from Table 8 that the difference tends to zero as the hardening exponent n increases, for
all values of the mixity parameter. Thus, in the limiting case of perfect plasticity one can obtain the
classical strain singularity r−1 and the vanishing singularity of the stress field in the vicinity of the crack
tip. In the limiting case of perfect plasticity, the stresses should be bounded as r→ 0, and one can obtain
the analytical solution of the problem in the asymptotic form

σi j (r, θ)= σ
(0)
i j (θ)+ rασ (1)i j (θ)+ · · · , σe(r, θ)= 1− rασ (1)(θ)+ · · · , α > 0, r→ 0, (4-4)

where the stresses are normalized by the yield stress. The governing system of equations following from
the equilibrium equations and the Huber–Mises yield criterion can be found for functions σ (0)i j (θ) :

σ
(0)
rθ,θ + σ

(0)
rr − σ

(0)
θθ = 0, σ

(0)
θθ,θ + 2σ (0)rθ = 0, (σ (0)rr )

2
+ (σ

(0)
θθ )

2
− σ (0)rr σ

(0)
θθ + 3(σ (0)rθ )

2
= 1. (4-5)
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The analytical expressions for the angular distributions σ (0)i j (θ) of the stress components for M p
= 0.25 are

given as follows:

• For −π ≤ θ ≤ θα, θα =−2.186257912=−125.26◦, we have

σ (0)rr =
1
2(1+ cos 2θ), σ

(0)
θθ =

1
2(1− cos 2θ), σ

(0)
rθ =−

1
2 sin 2θ,

• For θα ≤ θ ≤ θβ , θβ =−1.686144171=−96.60◦, we have

σ (0)rr =
1
√

3
cos(θ + c3), σ

(0)
θθ =

2
√

3
cos(θ + c3), σ

(0)
rθ =

1
√

3
sin(θ + c3),

where c3 = 1.230959418= 70.53◦.

• For θβ ≤ θ ≤ θγ , θγ =−0.9114267175=−52.22◦, ϑ1 = θβ + c3, we have

σ (0)rr =
√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ1+
1

2
√

3
cosϑ1 cos 2(θ − θβ)− 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ1 sin 2(θ − θβ)+ 1

√
3

sinϑ1 cos 2(θ − θβ).

• For θγ ≤ θ ≤ θδ, θδ = 0.924219118= 52.95◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1),

where c1 = 1.366576756= 78.30◦.

• For θδ ≤ θ ≤ θε, θε = 2.081741596= 119.27◦, ϑ2 = θε+ c2, c2 = 1.910633236= 109.47◦, we have

σ (0)rr =
√

3
2 cosϑ2−

1
2
√

3
cosϑ2 cos 2(θ − θβ)+ 1

√
3

sinϑ2 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ2+
1

2
√

3
cosϑ2 cos 2(θ − θβ)− 1

√
3

sinϑ2 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ2 sin 2(θ − θβ)+ 1

√
3

sinϑ2 cos 2(θ − θβ).

• For θε ≤ θ ≤ θζ , θζ = 2.186257912= 125.26◦, we have

σ (0)rr =
1
√

3
cos(θ + c2), σ

(0)
θθ =

2
√

3
cos(θ + c2), σ

(0)
rθ =

1
√

3
sin(θ + c2).

• For θζ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

Here the approach developed in [Dong and Pan 1990; Rahman and Hancock 2006; Stepanova 2009b]
has been applied. The circumferential distributions of the stress tensor components σ (0)i j (θ) in the neigh-
borhood of the crack tip for M p

= 0.5 are given as follows:

• For −π ≤ θ ≤ θα, θα =−3.082081755=−176.60◦, we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.
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• For θα ≤ θ ≤ θβ , θβ =−2.069949494=−118.60◦, we have

σ (0)rr =
√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
θθ =

√
3

2 cosϑ1+
1

2
√

3
cosϑ1 cos 2(θ − θβ)− 1

√
3

sinϑ1 sin 2(θ − θβ),

σ
(0)
rθ =

1
2
√

3
cosϑ1 sin 2(θ − θβ)+ 1

√
3

sinϑ1 cos,

where ϑ1 = θβ + c1, c1 = 1.107148718= 63.43◦.

• For θβ ≤ θ ≤ θγ , θγ = 0.988154515= 56.62◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1).

• For θγ ≤ θ ≤ θδ, θδ = 2.232478539= 127.91◦, we have

σ (0)rr = a+ 1
4(1+ cos 2θδ) cos 2(θ − θδ)+ 1

2 sin 2θδ sin 2(θ − θδ),

σ
(0)
θθ = a− 1
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σ
(0)
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1
4(1+ cos 2θδ) sin 2(θ − θδ)+ 1
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where a = 1
4(−1+ 3 cos 2θδ).

• For θδ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

The circumferential distributions of the stress components σ (0)i j (θ) in the vicinity of the crack tip for
M p
= 0.75 are given as follows:

• For −π ≤ θ ≤ θα, θα =−2.904522467=−166.42◦, we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

• For θα ≤ θ ≤ θβ , θβ =−1.759907174=−100.84◦, we have
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√

3
2 cosϑ1−

1
2
√

3
cosϑ1 cos 2(θ − θβ)+ 1

√
3
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σ
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σ
(0)
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√
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√
3

sinϑ1 cos 2(θ − θβ),

where ϑ1 = θβ + c1, c1 = 0.6918358137= 39.64◦.

• For θβ ≤ θ ≤ θγ , θγ = 1.119349842= 64.13◦, we have

σ (0)rr =
1
√

3
cos(θ + c1), σ

(0)
θθ =

2
√

3
cos(θ + c1), σ

(0)
rθ =

1
√

3
sin(θ + c1).
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Figure 10. The angular distributions of the stress tensor components in the vicinity of
the crack tip for M p
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Figure 11. The angular distributions of the stress tensor components in the vicinity of
the crack tip for M p

= 0.5

• For θγ ≤ θ ≤ θδ, θδ = 2.385429690= 136.68◦, we have

σ (0)rr = a+ 1
4(1+ cos 2θδ) cos 2(θ − θδ)+ 1

2 sin 2θδ sin 2(θ − θδ),

σ
(0)
θθ = a− 1

4(1+ cos 2θδ) cos 2(θ − θδ)− 1
2 sin 2θδ sin 2(θ − θδ)

σ
(0)
rθ =−

1
4(1+ cos 2θδ) sin 2(θ − θδ)+ 1

2 sin 2θδ cos 2(θ − θδ),

where a = 1
4(−1+ 3 cos 2θδ).

• For θδ ≤ θ ≤ π , we have

σ (0)rr =−
1
2(1+ cos 2θ), σ

(0)
θθ =−

1
2(1− cos 2θ), σ

(0)
rθ =

1
2 sin 2θ.

The angular distributions of the stress tensor components obtained are shown in Figures 10–12. The
data points are numerical results, while the solid lines represent the analytical solution.

One can see from Figures 10–12 that the radial stress σ̃rr (θ) is continuous at θ = 0. Continuity of the
radial stress σ̃rr (θ) in the limiting case of perfect plasticity confirms the previously accepted assumption.
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5. Conclusions and discussion of results

In the study the asymptotic analysis and numerical solutions of the nonlinear eigenvalue problems arising
from the mixed-mode crack problem in a power law material under plane stress conditions are presented.
The method proposed allows us to find the whole spectrum of eigenvalues for a complete range of
mixed-mode I/II states of loading from tensile to shear crack problems. The solution is based on the
eigenfunction expansion method in the vicinity of the crack tip. The asymptotic presentation of the Airy
stress potential reduces the mixed-mode crack problem considered to a nonlinear eigenvalue problem.
One eigenvalue corresponding to the pure tensile (mode I) and pure shear (mode II) crack problems
is well known and corresponds to the HRR stress field: λ = n/(n+ 1). Following a common practice
[Shlyannikov and Kislova 2009; Shlyannikov 2012], it is conventionally assumed that for combined mode
I–mode II fracture the eigenvalue corresponding to the HRR problem is the eigenvalue of the nonlinear
eigenvalue problem arising from the mixed-mode crack problem. For the case of plane strain conditions,
the assumption is valid. The assumption is confirmed by the asymptotic solutions obtained [Shlyannikov
and Kislova 2009; Shlyannikov 2012]. However, for the case of plane stress conditions, this hypothesis
entails discontinuous radial stress components ahead of the crack tip. All the solutions to the mode I
crack and mode II crack problems for plane stress conditions, as well as the solutions for mixed-mode
loading [Rahman and Hancock 2006; Shlyannikov and Kislova 2009; Shlyannikov 2012; Stepanova and
Adylina 2014], show a continuous radial stress component at θ = 0. In the present paper, it is shown that
the mixed-mode loading of the cracked plate results in a new stress singularity around the crack tip. The
asymptotic analysis and the numerical calculations performed lead to the new stress field asymptotics in
the vicinity of the mixed-mode crack under plane stress conditions. The asymptotic analysis based on
the artificial small parameter method of the perturbation theory provided a possibility to reveal the new
stress singularity in the vicinity of the crack tip. Next, a technique for numerical determination of the
eigenvalues of the nonlinear eigenvalue problem is proposed. Using this technique, the new eigenvalues
resulting in continuous radial stress components at θ = 0 are found. It is shown that the method proposed
gives the eigenvalues corresponding to the HRR problem in particular cases of mode I and mode II crack
problems. The theoretical significance of the present paper is that, from the method described here, one
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can clearly know all the mathematically possible distributions of stress singularities at the crack tip under
mixed-mode loading.

It is important to develop asymptotic analysis methods and their applications for nonlinear eigenvalue
problems in solid mechanics [Andrianov and Awrejcewicz 2013] and, in particular, in nonlinear fracture
mechanics and continuum damage mechanics [Barenblatt 2014; Murakami 2012; Voyiadjis 2014], in
order to find new and better methods to reliably determine fatigue and fracture behavior. In nonlinear
fracture mechanics, the eigenfunction expansion method is one of the most commonly encountered ap-
proaches [Murakami 2012; Stepanova 2008a; 2008b; 2009a; Stepanova and Fedina 2008; Stepanova and
Igonin 2014]. The method leads to nonlinear eigenvalue problems which stipulate the possible distribu-
tions of stress singularities at the crack tip, and the determination of the whole eigenspectrum requires
invoking developed asymptotic and computational techniques and their combinations. For instance, it is
shown [Stepanova 2008a; 2008b; Stepanova and Igonin 2014] that damage accumulation around the crack
tip alters the stress-strain state and results in decreasing the stress singularity in the vicinity of the crack
tip. The asymptotic fields in and around the damage zone are quite different from those under K (or J or
C∗) dominance in both singularity and distributions. The stress singularity exponent is determined from
the nonlinear eigenvalue problem, which needs to be thoroughly solved. The solution of the nonlinear
eigenvalue problems provides the solution of the crack problem as a whole. The approach proposed and
solutions obtained here can be useful either to find the similarity solutions of the second kind (incomplete
similarity) [Barenblatt 2013; 2014; Ritchie 2005] and the solutions of nonlinear eigenvalue problems
related to them [Barenblatt 2014; Sih and Tang 2006; Stepanova 2008a; 2008b; Stepanova and Adylina
2014]. It is shown that the meso-mechanical effect of damage accumulation near the crack tip results
in new intermediate stress field asymptotic behavior and requires the solution of nonlinear eigenvalue
problems. The new eigenvalues can be used for analyzing the near crack tip fields in damaged materials
in coupled formulation [Stepanova and Adylina 2014]

In view of the recent research emphases on multiscaling [Tang and Sih 2005; Sih and Tang 2005;
2006; Sih 2008; Stepanova and Igonin 2014], the multiple singularity solution at a point seems to signify
the inherent characteristics of micro- and meso-defects. Determination of multiple singularity solutions
requires solutions of nonlinear eigenvalue problems. For instance, the model based on the Kachanov–
Rabotnov damage evolution law and the power-law of steady-state creep is an example of a problem with
the inherent property of incomplete similarity [Stepanova and Adylina 2014]. The method proposed in
this paper can be used for the determination of the intermediate asymptotic stress behavior in coupled
creep-damage crack problems under mixed-mode loading conditions, since the equations of the problem
must have similarity form of the solution and we can derive the solution of the crack problem if the
ansatz for the solution of nonlinear eigenvalue problems is obtained. It should be noted also that the
class of nonlinear eigenvalue problems arising in nonlinear fracture mechanics is essential in connection
with creating multiscale models of fracture [Barenblatt 2013; 2014; Stepanova and Adylina 2014] with
multisingularities with different orders at the crack point. A singularity representation scheme has to
be considered where the local damage at the different scales will be modeled by different orders of the
stress singularities. Different stress singularities can be related to different loading type and severity of
material damage.

In [Tang and Sih 2005; Sih and Tang 2005; 2006; Sih 2008], it is elucidated that microscopic effects
can have a significant influence on the macroscopic behavior of material. A new approach is needed to
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describe the multiscale character of the material microstructure. In [Tang and Sih 2005], a singularity
representation scheme where scale effects are modeled by different orders of the stress singularities is
proposed. The degree of damage in the vicinity of the crack tip is reflected by the orders of the stress
singularities.

In accordance with these models, it is necessary to introduce the hierarchy of the zones in the vicinity
of the crack tip with dominating role of different stress asymptotic behavior and to realize the matching
procedures between different stress asymptotic solutions. The accurate construction of all the inter-
mediate zones with one or other stress asymptotics requires the knowledge of the whole spectrum of
eigenvalues, and these problems are still open.
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Prikl. Mekh. Tekh. Fiz. 50:1 (2009), 165–176. Translated as “Asymptotics of stresses and strain rates near the tip of a transverse
shear crack in a material whose behavior is described by a fractional-linear law” in J. Appl. Mech. Tech. Phys. 50:1 (2009),
137–146.

[Stepanova and Adylina 2014] L. V. Stepanova and E. M. Adylina, “Napr��enno-deformirovannoe sosto�nie v
okrestnosti verxiny trewiny v uslovi�h smexannogo nagru�eni�”, Prikl. Mekh. Tekh. Fiz. 55:5 (2014), 181–
194. Translated as “Stress-strain state in the vicinity of a crack tip under mixed loading” in J. Appl. Mech. Tech. Phys. 55:5
(2014), 885–895.

[Stepanova and Fedina 2008] L. V. Stepanova and M. E. Fedina, “Avtomodel~noe rexenie zadaqi o trewine otryva
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ANTIPLANE SHEAR FIELD
FOR A CLASS OF HYPERELASTIC INCOMPRESSIBLE BRITTLE MATERIAL:

ANALYTICAL AND NUMERICAL APPROACHES

CLAUDE STOLZ AND ANDRES PARRILLA GOMEZ

This paper reconsiders the problem of determining the elastostatics fields near the tip of a crack in a
body deformed by an antiplane shear for a class of incompressible, homogeneous, isotropic materials.
The study is generalized to the formation of a quasicrack under the same conditions of loading for brittle
material that cannot support any further loading when a critical strength is reached. The crack is then
replaced by a totally damaged zone where the stress is identically zero. The shape of the boundary
between the damaged and undamaged body is found analytically. A numerical approach is proposed to
address the problem for more general constitutive law. The analytical solution is recovered by a process
of shape optimization.

1. Introduction

In classical fracture mechanics, the solution of equilibrium for linearized elastostatics proposes an outer
expansion of the displacement with respect to the distance from the crack tip. Some studies have taken
into account the nonlinear effects on the inner expansion of the displacement in finite elastostatics or
in elastoplasticity. The finite antiplane shear near the tip of a crack in an incompressible nonlinear
elastic solid has been studied [Knowles and Sternberg 1980; 1981]. The displacement field possesses
singularities or discontinuities in its gradient depending on the shape of the stress-strain curve. For these
studies, the stress is defined for any amount of shear that is not bounded.

For hyperelastic material such as elastomers, rupture may occur when a maximal stretch is reached.
When this critical value is reached, the material is broken and cannot support further tension: then a
damaged zone develops inside the body. The purpose of this paper is to determine the shape of the
damaged zone under antiplane shear conditions.

Neuber [1968] investigated the mechanism of nonlinear stress-concentration near a notch and crack
propagation. The solution is obtained for any nonlinear stress-strain laws monotonically increasing and
all loading intensities. The boundary of the notch consists of two parallel straight lines and a cycloid along
which the amount of shear is uniform. Bui and Ehrlacher [1980] solved the same problem for a linear
elastic-brittle material; the thickness of the damaged zone is determined as a function of the stress inten-
sity factor of the equivalent crack. A similar solution has been obtained for elastoplasticity [Bui 1980].

More recently, brittle hyperelastic material solution for constitutive laws that permit loss of ellipticity
has been considered. Under antiplane shear, the boundary governed by the critical value of shear is a
cycloid [Stolz 2010] using the hodograph scheme as proposed in [Knowles and Sternberg 1980].

These studies are supported by the ERC program.
Keywords: antiplane shear, brittle material, crack-tip fields, hyperelasticity.
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Under the antiplane condition, during the propagation, the cracks tend to deviate from their plane.
The purpose of this paper is not to study the propagation of the crack in a three-dimensional space.
The antiplane problem is considered here to provide an analytical solution to evaluate the ability of the
proposed numerical scheme to determine a stress-free boundary independently of the mesh of a body.

2. Preliminaries and finite antiplane shear

Consider an isotropic homogeneous incompressible elastic body. Suppose that the body occupies an
open region � in a nondeformed configuration, and let us consider a deformation defined by the plane
displacement w(x),

y(x)= x+w(x1, x2)e3, (2-1)

that maps the domain � onto its deformation image ω. We assume that the mapping is regular and
invertible. Let

F = I +w,i e3⊗ ei , F−1
= I −w,i e3⊗ ei , (2-2)

the deformation gradient and its inverse. For an incompressible medium, the volume must be locally
preserved and thus

J = det F = 1. (2-3)

The left Cauchy–Green deformation tensor

B = I +w,i (e3⊗ ei + ei ⊗ e3)+ (w
2
,x1
+w2

,x2
)e3⊗ e3 (2-4)

has the fundamental scalar invariants

I1 = Tr B, I2 =
1
2(I

2
1 −Tr(B2)), I3 = J 2

= 1. (2-5)

The invariants I1 and I2 are equal:
I1 = I2 = 3+ R2, (2-6)

where R is the norm of ∇w.
For hyperelastic isotropic incompressible material, the free energy is a function E of these invariants;

in the case of antiplane shear, this energy is reduced to a function 9:

9(I1)= E(I1, I2). (2-7)

For the energy 9, the constitutive behavior is written as

2= 29 ′(I1)FT
+ ηF−1, σ = 29 ′(I1)B+ ηI, (2-8)

where 2 is the first Piola–Kirchhof stress tensor and σ the (actual) Cauchy stress tensor and where the
Lagrange multiplier η is associated with the constraint (2-3).

The balance of linear momentum in the absence of body forces leads to the equilibrium equation

Div2T
= 2(9 ′(I1)w,β),β = 0, (2-9)

where β = 1, 2 and the summation is implied. This equation is that obtained in small perturbation for
nonlinear elastic material with modulus µ=9 ′(I1).
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As σ · e3 = 0, the associated Piola stress tensor 2 is then reduced to

2= 29 ′(FT
− F−1), (2-10)

and the balance of linear momentum leads to an elliptic differential equation under the condition

29 ′+ 4R29 ′′ ≥ 0, (2-11)

which corresponds to the fact that the local stress-strain curve τ(R)= 2R9 ′(R)= Rµ(R) is an increasing
function of R.

2A. Power law for α ≤ 1. Assume now that the local stress-strain relations are given by
R ≤ Ro, τ = µo R,

Ro ≤ R ≤ Rm, τ = µo Ro(R/Ro)
α
= µ̂Rα,

Rm ≤ R, τ = 0.

(2-12)

Then for R ≤ Ro, the differential equation is elliptic. For Rm ≥ R ≥ Ro, ellipticity is ensured if α ≥ 0;
otherwise, the differential equation becomes hyperbolic.

2B. Neo-Hookean material. For α = 1 and Rm =∞, the material is neo-Hookean. For this case, the
differential equation reduces to Laplace’s equation and for a straight crack (−∞≤ X1 ≤ 0 and X2 = 0)
the solution of equilibrium is identical to the solution of Irwin obtained for linearized elastostatic. In the
radial coordinates around the crack tip, the displacement is obtained as

w→
2K
µo

√
r

2π
sin

θ

2
, r→∞. (2-13)

3. The small-scale nonlinear quasicrack problem and hodograph transformation

To determine the mechanical fields over the domain �, the hodograph transformation is useful as pointed
out by [Knowles and Sternberg 1980; 1981]. Other techniques can be used [Neuber 1968]. In the
hodograph transformation, the components of the gradient ∇w become the new independent variables:

(x1, x2)→ (ξ1, ξ2), ξα = w,α(x1, x2). (3-1)

The displacement appears as a potential (dw = ξα dxα). The mapping is invertible provided the Jacobian
H =w,11w,22−(w,12)

2 does not vanish. Denote by U the Legendre transformation of w with respect to ξα:

U (ξ1, ξ2)= xαw,α(x1, x2)−w(x1, x2). (3-2)

By differentiating U with respect to ξ , the conjugate equations are obtained:

xα =
∂U
∂ξα

, w = ξ · ∇U −U. (3-3)

In the hodograph plane, the polar coordinates are used (ξ1 = R cos2 and ξ2 = R sin2); then this inverse
of the mapping is given by

x1 = cos2
∂U
∂R
−

sin2
R

∂U
∂2

, x2 = sin2
∂U
∂R
+

cos2
R

∂U
∂2

. (3-4)
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The stress field satisfies

τ1 = σ13 = µ(R)R cos2, τ2 = σ23 = µ(R)R sin2. (3-5)

The equation of motion (2-9) is rewritten in the hodograph plane (R,2) using the mapping (3-4). The
notation ( · )′ indicates a differentiation with respect to R. The differential equation obtained in statics
takes the expression

∂

∂R

(
µ(R)R

∂U
∂R

)
+
(µ(R)R)′

R
∂2U
∂22 = 0. (3-6)

This equation is homogeneous of degree 1 in U . Using (3-2), the displacement w is

w = R2 ∂

∂R
U
R
. (3-7)

3A. Crack in a neo-Hookean material. A solution of (3-6) for a given modulus µ(R) is

U (R,2)= Ao RIo(R) cos2, R ≥ 0, 0≤2≤ π, (3-8)

where the function Io(R) is

Io(R)=
∫
∞

R

dt
µ(t)t3 . (3-9)

For neo-Hookean materials, the modulus µ(t) is a constant µo and the solution is then

U (R,2)=
Ao

2µo R
cos2, w =−

Ao

µo R
cos2. (3-10)

The images of the crack lips (θ =±π) are the two ξ1 axes 2= 0 and 2= π . The boundary conditions
on the crack lips are

∂U
∂2
= 0 for all R, 2= 0, and 2= π. (3-11)

Taking into account the hodograph transformation (3-4) and Irwin’s solution (2-13), we obtain the iden-
tification

2= 1
2(π + θ), Ao =

K 2

πµo
. (3-12)

3B. On the solution for power law for Rm→∞. It is easy to verify that the potential Uα given by

Uα(R,2)= AαR cos2
∫ Ro

R

dt
µ̂otα+2 = AαRIα(R) cos2 (3-13)

satisfies the conservation (2-9) of linear momentum for α 6= −1.
For the proposed strain-stress law with Rm→∞, the solution U is obtained:

• on domain R ≤ Ro, α = 1 and U = A1 RI1(R) cos2 and

• on domain R ≥ Ro, U = AαRIα(R) cos2.
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The constant A1 is determined by the condition of the loading at infinity (4-5). The potential at shear
amount R = Ro is continuous.

For α ≥ 0, the differential equation is elliptic for all amounts of shear, and the continuity of the
displacement for R = Ro for all 2 gives the constant Aα. On this curve, the stress is also continuous.

For α < 0 and R ≥ Ro, the differential equation is hyperbolic. In this case, the elliptic and hyperbolic
domains are not disjoint. The potential is continuous for R = Ro but not the displacement. The solution
in the elliptic domain must be equal to the solution in the hyperbolic domain: we(Re,2e)= wh(Rh,2h)

at the common point (xe
1(Re,2e)= xh

1 (Rh,2h), xe
2(Re,2e)= xh

2 (Rh,2h)). These equations determine
a curve where the gradient of the displacement is discontinuous [Knowles and Sternberg 1981] and the
stress vector is continuous. The continuity of the stress vector implies that Aα = Ao. The resulting
potential is that of Knowles and Sternberg [1981].

3C. On the quasicrack geometry. To obtain the geometry of the quasicrack, other solutions of (2-9)
must be added. Peculiar functions of the differential equation are

R
(

2α
α+ 1

log R cos2−2 sin2
)
, R cos2, R sin2. (3-14)

The first one corresponds to a shift along x2 when 2 goes from 0 to π , the second permits an x1 shift of
a unit value, and the last one corresponds to a shift along e2 of a unit value.

4. The quasicrack solution

For the considered example, the geometry of the crack is the straight line −∞≤ x1 ≤ 0. The direction
of the line is e1. The applied loading is that of a crack obtained in classical linearized elasticity or
embedded in neo-Hookean material as presented in Section 1. For an inner point of view, the local
behavior is nonlinear and the amount of shear is limited by a critical value Rm as described by the
proposed constitutive law.

For the considered constitutive law, the solution in the hodograph plane is built by the combination
of the solution for the linear part of the constitutive law and the solution for the nonlinear part with the
help of peculiar solutions.

Using the above results, the potential U is searched by

0≤ R ≤ Ro, U =Uo(R,2),

Uo = Ao R cos2
∫ Ro

R

dt
µot3 − Bo R(log R cos2−2 sin2)+Co R cos2,

Ro ≤ R ≤ Rm, U1 = Û (R,2),

U1 = A1 R cos2
∫ Ro

R

dt
µ̂otα+2 − B1 R

(
2α
α+ 1

log R cos2−2 sin2
)
+C1 R cos2.

(4-1)

The constants (Ao, A1, Bo, B1,Co,C1) are determined by

(a) continuity conditions of the potential in R = Ro,

(b) continuity of the displacement w everywhere,

(c) asymptotic behavior when R→ 0, and

(d) traction-free boundary conditions along the boundary of the damaged zone.
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4A. Determination of the constants.

(a) The continuity of the potential implies that Bo = B1 = B and the relation

B
2α
α+ 1

Ro log Ro+C1 Ro = B Ro log Ro+Co Ro. (4-2)

Then the displacement is given by
0≤ R ≤ Ro, w = wo(R,2)=−

(
Ao

µo R
+ B R

)
cos2,

Ro ≤ R ≤ Rm, w = ŵ(R,2)=−
(

A1

µ̂o Rα
+

2Bα
α+ 1

R
)

cos2.
(4-3)

(b) The displacement is continuous on R = Ro:

A1+µo R2
o B
α− 1
α+ 1

= Ao. (4-4)

(c) The displacement satisfies the matching condition at∞, so we obtain

Ao =
K 2

πµo
. (4-5)

(d) The boundary along the damaged zone is traction-free.

To simplify the expression, we adopt an dimensionless formulation. Let us define new parameters (a, a1, b)

Ao

µo R2
o
=

K 2

πτ 2
o
= a,

A1

µo R2
o
= aa1, B = ba. (4-6)

We adopt Co = 2− B+ B log Ro in order to determine the position of the quasicrack along x2 = 0, and
we consider the notation X i = xi/a and ρ = R/Ro. Then ρo = 1 and ρm = Rm/Ro.

The condition (4-5) is then rewritten as

a1+ b
α− 1
α+ 1

= 1. (4-7)

With this notation, the traction-free boundary condition (d) is now explained.
For that, the image of the hodograph plane is determined:

• 0≤ ρ ≤ 1,

X1 =−
1
2
−

1
2ρ2 cos 22− b log ρ,

X2 =−
1

2ρ2 sin 22+ b
(
2−

π

2

)
,

W =−
(

1
ρ
+ bρ

)
cos2,
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• 1≤ ρ ≤ ρm ,

X1 =−

(
a1

ρα+1 + b
α− 1
α+ 1

)
cos 22

2
−

(
a1

ρα+1 + b
)
α− 1

2(α+ 1)
−

2bα
α+ 1

log ρ−
a1

α+ 1
,

X2 =−

(
a1

ρα+1 + b
α− 1
α+ 1

)
sin 22

2
+ b

(
2−

π

2

)
,

W =−
(

a1

ρα
+

2α
α+ 1

bρ
)

cos2.

We have moved the frame along e2 with a shift of −bπ/2 to emphasize the symmetry of the geometry
with respect to e1. For ρ = ρa , the curve (X1(ρa,2), X2(ρa,2)) is a cycloid. With this geometry, the
traction-free boundary condition is given by

τ1 dX2− τ2 dX1 = 0. (4-8)

The boundary is decomposed into three parts: the two horizontal lines 2= π/2±π/2 and the cycloid
where ρ = ρm . The traction-free boundary condition is satisfied for 2= π/2±π/2 for all ρ and implies
along the cycloid where ρ = ρm (

2b
α+ 1

−
a1

ρα+1
m

)
cos2= 0. (4-9)

This relation can be combined with (4-5); then

1=
2b
α+ 1

(
ρα+1

m +
α− 1

2

)
. (4-10)

It can be noticed that the thickness H of the damaged zone is H = baπ .
For ρm→∞, the quantity b vanishes, the quasicrack tends to the classical crack, and the thickness H

vanishes.

4B. Connection with release rate of energy. The strain energy for the critical shear Rm is given by

E(Rm)=

∫ Rm

o
τ(t) dt =

1
µo

τ 2
o

α+ 1

(
ρα+1

m +
α− 1

2

)
. (4-11)

As a is a function of the equivalent loading K , the relation (4-10) determines the thickness of the damaged
zone

1
2aπ =

H
α+ 1

(
ρα+1

m +
α− 1

2

)
=

1
2

K 2

τ 2
o
. (4-12)

The flux of the energy along the cycloid is given by

Dd = H E(Rm)= πa
τ 2

o

2µo
=

K 2

2µo
. (4-13)

This flux is exactly the energy release rate for the equivalent crack given by the condition of loading at
infinity

G= J = H E . (4-14)
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This emphasizes the fact that, in the presence of discontinuities of the displacement gradient along a
curve 6, the equivalent J -integral is obtained by the limit

G= lim
0→6

∫
(En1− N2 · F · e1) ds =

∫
C
(En1− N2 · F · e1) ds (4-15)

for all curve C containing the cycloid. The invariance of the integral can be proved as proposed in
[Knowles and Sternberg 1972].

4C. Property of the solution for α ≥ 0. The balance equations for linear momentum are elliptic. If
ρo ≥ ρ1, the volume bounded by the cycloid (X (ρo,2), Y (ρo,2)) contains the volume bounded by the
cycloid (X (ρ1,2), Y (ρ1,2)). This is the case described by Neuber [1968].

In our approach, we have an additional equation that determines the thickness of the damaged zone
with respect to the external loading. The equations of equilibrium are elliptic, and there are no disconti-
nuities of the displacement gradient.

It can be noticed that we can use Rice’s J -integral to evaluate the stress intensity factor K , taking into
account the invariance of the J -type integral in hyperelasticity [Knowles and Sternberg 1972].

For ρm = 1, the results obtained by Bui and Ehrlacher are recovered, b = 1, and the solution is

X1 =−
1
2
−

1
2ρ2 cos 22− log ρ,

X2 =−
1

2ρ2 sin 22+
(
2−

π

2

)
,

W =−
(

1
ρ
+ ρ

)
cos2,

and the thickness of the damaged zone satisfies the relation

H = πa =
K 2

τ 2
o
. (4-16)

An estimation of the thickness for steel gives H of the order of 100µm.
For α = 0 and ρm > 1, the solution obtained by Bui [1980] is recovered.
It can be noticed that here the solution is obtained for nonlinear elastic behavior. This shows that Bui’s

solution is only a static solution. If we consider a propagation with constant velocity, the equation must
be completely reformulated because in this case the inertia terms are not negligible with respect to the
tangent modulus of the behavior.

Then the given relations are generalizations of these previous results to the case of hyperelastic brittle
material.

4D. Property of the solution for α < 0. In this case, the differential equation becomes hyperbolic for
ρ ≥ 1. The proposed potential U is the sum of two contributions: one independent of b and another one
depending linearly on b. The first one corresponds exactly to the solution of Knowles and Sternberg for
a classical crack in nonlinear elasticity.

But when ρm is finite, the main difficulty is to ensure the continuity of the displacement along the
common boundary between the domains of ellipticity and hyperbolicity. It can be noticed that the limit
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∂�ext

∂�tipA

B

�∪�∂�//

H

Figure 1. Meshed domain and boundary notations.

of the given potential when ρm tends to infinity is exactly the potential of Knowles and Sternberg because
at the limit b = 0.

Another interesting limit is obtained for fixed value ρm and α→−∞: the potential U tends toward
the potential of the elastic brittle material, and the solution is the solution of Bui and Ehrlacher.

The general case will be discussed in a further paper; some new requirements about regularity are
necessary to obtain a valuable solution.

5. Numerical approach

The problem of a quasicrack is now considered from a numerical point of view. The main difficulty is to
determine the shape of the quasicrack with an optimization algorithm using a nonlinear solver. The goal
of the numerical analysis is to determine numerically the traction-free boundary shape of the quasicrack
and to exhibit the relationship between the thickness H , the material properties, and the stress intensity
factor K of the equivalent crack.

To evaluate the ability of the proposed algorithm, we consider the constitutive law (2-12) with no loss
of local ellipticity (0≤ α ≤ 1).

Two main issues in the calculation have to be investigated: how to allow the free boundary to move
and then how to adapt the stress intensity factor K during the calculation.

The meshed domain is a square with a quasicrack of a given thickness H as shown in Figure 1. The
side of the square is ten times bigger than the quasicrack thickness. The boundary of the domain is
decomposed into four parts: the outer boundary ∂�ext, the two crack lips ∂�//, and the nonmaterial
boundary ∂�tip.

• The boundary ∂�ext is supposed to be far enough from the equivalent crack tip to legitimately
impose the loading determined in (4-5) and (2-13). At this stage, the stress intensity factor remains
unknown.

• The boundary ∂�// is a stress-free boundary; then σ · n = 0, where n is a normal vector to the
material domain.

• The boundary ∂�tip is used to close the meshed domain but has no physical meaning. The meshed
domain is quite different than the material domain. The material boundary is represented by a
curve 0. In order to determine its position, a level set is used.
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Figure 2. Material domain (gray) and damaged zone (white) are separated by the iso-
zero of a level set 0 that is discretized as 0t . A coarse mesh is used here for a better
understanding.

The level set 8 is chosen as the signed distance to 0: 8 is positive in the material domain and negative
outside. The level-set iso-zero (8(x, t) = 0) is the equation of 0. Numerically, the level-set iso-zero
matches 0 on the edges of the elements and approximates 0 inside the elements (see Figure 2) by 0t .
Some elements are then cut by the material boundary, and the method “XFEM” is used to integrate only
on the material domain [Moës et al. 1999; Daux et al. 2000].

It is important to note that the material domain will never contain ∂�tip. The level-set iso-zero is
forced to contain the points A and B, so the material boundary 0 is the continuation of ∂�// even if the
curves are not forced to be tangent to A or B.

Global rigid solid motion is avoided by fixing a Dirichlet null condition on an arbitrary point of the
material domain. The numerical solution is obtained by two complementary iterative processes: one to
determine the equilibrium and another one to optimize the position of 0.

During the computation of the equilibrium with a given position 0t , the amount of shear can exceed
the critical value R > Rm . In that case, the same power law (2-12) is used for R > Rm . Knowing this
state, an optimization process is then proposed to update the position of 0t with respect to the critical
value Rm .

The shape optimization algorithm works as presented in Algorithm 1. To solve the mechanical non-
linear problem, for a given 0t , an iterative algorithm is used (see Algorithm 2).

Shape optimization, convergence criterion, geometry evolution, and stress intensity factor updates are
described in next subsections.

Initial shape 0o, solve
while traction-free boundary is not admissible with Rm do

Compute hyperelasticity problem
Update the level set
Update the material domain and 0t

end while

Algorithm 1. Coarse description of shape optimization algorithm.
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Resolution of a nonlinear elasticity problem
Determination of initial loading K and initial displacement wo

while criterion(1K ,1w) > TOL do
Compute wn , Iter= Iter+ 1,

if Iter> ITERMAX then
Update K
Compute a new correction wn+1, Iter= 0

end if
end while

Algorithm 2. Stress intensity factor update.

5A. Resolution of the hyperelastic boundary value problem. Applying a classical Newton–Raphson
method to the hyperelasticity problem leads to instabilities for some values of α. The tangent operator
associated with the constitutive law has the form{

τ ′(R)= µ0 for R < Ro,

τ ′(R)= µ0α(R/Ro)
α−1 for R > Ro.

(5-1)

This operator is discontinuous at R = Ro. For R ≥ Ro, the value of the tangent operator can be so small
that the stability of the algorithm is not ensured; the method is then relaxed by uk+1 = uk + λδuk with
λ ∈ [0, 1], and the tangent operator is replaced by a proportional value of it. So a line search method is
used and defined as {

τ̃ ′(R)= µ0 for R < Ro,

τ̃ ′(R)= µ0(R/Ro)
α−1 for R > Ro.

(5-2)

5B. Shape optimization. Once the hyperelasticity problem has been solved, the boundary 0t must be
updated according to the condition R = Rm .

The evolution of 0t corresponds to updating the level-set iso-zero. The equation 8(x, t)= 0 is the
equation of a moving surface whose evolution is governed by its normal velocity a. The normal vector
to 0t is given by ∇8/‖∇8‖.

The velocity a is determined with respect to the condition R = Rm .
Firstly, strain field R is smoothed by solving a minimization problem whose variational formulation is,

for all R̃∗,
∫
�

R̃ R̃∗ d�=
∫
�

R(w)R̃∗ d�, (5-3)

where R̃ and R̃∗ are continuous and w is the displacement field solution of the hyperelasticity problem.
Then the normal velocity a =−k(R̃− Rref)/Rm is computed, k > 0. This velocity is smoothed over 0t

by solving a diffusion problem in order to avoid instabilities in its evolution:

for all a∗,
∫
0t

ãa∗ d0+ ν
∫
0t

∇ã∇a∗ d0 =
∫
0t

aa∗ d0, (5-4)

where ã is the smoothed velocity field.
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Shape optimization will be stopped when ‖a‖∞ < atol, where atol is about 1
1000 of the geometry

characteristic length.

5C. Geometry evolution and the updating of the level set. As 0t is updated by the normal velocity a
determined previously, the level set has to be updated over the whole meshed domain. Two conditions
must be satisfied. The updated level set must still be a signed distance function, and its iso-zero has to
be located at a distance ã(s) of 0t , where s is a curvilinear abscissa of 0t . According to the definition of
the normal velocity, the new position of 0 is then 0t+dt = 0t + ã(s)n dt with n the normal vector to 0t .

Let 8 be the level set and ϕ the shift for which we are looking. The solution must satisfy{
‖∇8+∇ϕ‖ = 1 in �,
ϕ = ã on 0.

(5-5)

Moreover, 8 verifies ‖∇8‖ = 1 and the system is equivalent to{
8 ·ϕ = 0 in �,
ϕ = ã on 0t .

(5-6)

This problem can be solved as an anisotropic diffusion problem:

for all ϕ∗,
∫
0t

ϕ̃ϕ∗ d0+µ
∫
�∪�

(∇ϕ∇8)(∇ϕ∗∇8) d�=
∫
0t

ãϕ∗ d0, (5-7)

where � is the whole domain that contains the nonmaterial domain.
When ϕ is known, the level set 8 can be updated.

5D. The stress intensity factor update. The thickness H is fixed; to satisfy the condition R = Rm

over 0t , the stress intensity factor K must be updated during the iterative process of the hyperelastic
problem resolution.

To have a good approximation of the stress intensity factor, three methods have been considered here.
The most expensive one is to smooth the strain field over the whole material domain � as in (5-3) and
to take its value at the points 0t ∪ ∂�//. It is assumed that, at these points, R must be equal to Rm . The
other methods consist of smoothing the strain field only over the free boundary 0 by solving a diffusion
equation,

for all R̃∗,
∫
0

(R̃ R̃∗+ L2
∇ R̃∇ R̃∗) d0 =

∫
0

R(w)R̃∗ d0, (5-8)

where L2 is the virtual diffusion coefficient. Then the mean value or the maximum one of the smoothed
field is taken as a reference. The last option has been used to obtain the results presented here.

Stress intensity factor updates are expensive. They are not performed at each iteration of the nonlinear
solver. However, a double convergence criterion is used: both displacement field and stress intensity
factor tolerances have to be respected.

6. Some numerical results

Some tests are presented in order to estimate the performance of the method. The analytical solution of
Section 4 is used to estimate the numerical accuracy of the algorithm.
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Figure 3. Smoothed strain R̃ (see (5-3)) at convergence: whole domain and detail over
the quasicrack tip.

The algorithm has been applied to study the iso-R shapes and stress intensity factor values K for
different values of ρm and α in the case of the power law (2-12). Finally, a bilinear brittle material is
also studied.

6A. Power law behavior with α > 0.

The shape of the traction-free boundary 0t . The criterion used to characterize the solution quality is the
root mean square of the distance of each node of the boundary mesh to the analytical solution. This
quantity is a length and represents the gap between the approximated and the analytical solutions. This
value is compared to a characteristic length of the problem: the quasicrack thickness H .

Assume that the initial chosen shape is a semicircle. The initial gap is then 25% of characteristic
length. At convergence, obtained after 88 iterations, the gap is reduced to 0.098%.

It is important to note that a precision of 0.002% is obtained at the first iteration when the computation
is initialized with the analytical geometry.

Stress intensity factor. Analytical and numerical stress intensity factors K/Ro have been compared for
different (Rm, α); the discrepancy is less than 1.2%. This shows that the thickness is very well evaluated.

The iso-R shape. The iso-Ro and iso-Rm are plotted at convergence in Figure 6. The relative gap is
0.005% for the curve Rm and 0.27% for the curve Ro.

The shape of the cycloids is well recovered.

Figure 4. Elastic domain (gray) and hyperelastic one (black).
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Figure 5. K/R0 results for analytical and numerical calculations (×) for the power law.

6B. The bilinear constitutive law. We consider now a bilinear constitutive law:
R ≤ Ro, τ = µo R,

Ro ≤ R ≤ Rm, τ = τo+ ((τm − τo)/(Rm − Ro))(R− Ro),

Rm ≤ R, τ = 0.

(6-1)

We note α = τm/τo.
In Figure 7, the stress intensity factor K/Ro is plotted analytically using the equation connecting the

J -integral and the thickness of the damaged zone:

J =
K 2

2µo
= H E(Rm),

E(Rm)=
1
2τo Ro+ τo(Rm − Ro)+

1
2(τm − τo)(Rm − Ro).

The numerical results are close to the analytical ones.

7. Conclusion

We have determined the shape of the damaged zone under antiplane shear conditions for hyperelastic
brittle material. The analytical results are a generalization of preceding results obtained by Bui for brittle
material. The thickness of the damaged zone is determined by the critical strain energy at rupture and
the loading.

ρm = 2 ρm = 4 ρm = 8
α analytical numerical analytical numerical analytical numerical

0.25 0.8007 0.7931 1.3001 1.2825 2.0458 1.9964
0.50 0.8292 0.8216 1.4376 1.4199 2.4428 2.3896
0.75 0.8604 0.8528 1.5992 1.5821 2.9444 2.8941
1.00 0.8944 0.8878 1.7889 1.7756 3.5777 3.5513

Table 1. Analytical and numerical results, power law behavior.
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Figure 6. Comparison of the analytical (dashed line for Ro and solid for Rm) and nu-
merical shapes (×).

The case of power law stress-strain curve is discussed; it is used to evaluate the ability of a numerical
optimization process applied to determine the damaged zone. An iterative scheme is proposed first to
determine an equilibrium state and secondly to optimize the position of the boundary of the damage zone.
The numerical results are close to the analytical results. The same algorithm is used for other constitutive
laws.

The approach must be extended to other cases of loading especially mode I and more general local
behavior.
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Figure 7. K/R0 results for analytical and numerical calculations for bilinear behavior.
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ρm = 2 ρm = 4 ρm = 8
α analytical numerical analytical numerical analytical numerical

0.25 0.8462 0.7986 1.2692 1.3420 2.0556 2.2759
0.50 0.8585 0.8291 1.4454 1.4986 2.6398 2.7504
0.75 0.8747 0.8584 1.6202 1.6413 3.1381 3.1667
1.00 0.8944 0.8878 1.7889 1.7756 3.5777 3.5513

Table 2. Analytical and numerical comparison, bilinear material.

The proposed method based on level-set and XFEM modelization should be extended also to the
damage transition to rupture modeled by thick level set [Moës et al. 2011], where the damage d evolves
from 0 to 1 in a layer of finite thickness lc. Two particular level-set values must be introduced: one
8(x, t) = 0 to described the boundary where d = 0+, the other 8(x, t) = lc where d = 1. The case
presented here is lc = 0. For lc 6= 0, this type of approach addresses the existence or not of a quasicrack
for constitutive behavior with smooth transition between damage to rupture.
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SOME APPLICATIONS OF OPTIMAL CONTROL
TO INVERSE PROBLEMS IN ELASTOPLASTICITY

CLAUDE STOLZ

The aim of this paper is to present the applications of the optimal control theory to solve several inverse
problems for elastoplastic materials and structures. The optimal control theory permits to determine the
internal state of a body from the knowledge both of the initial and the final, residual, geometry resulting
from an unknown loading history.

1. Introduction

This article presents the applications of the optimal control theory to solve several inverse problems in
non-linear mechanics, more precisely elastoplastic materials. Two decades ago Prof. H. D. Bui presented,
in his book on inverse problems, some solution examples for the Cauchy problem based on control theory.
This work is an extension of the ideas presented in that work [Bui 1993] for the case of structures with
an elastoviscoplastic material behavior.

We shall start with the assumption of known constitutive equations and will only address the question
of the determination of the internal state of the body resulting from an unknown loading history. In order
to complement the missing loading data, we shall further suppose that both the initial and the final shape
of the body are known. This problem setting has several applications ranging from the identification
of causes of accidents to optimization of industrial processes and different solution methods have been
proposed; see for example [Ballard and Constantinescu 1994; Constantinescu and Tardieu 2001; Gao and
Mura 1989]. The solution proposed next is based on the optimal control theory, through the minimization
of a suitably chosen functional cost among a class of admissible loading histories, as briefly discussed
in [Stolz 2008]. It presents the additional advantage of proposing simultaneously an internal state and a
possible loading history.

The paper starts with the introduction of the solution method based on optimal control theory to inverse
problems in linear elasticity. Next a generalisation is presented for elastoplasticty and viscoplasticity. The
final complexity is reached for elastoplastic problems under cyclic loading, where the optimal control
method proved to be a powerfull tool to determine the limit cycle in elastoplasticity [Peigney and Stolz
2001; 2003] or the wear and the consequent the loss of material [Peigney 2004]. The approach is
illustrated by a series of solutions of example problems.

2. Inverse problems in linear elasticity

2A. Setting of the problem. Let us consider a material body occupying in the reference configuration
the volume �. The boundary of the body, denoted by ∂�, is partitioned in two complementary parts 0o

Keywords: elastoplasticity, inverse problem, adjoint problem, optimal control.
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v

Figure 1. Left: a non-well posed problem: To and uo are applied on 0o. Right: the
well-posed problem: v on 0i (dashed) and To on 0o are prescribed.

and 0i , (see Figure 1). On the 0o part, both the displacement field uo and the surface traction field To

are known.
The inverse problem, considered next is the determination of both the displacement on the boundary

part 0i and the complete displacement field u over �.
The unknown complete displacement field u should satisfy the following systems of partial differental

equations and boundary conditions:

Compatibility: ε(u)= 1
2(∇u+∇ t u), over �,

Constitutive law: σ = C : ε(u), over �,
Equilibrium: div σ = 0, over �,
Boundary conditions BCu: u = uo, on 0o,
Boundary conditions BCT: n.σ = To, on 0o.

This problem is not well posed in the Hadamard sense [Lions 1968], in the sense that existence and
uniqueness of the solution is generally not insured and that small errors in the input data will conducts to
large errors in the output data, the displacement field u. Several solution methods have been dedicated
to this problem setting: direct integration of Cauchy problem [Bui 1993; Bourgeois 1998], the quasi-
reversibility method [Lions 1968; Bourgeois 1998], etc.

The solution proposed here is focused on the application of optimal control theory. An example of
application is the steady-state heat conduction problem, where optimal control theory has been used to
determine the history of heat sources [Delattre et al. 2002].

2B. A well posed problem. The ill posed character of the initial problem setting can be corrected, by
relaxing the overdetermined data on 0o boundary and proposing data for 0i . For the overall probelm
setting, this means changing the boundary conditions (BCu) with the conditions (BCi) applied on the
complementary boundary 0i :

BCi: u = v, on 0i . (2-1)

As a consequence, boundary condition are complete, defined on complementary parts and the corrected
problem is know well posed. One can recognize, the form of a classical problem in small strain linear
elasticity.

For the optimal control problem setting we shall denote this problem as the primal problem. Moreover,
its solution usol(v, To) is then a linear function of the prescribed values on the surface tractions and
displacements boundaries: To on 0o and v on 0i .
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2C. The idea of control. The prescribed displacement v on the complementary boundary 0i , introduced
before (2-1), will now play the role of a control variable which is optimized in order to satisfy the
following condition: the solution of the primal problem usol(v, To) must match to the displacement field
uo on the boundary 0o. From a mathematical point of view, the optimal displacement v realizes the
minimum of the functional J defined as

J (v)=
∫
0o

1
2‖u(v, To)− uo‖

2 ds+ r
∫
0i

1
2‖v‖

2 ds. (2-2)

2D. The optimization method. A series of operations, adding the variational form of the primal problem
to the functional J and using the boundary conditions, transforms the problem in a new optimization
problem. The solution u of the inverse problem realizes an optimal point for the functional J:

J(u, u∗)=−
∫
�

ε(u) : C : ε(u∗) d�+
∫
0o

u∗.To ds+ h
∫
0o

1
2‖u− uo‖

2 ds+ r
∫
0i

1
2‖u‖

2 ds,

among the set of kinematically admissible fields u∗ such that u∗ = 0 over 0i .

Outline of proof. The optimal point of the functional is characterized by the canceling of its first order
variations. The variations of J are defined by

δJ=−

∫
�

(
σ : ε(δu∗)+ σ ∗ : ε(δu)

)
d�+

∫
0o

δu∗.To ds

+h
∫
0o

(u− uo).δu ds+ r
∫
0i

u.δu ds=
∂J

∂u∗
.δu∗+

∂J

∂u
.δu.

where we have set σ = C : ε(u) and σ ∗ = C : ε(u∗), and δu and δu∗ are free kinematically admissible
with 0 virtual displacements field.

The optimization of the functional J leads to two sets of equations, representing respectively the
primal and the adjoint problem.

The condition ∂J/∂u∗ = 0 corresponds to the equations of the already defined primal problem:

div σ = 0, σ = C : ε(u) over �, σ .n= To on 0o. (2-3)

The variations ∂J/∂u = 0 corresponds to the equations of the so-called adjoint problem (2-4). This
set is satisfied by the adjoint displacement field u∗ and the condition of optimality (2-5):

0= div σ ∗ over �, σ ∗.n= h(u− u0) on 0o, u∗ = 0 on 0i , (2-4)

r u = n.σ ∗ on 0i . (2-5)

One can further remark that the adjoint problem has the same structure as the primal problem, i.e.
linear elasticity and small strain. However, the physical dimensions of the fields depend on the choice
of the cost functional. This is a direct mathematical consequence of the fact that linearized elasticity is
a self-adjoint problem.

In the next section, we now extend this method for solving inverse problems in the case of viscoplastic
and elastoplastic materials.
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3. Examples of inverse problem in elastoplasticity

Consider a body � with a known local material behaviour. Starting from the initial known shape of the
body and an unknown loading history, the body occupies a different residual shape. The inverse problem
studied next should estimate both the internal state governed by the plastic strain and a loading history
compatible with the measured residual geometry.

The solution method of this inverse problem in elastoplasticity rests on several general assumptions:

• The loading history is given by the surface tractions: T (x, t f )= To, t ∈ (0, t f ) on 0o belonging to
a class of possible loading histories.

• The elastoplastic evolution problem is solved and consequently the plastic strain ε p(x, t) is an direct
output of this evolution problem.

• The optimal loading history T op is chosen among the given class of admissible loading histories,
such that the final shape, defined by the displacement field corresponding to the final time step,
i.e. u(x, t f ) matches the measured residual displacement uo. This condition is expressed by the
minimum of the cost functional J defined by

J (T , ε p, t f )=

∫
0o

r
2
‖u(t f )− uo‖

2 ds, (3-1)

which measures the mismatch between the two displacement fields.

These assumptions will permit to estimate the loading history and the internal state from the given data
uo, To. The natural control variables introduced in this problem are the histories of the surface traction
T (x, t) and the plastic strain field ε p(x, t).

To illustrate the solution of the elastoplastic inverse problem using the proposed method, let us consider
the following examples: (i) a three-bar lattice under traction, (ii) the bending of a beam in plane strain
and (iii) a hollow sphere under pressure.

In a first step, on these examples a particular solution of the direct problem is obtained in order to
define a final residual shape. In the second step, starting from this final shape as given data, the optimal
control theory provides the solution of the inverse elastoplastic problem.

3A. A three-bar lattice under traction. Let us consider the problem of an elastoplastic lattice, consisting
of three bars of lengths L1 = L , L2 = L3 = L

√
2, as depicted in Figure 2. The displacement of the point

O is denoted by u = ve1+ he2.

A B C

O

2
1

3

e1

e2

v0

h0

2
1

3

Figure 2. Three elastoplastic bars: initial (left) and residual configuration (right).
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�

""p

�c

E

ce

Figure 3. The constitutive law.

In the initial state the bars are stress free. After an unknown loading and unloading history, the lattice
is in a final configuration, exhibiting a residual global displacement uo = (vo, ho). This final shape is
depending on the internal plastic strains δi

p.
Let us assume that the material behaves as an elastoplastic medium with linear hardening law as

depicted in Figure 3. The material parameters of the model are: E is the Young’s modulus, S is the
section of the bar the hardening modulus co. One defines ce = Eco/(E + co).

Under an external loading, characterized by the force (V, H) applied in O with an increasing and
decreasing amplitude the bars recover the static equilibrium in the absence of external forces and the
final position of the point O is now (vo, ho). Let us assume that the distribution of plastic stretches is
(δ p

i , i = 1, 3) in the bars.
The equilibrium state of the system in terms of displacement, stretches and normal tractions must

satisfy the set of equations:

• Compatibility:

δ1 = v, δ2 =
v+ h
√

2
, δ3 =

v− h
√

2
. (3-2)

• Constitutive behaviour:

δ1 = K N1+ δ
p
1 , δ2 = K

√
2 N2+ δ

p
2 , δ3 = K

√
2 N3+ δ

p
3 . (3-3)

• Equilibrium:

V = N1+
N2+ N3
√

2
, H =

N2− N3
√

2
. (3-4)

• Domain of reversibility:
|Ni − ciδ

p
i | ≤ Nc. (3-5)

Here c1 = S co
L
= c, c2 = c3 =

c
√

2
and K = L

E S
, Ni = Sσi , εi L i = δi , ε

p
i L i = δ

p
i .

3A1. The direct problem. For a given loading history (V (t), H(t), t ∈ [0, t f ]), one can compute the
evolution of the system taking into account the elastoplastic constitutive law. The stresses Ni , i = 1, 3,
lie in the convex set of reversibility, (3-5). The evolution of the plastic stretches is governed by the
normality rule described as

|Ni − ciδ
p
i | ≤ Nc, λi ≥ 0, δ̇

p
i = λi

Ni − ciδ
p
i

Nc
= λi ni , λi (|Ni − ciδ

p
i | − Nc)= 0. (3-6)
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In the initial configuration there is no external loads and no prestresses, therefore the lattice is consid-
ered stress free. As a consequence, the plastic stretches are identically to zero until one of the normal
traction Ni reaches the critical yield value ±Nc. The initial domain of reversibility, corresponding to the
initial elastic domain of the lattice, in terms of external loads (V, H) is obtained by solving the system
consisting of (3-2), (3-3), (3-4) with vanishing plastic stretches δ p

i = 0 and the imposing the inequations
|Ni | − Nc ≤ 0:

|N1| =

∣∣∣∣ 2V

2+
√

2

∣∣∣∣≤ Nc, |N2| =

∣∣∣∣ V

2+
√

2
+

H
√

2

∣∣∣∣≤ Nc, |N3| =

∣∣∣∣ V

2+
√

2
−

H
√

2

∣∣∣∣≤ Nc.

If the applied load (V, H) leaves the reversibility domain, plasticity occurs. In this case, after a loading-
unloading cycle a distribution of plastic stretches δ p

i is obtained in the bars of the lattice. Therefore, when
the applied stresses (V, H) return to (0, 0), the lattice will not be stress free and will exhibit a residual
shape (v p, h p). Let us denote, the residual stresses, i.e. tractions in the bars, N r

i .
For the application of an external load, starting from this state, a new equilibrium of tractions in each

bar Ni is obtained satisfying the equalities

N1 =
2V

2+
√

2
+ N r

1 , N2 =
V

2+
√

2
+

H
√

2
+ N r

2 , N3 =
V

2+
√

2
−

H
√

2
+ N r

3 . (3-7)

Again this state has to be compatible with the actual domain of reversibility, which takes into account
the existence of residual stresses: |Ni − ciδ

p
i | − Nc ≤ 0.

At the final unloaded state, when the external loads are (H, V )= (0, 0), the global displacement is
(v p, h p) and the local stretches δi = δ

ir
i of the final residual configuration satisfy the equations (3-2),

(3-3), (3-4). Let us now remark, that the internal residual stresses N r
i depend only of the incompatibility

of the plastic stretches δin =
√

2δ p
1 − δ

p
2 − δ

p
3 and

N r
1 =−

δin

K (2+
√

2)
, N r

2

√
2= N r

3

√
2=

δin

K (2+
√

2)
. (3-8)

Moreover, the residual shape satisfies

v p
=

2

2+
√

2
(δ

p
1 +

1
2(δ

p
2 + δ

p
3 )), h p

√
2= δ p

2 − δ
p
3 . (3-9)

3A2. The solution for a loading history with H = 0. Consider a loading-unloading process with H = 0.
In this case, N2 = N3 and h = 0. The phase of increasing V will be decomposed in three steps as a
function of the maximum value of Vm .

• Elastic step. For increasing V , the first part of the loading corresponds to a linear elastic response
of the lattice

v = K N1 = 2K N2, N1+
√

2N2 = V . (3-10)

This occurs under the condition Vm ≤ V1:

v =
K
√

2

1+
√

2
V, V ≤ V1

1+
√

2
√

2
Nc. (3-11)
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• Plasticity of bar 1. In the case when Vm ≥ V1, bar 1 is deformed plastically, starting with the
assumption δ p

2 = δ
p
3 = 0, one obtains

N1 = Nc+ cδ p
1 , K N1 = v− δ

p
1 , (3-12)

then

δ
p
1 =

v− K Nc

1+ K c
, V =

Nc

1+ K c
+

( c
1+K c

+
1

K
√

2

)
v. (3-13)

Let us consider a state δ p
1 , and a variation of the external loading V̇ > 0, then δ̇ p

1 ≥ 0 and the solution
satisfies the normality rule. This solution is valid if and only if |N2|−Nc ≤ 0. The inequality implies
that Vm ≤ V2 where V2 is given by

V2 = (1+
√

2)Nc+
K c

1+ K c
Nc. (3-14)

• Plasticity of the whole system. When Vm > V2 the three bars are deformed plastically. The system
consisting of (3-2), (3-4), (3-3) is rewritten with h = 0, δ p

2 = δ
p
3 , and the condition of plasticity:

N1 = Nc+ cδ p
1 , N2 = Nc+

c
√

2
δ

p
2 . (3-15)

Using (3-3) and (3-4), we have

v = K Nc+ (1+ K c)δ p
1 = 2K Nc+

√
2(1+ K c)δ p

2 , (3-16)

V = Nc(1+
√

2)+
cK

1+ K c
Nc+

c
1+ K c

1+
√

2
√

2
(v− 2K Nc). (3-17)

The residual displacement is obtained as

1+
√

2
√

2
v p
= δ

p
1 + δ

p
2 . (3-18)

3A3. Inverse problems. Let us assume that the residual shape is given by the displacement uo = (vo, uo).
We shall determine the best history of loading (H(t), V (t), t ∈ [0, t f ]) given by the problem of optimiza-
tion based on the functional

J = 1
2(v(t f )− vo)

2
+

1
2(h(t f )− ho)

2
=

1
2

∥∥u(δi
p)(t f )− uo

∥∥2
, (3-19)

According to this mathematical definition, the solution (v(t f ), h(t f )) of the direct problem obtained from
the optimal history is close to the measured displacement (vo, ho). Generally, the solution of this problem
is not unique, there are several local minima and some restrictions on the history and on the plastic strain
must be added to obtain a unique solution.

There are two classes of inverse problems which can be illustrated by the simple example. Class 1
consists in estimating the internal state without determining a loading history, taking as control variables
the plastic stretches. Class 2 addresses the determination of a complete history of the loading and of the
internal state.
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Class 1: Estimation of the plastic strain. In this case, the plastic stretches are the control variables and
we consider only the residual state. We seek to optimize the internal state such that the functional Jo(δ

p
i )

is minimum, where Jo is

Jo =
1
2r(v− vo)

2
+

1
2r(h− ho)

2
=

r
2

∥∥u(δi
p)− uo

∥∥2
. (3-20)

In this functional, we must solve the system satisfied by the residual state only. Eliminating the equa-
tions of compatibility, we can introduce an adjoint state (h∗, v∗) to take the equilibrium into account

simultaneously with the local constitutive law. Introducing the rigidities C1 =
1
K

, C2 = C3 =
1

K
√

2
of

each bar and the functional L, given by

L(u∗, u, δ p
i )=−v

∗C1(v− δ
p
1 )−

v∗+ h∗
√

2
C2

(
v+ h
√

2
− δ

p
2

)
−
v∗− h∗
√

2
C3

(
v− h
√

2
− δ

p
3

)
, (3-21)

the equilibrium satisfies the variational formulation

∂L

∂u∗
= 0, ∀u∗ = (h∗, v∗). (3-22)

Now the inverse problem is solved by minimization of the functional

Ĵ (u, u∗, δ p
i )= Jo+L. (3-23)

In general the functional Ĵ posseses many minima and the addition of constraints is then necessary to
ensure uniqueness.

For example we can minimize simultaneously a norm of the plastic stretches D = Nc
∑

i
1
2 L i (δ

i
p)

2,
and the functional takes the form:

J (δi
p)=

r
2
‖u(δi

p)− ur‖
2
−L+ q Nc

∑
i

1
2 L i (δ

i
p)

2.

Outline of proof. The variations with respect to u∗ ensure the equilibrium equations

N1+
1
√

2
(N2+ N3)= 0,

1
√

2
(N2− N3)= 0, (3-24)

and the constitutive law

N1 = C1(v− δ
p
1 ), N2 = C2

(
v+ h
√

2
− δ

p
2

)
, N3 = C3

(
v− h
√

2
− δ

p
2

)
. (3-25)

Denoting the adjoint stresses by

N ∗1 = C1v
∗, N ∗2 = C2

v∗+ h∗
√

2
, N ∗3 = C3

v∗− h∗
√

2
. (3-26)

From the variations with respect to u = (h, v), we obtain the equations of the adjoint state:

N ∗1 +
1
√

2
(N ∗2 + N ∗3 )= r(v− vo),

1
√

2
(N ∗2 − N ∗3 )= r(h− ho). (3-27)
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Finally the variations with respect to δ p
i give the conditions of optimality

N ∗i + q Nc L iδ
p
i = 0. (3-28)

The system is complete and has a unique solution depending on the choice of r , q .
However, if the norm D is changed into the internal stored energy W in the residual tension N r

i ,

W = 1
2 L
(
(N r

1 )
2
+
√

2(N r
2 )

2
+
√

2(N r
3 )

2), (3-29)

this energy is convex in δin but not in δ p
i , the resulting functional is not convex in δi

p and the uniqueness
is not guaranteed.

Class 2: Estimation of the loading history.
In order to obtain information about the history of loading the direct problem of evolution must be

solved for a class of loading.
For example, consider the family of radial loading given by (H, V )= µ(t)(Ho, Vo), if we assume that

during the unloading step no plasticity occurs, then the loading is characterized by the maximum of µ
and the direction (Ho, Vo).

From the given residual shape (vo, ho), we apply a loading (V, H) and assuming that the answer is
purely elastic, we can define (vm, hm) by

vm = vo+
K
√

2

1+
√

2
V, hm = ho+ K

√
2H. (3-30)

For an estimation δ p
i of the plastic stretches, the domain of reversibility is known and (V, H) must be

inside this domain. We propose to find δ p
i and (V, H) such that the displacement (v, h), satisfying the

problem of equilibrium and the domain of reversibility, is close to the displacement (vm, hm). For that
purpose we introduce the functional

J(u, u∗, δ p
i , V, H)=

r
2
‖u− um‖

2
+L+

∑
i

αi L i

2
(|Ni − ciδ

p
i | − Nc)

2. (3-31)

In this expression, the tractions Ni satisfy the constitutive law (3-3). The three constants αi are chosen
as αi = α > 0 or αi = 0 depending or whether the bar i has been deformed plastically or not.

Denoting the adjoint traction by N ∗i as in (3-26), it is easy to prove that the optimality conditions on

J with respect to u∗, that is
∂J

∂u∗
= 0 give exactly the equations (3-4), (3-3). The conditions with respect

to u:
∂J

∂u
= 0 are equivalent to the adjoint problem (ni being defined as in (3-6)):

r(v− vm)=−

3∑
i=1

niαi L i Ci (|Ni − ciδ
p
i | − Nc)+ N ∗1 +

N ∗2 + N ∗3
√

2
, (3-32)

r(h− hm)=−

3∑
i=2

niαi L i Ci (|Ni − ciδ
p
i | − Nc)+

N ∗2 − N ∗3
√

2
. (3-33)
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The optimization with respect to δ p
i gives

N ∗i −αi ni (|Ni − ciδ
p
i | − Nc)

1+ K c
K
= 0, (3-34)

and finally the optimization with respect to the loading (V, H) defines the adjoint displacement

v∗ = r(v− vm)
K
√

2

1+
√

2
, u∗ = r(h− hm)K

√
2. (3-35)

The system is complete. For a given residual shape, we must choose the αi a priori. For a solution of the
optimization, we must verify that the inequalities (3-5) are satisfied.

3A4. Inverse problem when ho = 0. In this case, it is natural to consider that δir
2 = δ

ir
3 and then H = 0,

N2 = N3 and δ2 = δ3.
We consider V ≥ 0, then ni = 1. For vo 6= 0, we consider first that the plasticity occured only in bar 1,

then α2 = α3 = 0 and δ p
2 = δ

p
3 = 0. Then, N ∗2 = N ∗3 = 0, this implies that v∗ = 0 and |N1−cδ p

1 |−Nc = 0
simultaneously with v = vm . We deduce immediatly that

v =
2K

2+
√

2
V +

2

2+
√

2
δ

p
1 , δ

p
1 =

2

2+
√

2
vo, (3-36)

V = (1+
√

2)Nc+
c

1+ K c
(v− K Nc)+

K
√

2
v. (3-37)

This is the solution if the traction in the bars (2 and 3) are in the domain of reversibility (N2 ≤ Nc). This
condition implies v = 2K N2 < 2K Nc that is equivalent to V ≤ V2. If this condition is not fulfilled, we
consider that α2 = α3 = α and u∗ = 0. The equilibrium implies that

V =
v

K
1+
√

2
√

2
−
δ

p
1 + δ

p
2

K
, v p

=

√
2

1+
√

2
(δ

p
1 + δ

p
2 ). (3-38)

Using the definition of the adjoint stresses (3-26), the optimisation with respect to δ p
i two relations and

the optimisation with respect to v we obtain

v∗ = α(N1− cδ p
1 − Nc)(1+ K c), (3-39)

v∗ = 2α
(

N2−
c
√

2
δ

p
2 − Nc

)
(1+ K c), (3-40)

r(v p
− vo)=−

1+
√

2

K
√

2
v∗+

1+ 2
√

2
K (1+ K c)

v∗. (3-41)

The optimality condition (3-35), after the elimination of v, implies that v∗ = 0 and v p
= vo. The value

of V is recovered.
For the given residual state obtained from a radial loading-unloading history, we recover the maximum

loading and the internal state using the optimal control theory.

3B. Study of an elastoplastic beam in plane motion. The beam is initially rectilinear. After an unknown
vertical distribution of loading, the beam takes a residual shape due to plastic strain.
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Figure 4. The initial state and final state (- -) of the beam. The geometry and the plastic
zone �p.

The goal of the inverse problem is to estimate a plastic strain distribution with an associated loading
which is compatible with this residual shape.

The plane motion of the beam is characterized by the displacement u along ex and a vertical displace-
ment v in direction ey . We consider that u(0, t)= v(0, t)= v(L , t)= 0. We assume that the stress and
the total strain are uniaxial:

σ = σ ex ⊗ ex , ε = (u′+ yv′′)ex ⊗ ex , (3-42)

and the plastic strain is described by the function α(x, y):

ε p = α(x, y)ex ⊗ ex . (3-43)

Then the free energy is given by

w(u, v, α)= 1
2 E(u′+ yv′′−α)2+ 1

2 Hα2. (3-44)

The thermodynamical force A associated to the plastic strain must be within the domain of reversibility

A = σ − Hα, f (A)= ‖A‖− k ≤ 0, (3-45)

and the evolution of the plastic strain inside the beam is given by the normality rule.

α̇ = λA/‖A‖, λ f = 0, λ≥ 0, f ≤ 0. (3-46)

For a given distribution of α and a given pressure on the beam, the displacement (u, v) minimizes the
potential energy of the beam

E(u, v, α)=
∫ L

0

∫ h

−h
w dy dx +

∫ L

0
p(x)v(x) dx . (3-47)

The traction N and the moment M are defined as

N = E S(u′−< α >), M = E Iv′′− E S〈yα〉, (3-48)
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where S = 2h, I = 2
3 h3, 〈 f 〉 =

1
2h

∫ h

−h
f dy. With these notations, the equilibrium of the beam satisfies

N,x = 0, M,xx + p = 0, N (L)= 0, M(0)= M(L)= 0. (3-49)

Then the thermodynamical force A is

A =
N
S
+ E〈α〉+ y

(
M
I
+

E S
I
〈yα〉

)
− (E + H)α. (3-50)

The norm of A does not exceed k.

3B1. The direct problem for a loading-unloading process. For a distribution of pressure p(x)=µ(t)Po(x)
with µ(t)= qt for t ∈ [0, tm] and µ(t)= q(tm − t) for t ∈ [tm, 2tm], we solve the direct problem.

We consider that the plastic zone �p is symmetric with respect to ex , then α(x, y, t)= α(x,−y, t).
The value of the thermodynamical force A determines the form of α(x, y):

α(x, y, t)= αo(x, t)+ yα1(x, t). (3-51)

The evolution of the beam follows three phases: a response purely elastic, an evolution with plasticity,
and a purely elastic unloading.
• Elastic phase: For the proposed loading, the response of the beam is linear elastic when f (A)≤

0,∀(x, y) and
α(x, y)= 0 for t < tc.

At t = tc some points of the beam are such that f (A)= 0. After this critical time (t > tc), the plasticity
develops inside the beam, the boundary of the plastic zone �p is the plane curve y =±m(x, t).
• Phase of loading in plasticity: In the plastic zone �p

�p = {(x, y) ∈�/ y ≤−m(x, t), y ≥ m(x, t), x ∈]x p(t), L − x p(t)[ }, (3-52)

the thermodynamical force A(x, y) satisfies A = k, this implies that

αo =−
k

E + H
, 〈yα〉 =

1
2h

∫ m

−h
yα dy. (3-53)

And we obtain
M
I
+

k E
I (E + H)

(h2
−m2)−

2E
3I

m3α1− Hα1 = 0. (3-54)

The plastic strain is then determined if we know the equation of the curve y =±m(x, t).
In the complementary domain, namely, −m(x, t)≥ y ≥ m(x, t) for x ∈ [x p(t), L − x p(t)], the local

response is purely elastic:

A =
My
I
+

2Ey
I

k
2(E + H)

(h2
−m2)+

2Ey
3I

α1(h3
−m3). (3-55)

On the boundary of this domain, the continuity of A determines the equation of the boundary y =
−m(x, t):

−k =
Mm

I
+

2Em
I

k
2(E + H)

(h2
−m2)+

2Em
3I

α1(h3
−m3). (3-56)
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In the complementary domain, namely for x ∈ ]0, x p[ ∪ ]x p, L[, we have

A =
My
I
. (3-57)

For the sake of simplificity, we consider now the case of perfect plasticity, H = 0, for which an explicit
equation for the boundary is obtained:

m(x, t)=

√
3
(

h2+
M(x, t)

k

)
. (3-58)

The local fields satisfy the equations

u(x, t)= 0, (3-59)

v′′(x, t)=
k

Em
if x ∈ [x p(t), L − x p(t)], (3-60)

v′′(x, t)=−
M
E I

otherwise, (3-61)

and the plastic strain is

α(x, y)= k
E

(
sign(y)− y

m

)
. (3-62)

These equations are true for t ∈ [0, tm]. At t = tm the moment M is maximum Mm .
• Phase of unloading: From t ≥ tm the loading decreases. Let us assume that the loading rests within

the domain of reversibility, then λ(x, y)= 0 and the unloading is purely elastic and that we obtain the
value M(x, 2tm)= Mm(x) at t = 2tm then the solution satisfies:

• In the plastic zone, namely for x ∈ [x p(tm), L − x p(tm)],

v′′f (x)= v
′′(x, 2tm)=

k

E

√
3
(

h2+
Mm(x)

k

) + Mm(x)
E I

= ψ(Mm). (3-63)

• In the complementary part,
v′′f (x)= 0= ψ(Mm). (3-64)

This solution determines the residual shape if the condition of elastic unloading is satisfied that is
M(x, t)≤− 2

3 kh2.
The distribution of the moment Mm depends only on Po(x) and then the residual shape is governed

by the equations

M ′′m = Po, v′′ = ψ(Mm), Mm(0)= Mm(L)= 0, v(0)= v(L)= 0. (3-65)

3B2. The inverse problem. We assume that the residual displacement vo is given, and we try to determine
the best process p of loading-unloading which gives a displacement v(p) as close as possible to vo by
solving the direct problem. The loading p is controlled such that the functional

J (p)= 1
2

∫ L

0
(v(p)− vo)

2 dx + 1
2

r
∫ L

0
p2 dx . (3-66)
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For a given family p(x, t) we can solve the direct problem, and then optimize J . The equations of the
direct problem are equivalent to the variational form by introducing the functional L, which depends on
adjoint fields:

L=

∫ L

0

(
M∗(p−M ′′)+ v∗(ψ(M)− v′′)

)
dx . (3-67)

The solution of the inverse problem is obtained as optimization of J = J +L, the variations for the
adjoint fields give rise to the equations of the direct problem, and the condition of optimality is obtained
as a boundary condition:

0=
∫ L

0
(M∗+ r p) p∗ dx . (3-68)

Assume that vo(x) is the solution of the elastoplastic problem with Po(x)= po. The goal of the inverse
problem is to find the best p(x, t) for which the displacement v(p) is close to vo.

The analysis with uniform p(x, t) gives the exact solution. It is obvious because the solution of
the direct problem with uniform p satisfies the equations of the inverse problem and the condition of
optimality determines the value of p.

Other profiles for P(x) can be used. For example, the choice of a triangular shape or a sinus shape
for Po(x) gives a very close plastic zone. This can be shown numerically. The error on the shape does
not exceed 1%.

4. Estimation of the internal state in elastoplasticity.

Consider now a body �. The body is submitted to an increasing loading, but the history of the loading
is not known. Only the final shape uo and the final loading To on the boundary 0o are known.

For an elastoplastic material, the stress satisfies the constitutive law

σ = C : (ε(u)− ε p), f (σ , ε p)≤ 0, (4-1)

where the domain of reversibility f (σ , ε p)≤ 0, is defined by the convex function f .
These stresses are in equilibrium with given boundary conditions (To on 0o) and are divergence free

if there is no body force:

div σ = 0 over �, n.σ = To over 0o. (4-2)

The plastic strain is isochoric:
Tr ε p = 0. (4-3)

To estimate the internal state, from the known residual shape, we can solve a problem of linear elasticity
controlled by ε p: find the displacement v satisfying the following conditions:

• Compatibility: 2ε(u)=∇u+∇ t u,
• Constitutive law: σ = C : (ε− ε p),

• Boundary condition: n.σ = To over 0o, u = 0 over 0i .

The best estimation of ε p must be such that on 0o the displacement solution of the direct problem
vsol(ε p) is close to uo on 0o.
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Previously, we proposed to solve the problem of evolution for an elastoplastic material for a given
class of loading history, but this is a tedious task, because we must solve the direct problem many times
to determine the optimal state. We propose to consider another way to estimate the elastoplastic state.

To obtain a solution of the optimization close to a problem of elastoplasticity, we decompose the body
� into two domains, one where ε p = 0 and a plastic zone �p where the stresses are close to the domain
of reversibility.

These constraints are prescribed during the optimization process by introducing new terms in the
functional to minimize:

J (u, ε p, �p)=
1
2

∫
0o

h‖u− uo‖
2 d�+ β

2

∫
�p

(
f (σ (u, ε p), ε p)

)2 d�. (4-4)

The yielding function f (σ , ε p) is rewritten in terms of the local behaviour:

f (σ (u, ε p), ε p)= Y(ε(u), ε p). (4-5)

To satisfy the problem of equilibrium, we introduce an adjoint state such that∫
�

∇u∗ : C : (∇u− ε p) d�−
∫
0o

u∗.To ds= 0 for all u∗ satisfying u∗ = 0 over 0i , (4-6)

where the constitutive law has been taken into account. The displacement u and the adjoint displacement
u∗ are continuous along the boundary of the plastic zone.

Then, the functional to be optimized is reduced to

J(
?u, u, ε p, �p)=

1
2

∫
0o

h‖u− uo‖
2 d�+

β

2

∫
�p

(Y(ε(u), ε p))
2 d�,

−

∫
�

∇
?u : C : (∇u− ε p) d�+

∫
0o

?u.To ds.

4A. Elements of proof. The displacements u and ?u are continuous on the boundary of the plastic zone
0p, therefore their variations satisfy Hadamard conditions of continuity along 0p. When the position of
0p is moved by its normal velocity δφ, the variations of the displacement satisfy

|[δu]| + δφ|[∇u]|.n= 0, |[δ ?u]| + δφ|[∇ ?u]|.n= 0. (4-7)

• Variations with respect to ?u (∂J/∂
?u = 0) are equivalent to the equations of the direct problem for a

given distribution of ε p

σ = C : (ε(u)− ε p), div σ = 0, σn= To over 0o, |[σ ]|.n= 0 over 0p. (4-8)

• The variations with respect to u (∂J/∂u = 0) determine the adjoint state:

?
σ = C : ε(

?u)−βY
∂Y
∂ε

over �p,

?
σ = C : ε(

?u) over �/�p,

div ?
σ = 0,

?
σ .n= h(u− uo) over 0o,
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|[
?
σ ]|.n= βY

∂Y
∂ε
.n over 0p.

• The condition of optimality with respect to ε p determines the plastic strain

dev(C : ∇ ?u)+βY
∂Y
∂ε p
= 0, (4-9)

where dev(a)= a− tr(a)I/3.

• Variation with respect to the domain �p. Finally, the condition of optimality on the plastic zone
gives an equation of continuity of the energy

−
∣∣[ε( ?u) : C : (ε(u)− ε p)]

∣∣+ σ : ∣∣[∇ ?u]∣∣+ ?
σ− :

∣∣[∇u]
∣∣+ 1

2βY2
= 0. (4-10)

This optimization permits the determination of a plastic zone with an evaluation of the plastic strain.
The quality of the solution depends on the choice of the coefficients α, β, k. That can be investigated

through analytical solutions for elastoplastic materials on simple geometries such as cylinders or spheres.
Consider the solution of a direct problem of an increasing loading process. The final state is a distribu-

tion of ε p, such that along the boundary of the plastic zone, the plastic strain is ε p = 0, and f = 0. Then
it is obvious that the solution of the evolution problem satisfies the minimum of the proposed functional.
It can be noticed that the condition of optimality (4-10) is verified, because the plastic strain vanishes on
0p and Y= 0, the other contributions are identically zero because the elastic moduli are continuous, the
displacements u, the traction σ .n are continuous and ?

σ = 0, ?u = 0.

4B. Case of a hollow sphere. The solution of a hollow sphere under radial tension is well known for an
elasto perfectly-plastic material. The external radius of the sphere is Re, the radius of the void is Ri and
the porosity is c = R3

i /R3
e (see Figure 5). For an increasing loading the internal state is determined and

is used for the boundary conditions applied to Re for the inverse problem.

4B1. Solution of the direct problem. The plastic zone �p is the spherical domain r ∈ [Ri , Rp], where
p = R3

p/R3
e . The solution is purely radial: u = u(r)er . The Cauchy stress is given by

σ = σrr (r)er ⊗ er + σt t(r)(eθ ⊗ eθ + eφ ⊗ eφ), (4-11)

Re

Ri

Rp

T D 0

u D ERe

Rp?

T D 0
u D EmRe

�rr D †m

Figure 5. The hollow sphere. Left: the direct problem. Right; the inverse problem under
given boundary conditions on Re. On the dashed circle the displacement is prescribed,
on the solid-line circle the traction is given.
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and the domain of reversibility is determined by Y = σt t − σrr − σo ≤ 0 where σo is a constant. The
plastic strain has the form

ε p = εp(2er ⊗ er − eθ ⊗ eθ − eφ ⊗ eφ), εp =
3κ + 4µ

18κµ
σo

(
1−

R3
p

r3

)
. (4-12)

For an increasing imposed E the global response of the sphere is

6 = 3K (c)(E − E p)= σrr (Re), K (c)= (1− c)
4κµ

3κc+ 4µ
, (4-13)

E =
u
r
(Re), E p =

3κ + 4µ
18µκ

σo

1− c

(
p− c− c ln

p
c

)
. (4-14)

During the loading process,

E = 2σo
3

( p
4µ
+

1
3κ

(
1+ ln p

c

))
, 6 =

2
3
σo

(
1− p+ ln p

c

)
, σrr = 2σo ln r

Ri
over �p.

We remark that the radius Rp of the plastic zone is a increasing function with E .

4B2. The inverse problem. We assume that the measurement on the external boundary of the sphere is
the strain Em and the tension 6m . We consider that the fields depend only upon r and ε p is isochoric,
then the function J is

J(u, ?u, εp, Rp)=
1
2

h R2
e

(
u(Re)

Re
− Em

)2

+
β

2

∫ Rp

Ri

Y2r2 dr −
∫ Re

Ri

∇
?u : C : (∇u− ε p) r2 dr + R2

e 6m u∗(Re), (4-15)

where Y is evaluated in terms of u(r) and εp:

Y= 2µ
(u

r
−

du
dr

)
+ 6µεp − σo.

The plastic domain is controlled by Rp. The plastic zone must be optimized. The variations with
respect to εp give

4µ
(

du∗

dr
−

u∗

r

)
− 6βµY= 0. (4-16)

The variations with respect to u(r) furnish the equations of the adjoint state:

0=
dσ ∗rr

dr
+

2
r
(σ ∗rr − σ

∗

t t) if r ≥ Rp, (4-17)

0=
dσ ∗rr

dr
+

2
r
(σ ∗rr − σ

∗

t t)− 2µβ
(

dY
dr
+

3
r

Y
)

if r ≤ Rp, (4-18)

where the local constitutive law ?
σ = C : ε(

?u) has been taken into account. Then the adjoint displacement
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?u satisfies

u∗ =
{

aer + Be/r2 if r ≥ Rp,

u∗ = apr + Bp/r2 if r ≤ Rp,
(4-19)

and the local function Y is then deduced:

Y=− 2
3α

r d
dr

(u∗

r

)
=

2Bp

βr3 . (4-20)

Having determined Y, the stresses in �p are obtained by integration of local equations of equilibrium
resulting from the variations of J with respect to ?u:

σrr = 2σo ln
r
Ri
+

4Bp

3β

(
1
r3 −

1
R3

i

)
. (4-21)

We also know σt t from Y and 3Tr(ε)= σrr + 2σt t gives the displacement in �p:

3κ(r2u− R2
i ui )= 2σor3 log

r
Ri
+

4Bp

3R3
i β
(r3
− R3

i ). (4-22)

Along r = Rp we obtain

3κ
(

p
u p

Rp
− c

ui

Ri

)
=

2σo

3
p log

p
c
+ (p− c)

4Bp

3βR3
i

. (4-23)

Finally the problem of optimization is reduced to the system (Bp = bp R3
p, Be = be R3

p)

6m = 3κa− 4µb p,

σ ∗rr (Re)= 3κae− 4µbe p = h Re(a+ bp− Em),

ae+ be = ap + bp,

3κap − 4µbp p/c = 2µα f (Ri )=−
4µp

c
bp,

3κ(ae− ap)− 4µ(be− bp)= 4µbp,

3κa− 4µb = 2σo ln
p
c
+

4
3β

bp

(
1−

p
c

)
.

It is obvious that ap = 0. For a given Rp this system has an unique solution.
To this system, we must add the condition (4-10), corresponding to the variation of the functional with

respect to Rp.
Assuming that (Em, 6m) is a solution of the direct problem (E, 6), the solution of inverse problem

is obtained taking bp = 0 and the adjoint field ?u = 0. Along r = Rp, we have Y= 0. As a consequence,
we can now recover the solution of the direct problem.

However for boundary conditions, 6m = 6 +16 and Em = E +1E , where the 6m, Em is not a
solution of a direct problem under radial loading, the solution of the inverse problem is the sum of the
solution of the direct problem and of that of the gap between it and the solution at Rp. It is easy to show
that the solution is unique, especially the radius Rp is close to the radius obtained by the direct problem
if the measured strain Em is close to E .
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This analysis can be extended to the case of elastoplasticity with linear hardening, and the final con-
clusions of such an extension are quite similar to the present case. The problem for elastoplastic material
is not always regular, and the proposed variational approach is not general.

Next, the case of viscoplasticity is investigated as a regularisation of the elastoplastic problem.

5. Boundary control and extension in viscoplasticity

Let � be a domain with external boundary ∂�. The body has an elastoviscoplastic behaviour. The
state of the body is defined by the value of the strain ε and internal parameters α. The local behaviour
is defined by a free energy w(ε, α) and we assume that the internal state has an evolution satisfying
the normality rule defined by a potential of dissipation 8. The free energy is defined classically as a
reversible part due to elasticity and energy embedded in the residual stresses and hardening

w(ε, α)= 1
2(ε−α) : C : (ε−α)+W (α). (5-1)

The state equations are given by

σ =
∂w

∂ε
= C : (ε−α), A =−

∂w

∂α
, (5-2)

and the evolution of the internal state satisfies

α̇ =
∂8

∂A
. (5-3)

We seek an estimation of the loading history along a part 0T knowing both the initial state of the body
and the final position at final time t f of 0T .

In linearized elasticity, the problem is easy to solve. Assuming that we know the displacement of
the boundary, it is easy to determine the resulting traction on the boundary. Here the problem is more
difficult because the final state depends in a fundamental the history of the loading, and this loading path
is unknown.

The optimal control theory is used to give some possible answers to the problem of estimating the
internal state, while simultaneously providing an optimal loading history compatible with the given
residual shape.

Consider that the initial state is naturally u(x, to)= 0, α(x, to)= 0,∀x ∈�. On 0u the displacement
is prescribed u(x, t)= 0. The final state u(x, t f )= uo(x) is known along the complementary part 0T of
the boundary. We seek the best history of the loading To(x, t) applied on 0T and the internal state α(x, t)
such that the resulting displacement along 0T is close to the measured displacement uo at time t f .

For a given history To(x, t) imposed on 0T we determine the solution u(x, t), α(x, t) satisfying the
primal problem of evolution corresponding to the set of equations

• Compatibility: 2ε(u)=∇u+∇ t u over �, u = 0 along 0u .

• Equilibrium: div σ = 0 ove r�, n.σ = To along 0T .

• Constitutive law: σ =
∂w

∂ε
= C : (ε−α), A =−

∂w

∂α
, α̇ =

∂8

∂A
.

For this behaviour, the displacement u, the local state ε, α and the stresses σ are functions of position
and time.
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In particular, the solution of the problem of evolution at t f defines the displacement u(x, t f ) along 0T .
The best history To(x, t) is determined by an optimality condition. The function to optimize is chosen
as

J (u, To)=

∫
0T

1
2 k‖u(x, t f )− uo(x)‖2 ds+

∫ t f

0

∫
0T

1
2 Ṫo.H.Ṫo ds dt. (5-4)

To solve the problem, we adopt a variational form of the primal problem of evolution by introducing
the functional L:

L=−

∫ t f

0

∫
�

(ε̇, α̇)t .W.(ε∗, α∗) d� dt+
∫ t f

0

∫
0T

Ṫo.u∗ ds dt+
∫ t f

0

∫
�

(
A∗.
(
− α̇+

∂8

∂A

)
−α∗. Ȧ

)
d� dt.

where W is related to the second derivative of the free energy

[
σ̇

− Ȧ

]
=

 ∂2w

∂ε ∂ε

∂2w

∂ε ∂α

∂2w

∂α ∂ε

∂2w

∂α ∂α

.[ε̇
α̇

]
=W(ε, α).

[
ε̇

α̇

]
. (5-5)

Let us introduce the notation[
σ̇

Ḃ

]
=W(ε, α).

[
ε̇

α̇

]
,

[
σ ∗

B∗
]
=W(ε, α).

[
ε∗

α∗

]
. (5-6)

The variations of L are

δL=−

∫ t f

0

∫
�

(
δε̇ : σ ∗+ δα̇B∗+ δε∗σ̇ + δα∗ Ḃ

)
d� dt+

∫ t f

0

∫
0T

(δṪo.u∗+ Ṫo.δu∗) ds dt

+

∫ t f

0

∫
�

(
δA∗.

(
− α̇+

∂8

∂A

)
+ A∗

(
− δα̇+

∂28

∂A ∂A
δA
)
− δα∗ Ȧ−α∗δ Ȧ

)
d� dt.

Due to the integration over the history t ∈ [0, t f ], the variations of the functional give the rate equations
of the quantities and conditions at final time t f . It is obvious that the variation with respect to u∗ gives
directly that σ̇ is statically admissible with the prescribed history loading on 0T :

div σ̇ = 0, n.σ̇ = Ṫo. (5-7)

The variation with respect to A∗ implies the evolution of the internal state α, and the variation with
respect to α∗ implies the constitutive law: Ȧ+ Ḃ = 0. Conversely the variations with respect to u, α lead
to the adjoint problem:

• Equilibrium:

div σ̇ ∗ = 0, n.σ̇ ∗ = 0 on 0T .

• Boundary condition:

u̇∗(x, t)= 0, u∗(x, t f )= 0 along 0u .
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• Constitutive law:

A∗+ B∗ = 0, α̇∗ =−
∂28

∂A ∂A
A∗, α∗(t f )= 0,

σ ∗(x, t f )= C : ε∗(x, t f ) over �.

To ensure the existence of a solution, the two potentials w,8 must have regular second derivative.
To obtain an estimation of the loading history and of the internal state compatible with the measured

displacement uo over 0T at time t f the functional to optimize is J = J + L and the conditions of
optimality are then

0= u∗+ H.Ṫo on 0T , (5-8)

0= n.σ ∗(t f )+ k(u(t f )− uo) on 0T , (5-9)

where the first condition gives the boundary condition on 0T for the adjoint displacement and the second
one is imposed by the variation with respect to u(t f ).

It can be noticed that the adjoint problem is a viscoelastic problem, whose modulus of viscosity
depends on the primal solution. The viscoplastic potential of dissipation must be regular. Due to the
dependance of time in viscoplasticity, the inverse problem must be solved numerically. The solution
depends on the duration and the solution is obtained by a optimization with respect to t f .

5A. Cyclic loading. The extension of the presented solution method for cyclic loading has been per-
formed to determine the cyclic asymptotic answer of viscoplastic structures with applications to fatigue.
In this case the functional L is not changed, and the cost function J is chosen as a measure of the gap
on periodicity on the generalized stress space A= (σ , A). Such a cost functional is, for example,

J (A)=
∫
�

1
2(A(T )−A(0)).H.(A(T )−A(0)) d�. (5-10)

The solution is obtained by a resolution of a problem of minimization, the uniqueness is proved in
[Peigney and Stolz 2003].

6. Conclusion

This article proposed a general method for resolution of inverse problems in elastoplasticity. The for-
mulation is based on the definition of the control variables: the plastic strain and the history of loading.
For each class of inverse problems, an appropriate functional is chosen. The solution stems from the
introduction of an adjoint state solution of the adjoint problem. In elasticity, the adjoint problem has
the same form than the primal problem. Applications on bars and on a beam have been presented with
analytical resolutions. They give the main ideas developed in this article and are illustrations of the
method based on optimal control. In elastoplasticity, for the estimation of the plastic strain and the
plastic zone, the solution of the inverse problem for the given examples is the sum of the solution of the
primal one and of an elastic one given by the adjoint state which measures the discrepancy with respect
to the exact solution.

A general formulation is obtained in elastoviscoplasticity. In this case the solution is given by the
introduction of an adjoint state, which is the solution of a viscoelastic problem whose characteristics are
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given by the primal solution. In this general case, the problem to solve is dependent upon the history of
the local fields. Other applications and examples can be found in [Bourgeois 1998].
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HARMONIC SHAPES IN ISOTROPIC LAMINATED PLATES

XU WANG AND PETER SCHIAVONE

Harmonic shapes are known to minimize stress disturbance when introduced into an elastic body as either
holes or inclusions. This paper is concerned with the design of harmonic shapes in an isotropic laminated
plate. Specifically, we require that the harmonic shape does not disturb the sum of the two normal
membrane stress resultants and that of the two normal bending moments when inserted into a uniformly
loaded laminated plate. Using complex variable methods, we demonstrate how a single harmonic shape
(hole or rigid inclusion) and two interacting harmonic shapes can be successfully designed to meet our
requirements. In our discussion, the two interacting harmonic shapes include (i) two interacting harmonic
holes, (ii) two interacting harmonic rigid inclusions, and (iii) one harmonic hole interacting with another
harmonic rigid inclusion.

1. Introduction

The minimization of stress concentrations in composite materials remains a priority among researchers
and practitioners alike. To date, various criteria have been proposed and successfully applied to the
design of the shape of holes or inclusions which produce minimum stress concentrations when inserted
into an elastic body (see for example [Mansfield 1953; Cherepanov 1974; Bjorkman and Richards 1976]).
The design of such optimal structural shapes inevitably leads to the solution of an inverse problem in
elasticity [Bui 1993; Bonnet and Constantinescu 2005]. The “neutral condition” proposed by Mansfield
[1953] and further developed by Ru [1998] and Milton and Serkov [2001] is the most stringent yet most
difficult to realize since it requires that the introduction of the corresponding neutral hole or inclusion
leaves the stress distribution in the original uncut body completely undisturbed. The “equal strength
condition” introduced by Cherepanov [1974] requires that the hoop stress be constant along the boundary
of the hole or inclusion. The “harmonic field condition” advanced by Bjorkman and Richards [1976;
1979a] and further developed by Ru [1999a; 1999b] and Wang et al. [2005] requires that the introduction
of the harmonic hole or inclusion does not alter the first invariant of the stress field anywhere in the
surrounding elastic body. This design condition has many implications: (i) the Laplacian component
of the stress field remains unchanged; (ii) there is no change in volume energy; (iii) there is no elastic
rotation; (iv) harmonic holes or rigid inclusions produce minimum stress concentrations in constant fields.
Interestingly, Bjorkman and Richards [1976; 1979b] observed that, under constant applied fields, the
harmonic field condition and the equal strength condition are essentially equivalent in that they produce
the same result.

Even though the analysis of bending and stretching deformations of thin plates in the presence of
various defects such as dislocations, holes, cracks, anti-cracks and inhomogeneities has received consid-
erable attention (see, for example, [Sih and Rice 1964; Zakharov and Becker 2000; Hasebe and Wang

Keywords: harmonic shape, stress concentration, inverse problem, isotropic laminated plate, conformal mapping.
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2000; 2002; Wang and Hasebe 2000a; 2000b; 2001; Cheng and Reddy 2002, 2003; 2004b; 2004a; Yin
2005a; 2005b; Wang and Schiavone 2013; Wang and Zhou 2013], the design of optimal hole shapes
to minimize stress concentrations in laminated plates has, in contrast, been investigated by only a few
researchers (see, for example, [Vellaichamy et al. 1990; Budiansky et al. 1993; Senocak and Waas 1995].
In this paper, we continue the work in this area by extending Bjorkman and Richards’ harmonic field
condition for linear plane elasticity to isotropic laminated plates. To achieve our design objective, we
make use of the complex variable formulation proposed by Beom and Earmme [1998] and developed
recently by Wang and Zhou [2014] for the analysis of isotropic laminated plates.

2. Formulation

Consider an undeformed plate of uniform thickness h in a Cartesian coordinate system {xi } (i = 1, 2, 3)
in which x3 = 0 is on the main plane. The plate is composed of an isotropic, linearly elastic material
that can be inhomogeneous and/or laminated in the thickness direction. Repeated Greek indices imply
summation over the range of the index from 1 to 2.

The displacement field in the Kirchhoff plate theory takes the form

ũα = uα + x3ϑα, ũ3 = w, (1)

where the in-plane displacements uα, deflection w, and the slopes ϑα =−w,α on the main plane are all
independent of x3.

An integral operator is first introduced as follows: Q( · )=
∫ h−h0
−h0

( · ) dx3, with h0 being the distance be-
tween the main plane and the lower surface of the plate. Then the constitutive equations of the laminated
isotropic plate are [Beom and Earmme 1998]

Nαβ = Aαβωρεωρ + Bαβωρκωρ,

Mαβ = Bαβωρεωρ + Dαβωρκωρ,
(2)

where Nαβ and Mαβ are, respectively, the membrane stress resultants and bending moments defined by
Nαβ = Qσαβ and Mαβ = Qx3σαβ , with σαβ being the stresses; εαβ and καβ are the main plane strains
and curvatures, defined as εαβ = 1

2(uα,β + uβ,α) and καβ = −w,αβ ; Aαβωρ , Bαβωρ and Dαβωρ are the
extensional, coupling and bending stiffness tensors, given by

Aαβωρ = A12δαβδωρ +
1
2(A11− A12)(δαωδβρ + δαρδβω),

Bαβωρ = B12δαβδωρ −
1
2 B12(δαωδβρ + δαρδβω),

Dαβωρ = D12δαβδωρ +
1
2(D11− D12)(δαωδβρ + δαρδβω),

(3)

with δαβ being the Kronecker delta, Ai j = QCi j , Bi j = Qx3Ci j , and Di j = Qx2
3Ci j (i j = 11, 12). In

addition, C11 and C12 can be expressed in terms of the Young’s modulus E = E(x3) and Poisson’s ratio
ν = ν(x3) of the plate as C11 = E/(1− ν2) and C12 = νE/(1− ν2). Expression (3) implies that the main
plane is chosen such that B11 = 0. Consequently, it is found that

h0 =

∫ h
0 X3C11 dX3∫ h

0 C11 dX3
,
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with X3 = x3+ h0 being the vertical coordinate of the given point from the lowest surface of the plate.
In the absence of external loads on the top and bottom surfaces of the plate, the equilibrium equations

are given by
Nαβ,β = 0, Rβ,β = 0, (4)

where Rβ = Mαβ,α are the transverse shearing forces.
Substitution of (2) into (4) yields the decoupled equations

(A11+ A12)uβ,βα + (A11− A12)uα,ββ = 0, w,ααββ = 0. (5)

By considering (5), the membrane stress resultants, bending moments, transverse shearing forces, in-
plane displacements, deflection and slopes on the main plane of the plate, and the four stress functions ϕα
and ηα can be expressed in terms of four analytic functions φ(z), ψ(z), 8(z) and 9(z) of the complex
variable z = x1+ ix2 as [Beom and Earmme 1998; Cheng and Reddy 2002; Wang and Zhou 2014]

N11+ N22 = 4 Re{φ′(z)+ B8′(z)},

N22− N11+ 2iN12 = 2
(
z̄φ′′(z)+ψ ′(z)+ Bz̄8′′(z)+ B9 ′(z)

)
,

(6)

M11+M22 = 4D(1+ νD)Re{8′(z)}+ B(κ A
−1)
µ

Re{φ′(z)},

M22−M11+ 2iM12 =−2D(1− νD)
(
z̄8′′(z)+9 ′(z)

)
−

B
µ

(
z̄φ′′(z)+ψ ′(z)

)
,

R1− iR2 = 4D8′′(z)+ B(κ A
+1)

2µ
φ′′(z),

(7)

2µ(u1+ iu2)= κ
Aφ(z)− zφ′(z)−ψ(z),

ϑ1+ iϑ2 =8(z)+ z8′(z)+9(z), w =−Re{z̄8(z)+χ(z)},

ϕ1+ iϕ2 = i
(
φ(z)+ zφ′(z)+ψ(z)

)
+ iB

(
8(z)+ z8′(z)+9(z)

)
,

η1+ iη2 = iD(1− νD)
(
κD8(z)− z8′(z)−9(z)

)
+ i B

2µ
(
κ Aφ(z)− zφ′(z)−ψ(z)

)
,

(8)

where 9(z)= χ ′(z), and

µ= 1
2(A11− A12), B = B12, D = D11, νA

=
A12

A11
, νD

=
D12

D11
,

κ A
=

3A11− A12

A11+ A12
=

3− νA

1+ νA , κD
=

3D11+ D12

D11− D12
=

3+ νD

1− νD .

(9)

Moreover, the membrane stress resultants, bending moments, transverse shearing forces, and modified
Kirchhoff transverse shearing forces V1 = R1+M12,2 and V2 = R2+M21,1 can be expressed in terms of
the four stress functions ϕα and ηα as [Cheng and Reddy 2002]

Nαβ =−εβωϕα,ω, Mαβ =−εβωηα,ω−
1
2εαβηω,ω, Rα =− 1

2εαβηω,ωβ, Vα =−εαωηω,ωω, (10)

where εαβ are the components of the two-dimensional permutation tensor.
Now we consider a laminated plate subjected to remote uniform membrane stress resultants N∞αβ and

bending moments M∞αβ . The asymptotic behaviors of φ(z), ψ(z), 8(z) and 9(z) at infinity can then be
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simply derived as

φ(z)∼= δ1z+ O(1), ψ(z)∼= δ2z+ O(1), 8(z)∼= γ1z+ O(1), 9(z)∼= γ2z+ O(1), (11)

where the two real constants δ1, γ1 and the two complex constants δ2, γ2 are related to the remote uniform
loading through

δ1 =
µD(1+ νD)(N∞11 + N∞22 )− Bµ(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

γ1 =
4µ(M∞11 +M∞22 )− B(κ A

− 1)(N∞11 + N∞22 )

16µD(1+ νD)− 4B2(κ A− 1)
,

δ2 =
µD(1− νD)(N∞22 − N∞11 + 2iN∞12 )+ Bµ(M∞22 −M∞11 + 2iM∞12 )

2µD(1− νD)− B2 ,

γ2 =
−2µ(M∞22 −M∞11 + 2iM∞12 )− B(N∞22 − N∞11 + 2iN∞12 )

4µD(1− νD)− 2B2 .

(12)

In the context of an isotropic laminated plate, Bjorkman and Richards’ harmonic field conditions now
become that the two sums N11+ N22 and M11+M22 remain unchanged everywhere in the surrounding
laminated plate after the introduction of the harmonic hole or inclusion. It is further deduced from (6)1

and (7)1 that φ(z) and 8(z) must take the following form in order to ensure that the shape is harmonic:

φ(z)= δ1z, 8(z)= γ1z. (13)

In the next two sections we will address in detail a single harmonic hole or rigid inclusion and two
interacting harmonic shapes.

3. A single harmonic hole or rigid inclusion

The single harmonic hole or rigid inclusion forms a simply connected bounded domain with Lipschitz
boundary. As such, we consider the conformal mapping function [Kantorovich and Krylov 1950]

z = ω(ξ)= R
(
ξ +

a1
ξ
+

a2
ξ 2 + · · ·

)
, ξ(z)= ω−1(z), |ξ | ≥ 1, (14)

where R is a real scaling constant and ai (i = 1, 2, . . . ) are complex constants. This function conformally
maps the exterior of the hole or the rigid inclusion in the z-plane onto the exterior of the unit circle |ξ | = 1
in the ξ -plane. For convenience, we write ψ(z)= ψ(ω(ξ))= ψ(ξ) and 9(z)=9(ω(ξ))=9(ξ).

3.1. A single harmonic hole. In this case, ϕ1=ϕ2=η1=η2= 0 along the edge of the hole. By enforcing
this free edge boundary condition on |ξ | = 1, we arrive at these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
.

(15)
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By satisfying the asymptotic conditions for ψ(z) and 9(z) in the second and fourth expressions of (11),
we obtain

a2 = a3 = · · · = 0, (16)

which implies that the harmonic hole must be of elliptical shape, and

δ2 =
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 ā1,

γ2 =
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 ā1.

(17)

Consequently, the remote uniform loading should satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
= ā1. (18)

The hoop membrane stress resultant Nθθ and hoop bending moment Mθθ are both constant along the
boundary of the elliptic hole:

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 . (19)

Similar to the argument by Bjorkman and Richards [1976], the harmonic hole simultaneously produces
minimum values of Nθθ and Mθθ , and thus is optimal. We note that (18) and (19) are in agreement with
the corresponding results in [ibid.] for a harmonic hole in an isotropic and homogeneous plate subjected
to in-plane loading.

3.2. A single harmonic rigid inclusion. In this case, u1 = u2 = ϑ1 = ϑ2 = 0 along the edge of the rigid
inclusion. By enforcing this boundary condition for a rigidly clamped edge on |ξ | = 1, we arrive at these
expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
,

9(ξ)=−2γ1 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
.

(20)

By satisfying the asymptotic conditions on ψ(z) and 9(z) in the second and fourth expressions of (11),
we obtain

a2 = a3 = · · · = 0, (21)

which implies that the harmonic rigid inclusion must be elliptical and

δ2 = (κ
A
− 1)δ1ā1, γ2 =−2γ1ā1. (22)

Thus, the remote uniform loading should satisfy the restrictions(
4µD(1+ νD)− B2(κ A

− 1)
)
(N∞22 − N∞11 + 2iN∞12 )(

2µD(1+ νD)+ B2
)
(κ A− 1)(N∞11 + N∞22 )− 2Bµ(κ A+ 1)(M∞11 +M∞22 )

=

(
4µD(1+ νD)− B2(κ A

− 1)
)
(M∞22 −M∞11 + 2iM∞12 )(

4µD(1− νD)+ B2(κ A− 1)
)
(M∞11 +M∞22 )− 2B D(κ A− 1)(N∞11 + N∞22 )

= ā1. (23)
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The interfacial normal membrane stress resultant Nρρ and interfacial normal bending moment Mρρ

are uniformly distributed along the inclusion/matrix interface as

Nρρ = (κ A
+ 1)δ1, Mρρ = 4Dγ1, (24)

where δ1, γ1 are as in (12).
The hoop membrane stress resultant and hoop bending moment are both constant along the inclu-

sion/matrix interface on the matrix side and are given by

Nθθ =

(
µD(1+ νD)(3− κ A)− B2(κ A

− 1)
)
(N∞11 + N∞22 )+ Bµ(κ A

+ 1)(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

Mθθ =

(
4µDνD

− B2(κ A
− 1)

)
(M∞11 +M∞22 )+ B D(κ A

− 1)(N∞11 + N∞22 )

4µD(1+ νD)− B2(κ A− 1)
.

(25)

When B = 0, (23)–(25) reduce to

2(N∞22 − N∞11 + 2iN∞12 )

(κ A− 1)(N∞11 + N∞22 )
= ā1, Nρρ =

κ A
+ 1
4

(N∞11 + N∞22 ), Nθθ =
3− κ A

4
(N∞11 + N∞22 ), (26)

(1+ νD)(M∞22 −M∞11 + 2iM∞12 )

(1− νD)(M∞11 +M∞22 )
= ā1, Mρρ =

M∞11 +M∞22

1+ νD , Mθθ =
νD(M∞11 +M∞22 )

1+ νD . (27)

The results in (26) agree with those in [Bjorkman and Richards 1979b] for a harmonic rigid inclusion
in an isotropic and homogeneous plate under in-plane loads.

4. Two interacting harmonic shapes

In order to obtain two interacting harmonic shapes (which include three typical cases: (i) two interacting
harmonic holes, (ii) two interacting harmonic rigid inclusions, and (iii) one harmonic hole interacting
with another harmonic rigid inclusion), we first introduce the conformal mapping function [Wang 2012]

z = ω(ξ)= R
(

1
ξ − λ

+
a

ξ − λ−1 +
3−1a

ρξ − λ−1 +

∞∑
n=1

(anξ
n
+ a−nξ

−n)

)
,

ξ(z)= ω−1(z), 1≤ |ξ | ≤ ρ−1/2, (28)

where R is a real scaling constant, λ is a real constant with 1 < |λ| < ρ−1/2, a and 3 are complex
constants, and an , a−n are complex constants to be determined. In (28), the first-order pole at ξ = λ is
located within the annulus 1≤|ξ |≤ρ−1/2, whereas the two first-order poles at ξ =λ−1 and ξ = (ρλ)−1 are
both located outside the annulus. The function (28) will conformally map the matrix region (excluding
the two harmonic shapes) in the z-plane onto an annulus 1≤ |ξ | ≤ ρ−1/2 in the ξ -plane, and the left and
right interfaces L1 and L2 formed between the two harmonic shapes and the matrix are mapped onto
two coaxial circles with radii 1 and ρ−1/2, respectively, in the ξ -plane. It is also apparent that each of
the two interacting shapes will be nonelliptical [Wang 2012].
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4.1. Two interacting harmonic holes. By enforcing the free edge boundary condition on the inner circle
|ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(29)

Similarly, by enforcing the free-edge boundary condition on the outer circle |ξ | = ρ−1/2, we obtain
another set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(30)

The two expressions for ψ(ξ) and 9(ξ) obtained in (29) and (30) must coincide. As a result, the
unknown parameters in (28) are given by

3= 3̄= 1, an =
λ−n−1

+ aρnλn+1

1− ρ−n , a−n =
λn−1
+ aλ−n+1

ρ−n − 1
, n = 1, 2, . . . . (31)

Remark. The interacting harmonic shapes can now be uniquely determined using (28) for given real
numbers 3, ρ, λ and a given complex number a.

In addition, the satisfaction of the remote boundary conditions on ψ(z) and 9(z) in the second and
fourth expressions of (11) will yield

δ2 =−
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 āλ2,

γ2 =−
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 āλ2.

(32)
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Thus, the remote uniform loading should satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
=−āλ2. (33)

The hoop membrane stress resultant and hoop bending moment are both uniformly distributed along
the boundary of the two harmonic holes as

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 , z ∈ L1 ∪ L2. (34)

4.2. Two interacting harmonic rigid inclusions. By enforcing the boundary condition for a rigidly
clamped edge on the inner circle |ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
1

ξ−1− λ
−

āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=−2γ1 R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(35)

Similarly, by enforcing the boundary condition for a rigidly clamped edge on the outer circle |ξ |=ρ−1/2,
we again obtain a second set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=−2γ1 R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(36)

Equating the two expression for ψ(ξ) and 9(ξ), we obtain 3 = 1; an and a−n in (28) can also be
determined from (31).

In addition, the satisfaction of the remote boundary conditions on ψ(z) and 9(z) in the second and
fourth expressions of (11) yields

δ2 =−(κ
A
− 1)δ1āλ2, γ2 = 2γ1āλ2. (37)

Thus, the remote uniform loading is constrained by the equations(
4µD(1+ νD)− B2(κ A

− 1)
)
(N∞22 − N∞11 + 2iN∞12 )(

2µD(1+ νD)+ B2
)
(κ A− 1)(N∞11 + N∞22 )− 2Bµ(κ A+ 1)(M∞11 +M∞22 )

=

(
4µD(1+ νD)− B2(κ A

− 1)
)
(M∞22 −M∞11 + 2iM∞12 )(

4µD(1− νD)+ B2(κ A− 1)
)
(M∞11 +M∞22 )− 2B D(κ A− 1)(N∞11 + N∞22 )

=−āλ2. (38)

The interfacial normal membrane stress resultant and interfacial normal bending moment are uniformly
distributed along the two inclusion/matrix interfaces as

Nρρ = (κ A
+ 1)δ1, Mρρ = 4Dγ1, z ∈ L1 ∪ L2. (39)
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The hoop membrane stress resultant and hoop bending moment are both constant along the two inclu-
sion/matrix interfaces on the matrix side and are given by

Nθθ =

(
µD(1+ νD)(3− κ A)− B2(κ A

− 1)
)
(N∞11 + N∞22 )+ Bµ(κ A

+ 1)(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

Mθθ =

(
4µDνD

− B2(κ A
− 1)

)
(M∞11 +M∞22 )+ B D(κ A

− 1)(N∞11 + N∞22 )

4µD(1+ νD)− B2(κ A− 1)
, z ∈ L1 ∪ L2.

(40)

4.3. A harmonic hole interacting with a harmonic rigid inclusion. Without loss of generality, we as-
sume that the left-hand shape is a hole, whilst the right-hand shape is a rigid inclusion. By enforcing the
free edge boundary condition on the inner circle |ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(41)

By enforcing the boundary condition for a rigidly clamped edge on the outer circle |ξ | = ρ−1/2, we
obtain a second set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=−2γ1 R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(42)

Equating the two expressions for each of ψ(ξ) and 9(ξ), we obtain the expressions

3= 3̄=−
(κ A
− 1)

(
2µD(1− νD)− B2

)
δ1(

4µD(1− νD)+ B2(κ A− 1)
)
δ1+ 8BµDγ1

=−
2
(
2µD(1− νD)− B2

)
γ1

B(κ A+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

(43)

for the unknown parameters in (28), and

an =
λ−n−1

+ a3−1ρnλn+1

1−3ρ−n , a−n =
λn−1
+ aλ−n+1

3−1ρ−n − 1
, n = 1, 2, . . . . (44)
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It can be further deduced from (43) that the two sums N∞11 + N∞22 and M∞11 + M∞22 cannot be set
arbitrarily, and should satisfy the restriction

B(N∞11 + N∞22 )

µ(M∞11 +M∞22 )
= α, (45)

where

α =
νA
− νD

±
√
(νA− νD)2+ 2β(1− νA)

1− νA , β =
B2

µD
> 0. (46)

As a result, the parameter 3 in (43) can be more explicitly determined as

3=−
(κ A
− 1)

(
2(1− νD)−β

)(
2+ νA

+ νD
−
√
(νA− νD)2+ 2β(1− νA)

)(
4(1+ νD)−β(κ A− 1)

)(
2− νA− νD +

√
(νA− νD)2+ 2β(1− νA)

) (47)

if the plus sign is chosen in (46), and

3=−
(κ A
− 1)

(
2(1− νD)−β

)(
2+ νA

+ νD
+
√
(νA− νD)2+ 2β(1− νA)

)(
4(1+ νD)−β(κ A− 1)

)(
2− νA− νD −

√
(νA− νD)2+ 2β(1− νA)

) (48)

if the minus sign is chosen in (46). Equations (47) and (48) suggest that there are two distinct values
of 3 for given material parameters νA, νD and β.

For example, if we set νA
=

1
4 , νD

= 0.3, β = 0.2, then α = 0.6667 and 3=−0.2903, or α =−0.8
and 3=−1.

In addition, the satisfaction of the remote boundary conditions for ψ(z) and 9(z) in the second and
fourth expressions of (11) yields

δ2 =−
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 āλ2,

γ2 =−
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 āλ2.

(49)

Thus, in addition to condition (45), the remote uniform loading should also satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
=−āλ2. (50)

The hoop membrane stress resultant and hoop bending moment are both uniformly distributed along
the boundary of the left harmonic hole as

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 , z ∈ L1. (51)

Meanwhile, the interfacial normal membrane stress resultant and interfacial normal bending moment
are uniformly distributed along the right inclusion/matrix interface as

Nρρ =
(κ A
+ 1)(1+ νD

−
β

α
)

4(1+ νD)−β(κ A− 1)
(N∞11 + N∞22 ),

Mρρ =
4−α(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(M∞11 +M∞22 ), z ∈ L2.

(52)
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The hoop membrane stress resultant and hoop bending moment are both constant along the right
inclusion/matrix interface on the matrix side, and are given by

Nθθ =
(1+ νD)(3− κ A)+

β

α
(κ A
+ 1)−β(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(N∞11 + N∞22 ),

Mθθ =
4νD
+ (α−β)(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(M∞11 +M∞22 ), z ∈ L2.

(53)

5. Conclusions

We have proposed a new harmonic condition in the context of isotropic laminated plates. By imposing
this condition and by using the complex variable formulation for a laminated plate [Beom and Earmme
1998; Wang and Zhou 2014], we have successfully obtained (i) a single harmonic hole, (ii) a single har-
monic rigid inclusion, (iii) two interacting harmonic holes, (iv) two interacting harmonic rigid inclusions,
and (v) a harmonic hole interacting with another harmonic rigid inclusion when the laminated plate is
subjected to remote uniform membrane stress resultants and bending moments. It is shown that a single
harmonic hole or rigid inclusion must be elliptical in shape and that the remote uniform loading should
satisfy (18) for a harmonic hole, or (23) for a harmonic rigid inclusion. Our results in Section 4 show
that it is permissible to obtain two interacting nonelliptical harmonic shapes composed of (i) two holes,
(ii) two rigid inclusions, or (iii) one hole near another rigid inclusion. For the case of two interacting
harmonic holes or two interacting harmonic rigid inclusions, 3≡ 1 in (28); for the case of one harmonic
hole interacting with another harmonic rigid inclusion, 3 is determined by Equations (47) and (48).
The remote loading condition (33) for two interacting harmonic holes is identical in form to (18) for a
single harmonic hole, the remote loading condition (38) for two interacting harmonic rigid inclusions is
identical in form to (23) for a single harmonic rigid inclusion, whereas the remote loading conditions (45)
and (50) for a harmonic hole interacting with another harmonic rigid inclusion are more stringent. It is
observed that for all the cases discussed, the hoop membrane stress resultant and hoop bending moments
are always constant along any existing boundary and interface (see (19), (25), (34), (40), (51) and (53)).
Thus, the obtained harmonic shapes also satisfy the equal strength condition.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant number 11272121),
and by the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant.

References

[Beom and Earmme 1998] H. G. Beom and Y. Y. Earmme, “Complex variable method for problems of a laminate composed
of multiple isotropic layers”, Int. J. Fract. 92:4 (1998), 305–324.

[Bjorkman and Richards 1976] G. S. Bjorkman, Jr. and R. Richards, Jr., “Harmonic holes: an inverse problem in elasticity”, J.
Appl. Mech. (ASME) 43 (1976), 414–418.

[Bjorkman and Richards 1979a] G. S. Bjorkman, Jr. and R. Richards, Jr., “Harmonic holes for nonconstant fields”, J. Appl.
Mech. (ASME) 46:3 (1979), 573–576.

http://dx.doi.org/10.1023/A:1007570226527
http://dx.doi.org/10.1023/A:1007570226527
http://dx.doi.org/10.1115/1.3423882
http://dx.doi.org/10.1115/1.3424608


444 XU WANG AND PETER SCHIAVONE

[Bjorkman and Richards 1979b] G. S. Bjorkman, Jr. and R. Richards, Jr., “The rigid harmonic inclusion”, pp. 781–784 in
Proceedings of the Third Engineering Mechanics Division Specialty Conference (Austin, TX, 1979), edited by C. P. Johnson,
ASCE, New York, 1979.

[Bonnet and Constantinescu 2005] M. Bonnet and A. Constantinescu, “Inverse problems in elasticity”, Inverse Probl. 21:2
(2005), R1–R50.

[Budiansky et al. 1993] B. Budiansky, J. W. Hutchinson, and A. G. Evans, “On neutral holes in tailored, layered sheets”, J.
Appl. Mech. (ASME) 60:4 (1993), 1056–1058.

[Bui 1993] H. D. Bui, Introduction aux problèmes inverses en mécanique des máteriaux, Eyrolles, Paris, 1993. Translated as
Inverse problems in the mechanics of materials: an introduction, CRC Press, Boca Raton, FL, 1994.

[Cheng and Reddy 2002] Z.-Q. Cheng and J. N. Reddy, “Octet formalism for Kirchhoff anisotropic plates”, Phil. Trans. R. Soc.
A 458:2022 (2002), 1499–1517.

[Cheng and Reddy 2003] Z.-Q. Cheng and J. N. Reddy, “Green’s functions for infinite and semi-infinite anisotropic thin plates”,
J. Appl. Mech. (ASME) 70:2 (2003), 260–267.

[Cheng and Reddy 2004a] Z.-Q. Cheng and J. N. Reddy, “Green’s functions for an anisotropic thin plate with a crack or an
anticrack”, Int. J. Eng. Sci. 42:3–4 (2004), 271–289.

[Cheng and Reddy 2004b] Z.-Q. Cheng and J. N. Reddy, “Laminated anisotropic thin plate with an elliptic inhomogeneity”,
Mech. Mater. 36:7 (2004), 647–657.

[Cherepanov 1974] G. P. Cherepanov, “Obratnye zadaqi teorii uprugosti”, Prikl. Mat. Mekh. 38:6 (1974), 963–979.
Translated as “Inverse problems of the plane theory of elasticity”J. Appl. Math. Mech. 38:6 (1974), 915–931.

[Hasebe and Wang 2000] N. Hasebe and X.-F. Wang, “Green’s functions of thin plate bending problem under fixed boundary”,
J. Eng. Mech. (ASCE) 126:2 (2000), 206–213.

[Hasebe and Wang 2002] N. Hasebe and X.-F. Wang, “Green’s functions for the bending of thin plates under various boundary
conditions and applications: a review”, Thin-Walled Struct. 40:7–8 (2002), 611–624.

[Kantorovich and Krylov 1950] L. V. Kantorovich and V. I. Krylov, Pribli�ennye metody vysxego analiza, 3rd ed.,
State Publishing House of Technical Literature, Moscow, 1950. Translated as Approximate methods of higher analysis, Wiley,
New York, 1958.

[Mansfield 1953] E. H. Mansfield, “Neutral holes in plane sheet: reinforced holes which are elastically equivalent to the uncut
sheet”, Quart. J. Mech. Appl. Math. 6 (1953), 370–378.

[Milton and Serkov 2001] G. W. Milton and S. K. Serkov, “Neutral coated inclusions in conductivity and anti-plane elasticity”,
Phil. Trans. R. Soc. A 457:2012 (2001), 1973–1997.

[Ru 1998] C.-Q. Ru, “Interface design of neutral elastic inclusions”, Int. J. Solids Struct. 35:7–8 (1998), 559–572.

[Ru 1999a] C.-Q. Ru, “Three-phase elliptical inclusions with internal uniform hydrostatic stresses”, J. Mech. Phys. Solids 47:2
(1999), 259–273.

[Ru 1999b] C.-Q. Ru, “A new method for an inhomogeneity with stepwise graded interphase under thermomechanical load-
ings”, J. Elasticity 56:2 (1999), 107–127.

[Senocak and Waas 1995] E. Senocak and A. M. Waas, “Neutral cutouts in laminated plates”, Mech. Compos. Mater. Struct.
2:1 (1995), 71–89.

[Sih and Rice 1964] G. C. Sih and J. R. Rice, “The bending of plates of dissimilar materials with cracks”, J. Appl. Mech.
(ASME) 31:3 (1964), 477–482.

[Vellaichamy et al. 1990] S. Vellaichamy, B. G. Prakash, and S. Brun, “Optimum design of cutouts in laminated composite
structures”, Comput. Struct. 37:3 (1990), 241–246.

[Wang 2012] X. Wang, “Uniform fields inside two non-elliptical inclusions”, Math. Mech. Solids 17:7 (2012), 736–761.

[Wang and Hasebe 2000a] X.-F. Wang and N. Hasebe, “Green’s function for mixed boundary value problem of thin plate”, J.
Eng. Mech. (ASCE) 126:8 (2000), 787–794.

[Wang and Hasebe 2000b] X.-F. Wang and N. Hasebe, “Bending of a thin plate containing a rigid inclusion and a crack”, Eng.
Anal. Bound. Elem. 24:2 (2000), 145–153.

http://dx.doi.org/10.1088/0266-5611/21/2/R01
http://dx.doi.org/10.1115/1.2900978
http://dx.doi.org/10.1098/rspa.2001.0934
http://dx.doi.org/10.1115/1.1533806
http://dx.doi.org/10.1016/j.ijengsci.2003.06.001
http://dx.doi.org/10.1016/j.ijengsci.2003.06.001
http://dx.doi.org/10.1016/S0167-6636(03)00081-4
http://dx.doi.org/10.1016/0021-8928(75)90085-4
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:2(206)
http://dx.doi.org/10.1016/S0263-8231(02)00015-0
http://dx.doi.org/10.1016/S0263-8231(02)00015-0
http://dx.doi.org/10.1093/qjmam/6.3.370
http://dx.doi.org/10.1093/qjmam/6.3.370
http://dx.doi.org/10.1098/rspa.2001.0796
http://dx.doi.org/10.1016/S0020-7683(97)00072-3
http://dx.doi.org/10.1016/S0022-5096(98)00087-8
http://dx.doi.org/10.1023/A:1007677114424
http://dx.doi.org/10.1023/A:1007677114424
http://dx.doi.org/10.1080/10759419508945831
http://dx.doi.org/10.1115/1.3629665
http://dx.doi.org/10.1016/0045-7949(90)90315-S
http://dx.doi.org/10.1016/0045-7949(90)90315-S
http://dx.doi.org/10.1177/1081286511429888
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:8(787)
http://dx.doi.org/10.1016/S0955-7997(99)00062-4


HARMONIC SHAPES IN ISOTROPIC LAMINATED PLATES 445

[Wang and Hasebe 2001] X.-F. Wang and N. Hasebe, “Green’s function of a point dislocation for the bending of a composite
infinite plate with an elliptical hole at interface”, Arch. Appl. Mech. 71:4-5 (2001), 233–248.

[Wang and Schiavone 2013] X. Wang and P. Schiavone, “Interface cracks in Kirchhoff anisotropic thin plates of dissimilar
materials”, J. Appl. Mech. (ASME) 80:4 (2013), Article ID #041025.

[Wang and Zhou 2013] X. Wang and K. Zhou, “Twelve-dimensional Stroh-like formalism for Kirchhoff anisotropic piezoelec-
tric thin plates”, Int. J. Eng. Sci. 71 (2013), 111–136.

[Wang and Zhou 2014] X. Wang and K. Zhou, “An inclusion of arbitrary shape in an infinite or semi-infinite isotropic multi-
layered plate”, Int. J. Appl. Mech. 06:01 (2014), Article ID #1450001.

[Wang et al. 2005] G. F. Wang, P. Schiavone, and C.-Q. Ru, “Harmonic shapes in finite elasticity under nonuniform loading”,
J. Appl. Mech. (ASME) 72:5 (2005), 691–694.

[Yin 2005a] W.-L. Yin, “Green’s function of anisotropic plates with unrestricted coupling and degeneracy, part 1: The infinite
plate”, Compos. Struct. 69:3 (2005), 360–375.

[Yin 2005b] W.-L. Yin, “Green’s function of anisotropic plates with unrestricted coupling and degeneracy, part 2: Other do-
mains and special laminates”, Compos. Struct. 69:3 (2005), 376–386.

[Zakharov and Becker 2000] D. D. Zakharov and W. Becker, “Unsymmetric composite laminate with a discontinuity of the
in-plane displacement or of the slope”, Acta Mech. 144:3-4 (2000), 127–135.

Received 13 Mar 2014. Accepted 17 Jul 2014.

XU WANG: xuwang_sun@hotmail.com
School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road,
Shanghai, 200237, China

PETER SCHIAVONE: p.schiavone@ualberta.ca
Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, AB T6G 2G8,
Canada

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s004190000137
http://dx.doi.org/10.1007/s004190000137
http://dx.doi.org/10.1115/1.4023020
http://dx.doi.org/10.1115/1.4023020
http://dx.doi.org/10.1016/j.ijengsci.2013.06.004
http://dx.doi.org/10.1016/j.ijengsci.2013.06.004
http://dx.doi.org/10.1142/S175882511450001X
http://dx.doi.org/10.1142/S175882511450001X
http://dx.doi.org/10.1115/1.1979514
http://dx.doi.org/10.1016/j.compstruct.2004.07.017
http://dx.doi.org/10.1016/j.compstruct.2004.07.017
http://dx.doi.org/10.1016/j.compstruct.2004.07.018
http://dx.doi.org/10.1016/j.compstruct.2004.07.018
http://dx.doi.org/10.1007/BF01170170
http://dx.doi.org/10.1007/BF01170170
mailto:xuwang_sun@hotmail.com
mailto:p.schiavone@ualberta.ca
http://msp.org




SUBMISSION GUIDELINES

ORIGINALITY

Authors may submit manuscripts in PDF format online at the Submissions page. Submission of a manuscript ac-
knowledges that the manuscript is original and has neither previously, nor simultaneously, in whole or in part, been
submitted elsewhere. Information regarding the preparation of manuscripts is provided below. Correspondence by
email is requested for convenience and speed. For further information, write to contact@msp.org.

LANGUAGE

Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be
self-contained and not make any reference to the bibliography. Also required are keywords and subject classification
for the article, and, for each author, postal address, affiliation (if appropriate), and email address if available. A
home-page URL is optional.

FORMAT

Authors can use their preferred manuscript-preparation software, including for example Microsoft Word or any
variant of TEX. The journal itself is produced in LATEX, so accepted articles prepared using other software will be
converted to LATEX at production time. Authors wishing to prepare their document in LATEX can follow the example
file at www.jomms.net (but the use of other class files is acceptable). At submission time only a PDF file is required.
After acceptance, authors must submit all source material (see especially Figures below).

REFERENCES

Bibliographical references should be complete, including article titles and page ranges. All references in the bibli-
ography should be cited in the text. The use of BibTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples); however, for submission you may use the format of your choice.
Links will be provided to all literature with known web locations; authors can supply their own links in addition to
those provided by the editorial process.

FIGURES

Figures must be of publication quality. After acceptance, you will need to submit the original source files in vector
format for all diagrams and graphs in your manuscript: vector EPS or vector PDF files are the most useful. (EPS
stands for Encapsulated PostScript.)

Most drawing and graphing packages—Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.—allow the
user to save files in one of these formats. Make sure that what you’re saving is vector graphics and not a bitmap.
If you need help, please write to graphics@msp.org with as many details as you can about how your graphics were
generated.

Please also include the original data for any plots. This is particularly important if you are unable to save Excel-
generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets
instead. Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice) and upload
on the link you been given at acceptance time.

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines
of vertical space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with
all figures at the end, if their placement is specified in the text by means of comments such as “Place Figure 1 here”.
The same considerations apply to tables.

WHITE SPACE

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize
line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred
fonts and layout.

PROOFS

Page proofs will be made available to authors (or to the designated corresponding author) at a Web site in PDF
format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may
cause publication to be postponed.

mailto:contact@msp.org
http://www.jomms.net
mailto:graphics@msp.org


Journal of Mechanics of Materials and Structures
Volume 10, No. 3 May 2015

Special issue
In Memoriam: Huy Duong Bui

Huy Duong Bui JEAN SALENÇON and ANDRÉ ZAOUI 207

The reciprocity likelihood maximization: a variational approach of the reciprocity gap
method STÉPHANE ANDRIEUX 219

Stability of discrete topological defects in graphene
MARIA PILAR ARIZA and JUAN PEDRO MENDEZ 239

A note on wear of elastic sliding parts with varying contact area
MICHELE CIAVARELLA and NICOLA MENGA 255

Fracture development on a weak interface near a wedge ALEXANDER N. GALYBIN,
ROBERT V. GOLDSTEIN and KONSTANTIN B. USTINOV 265

Edge flutter of long beams under follower loads
EMMANUEL DE LANGRE and OLIVIER DOARÉ 283

On the strong influence of imperfections upon the quick deviation of a mode I+III
crack from coplanarity

JEAN-BAPTISTE LEBLOND and VÉRONIQUE LAZARUS 299

Interaction between a circular inclusion and a circular void under plane strain
conditions VLADO A. LUBARDA 317

Dynamic conservation integrals as dissipative mechanisms in the evolution of
inhomogeneities

XANTHIPPI MARKENSCOFF and SHAILENDRA PAL VEER SINGH 331

Integral equations for 2D and 3D problems of the sliding interface crack between
elastic and rigid bodies ABDELBACET OUESLATI 355

Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress
conditions for a power-law hardening material

LARISA V. STEPANOVA and EKATERINA M. YAKOVLEVA 367

Antiplane shear field for a class of hyperelastic incompressible brittle material:
Analytical and numerical approaches

CLAUDE STOLZ and ANDRES PARRILLA GOMEZ 395

Some applications of optimal control to inverse problems in elastoplasticity
CLAUDE STOLZ 411

Harmonic shapes in isotropic laminated plates XU WANG and PETER SCHIAVONE 433

JournalofM
echanics

ofM
aterials

and
Structures

2015
V

ol.10,N
o.3


	 vol. 10, no. 3, 2015
	Masthead and Copyright
	Jean Salençon and André Zaoui
	Stéphane Andrieux
	1. Identification problems and results with the reciprocity gap method
	2. Recollection of the reciprocity gap method
	3. Abstract general form of the reciprocity gap
	4. General definition and properties of the reciprocity likelihood
	5. Application to the identification of point source distributions for a conduction equation
	6. Analysis of the effect of noisy data
	7. Conclusion
	Appendix A. Proof of the optimality property of the reciprocity gap
	Appendix B. Proof of the topological properties of Vp and RG
	Acknowledgment
	References

	Maria Pilar Ariza and Juan Pedro Mendez
	1. Introduction
	2. The discrete dislocation theory
	3. Harmonic graphene model
	3.1. AIREBO potential
	3.2. Force-constant model

	4. Anharmonic contribution of the AIREBO potential
	5. Glide and shuffle dislocation dipoles in graphene
	6. Conclusions
	References

	Michele Ciavarella and Nicola Menga
	1. Introduction
	2. General formulation
	2A. Formulation
	2B. Indentation evolution
	2C. Pressure field evolution

	3. Constant P, k, 
	3A. Pressure field

	4. The Winkler adaptive model
	5. FEM comparison
	6. Conclusions
	References

	Alexander N. Galybin and Robert V. Goldstein and Konstantin B. Ustinov
	1. Introduction
	2. Wedge in elastic plane
	3. Singular integral equations for the cracks on the interface
	4. Solution for the delamination zone
	5. Solution for the slip zones
	6. Three sliding zones
	7. Conclusion
	Acknowledgements
	References

	Emmanuel de Langre and Olivier Doaré
	1. Introduction
	2. Equations of motion 
	3. Stability of finite beams
	3.1. Solution for short beams
	3.2. Effect of length

	4. Stability of a semi-infinite beam
	4.1. Boundary conditions
	4.2. Divergence instability
	4.3. Flutter instability 
	4.4. A model based on local wave stability

	5. Discussion
	5.1. Domains of instability
	5.2. Relation to flow-induced instabilities

	References

	Jean-Baptiste Leblond and Véronique Lazarus
	1. Introduction
	2. Elements of Rice and Bueckner's 3D weight function theory
	3. First-order variation of the stresses on the crack faces
	3.1. Generalities
	3.2. Variations of the displacement components and their spatial derivatives
	3.3. Variations of the stress components

	4. First-order variations of the nonsingular stresses
	4.1. Special case of an immobile point of the crack front
	4.2. General case
	4.3. Comparison with the work of Gao

	5. Cotterell and Rice's directional stability criterion for 3D cracks
	6. Application to deviation of a mode I+III crack from coplanarity
	6.1. Position of the problem
	6.2. Expression of the perturbed mode II stress intensity factor
	6.3. Expression of the perturbed first nonsingular stress
	6.4. Analysis of deviation from coplanarity and directional stability

	7. Conclusion
	References

	Vlado A. Lubarda
	1. Introduction
	2. Circular inclusion near a circular void
	2.1. Dilatational eigenstrain

	3. Configurational force between the inclusion and void
	4. Total strain energy
	5. M-integral around the void
	6. M integral around the inclusion
	6.1. Expansion of the inclusion

	7. Circular inclusion in a half-space
	8. Conclusion
	Acknowledgements
	References

	Xanthippi Markenscoff and Shailendra Pal Veer Singh
	1. Introduction
	2. Mathematical framework
	3. Family of infinitesimal transformations and dynamic conservation laws
	3.1. Invariance of the Lagrangian under translation
	3.1.1. Relation of Jdynk with the energy release rate

	3.2. Invariance of the Lagrangian under scaling
	3.3. Invariance of the Lagrangian under rotation
	3.3.1. Rigid-body rotation: n =0, n=0
	3.3.2. Material or coordinate rotation: n=0, n=0


	4. Conservation integrals as dissipative mechanisms
	4.1. Translation of the inhomogeneity
	4.2. Scaling of the inhomogeneity
	4.3. Rotation of the inhomogeneity

	5. Relation of the variations of the Lagrangian and Hamiltonian under the transformations of translation, scaling and rotation of inhomogeneities
	5.1. Translation of the inhomogeneity
	5.2. Scaling of the inhomogeneity
	5.3. Rotation of the inhomogeneity

	6. Dissipative propositions
	6.1. Translation of the inhomogeneity
	6.2. Scaling of the inhomogeneity
	6.3. Rotation of the inhomogeneity

	7. Conclusions
	References

	Abdelbacet Oueslati
	1. Introduction
	2. Basic equations for the 2D sliding interface crack
	3. The isolated edge dislocation dipole
	4. Solution of the Dirichlet boundary value problem and the singular integral equation for the 2D sliding crack
	5. Integral equations for the sliding planar crack of an arbitrary shape
	6. Conclusion
	Appendix A. The Kupradze–Basheleishvili tensor
	Appendix B. Single layer potential
	Appendix C. Double layer potential
	References

	Larisa V. Stepanova and Ekaterina M. Yakovleva
	1. Introduction. Mixed-mode loading of cracked structures and near crack-tip fields under mixed-mode loading.
	2. Governing equations and asymptotic analysis. Mixity parameter.
	3. Nonlinear eigenvalue problem. Perturbation theory method.
	4. Numerical solution of the nonlinear eigenvalue problem. Computational scheme. Eigenvalues and eigenfunctions.
	5. Conclusions and discussion of results
	References

	Claude Stolz and Andres Parrilla Gomez
	1. Introduction
	2. Preliminaries and finite antiplane shear
	2A. Power law for 1
	2B. Neo-Hookean material

	3. The small-scale nonlinear quasicrack problem and hodograph transformation
	3A. Crack in a neo-Hookean material
	3B. On the solution for power law for Rm
	3C. On the quasicrack geometry

	4. The quasicrack solution
	4A. Determination of the constants
	4B. Connection with release rate of energy
	4C. Property of the solution for 0
	4D. Property of the solution for <0

	5. Numerical approach
	5A. Resolution of the hyperelastic boundary value problem
	5B. Shape optimization
	5C. Geometry evolution and the updating of the level set
	5D. The stress intensity factor update

	6. Some numerical results
	6A. Power law behavior with >0
	6B. The bilinear constitutive law

	7. Conclusion
	References

	Claude Stolz
	1. Introduction
	2. Inverse problems in linear elasticity
	2A. Setting of the problem
	2B. A well posed problem
	2C. The idea of control
	2D. The optimization method

	3. Examples of inverse problem in elastoplasticity
	3A. A three-bar lattice under traction
	3A1. The direct problem
	3A2. The solution for a loading history with H=0
	3A3. Inverse problems
	3A4. Inverse problem when ho=0

	3B. Study of an elastoplastic beam in plane motion.
	3B1. The direct problem for a loading-unloading process.
	3B2. The inverse problem


	4. Estimation of the internal state in elastoplasticity.
	4A. Elements of proof
	4B. Case of a hollow sphere.
	4B1. Solution of the direct problem
	4B2. The inverse problem


	5. Boundary control and extension in viscoplasticity
	5A. Cyclic loading

	6. Conclusion
	References

	Xu Wang and Peter Schiavone
	1. Introduction
	2. Formulation
	3. A single harmonic hole or rigid inclusion
	3.1. A single harmonic hole
	3.2. A single harmonic rigid inclusion

	4. Two interacting harmonic shapes
	4.1. Two interacting harmonic holes
	4.2. Two interacting harmonic rigid inclusions
	4.3. A harmonic hole interacting with a harmonic rigid inclusion

	5. Conclusions
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

