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RELATION BETWEEN THE MAXWELL EQUATIONS AND BOUNDARY
CONDITIONS IN PIEZOELECTRIC AND PIEZOMAGNETIC FRACTURE

MECHANICS AND ITS APPLICATION

HAO TIAN-HU

This paper presents the relation between the Maxwell equations and the boundary conditions in piezo-
electric and piezomagnetic fracture mechanics. In addition, considering that the case after deformation
(current configuration in nonlinear elasticity) is very important for these conditions, the significance of
them has been studied for this case. The application of them has also been researched. Moreover, the
stress field of the solid material caused by the electric field has been discussed. In the conclusion, it is
briefly discussed how to determine the crack open or not, which is of vital importance for semipermeable
and impermeable boundary conditions.

1. Introduction

In mechanics, along with rapid development of the computing technology, the methods of solution have
been various. Accordingly, the equations of constitutive and the boundary conditions should be paid more
attention. Consequently, in the research on the solid fracture mechanics of piezoelectric and piezomag-
netic materials, the exploration of the relation between the Maxwell equations and the electromagnetic
boundary conditions is necessary. Although many authors have researched on these boundary conditions
such as Kumar and Singh [1997], yet the study of this relation is not enough. In this paper, firstly,
the relation between the permeable electromagnetic boundary conditions and Maxwell equations has
been studied. Then, the permeable, the semipermeable and the impermeable electromagnetic boundary
conditions have been discussed [Zhang et al. 2002]. In particular, for the semipermeable electromagnetic
boundary condition, the body after deformation must be dealt with. Therefore, we must cope with the
nonlinear elasticity. We know that this theory is very complicated. In order to avoid this difficulty, we
consider using the approximated direct method instead of the iteration method. Consequently, we don’t
need to carry out this repeat calculation.

Lastly, the problem of the stress field of the solid material caused by the electric field had been
discussed. It is briefly discussed how to determine the crack open or not.

2. Maxwell equations and permeable conditions

It is known that the Maxwell equations can be written in two forms. They are differential form and
integral form. The Maxwell equations in these forms are∫

S
D · d S= q0 or DivD = q1, (∂D1/∂x1+ ∂D2/∂x2+ ∂D3/∂x3 = q1), (1)

Keywords: Maxwell equations, electric-magnetic boundary condition.
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where D is the electric displacement vector, S is the whole surface of a body, q0 is the total charge in
the body, q1 is the charge density and d S is a vector as in the course of vector analysis.∫

k
E · dk =−

∫
Sk

(∂B/∂t) · d S or CurlE =−∂B/∂t,

∂E2/∂x1− ∂E1/∂x2 =−∂B3/∂t,

∂E1/∂x3− ∂E3/∂x1 =−∂B2/∂t,

∂E3/∂x2− ∂E2/∂x3 =−∂B1/∂t.

(2)

where E is electric field vector, B is magnetic induction vector, k is a closed curve, dk is the tangential
vector of k and Sk is a surface whose boundary curve is k.∫

S
B · d S= 0 or divB = 0, (∂B1/∂x1+ ∂B2/∂x2+ ∂B3/∂x3 = 0), (3)∫

k
H · dk = J0+

∫
Sk

(∂D/∂t) · d S or CurlH = J0+ ∂D/∂t,

∂H2/∂x1− ∂H1/∂x2 = J03+ ∂D3/∂t,

∂H1/∂x3− ∂H3/∂x1 = J02+ ∂D2/∂t,

∂H3/∂x2− ∂H2/∂x3 = J01+ ∂D1/∂t,

(4)

where H is magnetic field intensity vector and J01, J02, J03, are the components of the current intensity
vector J0.

Only the static condition and the cases q0 = 0, q1 = 0, J0 = 0 are dealt with.
The equations (1) and (3) become∫

S
D · d S= 0 or DivD = 0 (∂D1/∂x1+ ∂D2/∂x2+ ∂D3/∂x3 = 0), and∫

S
B · d S= 0 or DivB = 0 (∂B1/∂x1+ ∂B2/∂x2+ ∂B3/∂x3 = 0).

(5)

Considering ∂D/∂t = 0 and ∂B/∂t = 0 (static condition) and J0 = 0, the equations (2) and (4) become∫
k

E · dk = 0 or CurlE = 0

(∂E2/∂x1− ∂E1/∂x2 = 0, ∂E1/∂x3− ∂E3/∂x1 = 0, ∂E3/∂x2− ∂E2/∂x3 = 0), and∫
k

H · dk = 0 or CurlH = 0

(∂H2/∂x1− ∂H1/∂x2 = 0, ∂H1/∂x3− ∂H3/∂x1 = 0, ∂H3/∂x2− ∂H2/∂x3 = 0).

(6)

On the basis of Equation (6), we have

Ei = ∂φ/∂xi and Hi = ∂φ1/∂xi (6a)

where φ is the electric potential and φ1 is the magnetic potential.
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For plane case, on the Ox1x2 plane, two integrals in (5) are all computed along the surface curve p
of the area and become ∫

p
Dn dp = 0 and

∫
p

Bn dp = 0, or

∂D1/∂x1+ ∂D2/∂x2 = 0 and ∂B1/∂x1+ ∂B2/∂x2 = 0,
(7)

where p is the surface curve in the plane, Dn is the normal component of vector D and Bn is the normal
component of vector B.

The two integrals in (6) become∫
p

Et dp = 0 or ∂E2/∂x1− ∂E1/∂x2 = 0, and∫
p

Ht dp = 0 or ∂H2/∂x1− ∂H1/∂x2 = 0,
(8)

where Et is the tangential component of vector E and Ht is the tangential component of vector H .
Now, based on Maxwell equations, the permeable boundary conditions for the static electric and

magnetic case are studied. One considers a surface, which can be the interface of two materials. A
short segment of this surface is studied (we shall discuss it in detail in Appendix). For convenience, the
segment in the studied plane is a part of Ox1 axis. In order to study the conditions on the segment, a
rectangle is taken, as shown in the figure:

 

Ox2 

Ox1 
d 

A 

C 

B 

D 

The longer side is parallel to the segment, i.e., Ox1 axis with width d. The shorter is perpendicular to
the segment, i.e., Ox2 axis and its length trends to zero. For the rectangle, the two integrals in (5) and (7)
can be computed.

Considering the area is very small, one can be sure that the value of D, E(φ), B and H(φ1) are
constants on one side but can be different on other side. Therefore, the contribution on the shorter side
tends to zero. For the longer side, they are parallel to Ox1. The tangent component of vector E is E1.
Similarly, the normal component of vector D is D2. The equation

∫
p Dn dp = 0 and

∫
p Et dp = 0

becomes

(D+2 − D−2 )d = 0, i.e., D+2 = D−2 , and (E+1 − E−1 )d = 0, i.e., E+1 = E−1 (φ
+
= φ−), (9)

where D+2 is the D2 on the upper surface of the interface and D−2 is that on the lower surface. Similarly,
E+1 and E−1 can be understand as D+2 and D−2 .
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For the magnetic field, one has

B+2 = B−−2 and H+1 = H−1 (φ
+

1 = φ
−

1 ). (10)

It is the permeable boundary conditions for a surface in static electric and magnetic field. For the static
electric field, in the piezoelectric fracture mechanics, it is the well known boundary condition of [Parton
1976; Mikhailov and Parton 1990].

As a matter of fact, that is an old boundary condition. In any textbook of the theory of electromag-
netism, for the interface between two materials, one can find this boundary condition.

3. Semipermeable conditions and impermeable condition

Although the permeable boundary conditions are deduced from Maxwell equations, yet they have not
considered the existence of crack and only for a surface or an interface in the materials. When one
directly uses them for the piezoelectric and piezomagnetic fracture mechanics, they may result in larger
deviations sometime. However, the importance of these conditions is that they can be the basis of the
further discussion on the boundary conditions for the piezoelectric and piezomagnetic fracture mechanics.

Now, the semipermeable boundary conditions and the impermeable boundary conditions are consid-
ered. Firstly, the cracks can be divided into two kinds. The first is for the cracks with the opening voids
full of fluid (air) after deformation. We always dealt with this kind. The second has not the opening
voids such as the antiplane case (as u1 = u2 = 0, the crack can not be opening), the crack subjected
to compression stress, etc. For the second, as the void does not exist after deformation, the permeable
equations D+2 = D−2 and E+1 = E−1 (φ

+
= φ−), B+2 = B−−2 and H+1 = H−1 (φ

+

1 = φ
−

1 ) can be accepted.
Then, for the first, when studying the crack full of air, it is improper to write the boundary condition

before deformation as the classical theory; otherwise the crack is only a slit without void and no air
can be exist in it. Therefore, we must consider the boundary condition after deformation (the current
configuration in nonlinear elasticity). In the meantime, the opening crack becomes a void. At the surface
of the void, on the interface between the fluid (in void) and the solid (outside void), we have the interface
boundary conditions

D+2 = D−2 and E+1 = E−1 (φ
+
= φ−), B+2 = B−−2 and H+1 = H−1 (φ

+

1 = φ
−

1 ), (11)

where D+2 , D−2 , E+1 , E−1 (φ
+, φ−), B+2 , B−2 , H+1 , H−1 (φ

+

1 , φ
−

1 ) belong to the fluid (in void) and the solid
(outside void).

In the fluid (in void), there are the various basic equations of the fluid (air), such as

∂2φi/∂x2
1 + ∂

2φi/∂x2
2 + ∂

2φi/∂x2
3 = 0 and ∂2φ1i/∂x2

1 + ∂
2φ1i/∂x2

2 + ∂
2φ1i/∂x2

3 = 0, (12)

where φi and φ1i are the electric and magnetic potentials of the fluid components in the void. For the
solid (outside void), the basic equations are well known and we shall not discuss them here. It is the all
conditions satisfied by the body with void including air. To solve it is a complicated problem. Generally,
it is better to use the nonlinear elasticity to solve this problem but the nonlinear elasticity is too tough to
study. Now, a simpler method is accepted in study. This method is as follows. For convenience, when
studying the crack void full of air, the boundary after deformation can be accepted as the boundary before
deformation (a closed slit) adding the evaluated boundary displacement. Naturally, we know that this
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displacement is also found by classical theory. In this theory, the displacement field is calculated from
the boundary before deformation, i.e., on the nondeformation body. This result is not precise but results
in the little deviation. Nevertheless, to the case of crack void full of air, the deviation is not negligible.

As mentioned above, the approximate boundary after deformation is determined. Now we consider
the solid (outside void) and the fluid (in void). As mentioned above, the constitutive equation of the
solid is well known and that of the fluid are various and complicated. In order to avoid that of fluid,
considering the void is very small after deformation, Hao [1993] and Hao and Shen [1994] have used the
linear change of φ and φ1 along the surface normal to replace the rigorous solution of the complicated
equation (that is one of the basic assumption of this boundary condition). In the void, E2 and H2 (for
small deformation case, En and Hn are replaced by E2 and H2) become −(φ+− φ−)/(u+2 − u−2 ) and
−(φ+1 −φ

−

1 )/(u
+

2 − u−2 ), and u2 is the evaluated boundary displacement component as above mentioned.
Considering D2 = εa E2 and B2 = εa1 H2 in air, one obtains

(u+2 − u−2 )D2 =−εa(φ
+
−φ−), (u+2 − u−2 )B2 =−εa1(φ

+

1 −φ
−

1 ) (13)

where εa and εa1 are the electric and magnetic permitivities of air.
Since in the void, E2 and H2 become the constants along the normal, D2 and B2 are also the constants

along the normal. Then, we obtain

D+2 = D−2 =−εa
φ+−φ−

u+2 − u−2
, B+2 = B−2 =−εa1

φ+1 −φ
−

1

u+2 − u−2
. (14)

In fact, this boundary condition is obtained from the conception of current configuration in finite de-
formation theory and the linear change of potential as [Hao 2004]. In short, the conception of current
configuration is that we must deal with the crack boundary after deformation when studying a crack.

The equation (14) is the semipermeable boundary condition. For the piezoelectric case, it is suggested
by [Hao 1993; Hao and Shen 1994].

It is approximate to use an average rate of change of potential φ to take the place of the actual rate.
However, as it is only an approximate boundary condition rather than an exact result, I can be sure that
for disagreeing it we must be based on some contrary examples, not one exact example.

It is apparent that Equation (13) will be reduced to φ+ = φ− or φ+1 = φ
−

1 (one of the permeable
boundary conditions) when u+2 − u−2 = 0 (closed), and to the following equation under the condition
εa = 0 and εa1 = 0:

D+2 = D−2 = 0, B+2 = B−2 = 0. (15)

The Equation (15) is the impermeable boundary conditions.

4. Some problems about the application of these boundary conditions

In order to avoid the irrationality in the result, we must decide to suitably use these boundary conditions.
The permeable boundary condition is obtained from the Maxwell equations exactly. Therefore, we must
determine in what situation this boundary may be accepted. If we can be sure that the crack is closed,
the permeable boundary condition should be accepted. However, it is not easy to determine the crack
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being closed. In order to do it, from [Hao 2001], we know

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
]/µ, (16a)

where the constants can be found in [Hao 2001].
It is an exact formula to decide whether the crack is closed or not but it is too complicated to be used.

We shall discuss it in detail later.
When we know that the crack is closed, the permeable boundary condition can be accepted.
From the Equation (16), we can also decide that the crack is open. At this time, the semipermeable

or the impermeable boundary condition can be considered.
About the semipermeable boundary condition, although it has considered the electric field in the air,

yet it seems to be too complicated to deal with. However, many results can be accepted by us to study this
problem without difficulty. These results tell us that D+2 can be determined directly without complicated
computing. For an example, to the common multiple collinear cracks (naturally, single crack) under the
simple remote load case, we have following result.

In general case, there are four functions of complex variables f ′′j (z j ) and the displacements and
potential can be

φ+−φ− = 2Re
4∑

j=1

(h1r kr j − ξ1αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
],

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
]/µ j

(16b)

where the constants can be found in [Hao 2001].
The functions f ′′j (z j ) can be obtained from

4∑
j=1

li j f ′′j (z)= ei + i fi + ei [Q(z)− 1], i = 1, . . . , 4,

Q(z)=
zn
+ c1zn−1

+ · · ·+ cn−1z+ cn∏n
k=1[(z− ak)(z− bk)]1/2

,

(17)

where c1, c2, . . . , cn−1, cn are defined by single value requirements of displacements and potential and
ak and bk are the two tips of the k-th crack but no relation with material constants.

Then, using linear algebra method, one can find functions f ′′j (z j ) as [Hao 2001]

f ′′i (zi )=

4∑
j=1

xi j {D j + e j Q(zi )}, D j = e j + i f j − e j , (18)

where xi j is determined by linear algebra method as [Hao 2001].
We introduce

P ′(x1)=−Q(x1). (19)
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Then, there is

f ′′i (x1)
+
− f ′′i (x1)

−
=−

[ 4∑
j=1

xi j e j Q(x1)

]−
+

[ 4∑
j=1

xi j e j Q(x1)

]+

=

[ 4∑
j=1

xi j e j P ′(x1)

]−
−

[ 4∑
j=1

xi j e j P ′(x1)

]+

=

4∑
j=1

xi j e j [P ′(x1)
−
− P ′(x1)

+
].

(20)

From Equation (20), we obtain

f ′i (x1)
+
− f ′i (x1)

−
=

4∑
j=1

xi j e j [P(x1)
−
− P(x1)

+
]

= [P(x1)
−
− P(x1)

+
]

4∑
j=1

xi j e j

= Ai [P(x1)
−
− P(x1)

+
], (21)

Ai =

4∑
j=1

xi j e j . (22)

Then, we have

φ+−φ− = 2Re
4∑

j=1

(h1r kr j − ξ1αdα j )A j [P(x1)
−
− P(x1)

+
]

= 2Re[P(x1)
−
− P(x1)

+
]

4∑
j=1

(h1r kr j − ξ1αdα j )A j ,

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )A j [P(x1)
−
− P(x1)

+
]/µ j

= 2Re[P(x1)
−
− P(x1)

+
]

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j .

(23)

One can find that the function [P(x1)
+
− P(x1)

−
] is imaginary. Therefore, we have

φ+−φ− = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(h1r kr j − ξ1αdα j )A j ,

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j .

(24)
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Therefore, D+2 can be approximately expressed as

D+2 =−εa
[P(x1)

−
− P(x1)

+
]Im

∑4
j=1(h1r kr j − ξ1αdα j )A j

[P(x1)−− P(x1)+]Im
∑4

j=1(β2r kr j + η2αdα j )A j/µ j

=−εa
Im
∑4

j=1(h1r kr j − ξ1αdα j )A j

Im
∑4

j=1(β2r kr j + η2αdα j )A j/µ j
, (25)

D+2 is no relation with these coordinates xi and can be determined directly without the iteration method.
We must pay attention to that although the expressions of φ+− φ− and u+2 − u−2 are exact, yet for

D+2 it is approximate. For an example, we consider a crack. In general case, its φ+−φ− and u+2 − u−2
may be proportional to (a2

− z2)1/2. When the load leads u+2 − u−2 tending to zero, the crack should be
closed. Therefore, we must accept the permeable condition. As φ+−φ− can also tend to zero, the value
(φ+−φ−)/(u+2 − u−2 ) may tend to a constant. However, because the crack is closed, there is no air in
the crack void and (φ+−φ−)/(u+2 − u−2 ) is a constant without significance.

5. Stress field caused by the electric field

Now, we study the stress field caused by the electric field. Essentially it is the acting force of electric
field on the solid element. The acting force caused by the electric field is a body force. It is known that
the stress field caused by the electric field is a square but that by the piezoelectric field is linear [Fang
and Yin 1989, 4.7.1, p. 209]. Therefore, the stress field caused by the electric field is always smaller
than that by the piezoelectric field [ibid., 4.7.2, p. 210] and always can be neglected.

Due to the complexity of this problem, the stress distribution caused by the electric field will be
discussed in detail in another paper.

6. Conclusions

For the electric-magnetic fracture mechanics, the relation between the Maxwell equations and the per-
meable, semipermeable and impermeable electromagnetic boundary conditions has been studied. Then,
the application of these boundary conditions has been discussed. Lastly, the stress field caused by the
electric field also has been discussed. It is known that permeable electromagnetic boundary conditions
are exact for the closed crack. When we can be sure that the crack is not closed, the semipermeable or
the impermeable electromagnetic boundary condition is accepted. Naturally, it has some trouble to use
formula (16a) to decide whether the crack is open or not. However, for the cracks on a straight line (for
example, the cracks on Ox1) and D∞2 = 0, it is easy to deal with. From the equation (24), we know

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j (26)

where A j = m jσ
∞

2 and m j is a constant and no use for our discussion.
Substituting them into (26), we have

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]σ∞2 Im

4∑
j=1

(β2r kr j + η2αdα j )m j/µ j . (27)
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Figure 1. The relation between the crack closing and the representation of remote stress p.

It is clear that the value u+2 − u−2 is proportional to the value σ∞2 which is the same with the theory of
elasticity.

For one crack case, we know

u+2 − u−2 =−2i[P(x1)
+
− P(x1)

−
](k2/π

1/2a1/2)Im
4∑

j=1

(β2r kr j + η2αdα j )m j/µ j , (28)

where k2 is the stress intensity factor and a is the half length of the crack.
In order to clarify the crack closing, it is explained in Figure 1.
For convenience, the term 4aσ∞2 Im

∑4
j=1(β2r kr j + η2αdα j )m j/µ j is replaced by 1011 p, where 2a is

the crack length.
From Figure 1 we know that when the representation of remote stress p tends to 0, the crack closing

to infinite.
Previously, we only consider the crack being traction free at its surface. When there is homogeneous

load σ0 on crack surface and σ∞2 = 0, we resolve it into two cases. The one is homogeneous stress σ0

on the whole solid and the another is σ∞2 =−σ0. On the basis of the sum of the two cases, all boundary
conditions are satisfied. The case of homogeneous stress σ0 on the whole solid is a homogeneous field.
It is easy to deal with. The case of −σ0 at infinite is that of σ∞2 = −σ0. It has been discussed in the
equation (27).

Appendix: About the boundary condition

In order to discuss the boundary condition easily, we consider the plane potential fluid mechanics. Firstly,
we introduce the conception of source, sink and vortex point. Naturally, they are the plane potential fluid
field which has two components parallel to Ox1 and Ox2. The velocity fields of source and sink are
radius. At every point, the velocity is parallel to the radius. The vortex point is tangential velocity field.
At every point, the velocity is perpendicular to the radius. Therefore, the vortex point velocity field is a
circular ring field. In fluid mechanics, we call this field in rotational field. We know that the conception
of source seems to be the water spring. The conception of sink is contrary to that of source. For the
vortex point, we always seem to observe it at the water surface. Sometimes, the sources (naturally, sinks
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and vortex points) can be considered a line source. That seems to be observed at the water surface. For
convenience, we deal with the plane problem on the plane with axis Ox1 and Ox2. Now, we consider
a slit on the interface of two materials. The slit is on the axis Ox1. We must be sure that because there
are two materials, the velocity must be different in the two materials. Letting the velocities be V1 and V2

in the two materials. When there is no source and sink in the slit, letting the values V12 and V22 are
components of V1 and V2 paralleling to Ox2. V12 = V22. When there is no vortex point in the slit, letting
the values V11 and V21 are components of V1 and V2 paralleling to Ox1. V11 = V21. When there are
some sources or sinks in the slit, V12 6= V22 across the slit. When there are some vortex points in the slit,
V11 6= V21 across the slit.

On the basis of above discussed, the static electric field is easy to deal with. The positive and negative
charge is corresponding to the source and sink. Naturally, it seems to be difficult to find anything corre-
sponding to the vortex point. However, when we study the magnetic field around the wire, we seem to
meet the point corresponding to it. Therefore, for the slit of the interface of two materials on Ox1 in the
electric field, we can be sure that D12 = D22 (corresponding to V12 = V22 in fluid). Now, we must pay
attention to the condition V11 = V21 in fluid. We know that in fluid mechanics, we prove the condition
V11 = V21 based on the condition no vortex point in the slit. In fluid mechanics, as above mentioned,
the condition no vortex point is corresponding to that of nonrotation. In Maxwell equations, as above
mentioned, the condition nonrotation is discussed in equations (2) and (6). Here, the physical quantity
E pays a leading role. Therefore, the condition V11 = V21 in fluid mechanics, is corresponding to the
condition E11 = E21 in Maxwell equations.

Therefore, we obtain the boundary condition on the interface

D12 = D22, E11 = E21, (29)

where D1 j is the j-th of D1, D2 j is the j-th of D2, E1 j is the j-th of E1 and E2 j is the j-th of E2.
Naturally, these boundary conditions above mentioned, are obtained based on the analogy method.

Now, we shall prove it by integral form of Maxwell equations exactly.
Letting B A and C D being the two longer sides of the rectangle (their length equals d) and AC , B D

being the two shorter sides (their length tends to 0) and the segment of Ox1 in the rectangle being the
interface, we have

∫
p Dn dp = 0 and

∫
p Et dp = 0. We consider the right spiral rule. The direction of

four tops of the rectangle is B AC DB. As B A and C D are parallel to Ox1, their normal is parallel to
Ox2. The vector Dn becomes D2. As their tangent is parallel to Ox1, the vector Et becomes E1. The
equation

∫
p Dn dp = 0 becomes

−D12B A AB+ D22C DC D+ small contribution of the sides AC and DB = 0, (30)

where D12 is the second component of the electric displacement D1 in upper half plane x2 > 0, D22 is
the second component of the electric displacement D2 in lower half plane x2 < 0, D12B A is D12 on B A
and D22C D is D22 on C D.

Considering the contribution of the shorter sides AC and DB tending to zero, we neglect it and
consider the two sides AC and DB being the upper and lower surfaces of the interface. Therefore,

−D2B A AB+ D2C DC D =−D+2 AB+ D−2 C D = 0, (31)



MAXWELL EQUATIONS AND BOUNDARY CONDITIONS IN FRACTURE MECHANICS 457

where D+2 = D2B A is the D2 on the upper surface of the interface and D−2 = D2C D is the D2 on the lower
surface of the interface.

Substituting B A = C D = d , we obtain

d(−D+2 + D−2 )= 0. (32)

Therefore, we have

D+2 = D−2 . (33)

Considering the Et becomes E1, the equation
∫

p Et dp = 0 becomes

−E11B A B A+ E21C DC D+ small contribution of the sides AC and DB = 0,

where E11 is the first component of the electric field E1 in upper half plane x2 > 0, E21 is the first
component of the electric field E1 in lower half plane x2 < 0, E11B A is E1 on B A and E21C D is E1

on C D.
Considering the contribution of the shorter sides AC and DB being very little, we neglect it and

consider the two sides AC and DB being the upper and lower surfaces of the interface. Therefore,

−E11B A AB+ E21C DC D =−E+1 AB+ E−2 C D = 0, (34)

where E+1 = E11B A is the E1 on the upper surface of the interface and E−2 = E21C D is the E2 on the
lower surface of the interface.

Substituting B A = C D = d , we obtain

d(−E+1 + E−1 )= 0. (35)

And so we have

E+1 = E−1 . (36)

Therefore, on the upper and lower surface of the interface, the components of vectors E1 and D2 on both
surfaces are equal. When on the upper and lower surface of the interface, the components of vector E1 on
both surfaces are equal, on the upper and lower surface, the function φ (φ = ∂E1/∂x1) on both surfaces
is equal (when the interface is −∞–+∞, on the upper and lower surface, the difference between the two
functions φ+ and φ− may be a constant).

This result is the famous permeable condition in piezoelectric fracture mechanics [Parton 1976; Parton
and Kudryavtsev 1988; Mikhailov and Parton 1990].

In fact, this is an old result in electrodynamics:
∫

q Dn dq = 0. We can find it in any textbook such as
[Coelho 1979].
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AXISYMMETRIC LOADING OF AN ELASTIC-PLASTIC PLATE
ON A GENERAL TWO-PARAMETER FOUNDATION

LUCA LANZONI, ANDREA NOBILI, ENRICO RADI AND ANDREA SORZIA

The load carrying capacity and collapse scenarios for an infinite elastic-plastic plate resting on a two-
parameter elastic foundation uniformly loaded on a small circular footprint are investigated in a general
framework of stiffness and yield parameters. The present work extends the study already presented for
a specific value of the Pasternak modulus and it allows the investigation of the influence of the stiffness
property of the underlying soil and the amplitude of the loaded region on the load carrying capacity
of the plate and the corresponding collapse mechanism. Moreover, the present analysis allows for the
evaluation of the transverse deflection, slope, radial and circumferential bending moments, shearing
force within the plate and the reactive pressure of the elastic subgrade at the onset of the plastic collapse
together with their dependence on the foundation moduli. The effect of the ratio between negative and
positive yield moments is also investigated. The amplitude and assembly of plastic regions at the onset
of the plastic collapse are discussed in some detail.

1. Introduction

The problem of a plate resting on an elastic subgrade has been extensively investigated in the literature
because of its relevance in many structural and geotechnical applications. Indeed, plate and slab-like ele-
ments supported by an elastic foundation are commonly encountered in many engineering systems, with
particular reference to design spread building foundations (particularly, shallow mat-like foundations),
e.g., [Gazetas and Tassios 1978; Gazetas 1981a], industrial and airport pavements [Caliendo and Parisi
2010], and rigid or flexible roadways [Helwany et al. 1998].

According to its relative slenderness, a shallow building foundation can be modeled as a thin Kirchhoff
plate or as a thick Reissner–Mindlin plate, whereas the supporting medium can be simulated in different
ways. As is well known, the perhaps most popular foundation model was proposed by Winkler in 1867,
and it has enjoyed wide popularity ever since on account of its greater simplicity with respect to other soil
descriptions at a reasonable cost in terms of result reliance in the supported structure. Nonetheless, owing
to its local nature, the Winkler model cannot produce accurate results for the displacement field of the
soil-foundation system. Accordingly, a variety of nonlocal subgrade models (e.g., Pasternak, Reissner,
Filonenko-Borodich, Hetényi, Kerr and Vlazov models, among others) has been proposed over the years
to improve upon the Winkler-type soil model [Selvadurai 1979].

Several analytical and numerical studies have been performed to evaluate the mechanical interaction
between a raft slab foundation and the supporting medium. The analytical solution of a thin Kirchhoff
plate resting on a Winkler-type subgrade under various load conditions is reported in detail in the classical

Keywords: two-parameter subgrade, Kirchhoff plate, Johansen’s yield criterion, axisymmetric loading conditions, contour
integral, elastic-plastic collapse.
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book of Timoshenko and Woinowsky-Krieger [1959]. The axisymmetric flexure of an infinite elastic plate
resting on an incompressible elastic half-space is considered by Selvadurai [1977] by making use of the
potential functions and Hankel transforms. The problem of an elastic plate supported by an elastic two-
parameter subgrade is studied in [Wen-da and Shu 1987] in order to model the circular foundation of a
cooling hyperbolic tower. Results are compared with a numerical solution obtained through a FE package.
The mechanical interaction between an infinite cracked Kirchhoff plate resting on a two-parameter elastic
subgrade can be found in [Nobili et al. 2014, 2015]. A full-field solution is obtained therein by means
of the Wiener–Hopf method and the influence of the subgrade parameters on the stress intensity factors
at the crack tip are evaluated in detail.

Recently, Shukla et al. [2011] have obtained the solution of a circular plate supported by a tensionless
Pasternak-type subgrade by using the strain energy approach and assuming a power series expansion
for the transverse deflection of the plate. Variational boundary conditions for a beam resting on a two-
parameter tensionless elastic foundation have been developed in [Nobili 2012]. Shell- and plate-like
elements in contact with elastic media have been adopted as a reliable model to study micro- or nano-
structures in the framework of modern microelectronics based on the use of special composite materials.
As an example, Ru [2001] studied the critical loading for a double-walled carbon nanotube embedded in
an elastic matrix. There, the nanotube is modeled as a thin elastic cylindrical shell supported by a Winkler
subgrade, which accounts for the van der Waals forces. Likewise, in order to investigate the vibrations
of carbon nanotubes, Liew et al. [2006] consider a plate embedded into a Pasternak elastic medium and
solve the problem by means of Fourier analysis. It is found that the resonant frequencies of the system
can be significantly affected by van der Waals interaction. Later, Pradhan and Kumar [2010] extended
the vibration analysis to orthotropic single layered graphene sheets, taking into account scale effects by
adopting Eringen nonlocal constitutive relations for the plate. These authors extend a previous work by
Duan and Wang [2007] concerning the axisymmetric bending of circular plates under static loading and
find that scale effects can produce a decrease of stiffness and, in turn, larger deflection of the plate.

Numerical simulations have been extensively adopted to study plate and slabs supported by or embed-
ded in an elastic medium. As an example, Çelik and Saygun [1999] develop an iterative FE numerical
method to simulate a plate on a two-parameter foundation. In that study, the soil surrounding the plate
has been modeled by a finite region having amplitude comparable with the thickness of the compressible
soil layer underneath the plate. Caliendo and Parisi [2010] studied the stress field in jointed concrete
airport pavements under aircraft loads and thermal gradients. Through a commercial FE package, the
authors carried out 3D numerical simulations wherein the pavement is modeled as a square-shaped plate
bonded to an isotropic elastic half-space, thus incorporating the effect of the subgrade Young modulus
on the maximum tensile stress at the interior as well as at the edge of the plate. A recent application
of a FE-boundary integral equation coupling method is adopted in [Tullini et al. 2012] to investigate
the interaction problem between a bar and an elastic half-plane. In this work, the Green function of the
half-plane is implemented in the variational formulation.

Analytical and numerical models based on plates supported by an elastic subgrade can be readily used
to simulate insulated building foundation. In fact, in order to adequately insulate the base of a building
with the aim to reduce heat loss and, in turn, cut down on energy cost, an insulating layer (typically, high-
compressive-strength polystyrene sheets and foams) can be placed right under the foundation concrete
slab. Through this layer, moisture absorption, humidity infiltration and frost penetration phenomena are
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hampered, the latter being a relevant issue in frost-susceptible soils [Bowles 1997]. The contribution of
the insulating layer to the pressure distribution under the foundation is usually neglected, but it can be
properly considered by adopting a two-parameter soil model.

Despite its potential and simplicity, linear elastic analysis cannot be used to predict the mechanical
behavior of systems under the collapse load, when nonlinearity plays an essential role. In particular,
models based on plasticity theory have been widely used to assess the load carrying capacity of mat
building foundations. One of the first studies concerning the load-carrying capacity of rigid-plastic
plates supported by a Winkler subgrade under a uniform static loading distribution was performed by
Meyerhof [1960; 1962]. He assumed a fan-like collapse mechanism for the plate and thus he found
an upper-bound for the collapse load, since the corresponding radial bending moment overcomes the
yield moment of the plate. After those studies, a lot of works about this topic have appeared in the
literature. By using potential functions to represent stress and displacements fields of the foundation,
Gazetas [1981b] studied a transversely isotropic elastic half-space indented by a rigid-plastic plate under
a uniform load distribution. He considered a conical shape of the plate after yielding, which can lift off
the foundation. Sokól-Supel [1985; 1988] studied elastic-plastic Kirchhoff plates resting on an elastic
subgrade. Solutions of elastic-plastic plates under different loading conditions and variously clamped at
the ends may be found in the book by Save et al. [1997]. Lewandowski and Świtka [1991] solved the
problem of a plate in tensionless contact with an underlying elastic-plastic Winkler subgrade obeying a
bilinear constitutive law via a variational formulation. The authors solved the problem by using a FE
method implemented through an iterative procedure. Kocatürk [1997] considered an elastic perfectly
plastic plate in tensionless contact with an elastic-plastic Winkler foundation.

Recently, the problem of an infinite elastic-plastic plate resting on an elastic Winkler-type subgrade
and uniformly loaded on a circular area has been solved by Radi and Di Maida [2014] by assuming the
Johansen yield criterion for the plate [Johansen 1962] and associative flow rule. In that work, the exact
ultimate bearing capacity of the system has been assessed varying the radius of the loaded region. It is
also shown that the behavior of the plate is governed by a single parameter, namely the amplitude of the
loaded region over the characteristic length of the plate-foundation system, and an approximate formula
for the collapse load is also proposed.

Then, the study has been extended by Lanzoni et al. [2014] by considering a nonlocal behavior of the
soil. In that study, a two-parameter foundation with a specific value of the Pasternak modulus has been
assumed, resulting in closed-form solutions of the governing equations for the elastic-plastic regions that
may occur within the plate. The analysis shows that the collapse mechanism of the plate differs from
that found by Radi and Di Maida [2014], due to the nonlocal response of the Pasternak foundation.

The present work is the natural extension of the work by Lanzoni et al. [2014]. Here a general value of
the Pasternak modulus is taken into account and the effects of the subgrade on the load-bearing capacity
of the plate are investigated. A method based on a contour integral is adopted to solve in closed form
the fourth-order linear ODE with nonconstant coefficients governing the mechanical behavior within the
elastic-plastic region of the plate.

It is remarked that the plate is perfectly bonded to the elastic subgrade, thus the reactive soil pressure
can be compressive as well as tensile. The study concerns the mechanical behavior of the system at the
onset of plastic collapse. Nonetheless, it is worth noting that the system can sustain further increases in
the external load after the plastic mechanism is achieved, owing to the presence of the elastic subgrade.
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Figure 1. Sketch of the plastic mechanism for b < c (left) and for c < b (right). The
loaded region 0≤ r ≤ a has been highlighted. (0) plastic corner region r ≤ d; (1) elastic-
plastic region under load d ≤ r ≤ a; (2) unloaded elastic-plastic region; (3) elastic outer
region; (4) annular elastic-plastic region.

The paper is organized as follows. Section 2 deals with the governing ODEs for the elastic-plastic
regions that may arise within the plate. Solutions of these ODEs are found for a general value of the
Pasternak subgrade modulus. The boundary conditions for each considered collapse mechanism are set in
Section 3. The main results are reported in Section 4 in terms of ultimate load-bearing capacity, bending
moments, shear forces, reactive soil pressure together with the size of each subregion. An experimental
setup is briefly presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Governing equations

In this section, the governing equations adopted in [Lanzoni et al. 2014] are briefly reviewed. The plate
is subject to an external uniform pressure distribution q acting on its upper surface within a circular area
of radius a and positive in the downward direction (see Figure 1). Elastic-perfectly plastic and isotropic
behavior is adopted for the plate, which is assumed to obey Johansen’s yield condition with associative
flow rule. Due to the axisymmetrical conditions affecting the system, all variables depend on the radial
coordinate r only.

The plate rests on an elastic two-parameter Pasternak foundation. Therefore, the reactive soil pres-
sure p (positive if upwards) reads

p = k1w− k21w, (1)

where k1 and k2 are the (positive) subgrade moduli, w represents the transversal deflection (positive if
downward), and 1 is the Laplacian operator in two dimensions.
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Figure 2. Left: Johansen’s yield locus for elastic-plastic plates and corresponding flow
rule. Right: positive bending moments and shear force per unit length.

Both in the elastic and in the elastic-plastic regions of the plate, the equilibrium conditions under
axisymmetric loading conditions require

(rmr )
′
−mθ + r tr = 0, (2)

(r tr )′+ r [k1w− k2(w
′′
+w′/r)− q] = 0, (3)

where mr and mθ are the bending moments per unit length, tr is the transverse shear force per unit length,
whose positive directions are shown in Figure 2, right, and prime denotes differentiation with respect to
the radial coordinate r .

Johansen’s square yield condition is assumed to hold for the plate (Figure 2, left), namely

−m−0 ≤ mr ≤ m+0 , −m−0 ≤ mθ ≤ m+0 , (4)

where m+0 and m−0 are the positive and negative yield moments per unit length.
Under proportional loadings, the elastic-plastic constitutive equations can be assumed in the integrated

form
mr = D(ke

r + νke
θ ), mθ = D(ke

θ + νke
r ), (5)

where kr and kθ are the components of the curvature tensor, D = Eh3/12(1− ν2) is the flexural rigidity
of the plate, h is the plate thickness, E is the Young’s modulus and ν is the Poisson’s coefficient of the
material. The curvature tensor can be separated into elastic and plastic contributions according to

kr = ke
r + k p

r =−w
′′(r), kθ = ke

θ + k p
θ =−w

′(r)/r, (6)

where the elastic components of the curvature tensor follow from (5) as

ke
r =

mr − νmθ

D(1− ν2)
, ke

θ =
mθ − νmr

D(1− ν2)
. (7)

Following the classical Kirchhoff theory for thin plates, the rotation of the cross-sections of the plate
orthogonal to the radial direction can be evaluated through the derivative of the displacement with respect
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to the radial coordinate, i.e.,
φθ =−w

′. (8)

In the following, a dimensionless parameter ξ is introduced to make clear the role of the Pasternak
stiffness parameter k2, leading to a useful normalization of the ODEs governing the problem:

k2 = ξk1L2, (9)

where
L = 4

√
D(1− ν2)/k1 (10)

is a characteristic length of the plate/subgrade system. It follows that, for ξ → 0, the Winkler foundation
is retrieved.

As found in [Lanzoni et al. 2014], the plate at the onset of collapse may exhibits two different plastic
mechanisms, characterized by different elastic-plastic regions. For the sake of clarity, the governing
equation for the transversal deflection of the plate and the corresponding solutions for each plastic region
are presented in the following, the numbering of the letters being presented in Figure 1.

2.1. Elastic-plastic region 0 lying at the corner A of the yield surface (0 ≤ r ≤ d). Due to the axisym-
metry of the problem, the conditions

mr (0)= mθ (0), k p
r (0)= k p

θ (0) (11)

are met for r = 0. Moreover, the condition

mr (r)= mθ (r)= m+0 for 0≤ r ≤ d (12)

must hold within the central region of the plate lying on the corner A of the yield surface. It is worth
noting that the yield locus is not smooth and the plastic flow can assume different directions at the corner
of the yield surfaces. However, the condition mr (0) = mθ (0) holds at the center of the plate due to
axisymmetry and, thus, also the plastic contributions of the curvature tensor are expected to be equal,
i.e., k p

r (0) = k p
θ (0), according to (11). On the other hand, the condition mθ (r) = m+0 holds within the

elastic plastic regions 1 and 2, namely for d < r < b, together with the normality law for the plastic flow
k p
θ (r) > 0 and k p

r (r)= 0, so that the flow of the plastic curvature is aligned with the outward normal to
the boundary AB of the yield domain, according to the Johansen associative yield criterion, as shown
in Figure 2, left. Thus, within the fully plasticized region (region 0), the plastic flow must lie arbitrarily
in the cone delimited by the bisector (OA direction) and the outward normal to the boundary AB of the
strength domain.

This assumption leads to the fulfillment of the maximum dissipation postulate also at the corner A of
the yield domain [Salençon 2013, Chapter 11.3.2]. In particular, the plastic curvature k p

θ (r) is assumed
to vary continuously with r from the center of the plate (r = 0) where k p

θ (0) = k p
r (0) to the outer

border of the region 0 (r = d−) where k p
θ (d
−)= k p

θ (d
+), so that the circumferential component of the

plastic curvature tensor is continuous between the regions 0 and 1. As discussed in [Lanzoni et al. 2014],
continuity of this component also implies continuity of the rotation φθ between the regions 0 and 1 at
r = d, according to relation (6)2, since the elastic component of the curvature is continuous due to the
continuity of the bending moments.
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The yield condition (12) and the balance equation (2) imply the vanishing of the transverse shear force
within the inner elastic-plastic region 0, i.e.,

tr (r)= 0 for 0≤ r ≤ d, (13)

and, thus, the load is entirely supported by the subgrade therein.
By using relations (9) and (13), the general expression for the transversal deflection of the plate within

the elastic-plastic region 0 can be found from the balance condition (3) in the form

w0(r)= (m+0 L2/D)
[
χ + a0 I0

(
r/
√
ξL
)]
, (14)

where I0 is the modified Bessel function of first kind of order zero, a0 is an arbitrary constant and

χ = q D/(k1m+0 L2) (15)

is a dimensionless parameter proportional to the intensity q of the external load distribution.

2.2. Elastic-plastic regions 1 and 2 lying on the side AB of the yield surface (d ≤ r ≤ c). On the side
AB of the yield locus (Figure 2, left) the bending moment mθ attains its positive limit value m+0 , namely

mθ (r)= m+0 for d ≤ r ≤ c, (16)

and thus positive radial yield lines occur within the corresponding elastic-plastic region of the plate,
which can be split into the inner loaded region 1 and the outer unloaded region 2, as sketched in Figure 1.
According to the associative flow rule, the plastic curvature components for the side AB of the yield
locus are given by

k p
r = 0, k p

θ ≥ 0. (17)

Therefore, by using (16) and (17)1, equations (6)1, (7)1 and (2) yield the following expressions for the
bending moment mr and the transverse shear force tr per unit length in the elastic-plastic regions 1 and 2:

mr = νm+0 − D(1− ν2)w′′, (18)

tr =
1− ν

r
[m+0 + D(1+ ν)(w′′+ rw′′′)]. (19)

Introduction of (19) in the balance equation (3) then provides the governing ODE for these regions:

rw′′′′+ 2w′′′−
ξ

L2w
′′r −

ξ

L2w
′
+

1
L4wr −

q
k1L4 r = 0. (20)

The general solution of the fourth-order linear ODE (19) has been found in closed form by Lanzoni
et al. [2014] only for the special case ξ = 2.

Different methods can be used to solve the ODE (20). For example, the solution can be obtained
numerically, or by using the method of Frobenius, i.e., by seeking the unknown function w as a power
series of r and solving the corresponding indicial equation. Here, we use a contour integration instead
(see for example [Ince 1944]). Assume that w(r) has the form

w(r)=
∫

C
S(p)epr/L dp, (21)
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Figure 3. Path of integration in the complex domain for complex conjugate roots (left)
and real roots (right).

where S(p) is an unknown function of the complex variable p and C a contour to be defined later.
Therefore, introduction of the representation (21) in (20) and taking q = 0 gives

r
L

∫
C
(p4
− ξp2

+ 1)S(p)epr/L dp+
∫

C
(2p3
− ξp)S(p)epr/L dp = 0. (22)

Integration by parts of the first integral in (22) then yields∫
C
(2p3
−ξp)S(p)epr/L dp+

∫
C
(p4
−ξp2

+1)S′(p)epr/L dp− (p4
−ξp2

+1)S(p)epr/L
∣∣p f

pi
= 0, (23)

where prime denotes differentiation with respect to the function argument p. If the contour C is chosen
in such a way that the last term vanishes, then the function S(p) must satisfy the ODE

(2p3
− ξp)S(p)+ (p4

− ξp2
+ 1)S′(p)= 0, (24)

namely,
S′(p)
S(p)

=−
(2p3
− ξp)

(p4− ξp2+ 1)
. (25)

Integration of (25) gives the general expression of the function S(p) as

S(p)= A(p4
− ξp2

+ 1)−1/2, (26)

where A is an arbitrary constant.
The contour C must be chosen in order to satisfy the condition

(p4
− ξp2

+ 1)epr/L
∣∣p f

pi
= 0. (27)

The latter condition is satisfied for p =±α,±β, and for p→−∞, where

α =

√
ξ/2+

√
ξ 2/4− 1, β =

√
ξ/2−

√
ξ 2/4− 1, (28)

and the contour C can be defined as sketched in Figure 3 for complex and real values of the variable p,
respectively, in order to obtain four independent solutions of (20) in the form given by (21). Namely,
the contours Ck (k = 1, 2, 3) are chosen to coincide with the three straight paths joining the points
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−α,−β, β, α of the complex plane, respectively, and the fourth path is defined by C0 = {x − iIm(α) |
−∞≤ x ≤−Re(α)}. Note that the roots (28) are real for ξ ≥ 2, whereas they become complex conjugates
for ξ ≤ 2 (see Figure 3). Therefore, the function w(r) can be assumed in the form

w1(r)=
m+0 L3

D

[
χ

L
+

3∑
k=0

bk

∫
Ck

epr/L

√
p+α

√
p+β

√
p−α

√
p−β

dp
]

for d ≤ r ≤ a. (29)

Equation (29) defines the displacement field within the annular loaded region, whereas the displacement
field within the elastic-plastic annular region not directly loaded (namely for q = 0) is given by

w2(r)=
m+0 L3

D

3∑
k=0

ck

∫
Ck

epr/L

√
p+α

√
p+β

√
p−α

√
p−β

dp for a ≤ r ≤ c. (30)

2.3. Elastic-plastic region 4 lying on the side BC of the yield surface (c ≤ r ≤ b). On the side BC of
the yield locus (Figure 2, left) the bending moment mr attains its negative limit value, namely

mr (r)=−m−0 for c ≤ r ≤ b, (31)

according to the associative flow rule, and thus negative circumferential yield lines occur within the cor-
responding elastic-plastic region 4 in Figure 1, right, where c ≤ r ≤ b. The plastic curvature components
are given by the associative flow rule for the side BC of the yield locus, namely,

k p
r ≤ 0, k p

θ = 0. (32)

Therefore, from (6)2, (7)2 and (32)2 the bending moment per unit length mθ in the present elastic-
plastic region reads

mθ =−νm−0 − D(1− ν2)w′/r. (33)

Then, from (2) and (33) the transverse shear force per unit length follows as

tr =
1− ν

r
[m−0 − D(1+ ν)w′/r ]. (34)

Substitution of (34) in the balance equation (3), also using (9), then yields the governing equation in
terms of displacement for the elastic-plastic region 4 as(

1+ ξ
r2

L2

)
w′′−

(
1− ξ

r2

L2

)
w′

r
−

r2

L4w = 0. (35)

The general solution of the fourth-order linear ODE (35) in closed form is

w4(r)=
m+0 L2

D

√
2/ξ

[
a1 I0

(
(1/ξ)

√
1+ ξr2/L2)

+ a2K0
(
(1/ξ)

√
1+ ξr2/L2)], (36)

where K0 is the modified Bessel function of the second kind of order zero [Abramowitz and Stegun
1972], and a1 and a2 are arbitrary constants.
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2.4. Elastic region 3. The governing differential equation in terms of the transversal displacement w(r)
for the elastic region 3 of the plate under symmetrical bending reads

w′′′′+
2
r
w′′′−

1
r2w

′′
+

1
r3w

′
− a

(
w′′+

1
r
w′
)
+

1−ν2

L4 w = 0, (37)

where a = k2/D = ξ(1− ν2)/L2. It can be shown that, if η = aL2/(2
√

1− ν2)≤ 1, the general solution
of the ODE (37) as r becomes very large reads [Selvadurai 1979]

w3(r)=
m+0 L2

D

{
d1Re[H (1)

0 (βr/L)] + d2Im[H (1)
0 (βr/L)]

}
for r ≥ c, (38)

where H (1)
0 is the Hankel function of the first kind [Abramowitz and Stegun 1972], d1 and d2 are dimen-

sionless real constants and

β = i 4
√

1− ν2
(√
η+

√
η2− 1

)
. (39)

The general solution of the ODE (37) for η > 1 reads

w3(r)=
m+0 L2

D

{
d1Re[Y0(iβ1r/L)] + d2Re[Y0(iβ2r/L)]

}
for r ≥ c, (40)

where

β1 =
4
√

1− ν2
(√
η+

√
η2− 1

)
, β2 =

4
√

1− ν2
(√
η−

√
η2− 1

)
. (41)

It is worth noting that, for ξ = 2/
√

1− ν2, the solution of the elastic region reported in [Lanzoni et al.
2014] is retrieved from (38).

The relationship between the curvature components and the bending moments per unit length is given
by [Timoshenko and Woinowsky-Krieger 1959]

mr =−D(w′′3 + (ν/r)w′3), mθ =−D(w′3/r + νw′′3), (42)

whereas the expression of the shear force tr per unit length reads

tr = D(w′′′3 +w
′′

3/r −w′3/r
2). (43)

3. Boundary conditions

The dimensionless constants a0, d1, d2, b0, b1, b2, b3, c0, c1, c2, c3, a1 and a2 appearing in the expressions
for the displacement in the different regions considered in Section 2 can be evaluated by imposing proper
continuity conditions for the displacement w, rotation φθ , bending moment mr and shear force tr per
unit length across the boundaries between the regions at r = a, c and d, together with the fulfillment of
the yield condition at the inner boundary of the elastic region and the conditions about the occurrence of
a plastic mechanism in the plate at the onset of collapse.

As discussed in [Lanzoni et al. 2014], two different plastic mechanisms may occur in the plate at the
onset of collapse, depending on the amplitude a/L of the loaded region. Continuity of displacement w,
rotation φθ , bending moment mr and shear force tr across the boundary at r = d and r = a must be
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imposed for both plastic mechanisms as

w0(d)= w1(d), w′0(d)= w
′

1(d), D(1+ ν)w′′1(d)=−m+0 , w′′′1 (d)= 0, (44)

w1(a)= w2(a), w′1(a)= w
′

2(a), w′′1(a)= w
′′

2(a), w′′′1 (a)= w
′′′

2 (a), (45)

where expressions (8), (18) and (19) have been used. One kind of plastic mechanism takes place with
b < c (see Figure 1, left). In this case, continuity across the boundaries at r = c requires the further four
conditions

w2(c)= w3(c), w′2(c)= w
′

3(c),

νm+0
D
− (1− ν2)w′′2(c)=−w

′′

3(c)−
ν

c
w′3(c),

(1− ν)
m+0
D
+ (1− ν2)[w′′2(c)+ cw′′′2 (c)] = cw′′′3 (c)+w

′′

3(c)−
1
c
w′3(c),

(46)

where (8), (18), (19), (42)1 and (43) have been used. Making use of (42)2, accomplishment of the yield
condition as r approaches c from the outer elastic region requires

νw′′3(c)+
1
c
w′3(c)=−

m+0
D
. (47)

Moreover, the negative circumferential yield line must take place within the elastic-plastic region, i.e.,
at r = b, where d ≤ b ≤ c. In this case, the onset of collapse occurs when the bending moment mr within
the elastic-plastic region attains a minimum value equal to the ultimate negative bending moment right
at r = b, i.e.,

D(1− ν2)w′′2(b)= (ν+µ)m
+

0 , w′′′2 (b)= 0, (48)

for b ≤ c, where
µ= m−0 /m+0 (49)

is the ratio between negative and positive yield moments.
Conditions (44)–(48) yield a system of 15 equations, which are linear in the 12 constants a0, b0, b1,

b2, b3, c0, c1, c2, c3, d1, d2 and χ . Once 12 such quantities are found in terms of the radii b, c and d,
the last three equations can be solved numerically in order to obtain the remaining unknowns b, c and d .
Finally, the collapse load P of the plate follows from (15) as

P = πa2χk1m+0 L2/D. (50)

The other possible scenario of plastic collapse occurs for b > c, namely when the negative circum-
ferential yield line first appears within the elastic region (see Figure 1, right). In this case, the collapse
load can be found by imposing the continuity conditions between the inner elastic-plastic region 2 and
the annular elastic-plastic region 4 at r = c, where

w2(c)= w4(c), w′2(c)= w
′

4(c),

D(1− ν2)w′′2(c)= m−0 + νm+0 ,

D(1− ν2)
[
cw′′′2 (c)+

1
c
w′4(c)

]
+ (m+0 + νm−0 )= 0,

(51)
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Figure 4. Radial variation of the dimensionless plate deflection for µ= 1, varying the
parameter ξ of the soil, for a/L = 0.1 (left) and a/L = 2 (right).

as well as between the annular elastic-plastic region 4 and the outer elastic region 3 at r = b, where

w3(b)= w4(b), w′3(b)= w
′

4(b),

D
[
w′′3(b)+

ν

b
w′3(b)

]
= m−0 ,

D
[
w′′′3 (b)+

1
b
w′′3(b)−

1
b2w

′

3(b)
]
=

1−ν
b

[
m−0 −

1
b

D(1+ ν)w′4(b)
]
.

(52)

By using (52)2, (42)2 and (33), Equation (52)3 implies continuity of the bending moment mθ (and
vice versa) across the boundary at r = b. Condition (52)4 also implies the stationarity of the bending
moment mr within the elastic region at r = b.

Continuity of the bending moment mθ across the boundary at r = c must be imposed by using (33),
thus giving

m+0 + νm−0 + D(1− ν2)
w′4(c)

c
= 0. (53)

The substitution of the functions wk(r) (k = 0, 1, 2, 3, 4) introduced in Section 2 and their derivatives
in conditions (44), (45), (51), (52) and (53) yield a system of 17 equations, which are linear in the 14
constants a0, a1, a2, b0, b1, b2, b3, c0, c1, c2, c3, d1, d2 and χ . Once such constants are found in terms of
the radii b, c and d, the numerical solution of the last three equations provides the values of b, c and d.
Finally, the collapse load P of the plate can be calculated by using (50).

4. Results

In the following, the radial variation of transverse displacement, slope, bending moments, shear force
and reactive soil pressure at the onset of plastic collapse are reported and discussed. For the sake of defi-
niteness, we assumed ν = 0.15. The radial variation of the transverse deflection of the plate wD/m+0 L2

for different values of the subgrade parameter ξ has been reported in Figure 4 for a/L = 0.1 and 2. Note
that, if the Winkler modulus k1 and the flexural rigidity of the plate D are kept constant, the variation of
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Figure 5. Radial variation of the dimensionless rotation of the plate cross-section for
µ= 1, varying the parameter ξ of the soil, for a/L = 0.1 (left) and a/L = 2 (right).

the parameter coincides with the variation of the Pasternak modulus k2, where ξ = k2/(k1L2), according
to (9) and (10). As shown in Figure 4, left, for small sizes of the loaded region, the plate deflection under
the loaded region monotonically decreases as ξ increases, whereas an opposite trend is observed for large
sizes of the loaded region, as depicted in Figure 4, right. This effect is due to the fact that the reaction
of the Pasternak foundation also depends on the first and second derivatives of the transverse deflection.
In particular, the variation of the slope and, in turn, the second derivative of the displacement, assumes
negative values in the inner region of the plate, and decreases going outward from the loaded region,
as shown in Figure 5. Thus, in the inner region of the plate, the reactive soil pressure is compressive
and very high for small sizes of the loaded region (see also Figure 9). Moreover, for large sizes of the
loaded region, the slope displays a rapid variation out of the loaded area (from Figure 5, right, plotted for
a/L = 2, it occurs approximately for r/L = 3). It follows that, in the neighborhood of this region, the
second derivative becomes positive and, thus, the soil reaction tends to become tensile due to the second
term in (1). Consequently, as the parameters k2 and ξ increase while keeping constant the Winkler
modulus k1, the soil reaction becomes tensile out of the loaded region for large values of a/L , thus
producing an increase in the transverse deflection of the plate, as shown in Figure 4, right. This effect
does not occur for small values of a/L . In this case, an increase in the parameter ξ corresponds to a
decrease of the displacement of the system, as revealed by Figure 4, left.

The radial variation of the slope φθ is shown in Figure 5 for a/L = 0.1, 2. The magnitude of the
slope decreases under the loaded region as the Pasternak modulus k2 and the parameter ξ become larger,
whereas an opposite trend is observed out of the loaded region for large sizes of the loaded region
(Figure 5, right). Note also that the function φθ (r) is continuous, as required by the boundary conditions,
but not monotonic, since its magnitude exhibits a maximum near the border of the loaded region.

The radial variations of bending moments mr (r) and mθ (r) along the radial direction are plotted in
dimensionless form in Figures 6 and 7 for different values of the parameter ξ . As shown in Figure 7,
the circumferential bending moment mθ (r) attains the positive yield limit m+0 within a circular region
whose radius c increases with the size a of the loaded region and decreases as the parameter ξ becomes
larger. Radial yield lines occur within this region.
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Figure 6. Radial variation of the dimensionless radial bending moment for µ= 1, vary-
ing the parameter ξ of the soil, for a/L = 0.1 (left) and a/L = 2 (right).

For small sizes of the loaded area, the radial bending moment mr (r) displays a positive peak just at
the center of the loaded area where the positive yield moment m+0 is attained (Figure 6, left) and then
decreases outwards till the negative yield moment m−0 is reached at r = b, where a negative circumferen-
tial yield line develops within region 2 and triggers the collapse mechanism within the plate. It is worth
noting that the radius b of the negative circumferential yield line becomes smaller as the parameter ξ
increases (Figure 6, left). For large sizes of the loaded area a, a circular region where both radial and
circumferential bending moments attain the positive yield limit appears and extends outwards (Figure 6,
right) as the size of the loaded region is increased. Both radial and circumferential yield lines take place
within this region 0 of radius d. The amplitude of this fully yielded region at the onset of collapse
increases with ξ , as shown in Figure 6, right. Out of this region, the radial bending moment mr (r)
decreases and becomes negative. The negative yield moment m−0 is then reached within an annular
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region, whose width increases with the load until it joins together with the inner radially yielded region,
thus creating a plastic mechanism within the plate.

The bending moments within the outer elastic region decrease until they vanish at a large distance
from the loaded area. For small sizes of the loaded area, the rate of decrease is faster for large values of
the Pasternak modulus, i.e., of the parameter ξ , whereas for large sizes of the loaded area an opposite
trend is observed.

The radial variations of shear force are plotted in Figure 8 in dimensionless form. These variations
show a peak near the border of the loaded area, whose magnitude increases with the Pasternak modulus k2.
This behavior is expected since a stiffer foundation requires a larger applied load in order to achieve a
plastic mechanism, thus producing an increase in the maximum shear force.
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Figure 10. Top left: dimensionless ultimate load and dimensionless loci. Top right: x/L .
Bottom left: y/L . Bottom right: d/L versus the parameter ξ of the soil for different
values of the amplitude a of the loaded region, for µ= 0.5, 1.

An interesting trend is observed for the curves of the reacting pressure, depicted in Figure 9. As the
Pasternak modulus increases, the reactive soil pressure increases under the loaded region and decreases
outside that region. In particular, Figure 9, right, highlights an increase of the peak of the soil pressure
near the edge of region 0 for low values of the parameter ξ . This is due to the fact that the reacting
pressure of the Pasternak soil depends on the Laplacian of the transverse deflection, namely on the slope
and curvature. The latter exhibits a rapid variation at the border of region 0, as proved by the corner
in the curves of Figure 5, right, and by the drop of the bending moment mr from m+0 to m−0 shown in
Figure 6, right.

Figure 10, top left, displays the dimensionless ultimate load versus ξ for some values of the amplitude
a/L of the loaded region, both for µ = 1 and 0.5. As expected, the ultimate carrying capacity of the
system increases with the soil stiffness for every value of the ratio a/L , as confirmed by the monotonic
trend of the curves plotted in Figure 10, top left. If the parameters m+0 , a/L and ξ are kept constant,
the collapse load obviously decreases as µ decreases and thus m−0 is reduced. Indeed, a decrease in
µ implies a reduction of the negative yield moment m−0 , thus allowing the activation of the collapse
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mechanism at a lower level of the external load. The variations of the ratios c/L , b/L and d/L versus ξ
are plotted in Figure 10 (top right, bottom left, bottom right, respectively). In particular, the dimensionless
radius c/L monotonically decreases as the stiffness parameter ξ increases, whereas the variation of the
radius b/Lwith ξ is not monotonic, as shown in Figure 10, top right and bottom left. These figures show
also that the border of the elastic-plastic region (i.e., the radius c or b of the plastic mechanism for b< c or
c < b, respectively) displays a nonmonotonic trend for large values of a/L , whereas for moderate values
of a/L the amplitude of the elastic-plastic zone monotonically decreases as the parameter ξ increases.
Note that, for a/L = 1, the collapse mechanism for b > c takes place for small values of the parameter
ξ (approximately, until ξ ≤ 1.5). Increasing ξ , the collapse mechanism occurs for c > b. The parameter
µ significantly affects the size of the elastic-plastic region, mainly for large sizes of the loaded region,
as shown by Figure 10, bottom left. Moreover, if the parameter ξ is kept constant, an increase in the
parameter µ produces a decrease (increase) of the size of the elastic-plastic region for large (small) values
of the amplitude of the loaded region a/L . From Figure 10, bottom right, it can be recognized that the
radius d increases monotonically with ξ . Note that the influence of the parameter µ on c and d is lower
than that found for radius b.

Finally, the variation of the ultimate load and ratios c/L , b/L , d/L versus µ are plotted in Figure 11
for a/L = 0.5 and for some values of the parameter µ. Figure 11, top left, shows that the ultimate load
increases monotonically both with ξ and µ, as expected from an increase in the soil stiffness and negative
yield moment. Figure 10, top right, shows that the radius c of the circumferential yield line becomes
smaller as µ becomes vanishing small, and its variation with the parameter µ is monotonic. Conversely,
the radius b of the circumferential yield line monotonically decreases as µ increases (Figure 11, bottom
left). Moreover, the analysis shows that there exists a specific value of µ that minimizes the amplitude of
the elastic-plastic region of the plate depending on the value of ξ . For a/L = 0.5, this occurs for values
of µ≤ 1 regardless of the value of the soil stiffness ξ . However, the influence of the parameter ξ on the
radii c and b is limited. As expected, the amplitude d of the fully yielded region 0 increases both with
µ and ξ , as confirmed by Figure 11, bottom right.

5. Experiments and possible applications

The model proposed here can be reliably used to predict the mechanical behavior of ductile elements
(e.g., FRC slabs, metallic sheets, etc.) bonded to an elastic support under axisymmetric load distributions.
For an example, it may be used to assess the failure mechanism of plastic or rubbery sheets covered by
metallic thin films. This kind of composites finds important applications for many industrial purposes.
For instance, plastic sheets coated by an aluminium film are widely used in the pharmaceutical, food and
cosmetic industries to achieve hygienic packaging.

For example, Figure 12 shows a ductile polycarbonate sheet supported by a 6 mm thick sheet of rubber
and coated by an Al thin film. The polycarbonate sheet is 5 mm thick, whereas the Al film thickness
equals 50µm. A load distribution has been imparted to the sample by means of a hydraulic cylinder
mounted into a suitable metallic frame. The Al film allows the identification of the occurrence of the
yield lines. Indeed, in the neighboring of the negative circumferential yield line, a detachment of the Al
film occurs, thus producing small wrinkles, as shown in Figure 12, top right. In the proximity of positive
radial yield lines, radial cracks within the Al film can also be detected (see Figure 13). These findings
thus confirm the plastic mechanisms investigated in the present work.
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Figure 12. Load test on a polycarbonate sheet supported by an elastic support. 

Figure 12. Load test on a polycarbonate sheet supported by an elastic support.
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Figure 13. Circumferential and radial yields lines arised in the polycarbonate sheet. 

Figure 13. Circumferential and radial yield lines in the polycarbonate sheet.

6. Conclusions

In this paper, the analysis of an infinite elastic-plastic Kirchhoff plate supported by an elastic two-
parameter subgrade has been performed for an arbitrary value of the Pasternak modulus. The elastic-
plastic behavior of the plate is assumed to follow Johansen’s yield criterion with associative flow rule.
A bilateral contact between the paper and the underlying subgrade is assumed, leading to reactive soil
pressure which can be compressive as well as tensile.

The analysis shows that the Pasternak modulus k2 significantly affects through ξ both the load-carrying
capacity of the plate and the size of the elastic-plastic regions at the onset of collapse. However, the
effects induced by a variation in the Pasternak modulus are different for small or large amplitudes of the
loaded region. For instance, the load-carrying capacity significantly increases as the Pasternak modulus
k2 increases for large sizes a/L of the loaded region, whereas the increase in the load-carrying capacity
is rather moderate for small values of a/L . Furthermore, an increase in the stiffness of the subgrade in
terms of the Pasternak modulus produces a monotonic decrease of the elastic-plastic region of the plate if
the loaded region is small, whereas this trend is not monotonic for large amplitudes of the loaded region.

The size of the loaded region a/L affects the mechanical response of the system also. For large
values of the parameter a/L , an increase in the stiffness parameter ξ produces indeed an increase of the
transverse deflection of the plate; conversely, for moderate values of the parameter a/L , an increase of the
parameter ξ generates a decrease of the transverse plate deflection. Furthermore, keeping the stiffness of
the foundation (i.e., both moduli k1 and k2) constant, as the size of the load region a/L increases, the load-
carrying capacity of the system increases, as does the amplitude of the elastic-plastic region of the plate.

The effects produced by the ratio µ between negative and positive yield moments have been investi-
gated also. It is found that, as µ increases, the load-carrying capacity and the radius d of the fully yielded
region 0 monotonically increase. It is worth noting that the parameter µ has a pronounced influence on
the load-carrying capacity and amplitude of the annular elastic-plastic regions, but it has almost no effect
on the amplitude of the fully plastic inner region 0 of the plate.

As suggested in Section 5, the model can be applied to assess the mechanical behavior of a plate-like
element supported by an elastic medium, providing a prediction of both the load-carrying capacity and
plastic mechanism taking place in the elastic-plastic plate.
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With the aim of investigating the dynamic behavior of elastic-plastic plates supported by a nonlocal
ground, the proposed model can be extended by taking into account also the inertial terms in the equilib-
rium equations, as in the recent study concerning the dynamical behavior of beams on elastic foundations
performed by Piccolroaz and Movchan [2014].
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CONTOURS FOR PLANAR CRACKS GROWING IN THREE DIMENSIONS:
ILLUSTRATION FOR TRANSVERSELY ISOTROPIC SOLID

LOUIS MILTON BROCK

Three-dimensional dynamic steady state growth of a semi-infinite plane crack in a transversely isotropic
solid is considered. Growth takes place on a principal plane with the material symmetry axis as one tan-
gent. Fracture is brittle, and driven by compressive loads that translate on the crack surfaces. Translation
speed is constant and subcritical, but direction with respect to the principal axes is arbitrary. An analytical
solution is obtained, and examined in light of the dynamic energy release rate criterion for the case of
a translating compressive point force. Introduction of quasipolar coordinates leads to a nonlinear first-
order differential equation for the distance between force and crack edge. The equation depicts a crack
edge that tends to the rectilinear away from the force. An analytical expression for the distance measured
parallel to translation direction indicates a marked deviation from the rectilinear near the point force.

Introduction

A major goal of fracture mechanics is the determination of crack edge location. In 2D dynamic fracture,
this requires an equation of motion for the crack tip [Freund 1990]. In a 3D study, such an equation must
describe the crack contour. This goal has been achieved for semi-infinite crack growth in an unbounded
isotropic solid [Brock 2015]. This paper extends the analysis to an unbounded transversely isotropic
solid. For simplicity, the crack remains in its original plane, which is a principal plane. Moreover, crack
growth is caused by compression loads on the crack surface that translate at constant subcritical speed
in a fixed direction, and achieves a dynamic steady state.

Two-dimensional dynamic analyses of transversely isotropic half-spaces in which the material sym-
metry axis coincides with the surface normal essentially correspond to those for the isotropic case, e.g.,
[Scott and Miklowitz 1967]. As seen in sliding contact analysis [Brock 2013], elastic properties as-
sociated with principal planes other than that on the surface do influence 3D results but the solution
forms resemble those for the isotropic case. When the surface normal is not the material symmetry axis,
however, 3D solution forms are quite distinctive. Therefore, to enhance the effect of anisotropy, (a) the
principal plane in this 3D illustration includes the axis of material symmetry, and (b) the fixed direction
is arbitrary with respect to this axis.

Two-dimensional analyses of fracture for the general anisotropic solid in the dynamic steady state exist,
of course. Indeed, the semi-infinite interface crack has been examined by Willis [1971]. Principal axes
define both in-plane coordinates and interface, and the crack edge exhibits the well-known oscillatory
behavior. Nevertheless, as in [Brock 2015] and the present study, a formula for crack extension based
on dynamic energy release rate is developed.

Keywords: 3D, dynamic, criteria, analytic solution, crack contour, transverse isotropy, energy release.
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Analysis begins by considering the unmixed boundary value problem for a discontinuity in displace-
ment imposed over a semi-infinite plane area AC contained in an unbounded solid. This is of course
a dislocation problem and is a standard [Willis 1971; Barber 1992] first step in fracture analysis. For
efficiency in application to the title problem, this study considers a discontinuity that vanishes along area
boundary BC , vanishes at infinite distances from it, and translates with AC at constant subcritical speed V
in a fixed direction. A dynamic steady state ensues and allows use of a translating Cartesian basis. The
transform solution is generated, but a quasipolar coordinate system is introduced in the inversion process.
Expressions for normal traction on the plane of AC lead to a classical singular integral equation for the
displacement discontinuity produced were AC a crack subject to a prescribed surface load. Imposition
of a fracture criterion leads to a nonlinear first-order differential equation for the distance from a given
point in AC to any point on (now) crack edge BC .

Displacement discontinuity growth — governing equations

Consider an unbounded, transversely isotropic and linearly elastic solid. Cartesian basis x = x(xk)

defines the principal material axes. The semi-infinite planar region AC (x3 = 0, xV < 0) with rectilinear
boundary BC (xV = 0) is subject to discontinuity

[u(uk)] = U(Uk). (1)

Here k = (1, 2, 3), [ ] signifies a jump as travel from x3 = 0− to x3 = 0+ occurs, u is the displace-
ment field and discontinuity components Uk =Uk(x1, x2). The x2-direction defines the axis of material
symmetry, and

xV = x1 cos θ + x2 sin θ, |θ |< π
2 . (2a)

The region translates in the positive xV -direction at constant subcritical speed V . A dynamic steady state
is achieved by (U, AC), and boundary BC may no longer be rectilinear. Displacement u(uk) and traction
T (σik) do not vary in the moving frame of AC . Basis x is therefore translated with AC so that uk = uk(x),
Uk =Uk(x1, x2), σik = σik(x), and the time derivative can be written

−V ∂V , ∂V = ∂1 cos θ + ∂2 sin θ. (2b)

Here ∂k signifies xk-differentiation. For convenience, x = 0 is located in the region of discontinuity,
so that function =(x1, x2) = 0,

√

x2
1 + x2

2 6= 0 defines contour BC and the region can be defined as
(x1, x2) ∈ AC . Both = and its gradient ∇= are continuous, and any line passing through x = 0 in the
x1x2-plane can cross BC only once. For x3 6= 0, governing equations for u(xk) can be written as [Brock
2013]

∇ · T = C44V 2∂2
V u, (3a)σ11

σ22

σ33

=
C11 C12 C13

C12 C22 C12

C13 C12 C11

∂1u1

∂2u2

∂3u3

 , (3b)

σ2k = C44(∂2uk + ∂ku2) for k = 1, 3, and σ31 = C55(∂3u1+ ∂1u3). (3c)
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Here (C11,C22,C12,C13,C44,C55) are the elastic constants, and C13 = C11 − 2C55 [Jones 1999]. As
reference quantities, we adopt shear modulus and shear wave speed

µ= C44, VS =
√

C44/ρ. (4a)

Here ρ is mass density, and (4a) gives the dimensionless terms

c =
V
VS
, d1 =

C11

C44
, d2 =

C22

C44
, d5 =

C55

C44
, d12 =

C12

C44
, d13 =

C13

C44
= d1− 2d5. (4b)

In light of (1), conditions for x3 = 0 are

[uk] =Uk for (x1, x2) ∈ AC , [uk] = 0 for (x1, x2) /∈ AC , (5a)

[σ3k] = 0. (5b)

Components Uk are not specified, but must be finite and continuous for (x1, x2) ∈ AC . Therefore Uk = 0
for =(x1, x2)= 0, and (u, T ) should remain finite for |x| →∞, x3 6= 0.

General transform solution

A double bilateral transform [Sneddon 1972] can be defined as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1 dx2. (6)

Integration is along the entire Re(x1)- and Re(x2)-axes. Application of (6) to (3) gives

û = û5+ û++ û−, (7a)

û5 = U (±)
5 exp(−B5|x3|), û± = U (±)

± exp(−A±|x3|). (7b)

In (7b) superscript (±) signifies x3 ≥ 0 and x3 ≤ 0, respectively, and

(U5)
(±)
1 = (±)B5V (±)

5 , (U5)
±

2 = 0, (U5)
(±)
3 = p1V (±)

5 , (8a)

(U±)
(±)
1 =−(1+ d12)p1 p2V (±)

± , (U2)
(±)
2 = d1(A2

±
+01)V

(±)
± , (8b)

(U±)
(±)
3 = (±)(1+ d12)p2 A±V (±)

± . (8c)

Here (V (±)
5 , V (±)

± ) are arbitrary functions of (p1, p2) and

B5 =
√
−p2

1 −00/d5, T5 = d5(p2
1 − B2

5 ), (9a)

00 = p2
2 − c2 p2

V , pV = p1 cos θ + p2 sin θ, (9b)

A± =
√
−p2

1 −0±/d1, 0± =
1
2

(
M ±

√
M2− 4d10200

)
, (9c)

M = d102+00− (1+ d12)
2 p2

2, 01 = p2
1 +00/d1, 02 = d2 p2

2 − c2 p2
V . (9d)

For bounded behavior as |x3| → ∞, (7b) requires that Re(B5, A±) ≥ 0 in the cut complex (p1, p2)-
planes. Application of (6) to (3b), (3c) and (5) and substitution of (8) and (9) gives equations for
(V (±)

5 , V (±)
+ , V (±)

− ) in terms of transforms Ûk . The solutions are then used to generate expression (A.1)
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for (σ̂33, σ̂31, σ̂32) in plane x3 = 0. That the x3-direction does not correspond to the material symmetry
axis is clear from the different forms for (A.1b) and (A.1c).

Transform inversion — general formulas

In (5), inhomogeneous terms (U1,U2,U3) arise only for (x1, x2) ∈ AC . In light of (A.1), therefore,
the inversion operation corresponding to (6) gives (σ33, σ31, σ32) for x3 = 0 as linear combinations of
expressions ∫∫

Uk dξ1 dξ2
1

2π i

∫
dp1

1
2π i

∫
Pk dp2 exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (10)

Here Uk =Uk(ξ1, ξ2) and Pk = Pk(p1, p2) is the corresponding coefficient. Double integration is over AC ,
and single integration is over the entire Im(p1)- and Im(p2)-axes. After [Brock 2013; 2015], transfor-
mations are introduced:

p1 = p cosψ, p2 = p sinψ, (11a)[
x
y

]
=

[
cosψsinψ
− sinψcosψ

] [
x1

x2

]
,

[
ξ

η

]
=

[
cosψsinψ
− sinψcosψ

] [
ξ1

ξ2

]
. (11b)

In (11a) and (11b), Re(p)= 0+, |Im(p), x, y, ξ, η|<∞ and |ψ−θ |< π
2 . Parameters (p, ψ), (x, ψ; y=

0) and (ξ, ψ; η = 0) resemble quasipolar coordinate systems, i.e.,

dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (11c)

Use of (11) in (9) give

00 = p2C0, 01 = p2C1, 02 = p2C2, T5 = p2T5, (12a)

0± = p2C±, M = p2 M, (12b)

A± = A±
√

p
√
−p, B5 = B5

√
p
√
−p. (12c)

Equation (12) is based on parameters that depend on (c, ψ, θ):

C0 = sin2 ψ − c2
V , C1 = cos2 ψ +C0/d1, C2 = d2 sin2 ψ − c2

V , (13a)

T5 = 2d5 cos2 ψ +C0, cV = c cos(ψ − θ), (13b)

M = d1C2+C0− (1+ d12)
2 sin2 ψ, C± = 1

2

(
M ±

√
M2− 4d1C2C0

)
, (13c)

B5 =
√

cos2 ψ +C0/d5, A± =
√

cos2 ψ +C±/d1. (13d)

If Re(B5, A±) ≥ 0, terms in (7) are bounded when branches Im(p) = 0, Re(p) < 0 and Im(p) = 0,
Re(p) > 0 are introduced for

√
±p, respectively, such that Re(

√
±p) > 0 in the cut p-plane. Behavior

of (B5, A±) therefore helps to define allowable speed for a particular solid.

Transform inversion — transversely isotropic solid, allowable speed

In view of [Payton 1983] and (4b), transversely isotropic solids can be categorized as follows, where we
define γ = 1+ d1d2− (1+ d12)

2:
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θ 0◦ 30◦ 45◦ 60◦ 90◦

c+(θ) 2.0564 1.9502 1.8149 1.6673 1.2762
c−(θ) 1.0 0.8805 0.7967 0.7061 1.0
c5(θ) 1.2823 1.2178 1.1498 1.0775 1.0

Table 1. Dimensionless speeds for xV -direction in x1x2-principal plane (zinc).

I:


2
√

d1d2 ≤ γ ≤ 1+ d1d2 for 1< d1 < d2,

d1+ d2 ≤ γ ≤ 1+ d1d2 for 1< d2 < d1,

2d ≤ γ ≤ 1+ d2 for 1< d1 = d2 = d;

II: 1+ d1 < γ < d1+ d2 for γ 2
− 4d1d2 < 0;

III: γ < 1+ d1 for γ 2
− 4d1d2 < 0.

For |ψ−θ |<π/2 and M2
−4d1C2C0≥ 0 Equations (13c) and (13d) hold, and A± is real and nonnegative.

For M2
− 4d1C2C0 ≤ 0 however, the complex conjugates arise:

A± =�C ± i�S, (14a)

�C =
1
√

2

√
A2
9 + cos2 ψ +M/2d1 ≥ 0, �S =

1
√

2

√
A2
9 − cos2 ψ −M/2d1 ≥ 0, (14b)

A9 =
[
cos4 ψ + (M cos2 ψ +C2C0)/d1

]1/4
, (14c)

A++ A− = 2�C , A+A− = A2
9 . (14d)

For |ψ − θ |< π
2 , cV < c so that allowable speed for a given translation direction is defined by branch

points of (A±, B5) on the positive Re(c)-axis for
(
ψ = θ, |θ |< π

2

)
:

c±(θ)=
√

D2±
√

D2
2 − D4, c5(θ)=

√
d5 cos2 θ + sin2 θ, (15a)

D2 =
1
2

(
1+ d1 cos2 θ + d2 sin2 θ

)
, (15b)

D4 = d1 cos4 θ + d2 sin4 θ + γ sin2 θ cos2 θ. (15c)

As an illustration, consider materials [Payton 1979]

III (zinc): d1 = 4.2286, d2 = 1.6286, d5 = 1.6442, d12 = 1.3195, d13 = 0.9403.

I (beryl): d1 = 4.11, d2 = 3.62, d5 = 2.0, d12 = 1.017, d13 = 1.055.

Calculations of (15a) are presented in Tables 1 and 2 for values of θ . Table 1 for zinc demonstrates
that c+(θ) > c5(θ)≥ c−(θ). Table 2, however, shows that the relation between c5(θ) and c−(θ) is itself
θ-dependent. Although these are examples, the present study will focus on category III materials and,
in particular, those which, like zinc, restrict speed for translation direction |θ −ψ | < π

2 to the range
0< c < c−(θ).

In view of this, and conditions on contour function =, (10) assumes the form

1
iπ

∫
9

Pk dψ
∫

N
dη

∂

∂x

∫
X

dξ
∂Uk

∂ξ
(ξ, η)

1
2π i

∫
|p|
p

√
−p
√

p
dp exp(p(x − ξ)). (16)
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θ 0◦ 30◦ 45◦ 60◦ 90◦

c+(θ) 2.0278 1.9428 1.857 1.8514 1.9026
c−(θ) 1.0 1.1326 1.1902 1.1469 1.0
c5(θ)

√
2 1.3229 1.2247 1.118 1.0

Table 2. Dimensionless speeds for xV -direction in x1x2-principal plane (beryl).

Symbols (N , X, 9) signify integration over ranges |ψ − θ | < π
2 , N− < η < N+ and X− < ξ < X+,

respectively. In light of (A.1), (13d) and (14d), term Pk = Pk(ψ, θ) is real-valued. The p-integration is
along the positive side of the entire imaginary axis, and can be performed by use of Appendix B. Then,
because Uk vanishes continuously on C , (16) gives

1
π

∫
9

Pk dψ
∂

∂x

∫
N

dη
1
π

∫
X

∂Uk

∂ξ
(ξ, η)

dξ
ξ − x

. (17)

Limits N±(ψ) in (17) are defined by

=(ξ1(ξ, N±), ξ2(ξ, N±))= 0,
d N±

dξ
= 0. (18)

That is, for given ψ , limits N± are the maximum and minimum values of η on BC , and for given η, limits
X±(ψ, η) locate the ends of lines that run parallel to the ξ -axis and that span AC . Conditions on BC

imply that these limits exist, are single-valued, and vary continuously in ψ . Figure 1 gives a generic
sketch for AC and it is seen that, for semi-infinite AC , N±(ψ)→±∞ and |X−(ψ, η)| →∞ for certain
ranges of ψ .

In light of (7)–(12), traction in AC itself, i.e., x3 = 0, (x1, x2) ∈ AC , is

σ3k =−
1
π

∫
9

dψ
∫

N
dη

∂

∂x

∫
X

dξδ(ξ, η)σ3k(x1(ξ, η), x2(ξ, η)). (19)

V
x
V

2

ξ = − x_(ψ)

ξ = X  (ψ,η)

η = N  (ψ)

η

ψ

+

ξ

1
ξ

ξ

θ

+

η = N  (ψ)−
Bc

Ac

ξ = X  (ψ,η)

ξ = x (ψ,η)+

(ξ (ξ ,η) , ξ (ξ ,η)) = 0
1 2

−

Figure 1. Schematic of area AC and contour BC .
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In (19), δ is the Dirac function. Therefore, expressions for traction in AC can be obtained by matching
the integrands of (ψ, η)-integration in (19) with combinations of those in (17). Moreover, ξ in (17)
and (19) is an integration variable representing parameter x that itself depends on (x1, x2) and ψ . As
noted in connection with (11), coordinates (x1, x2) can be replaced by (x, ψ) for y = 0. Thus, every
point (x1, x2)∈ AC lies on an integration path η= 0 that passes through both limit points of the ξ -integral.
Results of matching (17) and (19) give, therefore, expression (C.3).

Related crack growth problem: Basic results

Region AC is now a semi-infinite crack, i.e., translation speed V is the crack growth speed, and =(x1, x2)=

0 is such that BC in Figure 1 is an arc of infinite length. The two crack surfaces are subjected to equal
compressive stress σ32 = σ31 = 0, σ33 = −σ

C
33, where, for (x1, x2) ∈ AC , σC

33 is nonnegative, finite,
piecewise continuous and

σC
33 ≈ O((x2

1 + x2
2)
−χ ),

√
x2

1 + x2
2 →∞ for χ > 1. (20)

Coupled singular integral equations for the x-derivatives of (U1,U2,U3) are provided by (C.3), with
(σ32, σ31)= 0 and σ33 =−σ

C
3k . Solution gives the derivatives and the functions themselves. If σC

33-values
are largest near (x1, x2)= 0, it is reasonable to assume that any curvature of crack edge BC will produce
an essentially concave profile with respect to this point. In view of the original conditions on BC then,
(U1,U2)= 0 and two cases arise for U3. Case X+ = x+(ψ) > 0, X− =−x−(ψ) gives

∂U3

∂x
=

1
√

x+− x
√

x + x−

(vp)
π

∫
X

g3 dξ
ξ − x

√
x+− ξ

√
ξ + x−, (21a)

U3 =
1
π

∫
X

g3 dξ ln
∣∣∣∣√x+− x

√
ξ + x−−

√
x + x−

√
x+− ξ

√
x+− x

√
ξ + x−+

√
x + x−

√
x+− ξ

∣∣∣∣, (21b)

g3 =−
2C0

µG3
σC

33. (21c)

Continuity of BC requires x±
(
π
2 − θ

)
= x∓

(
−
π
2 − θ

)
. For X+ = x+(ψ), X−→−∞,

∂U3

∂x
=

1
√

x+− x
(vp)
π

∫
X

g3 dξ
ξ − x

√
x+− ξ, (22a)

U3 =
1
π

∫
X

g3 dξ ln
∣∣∣∣√x+− ξ −

√
x+− x

√
x+− ξ +

√
x+− x

∣∣∣∣. (22b)

Continuity of BC now requires that x+
(
θ± π

2

)
→∞. Equations (21b) and (22b), as is appropriate, vanish

continuously on BC . Substitution of (21a) and (22a) into (17) and performing the ξ -integration for x /∈ X
leads to, respectively, expressions for traction on plane x3 = 0, (x, ψ) /∈ AC :

σ33 =
1

π
√

x+− x
√

x−+ x

∫
X

σC
33 dξ
ξ − x

√
x+− ξ

√
ξ + x−, (23a)

σ33 =
1

π
√

x+− x

∫
X

σC
33 dξ
ξ − x

√
x+− ξ . (23b)
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Critical speed: Illustration

Restriction 0 < c < c−(θ) guarantees a bounded solution. In addition, (21b) and (22b) define crack
surface separation, which should be nonnegative. Thus term C0/G3 in (21c) should be negative and
finite. The same condition arises in the isotropic limit

d1 = d2 = d, d4 = d5 = 1, d12 = d13 = d − 2, d = 2
1− ν
1− 2ν

.

Here v is Poisson’s ratio, and it can be shown that

c+(θ)=
√

d, c−(θ)= c5(θ)= 1, (24a)

A+ = A =
√

1− c2
V /d, A− = B5 = B =

√
1− c2

V , (24b)

G3/C0 =−R/c2
V A, R = 4AB− (1+ B2)2. (24c)

In (24c), R→ 0+ (cV → 0) and R =−1 (cV → 1), which implies that R = 0 (cV V = cR, 0< cR < 1).
Thus, R is a Rayleigh function, VR is the Rayleigh speed, and crack growth rate is restricted by 0< c< cR .

The situation is more complicated for the transversely isotropic solid: for ψ = θ = 0, G3/C0 is
negative for c < c− and vanishes when

4A1 A5− (1+ A2
5)

2
= 0, (25a)

A1 =
√

1− c2/d1, A5 =
√

1− c2/d5. (25b)

For the category III solid, in particular, G3/C0 vanishes for ψ = θ = π
2 when[

1+ (1+ d12)
2
−

√
d1d2 A2 B

]
B2
+

√
d1d2

(
1−

√
d1d2 B2)A2

2 = 0, (26a)

A2 =
√

1− c2/d2, B =
√

1− c2. (26b)

Calculations for zinc give the roots of (25a) and (26a) as cR ≈ 1.16 and cR ≈ 0.26, respectively. However,
Table 1 shows that the first root exceeds c−(0). A similar result arose for sliding contact [Brock 2013].
That is, G3/C0 plays the role of a Rayleigh function (cf. (25a) and (24c)) but its roots cR may not give
the minimum critical speed.

Brittle fracture parameter: Energy release (rate)

After [Griffith 1921] crack growth occurs when the rate of dynamic energy release matches that of
potential energy decrease. For the 2D brittle crack, this criterion equates the rate per unit length (of
crack edge) of energy release and negative of power per unit length generated in the crack plane [Willis
1971; Achenbach 1973; Freund 1990]. Here, total release rate Ḋ3 and total power are considered. Affixed
subscript “3” signifies the possibility that release rate in an anisotropic material depends on orientation
of the fracture surface, e.g., here the surface normal aligns with the x3-principal direction. Use of (8) for
the dynamic steady state gives

Ḋ3=−V
∫
9

dψ
[(∫

∞

−∞

−

∫
X

)
dx σ33∂V U3+

∫
X
|x | dx σC

33∂V U3

]
, (27a)
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∂V = cos(ψ − θ) ∂
∂x
−

sin(ψ−θ)
|x |

∂

∂ψ
. (27b)

To illustrate the form of Ḋ3 the ∂V -operator is applied to case (23b):

∂V U3 =−
(vp)

π
√

x+− x

∫
X

g3 dξ
[√

x+− ξ
ξ − x

cos(ψ − θ)−
sin(ψ − θ)
|x |
√

x+−ψ
dx+
dψ

]
+

sin(ψ − θ)
π |x |

∫
X

dξ ln
∣∣∣∣√x+− ξ +

√
x+− x

√
x+− ξ −

√
x+− x

∣∣∣∣∂g3

∂ψ
. (28)

Equations (5a), (23b) and (28) imply that Ḋ3 = 0 in (27a). However (23b) and (28) are square-root
singular for x→ x++ 0 and x→ x+− 0 respectively and, in the sense of a distribution [Achenbach and
Brock 1973],

H(x+− x)
√

x+− x
H(x − x+)
√

x − x+
=
π

2
δ(x − x+). (29)

Here H is the step function. Also, Ḋ3 is assumed invariant in (27a) with respect to its integrand. Singular
behavior guarantees invariance in terms of x , so that the integrand need only be constant in terms of ψ .
Therefore, for |ψ − θ |< π

2 ,

Ḋ3
µVS
=−

cC0
G3

(G
µ

)2 d
dψ
[x+ sin(ψ − θ)], G =

∫
X

σC
33 dt
√

x+− t
. (30)

Equation (30) is a nonlinear differential equation for x+(ψ) based on (23), i.e., semi-infinite AC .

Illustration: Point force

Consider compressive point force loading

σC
31 = σ

C
32 = 0, σC

33 =
Pδ(r0)

2πr0
, r0 =

√
x2

1 + x2
2 . (31)

Here P is a force, so that traction σC
33 is the axially symmetric Dirac function in standard polar coordinates.

Function G in (30) for (31) is given in Appendix D. The right-hand side of (30) must be finite for
|ψ − θ | → π

2 , and use of (13a), (C.2d) and (D.4b) gives

x+ ≈

√
c

2S
µVS

Ḋ3

P
2πµ

1
√

cos(ψ − θ)
as |ψ − θ | → π

2 . (32)

Terms in (32) are given by

S = 4d5c′5 tan2 θ +
Q
�

√
d1 cos2 θ + T ′2

(
Q
�

√
d1−

�

D4

)
, (33a)

c′5 =
√

d5 sin2 θ + cos2 θ, (33b)

Q = 1+ 1
D4

(√
d1 sin2 θ +

cos2 θ
√

d1

)
, T ′ =

2c′25
cos θ

− cos θ, (33c)
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�=

√
γ cos2 θ + 2

√
d1
(√

d1 sin2 θ + D4
)
, (33d)

D4 =
√

d1 sin4 θ + d2 cos4 θ + γ sin2 θ cos2 θ. (33e)

Equation (30) involves only x+(θ) itself for ψ = θ , i.e., the distance between point forces and crack edge
measured in the direction of translation. In light of Appendix D, (30) can be solved algebraically as

x+(θ)= F(c, θ)L , (34a)

F(c, θ)=
√
−cC0/G3, L = (P/2π)

√
VS/µḊ3. (34b)

Reference length L depends on a force/energy ratio. Term F(c, θ) is dimensionless. Quantities (C0,G3)

come from (13), (14), (C.2d) and (C.3b) upon setting ψ = θ , cV = c. In view of (34) and invariance, (30)
can be rewritten for |x − θ |< π

2 as

−
2C0

G3x3
+

d
dψ
[sin(ψ − θ)x+] =

F2(c, θ)
cx2
+(θ)

. (35)

On the left-hand side of (35) we temporarily introduce z = x+ sin(ψ − θ), which allows separation of
variables. Integration in view of the asymptotic behavior noted above then gives x+ when ψ 6= θ :

x2
+
(θ)

x2
+(ψ)

=
1
c

F2(c, θ) sin2(ψ − θ)

∫
−

G3 dφ

C0 sin3(φ− θ)
for − π

2 <ψ − θ < 0, (36a)

x2
+
(θ)

x2
+(ψ)

=−
1
c

F2(c, θ) sin2(ψ − θ)

∫
+

G3 dφ

C0 sin3(φ− θ)
for 0<ψ − θ < π

2 . (36b)

Symbols ± affixed to integral operators in (36) signify, respectively, integration ranges ψ < φ < θ + π
2

and θ − π
2 < φ < ψ . Differentiation of (36) shows that dx+/dψ = 0 for ψ = θ , i.e., crack edge and

direction of point force translation are perpendicular directly ahead of the forces.

Calculations

Equation (36) and the asymptotic behavior noted for (32) indicate that, as in the isotropic case [Brock
2015], the crack edge BC resembles those in Figure 2, where “×” denotes point force location. That
is, it is a straight line at right angles to the translation/growth direction that is deformed by a bulge
near the location x = 0 of the translating point forces. Bulge size is characterized somewhat by the
distance x+(θ) in (34). Therefore, values of dimensionless ratio F(c, θ) are displayed in Table 3 for
θ = (0◦, 30◦, 45◦, 60◦, 90◦) respectively, and subcritical values of c. Entries in Table 3 show that the
bulge effect is enhanced by increase in extension speed (c) and by deviation (θ) in force translation
direction from the x1-principal direction. Perhaps the latter behavior arises because d2 < d1 (C22 < C11).

Some observations for more general loading

Consider in place of (31) a finite, simply connected region A0 ∈ AC subjected to a finite and piecewise
continuous pressure p0. The Green’s function for this case is obtained by replacing (P, |x |) in (D.2)
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x
V

B (c = 0.6)

45�

V

V

SCALE:

0.1L

1

c

B (c = 0.4)c

B (c = 0.18)c

x2

Figure 2. Sketches of crack edge contour BC .

with, respectively, ∫∫
A0

p0(u, φ)|u| du dφ, (37a)

X =
√

x2+ u2− 2ux cos(φ−ψ). (37b)

Quasipolar coordinates (u, φ) lie in A0 and, in consequence, the right-hand side of (D.3) is

1
√

z− x+Z
1

Z2+ ε2 , Z =
√

z2+ u2− 2uz cos(φ−ψ). (38a)

Now FG(z) has three nonintersecting branch cuts, and the right-hand side of (D.4b) is∫∫
A0

dφ

π
√

2

p0(u, φ)|u| du

Z+
√

Z++ x+− u cos(φ−ψ)
as ε→ 0, (38b)

Z+ =
√

x2
+
+ u2
− 2ux+ cos(φ−ψ). (38c)

Use of (38b) gives an equation for x+(θ) that in general does not yield a closed-form result such as
(34a). The result for x+ when |ψ − θ | → π

2 , however, is given by (32) with P replaced by (37a). That is,
asymptotic behavior of the crack edge depends only on total compressive load, not how that load may
be distributed over a finite area.

c = 0.1 c = 0.2 c = 0.3 c = 0.4
θ = 0◦ 0.03559 0.05069 0.06286 0.07394
θ = 30◦ 0.04288 0.06169 0.07773 0.09402
θ = 45◦ 0.02526 0.0687 0.0883 0.112
θ = 60◦ 0.0538 0.07902 0.1043 0.14
θ = 90◦ 0.1439 0.2473 c > cR c > cR

Table 3. Crack edge location parameter F(c, θ) (zinc).
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Some comments

This study extends a dynamic steady-state 3D analysis for an isotropic solid [Brock 2015] by illustrating
semi-infinite crack growth in the principal plane of a transversely isotropic solid. Fracture is driven by
compressive traction applied to the crack surfaces. An exact solution is possible and, upon introduction of
a quasipolar coordinate system, gives a nonlinear first-order differential equation for the distance between
a point on the crack plane and the crack edge. The distance function therefore defines the crack contour.
The equation is studied for point force loading, so that distance can be chosen as that between forces and
crack edge. Calculations show that the crack edge is rectilinear away from the point forces, and translates
with them. Near the point forces, however, a bulge forms about them. Force-crack edge distance now
increases with force translation speed, and increases are even more prominent as the translation direction
aligns with the principal axis associated with the smaller elastic modulus.

These results are consistent with those of [Brock 2015]. Calculations of the distance (contour) function,
however, require numerical evaluation of first integrals in (36); in [Brock 2015] analytical evaluation is
possible. In addition these results are illustrations for a particular category of transversely isotropic
solids [Payton 1983]. Nevertheless, general effects of transverse isotropy are emphasized, because the
axis of material symmetry lies in the crack plane. These results are also consistent with those for sliding
indentation on a half-space whose surface is the same principal plane [Brock 2013]: minimum critical
growth rate may not be a Rayleigh speed. In closing, however, it should be mentioned that the possibility
of energy release (rate) dependence on crack surface orientation was not exploited here.

Appendix A

For x3 = 0:

00

µ
σ̂33 = Û3

[
2d2

5 p2
1 B5+

(01− A+A−)
2A+A−(A++ A−)

( 1
2 T 2

5 +00 p2
2
)
+

1
2 T 2

5

(
1

A+
+

1
A−

)]
, (A.1a)

00

µ
σ̂31 =

T5

2B5
(T5Û1+ p1 p2Û2)+

d5 p1

A++ A−

[
(01− A+A−)(2p1Û1− p2Û2)−

00 p2Û2

d1(1+ d12)

]
, (A.1b)

00

µ
σ̂32 =

p1 p2

2B5
(T5Û1+ p1 p2Û2)−00

[
d5(1+ d12)p1 p2

A++ A−
Û1+

1
2Û2(A++ A−)

]
−
01− A+A−

A++ A−

[
d5 p1 p2Û1+ (p2

2 +00)
1
2Û2

]
. (A.1c)

Appendix B

Consider the integral over the entire Im(p)-axis:

1
2π i

∫
|p|
√
−p
√

p
(AR ∓ i AI ) exp

(
pX − (YR ∓ iYI )

√
−p
√

p
)dp

p
. (B.1)

Here (AR, AI , X, YR, YI ) are real constants, with (X, YR, YI )≥0, and∓ signifies, respectively, Im(p)>0
and Im(p) < 0. As noted in connection with (11) and (12), Re(

√
±p) ≥ 0 in the p-plane with branch

cuts Im(p)= 0, Re(p) < 0 and Im(p)= 0, Re(p) > 0, respectively. In particular, for Re(p)= 0+ and,
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respectively, Im(p)= q > 0 and Im(p)= q < 0, we have

√
−p =

∣∣∣q
2

∣∣∣1/2(1∓ i),
√

p =
∣∣∣q
2

∣∣∣1/2(1± i). (B.2)

Use of (B.2) reduces (B.1) to

1
iπ

∫
∞

0
exp(−YRq)

[
AR cos(X + YI )q − AI sin(X + YI )q

]
dq. (B.3)

Performing the integration gives

1
iπ

[
AR

X + YI

(X + YI )2+ Y 2
R
− AI

YR

(X + YI )2+ Y 2
R

]
. (B.4a)

If factor
√
−p/
√

p in (B.1) is replaced by unity, the result becomes

1
iπ

[
AR

YR

(X + YI )2+ Y 2
R
+ AI

X + YI

(X + YI )2+ Y 2
R

]
. (B.4b)

It is noted that
1
π

YR

(X + YI )2+ Y 2
R
→ δ(X + YI ) as YR→ 0+ . (B.5)

Here δ is the Dirac function.

Appendix C

For x3 = 0, X− < x < X+, ψ ∈9, i.e., x3 = 0, (x1, x2) ∈ C , we have

σ33 =−
µ

2πC0
(vp)

∫
X

∂U3

∂x
G3 dξ
ξ − x

, (C.1a)

σ31 =−
µ

2πC0
(vp)

∫
X

∂U1

∂x
G1 dξ
ξ − x

−
µ

2πC0
(vp)

∫
X

∂U2

∂x
sin 2ψ

G12 dξ
ξ − x

, (C.1b)

σ32 =−
µ

2πC0
(vp)

∫
X

∂U1

∂x
sin 2ψ

G21 dξ
ξ − x

−
µ

2πC0
(vp)

∫
X

∂U2

∂x
G2 dξ
ξ − x

. (C.1c)

Here Uk =Uk(ξ, ψ), (vp) signifies the principal value, and for M2
− 4d1C2C0 > 0 we have

G1 =−
T 2

5

B5
− 4d5

A+A−+C1

A++ A−
cos2 ψ, (C.2a)

G2 =−
sin2 2ψ

2B5
−C0(A++ A−)+

A+A−+C1

A++ A−
(sin2 ψ −C0), (C.2b)
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G12 = G21 =−
T5

2B5
+

2d5

A++ A−

[
A+A−+C1+ (1+ d12)

C0

d1

]
, (C.2c)

G3 = 4d2
5 B5 cos2 ψ +

(
1+

C1

A+A−

)
T 2

5 +C0 sin2 ψ

A++ A−
−

T 2
5

A+A−
(A++ A−). (C.2d)

For M2
− 4d1C2C0 < 0 we have

G1 =−
T 2

5

B5
−

2d5

�C
(A2

ψ +C1) cos2 ψ, (C.3a)

G2 =−
sin2 2ψ

2B5
− 2C0�C +

1
2�C

(A2
9 +C1)(sin2 ψ −C0), (C.3b)

G12 = G21 =−
T5

2B5
+

d5

�C

[
A2
9 +C1+ (1+ d12)

C0

d1

]
, (C.3c)

G3 = 4d2
5 B5 cos2 ψ +

1
2�C

(
1+

C1

A2
9

)
(T 2

5 +C0 sin2 ψ)−
2�C

A2
9

T 2
5 . (C.3d)

Equations (13) and (14) govern equations (C.2) and (C.3), respectively. Term C0 defined by (13a) may
vanish for subcritical V , but ratios of (G1,G2,G12,G21,G3) with C0 remain finite, e.g., for c2

V → sin2 ψ

G3

C0
= 2d5 cos2 ψ +

1
MC

(4d2
5 cos2 ψ + sin2 ψ)+ 4d2

5 cos2 ψ
[ cosψ

d1 MC(MC + cosψ)
−

1
MC
−

1
cosψ

]
−

d2
5

d1 MC
cos3 ψ(m+ cosψ +m−MC)

[
1+

1+ cosψ
MC(MC + cosψ)

]
, (C.4a)

m+ = 1+ d1+ (1+ d12)
2, m− = sin2 ψ −

2d1(d2− 1)
γ − 1− d1

, (C.4b)

MC =

√
cos2 ψ +

[ 1
d1
(γ − 1)− 1

]
sin2 ψ, (C.4c)

γ = 1+ d1d2− (1+ d12)
2. (C.4d)

Appendix D

In terms of quasipolar coordinates (x, ψ), (31) gives

σC
33 = P

δ(x)
π |x |

, |ψ |< π
2 . (D.1)

Evaluation of G in (30) is obtained in terms of representation

σC
33 = P

ε

π2|x |(x2+ ε2)
as ε→ 0. (D.2)

Function FG(z) in the complex z-plane, where x = Re(z), is defined as

FG(z)=
1

√

z2
− ε2

0(z
2+ ε2)

√
z− x+

for ε0 ≈ 0. (D.3)



CONTOURS FOR 3D PLANAR CRACK GROWTH: ILLUSTRATION FOR TRANSVERSELY ISOTROPIC SOLID 495

Here FG ≈O(z−3), |z|→∞ and exhibits branch cuts on the Re(z)-axis with branch points z= (±ε0, x+),
and poles z =±iε. Thus integration over a closed contour that includes a portion |z| →∞, but excludes
the poles and branch cuts, can be performed by residue theory. Setting ε0 = 0 then leads to the following
expressions for G:

G =
P

πα
√

2(1+α)
1

x3/2
+

, α =
√

1+ ε2/x2
+
, (D.4a)

G =
P

2πx3/2
+

as ε→ 0. (D.4b)
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ON CESÀRO MEANS OF ENERGY
IN MICROPOLAR THERMOELASTIC DIFFUSION THEORY

MARIN MARIN AND SAMY REFAHY MAHMOUD

This paper is dedicated to the theory of thermoelasticity of micropolar diffusion. For the mixed initial
boundary value problem defined in this context, we prove that the Cesàro means of the kinetic and strain
energies of a solution with finite energy become asymptotically equal as time tends to infinity.

1. Introduction

Eringen [2003] has developed a continuum theory for a mixture of a micropolar elastic solid and a
micropolar viscous fluid. All materials, whether natural or synthetic, possess microstructures.

In the micropolar continuum theory, the rotational degrees of freedom play a central role. The material
points of porous solids and dirty fluids undergo translation and rotations. Thus, we have six degrees of
freedom, instead of the three degrees of freedom considered in classical elasticity and fluid mechanics
(see [Eringen 1999; 2001]). A large class of engineering materials, as well as soils, rocks, granular
materials, sand and underground water mixtures may be modeled more realistically by means the the-
ory proposed in [Eringen 2003]. Consolidation problems in the building industry and oil exploration
problems fall into the domain of this theory.

In the last decade of time, the micropolar theory was extended to include thermal effects in many
studies. One can refer to [Ieşan 2004; Marin and Florea 2014; Marin et al. 2013a; 2013b; Sharma and
Marin 2014; Dhaliwal and Singh 1987] for a review on the micropolar thermoelasticity and a historical
survey of the subject, as well as to [Eringen 1999] in the Continuum Physics series, in which the general
theory of micromorphic media has been summed up.

Aouadi [2008] extended the micropolar theory to include thermal and diffusion effects. In fact, the de-
velopment of high technologies in the years before, during, and after the second world war pronouncedly
affected the investigations in which the fields of temperature and diffusion in solids cannot be neglected.
At elevated and low temperatures, the processes of heat and mass transfer play the decisive role in
many problems of satellites, returning space vehicles, and landing on water or land. These days, oil
companies are interested in the process of thermodiffusion for more efficient extraction of oil from oil
deposits. Diffusion can be defined as the random walk of an ensemble of particles from regions of high
concentration to regions of lower concentration. Thermodiffusion in an elastic solid is due to coupling
of the fields of temperature, mass diffusion and that of strain.

The earliest results concerning energy equipartition were dedicated to the abstract differential equa-
tions and to the abstract wave equation. The result established in [Levine 1977] using the Lagrange
identity, represents a simplified proof that asymptotic equipartition occurs between the Cesàro means of

Keywords: Cesàro mean, micropolar, thermoelastic diffusion, equipartition, kinetic energy, strain energy.
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the kinetic and potential energies. The asymptotic equipartition between the mean kinetic and strain
energies in the context of linear elastodynamics was studied in [Day 1980]. Also, we can refer to
[Dassios and Galanis 1980; Goldstein and Sandefur 1976] and, in specific cases, [Marin and Stan 2013;
Teodorescu-Draghicescu and Vlase 2011; Vlase et al. 2012].

In the present paper we consider the linear theory of micropolar thermoelastic diffusion and we for-
mulate the basic initial-boundary value problem in the framework of the linearized theory developed in
[Aouadi 2008]. Then we study the asymptotic partition of the energy associated with the solution of
this problem. In this aim we introduce the Cesàro mean of various parts of the total energy and use the
methods deduced in [Levine 1977; Day 1980; Rionero and Chirita 1987; Marin 2009] to establish the
relations that describe the asymptotic behavior of the mean energies. Thus, we use some Lagrange–Brun
identities to prove that the mean thermal energy tends to zero as time goes to infinity and the asymptotic
equipartition occurs between the Cesàro means of the kinetic and internal energies.

The asymptotic equipartition property is a familiar notion in differential equations field. This means
that the kinetic and potential energy of a classical solution with finite energy become asymptotic equal
in means as time tends to infinite. Such a property is presented in various papers for physical systems
governed by nondissipative hyperbolic partial differential equations or systems of such equations.

But the system of equations governing our mixed initial boundary value problem consists of hyperbolic
equations with dissipation and, therefore, does not belong to one of the categories considered previously
in literature of subject. By using the dissipation mechanism of the system, we can prove that equipartition
occurs between the mean kinetic and strain energies. Instead of abstracted version of this question, we
prefer to emphasize the technique itself in the context of micropolar thermoelastic diffusion.

We want to outline that there are many papers which employ the various refinements of the Lagrange
identity. One can refer to [Levine 1977; Day 1980; Rionero and Chirita 1987; Gurtin 1993].

The plan of our study is the following one. We first write down the mixed initial boundary value
problem defined in the above context. Then we shall establish some Lagrange type identities and, also, we
introduce the Cesàro means of various parts of the total energy associated to the solutions. Based on these
estimations, at last, we establish the relations that describe the asymptotic behavior of the mean energies.

2. Basic equations and conditions

We assume that a bounded region B of three-dimensional Euclidean space R3 is occupied by a mi-
crostretch thermoelastic body, referred to the reference configuration and a fixed system of rectangular
Cartesian axes. Let B denote the closure of B and call ∂B the boundary of the domain B. We consider
∂B be a piecewise smooth surface and designate by ni the components of the outward unit normal to the
surface ∂B. Letters in boldface stand for vector fields. We use the notation vi to designate the components
of the vector v in the underlying rectangular Cartesian coordinates frame. Superposed dots stand for the
material time derivative. We shall employ the usual summation and differentiation conventions: the
subscripts are understood to range over integers (1, 2, 3). Summation over repeated subscripts is implied
and subscripts preceded by a comma denote partial differentiation with respect to the corresponding
Cartesian coordinate.

The spatial argument and time argument of a function will be omitted when there is no likelihood
of confusion. We refer the motion of the body to a fixed system of rectangular Cartesian axes Oxi ,
i = 1, 2, 3.
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Let us denote by ui the components of the displacement vector and by φi the components of the
microrotation vector. Also, we denote by C the concentration of the diffusive material in the micropolar
body and by T the temperature measured from the constant absolute temperature T0 of the body in its
reference state.

As usual, we denote by σi j the components of the stress tensor and by µi j the components of the
couple stress tensor over B.

In the absence of body force, body couple force and heat supply fields, the field of basic equations for
micropolar thermoelastic diffusion are the following (see [Aouadi 2008]):

• the equation of motion
ρüi = σ j i, j ,

εi jkσ jk +µ j i, j = ρ Ji j φ̈ j ;
(1)

• the equation of energy
qi, i = ρT0 Ṡ; (2)

• the equation of conservation of mass
ηi, i = Ċ . (3)

In these equations we have used the following notation:

• ρ is the reference constant mass density;

• Ji j = J j i are the coefficients of microinertia;

• σi j , µi j are the components of the stress;

• S is the entropy per unit mass;

• qi are the components of heat flux vector;

• ηi are the components of the flow of diffusing mass vector.

Let us denote by θ the temperature, where θ = T − T0. Here T0 is the temperature of the medium in its
natural state.

If we suppose that the micropolar body, in the reference state, has a center of symmetry at each point,
but is otherwise nonisotropic, we have the following constitutive equations:

σi j = ci jklεkl + pi jklφkl + ai jθ + bi j C,

µi j = pi jklεkl + di jklφkl + pi jθ + qi j C,

ρS =−ai jεi j − pi jφi j +
ρcE

T0
θ +$C,

P = bi jεi j + qi jφi j −$θ + %C,

qi = κi jθ, j

ηi = di j P, j

(4)

In the above relations P is the chemical potential per unit mass, cE is the specific heat at constant
strain, ci jkl is the tensor of elastic constants. Also, the equations (4)5 and (4)6 are know as Fourier’s
law and Fick’s law, respectively. The constants $ and % are measures of thermodiffusion effects and
diffusive effects, respectively. The rest of parameters are material constants.
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The characteristic quantities of the strain εi j and φi j used in the above equations, are defined by means
of the geometric equations

ε j i = ui, j − εk jiφk, φ j i = φi, j , (5)

where εi jk is the alternating tensor.
The functions ci jkl , pi jkl , di jmn , ai j , bi j , pi j , qi j , κi j , di j and % are the characteristic constitutive

coefficients. Regarding these coefficients, the conductivity tensor κi j and the diffusion tensor di j we
have the symmetry relations

ci jkl = ckli j , di jkl = dkli j , pi jkl = pkli j , κi j = κ j i , di j = d j i . (6)

The density ρ, the coefficients of inertia Ji j and the temperature θ0 are given constants which satisfy the
conditions

ρ > 0, Ji j > 0, θ0 > 0. (7)

In accordance with entropy production inequality we must assume that ci jmn , pi jmn , di jmn , ai j , bi j

and κi j are positive definite tensors, i.e.,

ci jklξi jξmn ≥ k0ξi jξi j , k0 > 0, for all ξi j = ξ j i ,

pi jklξi jξmn ≥ k1ξi jξi j , k1 > 0, for all ξi j ,

di jklξi jξmn ≥ k2ξi jξi j , k2 > 0, for all ξi j = ξ j i ,

ai jξiξ j ≥ k3ξiξi , k3 > 0, for all ξi ,

bi jξiξ j ≥ k4ξiξi , k4 > 0, for all ξi ,

κi jξiξ j ≥ k5ξiξi , k5 > 0, for all ξi .

(8)

The components of the surface traction ti , the surface couple mi , the heat flux q and the diffusion
flux η, at regular points of ∂B, are given by

ti = σ j i n j , mi = µ j i n j , q = qi ni , η = ηi ni ,

respectively. By ni we denoted the components of the outward unit normal of surface ∂B. Now, we
admit the following prescribed boundary conditions:

ui = 0 on ∂B1×[0,∞), ti = 0 on ∂Bc
1 ×[0,∞),

φi = 0 on ∂B2×[0,∞), mi = 0 on ∂Bc
2 ×[0,∞),

θ = 0 on ∂B3×[0,∞), q = 0 on ∂Bc
3 ×[0,∞),

P = 0 on ∂B4×[0,∞), η = 0 on ∂Bc
4 ×[0,∞).

(9)

Here ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ∂Bc
1 , ∂Bc

2 , ∂Bc
3 and ∂Bc

4 are subsets of the
surface ∂B such that

∂B1 ∩ ∂Bc
1 = ∂B2 ∩ ∂Bc

2 = ∂B3 ∩ ∂Bc
3 = ∂B4 ∩ ∂Bc

4 =∅,
∂B1 ∪ ∂Bc

1 = ∂B2 ∪ ∂Bc
2 = ∂B3 ∪ ∂Bc

3 = ∂B4 ∪ ∂Bc
4 = ∂B.
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Introducing the constitutive equations (4) into equations (1)–(3) we obtain the system of equations

ρüi = ci jklεkl, i + pi jklφkl, j + ai jθ, j + bi j C, j ,

ρ Ji j φ̈ j = pi jklεkl, j + di jklφkl, j + pi jθ, j + qi j C, j

+ εi jk[c jkmlεml + p jkmlφml + a jkθ +β jkC],

κi jθ, i j = %cE θ̇ − T0ai j ε̇i j − T0 pi j φ̇i j + T0$ Ċ

Ċ = di j (%C + bi jεi j + qi jφi j −$θ), i j ,

(10)

To this system of equations we adjoin the initial conditions

ui (x, 0)= u0
i (x), u̇i (x, 0)= u1

i (x), φi (x, 0)= φ0
i (x), φ̇i (x, 0)= φ1

i (x),

θ(x, 0)= θ0(x), θ̇ (x, 0)= θ1(x), C(x, 0)= C0(x), x ∈ B.
(11)

By a solution of the mixed initial boundary value problem of micropolar thermoelastic diffusion in
the cylinder �0 = B × [0,∞) we mean an ordered array (ui , φi , θ, C) which satisfies the system of
equations (10) for all (x, t) ∈�0, the boundary conditions (9) and the initial conditions (11).

Let us observe that if meas(∂B1)= 0 and meas(∂B2)= 0 then there exists a family of rigid motions
and null temperature and null diffusion which satisfy the equations (10) and null boundary conditions.
In this way we can decompose the initial data (u0

i , u1
i ) and (φ0

i , φ
1
i ) as

u0
i = u∗i +U 0

i , u1
i = u̇∗i +U 1

i , φ0
i = φ

∗

i +8
0
i , φ1

i = φ̇
∗

i +8
1
i , (12)

where (u∗i , u̇∗i ) are rigid displacements and (φ∗i , φ̇
∗

i ) are rigid microrotations determined such that (U 0
i ,U

1
i )

and (80
i ,8

1
i ) satisfy the restrictions∫

B
(ρU 0

i + ρ Ji j8
0
j ) dV = 0,

∫
B
ρεi jk x j (U 0

k + Jlk8
0
l ) dV= 0,∫

B
(ρU 1

i + ρ Ji j8
1
j ) dV = 0,

∫
B
ρεi jk x j (U 1

k + Jlk8
1
l ) dV= 0,

(13)

where εi jk is Ricci’s tensor.
Similarly, if meas(∂B3) = 0 then there exists a family of constant temperatures, null displacements,

null microrotations and null diffusion which satisfy the equations (10) and null boundary conditions.
Thus, we can decompose the initial data θ0 and θ1 in the form

θ0
= θ∗+ T 0, θ1

= θ̇∗+ T 1, (14)

where θ∗ and θ̇∗ are constants temperatures determined such that T 0 and T 1 satisfy the restrictions∫
B

T 0dV = 0,
∫

B
T 1dV = 0. (15)

3. Specific notations

We denote by Cm(B) the class of scalar functions possessing derivatives up to the m-th order in the
domain B which are continuous on B.
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For f ∈ Cm(B) we define the norm

‖ f ‖Cm(B) =

m∑
k=1

∑
i1,i2,...,ik

max | f, i1i2...ik |.

By Cm(B) we denote the class of vector fields with six components Cm(B).
For w ∈ Cm(B) we define the norm

‖w‖Cm(B) =

6∑
i=1

‖wi‖Cm(B).

By Wm(B) we denote the Hilbert space obtained as the completion of the space Cm(B) by means of
the norm ‖ · ‖Wm(B) induced by the inner product

( f, g)Wm(B) =

m∑
k=1

∑
i1,i2,...,ik

∫
B

f, i1i2...ik g, i1i2...ik dV .

Finally, we will denote by Wm(B) the space obtained as the completion of the space Cm(B) by means
of the norm ‖ · ‖Wm(B) induced by the inner product

(u, v)Wm(B) =

6∑
i=1

(ui , vi )Wm(B).

We will use as norm in Cartesian product of the normed spaces the sum of the norms of the factor
spaces. Let us introduce the notation

Ĉ1(B)=
{
χ ∈ C1(B) : χ = 0 on ∂B3 or χ = 0 on ∂B4;

if meas(∂B3)= 0 or meas(∂B4)= 0 then
∫

B χ dV = 0
}
,

Ĉ1(B)=
{
(vi , ψi ) ∈ C1(B) : vi = 0 on ∂B1, ψi = 0 on ∂B2;

if meas(∂B1)=meas(∂B2)= 0 then
∫

B(ρvi + ρ Ji jψ j ) dV = 0
}
,

Ŵ1(B)= the completion of Ĉ1(B) by means of the norm ‖ · ‖W1(B),

Ŵ1(B)= the completion of Ĉ1(B) by means of the norm ‖ · ‖W1(B).

In this notation Wm(B) represents the familiar Sobolev space (see [Adams 1975]) and Wm(B) is the
Cartesian product Wm(B)= [Wm(B)]6.

The hypothesis (11) assures that the following (Korn’s inequality) holds (see [Hlaváček and Nečas
1970a; 1970b]):∫

B
[ci jklεkl(u)εi j (u)+ 2pkli jεkl(u)φi j (u)+ dkli jφkl(u)φi j (u)]

≥ m1

∫
B
(ui ui + ui, j ui, j +φiφi +φi, jφi, j ) dV, (16)

for all u = (ui , φi ) ∈W1(B), where m1 is a constant, m1 > 0, and

ε j i (u)= ui, j − εk jiφk, φ j i (u)= φi, j .
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Also, using the hypothesis (8), the following (Poincaré’s inequality) holds for all (χ, π)∈ Ŵ1(B)×Ŵ1(B):∫
B
(κi jχ, iχ, j + di jπ, iπ, j ) dV ≥ m2

∫
B
(χ2
+π2) dV, (17)

where m2 is a constant, m2 > 0.
If meas(∂B1)=meas(∂B2)= 0 then we can decompose the solution ((ui , φi ), θ,C) in the form

ui = u∗i + t u̇∗i + vi , φi = φ
∗

i + t φ̇∗i +ψi , θ = χ, C = π, (18)

where ((vi , ψi ), χ, π) ∈ Ŵ1(B)× Ŵ1(B)× Ŵ1(B) represents the solution of the system of equations
(10) with the boundary conditions (9) and the initial conditions

vi (x, 0)=U 0
i (x), v̇i (x, 0)=U 1

i (x), ψi (x, 0)=80
i (x), ψ̇i (x, 0)=81

i (x),

χ(x, 0)= θ0(x), χ̇(x, 0)= θ1(x), P(x, 0)= P0(x), for all x ∈ B.

Now, we consider that meas(∂B4)= 0.
Then we can decompose the solution ((ui , φi ), θ,C) in the form

ui = vi , φi = ψi , θ = θ
∗
+χ,C = π (19)

where ((vi , ψi ), χ, π) ∈ Ŵ1(B)× Ŵ1(B)× Ŵ1(B) represents the solution of the system of equations (10)
with the boundary conditions initial conditions

vi (x, 0)= u0
i (x), v̇i (x, 0)= u1

i (x), ψi (x, 0)= ϕ0
i (x), ψ̇i (x, 0)= ϕ1

i (x),

χ(x, 0)= T 0(x), χ̇(x, 0)= T 1(x), π(x, 0)= C0(x), for all x ∈ B.
(20)

4. Preliminary results

In this section we shall establish some evolutionary integral identities which form the basis in proving the
relations that express the asymptotic partition of energy. In the first next theorem we prove a conservation
law of total energy.

Theorem 1. Let ((ui , φi ), θ,C) be a solution of the mixed initial boundary value problem defined by the
equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

(u0
i , φ

0
i ) ∈W1(B), (u1

i , φ
1
i ) ∈W0(B), (θ0,C0) ∈W1(B)×W1(B), θ1

∈W0(B),

then the following energy conservation law holds:

E(t)+
1
T0

∫ t

0

∫
B
κi jθ, i (s)θ, j (s) dV ds+

∫ t

0

∫
B

C(s)Ṗ(s) dV ds = E(0) (21)

for any t ∈ [0,∞), where

E(t)= 1
2

∫
B
[ρu̇i (t)u̇i (t)+ ρ Ji j φ̇i (t)φ̇ j (t)+

ρcE

T0
θ2(t)+ 2$C(t)θ(t)− %C2(t)] dV

+
1
2

∫
B
[ci jklεi j (t)εkl(t)+ 2pi jklεi j (t)φkl(t)+ di jklφi j (t)φkl(t)] dV .
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Proof. In view of equations of motion (10)1, we get

1
2

d
ds
[ρu̇i (s)u̇i (s)] = ρu̇i (s)üi (s)= u̇i (s)σi j, j (s)

= u̇i (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)], j

= {u̇i (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

− [ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]u̇i, j (s). (22)

Taking into account the equation (10)2, we obtain

1
2

d
ds
[ρ Ji j φ̇i (s)φ̇ j (s)]

= ρ Ji j φ̇i (s)φ̈ j (s)= φ̇i (s)[µi j, j (s)+ εi jkσ jk(s)]

= φ̇i (s){[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)], j + εi jkσ jk(s)}

= {φ̇i (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− [pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]φ̇i j (s)

+ εi jk[c jkmnεmn(s)+ d jkmnφmn(s)+ a jkθ(s)+ b jkC(s)]φ̇i (s). (23)

Now we are adding equalities (22) and (23) member by member:

1
2

d
ds
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)]

= {u̇i (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φ̇i (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− ci jklεkl(s)ε̇i j (s)− pi jkl(φkl(s)ε̇i j (s)+ φ̇kl(s)εi j (s))− di jklφkl(s)φ̇i j (s)

− θ(s)[ai j ε̇i j (s)+ pi j φ̇i j (s)] −C(s)[bi j ε̇i j (s)+ qi j φ̇i j (s)]. (24)

On the other hand, by using the equations (10)4 and (10)5, we get

θ(s)[ai j ε̇i j (s)+ pi j φ̇i j (s)] +C(s)[bi j ε̇i j (s)+ qi j φ̇i j (s)]

=
1
2

d
ds
[
ρcE
T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)] +C(s)Ṗ(s)− 1

T0
κi jθ, i j (s)θ(s). (25)

From (24) and (25) we deduce

1
2

d
ds
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)+

ρcE

T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)]

= {u̇i (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φ̇i (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− ci jklεkl(s)ε̇i j (s)− pi jkl(φkl(s)ε̇i j (s)+ φ̇kl(s)εi j (s))

− di jklφkl(s)φ̇i j (s)−C(s)Ṗ(s)+
1
T0
κi jθ, i j (s)θ(s),
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and this equality can be restated in the form

1
2

d
ds

[
ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)+

ρcE
T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)

]
+

1
2

d
ds
[ ci jklεkl(s)εi j (s)+ 2pi jklεi j (s)φkl(s)+ di jklφkl(s)φi j (s)]

+
1
T0
κi jθ, i (s)θ, j (s)−C(s)Ṗ(s)

= {u̇i (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φ̇i (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j +

( 1
T0
κi jθ, i (s)θ(s)

)
, j
. (26)

Now, we integrate the relation (26) over B × (0, t) and use the divergence theorem, the symmetry re-
lations (6), the boundary conditions (9) and the initial conditions (11) so that we arrive at the desired
result (21) and Theorem 1 is concluded. �

Theorem 2. Consider ((ui , φi ), θ,C) a solution of the mixed initial boundary value problem defined by
the equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

(u0
i , φ

0
i ) ∈W1(B), (u1

i , φ
1
i ) ∈W0(B), (θ0,C0) ∈W1(B)×W1(B), θ1

∈W0(B),

then the following identity holds:

2
∫

B
[ρui (t)u̇i (t)+ ρ Ji jφi (t)φ̇ j (t)] dV

+

∫
B

1
T0

ki j (

∫ t

0
θ,i (s) ds)(

∫ t

0
θ, j (s) ds) dV +

∫
B

di j (

∫ t

0
P,i (s) ds)(

∫ t

0
P, j (s) ds) dV

= 2
∫ t

0

∫
B
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)] dV ds

−

∫ t

0

∫
B
[ci jklεkl(s)εi j (s)+ 2pi jklφkl(s)εi j (s)+ di jklφkl(s)φi j (s)] dV ds

−

∫ t

0

∫
B
[
ρcE

T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)] dV ds+ 2

∫ t

0

∫
B
[ρS0θ(s)− P0C(s)] dV ds

+ 2
∫

B
[ρu0

i u̇1
i + ρ Ji jφ

0
i φ̇

1
j ] dV, (27)

where

ρS0
=
ρcE

T0
θ0
− ai jε

0
i j − pi jφ

0
i j +$C0,

P0
= bi jε

0
i j + qi jφ

0
i j −$θ

0
+ %C0

ε0
j i = u0

i, j − εk jiφ
0
k ,

φ0
j i = φ

0
i, j .

(28)
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Proof. In view of equations of motion (10)1, we get

d
ds
[ρui (s)u̇i (s)] = ρu̇i (s)u̇i (s)+ ρui (s)üi (s)= ρu̇i (s)u̇i (s)+ ui (s)σi j, j (s)

= ρu̇i (s)u̇i (s)+ ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)], j

= ρu̇i (s)u̇i (s)+{ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

− ui, j (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]

= ρu̇i (s)u̇i (s)− [ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]ui, j (s)

+{ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j . (29)

Taking into account the equations of motion (10)2, we obtain

d
ds
[ρ Ji jφi (s)φ̇ j (s)] = ρ Ji j φ̇i (s)φ̇ j (s)+ ρ Ji jφi (s)φ̈ j (s)

= ρ Ji j φ̇i (s)φ̇ j (s)+φi (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)], j

+ εi jk[c jkmnεmn(s)+ d jkmnφmn(s)+ a jkθ(s)+ b jkC(s)]φi

= ρ Ji j φ̇i (s)φ̇ j (s)+{φi (s)[pi jklεkl(s)+ di jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

− [pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]φi, j (s)

+ εi jk[c jkmnεmn(s)+ p jkmnφmn(s)+ a jkθ(s)+ b jkC(s)]φi . (30)

Now we are adding equalities (29) and (30) member by member:

d
ds
[ρui (s)u̇i (s)+ ρ Ji jφi (s)φ̇ j (s)] = ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)

+{ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φi (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− ci jklεkl(s)εi j (s)− 2pi jklεi j (s)φkl(s)− di jklφkl(s)φi j (s)

− [ai jεi j (s)+ pi jφi j (s)]θ(s)− [bi jεi j (s)+ qi jφi j (s)]C(s). (31)

By an integration with respect to time variable in the equation (10)3 and then by using the initial condi-
tions (11) we deduce

−[ai jεi j (s)+ pi jφi j (s)]

=
1
T0

(∫ s

0
κi jθ, i (z) dz

)
, j
−
ρcE

T0
θ(s)−$C(s)+

ρcE

T0
θ0
+$C0

− ai jε
0
i j − pi jφ

0
i j .

Here we multiply by θ(s) and obtain

−[ai jεi j (s)+ pi jφi j (s)]θ(s)=
1
T0

(∫ s

0
κi jθ, i (z) dz

)
, j
θ(s)

−
ρcE

T0
θ2(s)−$C(s)θ(s)+

(
ρcE

T0
θ0
− ai jε

0
i j − pi jφ

0
i j +$C0

)
θ(s). (32)



ON CESÀRO MEANS OF ENERGY IN MICROPOLAR THERMOELASTIC DIFFUSION THEORY 507

Also, by integrating with respect to the time variable, from Fick’s law and the initial conditions (11) we
deduce

bi jεi j (s)+ qi jφi j (s)=
(∫ s

0
di j P, i (z) dz

)
, j
+$θ(s)− %C(s)+ bi jε

0
i j + qi jφ

0
i j −$θ

0
+ %C0.

Here we multiply by C(s) so that we are led to

−[bi jεi j (s)+ qi jφi j (s)]C(s)=−
(∫ s

0
di j P, i (z) dz

)
, j

C(s)

−$θ(s)C(s)+ %C2(s)− (bi jε
0
i j + qi jφ

0
i j −$θ

0
+ %C0)C(s). (33)

By adding relations (32) and (33) member by member one obtains

− [ai jεi j (s)+ pi jφi j (s)]θ(s)− [bi jεi j (s)+ qi jφi j (s)]C(s)

=
1
T0

(∫ s

0
κi jθ, i (z) dz

)
, j
θ(s)−

ρcE

T0
θ2(s)−$C(s)θ(s)

+

(
ρcE

T0
θ0
− ai jε

0
i j − pi jφ

0
i j +$C0

)
θ(s)

−

(∫ s

0
di j P, i (z) dz

)
, j

C(s)−$θ(s)C(s)+ %C2(s)

− (bi jε
0
i j + qi jφ

0
i j −$θ

0
+ %C0)C(s). (34)

We introduce in (34) into (31) so that we get the equality

d
ds
[ρui (s)u̇i (s)+ ρ Ji jφi (s)φ̇ j (s)]

= ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)

+{ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φi (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− ci jklεkl(s)εi j (s)− 2pi jklφkl(s)εi j (s)− di jklφkl(s)φi j (s)

+
1
T0

(∫ s

0
κi jθ, i (z) dz

)
, j
θ(s)−

ρcE

T0
θ2(s)−$C(s)θ(s)

+

(
ρcE

T0
θ0
− ai jε

0
i j − pi jφ

0
i j +$C0

)
θ(s)

−

(∫ s

0
di j P, i (z) dz

)
, j

C(s)−$θ(s)C(s)+ %C2(s)

− (bi jε
0
i j + qi jφ

0
i j −$θ

0
+ %C0)C(s).
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This relation can be restated in the form

d
ds
[ρui (s)u̇i (s)+ ρ Ji jφi (s)φ̇ j (s)]

= ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)

+{ui (s)[ci jklεkl(s)+ pi jklφkl(s)+ ai jθ(s)+ bi j C(s)]}, j

+{φi (s)[pi jklεkl(s)+ di jklφkl(s)+ pi jθ(s)+ qi j C(s)]}, j

− ci jklεkl(s)εi j (s)− 2pi jklφkl(s)εi j (s)− di jklφkl(s)φi j (s)

+ ρS0θ(s)− P0C(s)−
ρcE

T0
θ2(s)− 2$C(s)θ(s)+ %C2

+
1
T0
(κi jθ(s)

∫ s

0
θ, i (z) dz), j −

1
T0
κi jθ, j (s)

∫ s

0
θ, i (z) dz

− (di j P(s)
∫ s

0
P, i (z) dz), j − di j P, j (s)

∫ s

0
P, i (z) dz, (35)

where ρS0 and P0 are given in (28).
Integrating by parts, it is easy to obtain

κi j

∫ t

0
θ, i (s)

(∫ s

0
θ, j (z) dz

)
ds = ki j

∫ s

0
θ, j (z) dz

∫ s

0
θ, i (z) dz

∣∣∣s=t

s=0
− ki j

∫ t

0
θ, j (s)

(∫ s

0
θ, i (z) dz

)
ds.

On the basis of symmetry of tensor κi j , from the above equality we deduce that

2κi j

∫ t

0
θ, i (s)

(∫ s

0
θ, j (z) dz

)
ds = κi j

(∫ t

0
θ, i (s) ds

)(∫ t

0
θ, j (s) ds

)
. (36)

Analogous, on the basis of symmetry of tensor di j , we obtain the equality

2di j

∫ t

0
P, i (s)

(∫ s

0
P, j (z) dz

)
ds = di j

(∫ t

0
P, i (s) ds

)(∫ t

0
P, j (s) ds

)
. (37)

Now we integrate the identity (35) over B× (0, t), then we employ the divergence theorem, the boundary
conditions (9), the initial conditions (11), the symmetry relations (6) and relations (36)–(37) so that we
are led to the desired identity (27).

This concludes Theorem 2. �

Theorem 3. Consider ((ui , φi ), θ,C) a solution of the mixed initial boundary value problem defined by
the equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

(u0
i , ϕ

0
i ) ∈W1(B), (u1

i , ϕ
1
i ) ∈W0(B), (θ0,C0) ∈W1(B)×W1(B), θ1

∈W0(B),

then we have the identity
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2
∫

B
[ρui (t)u̇i (t)+ ρ Ji jφi (t)φ̇ j (t)] dV +

∫
B
κi j

[(∫ t

0
θ, i (z) dz

)(∫ t

0
θ, j (z) dz

)]
dV

+

∫
B

di j

[(∫ t

0
P, i (z) dz

)(∫ t

0
P, j (z) dz

)]
dV

=

∫
B
{%[u0

i u̇i (2t)+ u1
i ui (2t)] + ρ Ji j [φ

0
i φ̇ j (2t)+φ1

i φ j (2t)]} dV

+

∫ t

0

∫
B
{ρS0
[θ(t + s)− θ(t − s)] + P0

[C(t + s)−C(t − s)]} dV ds, (38)

where %S0 and P0 are defined by relations (28).

Proof. It is not difficult to prove the identity

d
ds
{ρ[ fi (s)ġi (s)− ḟi (s)gi (s)]} = ρ[ fi (s)g̈i (s)− f̈i (s)gi (s)],

where fi (x, s) and gi (x, s) are twice continuously differentiable functions with respect to time variable s.
By integrating the above identity over B× (0, t) one obtains∫

B
%[ fi (s)ġi (s)− ḟi (s)gi (s)] dV

=

∫ t

0

∫
B
%[ fi (s)g̈i (s)− f̈i (s)gi (s)] dV ds+

∫
B
%[ fi (0)ġi (0)− ḟi (0)gi (0)] dV . (39)

Now, we set in (46) the functions fi and gi as follows:

fi (x, s)= ui (x, t − s), gi (x, s)= ui (x, t + s) for s ∈ [0, t], t ∈ (0,∞),

so that one obtains the identity

2
∫

B
ρui (t)u̇i (t) dV =

∫
B
%[u0

i u̇i (2t)+ u1
i ui (2t)] dV

+

∫ t

0

∫
B
ρ[ui (t + s)üi (t − s)− ui (t − s)üi (t + s)] dV ds, t ∈ [0,∞). (40)

Similarly, if we substitute in (46) the functions fi and gi defined by

fi (x, s)= φi (x, t − s), gi (x, s)= φi (x, t + s) for s ∈ [0, t], t ∈ (0,∞),

then we are led to the identity

2
∫

B
ρ Ji jφi (t)φ̇ j (t) dV =

∫
B
ρ Ji j [φ

0
i φ̇ j (2t)+φ1

i φ j (2t)] dV

+

∫ t

0

∫
B
ρ Ji j [φi (t + s)φ̈ j (t − s)−φi (t − s)φ̈ j (t + s)] dV ds, t ∈ [0,∞). (41)
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We add the equalities (40) and (41) member by member and obtain

2
∫

B
[ρui (t)u̇i (t)+ ρ Ji jφi (t)φ̇ j (t)] dV

=

∫
B
%[u0

i u̇i (2t)+ u1
i ui (2t)] dV +

∫
B
ρ Ji j [φ

0
i φ̇ j (2t)+φ1

i φ j (2t)] dV

+

∫ t

0

∫
B
ρ[ui (t + s)üi (t − s)− ui (t − s)üi (t + s)] dV ds

+

∫ t

0

∫
B
ρ Ji j [φi (t + s)φ̈ j (t − s)−φi (t − s)φ̈ j (t + s)] dV ds (42)

for any t ∈ [0,∞).
The last two integrals in (42) contain some inertial terms which will be eliminated in the following.

First, taking into account the equations (10)1 one obtains

ρ[ui (t + s)üi (t − s)− ui (t − s)üi (t + s)]

= ui (t + s)ρüi (t − s)− ui (t − s)ρüi (t + s)

= ui (t + s)[ci jklεkl(t − s)+ pi jklφkl(t − s)+ ai jθ(t − s)+ bi j C(t − s)], j

− ui (t − s)[ci jklεkl(t + s)+ pi jklφkl(t + s)+ ai jθ(t + s)+ bi j C(t + s)], j

= {ui (t + s)[ci jklεkl(t − s)+ pi jklφkl(t − s)+ ai jθ(t − s)+ bi j C(t − s)]}, j

− ui, j (t + s)[ci jklεkl(t − s)+ pi jklφkl(t − s)+ ai jθ(t − s)+ bi j C(t − s)]

− {ui (t − s)[ci jklεkl(t + s)+ pi jklφkl(t + s)+ ai jθ(t + s)+ bi j C(t + s)]}, j

+ ui, j (t − s)[ci jklεkl(t + s)+ pi jklφkl(t + s)+ ai jθ(t + s)+ bi j C(t + s)]. (43)

In view of equations (10)2 we get

ρ Ji j [φi (t + s)φ̈ j (t − s)−φi (t − s)φ̈ j (t + s)]

= φi (t + s)ρ Ji j φ̈ j (t − s)−φi (t − s)ρ Ji j φ̈i (t + s)

= φi (t + s)[pi jklεkl(t − s)+ di jklφkl(t − s)+ pi jθ(t − s)+ qi j C(t − s)], j

+ εi jkφi (t + s)[a jkmnεmn(t − s)+ p jkmnφmn(t − s)+ a jkθ(t − s)+ b jkC(t − s)]

−φi (t − s)[pi jklεkl(t + s)+ di jklφkl(t + s)+ pi jθ(t + s)+ qi j C(t + s)], j

− εi jkφi (t − s)[a jkmnεmn(t + s)+ p jkmnφkl(t + s)+ a jkθ(t + s)+ b jkC(t + s)]

= {φi (t + s)[pi jklεkl(t − s)+ di jklφkl(t − s)+ pi jθ(t − s)+ qi j C(t − s)]}, j

−φi, j (t + s)[pi jklεkl(t − s)+ di jklφkl(t − s)+ pi jθ(t − s)+ qi j C(t − s)]

+ εi jkφi (t + s)[a jkmnεmn(t − s)+ p jkmnφmn(t − s)+ a jkθ(t − s)+ b jkC(t − s)]

− {φi (t − s)[pi jklεkl(t + s)+ di jklφkl(t + s)+ pi jθ(t + s)+ qi j C(t + s)]}, j

+φi, j (t − s)[pi jklεkl(t + s)+ di jklφkl(t + s)+ pi jθ(t + s)+ qi j C(t + s)]

− εi jkφi (t − s)[a jkmnεmn(t + s)+ p jkmnφkl(t + s)+ a jkθ(t + s)+ b jk C(t + s)]. (44)
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If we add the equalities (43) and (44) together, then we are led to

ρ[ui (t + s)üi (t − s)− ui (t − s)üi (t + s)] + ρ Ji j [φi (t + s)φ̈ j (t − s)−φi (t − s)φ̈ j (t + s)]

= {ui (t + s)[ci jklεkl(t − s)+ pi jklφkl(t − s)+ ai jθ(t − s)+ bi j C(t − s)]}, j

−{ui (t − s)[ci jklεkl(t + s)+ pi jklφkl(t + s)+ ai jθ(t + s)+ bi j C(t + s)]}, j

+{φi (t + s)[pi jklεkl(t − s)+ di jklφkl(t − s)+ pi jθ(t − s)+ qi j C(t − s)]}, j

−{φi (t − s)[pi jklεkl(t + s)+ di jklφkl(t + s)+ pi jθ(t + s)+ qi j C(t + s)]}, j

− [ai jεi j (t + s)+ pi jφi j (t + s)]θ(t − s)+ [ai jεi j (t − s)+ pi jφi j (t − s)]θ(t + s)

− [bi jεi j (t + s)+ qi jφi j (t + s)]C(t − s)+ [bi jεi j (t − s)+ qi jφi j (t − s)]C(t + s). (45)

For the last two rows of right-hand side of equality (45) we get the equivalent expressions using the
energy equation and the equation of mass diffusion, respectively.

So, by an integration with respect to time variable, from the energy equation (10)3 and the initial
conditions (11) we deduce

−[ai jεi j (t + s)+ pi jφi j (t + s)]θ(t − s)=
1
T0

(∫ t+s

0
κi jθ, i (z) dz

)
, j
θ(t − s)

−
ρcE

T0
θ(t − s)θ(t + s)−$θ(t − s)C(t − s)+ ρS0θ(t − s), (46)

where ρS0 is defined in (28).
Similarly, we have

[ai jεi j (t − s)+ pi jφi j (t − s)]θ(t + s)=−
1
T0

(∫ t−s

0
κi jθ, i (z) dz

)
, j
θ(t + s)

+
ρcE

T0
θ(t + s)θ(t − s)+$θ(t − s)C(t + s)− ρS0θ(t + s). (47)

From (46) and (47) we deduce

−[ai jεi j (t + s)+ pi jφi j (t + s)]θ(t − s)+ [ai jεi j (t − s)+ pi jφi j (t − s)]θ(t + s)

=$ [θ(t + s)C(t − s)− θ(t − s)C(t + s)] + ρS0
[θ(t + s)− θ(t − s)]

+
1
T0
κi j

[
θ(t − s)

(∫ t+s

0
θ, i (z) dz

)
, j
− θ(t + s)

(∫ t−s

0
θ, i (z) dz

)
, j

]
. (48)

The equality (48) can be restated in the form

− [ai jεi j (t + s)+ pi jφi j (t + s)]θ(t − s)+ [ai jεi j (t − s)+ pi jφi j (t − s)]θ(t + s)

=$ [θ(t + s)C(t − s)− θ(t − s)C(t + s)] + ρS0
[θ(t + s)− θ(t − s)]

+

[
1
T0
κi jθ(t − s)

∫ t+s

0
θ, i (z) dz−

1
T0
κi jθ(t + s)

∫ t−s

0
θ, i (z) dz

]
, j

+
1
T0
κi j

[
θ, j (t + s)

∫ t−s

0
θ, i (z) dz− θ, i (t − s)

∫ t+s

0
θ, i (z) dz

]
. (49)
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It is easy to deduce that the last row in (49) can be written in the form

1
T0
κi j

[
θ, j (t + s)

∫ t−s

0
θ, i (z) dz− θ, i (t − s)

∫ t+s

0
θ, i (z) dz

]
=

1
T0
κi j

d
ds

[(∫ t+s

0
θ, i (z) dz

)(∫ t−s

0
θ, j (z) dz

)]
,

so that (49) receives the form

− [ai jεi j (t + s)+ pi jφi j (t + s)]θ(t − s)+ [ai jεi j (t − s)+ pi jφi j (t − s)]θ(t + s)

=$ [θ(t + s)C(t − s)− θ(t − s)C(t + s)] + ρS0
[θ(t + s)− θ(t − s)]

+

[
1
T0
κi jθ(t − s)

∫ t+s

0
θ, i (z) dz−

1
T0
κi jθ(t + s)

∫ t−s

0
θ, i (z) dz

]
, j

+
1
T0
κi j

d
ds

[(∫ t+s

0
θ, i (z) dz

)(∫ t−s

0
θ, j (z) dz

)]
. (50)

Now, by an integration with respect to time variable, from the equation (3), Fick’s law and the initial
conditions (11) we deduce

−[bi jεi j (t + s)+ qi jφi j (t + s)]C(t − s)

=−

(∫ t+s

0
di j P, i (z) dz

)
, j

C(t − s)−$θ(t + s)C(t − s)+ %C(t + s)C(t − s)− P0C(t − s), (51)

where P0 is defined in (28).
Similarly, we have

[bi jεi j (t − s)+ qi jφi j (t − s)]C(t + s)

=

(∫ t−s

0
di j P, i (z) dz

)
, j

C(t + s)+$θ(t − s)C(t + s)− %C(t − s)C(t + s)+ P0C(t + s), (52)

so that from (51) and (52) we are led to

−[bi jεi j (t + s)+ qi jφi j (t + s)]C(t − s)+ [bi jεi j (t − s)+ qi jφi j (t − s)]C(t + s)

=$ [θ(t − s)C(t + s)− θ(t + s)C(t − s)] + P0
[C(t + s)−C(t − s)]

−

(∫ t−s

0
di j P, i (z) dz

)
, j

C(t + s)+
(∫ t+s

0
di j P, i (z) dz

)
, j

C(t − s). (53)

The equality (53) can be restated in the form

− [bi jεi j (t + s)+ qi jφi j (t + s)]C(t − s)+ [bi jεi j (t − s)+ qi jφi j (t − s)]C(t + s)

=$ [θ(t − s)C(t + s)− θ(t + s)C(t − s)] + P0
[C(t + s)−C(t − s)]

+

[
di j (P(t + s)

∫ t−s

0
P, i (z) dz− P(t − s)

∫ t+s

0
P, i (z) dz)

]
, j

− di j

[
P, j (t + s)

∫ t−s

0
P, i (z) dz− P, j (t − s)

∫ t+s

0
P, i (z) dz

]
. (54)
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It is easy to deduce that the last row in (54) can be written in the form

di j

[
P, j (t+s)

∫ t−s

0
P, i (z) dz−P, j (t−s)

∫ t+s

0
P, i (z) dz

]
=di j

d
ds

[(∫ t+s

0
P, i (z) dz

)(∫ t−s

0
P, j (z) dz

)]
,

so that (54) receives the form

− [bi jεi j (t + s)+ qi jφi j (t + s)]C(t − s)+ [bi jεi j (t − s)+ qi jφi j (t − s)]C(t + s)

=$ [θ(t − s) C(t + s)− θ(t + s) C(t − s)] + P0
[C(t + s)− P(t − s)]

+

[
di j (P(t + s)

∫ t−s

0
P, i (z) dz− P(t − s)

∫ t+s

0
P, i (z) dz)

]
, j

+ di j
d
ds

[(∫ t+s

0
P, i (z) dz

)(∫ t−s

0
P, j (z) dz

)]
. (55)

We now introduce the expressions (50) and (55) into equality (45) and we are led to

ρ[ui (t + s)üi (t − s)− ui (t − s)üi (t + s)] + ρ Ji j [φi (t + s)φ̈ j (t − s)−φi (t − s)φ̈ j (t + s)]

= {ui (t + s)[ci jklεkl(t − s)+ pi jklφkl(t − s)+ ai j (θ(t − s)+αθ̇(t − s))+ bi j P(t − s)]}, j

−{ui (t − s)[ci jklεkl(t + s)+ pi jklφkl(t + s)+ ai j (θ(t + s)+αθ̇(t + s))+ bi j P(t + s)]}, j

+{φi (t + s)[pi jklεkl(t − s)+ di jklφkl(t − s)+ κi j (θ(t − s)+αθ̇(t − s))+ qi j P(t − s)]}, j

−{φi (t − s)[pi jklεkl(t + s)+ di jklφkl(t + s)+ κi j (θ(t + s)+αθ̇(t + s))+ qi j P(t + s)]}, j

+ ρS0
[θ(t + s)− θ(t − s)] + P0

[C(t + s)−C(t − s)]

+

[
1
T0
κi jθ(t − s)

∫ t+s

0
θ, i (z) dz−

1
T0
κi jθ(t + s)

∫ t−s

0
θ, i (z) dz

]
, j

+

[
di j

(
P(t + s)

∫ t−s

0
P, i (z) dz− P(t − s)

∫ t+s

0
P, i (z) dz

)]
, j

+
1
T0
κi j

d
ds

[(∫ t+s

0
θ, i (z) dz

)(∫ t−s

0
θ, j (z) dz

)]
+ di j

d
ds

[(∫ t+s

0
P, i (z) dz

)(∫ t−s

0
P, j (z) dz

)]
. (56)

We now substitute the relation (56) into (42) and we use the divergence theorem and the boundary
conditions (9) in order to obtain

2
∫

B
[ρui (t)u̇i (t)+ ρ Ji jφi (t)φ̇ j (t)] dV

=

∫
B
%[u0

i u̇i (2t)+ u1
i ui (2t)] dV +

∫
B
ρ Ji j [φ

0
i φ̇ j (2t)+φ1

i φ j (2t)] dV

+

∫ t

0

∫
B
{ρS0
[θ(t + s)− θ(t − s)] + P0

[C(t + s)−C(t − s)]} dV ds

+

∫ t

0

∫
B

1
T0
κi j

d
ds

[(∫ t+s

0
θ, i (z) dz

)(∫ t−s

0
θ, j (z) dz

)]
dV ds
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+

∫ t

0

∫
B

di j
d
ds

[(∫ t+s

0
P, i (z) dz

)(∫ t−s

0
P, j (z) dz

)]
dV ds. (57)

It is not difficult to observe that∫ t

0

d
ds

[(∫ t+s

0
θ, i (z) dz

)(∫ t−s

0
θ, j (z) dz

)]
ds =−

(∫ t

0
θ, i (z) dz

)(∫ t

0
θ, j (z) dz

)
,

and, analogously,∫ t

0

d
ds

[(∫ t+s

0
P, i (z) dz

)(∫ t−s

0
P, j (z) dz

)]
ds =−

(∫ t

0
P, i (z) dz

)(∫ t

0
P, j (z) dz

)
.

Finally, by using the last two relations in (57), one obtains the desired equality (38) so that Theorem 3
is proved. �

5. Equipartition of energy

In this section we shall use the identities (21), (27) and (38) such that by using the hypotheses made in
Section 2 we establish the asymptotic partition of total energy.

Let us introduce the Cesàro means of all energies contained in the identity (21). So, we have Cesàro
means of kinetic energy, strain energy, thermal energy and energy of dissipation, respectively:

KC(t)≡
1
2t

∫ t

0

∫
B
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)] dV ds,

SC(t)≡
1
2t

∫ t

0

∫
B
[ci jklεi j (t)εkl(t)+ 2pi jkl(t)εi j (t)φkl + di jklφi j (t)φkl] dV ds,

TC(t)≡
1
2t

∫ t

0

∫
B

ρcE

T0
θ2(s) dV ds,

0C(t)≡
1
t

∫ t

0

∫ s

0

∫
B
[

1
T0
κi jθ, i (ξ)θ, j (ξ)+C(ξ)Ṗ(ξ)] dV dξ ds.

(58)

In the following theorem we state and prove the main result of our study.

Theorem 4. Consider ((ui , φi ), θ,C) a solution of the mixed initial boundary value problem defined
by equations (10), the boundary conditions (9) and the initial conditions (11). We assume that the
hypotheses from Section 2 are satisfied. Then, for all initial data

(u0
i , φ

0
i ) ∈W1(B), (u1

i , φ
1
i ) ∈W0(B), (θ0,C0) ∈W1(B)×W1(B), θ1

∈W0(B),

we have the following relations:

(i) If meas(∂B3) 6= 0, then
lim

t→∞
TC(t)= 0. (59)

(ii) If meas(∂B1) 6= 0, meas(∂B2) 6= 0 and meas(∂B4) 6= 0, then

lim
t→∞

KC(t)= lim
t→∞

SC(t), (60)

lim
t→∞

0C(t)= E(0)− 2 lim
t→∞

KC(t)= E(0)− 2 lim
t→∞

SC(t). (61)
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(iii) If meas(∂B1)= 0 or meas(∂B2)= 0 or meas(∂B3)= 0 or meas(∂B4)= 0, then

lim
t→∞

KC(t)= lim
t→∞

SC(t)+
1
2

∫
B
[ρu̇∗i u̇∗i + ρ Ji j φ̇

∗

i φ̇
∗

j ] dV, (62)

lim
t→∞

0C(t)= E(0)− 2 lim
t→∞

KC(t)+
1
2

∫
B
[ρu̇∗i u̇∗i + ρ Ji j φ̇

∗

i φ̇
∗

j ] dV

= E(0)− 2 lim
t→∞

SC(t)−
1
2

∫
B
[ρu̇∗i u̇∗i + ρ Ji j φ̇

∗

i φ̇
∗

j ] dV . (63)

Proof. (i) Suppose that meas(∂B3) 6= 0. It is easy to prove that θ ∈ Ŵ1(B). Therefore, we can apply the
Poincaré inequality (17) so that from the identity (21) one obtains∫ t

0

∫
B

ρcE

T0
θ2(s) dV ds ≤

1
m2

∫ t

0

∫
B
κi jθ, i (s)θ, j (s) dV ds ≤

1
m2

E(0). (64)

From relation (64), taking into account (58), we obtain the conclusion (59).

(ii) We first use the energy conservation law (21) and the hypotheses of Section 2 in order to obtain the
following estimates:∫

B

ρcE

T0
θ2(t) dV ≤ E(0), t ∈ [0,∞), (65)∫

B
[ρu̇i (t)u̇i (t)+ ρ Ji j φ̇i (t)φ̇ j (t)] dV ≤ 2E(0), t ∈ [0,∞), (66)∫ t

0

∫
B

[
ρcE

T0
κi jθ, i (s)θ, j (s)+C(s)Ṗ(s)

]
dV ds ≤ E(0), t ∈ [0,∞). (67)

On the basis of identities (27) and (38) we will find some relationships between the types of energy. So,
from (27) we find

1
2t

∫ t

0

∫
B
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)] dV ds

−
1
2t

∫ t

0

∫
B
[ci jklεi j (s)εkl(s)+ 2pi jklφi j (s)εkl(s)+ di jklφi j (s)φkl(s)] dV ds

=
1
2t

∫ t

0

∫
B

[
ρcE

T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)

]
dV ds−

1
2t

∫
B
[ρu0

i u1
i + ρ Ji jφ

0
i φ

1
i ] dV

−
1
4t

∫ t

0

∫
B
[ρS0θ(s)− P0C(s)] dV ds+

1
2t

∫
B
[ρui (t)u̇i (t)+ ρ Ji jφi (t)φ̇ j (t)] dV

+
1
4t

∫
B

1
T0
κi j

(∫ t

0
θ, i (ξ)dξ

)(∫ t

0
θ, j (ξ)dξ

)
dV

+
1
4t

∫
B

di j

(∫ t

0
P, i (ξ)dξ

)(∫ t

0
P, j (ξ)dξ

)
dV . (68)
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By using (38), from (68) one obtains

1
2t

∫ t

0

∫
B
[ρu̇i (s)u̇i (s)+ ρ Ji j φ̇i (s)φ̇ j (s)] dV ds

−
1
2t

∫ t

0

∫
B
[ci jklεi j (s)εkl(s)+ 2pi jklφi j (s)εkl(s)+ di jklφi j (s)φkl(s)] dV ds

=
1
2t

∫ t

0

∫
B

[
ρcE

T0
θ2(s)+ 2$C(s)θ(s)− %C2(s)

]
dV ds

−
1
2t

∫
B
[ρu0

i u1
i + ρ Ji jφ

0
i φ

1
i ] dV −

1
4t

∫ t

0

∫
B
[ρS0θ(s)− P0C(s)] dV ds

+
1
4t

∫
B
{%[u0

i u̇i (2t)+ u1
i ui (2t)] + ρ Ji j [φ

0
i φ̇ j (2t)+φ1

i φ j (2t)]} dV

+
1
4t

∫ t

0

∫
B
{ρS0
[θ(t + s)− θ(t − s)] + P0

[C(t + s)−C(t − s)]} dV ds. (69)

Taking into account the notations (58) and using the initial conditions (11), from the identity (69) we
deduce

KC(t)−SC(t)

=−
1
2t

∫
B
[ρu0

i u1
i + ρ Ji jφ

0
i φ

1
i ] dV

+
1
2t

∫
B
[ρu0

i u̇i (2t)+ ρ Ji jφ
0
i φ̇ j (2t)] dV +

1
2t

∫
B
[ρu1

i ui (2t)+ ρ Ji jφ
1
i φ j (2t)] dV

+
1
4t

∫ t

0

∫
B
[2$C(s)θ(s)− %C(s)] dV ds−

1
4t

∫ t

0

∫
B
[ρS0θ(s)− P0C(s)] dV ds

+
1
4t

∫ t

0

∫
B
{ρS0
[θ(t + s)− θ(t − s)] + P0

[C(t + s)−C(t − s)]} dV ds+TC(t). (70)

Now we will use the Schwarz and Cauchy inequalities on the right-hand side of (70). Then, by using the
relations (64)–(67) we get∣∣∣∣− 1

2t

∫
B
[ρu0

i u1
i + ρ Ji jφ

0
i φ

1
j ] dV

∣∣∣∣≤ 1
4t

∫
B
[ρ(u0

i u0
i + u1

i u1
i )+ ρ Ji j (φ

0
i φ

0
j +φ

1
i φ

1
j )] dV ;∣∣∣∣ 1

4t

∫
B
[ρu0

i u̇i (2t)+ ρ Ji jφ
0
i φ̇ j (2t)] dV

∣∣∣∣≤ 1
8t

∫
B
[ρu0

i u0
i + ρ Ji jφ

0
i φ

0
j ] dV +

1
4t

E(0).
(71)

Since (ui , φi ) ∈ Ŵ1(B), and P ∈ Ŵ1(B) by using the conditions (7), the Korn’s inequality (16), the
identity (21) and the inequalities (8) one obtains∫

B
[ρui (s)ui (s)+ ρ Ji jφi (s)φ j (s)] dV

≤
ρ

m1

∫
B
[ci jklεi j (s)εkl(s)+ 2pi jklφi j (s)εkl(s)+ di jklφi j (s)φkl(s)] dV ≤

2ρ
m1

E(0), s ∈ [0,∞). (72)

Thus, by using (72) we are led to∣∣∣∣ 1
4t

∫
B
[ρu1

i ui (2t)+ ρ Ji jφ
1
i φ j (2t)] dV

∣∣∣∣≤ 1
8t

∫
B
[ρu1

i u1
i + ρ Ji jφ

1
i φ

1
j ] dV +

ρ

4tm1
E(0). (73)
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Taking into account the estimates (71) and (73) and the relation (59), we pass to the limit in (70) as
t→∞ and conclude that the relation (60) holds.

Also, it is not difficult to observe that the relation (61) is obtained from (21) by taking the Cesàro
mean and by using the relations (59) and (60).

(iii) We use the decomposition (18) from Section 3, the relation (12), (13) and the fact that (ui , φi ) ∈

Ŵ1(B) and P ∈ Ŵ1(B) in order to obtain the identity

1
4t

∫
B
[ρu0

i u̇i (2t)+ ρ Ji jφ
0
i φ̇ j (2t)] dV =

1
4t

∫
B
[ρu∗i u̇∗i + ρ Ji jφ

∗

i φ̇
∗

j ] dV

+
1
2

∫
B
[ρu̇∗i u̇∗i + ρ Ji j φ̇

∗

i φ̇
∗

j ] dV +
1
4t

∫
B
[ρU 0

i vi (2t)+ ρ Ji j8
0
i ψ j (2t)] dV . (74)

Also, since (vi , ψi ) ∈ Ŵ1(B), Korn’s inequality (16) leads to the relation

1
4t

∫
B
[ρvi (s)vi (s)+ ρ Ji jψi (s)ψ j (s)] dV

≤
ρ

m1

∫
B
[ci jkl ε̄i j (s)ε̄kl(s)+ 2pi jkl φ̄i j (s)ε̄kl(s)+ di jkl φ̄i j (s)φ̄mn(s)] dV

=
ρ

m1

∫
B
[ci jklεi j (s)εkl(s)+ 2pi jklφi j (s)εkl(s)

+ di jklφi j (s)φmn(s)] dV ≤
2ρ
m1

E(0), s ∈ [0,∞), (75)

where ε̄ j i = vi, j − εk jiψk , φ̄i j = ψ j,i .
Passing to the limit in (70) as t →∞ and taking into account the relations (71), (74) and (75) one

obtains the conclusion (63). Finally, the relation (63) is obtained on the basis of (21) by taking the Cesàro
mean and by using the relations (59), (62) and (71). Thus, the proof of Theorem 4 is complete. �

6. Conclusion

As a concluding remark, we must outline that the relations (60) and (62), restricted to the class of initial
data for which u̇∗i = φ̇

∗

i = 0, prove the asymptotic equipartition in mean of the kinetic and strain energies.
The presence of other components of total energy does not influence this behavior.
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TOPOLOGY OPTIMIZATION OF SPATIAL CONTINUUM STRUCTURES
MADE OF NONHOMOGENEOUS MATERIAL OF CUBIC SYMMETRY

RADOSŁAW CZUBACKI AND TOMASZ LEWIŃSKI

The paper deals with the minimum compliance problem of spatial structures made of a nonhomogeneous
elastic material of cubic symmetry. The elastic moduli as well as the trajectories of anisotropy directions
are design variables. The isoperimetric condition fixes the value of the cost of the design expressed as the
integral of the unit cost assumed as a linear combination of the three elastic moduli of the cubic symmetry.
The problem has been reduced to the pair of mutually dual auxiliary problems similar to those known
from the theory of materials with locking and from the transshipping theory. The auxiliary minimization
problem has the integrand of linear growth, which transforms the problem considered to the topology
optimization problem in which simultaneously the shape of the structure and its material characteristics
are constructed. In contrast to the free material design which in the single load case leads to the optimal
Hooke tensor with a single nonzero eigenvalue, the optimal Hooke tensor of cubic symmetry has either
three or four nonzero eigenvalues.

1. Introduction

The present paper puts forward a topology optimization method aimed at constructing a stiffest continuum
structure transmitting a given load to a given boundary. The problem is specified by assuming that the
structure being designed is formed of a nonhomogeneous elastic material of cubic symmetry at each
point. All the fields which determine the cubic anisotropy within the whole body are design variables.
The isoperimetric condition imposed is viewed as the cost of the design and is expressed by the spatial
integral of a linear combination of the eigenvalues of the elastic moduli. This expression encompasses
the popular definition of cost, as the integral of the trace of the Hooke tensor of cubic symmetry. Then the
weight coefficients in the expression of the unit cost are equal to the multiplicities of the relevant elastic
moduli. No a priori restrictions on the anisotropy directions are assumed; they are to be determined via
the optimization process. The stiffness of the structure is defined as the inverse of the total compliance.

The problem thus formulated is a reformulation of the free material design (FMD) to the case of
materials of cubic symmetry. In its original formulation the FMD involves no restrictions on the com-
ponents of the Hooke tensor, apart from necessary symmetries and positive semidefiniteness conditions;
see [Bendsøe et al. 1994] and [Haslinger et al. 2010]. The peculiar feature of the compliance minimizing
FMD problem is possible elimination of all design variables, leading to an auxiliary problem of the form

min
{∫
�
‖τ‖ dx | τ ∈6(�)

}
, (P1)

The paper was prepared within the Research Grant no. 2013/11/B/ST8/04436 financed by the National Science Centre (Poland),
entitled Topology optimization of engineering structures. An approach synthesizing the methods of free material design, com-
posite design and Michell-like trusses.
Keywords: free material design, cubic symmetry, topology optimization.
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where 6(�) is the set of statically admissible stress fields τ = (τi j ) on the given feasible domain �; the
norm ‖ · ‖ being Euclidean one.

The problem dual to (P1) reads

max
{

f (v) | v ∈ V (�), ‖ε(v(x))‖∗ ≤ 1 a.e. in �
}
, (P∗1 )

where f (v) represents the virtual work of the load on the displacement field v; V (�) being the space of
kinematically admissible displacement fields; ε(v) is the strain tensor, defined as the symmetric part of
the gradient of v.

The problems (P1), (P∗1 ) have been derived in [Czarnecki and Lewiński 2012; 2014b; 2014a]. The
mathematical structure of these mutually dual problems is similar to the Kantorovich–Rubinstein trans-
shipping problem, while their equivalence can be proved in the manner the Theorem 3.3 in [Bouchitté
et al. 2010] was proved; cf. also [Bouchitté et al. 2005]. The inequality involved in (P∗1 ) can be written
as the inclusion: ε(v(x)) ∈ B where B is a locking locus. Here B is the unit ball with respect to the
Euclidean norm. The problem (P∗1 ) has much in common with the locking material problem, discussed
for example in [Demengel and Suquet 1986] and in [Telega and Jemioło 1998].

Mathematically demanding questions concerning the correctness of the problems (P1), (P∗1 ), referring
to the contemporary variational calculus and measure theory, are the subject of the contemporary studies,
to be published soon. These subtleties will not be discussed in the present paper. Let us yet outline here
the most distinguished features of these problems. Note that the minimizer τ = σ of problem (P1) can
vanish on a set �0 of positive measure, being a subset of the feasible domain �. In the domain �0 all
the components of the optimal elasticity tensor vanish. In the remaining part of the feasible domain the
components of Hooke’s tensor C are expressed by

Ci jkl(x)= λ1(x)
1
ωi j (x)

1
ωkl(x), (1-1)

where λ1(x) is proportional to ‖σ (x)‖, while
1
ω(x)= σ (x)/‖σ (x)‖.

The optimal Hooke tensor possesses only one positive eigenvalue. The form (1-1) is designed for the
given loading; that is why the structure of singular properties (1-1) is capable of transmitting the given
load to the given support; cf. [Czarnecki and Lewiński 2014a, §6]. Thus the solution to the problems
(P1) and (P∗1 ), or only to the problem (P1), delivers information of two kinds:

(i) Topology information which determines the shape of the domain �\�0 occupied by the structural
material; this domain may be multiconnected

(ii) Information on the nonhomogeneous anisotropy: the values of the elastic moduli Ci jkl as well as
the anisotropy directions at each point of the body.

The solutions to the problems (P1) and (P∗1 ) do not determine the underlying microstructures possibly
producing given anisotropic properties.

The topological information on the shape and connectedness of the structure is crucial. This feature
of the FMD method delivers the solution to the topology optimization problem implicitly comprised by
the method. The regularity of the optimal shape depends on the regularity of the data.

A natural modification of the FMD is a priori imposing certain material symmetries. The strongest
assumption is isotropy — this modification has been proposed in [Czarnecki 2015] and [Czarnecki and
Wawruch 2015]; it will be called the isotropic material design (IMD). The only design variables are
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the bulk k(x) and shear µ(x) moduli in each point x of the feasible domain. In the spatial setting the
collection of the eigenvalues of the Hooke tensor is (3k, 2µ, 2µ, 2µ, 2µ, 2µ) and the trace of the Hooke
tensor equals 3k+ 10µ. Let the cost of the design be the integral of the trace of the Hooke tensor. Then
the isoperimetric condition assumes the form∫

�

(3k+ 10µ) dx =3, (1-2)

where 3 stands for the assumed cost.
Czarnecki [2015] proved that the IMD reduces to an auxiliary problem of a mathematical structure

similar to (P1) with the integrand expressed by the norm

|||τ ||| = α|tr τ | +β‖dev τ‖, (1-3)

where tr τ is the trace of τ and dev τ is the deviator of the stress:

dev τ = τ − 1
3(tr τ )

2
I . (1-4)

Here
2
I = (δi j ) is a unit tensor in E2

s , E2
s being the set of symmetric tensors of rank 2; positive parameters

α, β depend on the dimension of the problem.
The problem dual to (P1) with the norm (1-3) assumes the form (P∗1 ), in which the inequality condition

has now the form
|||ε(v(x))|||∗ ≤ 1, (1-5)

where ε ∈ E2
s and the new norm in E2

s is defined by

|||ε|||∗ = sup
τ 6=0, τ∈E2

s

τ · ε

|||τ |||
. (1-6)

This is a norm dual to (1-3). In the sequel we shall show the explicit form of the norm (1-6) and the
condition (1-5).

Therefore, the IMD problem, as expressed by the mutually dual problems (P1), (P∗1 ) involving the
norms (1-3), (1-6), preserves the feature (i): the minimizer of (P1) determines the domain �\�0 which
is its effective domain. The process of designing of a structure made of an isotropic material is thus
converted into a topology optimization algorithm admitting all possible topological changes of the initial
shape of the feasible domain as far as they do keep the linear form f (.) intact. Indeed, if the load is applied
on a part of the boundary, then this part of the boundary cannot undergo changes during the optimization
process. If the volume forces are taken into account, then also the domain of their application is kept
unchanged. In fact, the method takes care of this condition, since the minimizer σ will not vanish in the
domains where the loads are present.

The IMD method delivers as a solution: the effective domain of the minimizer, where the material is
necessary as well as its isotropic properties: the layouts of the moduli k(x), µ(x) optimally distributed
within the feasible domain. The IMD method does not produce any information on the underlying
microstructure. Note that the moduli k and µ determine the values of the Poisson ratio ν. The hitherto
experiments show that the optimal Poisson ratio assumes extreme admissible values within some subdo-
mains: in many cases ν approaches values close to -1, which is mathematically justified, while in some
subdomains the optimal ν assumes values close to 1

2 . Thus the optimization process makes the Poisson
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ratio attain both bounds: −1< ν < 1
2 . In the 2D setting the bounds are even broader: −1< ν < 1. The

negative values of ν make the physical interpretation difficult; only very special materials, called auxetic
materials, like foams of reentrant microstructure, exhibit such properties; cf. [Friis et al. 1988]. The
recent conference Auxetics’14 (Auxetics and other materials and models with “negative” characteristics)
was fully devoted to this topic of materials science.

The solution of (P1) with the norm (1-3) suffices to determine the optimal values of the moduli k and µ.
It turns out that the optimal k(x) is proportional to |tr σ (x)|, while the optimal µ(x) is proportional to
‖dev σ (x)‖.

It is worth indicating here that similar formulae have been reported by Zohdi [2003a] in the paper
on the inverse homogenization based on the minimization of the relative distance between the tensor of
elastic moduli (of a composite determined by random properties of its representative volume element
(RVE)) and a reference isotropic tensor. The optimal k occurs to be proportional to 〈|tr σ |〉, while the
optimal µ is proportional to 〈‖dev σ‖〉, where 〈 · 〉 represents averaging over RVE.

In majority of papers on composite materials the isotropy is associated with an ideal mixture of two or
several constituents within an RVE. It is easy to show two-dimensional layouts of two materials within
a repetitive cell resulting in isotropy of the effective Hooke tensor, see [Grigoliuk and Filshtinskii 1970].
Only recently Łukasiak [2013; 2014] has shown three-dimensional layouts resulting in isotropy of the
effective Hooke tensor constructed by the homogenization method. This result has been achieved by
a proper choice of RVE compatible with Kelvin’s packing; see [Aste and Weaire 2008] and [Weaire
1996]. This result contradicts a remark in [Christensen 1999, p. 95]: “cubic symmetry is the highest
order symmetry that can be obtained by a space filling periodic repeating cell pattern”.

The composite materials and crystals are usually nonisotropic. Thus it is thought useful to extend the
FMD method to the class of designs of lower symmetry. According to Xia [1997] and Ting [2003] there
are 8 symmetry classes: triclinic, monoclinic, orthotropic, tetragonal, trigonal, transversely isotropic,
cubic and isotropic. In the present paper the material design will be confined to the cubic symmetry case.
The aim is to put forward a method to construct — within a given feasible domain — the stiffest structure
capable of transmitting a given load to a given supporting surface by appropriate choice of the material
characteristics of the cubic symmetry class. In each point of the structure the six parameters: the three
elastic moduli and a triplet (n,m, p) of mutually orthogonal unit vectors satisfying

‖n‖ = ‖m‖ = ‖ p‖ = 1,

n ·m = 0, n · p= 0, m · p= 0
(1-7)

are to be determined. The Hooke tensor of a material of cubic symmetry is represented by the celebrated
formula by Walpole [1984]:

C = a J + bL+ cM, (1-8)

where a, b, c are elastic moduli while the fourth-rank tensors J , L, M are expressed as

J = 1
3

2
I ⊗

2
I, L =

4
I − S, M = S− J, and (1-9)

S= n⊗ n⊗ n⊗ n+m⊗m⊗m⊗m+ p⊗ p⊗ p⊗ p, (1-10)
4
I i jkl =

1
2(δikδ jl + δilδk j ), (1-11)
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the latter being a unit tensor in E4
s or in the space of Hooke tensors obeying usual symmetry rules.

The formula (1-8) is also a spectral representation, since the tensors J , L, M are projection operators
(see [Walpole 1984]):

J2
= J, L2

= L, M2
= M,

L J = J L = 0, M J = J M = 0, M L = L M = 0.
(1-12)

The eigenvalues of tensor (1-8) are (a, b, b, b, c, c). Moreover,

tr J = 1, tr
4
I = 6, tr S= 3 (1-13)

or
tr C = a+ 3b+ 2c. (1-14)

In the optimization problem considered the design variables are the scalar fields a(x), b(x), c(x) and the
vector fields n(x), m(x), p(x) satisfying the conditions (1-7).

The spectral representation of the inverse of C reads

C−1
=

1
a

J + 1
b

L+ 1
c

M, (1-15)

provided that all the moduli a, b, c are positive. If, for instance, b = 0, the tensor C−1 will be assumed
in the form

C−1
=

1
a

J + 1
c

M, (1-16)

remembering that then the formula C−1C =
4
I is broken.

The cost of the design will be taken as the integral of the linear combination of the elastic moduli:∫
�

(α1a+α2b+α3c) dx =3, (1-17)

where αi > 0 are fixed. If α1 = 1, α2 = 3, α3 = 2 then the unit cost is equal to tr C; see (1-14). We
consider the following problem of optimum design:

Find the layout of the elastic moduli a, b, c and the orthogonal trajectories of the vector fields
(m, n, p) at each point of the feasible domain �, satisfying the isoperimetric condition (1-17),
such that the structure made of this nonhomogeneous material (of cubic symmetry at each
point) is characterized by the smallest total compliance among all structures designed in the
same feasible domain, obeying the same isoperimetric condition and capable of transmitting
the same load to the same boundary.

We shall show that the problem above can be reduced to the two auxiliary problems (P1), (P∗1 ) with
norms ||| · |||, ||| · |||∗ but with different coefficients α and β than those involved in the auxiliary problems
of the IMD method. This result is surprising, since the auxiliary optimization problems for the isotropic
and cubic symmetries differ very slightly and preserve their main property: the integrand of (P1) is
still expressed in terms of the two invariants of the stress field. Upon finding the minimizer τ = σ of
problem (P1) one can determine the design variables: the scalars a(x), b(x), c(x) and the vector fields
n(x), m(x), p(x) at each point of the domain �\�0 where σ does not vanish.
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The mentioned similarity between optimized cubic symmetry and isotropy has already been noted
previously in a different context of constructing a stationary form of energy density of a material of
cubic symmetry; Norris [2006] noted that “the extreme values of the energy for cubic materials have the
same form of the energy for an isotropic solid”; see Equations (4.59, 46) therein.

Considered in the present paper the optimal materials of cubic symmetry can be manufactured as cellu-
lar foams of small density (see [Christensen 1999]), or the lotus-type porous copper (see [Xie et al. 2004]).

Moreover, the metal matrix composites belong to the class of materials whose cubic symmetry can
be tailored by appropriate choice of microstructural parameters determining the physical, topological as
well as geometrical properties of second phase particles. Towards this end one should state an inverse
problem by appropriate extension of Zohdi’s [2001; 2003b] normalizing objective functionals. Although
constructed for the isotropic design, they can serve as well for the cubic design provided that the set of
design variables is augmented by Euler’s angles of particles, following the lines of smooth change of the
triplet fields (m, n, p). Appropriate liquid state processing makes it possible to align the particles along
prescribed directions; see comments in [Zohdi 2001, §2].

Reduction of the optimum design problem to the problem of type (P1) with the norm ||| · ||| means
that the method put forward implies simultaneously the topology and the material optimization. The
effective domain �\�0 of the minimizer τ = σ determines the shape of the structure and admits its
multiconnectedness. Depending on the shape of the feasible domain � and on the type of the surface
load applied the method forms the domain �\�0 occupied by the material. We shall prove in the sequel
that depending on the sign of (α2−α3) the nonzero optimal moduli are either (a, b) or (a, c). This means
that in all cases exactly one modulus of three (a, b, c) vanishes to make the whole structure as stiff as
possible. The optimal cubic material turns out to be degenerated in all cases. Yet the optimal material
properties are perfectly suited for the given load and support, thus making the optimal structure fulfill
all conditions of equilibrium as well as the boundary conditions. The displacement and strain fields in
the optimum structure are not uniquely determined, the constitutive equations being noninvertible, yet
the corresponding stress field transmitting the load to the support is unique.

The following conventions are adopted. The feasible domain � in R3 is parametrized by the Cartesian
system (x1, x2, x3) of vectors (e1, e2, e3) satisfying ei e j = δi j ; the Latin indices i, j, . . . run over 1, 2, 3.
The summation convention over repeated indices is adopted. An arbitrary point x of � is identified with
its coordinates (x1, x2, x3). The symmetric tensors of rank two form the set E2

s , while rank-four Hooke
tensors of usual symmetries form the set E4

s . Comma implies partial differentiation: ( · ),i = ∂( · )/∂xi . A
symmetric part of the gradient of a vector field v = (v1, v2, v3) is denoted by εi j (v)=

1
2(vi, j + v j,i ). The

Euclidean norms are defined for vectors by ‖v‖= (vivi )
1/2 for v ∈R3, and for tensors by ‖τ‖= (τi jτi j )

1/2

for τ ∈ E2
s . The scalar products are defined as

v ·w = viwi , τ · ε = τi jεi j for v,w ∈ R3, τ , ε ∈ E2
s .

2. Optimum design problem

The main data is the spatial feasible domain � in which the designed structure is to be placed. On a
boundary 01 the tractions T = (Ti ) are applied. This surface is not subject to optimization. Under the
equilibrium problem we understand construction of the stress fields τ within �, transmitting the given
load T to the given part 02 of the boundary. Not all points of 02 need to be supporting points — along
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some part of the boundary the material can disappear. The vector fields v= (v1, v2, v3) within� vanishing
on 02 form the space V (�) of kinematically admissible displacements. In this paper we do not formulate
the regularity conditions for the fields involved; these conditions can be assumed by analogy with those
assumed in [Bouchitté et al. 2005; 2010] concerning the transshipping problem in the scalar version.

The stress field τ is said to be statically admissible if it satisfies the variational equation∫
�

τ · ε(v) dx = f (v) for all v ∈ V (�), (2-1)

where the linear form is defined by

f (v)=
∫
01

T · v ds. (2-2)

The value f (v) is the virtual work of the tractions on the field v. The set of all stress fields τ satisfying
(2-1), (2-2) forms the linear affine set 6(�).

The body occupying the domain �, supported on 02, loaded on 01 of given anisotropy determined
by the field of the Hooke tensor C(x) will be called a structure if it is capable of transmitting the given
load to the support 02. Its total compliance is expressed by the Castigliano formula:

Y = min
τ∈6(�)

∫
�

τ · (C−1τ ) dx . (2-3)

Assume that the tensor field C(x) exhibits a cubic symmetry at each point x of the feasible domain. Let
the moduli a, b, c and the triplet (m, n, p) be design variables. The moduli a, b, c must satisfy the
isoperimetric condition (1-17) while the triplet (m, n, p) must satisfy the conditions (1-7). The problem
of optimum design expressing the compliance minimization is formulated as

J = min
(m,n, p)

satisfying (1-7)

min
(a,b,c)

satisfying (1-17)

Y (2-4)

The fields (a, b, c) and (m, n, p) minimizing Y determine the moduli and the trajectories of cubic
anisotropy directions. It will be shown in the sequel that minimization over the design variables can
be performed analytically, which reduces the problem (2-4) to an auxiliary problem (P1) with a certain
norm of type (1-3).

3. Elimination of design variables

Let us change the sequence of minimization operators in (2-4) and (2-3). We rewrite (2-4) in the form

J = min
τ∈6(�)

Y (τ ), (3-1)

where

Y (τ )= min
(m,n, p)

satisfying (1-7)

min
(a,b,c)

satisfying (1-17)

∫
�

τ · (C−1τ ) dx . (3-2)

Let us compute the integrand in (3-2) by using (1-15) and (1-9):

τ · (C−1τ )=
1
a
τ · (Jτ )+ 1

b
(‖τ‖2− τ · (Sτ ))+ 1

c
(τ · (Sτ )− τ · (Jτ )). (3-3)
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Let us write
τ · (C−1τ )=

1
a

Y1(τ )+
1
b

Y2(τ )+
1
c

Y3(τ ) (3-4)

with
Y1(τ )=

1
3(tr τ )

2,

Y2(τ )= ‖τ‖
2
− τ · (Sτ ),

Y3(τ )= τ · (Sτ )− 1
3(tr τ )

2.

(3-5)

One can prove that for each choice of the triplet (m, n, p) satisfying (1-7) the following estimates hold:

1
3(tr τ )

2
≤ τ · (Sτ )≤ ‖τ‖2. (3-6)

The right inequality becomes sharp if the triplet (m, n, p) coincides with principal directions of the stress
tensor τ . The left inequality is also attainable, which is much more difficult to prove. It can be inferred
from the stationarity criterion of Norris [2006, (4.32)]. The minimizer (m∗, n∗, p∗) of the quadratic form
τ · (Sτ ), for fixed τ , satisfies the condition

S(m∗, n∗, p∗)τ = 1
3(tr τ )

2
I, (3-7)

which implies
min
(m,n, p)

satisfying (1-7)

(τ · (Sτ ))= 1
3(tr τ )

2. (3-8)

We conclude that both Y2(τ ) and Y3(τ ) are nonnegative.
Consider the auxiliary problem

W = min
a>0, b>0, c>0
satisfying (1-17)

∫
�

(1
a

Y1+
1
b

Y2+
1
c

Y3

)
dx, (3-9)

in which τ is fixed while the quantities Yi are positive. Such a problem has been solved in [Czarnecki
and Lewiński 2014b, §3.1]. Its solution has the form

W =
1
3

[∫
�

(√
α1
√

Y1+
√
α2
√

Y2+
√
α3
√

Y3
)

dx
]2

. (3-10)

Let us proceed to perform minimization over the triplets (m, n, p). Let us introduce the notation

z = τ · (Sτ ), z0 =
1
3(tr τ )

2, z1 = ‖τ‖
2. (3-11)

Let us consider the auxiliary problem
min

z∈[z0,z1]
f (z), (3-12)

where
f (z)=

√
α2
√

z1− z+
√
α3
√

z− z0. (3-13)

It is easy to check that f ′′(z) < 0 if z ∈ [z0, z1]. Thus the minima of f (z) can only be attained at the
ends of the interval [z0, z1]:

min
z∈[z0,z1]

f (z)=min( f (z0), f (z1)). (3-14)
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Let us compute
f (z0)=

√
α2
√

z1− z0, f (z1)=
√
α3
√

z1− z0. (3-15)

Thus
min

z∈[z0,z1]
f (z)=

√
z1− z0 min(

√
α2,
√
α3). (3-16)

According to the Norris result (3-7) both the minima are attainable by a certain triplet (m, n, p).
The results (3-10), (3-16) solve the problem (3-2):

Y (τ )=
1
3

(∫
�

(√
α1
√

Y1(τ )+min(
√
α2,
√
α3)
√
‖τ‖2− Y1(τ )

)
dx
)2

.

Let us note that √
‖τ‖2− Y1(τ )= ‖dev τ‖. (3-17)

The problem (3-7) is thus reduced to the form

J =
1
3

Z2, (3-18)

where
Z =min

{∫
�
|||τ ||| dx | τ ∈6(�)

}
(3-19)

and
|||τ ||| =

√
α1/3|tr τ | +min(

√
α2,
√
α3)‖dev τ‖ (3-20)

is the norm of type (1-3). Thus the problem (3-20) has almost the same form as that occurring in the
similar problem concerning nonhomogeneous isotropy; see [Czarnecki 2015].

Remark 1. The problem (3-19) is the tensorial counterpart of the following problem with a vectorial
unknown:

Zs =min
{∫
�
‖ p‖ dx | p ∈6s(�)

}
, (3-21)

where ‖ p‖ is a certain norm of the vector p ∈R3; 6s(�) is the set of vector fields p= (p1, p2, p3) on �
such that ∫

�

p · ∇v dx =
∫
01

T · v ds for all v ∈ Vs(�), (3-22)

where T is given on 01 ⊂ ∂� while Vs(�) is the set of scalar fields v vanishing on the segment 02 of the
boundary. The problem (3-21) appears in the theory of transshipping; cf. [Bouchitté et al. 2010; 2005].
This problem can be rearranged to a well-posed form by completing it with appropriate assumptions
concerning the data.

The subtle problems concerning possible well-posedness of the problem (3-19) will be the subject of
an independent work. Assume that τ = σ is the minimizer of (3-19). Let �\�0 be the effective domain
of σ . The values of the optimal moduli a∗(x), b∗(x), c∗(x) can be computed by the formulae which
follow from minimization of (3-9):

a∗(x)=
1
√
λα1

√
Y1(σ (x)), b∗(x)=

1
√
λα2

√
Y2(σ (x)), c∗(x)=

1
√
λα3

√
Y3(σ (x)), (3-23)
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where the Lagrange multiplier λ is positive and given by the formula

√
λ=

1
3

∫
�

(√
α1Y1(σ )+

√
α2Y2(σ )+

√
α3Y3(σ )

)
dx (3-24)

and Yi (σ ) are determined by (3-5), where the triplet (m∗, n∗, p∗) corresponds either to the lower or to
the upper bound in (3-6).

In case of α2 < α3 the minimum in (3-14) is attained if z = z0 then the triplet (m∗, n∗, p∗) makes
sharp the left inequality in (3-6). The triplet should be found from the Norris condition (3-7). In case of
α2 > α3 the minimum in (3-14) is attained if z = z1. Then the triplet (m∗, n∗, p∗) makes sharp the right
inequality in (3-6). The triplet coincides with eigenvectors of the tensor τ = σ .

Let us discuss these two cases in more detail.

Case 1: α2 < α3. The choice of (m∗, n∗, p∗) by (3-7) implies that σ · (Sσ )= 1
3(tr σ )

2. Thus

Y2(σ )= ‖dev σ‖2, Y3(σ )= 0. (3-25)

The optimal moduli are expressed as

a∗(x)=
1
√
λα1

1
√

3
|tr σ (x)|, b∗(x)=

1
√
λα2
‖dev σ (x)‖, c∗(x)= 0. (3-26)

The optimal Hooke tensor C∗(x) is characterized by the eigenvalues (a∗(x), b∗(x), b∗(x), b∗(x), 0, 0).
Let us write down its spectral representation:

C∗(x)= a∗(x)J + b∗(x)L(x), (3-27)

where L(x) =
4
I − S(x) and the tensor S(x) is determined by the triplet (m∗, n∗, p∗) satisfying the

condition (3-7). Let us write down the formula for the multiplier λ:

√
λ=

1
3

∫
�

(√
α1/3|tr σ | +

√
α2‖dev σ‖

)
dx, (3-28)

which completes the formulae (3-26) for the effective moduli.
Let us write down the constitutive equations of the optimal body taking at the given point x the

axes xi as directed along the triplet (m∗, n∗, p∗) determined by the condition (3-7). The components of
the tensor C read

Ci jkl =
1
3(a− c)δi jδkl +

1
2 b(δikδ jl + δilδ jk)+ (c−b)(δi1δ j1δk1δl1+ δi2δ j2δk2δl2+ δi3δ j3δk3δl3). (3-29)

This formula can be inferred from (1-8)–(1-11). The nonzero components Ci jkl are

C1111 = C2222 = C3333 =
1
3a+ 2

3 c,

C1122 = C1133 = C2233 =
1
3a− 1

3 c,

C1212 = C1313 = C2323 =
1
2 b.

(3-30)
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Hence the constitutive equations assume the form

σ̃11 =
( 1

3a+ 2
3 c
)
ε̃11+

1
3(a− c)(ε̃22+ ε̃33),

σ̃22 =
( 1

3a+ 2
3 c
)
ε̃22+

1
3(a− c)(ε̃11+ ε̃33),

σ̃33 =
( 1

3a+ 2
3 c
)
ε̃33+

1
3(a− c)(ε̃11+ ε̃22),

σ̃12 = bε̃12, σ̃13 = bε̃13, σ̃23 = bε̃23

(3-31)

The stresses σ̃i j and strains ε̃i j refer to the optimal body. These tensors should not be misled with the
solution to the auxiliary problems: (3-19) and the dual to the latter.

In the case discussed a = a∗, b = b∗, c = c∗ = 0 the equations (3-31) assume the form

σ̃i i =
1
3a∗(ε̃11+ ε̃22+ ε̃33), (do not sum over i),

σ̃i j = b∗ε̃i j , i 6= j.
(3-32)

The principal directions of tensors σ̃ and σ do not coincide. Consequently, these fields do not coincide.

Case 2: α2 > α3. The triplet (m∗, n∗, p∗) coincides with eigenvectors of tensor σ . Thus we have
σ · (Sσ )= ‖σ‖2. Then

Y2(σ )= 0, Y3(σ )= ‖dev σ‖2. (3-33)

The optimal moduli assume the form

a∗(x)=
1
√
λα1

1
√

3
|tr σ (x)|, b∗(x)= 0, c∗(x)=

1
√
λα3
‖dev σ (x)‖. (3-34)

The optimal Hooke tensor has the eigenvalues (a∗(x), 0, 0, 0, c∗(x), c∗(x)). The spectral representation
of the Hooke tensor reads

C∗(x)= a∗(x)J + c∗(x)M(x), (3-35)

with M(x)= S(x)− J and tensor S(x) is determined by the triplet of eigenvectors of tensor σ at point x .
Let us write down the expression for the Lagrange multiplier

√
λ=

1
3

∫
�

(√
α1/3|tr σ | +

√
α3‖dev σ‖

)
dx . (3-36)

Thus the formulae for the optimal moduli have been put in their final form.
According to (3-30) the moduli C∗1212, C∗1313, C∗2323 vanish. Thus, in the assumed coordinate system

the constitutive equations assume the form

σ̃11 =
( 1

3a∗+ 2
3 c∗
)
ε̃11+

1
3

(
a∗− c∗

)(
ε̃22+ ε̃33

)
, σ̃12 = 0, σ̃13 = 0, σ̃23 = 0. (3-37)

The remaining equations follow from change of indices. We conclude that the eigendirections of the
tensor σ (i.e. the minimizer of (3-19)) and of the tensor σ̃ (stress field in the optimal structure) coincide.
Thus the trajectories of both the fields coincide.

Both the fields σ and σ̃ are statically admissible and have the same trajectories. Thus, except very
specific situations in which the stress field has multiple principal values and undefined eigenvectors,
both the stress fields should coincide. Indeed, if writing the equilibrium equations along the trajectories
(or — in the curvilinear coordinate system formed by the trajectories) these three equations involve three
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unknown fields (principal stresses). This suggests that there is only one solution to this system satisfying
the same boundary conditions on the boundary 01. Consequently, the fields σ̃ and σ must, in general,
coincide, except for very specific cases.

The case of α2 > α3 is particularly important as encompassing the isoperimetric condition expressed
in terms of the trace of the Hooke tensor; see (1-14). Then α1 = 1, α2 = 3, α3 = 2 and the norm (3-20)
assumes the form

|||τ ||| =
√

3
3 |tr τ | +

√
2‖dev τ‖, (3-38)

the parameters α and β being equal to
√

3
3 and

√
2, respectively.

The algorithm for solving the problem (2-4) with the isoperimetric condition concerning the trace
of C can be summarized as below:

(1) Solve the problem (3-19) or construct its minimizer τ = σ .

(2) Determine the domain �\�0 where σ does not vanish.

(3) Compute by (3-34), (3-36) the moduli a∗, c∗ within the domain �\�0.

(4) Find the triplets (m, n, p) as eigenvectors of the tensor σ .

(5) Compute components of C∗ by (3-35).

Remark 2. The FMD method in its original version in which no additional conditions are imposed on
the structure of the Hooke tensor C leads to the singular optimal solution C∗ with only one nonzero
eigenvalue. The method proposed in the present paper in which the cubic symmetry is imposed leads
to the singular representations (3-27) or (3-35) with two or three vanishing eigenvalues. The method
IMD in which the material symmetry is imposed as isotropic leads to the nondegenerate optimal Hooke
tensors. This distinguishes the method IMD from other versions of FMD-type, since nonsingular results
are obtained even if only one load condition is taken into account.

To make the presented results (3-27) and (3-35) nonsingular one should, e.g., consider multiple load
optimization, with the simplest scalarization concept, as used recently in [Czarnecki and Lewiński 2014b]
for the classical FMD. This is an open problem to be discussed elsewhere.

4. Formulation dual to the auxiliary minimization problem

As has been stressed in Section 1, the problem dual to the stress-based auxiliary problem of the FMD
has the form (P∗1 ), which can be expressed as

max
{

f (v) | v ∈ V (�), ε(v(x)) ∈ B
}
, (4-1)

where B is the unit ball in E2
s with respect to the Euclidean norm. It is seen that the problem (4-1) has

a very specific mathematical structure, since it involves the conditions to be satisfied pointwise. This is
the consequence of the integrand in (P1) being of linear growth. Since the integrand in (3-19) has also
a linear growth, the problem dual to (3-19) will have again the mathematical form similar to (4-1); the
modification will touch the shape of the ball B, called the locking locus. As mentioned in Section 1, the
ball B is now defined by the norm dual to the norm ||| · ||| involved in (3-19), hence

B =
{
ε ∈ E2

s | |||ε|||
∗
≤ 1

}
, (4-2)



TOPOLOGY OPTIMIZATION OF MATERIALS OF CUBIC SYMMETRY 531

while the norm ||| · |||∗ is defined by (1-6). A passage from (3-19) to (4-1)–(4-2) can be done by using
the arguments invoked in [Czarnecki and Lewiński 2014a], along the lines of the derivation shown in
[Strang and Kohn 1983], where, however, other norms are involved.

Our aim now is now to find the explicit form of the norm ||| · |||∗ given by (1-6). The scalar product
τ · ε can be decomposed into the hydrostatic and deviatoric parts:

τ · ε = 1
3(tr τ )(tr ε)+ dev τ · dev ε.

Let η = tr τ , s = dev τ . Let us rewrite (1-6) using definition (1-3) of the norm ||| · |||:

|||ε|||∗ =
1
α

max
η∈R, s∈E2

s
tr s=0, s 6=0

1
3η(tr ε)+ s · dev ε

|η| +
(
β

α

)
‖s‖

. (4-3)

Now we shall make use of the following elementary result, valid for positive a and b:

max
x∈R

cx+a
|x |+b

=max
(
|c|, a

b

)
. (4-4)

This result will be used by interpreting

x = η, c = 1
3 tr ε, a = s · dev ε, b = β

α
‖s‖. (4-5)

Tensor s can always be chosen such that a > 0. Thus the norm (4-3) assumes the form

|||ε|||∗ =
1
α

max
{

1
3 |tr ε|,

α

β
max
s∈E2

s
tr s=0, s 6=0

s · dev ε
‖s‖

}
, (4-6)

hence
|||ε|||∗ =max

{ 1
3α
|tr ε|, 1

β
‖dev ε‖

}
(4-7)

since

max
s∈E2

s
tr s=0, s 6=0

s · dev ε
‖s‖

= max
s∈E2

s
s 6=0

s · dev ε
‖s‖

= ‖dev ε‖.

We omit the proof that ||| · |||∗ given by (4-7) is a norm in E2
s .

If the cost of the design is expressed by the trace of C then one should put α =
√

3
3 and β =

√
2

into (4-7) to find the locking locus in the form

max
{√3

3 |tr ε|,
√

2
2 ‖dev ε‖

}
≤ 1. (4-8)

The above set can be expressed in terms of principal strains upon using the formulae

|tr ε| = |εI+ εII+ εIII|, ‖dev ε‖ =
√

3
3

√
(εI− εII)2+ (εII− εIII)2+ (εI− εIII)2. (4-9)

In the space of principal strains the locking locus assumes the shape of a cylindrical domain of the axis
along the vector of e = (1, 1, 1); see Figure 1. The length of the cylinder equals 2, while its radius
equals 2

√
3

3 .
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Figure 1. The locking locus for the isoperimetric condition expressed by tr C .

5. The question of correctness of the equilibrium problem of the optimal structure

The equilibrium of the optimal structure is governed by the following variational problem: find u ∈ V (�)
such that

a∗(u, v)= f (v) for all v ∈ V (�), (5-1)

the bilinear form being associated with the optimal Hooke tensor C∗

a∗(u, v)=
∫
�

ε(v) · (C∗ε(u)) dx (5-2)

given by the formula (3-27) in case α2 < α3 and by the formula (3-35) if α2 > α3. Consider the case
of α2 > α3 encompassing the case of the isoperimetric condition expressed by tr C. The bilinear form
a∗( · , · ) is nonnegative, since

ε · (C∗ε)= a∗(ε · (Jε))+ c∗
[
ε · (Sε)− ε · (Jε)

]
=

1
3a∗(tr ε)2+ c∗

(
ε · (Sε)− 1

3(tr ε)
2)
≥ 0. (5-3)

Let R be the kernel of the bilinear form a∗( · , · ):

R=
{
v ∈ H 1(�,R3) | a∗(v, v)= 0

}
. (5-4)

Any field v of the class R is such that there exists a field w ∈ H 1(�,R3) such that

ε(v)= Lε(w), (5-5)

where L =
4
I − S; cf. (1-9).

Let us compute the integrand of a∗(v, v):

ε(v) · (C∗ε(v))= (Lε(w)) · (C∗Lε(w)).

According to (3-35) and using (1-12) we find

C∗L = (a∗ J + c∗M)L = a∗(J L)+ c∗(M L)= 0,
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which proves that v ∈R.
Let us proceed now to prove

f (v)= 0 for all v ∈R∩ V (�), (5-6)

which is the main necessary condition of well-posedness of problem (5-1). Let us note that the minimizer
τ = σ of (3-19) satisfies (2-1). Thus the linear form f ( · ) may be represented by

f (v)=
∫
�

σ · ε(v) dx for all v ∈ V (�). (5-7)

For showing (5-6) it is sufficient to prove that

σ · ε(v)= 0 (5-8)

holds if the field v is chosen such that ε(v)= Lε(w) and w ∈ H 1(�,R3). We compute

σ · ε(v)= σ · (Lε(w))= σ · ((
4
I − S)ε(w))= σ · ε(w)− σ · (Sε(w)). (5-9)

Let
m
σ ,

m
n be the eigenvalues and eigenvectors of the tensor σ , m = 1, 2, 3. In the case when α2 > α3, the

following representations hold:

Si jkl =
1
ni

1
n j

1
nk

1
nl +

2
ni

2
n j

2
nk

2
nl +

3
ni

3
n j

3
nk

3
nl,

σi j =
1
σ

1
ni

1
n j +

2
σ

2
ni

2
n j +

3
σ

3
ni

3
n j ,

(5-10)

since the triplet (m∗, n∗, p∗) coincides with the eigenvectors of σ . Let us write ηi j = εi j (w) for brevity
and compute

σ · ε(w)=

3∑
m=1

m
σ(

m
niηi j

m
n j ) (5-11)

as well as

σ · (Sε(w))= σ · (Sη)= σi j Si jklηkl =

3∑
m=1

σi j
m
ni

m
n j

m
nk

m
nlηkl . (5-12)

Taking into account that

σi j
m
ni

m
n j =

m
σ , (5-13)

we find

σ · (Sε(w))=
3∑

m=1

m
σ(

m
nkηkl

m
nl), (5-14)

which proves that σ · ε(v) = 0 if v satisfies the condition (5-5). Consequently, the condition (5-6) is
fulfilled.

Assume that the problem (5-1) possesses two solutions
1
u,

2
u. Then

a∗(
1
u−

2
u, v)= 0 for all v ∈ V (�). (5-15)
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Let us choose v =
1
u−

2
u to conclude that

1
u−

2
u ∈R. By (5-5) a field w exists such that

ε(
1
u−

2
u)= Lε(w). (5-16)

Then
C∗ε(

1
u)−C∗ε(

2
u)= 0 (5-17)

since
C∗L = 0.

Hence to both the fields
1
u and

2
u the same stress tensor is assigned:

σ̃ = C∗ε(
1
u)= C∗ε(

2
u). (5-18)

We conclude that the stress field in the optimal structure is uniquely determined, provided it exists. We
have previously noted that this stress field is simultaneously the minimizer of the problem (3-19), except
for some specific cases when the eigenvectors of the stress field are not uniquely determined.

Let us stress that the displacement field and strain field are not uniquely determined, but this property
does not contradict uniqueness of the stress field. Moreover, the compliance f (u) is uniquely determined
since u, a solution to (5-1), is determined modulo fields from R on which the linear form f ( · ) vanishes.

6. Final remarks

The minimum compliance problem (2-4) has been reduced to the auxiliary, stress-based problem (3-19)
with the integrand of linear growth. A numerical method for this problem is now available; it has been
successfully developed by Czarnecki [2015] to construct optimum isotropic bodies. Case studies con-
cerning cubic symmetry will be published in separate papers.

The optimal designs depend drastically on the sign of (α2−α3), αi being the weight coefficients in the
isoperimetric condition (1-17). In case of α2 < α3 the eigenvalues of the optimal Hooke tensor C∗ are
(a, b, b, b, 0, 0). In case of α2 > α3 these eigenvalues are (a, 0, 0, 0, c, c). Moreover, in the latter case
the stress field in the optimal body coincides (except for very specific cases) with the stress field being
the minimizer of the auxiliary problem (3-19). In particular, the trajectories of both the stress fields are
the same.
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