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RELATION BETWEEN THE MAXWELL EQUATIONS AND BOUNDARY
CONDITIONS IN PIEZOELECTRIC AND PIEZOMAGNETIC FRACTURE

MECHANICS AND ITS APPLICATION

HAO TIAN-HU

This paper presents the relation between the Maxwell equations and the boundary conditions in piezo-
electric and piezomagnetic fracture mechanics. In addition, considering that the case after deformation
(current configuration in nonlinear elasticity) is very important for these conditions, the significance of
them has been studied for this case. The application of them has also been researched. Moreover, the
stress field of the solid material caused by the electric field has been discussed. In the conclusion, it is
briefly discussed how to determine the crack open or not, which is of vital importance for semipermeable
and impermeable boundary conditions.

1. Introduction

In mechanics, along with rapid development of the computing technology, the methods of solution have
been various. Accordingly, the equations of constitutive and the boundary conditions should be paid more
attention. Consequently, in the research on the solid fracture mechanics of piezoelectric and piezomag-
netic materials, the exploration of the relation between the Maxwell equations and the electromagnetic
boundary conditions is necessary. Although many authors have researched on these boundary conditions
such as Kumar and Singh [1997], yet the study of this relation is not enough. In this paper, firstly,
the relation between the permeable electromagnetic boundary conditions and Maxwell equations has
been studied. Then, the permeable, the semipermeable and the impermeable electromagnetic boundary
conditions have been discussed [Zhang et al. 2002]. In particular, for the semipermeable electromagnetic
boundary condition, the body after deformation must be dealt with. Therefore, we must cope with the
nonlinear elasticity. We know that this theory is very complicated. In order to avoid this difficulty, we
consider using the approximated direct method instead of the iteration method. Consequently, we don’t
need to carry out this repeat calculation.

Lastly, the problem of the stress field of the solid material caused by the electric field had been
discussed. It is briefly discussed how to determine the crack open or not.

2. Maxwell equations and permeable conditions

It is known that the Maxwell equations can be written in two forms. They are differential form and
integral form. The Maxwell equations in these forms are∫

S
D · d S= q0 or DivD = q1, (∂D1/∂x1+ ∂D2/∂x2+ ∂D3/∂x3 = q1), (1)
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where D is the electric displacement vector, S is the whole surface of a body, q0 is the total charge in
the body, q1 is the charge density and d S is a vector as in the course of vector analysis.∫

k
E · dk =−

∫
Sk

(∂B/∂t) · d S or CurlE =−∂B/∂t,

∂E2/∂x1− ∂E1/∂x2 =−∂B3/∂t,

∂E1/∂x3− ∂E3/∂x1 =−∂B2/∂t,

∂E3/∂x2− ∂E2/∂x3 =−∂B1/∂t.

(2)

where E is electric field vector, B is magnetic induction vector, k is a closed curve, dk is the tangential
vector of k and Sk is a surface whose boundary curve is k.∫

S
B · d S= 0 or divB = 0, (∂B1/∂x1+ ∂B2/∂x2+ ∂B3/∂x3 = 0), (3)∫

k
H · dk = J0+

∫
Sk

(∂D/∂t) · d S or CurlH = J0+ ∂D/∂t,

∂H2/∂x1− ∂H1/∂x2 = J03+ ∂D3/∂t,

∂H1/∂x3− ∂H3/∂x1 = J02+ ∂D2/∂t,

∂H3/∂x2− ∂H2/∂x3 = J01+ ∂D1/∂t,

(4)

where H is magnetic field intensity vector and J01, J02, J03, are the components of the current intensity
vector J0.

Only the static condition and the cases q0 = 0, q1 = 0, J0 = 0 are dealt with.
The equations (1) and (3) become∫

S
D · d S= 0 or DivD = 0 (∂D1/∂x1+ ∂D2/∂x2+ ∂D3/∂x3 = 0), and∫

S
B · d S= 0 or DivB = 0 (∂B1/∂x1+ ∂B2/∂x2+ ∂B3/∂x3 = 0).

(5)

Considering ∂D/∂t = 0 and ∂B/∂t = 0 (static condition) and J0 = 0, the equations (2) and (4) become∫
k

E · dk = 0 or CurlE = 0

(∂E2/∂x1− ∂E1/∂x2 = 0, ∂E1/∂x3− ∂E3/∂x1 = 0, ∂E3/∂x2− ∂E2/∂x3 = 0), and∫
k

H · dk = 0 or CurlH = 0

(∂H2/∂x1− ∂H1/∂x2 = 0, ∂H1/∂x3− ∂H3/∂x1 = 0, ∂H3/∂x2− ∂H2/∂x3 = 0).

(6)

On the basis of Equation (6), we have

Ei = ∂φ/∂xi and Hi = ∂φ1/∂xi (6a)

where φ is the electric potential and φ1 is the magnetic potential.
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For plane case, on the Ox1x2 plane, two integrals in (5) are all computed along the surface curve p
of the area and become ∫

p
Dn dp = 0 and

∫
p

Bn dp = 0, or

∂D1/∂x1+ ∂D2/∂x2 = 0 and ∂B1/∂x1+ ∂B2/∂x2 = 0,
(7)

where p is the surface curve in the plane, Dn is the normal component of vector D and Bn is the normal
component of vector B.

The two integrals in (6) become∫
p

Et dp = 0 or ∂E2/∂x1− ∂E1/∂x2 = 0, and∫
p

Ht dp = 0 or ∂H2/∂x1− ∂H1/∂x2 = 0,
(8)

where Et is the tangential component of vector E and Ht is the tangential component of vector H .
Now, based on Maxwell equations, the permeable boundary conditions for the static electric and

magnetic case are studied. One considers a surface, which can be the interface of two materials. A
short segment of this surface is studied (we shall discuss it in detail in Appendix). For convenience, the
segment in the studied plane is a part of Ox1 axis. In order to study the conditions on the segment, a
rectangle is taken, as shown in the figure:

 

Ox2 

Ox1 
d 

A 

C 

B 

D 

The longer side is parallel to the segment, i.e., Ox1 axis with width d. The shorter is perpendicular to
the segment, i.e., Ox2 axis and its length trends to zero. For the rectangle, the two integrals in (5) and (7)
can be computed.

Considering the area is very small, one can be sure that the value of D, E(φ), B and H(φ1) are
constants on one side but can be different on other side. Therefore, the contribution on the shorter side
tends to zero. For the longer side, they are parallel to Ox1. The tangent component of vector E is E1.
Similarly, the normal component of vector D is D2. The equation

∫
p Dn dp = 0 and

∫
p Et dp = 0

becomes

(D+2 − D−2 )d = 0, i.e., D+2 = D−2 , and (E+1 − E−1 )d = 0, i.e., E+1 = E−1 (φ
+
= φ−), (9)

where D+2 is the D2 on the upper surface of the interface and D−2 is that on the lower surface. Similarly,
E+1 and E−1 can be understand as D+2 and D−2 .
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For the magnetic field, one has

B+2 = B−−2 and H+1 = H−1 (φ
+

1 = φ
−

1 ). (10)

It is the permeable boundary conditions for a surface in static electric and magnetic field. For the static
electric field, in the piezoelectric fracture mechanics, it is the well known boundary condition of [Parton
1976; Mikhailov and Parton 1990].

As a matter of fact, that is an old boundary condition. In any textbook of the theory of electromag-
netism, for the interface between two materials, one can find this boundary condition.

3. Semipermeable conditions and impermeable condition

Although the permeable boundary conditions are deduced from Maxwell equations, yet they have not
considered the existence of crack and only for a surface or an interface in the materials. When one
directly uses them for the piezoelectric and piezomagnetic fracture mechanics, they may result in larger
deviations sometime. However, the importance of these conditions is that they can be the basis of the
further discussion on the boundary conditions for the piezoelectric and piezomagnetic fracture mechanics.

Now, the semipermeable boundary conditions and the impermeable boundary conditions are consid-
ered. Firstly, the cracks can be divided into two kinds. The first is for the cracks with the opening voids
full of fluid (air) after deformation. We always dealt with this kind. The second has not the opening
voids such as the antiplane case (as u1 = u2 = 0, the crack can not be opening), the crack subjected
to compression stress, etc. For the second, as the void does not exist after deformation, the permeable
equations D+2 = D−2 and E+1 = E−1 (φ

+
= φ−), B+2 = B−−2 and H+1 = H−1 (φ

+

1 = φ
−

1 ) can be accepted.
Then, for the first, when studying the crack full of air, it is improper to write the boundary condition

before deformation as the classical theory; otherwise the crack is only a slit without void and no air
can be exist in it. Therefore, we must consider the boundary condition after deformation (the current
configuration in nonlinear elasticity). In the meantime, the opening crack becomes a void. At the surface
of the void, on the interface between the fluid (in void) and the solid (outside void), we have the interface
boundary conditions

D+2 = D−2 and E+1 = E−1 (φ
+
= φ−), B+2 = B−−2 and H+1 = H−1 (φ

+

1 = φ
−

1 ), (11)

where D+2 , D−2 , E+1 , E−1 (φ
+, φ−), B+2 , B−2 , H+1 , H−1 (φ

+

1 , φ
−

1 ) belong to the fluid (in void) and the solid
(outside void).

In the fluid (in void), there are the various basic equations of the fluid (air), such as

∂2φi/∂x2
1 + ∂

2φi/∂x2
2 + ∂

2φi/∂x2
3 = 0 and ∂2φ1i/∂x2

1 + ∂
2φ1i/∂x2

2 + ∂
2φ1i/∂x2

3 = 0, (12)

where φi and φ1i are the electric and magnetic potentials of the fluid components in the void. For the
solid (outside void), the basic equations are well known and we shall not discuss them here. It is the all
conditions satisfied by the body with void including air. To solve it is a complicated problem. Generally,
it is better to use the nonlinear elasticity to solve this problem but the nonlinear elasticity is too tough to
study. Now, a simpler method is accepted in study. This method is as follows. For convenience, when
studying the crack void full of air, the boundary after deformation can be accepted as the boundary before
deformation (a closed slit) adding the evaluated boundary displacement. Naturally, we know that this
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displacement is also found by classical theory. In this theory, the displacement field is calculated from
the boundary before deformation, i.e., on the nondeformation body. This result is not precise but results
in the little deviation. Nevertheless, to the case of crack void full of air, the deviation is not negligible.

As mentioned above, the approximate boundary after deformation is determined. Now we consider
the solid (outside void) and the fluid (in void). As mentioned above, the constitutive equation of the
solid is well known and that of the fluid are various and complicated. In order to avoid that of fluid,
considering the void is very small after deformation, Hao [1993] and Hao and Shen [1994] have used the
linear change of φ and φ1 along the surface normal to replace the rigorous solution of the complicated
equation (that is one of the basic assumption of this boundary condition). In the void, E2 and H2 (for
small deformation case, En and Hn are replaced by E2 and H2) become −(φ+− φ−)/(u+2 − u−2 ) and
−(φ+1 −φ

−

1 )/(u
+

2 − u−2 ), and u2 is the evaluated boundary displacement component as above mentioned.
Considering D2 = εa E2 and B2 = εa1 H2 in air, one obtains

(u+2 − u−2 )D2 =−εa(φ
+
−φ−), (u+2 − u−2 )B2 =−εa1(φ

+

1 −φ
−

1 ) (13)

where εa and εa1 are the electric and magnetic permitivities of air.
Since in the void, E2 and H2 become the constants along the normal, D2 and B2 are also the constants

along the normal. Then, we obtain

D+2 = D−2 =−εa
φ+−φ−

u+2 − u−2
, B+2 = B−2 =−εa1

φ+1 −φ
−

1

u+2 − u−2
. (14)

In fact, this boundary condition is obtained from the conception of current configuration in finite de-
formation theory and the linear change of potential as [Hao 2004]. In short, the conception of current
configuration is that we must deal with the crack boundary after deformation when studying a crack.

The equation (14) is the semipermeable boundary condition. For the piezoelectric case, it is suggested
by [Hao 1993; Hao and Shen 1994].

It is approximate to use an average rate of change of potential φ to take the place of the actual rate.
However, as it is only an approximate boundary condition rather than an exact result, I can be sure that
for disagreeing it we must be based on some contrary examples, not one exact example.

It is apparent that Equation (13) will be reduced to φ+ = φ− or φ+1 = φ
−

1 (one of the permeable
boundary conditions) when u+2 − u−2 = 0 (closed), and to the following equation under the condition
εa = 0 and εa1 = 0:

D+2 = D−2 = 0, B+2 = B−2 = 0. (15)

The Equation (15) is the impermeable boundary conditions.

4. Some problems about the application of these boundary conditions

In order to avoid the irrationality in the result, we must decide to suitably use these boundary conditions.
The permeable boundary condition is obtained from the Maxwell equations exactly. Therefore, we must
determine in what situation this boundary may be accepted. If we can be sure that the crack is closed,
the permeable boundary condition should be accepted. However, it is not easy to determine the crack
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being closed. In order to do it, from [Hao 2001], we know

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
]/µ, (16a)

where the constants can be found in [Hao 2001].
It is an exact formula to decide whether the crack is closed or not but it is too complicated to be used.

We shall discuss it in detail later.
When we know that the crack is closed, the permeable boundary condition can be accepted.
From the Equation (16), we can also decide that the crack is open. At this time, the semipermeable

or the impermeable boundary condition can be considered.
About the semipermeable boundary condition, although it has considered the electric field in the air,

yet it seems to be too complicated to deal with. However, many results can be accepted by us to study this
problem without difficulty. These results tell us that D+2 can be determined directly without complicated
computing. For an example, to the common multiple collinear cracks (naturally, single crack) under the
simple remote load case, we have following result.

In general case, there are four functions of complex variables f ′′j (z j ) and the displacements and
potential can be

φ+−φ− = 2Re
4∑

j=1

(h1r kr j − ξ1αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
],

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )[ f ′j (x1)
+
− f ′j (x1)

−
]/µ j

(16b)

where the constants can be found in [Hao 2001].
The functions f ′′j (z j ) can be obtained from

4∑
j=1

li j f ′′j (z)= ei + i fi + ei [Q(z)− 1], i = 1, . . . , 4,

Q(z)=
zn
+ c1zn−1

+ · · ·+ cn−1z+ cn∏n
k=1[(z− ak)(z− bk)]1/2

,

(17)

where c1, c2, . . . , cn−1, cn are defined by single value requirements of displacements and potential and
ak and bk are the two tips of the k-th crack but no relation with material constants.

Then, using linear algebra method, one can find functions f ′′j (z j ) as [Hao 2001]

f ′′i (zi )=

4∑
j=1

xi j {D j + e j Q(zi )}, D j = e j + i f j − e j , (18)

where xi j is determined by linear algebra method as [Hao 2001].
We introduce

P ′(x1)=−Q(x1). (19)
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Then, there is

f ′′i (x1)
+
− f ′′i (x1)

−
=−

[ 4∑
j=1

xi j e j Q(x1)

]−
+

[ 4∑
j=1

xi j e j Q(x1)

]+

=

[ 4∑
j=1

xi j e j P ′(x1)

]−
−

[ 4∑
j=1

xi j e j P ′(x1)

]+

=

4∑
j=1

xi j e j [P ′(x1)
−
− P ′(x1)

+
].

(20)

From Equation (20), we obtain

f ′i (x1)
+
− f ′i (x1)

−
=

4∑
j=1

xi j e j [P(x1)
−
− P(x1)

+
]

= [P(x1)
−
− P(x1)

+
]

4∑
j=1

xi j e j

= Ai [P(x1)
−
− P(x1)

+
], (21)

Ai =

4∑
j=1

xi j e j . (22)

Then, we have

φ+−φ− = 2Re
4∑

j=1

(h1r kr j − ξ1αdα j )A j [P(x1)
−
− P(x1)

+
]

= 2Re[P(x1)
−
− P(x1)

+
]

4∑
j=1

(h1r kr j − ξ1αdα j )A j ,

u+2 − u−2 = 2Re
4∑

j=1

(β2r kr j + η2αdα j )A j [P(x1)
−
− P(x1)

+
]/µ j

= 2Re[P(x1)
−
− P(x1)

+
]

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j .

(23)

One can find that the function [P(x1)
+
− P(x1)

−
] is imaginary. Therefore, we have

φ+−φ− = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(h1r kr j − ξ1αdα j )A j ,

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j .

(24)
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Therefore, D+2 can be approximately expressed as

D+2 =−εa
[P(x1)

−
− P(x1)

+
]Im

∑4
j=1(h1r kr j − ξ1αdα j )A j

[P(x1)−− P(x1)+]Im
∑4

j=1(β2r kr j + η2αdα j )A j/µ j

=−εa
Im
∑4

j=1(h1r kr j − ξ1αdα j )A j

Im
∑4

j=1(β2r kr j + η2αdα j )A j/µ j
, (25)

D+2 is no relation with these coordinates xi and can be determined directly without the iteration method.
We must pay attention to that although the expressions of φ+− φ− and u+2 − u−2 are exact, yet for

D+2 it is approximate. For an example, we consider a crack. In general case, its φ+−φ− and u+2 − u−2
may be proportional to (a2

− z2)1/2. When the load leads u+2 − u−2 tending to zero, the crack should be
closed. Therefore, we must accept the permeable condition. As φ+−φ− can also tend to zero, the value
(φ+−φ−)/(u+2 − u−2 ) may tend to a constant. However, because the crack is closed, there is no air in
the crack void and (φ+−φ−)/(u+2 − u−2 ) is a constant without significance.

5. Stress field caused by the electric field

Now, we study the stress field caused by the electric field. Essentially it is the acting force of electric
field on the solid element. The acting force caused by the electric field is a body force. It is known that
the stress field caused by the electric field is a square but that by the piezoelectric field is linear [Fang
and Yin 1989, 4.7.1, p. 209]. Therefore, the stress field caused by the electric field is always smaller
than that by the piezoelectric field [ibid., 4.7.2, p. 210] and always can be neglected.

Due to the complexity of this problem, the stress distribution caused by the electric field will be
discussed in detail in another paper.

6. Conclusions

For the electric-magnetic fracture mechanics, the relation between the Maxwell equations and the per-
meable, semipermeable and impermeable electromagnetic boundary conditions has been studied. Then,
the application of these boundary conditions has been discussed. Lastly, the stress field caused by the
electric field also has been discussed. It is known that permeable electromagnetic boundary conditions
are exact for the closed crack. When we can be sure that the crack is not closed, the semipermeable or
the impermeable electromagnetic boundary condition is accepted. Naturally, it has some trouble to use
formula (16a) to decide whether the crack is open or not. However, for the cracks on a straight line (for
example, the cracks on Ox1) and D∞2 = 0, it is easy to deal with. From the equation (24), we know

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]Im

4∑
j=1

(β2r kr j + η2αdα j )A j/µ j (26)

where A j = m jσ
∞

2 and m j is a constant and no use for our discussion.
Substituting them into (26), we have

u+2 − u−2 = 2i[P(x1)
−
− P(x1)

+
]σ∞2 Im

4∑
j=1

(β2r kr j + η2αdα j )m j/µ j . (27)
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Figure 1. The relation between the crack closing and the representation of remote stress p.

It is clear that the value u+2 − u−2 is proportional to the value σ∞2 which is the same with the theory of
elasticity.

For one crack case, we know

u+2 − u−2 =−2i[P(x1)
+
− P(x1)

−
](k2/π

1/2a1/2)Im
4∑

j=1

(β2r kr j + η2αdα j )m j/µ j , (28)

where k2 is the stress intensity factor and a is the half length of the crack.
In order to clarify the crack closing, it is explained in Figure 1.
For convenience, the term 4aσ∞2 Im

∑4
j=1(β2r kr j + η2αdα j )m j/µ j is replaced by 1011 p, where 2a is

the crack length.
From Figure 1 we know that when the representation of remote stress p tends to 0, the crack closing

to infinite.
Previously, we only consider the crack being traction free at its surface. When there is homogeneous

load σ0 on crack surface and σ∞2 = 0, we resolve it into two cases. The one is homogeneous stress σ0

on the whole solid and the another is σ∞2 =−σ0. On the basis of the sum of the two cases, all boundary
conditions are satisfied. The case of homogeneous stress σ0 on the whole solid is a homogeneous field.
It is easy to deal with. The case of −σ0 at infinite is that of σ∞2 = −σ0. It has been discussed in the
equation (27).

Appendix: About the boundary condition

In order to discuss the boundary condition easily, we consider the plane potential fluid mechanics. Firstly,
we introduce the conception of source, sink and vortex point. Naturally, they are the plane potential fluid
field which has two components parallel to Ox1 and Ox2. The velocity fields of source and sink are
radius. At every point, the velocity is parallel to the radius. The vortex point is tangential velocity field.
At every point, the velocity is perpendicular to the radius. Therefore, the vortex point velocity field is a
circular ring field. In fluid mechanics, we call this field in rotational field. We know that the conception
of source seems to be the water spring. The conception of sink is contrary to that of source. For the
vortex point, we always seem to observe it at the water surface. Sometimes, the sources (naturally, sinks
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and vortex points) can be considered a line source. That seems to be observed at the water surface. For
convenience, we deal with the plane problem on the plane with axis Ox1 and Ox2. Now, we consider
a slit on the interface of two materials. The slit is on the axis Ox1. We must be sure that because there
are two materials, the velocity must be different in the two materials. Letting the velocities be V1 and V2

in the two materials. When there is no source and sink in the slit, letting the values V12 and V22 are
components of V1 and V2 paralleling to Ox2. V12 = V22. When there is no vortex point in the slit, letting
the values V11 and V21 are components of V1 and V2 paralleling to Ox1. V11 = V21. When there are
some sources or sinks in the slit, V12 6= V22 across the slit. When there are some vortex points in the slit,
V11 6= V21 across the slit.

On the basis of above discussed, the static electric field is easy to deal with. The positive and negative
charge is corresponding to the source and sink. Naturally, it seems to be difficult to find anything corre-
sponding to the vortex point. However, when we study the magnetic field around the wire, we seem to
meet the point corresponding to it. Therefore, for the slit of the interface of two materials on Ox1 in the
electric field, we can be sure that D12 = D22 (corresponding to V12 = V22 in fluid). Now, we must pay
attention to the condition V11 = V21 in fluid. We know that in fluid mechanics, we prove the condition
V11 = V21 based on the condition no vortex point in the slit. In fluid mechanics, as above mentioned,
the condition no vortex point is corresponding to that of nonrotation. In Maxwell equations, as above
mentioned, the condition nonrotation is discussed in equations (2) and (6). Here, the physical quantity
E pays a leading role. Therefore, the condition V11 = V21 in fluid mechanics, is corresponding to the
condition E11 = E21 in Maxwell equations.

Therefore, we obtain the boundary condition on the interface

D12 = D22, E11 = E21, (29)

where D1 j is the j-th of D1, D2 j is the j-th of D2, E1 j is the j-th of E1 and E2 j is the j-th of E2.
Naturally, these boundary conditions above mentioned, are obtained based on the analogy method.

Now, we shall prove it by integral form of Maxwell equations exactly.
Letting B A and C D being the two longer sides of the rectangle (their length equals d) and AC , B D

being the two shorter sides (their length tends to 0) and the segment of Ox1 in the rectangle being the
interface, we have

∫
p Dn dp = 0 and

∫
p Et dp = 0. We consider the right spiral rule. The direction of

four tops of the rectangle is B AC DB. As B A and C D are parallel to Ox1, their normal is parallel to
Ox2. The vector Dn becomes D2. As their tangent is parallel to Ox1, the vector Et becomes E1. The
equation

∫
p Dn dp = 0 becomes

−D12B A AB+ D22C DC D+ small contribution of the sides AC and DB = 0, (30)

where D12 is the second component of the electric displacement D1 in upper half plane x2 > 0, D22 is
the second component of the electric displacement D2 in lower half plane x2 < 0, D12B A is D12 on B A
and D22C D is D22 on C D.

Considering the contribution of the shorter sides AC and DB tending to zero, we neglect it and
consider the two sides AC and DB being the upper and lower surfaces of the interface. Therefore,

−D2B A AB+ D2C DC D =−D+2 AB+ D−2 C D = 0, (31)
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where D+2 = D2B A is the D2 on the upper surface of the interface and D−2 = D2C D is the D2 on the lower
surface of the interface.

Substituting B A = C D = d , we obtain

d(−D+2 + D−2 )= 0. (32)

Therefore, we have

D+2 = D−2 . (33)

Considering the Et becomes E1, the equation
∫

p Et dp = 0 becomes

−E11B A B A+ E21C DC D+ small contribution of the sides AC and DB = 0,

where E11 is the first component of the electric field E1 in upper half plane x2 > 0, E21 is the first
component of the electric field E1 in lower half plane x2 < 0, E11B A is E1 on B A and E21C D is E1

on C D.
Considering the contribution of the shorter sides AC and DB being very little, we neglect it and

consider the two sides AC and DB being the upper and lower surfaces of the interface. Therefore,

−E11B A AB+ E21C DC D =−E+1 AB+ E−2 C D = 0, (34)

where E+1 = E11B A is the E1 on the upper surface of the interface and E−2 = E21C D is the E2 on the
lower surface of the interface.

Substituting B A = C D = d , we obtain

d(−E+1 + E−1 )= 0. (35)

And so we have

E+1 = E−1 . (36)

Therefore, on the upper and lower surface of the interface, the components of vectors E1 and D2 on both
surfaces are equal. When on the upper and lower surface of the interface, the components of vector E1 on
both surfaces are equal, on the upper and lower surface, the function φ (φ = ∂E1/∂x1) on both surfaces
is equal (when the interface is −∞–+∞, on the upper and lower surface, the difference between the two
functions φ+ and φ− may be a constant).

This result is the famous permeable condition in piezoelectric fracture mechanics [Parton 1976; Parton
and Kudryavtsev 1988; Mikhailov and Parton 1990].

In fact, this is an old result in electrodynamics:
∫

q Dn dq = 0. We can find it in any textbook such as
[Coelho 1979].
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