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AXISYMMETRIC LOADING OF AN ELASTIC-PLASTIC PLATE
ON A GENERAL TWO-PARAMETER FOUNDATION

LUCA LANZONI, ANDREA NOBILI, ENRICO RADI AND ANDREA SORZIA

The load carrying capacity and collapse scenarios for an infinite elastic-plastic plate resting on a two-
parameter elastic foundation uniformly loaded on a small circular footprint are investigated in a general
framework of stiffness and yield parameters. The present work extends the study already presented for
a specific value of the Pasternak modulus and it allows the investigation of the influence of the stiffness
property of the underlying soil and the amplitude of the loaded region on the load carrying capacity
of the plate and the corresponding collapse mechanism. Moreover, the present analysis allows for the
evaluation of the transverse deflection, slope, radial and circumferential bending moments, shearing
force within the plate and the reactive pressure of the elastic subgrade at the onset of the plastic collapse
together with their dependence on the foundation moduli. The effect of the ratio between negative and
positive yield moments is also investigated. The amplitude and assembly of plastic regions at the onset
of the plastic collapse are discussed in some detail.

1. Introduction

The problem of a plate resting on an elastic subgrade has been extensively investigated in the literature
because of its relevance in many structural and geotechnical applications. Indeed, plate and slab-like ele-
ments supported by an elastic foundation are commonly encountered in many engineering systems, with
particular reference to design spread building foundations (particularly, shallow mat-like foundations),
e.g., [Gazetas and Tassios 1978; Gazetas 1981a], industrial and airport pavements [Caliendo and Parisi
2010], and rigid or flexible roadways [Helwany et al. 1998].

According to its relative slenderness, a shallow building foundation can be modeled as a thin Kirchhoff
plate or as a thick Reissner–Mindlin plate, whereas the supporting medium can be simulated in different
ways. As is well known, the perhaps most popular foundation model was proposed by Winkler in 1867,
and it has enjoyed wide popularity ever since on account of its greater simplicity with respect to other soil
descriptions at a reasonable cost in terms of result reliance in the supported structure. Nonetheless, owing
to its local nature, the Winkler model cannot produce accurate results for the displacement field of the
soil-foundation system. Accordingly, a variety of nonlocal subgrade models (e.g., Pasternak, Reissner,
Filonenko-Borodich, Hetényi, Kerr and Vlazov models, among others) has been proposed over the years
to improve upon the Winkler-type soil model [Selvadurai 1979].

Several analytical and numerical studies have been performed to evaluate the mechanical interaction
between a raft slab foundation and the supporting medium. The analytical solution of a thin Kirchhoff
plate resting on a Winkler-type subgrade under various load conditions is reported in detail in the classical
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book of Timoshenko and Woinowsky-Krieger [1959]. The axisymmetric flexure of an infinite elastic plate
resting on an incompressible elastic half-space is considered by Selvadurai [1977] by making use of the
potential functions and Hankel transforms. The problem of an elastic plate supported by an elastic two-
parameter subgrade is studied in [Wen-da and Shu 1987] in order to model the circular foundation of a
cooling hyperbolic tower. Results are compared with a numerical solution obtained through a FE package.
The mechanical interaction between an infinite cracked Kirchhoff plate resting on a two-parameter elastic
subgrade can be found in [Nobili et al. 2014, 2015]. A full-field solution is obtained therein by means
of the Wiener–Hopf method and the influence of the subgrade parameters on the stress intensity factors
at the crack tip are evaluated in detail.

Recently, Shukla et al. [2011] have obtained the solution of a circular plate supported by a tensionless
Pasternak-type subgrade by using the strain energy approach and assuming a power series expansion
for the transverse deflection of the plate. Variational boundary conditions for a beam resting on a two-
parameter tensionless elastic foundation have been developed in [Nobili 2012]. Shell- and plate-like
elements in contact with elastic media have been adopted as a reliable model to study micro- or nano-
structures in the framework of modern microelectronics based on the use of special composite materials.
As an example, Ru [2001] studied the critical loading for a double-walled carbon nanotube embedded in
an elastic matrix. There, the nanotube is modeled as a thin elastic cylindrical shell supported by a Winkler
subgrade, which accounts for the van der Waals forces. Likewise, in order to investigate the vibrations
of carbon nanotubes, Liew et al. [2006] consider a plate embedded into a Pasternak elastic medium and
solve the problem by means of Fourier analysis. It is found that the resonant frequencies of the system
can be significantly affected by van der Waals interaction. Later, Pradhan and Kumar [2010] extended
the vibration analysis to orthotropic single layered graphene sheets, taking into account scale effects by
adopting Eringen nonlocal constitutive relations for the plate. These authors extend a previous work by
Duan and Wang [2007] concerning the axisymmetric bending of circular plates under static loading and
find that scale effects can produce a decrease of stiffness and, in turn, larger deflection of the plate.

Numerical simulations have been extensively adopted to study plate and slabs supported by or embed-
ded in an elastic medium. As an example, Çelik and Saygun [1999] develop an iterative FE numerical
method to simulate a plate on a two-parameter foundation. In that study, the soil surrounding the plate
has been modeled by a finite region having amplitude comparable with the thickness of the compressible
soil layer underneath the plate. Caliendo and Parisi [2010] studied the stress field in jointed concrete
airport pavements under aircraft loads and thermal gradients. Through a commercial FE package, the
authors carried out 3D numerical simulations wherein the pavement is modeled as a square-shaped plate
bonded to an isotropic elastic half-space, thus incorporating the effect of the subgrade Young modulus
on the maximum tensile stress at the interior as well as at the edge of the plate. A recent application
of a FE-boundary integral equation coupling method is adopted in [Tullini et al. 2012] to investigate
the interaction problem between a bar and an elastic half-plane. In this work, the Green function of the
half-plane is implemented in the variational formulation.

Analytical and numerical models based on plates supported by an elastic subgrade can be readily used
to simulate insulated building foundation. In fact, in order to adequately insulate the base of a building
with the aim to reduce heat loss and, in turn, cut down on energy cost, an insulating layer (typically, high-
compressive-strength polystyrene sheets and foams) can be placed right under the foundation concrete
slab. Through this layer, moisture absorption, humidity infiltration and frost penetration phenomena are
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hampered, the latter being a relevant issue in frost-susceptible soils [Bowles 1997]. The contribution of
the insulating layer to the pressure distribution under the foundation is usually neglected, but it can be
properly considered by adopting a two-parameter soil model.

Despite its potential and simplicity, linear elastic analysis cannot be used to predict the mechanical
behavior of systems under the collapse load, when nonlinearity plays an essential role. In particular,
models based on plasticity theory have been widely used to assess the load carrying capacity of mat
building foundations. One of the first studies concerning the load-carrying capacity of rigid-plastic
plates supported by a Winkler subgrade under a uniform static loading distribution was performed by
Meyerhof [1960; 1962]. He assumed a fan-like collapse mechanism for the plate and thus he found
an upper-bound for the collapse load, since the corresponding radial bending moment overcomes the
yield moment of the plate. After those studies, a lot of works about this topic have appeared in the
literature. By using potential functions to represent stress and displacements fields of the foundation,
Gazetas [1981b] studied a transversely isotropic elastic half-space indented by a rigid-plastic plate under
a uniform load distribution. He considered a conical shape of the plate after yielding, which can lift off
the foundation. Sokól-Supel [1985; 1988] studied elastic-plastic Kirchhoff plates resting on an elastic
subgrade. Solutions of elastic-plastic plates under different loading conditions and variously clamped at
the ends may be found in the book by Save et al. [1997]. Lewandowski and Świtka [1991] solved the
problem of a plate in tensionless contact with an underlying elastic-plastic Winkler subgrade obeying a
bilinear constitutive law via a variational formulation. The authors solved the problem by using a FE
method implemented through an iterative procedure. Kocatürk [1997] considered an elastic perfectly
plastic plate in tensionless contact with an elastic-plastic Winkler foundation.

Recently, the problem of an infinite elastic-plastic plate resting on an elastic Winkler-type subgrade
and uniformly loaded on a circular area has been solved by Radi and Di Maida [2014] by assuming the
Johansen yield criterion for the plate [Johansen 1962] and associative flow rule. In that work, the exact
ultimate bearing capacity of the system has been assessed varying the radius of the loaded region. It is
also shown that the behavior of the plate is governed by a single parameter, namely the amplitude of the
loaded region over the characteristic length of the plate-foundation system, and an approximate formula
for the collapse load is also proposed.

Then, the study has been extended by Lanzoni et al. [2014] by considering a nonlocal behavior of the
soil. In that study, a two-parameter foundation with a specific value of the Pasternak modulus has been
assumed, resulting in closed-form solutions of the governing equations for the elastic-plastic regions that
may occur within the plate. The analysis shows that the collapse mechanism of the plate differs from
that found by Radi and Di Maida [2014], due to the nonlocal response of the Pasternak foundation.

The present work is the natural extension of the work by Lanzoni et al. [2014]. Here a general value of
the Pasternak modulus is taken into account and the effects of the subgrade on the load-bearing capacity
of the plate are investigated. A method based on a contour integral is adopted to solve in closed form
the fourth-order linear ODE with nonconstant coefficients governing the mechanical behavior within the
elastic-plastic region of the plate.

It is remarked that the plate is perfectly bonded to the elastic subgrade, thus the reactive soil pressure
can be compressive as well as tensile. The study concerns the mechanical behavior of the system at the
onset of plastic collapse. Nonetheless, it is worth noting that the system can sustain further increases in
the external load after the plastic mechanism is achieved, owing to the presence of the elastic subgrade.
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Figure 1. Sketch of the plastic mechanism for b < c (left) and for c < b (right). The
loaded region 0≤ r ≤ a has been highlighted. (0) plastic corner region r ≤ d; (1) elastic-
plastic region under load d ≤ r ≤ a; (2) unloaded elastic-plastic region; (3) elastic outer
region; (4) annular elastic-plastic region.

The paper is organized as follows. Section 2 deals with the governing ODEs for the elastic-plastic
regions that may arise within the plate. Solutions of these ODEs are found for a general value of the
Pasternak subgrade modulus. The boundary conditions for each considered collapse mechanism are set in
Section 3. The main results are reported in Section 4 in terms of ultimate load-bearing capacity, bending
moments, shear forces, reactive soil pressure together with the size of each subregion. An experimental
setup is briefly presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Governing equations

In this section, the governing equations adopted in [Lanzoni et al. 2014] are briefly reviewed. The plate
is subject to an external uniform pressure distribution q acting on its upper surface within a circular area
of radius a and positive in the downward direction (see Figure 1). Elastic-perfectly plastic and isotropic
behavior is adopted for the plate, which is assumed to obey Johansen’s yield condition with associative
flow rule. Due to the axisymmetrical conditions affecting the system, all variables depend on the radial
coordinate r only.

The plate rests on an elastic two-parameter Pasternak foundation. Therefore, the reactive soil pres-
sure p (positive if upwards) reads

p = k1w− k21w, (1)

where k1 and k2 are the (positive) subgrade moduli, w represents the transversal deflection (positive if
downward), and 1 is the Laplacian operator in two dimensions.
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Figure 2. Left: Johansen’s yield locus for elastic-plastic plates and corresponding flow
rule. Right: positive bending moments and shear force per unit length.

Both in the elastic and in the elastic-plastic regions of the plate, the equilibrium conditions under
axisymmetric loading conditions require

(rmr )
′
−mθ + r tr = 0, (2)

(r tr )′+ r [k1w− k2(w
′′
+w′/r)− q] = 0, (3)

where mr and mθ are the bending moments per unit length, tr is the transverse shear force per unit length,
whose positive directions are shown in Figure 2, right, and prime denotes differentiation with respect to
the radial coordinate r .

Johansen’s square yield condition is assumed to hold for the plate (Figure 2, left), namely

−m−0 ≤ mr ≤ m+0 , −m−0 ≤ mθ ≤ m+0 , (4)

where m+0 and m−0 are the positive and negative yield moments per unit length.
Under proportional loadings, the elastic-plastic constitutive equations can be assumed in the integrated

form
mr = D(ke

r + νke
θ ), mθ = D(ke

θ + νke
r ), (5)

where kr and kθ are the components of the curvature tensor, D = Eh3/12(1− ν2) is the flexural rigidity
of the plate, h is the plate thickness, E is the Young’s modulus and ν is the Poisson’s coefficient of the
material. The curvature tensor can be separated into elastic and plastic contributions according to

kr = ke
r + k p

r =−w
′′(r), kθ = ke

θ + k p
θ =−w

′(r)/r, (6)

where the elastic components of the curvature tensor follow from (5) as

ke
r =

mr − νmθ

D(1− ν2)
, ke

θ =
mθ − νmr

D(1− ν2)
. (7)

Following the classical Kirchhoff theory for thin plates, the rotation of the cross-sections of the plate
orthogonal to the radial direction can be evaluated through the derivative of the displacement with respect
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to the radial coordinate, i.e.,
φθ =−w

′. (8)

In the following, a dimensionless parameter ξ is introduced to make clear the role of the Pasternak
stiffness parameter k2, leading to a useful normalization of the ODEs governing the problem:

k2 = ξk1L2, (9)

where
L = 4

√
D(1− ν2)/k1 (10)

is a characteristic length of the plate/subgrade system. It follows that, for ξ → 0, the Winkler foundation
is retrieved.

As found in [Lanzoni et al. 2014], the plate at the onset of collapse may exhibits two different plastic
mechanisms, characterized by different elastic-plastic regions. For the sake of clarity, the governing
equation for the transversal deflection of the plate and the corresponding solutions for each plastic region
are presented in the following, the numbering of the letters being presented in Figure 1.

2.1. Elastic-plastic region 0 lying at the corner A of the yield surface (0 ≤ r ≤ d). Due to the axisym-
metry of the problem, the conditions

mr (0)= mθ (0), k p
r (0)= k p

θ (0) (11)

are met for r = 0. Moreover, the condition

mr (r)= mθ (r)= m+0 for 0≤ r ≤ d (12)

must hold within the central region of the plate lying on the corner A of the yield surface. It is worth
noting that the yield locus is not smooth and the plastic flow can assume different directions at the corner
of the yield surfaces. However, the condition mr (0) = mθ (0) holds at the center of the plate due to
axisymmetry and, thus, also the plastic contributions of the curvature tensor are expected to be equal,
i.e., k p

r (0) = k p
θ (0), according to (11). On the other hand, the condition mθ (r) = m+0 holds within the

elastic plastic regions 1 and 2, namely for d < r < b, together with the normality law for the plastic flow
k p
θ (r) > 0 and k p

r (r)= 0, so that the flow of the plastic curvature is aligned with the outward normal to
the boundary AB of the yield domain, according to the Johansen associative yield criterion, as shown
in Figure 2, left. Thus, within the fully plasticized region (region 0), the plastic flow must lie arbitrarily
in the cone delimited by the bisector (OA direction) and the outward normal to the boundary AB of the
strength domain.

This assumption leads to the fulfillment of the maximum dissipation postulate also at the corner A of
the yield domain [Salençon 2013, Chapter 11.3.2]. In particular, the plastic curvature k p

θ (r) is assumed
to vary continuously with r from the center of the plate (r = 0) where k p

θ (0) = k p
r (0) to the outer

border of the region 0 (r = d−) where k p
θ (d
−)= k p

θ (d
+), so that the circumferential component of the

plastic curvature tensor is continuous between the regions 0 and 1. As discussed in [Lanzoni et al. 2014],
continuity of this component also implies continuity of the rotation φθ between the regions 0 and 1 at
r = d, according to relation (6)2, since the elastic component of the curvature is continuous due to the
continuity of the bending moments.
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The yield condition (12) and the balance equation (2) imply the vanishing of the transverse shear force
within the inner elastic-plastic region 0, i.e.,

tr (r)= 0 for 0≤ r ≤ d, (13)

and, thus, the load is entirely supported by the subgrade therein.
By using relations (9) and (13), the general expression for the transversal deflection of the plate within

the elastic-plastic region 0 can be found from the balance condition (3) in the form

w0(r)= (m+0 L2/D)
[
χ + a0 I0

(
r/
√
ξL
)]
, (14)

where I0 is the modified Bessel function of first kind of order zero, a0 is an arbitrary constant and

χ = q D/(k1m+0 L2) (15)

is a dimensionless parameter proportional to the intensity q of the external load distribution.

2.2. Elastic-plastic regions 1 and 2 lying on the side AB of the yield surface (d ≤ r ≤ c). On the side
AB of the yield locus (Figure 2, left) the bending moment mθ attains its positive limit value m+0 , namely

mθ (r)= m+0 for d ≤ r ≤ c, (16)

and thus positive radial yield lines occur within the corresponding elastic-plastic region of the plate,
which can be split into the inner loaded region 1 and the outer unloaded region 2, as sketched in Figure 1.
According to the associative flow rule, the plastic curvature components for the side AB of the yield
locus are given by

k p
r = 0, k p

θ ≥ 0. (17)

Therefore, by using (16) and (17)1, equations (6)1, (7)1 and (2) yield the following expressions for the
bending moment mr and the transverse shear force tr per unit length in the elastic-plastic regions 1 and 2:

mr = νm+0 − D(1− ν2)w′′, (18)

tr =
1− ν

r
[m+0 + D(1+ ν)(w′′+ rw′′′)]. (19)

Introduction of (19) in the balance equation (3) then provides the governing ODE for these regions:

rw′′′′+ 2w′′′−
ξ

L2w
′′r −

ξ

L2w
′
+

1
L4wr −

q
k1L4 r = 0. (20)

The general solution of the fourth-order linear ODE (19) has been found in closed form by Lanzoni
et al. [2014] only for the special case ξ = 2.

Different methods can be used to solve the ODE (20). For example, the solution can be obtained
numerically, or by using the method of Frobenius, i.e., by seeking the unknown function w as a power
series of r and solving the corresponding indicial equation. Here, we use a contour integration instead
(see for example [Ince 1944]). Assume that w(r) has the form

w(r)=
∫

C
S(p)epr/L dp, (21)
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Figure 3. Path of integration in the complex domain for complex conjugate roots (left)
and real roots (right).

where S(p) is an unknown function of the complex variable p and C a contour to be defined later.
Therefore, introduction of the representation (21) in (20) and taking q = 0 gives

r
L

∫
C
(p4
− ξp2

+ 1)S(p)epr/L dp+
∫

C
(2p3
− ξp)S(p)epr/L dp = 0. (22)

Integration by parts of the first integral in (22) then yields∫
C
(2p3
−ξp)S(p)epr/L dp+

∫
C
(p4
−ξp2

+1)S′(p)epr/L dp− (p4
−ξp2

+1)S(p)epr/L
∣∣p f

pi
= 0, (23)

where prime denotes differentiation with respect to the function argument p. If the contour C is chosen
in such a way that the last term vanishes, then the function S(p) must satisfy the ODE

(2p3
− ξp)S(p)+ (p4

− ξp2
+ 1)S′(p)= 0, (24)

namely,
S′(p)
S(p)

=−
(2p3
− ξp)

(p4− ξp2+ 1)
. (25)

Integration of (25) gives the general expression of the function S(p) as

S(p)= A(p4
− ξp2

+ 1)−1/2, (26)

where A is an arbitrary constant.
The contour C must be chosen in order to satisfy the condition

(p4
− ξp2

+ 1)epr/L
∣∣p f

pi
= 0. (27)

The latter condition is satisfied for p =±α,±β, and for p→−∞, where

α =

√
ξ/2+

√
ξ 2/4− 1, β =

√
ξ/2−

√
ξ 2/4− 1, (28)

and the contour C can be defined as sketched in Figure 3 for complex and real values of the variable p,
respectively, in order to obtain four independent solutions of (20) in the form given by (21). Namely,
the contours Ck (k = 1, 2, 3) are chosen to coincide with the three straight paths joining the points
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−α,−β, β, α of the complex plane, respectively, and the fourth path is defined by C0 = {x − iIm(α) |
−∞≤ x ≤−Re(α)}. Note that the roots (28) are real for ξ ≥ 2, whereas they become complex conjugates
for ξ ≤ 2 (see Figure 3). Therefore, the function w(r) can be assumed in the form

w1(r)=
m+0 L3

D

[
χ

L
+

3∑
k=0

bk

∫
Ck

epr/L

√
p+α

√
p+β

√
p−α

√
p−β

dp
]

for d ≤ r ≤ a. (29)

Equation (29) defines the displacement field within the annular loaded region, whereas the displacement
field within the elastic-plastic annular region not directly loaded (namely for q = 0) is given by

w2(r)=
m+0 L3

D

3∑
k=0

ck

∫
Ck

epr/L

√
p+α

√
p+β

√
p−α

√
p−β

dp for a ≤ r ≤ c. (30)

2.3. Elastic-plastic region 4 lying on the side BC of the yield surface (c ≤ r ≤ b). On the side BC of
the yield locus (Figure 2, left) the bending moment mr attains its negative limit value, namely

mr (r)=−m−0 for c ≤ r ≤ b, (31)

according to the associative flow rule, and thus negative circumferential yield lines occur within the cor-
responding elastic-plastic region 4 in Figure 1, right, where c ≤ r ≤ b. The plastic curvature components
are given by the associative flow rule for the side BC of the yield locus, namely,

k p
r ≤ 0, k p

θ = 0. (32)

Therefore, from (6)2, (7)2 and (32)2 the bending moment per unit length mθ in the present elastic-
plastic region reads

mθ =−νm−0 − D(1− ν2)w′/r. (33)

Then, from (2) and (33) the transverse shear force per unit length follows as

tr =
1− ν

r
[m−0 − D(1+ ν)w′/r ]. (34)

Substitution of (34) in the balance equation (3), also using (9), then yields the governing equation in
terms of displacement for the elastic-plastic region 4 as(

1+ ξ
r2

L2

)
w′′−

(
1− ξ

r2

L2

)
w′

r
−

r2

L4w = 0. (35)

The general solution of the fourth-order linear ODE (35) in closed form is

w4(r)=
m+0 L2

D

√
2/ξ

[
a1 I0

(
(1/ξ)

√
1+ ξr2/L2)

+ a2K0
(
(1/ξ)

√
1+ ξr2/L2)], (36)

where K0 is the modified Bessel function of the second kind of order zero [Abramowitz and Stegun
1972], and a1 and a2 are arbitrary constants.
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2.4. Elastic region 3. The governing differential equation in terms of the transversal displacement w(r)
for the elastic region 3 of the plate under symmetrical bending reads

w′′′′+
2
r
w′′′−

1
r2w

′′
+

1
r3w

′
− a

(
w′′+

1
r
w′
)
+

1−ν2

L4 w = 0, (37)

where a = k2/D = ξ(1− ν2)/L2. It can be shown that, if η = aL2/(2
√

1− ν2)≤ 1, the general solution
of the ODE (37) as r becomes very large reads [Selvadurai 1979]

w3(r)=
m+0 L2

D

{
d1Re[H (1)

0 (βr/L)] + d2Im[H (1)
0 (βr/L)]

}
for r ≥ c, (38)

where H (1)
0 is the Hankel function of the first kind [Abramowitz and Stegun 1972], d1 and d2 are dimen-

sionless real constants and

β = i 4
√

1− ν2
(√
η+

√
η2− 1

)
. (39)

The general solution of the ODE (37) for η > 1 reads

w3(r)=
m+0 L2

D

{
d1Re[Y0(iβ1r/L)] + d2Re[Y0(iβ2r/L)]

}
for r ≥ c, (40)

where

β1 =
4
√

1− ν2
(√
η+

√
η2− 1

)
, β2 =

4
√

1− ν2
(√
η−

√
η2− 1

)
. (41)

It is worth noting that, for ξ = 2/
√

1− ν2, the solution of the elastic region reported in [Lanzoni et al.
2014] is retrieved from (38).

The relationship between the curvature components and the bending moments per unit length is given
by [Timoshenko and Woinowsky-Krieger 1959]

mr =−D(w′′3 + (ν/r)w′3), mθ =−D(w′3/r + νw′′3), (42)

whereas the expression of the shear force tr per unit length reads

tr = D(w′′′3 +w
′′

3/r −w′3/r
2). (43)

3. Boundary conditions

The dimensionless constants a0, d1, d2, b0, b1, b2, b3, c0, c1, c2, c3, a1 and a2 appearing in the expressions
for the displacement in the different regions considered in Section 2 can be evaluated by imposing proper
continuity conditions for the displacement w, rotation φθ , bending moment mr and shear force tr per
unit length across the boundaries between the regions at r = a, c and d, together with the fulfillment of
the yield condition at the inner boundary of the elastic region and the conditions about the occurrence of
a plastic mechanism in the plate at the onset of collapse.

As discussed in [Lanzoni et al. 2014], two different plastic mechanisms may occur in the plate at the
onset of collapse, depending on the amplitude a/L of the loaded region. Continuity of displacement w,
rotation φθ , bending moment mr and shear force tr across the boundary at r = d and r = a must be
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imposed for both plastic mechanisms as

w0(d)= w1(d), w′0(d)= w
′

1(d), D(1+ ν)w′′1(d)=−m+0 , w′′′1 (d)= 0, (44)

w1(a)= w2(a), w′1(a)= w
′

2(a), w′′1(a)= w
′′

2(a), w′′′1 (a)= w
′′′

2 (a), (45)

where expressions (8), (18) and (19) have been used. One kind of plastic mechanism takes place with
b < c (see Figure 1, left). In this case, continuity across the boundaries at r = c requires the further four
conditions

w2(c)= w3(c), w′2(c)= w
′

3(c),

νm+0
D
− (1− ν2)w′′2(c)=−w

′′

3(c)−
ν

c
w′3(c),

(1− ν)
m+0
D
+ (1− ν2)[w′′2(c)+ cw′′′2 (c)] = cw′′′3 (c)+w

′′

3(c)−
1
c
w′3(c),

(46)

where (8), (18), (19), (42)1 and (43) have been used. Making use of (42)2, accomplishment of the yield
condition as r approaches c from the outer elastic region requires

νw′′3(c)+
1
c
w′3(c)=−

m+0
D
. (47)

Moreover, the negative circumferential yield line must take place within the elastic-plastic region, i.e.,
at r = b, where d ≤ b ≤ c. In this case, the onset of collapse occurs when the bending moment mr within
the elastic-plastic region attains a minimum value equal to the ultimate negative bending moment right
at r = b, i.e.,

D(1− ν2)w′′2(b)= (ν+µ)m
+

0 , w′′′2 (b)= 0, (48)

for b ≤ c, where
µ= m−0 /m+0 (49)

is the ratio between negative and positive yield moments.
Conditions (44)–(48) yield a system of 15 equations, which are linear in the 12 constants a0, b0, b1,

b2, b3, c0, c1, c2, c3, d1, d2 and χ . Once 12 such quantities are found in terms of the radii b, c and d,
the last three equations can be solved numerically in order to obtain the remaining unknowns b, c and d .
Finally, the collapse load P of the plate follows from (15) as

P = πa2χk1m+0 L2/D. (50)

The other possible scenario of plastic collapse occurs for b > c, namely when the negative circum-
ferential yield line first appears within the elastic region (see Figure 1, right). In this case, the collapse
load can be found by imposing the continuity conditions between the inner elastic-plastic region 2 and
the annular elastic-plastic region 4 at r = c, where

w2(c)= w4(c), w′2(c)= w
′

4(c),

D(1− ν2)w′′2(c)= m−0 + νm+0 ,

D(1− ν2)
[
cw′′′2 (c)+

1
c
w′4(c)

]
+ (m+0 + νm−0 )= 0,

(51)
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Figure 4. Radial variation of the dimensionless plate deflection for µ= 1, varying the
parameter ξ of the soil, for a/L = 0.1 (left) and a/L = 2 (right).

as well as between the annular elastic-plastic region 4 and the outer elastic region 3 at r = b, where

w3(b)= w4(b), w′3(b)= w
′

4(b),

D
[
w′′3(b)+

ν

b
w′3(b)

]
= m−0 ,

D
[
w′′′3 (b)+

1
b
w′′3(b)−

1
b2w

′

3(b)
]
=

1−ν
b

[
m−0 −

1
b

D(1+ ν)w′4(b)
]
.

(52)

By using (52)2, (42)2 and (33), Equation (52)3 implies continuity of the bending moment mθ (and
vice versa) across the boundary at r = b. Condition (52)4 also implies the stationarity of the bending
moment mr within the elastic region at r = b.

Continuity of the bending moment mθ across the boundary at r = c must be imposed by using (33),
thus giving

m+0 + νm−0 + D(1− ν2)
w′4(c)

c
= 0. (53)

The substitution of the functions wk(r) (k = 0, 1, 2, 3, 4) introduced in Section 2 and their derivatives
in conditions (44), (45), (51), (52) and (53) yield a system of 17 equations, which are linear in the 14
constants a0, a1, a2, b0, b1, b2, b3, c0, c1, c2, c3, d1, d2 and χ . Once such constants are found in terms of
the radii b, c and d, the numerical solution of the last three equations provides the values of b, c and d.
Finally, the collapse load P of the plate can be calculated by using (50).

4. Results

In the following, the radial variation of transverse displacement, slope, bending moments, shear force
and reactive soil pressure at the onset of plastic collapse are reported and discussed. For the sake of defi-
niteness, we assumed ν = 0.15. The radial variation of the transverse deflection of the plate wD/m+0 L2

for different values of the subgrade parameter ξ has been reported in Figure 4 for a/L = 0.1 and 2. Note
that, if the Winkler modulus k1 and the flexural rigidity of the plate D are kept constant, the variation of
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Figure 5. Radial variation of the dimensionless rotation of the plate cross-section for
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the parameter coincides with the variation of the Pasternak modulus k2, where ξ = k2/(k1L2), according
to (9) and (10). As shown in Figure 4, left, for small sizes of the loaded region, the plate deflection under
the loaded region monotonically decreases as ξ increases, whereas an opposite trend is observed for large
sizes of the loaded region, as depicted in Figure 4, right. This effect is due to the fact that the reaction
of the Pasternak foundation also depends on the first and second derivatives of the transverse deflection.
In particular, the variation of the slope and, in turn, the second derivative of the displacement, assumes
negative values in the inner region of the plate, and decreases going outward from the loaded region,
as shown in Figure 5. Thus, in the inner region of the plate, the reactive soil pressure is compressive
and very high for small sizes of the loaded region (see also Figure 9). Moreover, for large sizes of the
loaded region, the slope displays a rapid variation out of the loaded area (from Figure 5, right, plotted for
a/L = 2, it occurs approximately for r/L = 3). It follows that, in the neighborhood of this region, the
second derivative becomes positive and, thus, the soil reaction tends to become tensile due to the second
term in (1). Consequently, as the parameters k2 and ξ increase while keeping constant the Winkler
modulus k1, the soil reaction becomes tensile out of the loaded region for large values of a/L , thus
producing an increase in the transverse deflection of the plate, as shown in Figure 4, right. This effect
does not occur for small values of a/L . In this case, an increase in the parameter ξ corresponds to a
decrease of the displacement of the system, as revealed by Figure 4, left.

The radial variation of the slope φθ is shown in Figure 5 for a/L = 0.1, 2. The magnitude of the
slope decreases under the loaded region as the Pasternak modulus k2 and the parameter ξ become larger,
whereas an opposite trend is observed out of the loaded region for large sizes of the loaded region
(Figure 5, right). Note also that the function φθ (r) is continuous, as required by the boundary conditions,
but not monotonic, since its magnitude exhibits a maximum near the border of the loaded region.

The radial variations of bending moments mr (r) and mθ (r) along the radial direction are plotted in
dimensionless form in Figures 6 and 7 for different values of the parameter ξ . As shown in Figure 7,
the circumferential bending moment mθ (r) attains the positive yield limit m+0 within a circular region
whose radius c increases with the size a of the loaded region and decreases as the parameter ξ becomes
larger. Radial yield lines occur within this region.
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Figure 6. Radial variation of the dimensionless radial bending moment for µ= 1, vary-
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For small sizes of the loaded area, the radial bending moment mr (r) displays a positive peak just at
the center of the loaded area where the positive yield moment m+0 is attained (Figure 6, left) and then
decreases outwards till the negative yield moment m−0 is reached at r = b, where a negative circumferen-
tial yield line develops within region 2 and triggers the collapse mechanism within the plate. It is worth
noting that the radius b of the negative circumferential yield line becomes smaller as the parameter ξ
increases (Figure 6, left). For large sizes of the loaded area a, a circular region where both radial and
circumferential bending moments attain the positive yield limit appears and extends outwards (Figure 6,
right) as the size of the loaded region is increased. Both radial and circumferential yield lines take place
within this region 0 of radius d. The amplitude of this fully yielded region at the onset of collapse
increases with ξ , as shown in Figure 6, right. Out of this region, the radial bending moment mr (r)
decreases and becomes negative. The negative yield moment m−0 is then reached within an annular
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region, whose width increases with the load until it joins together with the inner radially yielded region,
thus creating a plastic mechanism within the plate.

The bending moments within the outer elastic region decrease until they vanish at a large distance
from the loaded area. For small sizes of the loaded area, the rate of decrease is faster for large values of
the Pasternak modulus, i.e., of the parameter ξ , whereas for large sizes of the loaded area an opposite
trend is observed.

The radial variations of shear force are plotted in Figure 8 in dimensionless form. These variations
show a peak near the border of the loaded area, whose magnitude increases with the Pasternak modulus k2.
This behavior is expected since a stiffer foundation requires a larger applied load in order to achieve a
plastic mechanism, thus producing an increase in the maximum shear force.
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Figure 10. Top left: dimensionless ultimate load and dimensionless loci. Top right: x/L .
Bottom left: y/L . Bottom right: d/L versus the parameter ξ of the soil for different
values of the amplitude a of the loaded region, for µ= 0.5, 1.

An interesting trend is observed for the curves of the reacting pressure, depicted in Figure 9. As the
Pasternak modulus increases, the reactive soil pressure increases under the loaded region and decreases
outside that region. In particular, Figure 9, right, highlights an increase of the peak of the soil pressure
near the edge of region 0 for low values of the parameter ξ . This is due to the fact that the reacting
pressure of the Pasternak soil depends on the Laplacian of the transverse deflection, namely on the slope
and curvature. The latter exhibits a rapid variation at the border of region 0, as proved by the corner
in the curves of Figure 5, right, and by the drop of the bending moment mr from m+0 to m−0 shown in
Figure 6, right.

Figure 10, top left, displays the dimensionless ultimate load versus ξ for some values of the amplitude
a/L of the loaded region, both for µ = 1 and 0.5. As expected, the ultimate carrying capacity of the
system increases with the soil stiffness for every value of the ratio a/L , as confirmed by the monotonic
trend of the curves plotted in Figure 10, top left. If the parameters m+0 , a/L and ξ are kept constant,
the collapse load obviously decreases as µ decreases and thus m−0 is reduced. Indeed, a decrease in
µ implies a reduction of the negative yield moment m−0 , thus allowing the activation of the collapse
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mechanism at a lower level of the external load. The variations of the ratios c/L , b/L and d/L versus ξ
are plotted in Figure 10 (top right, bottom left, bottom right, respectively). In particular, the dimensionless
radius c/L monotonically decreases as the stiffness parameter ξ increases, whereas the variation of the
radius b/Lwith ξ is not monotonic, as shown in Figure 10, top right and bottom left. These figures show
also that the border of the elastic-plastic region (i.e., the radius c or b of the plastic mechanism for b< c or
c < b, respectively) displays a nonmonotonic trend for large values of a/L , whereas for moderate values
of a/L the amplitude of the elastic-plastic zone monotonically decreases as the parameter ξ increases.
Note that, for a/L = 1, the collapse mechanism for b > c takes place for small values of the parameter
ξ (approximately, until ξ ≤ 1.5). Increasing ξ , the collapse mechanism occurs for c > b. The parameter
µ significantly affects the size of the elastic-plastic region, mainly for large sizes of the loaded region,
as shown by Figure 10, bottom left. Moreover, if the parameter ξ is kept constant, an increase in the
parameter µ produces a decrease (increase) of the size of the elastic-plastic region for large (small) values
of the amplitude of the loaded region a/L . From Figure 10, bottom right, it can be recognized that the
radius d increases monotonically with ξ . Note that the influence of the parameter µ on c and d is lower
than that found for radius b.

Finally, the variation of the ultimate load and ratios c/L , b/L , d/L versus µ are plotted in Figure 11
for a/L = 0.5 and for some values of the parameter µ. Figure 11, top left, shows that the ultimate load
increases monotonically both with ξ and µ, as expected from an increase in the soil stiffness and negative
yield moment. Figure 10, top right, shows that the radius c of the circumferential yield line becomes
smaller as µ becomes vanishing small, and its variation with the parameter µ is monotonic. Conversely,
the radius b of the circumferential yield line monotonically decreases as µ increases (Figure 11, bottom
left). Moreover, the analysis shows that there exists a specific value of µ that minimizes the amplitude of
the elastic-plastic region of the plate depending on the value of ξ . For a/L = 0.5, this occurs for values
of µ≤ 1 regardless of the value of the soil stiffness ξ . However, the influence of the parameter ξ on the
radii c and b is limited. As expected, the amplitude d of the fully yielded region 0 increases both with
µ and ξ , as confirmed by Figure 11, bottom right.

5. Experiments and possible applications

The model proposed here can be reliably used to predict the mechanical behavior of ductile elements
(e.g., FRC slabs, metallic sheets, etc.) bonded to an elastic support under axisymmetric load distributions.
For an example, it may be used to assess the failure mechanism of plastic or rubbery sheets covered by
metallic thin films. This kind of composites finds important applications for many industrial purposes.
For instance, plastic sheets coated by an aluminium film are widely used in the pharmaceutical, food and
cosmetic industries to achieve hygienic packaging.

For example, Figure 12 shows a ductile polycarbonate sheet supported by a 6 mm thick sheet of rubber
and coated by an Al thin film. The polycarbonate sheet is 5 mm thick, whereas the Al film thickness
equals 50µm. A load distribution has been imparted to the sample by means of a hydraulic cylinder
mounted into a suitable metallic frame. The Al film allows the identification of the occurrence of the
yield lines. Indeed, in the neighboring of the negative circumferential yield line, a detachment of the Al
film occurs, thus producing small wrinkles, as shown in Figure 12, top right. In the proximity of positive
radial yield lines, radial cracks within the Al film can also be detected (see Figure 13). These findings
thus confirm the plastic mechanisms investigated in the present work.
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Figure 12. Load test on a polycarbonate sheet supported by an elastic support. 

Figure 12. Load test on a polycarbonate sheet supported by an elastic support.
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Figure 13. Circumferential and radial yields lines arised in the polycarbonate sheet. 

Figure 13. Circumferential and radial yield lines in the polycarbonate sheet.

6. Conclusions

In this paper, the analysis of an infinite elastic-plastic Kirchhoff plate supported by an elastic two-
parameter subgrade has been performed for an arbitrary value of the Pasternak modulus. The elastic-
plastic behavior of the plate is assumed to follow Johansen’s yield criterion with associative flow rule.
A bilateral contact between the paper and the underlying subgrade is assumed, leading to reactive soil
pressure which can be compressive as well as tensile.

The analysis shows that the Pasternak modulus k2 significantly affects through ξ both the load-carrying
capacity of the plate and the size of the elastic-plastic regions at the onset of collapse. However, the
effects induced by a variation in the Pasternak modulus are different for small or large amplitudes of the
loaded region. For instance, the load-carrying capacity significantly increases as the Pasternak modulus
k2 increases for large sizes a/L of the loaded region, whereas the increase in the load-carrying capacity
is rather moderate for small values of a/L . Furthermore, an increase in the stiffness of the subgrade in
terms of the Pasternak modulus produces a monotonic decrease of the elastic-plastic region of the plate if
the loaded region is small, whereas this trend is not monotonic for large amplitudes of the loaded region.

The size of the loaded region a/L affects the mechanical response of the system also. For large
values of the parameter a/L , an increase in the stiffness parameter ξ produces indeed an increase of the
transverse deflection of the plate; conversely, for moderate values of the parameter a/L , an increase of the
parameter ξ generates a decrease of the transverse plate deflection. Furthermore, keeping the stiffness of
the foundation (i.e., both moduli k1 and k2) constant, as the size of the load region a/L increases, the load-
carrying capacity of the system increases, as does the amplitude of the elastic-plastic region of the plate.

The effects produced by the ratio µ between negative and positive yield moments have been investi-
gated also. It is found that, as µ increases, the load-carrying capacity and the radius d of the fully yielded
region 0 monotonically increase. It is worth noting that the parameter µ has a pronounced influence on
the load-carrying capacity and amplitude of the annular elastic-plastic regions, but it has almost no effect
on the amplitude of the fully plastic inner region 0 of the plate.

As suggested in Section 5, the model can be applied to assess the mechanical behavior of a plate-like
element supported by an elastic medium, providing a prediction of both the load-carrying capacity and
plastic mechanism taking place in the elastic-plastic plate.
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With the aim of investigating the dynamic behavior of elastic-plastic plates supported by a nonlocal
ground, the proposed model can be extended by taking into account also the inertial terms in the equilib-
rium equations, as in the recent study concerning the dynamical behavior of beams on elastic foundations
performed by Piccolroaz and Movchan [2014].
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