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PREFACE

BOGDAN T. MARUSZEWSKI, WOLFGANG MUSCHIK,
ANDRZEJ RADOWICZ AND KRZYSZTOF W. WOJCIECHOWSKI

Guest Editors

Trends in Continuum Physics (acronym TRECOP) is the name of the scientific branch that concerns
and focuses itself around many physical problems which can be described by continuum models. Special
emphasis is placed on the representation of various concepts applied to different physical fields interacting
with each other. Special stress is put on the mechanical side of the investigations made within TRECOP.

The scope of the TRECOP includes fundamentals of continuum physics, new trends in thermody-
namics and in electrodynamics, physics of materials (encompassing defective crystals, ferroic crystals,
liquid crystals, molecular crystals, high-temperature superconductors, semiconductors, plasma, polymers,
amorphous media, smart materials, and anomalous material phenomena (such as auxetics, negative ther-
mal expansion and other negative ones in materials)), biophysics, biomedical mechanics, multiphase
systems, and multiscale also nanoscale problems. These fields have been developing fast in recent years.
So TRECOP as itself can be treated as an young branch of research.

The Trends in Continuum Physics as the scientific branch was born and then was developed by in-
ternational symposia which had the same name. The idea to organize those meetings comes from three
persons: Bogdan T. Maruszewski, Wolfgang Muschik and Andrzej Radowicz. The symposia took place
since 1998: in Poznań, Poland (1998, 2001, 2004, 2014), in Lviv, Ukraine (2007) and in Msida, Malta
(2010). One of the main aims of those meetings has initially been to bring together scientists from
Eastern Europe working in different fields of continuum physics, broadly understood, as well as those
from Western and Central Europe, in order to extend their cooperation and to create new connections
and acquaitances.

In this place should be presented a list (cerntainly incomplete) of scientists who have been developing
the TRECOP scientific branch:

Vladimir Alshits — Institute of Crystallography, Russian Academy Sciences,
Moscow, Russia

Jan Awrejcewicz — Łódź University of Technology, Łódź, Poland
Arkadi Berezowski — CENS — Institute of Cybernetics, Tallinn, Estonia

Yaroslav Burak — Institute of Applied Mathematics and Mechanics, Ukrainian
National Academy of Sciences, Lviv, Ukraine

Yevhen Chaplya — Pitstrihach Institute of Applied Problems of Mechanics and Mathematics,
Ukrainian National Academy of Sciences, Lviv, Ukraine
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Enzo Ciancio — Universitá di Messina, Messina, Italy
Juri Engelbrecht — Estonian Academy of Sciences, Tallinn, Estonia
Joseph N. Grima — University of Malta, Msida, Malta

Karl H. Hoffmann — Chemnitz University of Technology, Cemnitz, Germany
David Jou — University of Barcelona, Barcelona, Spain

Jan A. Kołodziej — Poznań University of Technology, Poznań, Poland
Józef Kubik — Kazimierz Wielki University, Bydgoszcz, Poland

Georgy Lebon — Liège University, Liège, Belgium
Bogdan T. Maruszewski — Poznań University of Technology, Poznań, Poland

Stanisław Matysiak — Warsaw University, Warsaw, Poland
Gerard A. Maugin — University of Paris VI, Paris, France
Wolfgang Muschik — Technische Universität Berlin, Berlin, Germany

Henryk Petryk — Institute of Fundamental Technological Research, Polish
Academy of Sciences, Warsaw, Poland

Andrzej Radowicz — Kielce University of Technology, Kielce, Poland
Liliana Restuccia — Universitá di Messina, Messina, Italy

Jeremiah Rushchitsky — Institute of Mechanics, Ukrainian National of Sciences,
Kiev, Ukraine

Jarosław Rybicki — Gdańsk University of Technology, Gdańsk, Poland
Czesław Rymarz — Institute of Fundamental Technological Research, Polish

Academy of Sciences, Warsaw, Poland
Igor Selezov — Institute of Hydromechanics, Ukrainian National

Academy of Sciences, Kiev, Ukraine
Stanisław Sieniutycz — Warsaw University of Technology, Warsaw, Poland

Gwidon Szefer — Cracow University of Technology, Cracow, Poland
Alfons A. F. van de Ven — Eindhoven University of Technology, Eindhoven, The Netherlands

Krzysztof W. Wojciechowski — Institute of Molecular Physics, Polish Academy of Sciences,
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STRESS AND DISPLACEMENT ANALYSIS OF AN AUXETIC QUARTER-PLANE
UNDER A CONCENTRATED FORCE

PAWEŁ FRITZKOWSKI AND HENRYK KAMIŃSKI

The problem of a quarter-space under distributed normal and shear loads is considered. A mathematical
model is formulated for the plane strain state. Theoretical background of the Mellin integral transform
and calculation of residues is outlined. An analytical procedure involving the Mellin transform is pre-
sented for the general reduced problem of a quarter-plane. Numerical computation of residues allows for
evaluation of the inverse transforms for the displacements and stresses. Simulation results are obtained
for a special load case: a concentrated force. The deformation of the loaded boundary is analyzed for
various values of Poisson’s ratio. It turns out that auxetics exhibit locally negative stiffness, which leads
to an anomalous behavior of the system. A simple explanation of the unusual deformation mechanism
is proposed. The semianalytical solutions are compared with the results obtained by means of the finite
element method.

1. Introduction

In the framework of the classical elasticity theory, a number of fundamental problems have been formu-
lated in unbounded domains such as infinite or semi-infinite space. Prominent examples of this kind are
the Boussinesq and the Cerruti problems: an elastic half-space under a normal or tangent concentrated
force, respectively [Sadd 2005; Saada 1993; Nowacki 1970]. Usually the specific domain character
enables one to apply certain analytical procedures like the complex variable method or the integral trans-
form method (e.g., Laplace or Fourier transform), which can lead to closed-form solutions. Very often
it requires considerable model simplifications, e.g., by using the plane stress or plane strain assumption.
Nevertheless, such theoretical studies still provide significant information about more practical problems
related to, among others, fracture and contact mechanics [Sadd 2005; Saada 1993; Timoshenko and
Goodier 1951; Johnson 1985].

Nowadays, in the era of modern computational tools, mostly based on the finite element method, the
classical elasticity problems and analytical approaches seem to be of less importance. However, they
remain a helpful means of preliminary studies of unconventional systems whose anomalous behavior
goes beyond the well-known theoretical solutions. One such example is auxetics, i.e., materials with
negative Poisson’s ratio, ν < 0. Indeed, for decades scientists and researchers have been mainly focusing
on traditional engineering materials for which usually 0.25< ν < 0.35. But even today, despite numerous
present and potential applications of auxetics (e.g., in aerospace, biomedical and military engineering),
and constantly developed techniques for their manufacture [Prawoto 2012; Alderson and Alderson 2007],
the behavior and mechanical properties of these materials are not intuitive. Therefore, the authors of

This work has been supported by grant 02/21/DSPB/3453.
Keywords: linear elasticity, quarter-plane, deformation, auxetic materials, Mellin transform.
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Figure 1. Elastic quarter-space with a loaded surface: (left) the primary, three-dimensional
problem and (right) the reduced problem of a quarter-plane.

excellent review papers not only report auxetics-related advances in research and technology but also
thoroughly discuss the concept and physical significance of Poisson’s ratio [Greaves et al. 2011] as well
as deformation mechanisms of auxetic systems [Evans and Alderson 2000; Prawoto 2012]. It should be
noted that the classical theory of elasticity places the following bounds on Poisson’s ratio of isotropic
materials [Sadd 2005; Greaves et al. 2011]: −1< ν < 1/2.

This paper is devoted to stress and deformation analysis of an elastic solid quarter-space subjected to
a line-distributed loading. Due to the plane strain state, the problem is reduced to a static analysis of a
quarter-plane under a concentrated force. A semianalytical approach is used to solve the displacement
field equations. More precisely, the Mellin transform technique is applied in combination with a numer-
ical calculation of residues. The main aim of this work is to investigate the effect of Poisson’s ratio on
deformation of the loaded surface and report on an application of the Mellin transform that has been
rather rarely employed in computational practice.

The paper is divided into six sections. In Section 2, a mathematical formulation of the problem is
presented. Section 3 outlines the concept of the Mellin integral transform and computation of residues.
In turn, a general solution procedure of the stated problem is specified in Section 4. Section 5 contains
simulation results and discussion. Conclusions and final remarks are given in Section 6.

2. Formulation of the problem

Let us consider the generalized problem of an elastic quarter-space shown in Figure 1, left. The vertical
boundary half-plane is fixed, while the horizontal one is free and subjected to distributed normal and
shear loads: P(x) and T (x), respectively. The solid material occupying the domain is assumed to be
homogeneous, isotropic and linear, and it is characterized by shear modulus G and Poisson’s ratio ν. In
the case of auxetics, ν < 0.

Since the support and loading conditions are independent of the z coordinate, the spatial problem can
be reduced to two dimensions (see Figure 1, right). Accordingly, the plane strain formulation is used
below. Now, we focus on a quarter-plane, i.e., the region with semi-infinite boundaries:

�=

{
0≤ x <∞,
0≤ y <∞.

(2-1)
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It can be actually treated as a domain in the shape of a right-angle infinite wedge. Therefore, the mathe-
matical model is formulated in a polar coordinate system (r, ϕ).

Let u(r, ϕ)= [ur , uϕ]T be the displacement vector, where ur and uϕ denote its radial and tangential
components. The strain-displacement relations involving only the in-plane strains have the forms

εr =
∂ur

∂r
, εϕ =

1
r

(
ur +

∂uϕ
∂ϕ

)
, εrϕ =

1
2

(
1
r
∂ur

∂ϕ
+
∂uϕ
∂r
−

uϕ
r

)
. (2-2)

From Hooke’s law, the corresponding stress components are given by

σr = λ(εr + εϕ)+ 2µεr , σϕ = λ(εr + εϕ)+ 2µεϕ, σrϕ = 2µεrϕ, (2-3)

where λ and µ are Lamé constants:

λ=
2Gν

1− 2ν
, µ= G. (2-4)

Finally, in the case of zero body forces, the Navier–Lamé equations reduce to [Nowacki 1970; Sadd 2005]

µ

(
∇

2ur −
ur

r2 −
2
r2

∂uϕ
∂ϕ

)
+ (λ+µ)

∂

∂r

(
1
r
∂

∂r
(rur )+

1
r
∂uϕ
∂ϕ

(rur )

)
= 0, (2-5a)

µ

(
∇

2uϕ −
uϕ
r2 −

2
r2

∂ur

∂ϕ

)
+ (λ+µ)

1
r
∂

∂ϕ

(
1
r
∂

∂r
(rur )+

1
r
∂uϕ
∂ϕ

(rur )

)
= 0. (2-5b)

Moreover, for the given quarter-plane problem, the unknown vector-valued function u(r, ϕ) must
satisfy the following mixed boundary conditions:

ur (r, 0)= uϕ(r, 0)= 0 (displacement conditions), (2-6a)

σϕ(r, π/2)= P(r) (traction condition), (2-6b)

σrϕ(r, π/2)= T (r) (traction condition). (2-6c)

Thus, the resulting mathematical model consists of the system of coupled partial differential equations
(2-5) together with four boundary conditions (2-6).

The boundary value problem is not of a simple nature. To solve it analytically, we apply operational
calculus with the Mellin transformation method. Owing to the fact that this mathematical tool is less
commonly used than other integral transforms (e.g., the Fourier or Laplace transforms), basic theoretical
concepts are outlined in the next section.

3. Mathematical background

In literature one can find a few applications of the classical Mellin transform to plane elasticity problems.
Sneddon [1951] considered an infinite elastic wedge subjected to surface stresses. Consequently, the
author used the stress formulation and an Airy stress function. A similar approach for a finite wedge was
employed by Tsamasphyros and Theocaris [1979]. They obtained the stress function as an asymptotic
expansion of the complex inversion integral. More recently, Martin [2003] analyzed the problem of a
composite elastic half-plane, made from two isotropic quarter-planes, subjected to a concentrated force.
An exact solution was constructed using Mellin transforms and the Melan solution for a homogeneous
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half-plane. Moreover, the Mellin transform was applied to some fracture and contact problems for wedge-
shaped domains; see, e.g., [Erdogan and Arin 1976; Theocaris and Makrakis 1987]. In these cases,
understandably, the stress formulation was preferable too.

The information given below is a concise selection from many handbooks devoted to both mathemat-
ical theory and applications. The interested reader is referred especially to [Kącki 1992; Bateman 1954;
Debnath and Bhatta 2007].

Let f (x) be a function of a real variable x . The Mellin integral transform of f is defined by

f̃ (s)=
∫
∞

0
f (x)x s−1 dx, (3-1)

where s is a complex variable. In further considerations, the transform will be denoted symbolically by

f̃ (s)=M[ f (x)]. (3-2)

The inverse Mellin transform, in turn, is defined formally as

f (x)=M−1
[ f̃ (s)] =

1
2π i

∫ c+i∞

c−i∞
f̃ (s)x−s ds, (3-3)

where i is the imaginary unit and c lies on the complex plane in the strip of analyticity of the function f̃ (s).
Additionally, for further purposes, two operational properties of the Mellin transform are listed below:

• Suppose that f̃ (s) is defined by (3-2) and there exists the Mellin transform of

g(x)=
(

x
d

dx

)n

f (x). (3-4)

Then
M[g(x)] = (−s)n f̃ (s). (3-5)

• Let f (x, y) be a function of two variables. If

Mx [ f (x, y)] = f̃ (s, y) (3-6)

is the Mellin transform of f with respect to x , then

Mx

[
∂n f (x, y)
∂yn

]
=
∂n f̃ (s, y)
∂yn . (3-7)

Suppose that f (x) is an unknown solution of a given problem. Moreover, let g(s) = f̃ (s) be its
Mellin transform, i.e., the solution of the problem transformed by means of the direct transformation.
Obviously, the inverse Mellin transform is used to recover f from g. In practice, the complex integral
(3-3) can be calculated by applying Cauchy’s residue theorem. Accordingly, if D is a region bounded by
a simple closed contour C and g(s) is analytic in D, except for a finite number of isolated singularities
at s1, s2, . . . , sn , then the counterclockwise contour integral∮

C
g(s) ds = 2π i

n∑
k=1

Res[g(s), sk], (3-8)

where Res[g(s), sk] denotes the residue of g(s) at sk [Bronsztejn et al. 2009; Kaplan 2002].
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As can be seen, calculating residues of the direct transform is crucial to an efficient evaluation of the
inverse transform. In particular, the following rule is indispensable in computational practice: if g(s) is
a function of the form

g(s)=
p(s)
q(s)

(3-9)

and it has a pole of first order at s0, then

Res[g(s), s0] =
p(s0)

q ′(s0)
. (3-10)

The outlined Mellin transform method together with a numerical computation of residues allow for a
semianalytical treatment of the quarter-plane problem, which is discussed in the next sections.

4. General analytical procedure

4A. Transformation of the problem. Let ũr and ũϕ denote the Mellin transforms of the displacements
with respect to the polar coordinate r , that is,

ũr (s, ϕ)=Mr [ur (r, ϕ)], ũϕ(s, ϕ)=Mr [uϕ(r, ϕ)]. (4-1)

Multiplying the governing equations (2-5) by r2 and using the properties (3-5) and (3-7) yields the
following transformed pair:

µ
∂2ũr

∂ϕ2 + (λ+ 2µ)(s2
− 1)ũr − [s(λ+µ)+ (λ+ 3µ)]

∂ ũϕ
∂ϕ
= 0, (4-2a)

(λ+ 2µ)
∂2ũϕ
∂ϕ2 +µ(s

2
− 1)ũϕ − [s(λ+µ)− (λ+ 3µ)]

∂ ũr

∂ϕ
= 0. (4-2b)

It should be noted that these equations are much simpler than the original ones.
Next, consider the stress-displacement relations that can be obtained by inserting (2-2) into (2-3).

Transformations of the stress components multiplied by r

t̃r (s, ϕ)=Mr [rσr (r, ϕ)],

t̃ϕ(s, ϕ)=Mr [rσϕ(r, ϕ)],

t̃rϕ(s, ϕ)=Mr [rσrϕ(r, ϕ)]

become

t̃r (s, ϕ)= [λ− s(λ+ 2µ)]ũr + λ
∂ ũϕ
∂ϕ

, (4-3a)

t̃ϕ(s, ϕ)= [(λ+ 2µ)− sλ]ũr + (λ+ 2µ)
∂ ũϕ
∂ϕ

, (4-3b)

t̃rϕ(s, ϕ)= µ
[
−(s+ 1)ũϕ +

∂ ũr

∂ϕ

]
. (4-3c)
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Now, boundary conditions (2-6) can be converted to

ũr (s, 0)= ũϕ(s, 0)= 0 (displacement conditions), (4-4a)

t̃ϕ(s, π/2)= P̃(s) (traction condition), (4-4b)

t̃rϕ(s, π/2)= T̃ (s) (traction condition), (4-4c)

where
T̃ (s)=Mr [rT (r)], P̃(s)=Mr [r P(r)]. (4-5)

To sum up, after the transformation the boundary value problem comprises the equilibrium equations
(4-2) and associated boundary conditions (4-4).

4B. Solution of the problem. Due to its relatively simple form, the transformed problem can be solved in
a quite conventional way. For the second-order partial differential equations (4-2), one can suppose that

ũr (s, ϕ)= C1ehϕ, ũϕ(s, ϕ)= C2ehϕ, (4-6)

where C1 and C2 are real constants, while h is a complex parameter to be determined. Inserting (4-6)
into (4-2) leads to a system of two characteristic equations. All their roots are complex:

h1 = i(s+ 1), h2 =−i(s+ 1), h3 = i(s− 1), h4 =−i(s− 1).

Hence, the solution is given by

ũr (s, ϕ)= A11 sin [(s+ 1)ϕ] + B11 cos [(s+ 1)ϕ] + A12 sin [(s− 1)ϕ] + B12 cos [(s− 1)ϕ], (4-7a)

ũϕ(s, ϕ)= A21 sin [(s+ 1)ϕ] + B21 cos [(s+ 1)ϕ] + A22 sin [(s− 1)ϕ] + B22 cos [(s− 1)ϕ], (4-7b)

where A11, B11, A12, . . . , A22 are real constants. As can be ascertained by substitution, in order to satisfy
(4-2), the relations

A21 = B11
η1s− η3

η1s+ η3
, A22 = B12, B21 =−A11

η1s− η3

η1s+ η3
, B22 =−A12 (4-8)

must be fulfilled, where auxiliary parameters are introduced for notational brevity:

η j = λ+ jµ, j = 1, 2, 3.

The next four constants can be determined from the prescribed boundary conditions. Taking into consid-
eration (4-4a) produces

B12 =−B11, A12 =−A11
η1s− η3

η1s+ η3
. (4-9)

Similarly, the traction conditions (4-4b) and (4-4c) require

A11 =−
T̃ (η1s+ η3)+ 4B11µs(η1s+ η2) cos ( 1

2πs)

4µs(η1s−µ) sin (1
2πs)

,

B11 =−
(η1s+ η3)

[
P̃(η1s−µ) sin ( 1

2πs)+ T̃ (η1s+ η2) cos ( 1
2πs)

]
2µs

[
2(η2

1s2−µ2)− η1η3 cos (πs)− η1η3
] .

(4-10)
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Figure 2. Elastic quarter-space with line-distributed loading: (left) the primary, three-
dimensional problem and (right) the reduced problem of a quarter-plane under a concen-
trated force.

Using all the relationships (4-8), (4-9) and (4-10), one can find expressions for the Mellin transforms
of the desired displacement, strain and stress components. They are not presented here because of their
considerable complexity. Instead, we concentrate on displacements related to the loaded boundary:

ũr (s, π/2)=
T̃

2Gq(s)
κ(κ + 1) sin(πs)−

P̃
2Gq(s)

[
4s2
+ 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (4-11a)

ũϕ(s, π/2)=
P̃

2Gq(s)
κ(κ + 1) sin(πs)+

T̃
2Gq(s)

[
4s2
− 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (4-11b)

where κ denotes the Kolosov constant
κ = 3− 4ν (4-12)

and the common variable part of the denominators is

q(s)= s[1− 4s2
+ κ2
+ 2κ cos(πs)]. (4-13)

For a certain load case, the obtained formulas can be subjected to the inverse Mellin transform performed
numerically, which leads to displacement values ur and uϕ .

5. Case study and results

5A. Analytical results. Consider the specific problem indicated in the title. The original problem relates
to an elastic quarter-space with a line load that is applied at a distance a from the z axis (see Figure 2,
left). Consequently, in the plain strain formulation, the horizontal edge of the quarter-plane is loaded by
a concentrated force P0. Thus,

P(r)= P0δ(r − a), T (r)= 0,

where δ denotes the Dirac delta. Then the boundary conditions (2-6) become

ur (r, 0)= uϕ(r, 0)= 0 (displacement conditions), (5-1a)

σϕ(r, π/2)= P0δ(r − a) (traction condition), (5-1b)

σrϕ(r, π/2)= 0 (traction condition). (5-1c)
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Figure 3. Values of the real parts of poles versus Poisson’s ratio: real poles (solid) and
initial complex poles (dashed).

The nonhomogeneous traction condition can be easily transformed by using the so-called sifting property
of the Dirac delta:

P̃(s)=
∫
∞

0
r P(r)r s−1 dr =

∫
∞

0
r s P0δ(r − a) dr = P0as .

Taking into account that T̃ (s)= 0, the complete set of transformed conditions (4-4) is given by

ũr (s, 0)= ũϕ(s, 0)= 0 (displacement conditions), (5-2a)

t̃ϕ(s, π/2)= P0as (traction condition), (5-2b)

t̃rϕ(s, π/2)= 0 (traction condition). (5-2c)

By analogy to the general case, we present only the Mellin transforms of displacements of the loaded
surface. Equations (4-11) become

ũr (s, π/2)=−
P0as

2Gq(s)

[
4s2
+ 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (5-3a)

ũϕ(s, π/2)=
P0as

2Gq(s)
κ(κ + 1) sin(πs). (5-3b)

Expressions for t̃r , t̃ϕ and t̃rϕ are much more complex; however, they also include the denominator q(s).

5B. Some computational issues. As suggested in Section 3, the inversion process can be performed via
numerical evaluation of residues. This approach requires finding poles of the given Mellin transforms
multiplied by r−s . Since the integrands of the inversion integral (3-3) can be written in the form (3-9), the
function q(s) plays a key role. In fact, the solutions of the transcendental equation q(s)= 0 must be found.

It can be easily shown that the integrands do not have poles at s = 0, whereas the other zeros of q(s)
correspond to the poles of first order. Their location in the complex plane is symmetric with respect to
both axes. Figure 3 shows values of the real parts of a few initial poles, calculated for the whole range
−1≤ ν ≤ 1/2. There is a finite number 2nr of real poles, all of which lie near the origin (1≤ nr ≤ 3).
Moreover, there are infinitely many complex conjugate poles (nc =∞).
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Figure 4. Zero-level contour lines of the real part (solid) and the imaginary part (dashed)
of q(s): (left) ν = 0 and (right) ν = −0.25. The intersections of different contours
indicate poles’ loci.

Achieving a good insight into the pattern of singularities’ locations is essential to construct an algo-
rithm for evaluation of residues. Due to the mentioned symmetry, we concentrate on the right half-plane.
In Figure 4 two isoline plots are presented for ν = 0 and ν = −0.25. They display just the zero-level
contours of the real and imaginary parts of the function q(s). Thus, a real pole srk = αrk (k = 1, 2, . . . , nr )
of p(s)/q(s) is indicated by the intersection of a real-part-related contour with the real axis. A complex
pole sck = αck +βcki (k = 1, 2, . . . , nc), in turn, lies at the intersection of two contours of different types
and has a corresponding conjugate, s̄ck = αck −βcki . As ν = 0, for example, in the right half-plane three
real poles sr1, sr2 and sr3 are followed by all the complex poles sck and s̄ck (k= 1, 2, . . . , nc). For the other
case, in turn, a single real pole sr1 is located between the first and second complex conjugate pairs, sc1, s̄c1

and sc2, s̄c2. Generally, the difference between the real parts of two directly neighboring complex poles
1αc = αck+1−αck ≈ 2, whereas the imaginary difference decreases exponentially to zero (1βc→ 0).

Although there is an infinite number of isolated complex singularities, residue values gradually de-
crease with increasing absolute value of the real part αck . Consequently, the true solution can be well-
approximated by a finite (truncated) sum of residues of the direct transforms. The degree of accuracy of
this approximation is affected by two factors. Firstly, one should reasonably select the number n∗c of the
complex poles being taken. Secondly, the numerical solution of q(s)= 0 plays a vital role. In our simu-
lations the real roots are found with the use of Muller’s method. The complex roots, in turn, are obtained
by a consecutive application of the method of successive approximations (a fixed-point iteration scheme).

In practice, calculation of the so-called Bromwich integral (3-3) may seem a bit enigmatic. The
integration must be performed along an infinite line L that is parallel to the imaginary axis (Re(s)= c).
In the given problem, two lines, L1 and L2, are used as illustrated in Figure 5. Thus, c1 = c and c2 =−c
where c is a small positive value so that c < sr1 as well as c < Re(sc1). Additionally, two half-circles
of radius R, 01 and 02, are chosen as the completion paths. For R→∞ the lines and curves constitute
closed contours, C1 = L1∪01 and C2 = L2∪02, which enclose all the poles in the right and left complex
half-planes, respectively. Convergence of the computation can be ensured by the proper choice of the
inversion contour.
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Figure 5. Two alternative inversion contours to use in the Bromwich integral.

Generally, the Mellin transforms of the displacements, ũr (s, ϕ) and ũϕ(s, ϕ), have the form f̃ (s, ϕ)=
p(s, ϕ)/q(s, ϕ). The integrands for the inversion formula (3-3), in turn, are given by

f̃ (s, ϕ)r−s
=

( r
a

)−s p∗(s, ϕ)
q(s, ϕ)

. (5-4)

It can be shown that the behavior of these functions is determined by the factor (r/a)−s . For r ≥ a the
functions tend to zero if Re(s)→+∞. Thus, the integral of (5-4) along the curve 01 vanishes in the
limit for R→∞, and the Bromwich integral can be evaluated by means of the contour C1. In the other
case, when r < a, the integrands tend to zero if Re(s)→−∞. Consequently, the contour C2 is used
for the inversion integral since the integral along the curve 02 vanishes for R→∞. In both cases, the
integration is performed by summing up the residues enclosed by C1 or C2.

5C. Simulation results. Although an immanent feature of numerical calculations is that they are per-
formed for specific values of model parameters, the results reported below have a nondimensional form.
More precisely, the dimensionless displacements are defined as

Ux(x, y)=
Ga
P0

ux(x, y)× 106, Uy(x, y)=
Ga
P0

u y(x, y)× 106. (5-5)

The polar components, Ur (r, ϕ) and Uϕ(r, ϕ), are computed in the same way. Analogously, the following
nondimensional stresses are introduced:

Sx(x, y)=
a
P0
σx(x, y), Sy(x, y)=

a
P0
σy(x, y), Sxy(x, y)=

a
P0
σxy(x, y). (5-6)

Let us start with an overall look at the displacement and stress fields. Figure 6 shows the distribution
of the vertical displacement Uy , normal stress Sy and shear stress Sxy in a rectangular subregion of the
quarter-plane, 〈0, 2a〉× 〈0, a〉, for two values of Poisson’s ratio: ν = 0.25 and ν =−0.5. Generally, in
both cases the distributions are qualitatively similar, and far away from the fixed boundary, their nature
resembles the results for an elastic half-plane (see, e.g., [Sadd 2005; Saada 1993]). The effects of the
concentrated force are highly localized. The displacement Uy decreases radially outward from the point
of application of the load. The contours of constant tensile stress Sy form closed curves converging at



STRESS AND DISPLACEMENT ANALYSIS OF AN AUXETIC QUARTER-PLANE 13

-0.6

-0.5 -0.4

-0.3

-0.2

-0.1

-0.02

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-1.2

-1

-0.8

-0.6

-0.5

-0.4

-0.3

-0.3

-0.2

-0.1

-0.02

0

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-0.1

-0.05

0 0

0.1

0.3

0.5

0.7

0.9

1.2

1.5

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
0

0

0.2 0.2

0.3

0.3

0.5

0.7

0.9

1.2

1.4

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-1

-0.6

-0.4

-0.2 0 0

0

0 0

0.10.2

0.4

1

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-1

-0.6

-0.5

-0.4

-0.2

0 0

0

0

0.1

0.1

0.2

0.4

1

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 6. Displacement and stress distributions in a rectangular region for ν = 0.25 (left
column) and ν =−0.5 (right column): (top) vertical displacement Uy , (middle) normal
stress Sy and (bottom) shear stress Sxy . Results obtained for n∗c = 5× 103.
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right) ν =−0.75. Results obtained for n∗c = 3× 104.
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Figure 8. The effect of the anomalous vertical displacement of the loaded surface for
negative Poisson’s ratio: ν =−0.75 (solid), ν = 0 (dashed) and ν = 0.25 (dotted).

this point. In this sense they bring to mind the isochromatic photoelastic fringe patterns (isolines of
the principal shear stress) for a point load, well-known from contact mechanics [Sadd 2005; Johnson
1985]. The shear stress field indicates that below the free surface, for example at the level y1 = a/10,
a change in sign of Sxy(x, y1) occurs at x = a (compare the classical Flamant problem [Sadd 2005]).
The stress becomes vanishingly small at a sufficiently large distance from this point. Obviously, due to
the constraints, the general view is disturbed by some local effects near the fixed boundary, which is
discussed later.

Now let us turn to a displacement analysis of the loaded surface. In Figure 7 the vertical displacement
Uϕ(r, π/2)=−Uy(x, 0) is presented for various values of Poisson’s ratio. For ease of comparison, all
the plots have equal axis scales. As can be seen, values of the sharp peak at the loading point grow
with decreasingly lower ν. The deformation behavior is intuitively reasonable and seems qualitatively
identical in each case. However, a closer look at the curves allows one to notice an interesting detail.
If ν > 0 the vertical displacement component of every point on the boundary is directed upward, i.e.,
has the same direction as the active force. But for the auxetic case, ν < 0, a strict minimum of the
function Uϕ(r, π/2) arises in the range 0< r < a: the edge deflects locally in the opposite direction to
the load. This unusual valley effect can be clearly observed in Figure 8. Zero Poisson’s ratio seems to
be the intermediate case, when the deflection curve is tangent to the horizontal axis at r = 0.

Figure 9 shows how Poisson’s ratio affects the zero locus x0 of the function −Uy(x, 0). Evidently, the
distance between the zero-crossing and the origin increases as ν tends to −1. In the opposite case, when
ν = 0, the two points overlap, i.e., there is no additional minimum for x > 0. Thus, ν = 0 can be treated
as the critical value, νcr, below which the valley effect always occurs; the effect intensifies with stronger
auxetic behavior exhibited by the material.

In general, mutually opposite directions of the active force and the resulting displacement contradict
practical experience. This property is referred to as negative stiffness and should be distinguished from
negative Poisson’s ratio. However, systems with such an anomaly exist not only in theory. Experimental
realization of composite materials with negative stiffness has been discussed, for example, in [Lakes et al.
2001; Lakes 2001].
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Figure 9. Locus of the zero of Uϕ(r, π/2) versus Poisson’s ratio.

In [Maruszewski et al. 2010; Poźniak et al. 2010] it is suggested that the unusual deformation found
in our simulations may be treated as locally negative compliance. The authors numerically investigated
similar behavior of simple two- or three-dimensional systems. In the planar case, they considered a
unit square domain whose two opposite sides are fixed, whereas the others are subjected to uniform
compression loading. The elastostatic problem was solved under the plane stress assumption by using
the finite element method (FEM). The results indicate counterintuitive deformation of the square near its
vertices for negative Poisson’s ratio. Nevertheless, the papers do not contain the definite conclusion that
ν = 0 is the critical value for occurrence of this effect. With the FEM approach, the evaluated νcr strongly
depends on the mesh density. Analyzing the result convergence, the authors stated that νcr ≥ −0.25
[Poźniak et al. 2010] or νcr ≥−0.2 [Maruszewski et al. 2010].

Finally, the question about the mechanism of the anomalous deformation arises. The contour plots
shown in Figure 10 refer to a smaller fragment of the quarter-plane: 〈0, a〉 × 〈0, a〉. In the left-hand
column the distribution of the stress Sy is presented more clearly than before. The right-hand plots, in
turn, display isolines of the first (maximum) principal strain ε1, which is scaled according to

E1 = 2(1+ ν)G
a2

P0
ε1. (5-7)

For various values of ν both the fields have quite similar character in the area below the load. The most
significant differences appear at the fixed edge, near the origin.

When it comes to the normal stress Sy , there is an evident change in sign due to a decrease of Poisson’s
ratio. The corner of compressive stress (for ν = 0.25) becomes a neutral zone (Sy = 0) with a closed
area of low compression (for ν = 0) and is eventually transformed into a corner of tensile stress and a
wedge neutral zone at the free surface (for ν =−0.5). In the latter case one should notice the specific
saddle-shaped arrangement of the near zero-level contours.

This gradual transformation of the normal stress, among others, entails an essential change in the
maximum principal strain E1. As ν > 0, the material undergoes elongation just under the free surface,
which results mainly from the pulling force and the counterdirected reaction. For the critical value, ν = 0,
the strain E1 is close to zero at the boundary but still nonnegative in the area below. As ν < 0, however,
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Figure 10. Stress and strain distribution in a square region. Normal stress Sy (left col-
umn) and the first principal strain E1 (right column): (top) ν = 0.25, (middle) ν = 0 and
(bottom) ν =−0.5.

the maximum strain here becomes negative, and the isolines form a valley that strictly corresponds to
the anomalous deformation of the loaded surface.

These differences arising when ν is varied may be basically explained by the example of a finite-sized
elastic solid under uniaxial tensile load. First, consider the unconstrained case illustrated in Figure 11, left.
Typically for conventional (nonauxetic) materials, elongation is accompanied by transverse contraction
(see Figure 11, middle). Auxetics, by contrast, expand laterally in the same conditions (see Figure 11,
right). Now, suppose that geometric constraints (fixed support) are imposed on the left side of the square.
In the normal case (ν > 0), the contraction of the solid generally produces a pulling horizontal (leftward)
reaction force. Near the top-left corner, the displacement tendency of the vertex causes a slight pushing
(rightward) reaction. As an overall result, the tension zone appears under the free surface. In the auxetic
case, in turn, the lateral expansion must generate a pushing (rightward) reaction. The high horizontal
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Figure 11. Deformation of an unconstrained elastic square under a tensile point load:
(left) initial geometry and loading, (middle) deformation scheme in an ordinary, nonaux-
etic case and (right) deformation scheme in an auxetic case.

compression at the corner may lead to a local contraction in the transverse (vertical) direction, which
manifests itself by the valley effect.

Despite its simplicity and schematic nature, the above explanation casts some light on the mechanism
of the anomalous deformation of the quarter-plane. To some degree, the expansion-contraction behavior
of the conventional and auxetic materials is reflected in the streamline patterns for the displacement field
in the system (see Figure 12).

5D. Comparison to FEM results. Usually approximate methods are tested and validated by comparing
their results to exact solutions. However, another well-established computer method also can be a source
of the reference data. Very often the finite element method is employed for this purpose as one of the
dominant tools applied in various fields of science and engineering. For instance, FEM results were used
to test efficiency of mesh-based and meshless techniques in [Walczak et al. 2014; Bai and Lu 2004; Liu
2010]. Similar comparative study is carried out below for the semianalytical approach. All the presented
results have been obtained using the COMSOL Multiphysics environment.
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Figure 12. Streamline patterns for the displacement field: (left) ν = 0.25 and (right) ν =−0.5.
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Figure 13. Finite element mesh near the loading point (a clipped view).

Some commercial FEM systems offer various implementations of infinite elements, which allows one
to model unbounded domains. However, we decided to restrict the linear static analysis to a finite-sized
square solid:

�̂=

{
0≤ x ≤ b,
0≤ y ≤ b,

(5-8)

where b > a. Apart from the boundary conditions (5-1) reformulated in the Cartesian coordinate system,
the following ones are imposed on the right and bottom edges:

ux(b, y)= 0 (displacement condition), (5-9a)

u y(x, b)= 0 (displacement condition). (5-9b)

It is assumed that b= 10a to reduce the effect of the boundaries on the elastic field near the loading point.
At the same time, the reasonable domain size protects the discrete model from an excessive number of
finite elements.

For an efficient mesh generation, a quarter-disc of radius 2a, centered at the origin, is set apart from the
whole domain. The defined maximal element size within this subregion is significantly lower than outside.
Moreover, taking into account the peak character of the loaded boundary displacement, a nonuniform
mesh distribution is applied: mesh density increases towards the loading point. An exemplary fragment
of the discretized system �̂ is shown in Figure 13. The quadratic quadrilateral elements are used in the
entire domain.

Figure 14 presents numerical results for ν = 0.25 and ν = −0.5 in the nondimensional form: the
distribution of displacement Uy and stress Sy as well as the vertical displacement of the loaded surface
−Uy(x, 0). Thus, the graphs correspond to Figure 6 (top/middle left and top/middle right) and Figure 7
(left). The displacement and stress fields produced by two different methods are in close agreement with
each other. When it comes to the loaded boundary, the maximal displacements obtained with FEM are
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Figure 14. Displacement and stress field for ν = 0.25 (left column) and ν =−0.5 (right
column): (top) normal stress Sy , (middle) vertical displacement Uy and (bottom) upward
displacement −Uy of the loaded surface.

2–5% greater than the ones from the semianalytical solutions. The simulations were performed for the
number of finite elements ne = 13 938 and the number of degrees of freedom ndof = 112 606.

In order to examine the convergence of computations, a series of numerical experiments were con-
ducted for gradually increasing mesh density inside the quarter-disc subdomain. As can be seen in
Figure 15, left, a significant growth of the maximal value −Uy(a, 0) occurs for relatively small numbers
of degrees of freedom. Nevertheless, the displacement stabilizes when ndof > 118 000. An analogous
test for the semianalytical approach (see Figure 15, right) indicates more regular change of the peak
displacement with the number of complex poles n∗c : logarithmic convergence rate is clearly observed
(notice the logarithmic scale on the horizontal axis).

It should be emphasized that achieving such an agreement between both methods has been somewhat
troublesome from the viewpoint of FEM. Using gradually finer but uniform meshes in the whole quarter-
disc region does not bring the expected results: the maximal displacement grows much slower than the
number of degrees of freedom. Consequently, gaining reliable values becomes unattainable even for
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Figure 15. Convergence of the maximal vertical displacement for ν = 0.25 (•) and
ν =−0.5 (�): (left) FEM results and (right) results of the semianalytical approach.

users of PCs with relatively large memory resources. Hence, increasing the mesh density locally (at the
loading point) is indispensable.

However, these difficulties and, more generally, the requirement for high-resolution computations by
the two methods (large ndof and n∗c , respectively) relate mainly to a small neighborhood of the loading
point. The displacement and stress fields far enough from this point are rather weakly affected by a
change in ndof and n∗c .

A comparison of the curve Uϕ(r, π/2) from Figure 8 (n∗c = 3× 104) and the one obtained by FEM
(ndof = 112 606) for ν = −0.75 is presented in Figure 16. As can be seen, the applied discretization
method is sufficient and the results capture the valley effect very well. Noticeable differences appear for
x/a > 3/2, and they grow with increasing x . However, this discrepancy can be effectively eliminated by
adjusting ndof and n∗c to ensure very close values of the peak displacements −Uy(a, 0) provided by both
approaches.

6. Conclusions

In this paper, the distributions of the vertical displacement as well as the normal and shear stresses
in a finite subregion of the quarter-plane have been discussed. Much attention has been paid to the
deformation of the loaded boundary, which has been analyzed for various values of Poisson’s ratio. It
has been found that auxetics exhibit an anomalous deformation of the loaded surface near the fixed
boundary: the valley effect that intensifies with stronger auxeticity of the material. The obtained results
indicate that ν = 0 is just the critical value below which the effect always occurs. A simple explanation
of the unusual deformation mechanism has been suggested by using the example of an unconstrained
auxetic and nonauxetic solid under a tensile load. The presented solutions are in close agreement with
the FEM results, although the latter ones have been obtained for a finite-sized solid.

The discussed valley effect can be treated as a kind of ersatz of negative stiffness (or negative com-
pliance). In the case of the analyzed system, it arises from a combination of specific conditions: con-
straints (fixed boundary), load (vertical concentrated force) and material (ν ≤ 0). But generally, the
systems exhibiting negative stiffness are interesting from both theoretical and practical points of view.
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Combining an ordinary material with the one of negative stiffness may produce a composite having
amazing properties, e.g., very large elastic modulus. In theory, it is possible to construct a material of
zero compliance [Maruszewski et al. 2010; Poźniak et al. 2010]. Such modern trends in science and
engineering require efficient numerical simulations that cast new light on unusual phenomena that have
not yet been investigated experimentally.

Assuming the semi-infinite character of the domain allows for a semianalytical treatment of the prob-
lem. Such an approach has a huge advantage compared to purely numerical techniques. One can focus
on the displacement and stress analysis of the loaded surface only, without the necessity of solving the
problem in the whole domain. Moreover, the proposed method is free from various difficulties connected
to the discretization process. Based on the obtained results, it may be concluded that the semianalytical
approach exhibits logarithmic convergence.
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LAMINAR FLOW OF A POWER-LAW FLUID BETWEEN CORRUGATED PLATES

JAKUB KRZYSZTOF GRABSKI AND JAN ADAM KOŁODZIEJ

This paper deals with the problem of a steady, fully developed, laminar flow of a power-law fluid
between corrugated plates. A nonlinear governing equation is transformed into a sequence of linear
inhomogeneous equations by the Picard iteration method. At each iteration step, the inhomogeneous
equation is solved using the method of particular solutions in which the solution consists of two parts:
the general solution and the particular solution. The right-hand side of the inhomogeneous equation is
interpolated using the radial basis functions and monomials, and simultaneously unknown coefficients
of the particular solution are obtained. The method of fundamental solutions is applied in order to obtain
the general solution. Unknown coefficients of the general solution are calculated by fulfilling the bound-
ary conditions. In this paper, dimensionless velocity of the fluid and the product of the friction factor
and Reynolds number f Re are presented for different values of corrugation amplitude and different
parameters of the power-law fluid model.

1. Introduction

The problem of a steady, fully developed, laminar flow in ducts of different cross-sectional shapes has
received quite extensive attention over the years. A wide range of problems was researched in this area.
For instance, a laminar flow between cylinders arranged in a regular array by means of the eigenfunction
expansion and the boundary collocation method was investigated by Sparrow and Loeffler [1959]. Zarling
[1976] considered flow in different complexly shaped ducts (a circular duct, a square duct, a rectangular
duct, an elliptical duct) using the Schwarz–Neumann alternating method along with the boundary collo-
cation method in the least-square sense. Flow in a channel with longitudinal ribs was examined by Wang
[1994]. He solved the problem by means of the eigenfunction expansion and the boundary collocation
method. The same method was applied by Hu and Yeh [2009] in order to obtain the solution for the
problem of a laminar flow in a channel with moving bars. Fluid flow and heat transfer in internally
finned tubes were often analyzed in the literature because of their importance from a practical point of
view; see for example [Tien et al. 2012].

Also structures with corrugated boundaries have a wide range of practical applications in technology,
and one can find many examples in nature. It is worth mentioning the application of this class of flows
to corrugated walls in heat exchangers. An experimental comparison of heat and mass transfer between
different heat exchangers with corrugated walls was conducted Zimmerer et al. [2002]. Another example
of practical problems with corrugated boundaries is peristaltic pumping, which is the transport of fluid
induced by a progressive wave of contraction along the distensible duct. Such phenomena exist in many
biological systems, e.g., the gastrointestinal tract, the ureter and the small blood vessels. Peristaltic
pumps are also used in industry (to transport corrosive or aggressive fluids) and medicine (to transport

Keywords: power-law fluid, corrugated plates, method of fundamental solutions, radial basis functions.
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bodily fluids outside the human body). See [Yin and Fung 1971] for a comparison between theory and
experiment in peristaltic transport.

Recently more researchers have dealt with the mechanics of non-Newtonian fluids because of their
great importance in practical issues, e.g., in plastic processing (molten polymers), the food industry
(chocolate, ketchup, yogurt), the personal care industry (shampoo, shaving foam or cream, toothpaste)
or medicine (blood, synovial fluid, saliva) [Astarita and Marrucci 1974; Chhabra and Richardson 2008;
Irgens 2014]. One of the simplest non-Newtonian fluid models is the power-law fluid. This model is
very common in the literature. It was investigated using different numerical methods. Schechter [1961]
analyzed flow of a power-law fluid in a rectangular duct using the Ritz method for solving the momentum
equation. More accurate results for the same problem were obtained by Wheeler and Wissler [1965], who
employed the finite-difference scheme based on the over-relaxation method. The finite-element method
was applied to isothermal slow channel flow of power-law fluids by Palit and Fenner [1972]. Their results
were compared to the results obtained using the finite-difference method (for rectangular channels) and
to an exact solution (Newtonian fluid flow). Liu et al. [1988] presented a comparison of the Galerkin
finite-element method and the boundary-fitted coordinate transformation method. The power-law fluid
flow in a circular pipe and square and triangular ducts was analyzed. Kostic [1993] investigated flow
of a power-law fluid in rectangular ducts by means of the finite-difference method. Fully developed,
laminar flow of a power-law fluid in rectangular ducts was also examined by Syrjälä [1995]. He used
the finite-element method to solve the momentum equations numerically. Madhav and Malin [1997]
analyzed the same problem with application of the single-slab solution procedure. Lima et al. [2000]
investigated two-dimensional, laminar flow of a power-law fluid inside the rectangular ducts by means
of the generalized integral transform technique.

The problem of fully developed, laminar flow of a Newtonian fluid between corrugated plates was first
investigated by Wang [1976]. Ng and Wang [2010] analyzed Darcy–Brinkman flow between corrugated
plates. To our best knowledge, there are no other published works on the flow between corrugated plates.
The purpose of this paper is to analyze the flow of a power-law fluid between corrugated plates using the
method of fundamental solutions and the radial basis functions.

2. Method of fundamental solutions and its applications to solving nonlinear problems

The method of fundamental solutions (MFS) is a meshless method. The method can be applied to solve
problems described by partial differential equations for which the fundamental solutions are known. The
fundamental solution is a function of a distance between a point inside the considered region and a
source point. The source points are located on a pseudoboundary that is outside the considered region.
The boundary of the considered region and the pseudoboundary do not have any common points. The
approximate solution in the MFS is assumed to be a linear combination of fundamental solutions. The
governing equation is satisfied exactly by the fundamental solution at any point in the considered region,
which also ensures that the approximate solution fulfills the governing equation at any point of the region.
The boundary conditions are fulfilled approximately using the boundary collocation technique. The MFS
was originally proposed by Kupradze and Aleksidze [1964]. A numerical implementation of the MFS
was presented in [Mathon and Johnston 1977]. Some noteworthy review articles can be found in the
literature. A review of the MFS applications to elliptic boundary problems was presented in [Fairweather
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and Karageorghis 1998] while a review of applications of the MFS to scattering and radiation problems
was included in [Fairweather et al. 2003]. Applications of the MFS to inverse problems, in turn, were
reviewed in [Karageorghis et al. 2011].

The MFS can also be found in the literature under other names: the superposition method [Burgess
and Mahajerin 1984], the boundary point method [Johnson 1987], the fundamental solutions method
[Bogomolny 1985], the source functions method [de Mey 1978], the fundamental collocation method
[Burgess and Mahajerin 1987], the charge simulation method [Amano 1998] or the regular indirect
boundary element method [Wearing and Sheikh 1988].

The problem of a steady, fully developed, laminar flow of a power-law fluid is governed by a nonlinear
equation. There are only a few examples of applications of the MFS to such problems, and the first
attempt to use the MFS for a nonlinear Poisson problem was probably given in [Burgess and Mahajerin
1987]. In that paper, the particular solution was expressed as an integral over the considered region
and as a sum of the right-hand-side function times the fundamental solution. Then the Picard iteration
method was applied. In [Balakrishnan and Ramachandran 1999; Balakrishnan et al. 2002; Chen 1995;
Wang and Qin 2006; Wang et al. 2006], an original nonlinear Poisson-type differential equation in a two-
dimensional domain was converted into a sequence of linear Poisson equations. Then the radial basis
functions (RBF) and the MFS were applied respectively to construct the expression of the particular
and the homogeneous solutions at each iteration step. This procedure was used for more complicated
problems of applied mechanics: heat conduction problems in anisotropic and inhomogeneous media
[Wang et al. 2005], large deflection of plates [Klekiel and Kołodziej 2006], isothermal gas flow in porous
medium [Uściłowska and Kołodziej 2006], thermoelasticity of functionally graded materials [Wang and
Qin 2008], nonlinear elliptic problems [Li and Zhu 2009], determination of effective thermal conductivity
of unidirectional composites with linearly temperature-dependent conductivity of constituents [Kołodziej
and Uściłowska 2012], two-dimensional nonlinear elasticity [Al-Gahtani 2012], elastoplastic torsion of
prismatic rods [Kołodziej and Gorzelańczyk 2012], dynamic response of von Karman nonlinear plate
model [Uściłowska and Berendt 2013] and some inverse problems [Kołodziej et al. 2013; Mierzwiczak
and Kołodziej 2011]. Balakrishnan and Ramachandran [2001] solved nonlinear Poisson problems by
means of the method of fundamental solutions and radial basis functions called the osculatory radial
basis functions.

Application of the MFS to a Laplace equation with a nonlinear boundary condition was presented
by Karageorghis and Fairweather [1989], who considered nonlinear plane potential problems. Steady-
state heat conduction with temperature-dependent thermal conductivity and mixed boundary conditions
involving radiation was investigated in [Karageorghis and Lesnic 2008a]. In that paper, the classical
Kirchhoff transformation was employed. In this way, the governing equation was transformed to the
Laplace equation and the only nonlinearity in the new boundary value problem was included in nonlin-
ear boundary conditions. The nonlinear system of algebraic equations was then solved by a standard
procedure. The same numerical algorithm was applied for steady-state nonlinear heat conduction in
composite materials [Karageorghis and Lesnic 2008b]. A similar approach with the MFS was used for
the water wave problem [Kołodziej and Mierzwiczak 2008; Mollazadeh et al. 2011; Wu and Tsay 2009;
Wu et al. 2006; 2008].

A linearization scheme for an inhomogeneous term in terms of a dependent variable and the first or
second derivative with respect to time, resulting in a Helmholtz-type equation (for which the fundamental
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Figure 1. Geometry of the considered problem.

solution is known), was proposed in [Fallahi 2012; Fallahi and Hosami 2011]. Consequently, the particu-
lar solutions are no longer needed and the MFS can be directly applied to the linearized equation. In [Tri
et al. 2011; 2012], the perturbation technique was combined with the MFS in order to solve a nonlinear
Poisson-type equation. The nonlinear problem was transformed into a sequence of inhomogeneous linear
problems that can be solved by the MFS and the RBF. The homotopy analysis method combined with the
MFS was applied to solve a nonlinear Poisson-type problem in [Tsai 2012]. The Eulerian–Lagrangian
method in combination with the MFS was used by Young et al. [2008] in order to solve the nonlinear
unsteady Burgers equation. In [Young et al. 2009], unsteady Navier–Stokes equations were transformed
into simple advection-diffusion and Poisson equations by the operator-splitting scheme. The obtained
advection-diffusion equations and pressure Poisson equation were then solved using the MFS together
with the Eulerian–Lagrangian method and the method of particular solution. Feng et al. [2013] solved
potential flow for predicting ship motion responses in the frequency domain. The MFS was also suc-
cessfully applied to nonlinear functionally graded materials [Li et al. 2014; Marin and Lesnic 2007].
Moreover, there are examples of using the MFS in combination with the hybrid finite-element model for
solving nonlinear Poisson-type problems [Wang et al. 2012].

In this paper, power-law fluid flow between corrugated plates is investigated by employing the MFS
and the RBF. This nonlinear problem is transformed into a sequence of linear inhomogeneous problems
using the Picard iteration method. Then the method of particular solution is applied at each iteration
step. The RBF and monomials are used in order to interpolate the right-hand side of the inhomogeneous
equation and to obtain the particular solution while the MFS is employed to obtain the general solution.

3. Statement of the problem

The geometry of the considered problem is illustrated in Figure 1. The flow is limited by two symmetrical,
corrugated plates. The fluid flows between these plates in the direction parallel to the z axis.

The upper and lower walls (plates) can be represented by

y =±
[

h+ ε · cos
(

2πx
2λ

)]
, (3-1)

where h denotes average distance between the plate and the x axis, ε is corrugation amplitude and λ
denotes length of the repeating part of the considered region �.

After introducing dimensionless quantities

X =
x
λ
, Y =

y
λ
, H =

h
λ
, E =

ε

λ
, L =

λ

λ
= 1, (3-2)
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Figure 2. The repeating part of the considered region � with characteristic dimension-
less quantities.

(3-1) takes the form

Y =±[H + E · cos(πX)]. (3-3)

The repeating part of the considered region � with characteristic dimensionless quantities is depicted
in Figure 2.

The following equation can be written in the Cartesian coordinate system for steady, fully developed,
laminar, axial flow of a power-law fluid:

∂

∂x

(
η(γ )

∂w(x, y)
∂x

)
+
∂

∂y

(
η(γ )

∂w(x, y)
∂y

)
=

dp
dz
, (3-4)

where w(x, y) is axial velocity (velocity of the fluid has only one component), dp
dz is the constant pressure

gradient, η(γ ) is the viscosity function (which in the literature is also called apparent viscosity) and

γ =

√(
∂w(x, y)
∂x

)2

+

(
∂w(x, y)
∂y

)2

. (3-5)

The viscosity function for the power-law fluid takes the form

η(γ )= K · γ m−1, (3-6)

where K is the consistency factor and m is the power-law index. For m < 1, the fluid shows shear-thinning
(pseudoplastic) behavior, and for m > 1, the fluid shows shear-thickening (dilatant) behavior. If m = 1,
the fluid shows Newtonian behavior.

For the considered region �, the following boundary conditions are formulated:

∂w(x, y)
∂y

= 0 on AB (symmetry condition), (3-7)

∂w(x, y)
∂x

= 0 on BC and DA (symmetry condition), (3-8)

w(x, y)= 0 on CD (nonslip condition). (3-9)
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Introducing dimensionless quantities (3-2) as well as dimensionless velocity

W (X, Y )=
w(x, y)

−
λ2

µr

dp
dz

(3-10)

(where µr is reference viscosity) and dimensionless viscosity function

E(χ)=
η(γ )

µr
, (3-11)

(3-4) takes the form

∂

∂X

(
E(χ)

∂W (X, Y )
∂X

)
+
∂

∂Y

(
E(χ)

∂W (X, Y )
∂Y

)
=−1, (3-12)

where

χ =

√(
∂W (X, Y )

∂X

)2

+

(
∂W (X, Y )

∂Y

)2

. (3-13)

Dimensionless viscosity function E(χ) for the power-law fluid can be represented by

E(χ)= B1 ·χ
m−1, (3-14)

where B1 is a dimensionless consistency factor defined as

B1 =
K
µr

(
K
µr

dp
dz

)m−1

. (3-15)

Finally after some mathematical operations, the considered problem is defined by the governing equa-
tion

∇
2W (X, Y )=−

1
E(χ)

(
1+

∂E(χ)
∂X

∂W (X, Y )
∂X

+
∂E(χ)
∂Y

∂W (X, Y )
∂Y

)
(3-16)

with the boundary conditions

∂W (X, Y )
∂Y

= 0 on AB, (3-17)

∂W (X, Y )
∂X

= 0 on BC and DA, (3-18)

W (X, Y )= 0 on CD. (3-19)

4. The proposed method of solution

In this paper, the Picard iteration method is used in order to solve the nonlinear equation (3-16). Then
the nonlinear governing equation (3-16) is transformed into a sequence of inhomogeneous problems in
which the value of velocity from the previous iteration step is used on the right-hand side of the equation.
At the i-th iteration step, the inhomogeneous problem is described by

∇
2W [i](X, Y )=−

1
E [i−1](χ)

(
1+

∂E [i−1](χ)

∂X
∂W [i−1](X, Y )

∂X
+
∂E [i−1](χ)

∂Y
∂W [i−1](X, Y )

∂Y

)
. (4-1)
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Figure 3. Distribution of the collocation points, the source points and the interpolation points.

The first approximation is obtained for a Newtonian fluid (B1 = 1 and m = 1). Then the problem is
described by the governing equation

∇
2W [1](X, Y )=−1 (4-2)

with boundary conditions (3-17)–(3-19). In order to solve the above equation, the following additional
function is introduced:

8(X, Y )=W [1](X, Y )+ 1
4(X

2
+ Y 2

− 1). (4-3)

Then (4-2) is transformed into the Laplace equation

∇
28(X, Y )= 0. (4-4)

The boundary conditions formulated for the additional function 8(X, Y ) take the forms

∂8(X, Y )
∂Y

=
1
2 Y on AB, (4-5)

∂8(X, Y )
∂X

=
1
2 X on BC and DA, (4-6)

8(X, Y )= 1
4(X

2
+ Y 2

− 1) on CD. (4-7)

The problem described by (4-4) with boundary conditions (4-5)–(4-7) in the considered region � can
easily be solved using the MFS.

In this method, the approximate solution is assumed to be a linear combination of fundamental solu-
tions. The fundamental solution for the Laplace operator is given by

fS(r j )= ln r j , (4-8)

where r j is the distance between the point (X, Y ) and the j-th source point (X j , Y j ):

r j =
√
(X − X j )2+ (Y − Y j )2. (4-9)

The source points are located outside the considered region � on the pseudoboundary at a distance S
from the domain boundary as shown in Figure 3.
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The approximate solution of the problem described by (4-4) and boundary conditions (4-5)–(4-7) takes
the form

8(X, Y )=
NS∑
j=1

c[1]j ln r j , (4-10)

where NS is the number of source points. The unknown coefficients c[1]j ( j = 1, . . . , NS) are calculated
using the boundary collocation technique (by fulfilling boundary conditions at NC collocation points)
[Kołodziej and Zieliński 2009].

Thus, the solution of the original problem described by the governing equation (4-2) and boundary
conditions (3-17)–(3-19) can be written as

W [1](X, Y )=
NS∑
j=1

c[1]j ln r j −
1
4(X

2
+ Y 2

− 1). (4-11)

At subsequent iteration steps, the problem described by the inhomogeneous equation (4-1) with bound-
ary conditions (3-17)–(3-19) is solved using the method of particular solutions. In this method, the
solution of the considered problem consists of two parts:

W [i](X, Y )=W [i]g (X, Y )+W [i]p (X, Y ), (4-12)

where W [i]g (X, Y ) is the general solution and W [i]p (X, Y ) is the particular solution.
The right-hand side of (4-1) at the i-th iteration step can be denoted by

b[i](X, Y )=−
1

E [i−1](χ)

(
1+

∂E [i−1](χ)

∂X
∂W [i−1](X, Y )

∂X
+
∂E [i−1](χ)

∂Y
∂W [i−1](X, Y )

∂Y

)
. (4-13)

The particular solution is obtained by interpolation of the right-hand side of (4-1) using the RBF and
monomials:

Nm∑
m=1

α[i]m ϕ(rm)+

Nk∑
k=1

β
[i]
k pk(X, Y )= b[i](X, Y ), (4-14)

where Nm is the number of interpolation points, Nk is the number of monomials, ϕ(rm) is the form of
the RBF, pk(X, Y ) is the form of the k-th monomial and

rm =
√
(X − Xm)2+ (Y − Ym)2 (4-15)

is the distance between the point (X, Y ) and the m-th interpolation point (Xm, Ym). The unknown co-
efficients α[i]m (m = 1, . . . , Nm) and β[i]k (k = 1, . . . , Nk) are calculated by solving the set of equations

Nm∑
m=1

α[i]m ϕ(rm int)+

Nk∑
k=1

β
[i]
k pk(X int, Yint)= b(X int, Yint), 1≤ int≤ Nm,

Nm∑
m=1

α[i]m pk(Xm, Ym)= 0, 1≤ k ≤ Nk .

(4-16)
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k pk(X, Y ) p̂k(X, Y )

1 1 1
4 (X

2
+ Y 2)

2 X 1
8 (X (X

2
+ Y 2))

3 Y 1
8 (Y (X

2
+ Y 2))

4 X · Y 1
12 (XY (X2

+ Y 2))

5 X2 1
14 (X

4
+ X2Y 2

−
1
6 Y 4)

6 Y 2 1
14 (Y

4
+ X2Y 2

−
1
6 X4)

Table 1. Forms of the monomials and their particular solutions for the Laplace operator.

The particular solution is represented by

W [i]p (X, Y )=
Nm∑

m=1

α[i]m ϕ̂(rm)+

Nk∑
k=1

β
[i]
k p̂k(X, Y ), (4-17)

where ϕ̂(rm) is the particular solution that corresponds to the m-th RBF and p̂k(X, Y ) is the particular
solution related to the k-th monomial.

In this paper, the multiquadric function (MQ) is used as the RBF:

ϕ(rm)=

√
r2

m + c2, (4-18)

where c is the shape parameter. The particular solution corresponding to the MQ for the Laplace operator
takes the form

ϕ̂(rm)=−
1
3 c3 ln

(√
r2

m + c2
+ c

)
+

1
9(4c2

+ r2
m)

√
r2

m + c2. (4-19)

The forms of monomials and their particular solutions used in the paper are presented in Table 1.
The general solution is a solution of the Laplace equation

∇
2W [i]g (X, Y )= 0 (4-20)

and can be easily found by the MFS in the form

W [i]g (X, Y )=
NS∑
j=1

d [i]j ln r j . (4-21)

The distance between the point (X, Y ) and the j-th source point is defined by (4-9). The unknown
coefficients d [i]j ( j = 1, . . . , NS) are calculated using the boundary collocation technique.

Thus, the whole solution of the considered problem at the i-th iteration step takes the form

W [i](X, Y )=
NS∑
j=1

d [i]j ln r j +

Nm∑
m=1

α[i]m ϕ̂(rm)+

Nk∑
k=1

β
[i]
k p̂k(X, Y ). (4-22)

The same numerical procedure was successfully applied for other problems and can be found, e.g., in
[Golberg et al. 1998].
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Step 1 Input parameters of the considered region: H , E and m.
Step 2 Input parameters of the method: NC , NS , S, Nm , Nk , c and tolerance of the convergence error tol.
Step 3 Calculate the first approximation (for a Newtonian fluid):

W [1](X, Y )=
NS∑
j=1

c[1]j ln r j −
1
4 (X

2
+ Y 2

− 1).

Step 4 Take i = 2.
Step 5 Interpolate the right-hand side of (4-1): calculate unknown coefficients of the particular solution α[i]m

and β [i]k .
Step 6 Fulfill boundary conditions: calculate unknown coefficients of the general solution d [i]j .
Step 7 Calculate the whole solution at the i-th iteration step at selected control points:

W [i](X, Y )=
NS∑
j=1

d [i]j ln r j +

Nm∑
m=1

α[i]m ϕ̂(rm)+

Nk∑
k=1

β
[i]
k p̂k(X, Y ).

Step 8 Check the condition for stopping of the iteration process:
If ‖W [i](X, Y )−W [i−1](X, Y )‖< tol, then STOP.
Else, take i = i + 1 and go to Step 5.

Step 9 Calculate average velocity Wav and product of the friction factor and Reynolds number f Re.

Table 2. Numerical algorithm of the proposed method of solution.

The dimensionless average velocity is defined as

Wav=

∫
�

W (X, Y ) d�∫
�

d�
=

∫ 1
0

∫ H+E cos(πX)
0 W (X, Y ) dY d X∫ 1

0

∫ H+E cos(πX)
0 dY d X

=

∫ 1
0

∫ H+E cos(πX)
0 W (X, Y ) dY d X

H
. (4-23)

The above quantity is calculated numerically using the obtained approximate solution (4-22) and the
trapezoidal rule.

For noncircular ducts, the friction factor can be defined as

f =
(
−

dp
dz

)
2Dh

w2
avρ

, (4-24)

where Dh is hydraulic diameter, wav is dimensional average velocity and ρ is fluid density.
Reynolds number Re for noncircular ducts is given by

Re=
ρwav Dh

µr
. (4-25)

Let us introduce dimensionless hydraulic diameter

D̃h =
Dh

λ
, (4-26)

which is defined as

D̃h =
4 Ã
P̃
, (4-27)

where

Ã =
∫ 1

0

∫ H+E cos(πX)

0
dY d X = H (4-28)



LAMINAR FLOW OF A POWER-LAW FLUID BETWEEN CORRUGATED PLATES 33

0.06

0.05

0.04

0.03

0.02

0.01

0.00

δcon

m = 0.9
m = 0.7

m = 0.5

0 10 20 30 40 0 10 20 30 40

m = 1.1

m = 1.3

m = 1.5

number of iterations number of iterations

Figure 4. Convergence of the iteration process: (left) for power-law index below 1 and
(right) for power-law index above 1.

is the dimensionless area of the considered region � and

P̃ =
∫ 1

0

√
1+ [Eπ sin(πX)]2 d X. (4-29)

is the dimensionless wetted perimeter. The above integral is calculated numerically using the trapezoidal
rule.

Thus, the product of the friction factor and Reynolds number can be expressed by

f Re=
32 Ã2

Wav P̃2
. (4-30)

In order to summarize this part of the paper, i.e., the proposed method of solution, the numerical
algorithm of the method is presented in Table 2.

5. Results

In the first numerical experiment, convergence of the iteration process is investigated. In Figure 4, the
maximal error of the convergence of the iteration process at subsequent iteration steps is presented. The
error of the convergence of the iteration process is defined as

δcon = ‖W [i](X, Y )−W [i−1](X, Y )‖. (5-1)

It can be observed that, if power-law index m is less than 1, the convergence process is faster for greater
values of m (Figure 4, left). If m is greater than 1, in turn, the convergence process is faster for smaller
values of m (Figure 4, right). In general, the convergence process is faster if m is closer to 1. However,
the convergence for all the presented values of the power-law index is satisfactory.

The effect of corrugation amplitude E on the error of the convergence of the iteration process δcon is
shown in Table 3. The error δcon at subsequent steps for different values of E varies in the same range.
This implies that E has very little effect on the convergence of the proposed iteration process.

In Figure 5, equivelocity lines for different values of corrugation amplitude E are presented. It can be
observed that, with increasing value of corrugation amplitude, equivelocity lines move in the direction
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Iteration step E = 0.2 E = 0.4 E = 0.6

1 9.7009 · 10−2 7.3963 · 10−2 8.4669 · 10−2

2 2.8207 · 10−2 3.4205 · 10−2 3.5555 · 10−2

3 1.6416 · 10−2 1.6635 · 10−2 1.6297 · 10−2

4 6.5646 · 10−3 8.1569 · 10−3 7.6351 · 10−3

5 3.3554 · 10−3 3.9547 · 10−3 3.5712 · 10−3

6 1.4004 · 10−3 1.8884 · 10−3 1.6563 · 10−3

7 6.6425 · 10−4 8.8845 · 10−4 7.6053 · 10−4

8 2.7702 · 10−4 4.1252 · 10−4 3.4597 · 10−4

9 1.2521 · 10−4 1.8939 · 10−4 1.5600 · 10−4

10 5.2102 · 10−5 8.6167 · 10−5 6.9937 · 10−5

Table 3. The error of the convergence of the iteration process for different values of
corrugation amplitude E in subsequent iteration steps.

of the bottom-left corner of the considered region � where the value of fluid velocity is maximal. Thus,
the value of velocity (also the maximal value) decreases with increasing values of E .

Equivelocity lines for different values of power-law index m are shown in Figure 6. As shown, the
density of equivelocity lines increases and the value of fluid velocity increases with increasing m.

Figure 7 presents average velocity Wav for various values of power-law index m and corrugation
amplitude E . It can be observed that Wav decreases with increasing E (it can be observed also in Figure 5).
The value of Wav for the same E increases with increasing m. For steady, fully developed, laminar flow
of a Newtonian fluid between parallel plates, Wav =

1
3 . One can observe that, for pseudoplastic fluids
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Figure 5. Equivelocity lines for different values of corrugation amplitude.
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Figure 6. Equivelocity lines for different values of power-law index m.
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Figure 7. Average velocity Wav for different values of corrugation amplitude E and
different values of power-law index m.

(m < 1), Wav is always less than for Newtonian flow between parallel plates. In the case of dilatant fluids
(m > 1), Wav is greater than for Newtonian flow between parallel plates but only for smaller values of E .

In Figure 8, the effect of corrugation amplitude E and power-law index m on the product of the friction
factor and Reynolds number f Re is illustrated. For the same E , f Re increases with decreasing m. For
the same m, f Re decreases with increasing E . For steady, fully developed, laminar flow of a Newtonian
fluid between parallel plates, f Re= 96. It can be observed that f Re is always less than for the case of
Newtonian flow between parallel plates for dilatant fluids m > 1, and for pseudoplastic fluids (m < 1),
f Re is greater than for the case of Newtonian flow between parallel plates only for smaller values of E .

Dimensionless average velocity Wav for different dimensionless consistency factors B1 and different
values of dimensionless corrugation amplitude E is shown in Figure 9. It can be seen that Wav decreases
with increasing B1.

40
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m = 1.0
m = 1.1
m = 1.3

E

f Re

Figure 8. Product of friction factor and Reynolds number f Re for different values of
corrugation amplitude E and different values of power-law index m.
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Figure 9. Average velocity Wav for different values of corrugation amplitude E and
different values of dimensionless consistency factor B1.

Figure 10 presents the product of the friction factor and Reynolds number f Re for different dimen-
sionless consistency factors B1 and different values of dimensionless corrugation amplitude E . It can be
observed that f Re increases with increasing B1.

6. Conclusions

On the basis of the performed numerical experiments, the following conclusions can be drawn:

(1) The application of the MFS in combination with the RBF for the problem of fully developed, laminar
flow of a power-law fluid between corrugated plates gives satisfactory results.

(2) Amplitude of corrugation E has little effect on the iteration process convergence.

(3) Satisfactory convergence is obtained faster if power-law index m is closer to 1.
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f Re

0
0.0 0.2 0.4 0.6 0.8

E

B1 = 0.5

B1 = 1.0

B1 = 1.5
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Figure 10. Product of friction factor and Reynolds number f Re for different values of
corrugation amplitude E and different values of dimensionless consistency factor B1.
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(4) Average velocity Wav and the product of the friction factor and Reynolds number f Re decrease with
increasing E .

(5) Average velocity Wav for a power-law fluid takes lower values than average velocity for a Newtonian
fluid (B1 = 1 and m = 1). Average velocity Wav increases with increasing m and decreases with
increasing value of dimensionless consistency factor B1.

(6) Product f Re is greater for a power-law fluid than a Newtonian fluid and decreases with increasing E .
Product f Re decreases with increasing m and increases with increasing B1.

(7) For pseudoplastic fluids (m < 1), Wav is less than for Newtonian flow between parallel plates and
f Re is greater than in the case of Newtonian flow between parallel plates only for smaller values
of E .

(8) For dilatant fluids (m > 1), Wav is greater than for Newtonian flow between parallel plates but only
for smaller E and f Re is less than for the case of Newtonian flow between parallel plates.
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A STUDY OF ELASTIC-PLASTIC DEFORMATION IN THE PLATE
WITH THE INCREMENTAL THEORY AND THE MESHLESS METHODS

MALGORZATA A. JANKOWSKA AND JAN ADAM KOŁODZIEJ

The paper concerns an application of the successive-approximation iteration process together with the
meshless methods, i.e., the method of fundamental solutions (MFS) and the method of particular solu-
tions (MPS), for the analysis of strains and stresses in the plate with some kind of narrowing subjected
to uniaxial tension. The elastoplastic boundary-value problem is based on the incremental theory of
plasticity with the stress-strain relation given in the form proposed by Chakrabarty. In the iteration
procedure a sequence of the successive distributions of the plastic strain increments corresponding to the
appropriate increments of load is produced. A final set of the plastic strain increments is further used
to obtain the total plastic strains. Furthermore, the solution of the elastoplastic boundary-value problem
can be simultaneously taken into account when the stress state of the plate is required. Such approach is
designated here to identify the regions of elastic and plastic behavior of the material.

1. Introduction

The most popular and commonly used method for solving the elastoplastic problems is the finite element
method (FEM). There are many papers on this subject (see, e.g., [Berezhnoı̆ and Paı̆mushin 2011; Bilotta
and Casciaro 2007; Cui et al. 2009; Liu et al. 2013; 2012]) as well as the available monographs (see, e.g.,
[Belytschko et al. 2000; Crisfield 1997; Kojić and Bathe 2005; Owen and Hinton 1980]). A numerical
method that is much less employed for this class of problems is the boundary element method (BEM).
Nevertheless, the number of publications on this topic is quite extensive and new ones are still emerging
[Deng et al. 2011; Gao and Davies 2000; Ochiai 2011]. We can also distinguish a coupling of these two
approaches in, e.g., [Boumaiza and Aour 2014; Dong and Bonnet 1998; Oysu and Fenner 2006]. Note
that all these methods require some kind of mesh to be prepared, and hence they are called mesh methods.
As an alternative approach for the mesh methods, the mesh-free methods have been developed in the
last decades. The meshless methods have been also applied for solving some elastic-plastic problems
[Boudaia et al. 2009; Dai et al. 2006; Liu et al. 2011; Pozo et al. 2009; Yeon and Youn 2005]. Nowadays,
many different variants of these methods are studied. We have, e.g., the element-free Galerkin method,
the meshless local Petrov–Galerkin method, the point interpolation method, the finite point method,
the finite difference method with arbitrary irregular grids, and so forth [Liu 2003]. The method of
fundamental solutions (MFS) and the method of particular solutions (MPS), subsequently used by the
authors, are both the meshfree methods. The main idea of the MFS is that an approximate solution of

The work of Jankowska was supported by the Poznan University of Technology (Poland) through Grants No. 02/21/DSPB/3453
and 02/21/DSPB/3463. The work of Kołodziej was supported by Grant No. 2012/07/B/ST8/03449 founded by the Polish
National Science Center (NCN).
Keywords: meshless methods, method of fundamental solutions, successive-approximation iteration process, elastic-plastic
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a given problem is formulated as a linear combination of fundamental solutions related to a governing
equation that is linear and homogeneous. Hence, if the appropriate fundamental solutions are known,
we obtain an approximate solution that satisfies a governing differential equation and only boundary
conditions are approximately met. On the other hand, the MPS can be applied for the boundary value
problems with linear nonhomogeneous governing equations. As is described in detail in, e.g., [Chen et al.
2014], a solution of such a problem is a sum of so-called homogeneous solution and particular solution.
Nowadays, there is a number of review papers that report on an application of the MFS for solving
some elliptic problems [Fairweather and Karageorghis 1998], wave scattering problems [Fairweather
et al. 2003] and inverse problems [Karageorghis et al. 2011]. On the other hand, there are still few
papers that conduct a review on the usage of the MFS for solving nonlinear problems. An application of
the method considered for nonlinear problems is quite popular in the area of fluid mechanics and there
are many papers that take into account this issue. Namely, for a governing equation given in a form
of Burgers’ equation we have [Young et al. 2008], similarly as for the Navier–Stokes equation [Young
et al. 2009] and for nonlinear water waves [Feng et al. 2013; Mollazadeh et al. 2011]. A solution of a
boundary value problem governed by a nonlinear Poisson equation is presented in, e.g., [Balakrishnan and
Ramachandran 1999; 2001; Balakrishnan et al. 2002; Burgess and Mahajerin 1987; Fallahi and Hosami
2011; Shanazari and Fallahi 2010; Tri et al. 2011; Tsai 2012; Wang and Qin. 2006; Wang et al. 2012].
Further, in [Chen 1995] the nonlinear thermal explosion problem by solving some nonlinear equation
is taken into consideration. An application of the MFS for nonlinear functionally graded materials is
given in [Li et al. 2014; Marin and Lesnic 2007; Wang and Qin. 2008; Wang et al. 2005], while the
nonlinear heat conduction problems solved by the MFS are presented in [Karageorghis and Fairweather
1989; Karageorghis and Lesnic 2008]. Finally, nonlinear plate problems as well as an application of the
MFS for nonlinear elasticity is reported in [Al-Gahtani 2012; Li and Zhu 2009; Uscilowska and Berendt
2013]. For the authors’ best knowledge there are few papers such that the MFS with the MPS are applied
to study elastic-plastic deformation. These articles deal with the torsion problem [Kołodziej et al. 2013]
and the plane problem for the stress state of a plate subjected to uniaxial extension [Jankowska and
Kołodziej 2015].

Subsequent considerations are directed forward further popularization and dissemination of the mesh-
less methods for solving some nonlinear boundary-value problems with a special attention that is paid
to elastoplastic problems. The authors based their research on the approach proposed in [Mendelson
1968]. It takes into account the incremental theory of plasticity together with the associated flow rule
given by the Prandtl–Reuss relation and the von Mises yield criterion to formulate the appropriate elasto-
plastic plane stress problem (see Section 2). The appropriate boundary conditions concern a problem
of uniaxial tension of a plate with a narrowing located in the middle of it (see also [Jankowska and
Kołodziej 2014; Jankowska and Kołodziej 2013]). Then, for the nonlinear stress-strain relationship, we
apply a model presented by Chakrabarty in [Chakrabarty 1987]. In Section 3 a new approach to the
successive-approximation iteration process [Mendelson 1968] is proposed. It employs a combination of
the meshless methods (the MFS-MPS) and the finite difference schemes (required for the approximation
of values of partial derivatives present in the right-hand side function of the problem). In the appropriate
algorithm, a sequence of the successive distributions of the plastic strain increments, corresponding to a
given increment of load, is produced. A final set of the plastic strain increments can be used to obtain the
total plastic strains. Then, the solution of the boundary-value problem let us determine the stress state of
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Figure 1. The stress-strain curve for the model proposed by Chakrabarty [1987] with
selected values of n.

the plate. In Section 4, the optimal values of the method’s parameters are proposed and the regions of the
elastic and plastic behavior of the material are shown. The approach enables to compute the equivalent
plastic strains and also related equivalent stresses in any point of the domain. It is due to the fact that
the approximate solution is a linear combination of fundamental solutions and particular solutions, i.e., a
continuous function with continuous derivatives. To conclude, some final remarks and further plans are
summarized in Section 5.

2. Problem formulation

2.1. Assumptions about the elastic-plastic constitutive model and the complete stress-strain relations.
The consideration given in the paper concerns some plane elastoplastic problem formulated for a plate
with a narrowing subjected to external loads related to the uniaxial stress σB. We assume that the material
is homogenous, isotropic and strains hardens isotropically. The material properties such as the Young
modulus E and the Poisson ratio ν are independent of the temperature and body forced are not considered.
For the nonlinear stress-strain relationship we employ a model proposed by Chakrabarty [1987]. It is
given by the equations

σ/σ0 =

{
ε/ε0, ε/ε0 ≤ 1,
(ε/ε0)

n, ε/ε0 ≥ 1.
(1)

Note that the curve in the plastic range is expressed by a simple power law (see also Figure 1) with a
dimensionless constant n such that its value is generally less than 0.5. The material is assumed to have
a definite yield point for the stress σ0 with the corresponding yield strain ε0 = σ0/E , where E is the
Young modulus. Furthermore, the slope of the stress-strain curve changes discontinuously at the yield
point (except for the case of n = 1).

The subsequent considerations are presented with the incremental theory of plasticity applied (see,
e.g., [Mendelson 1968]). Hence, we assume some loading path to a given state of stress and the total
plastic strain. The total loading path is divided into N increments of load. When the load is increased by
a small amount, it produces additional plastic strain 1ε p

i j . Following, e.g., [Mendelson 1968], the total
strain εi j can be written as

εi j = ε
e
i j + ε

p
i j +1ε

p
i j , (2)
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where εe
i j is the elastic component of the strain, ε p

i j is the accumulated plastic strain up to (but not
including) the current increment of load and 1ε p

i j is the increment of plastic strain due to the current
increment of load. If we assume that the elastic strain tensor is given by the Hooke’s law for isotropic
material and the plastic strains have been computed for the first k− 1 increments of load, then the total
strain at the end of the k-th increment of load can be given as follows:

εi j =
1+ν

E
σi j −

ν

E
σssδi j +

k−1∑
m=1

1ε
p
i j,m +1ε

p
i j . (3)

In the above equation we know the sum and the problem is how to calculate the plastic strain increment
1ε

p
i j (for the current, i.e., the k-th increment of load) and the corresponding stress. Hence, subsequently

for the equation (3) we use the stress-strain relation (1), the associated flow rule given by the Prandtl–
Reuss relation (4)1 with the von Mises yield criterion (4)2. The equivalent stress σeq, the equivalent plastic
strain increment 1ε p

i j and the deviatoric component Si j of the stress tensor are given by the equations

1ε
p
i j =

3
2
1ε

p
eq

σeq
Si j , σeq =

√
3
2 Si j Si j , 1ε p

eq =

√
2
31ε

p
i j1ε

p
i j , Si j = σi j −

1
3σssδi j . (4)

2.2. Plane elastic-plastic boundary-value problem. Now we formulate the boundary-value problem
describing the stress state of the plate that is subjected to uniaxial extension related to the stress σB .
However, before that we expand the equations (3)–(4) with the assumption that the generalized plane
stress problem is considered. We obtain the formulas for the components of the total strain (3) as

εxx = ε
e
xx + ε

p
xx +1ε

p
xx , εyy = ε

e
yy + ε

p
yy +1ε

p
yy, εxy = ε

e
xy + ε

p
xy +1ε

p
xy, (5)

where

εe
xx =

1
E
(σxx −µσyy), εe

yy =
1
E
(σyy −µσxx), εe

xy =
1

2G
σxy, (6)

ε p
xx =

k−1∑
m=1

1ε p
xx,m, ε p

yy =

k−1∑
m=1

1ε p
yy,m, ε p

xy =

k−1∑
m=1

1ε p
xy,m . (7)

Then, the expanded formulas for the Prandtl–Reuss relations (4)1 with the equivalent stress (4)2 and the
equivalent plastic strain increments (4)3 are of the form (see also [Mendelson 1968])

1ε p
xx =

1
2
1ε

p
eq

σeq
(2σxx − σyy), 1ε p

yy =
1
2
1ε

p
eq

σeq
(2σyy − σxx), 1ε p

xy =
3
2
1ε

p
eq

σeq
σxy, (8)

and

σeq =

√
σ 2

xx + σ
2
yy − σxxσyy + 3σ 2

xy, 1ε p
eq =

2
√

3

√
(1ε

p
xx)2+ (1ε

p
yy)2+1ε

p
xx1ε

p
yy + (1ε

p
xy)2. (9)

Subsequently, we take into consideration the boundary-value problem as proposed in [Mendelson
1968]. For its formulation the components of the total strain (5) with the relations (6)–(7) are substituted
into the compatibility and equilibrium equations for the plane problems (see, e.g., [Mendelson 1968;
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Figure 2. A plate with a narrowing subjected to uniaxial extension related to the stress
σB (reprinted from [Jankowska and Kołodziej 2015] with permission from Elsevier).

Timoshenko and Goodier 1951]). Then, with the Airy stress function ψ =ψ(x, y) (see also [Timoshenko
and Goodier 1951]) such that

σxx =
∂2ψ

∂y2 (x, y), σyy =
∂2ψ

∂x2 (x, y), σxy =−
∂2ψ

∂x∂y
(x, y), (10)

we obtain the governing equation of the problem considered

5
4ψ(x, y)=−(g(x, y)+1g(x, y)), (11)

where

g(x, y)= E
(
∂2ε

p
xx

∂y2 +
∂2ε

p
yy

∂x2 − 2
∂2ε

p
xy

∂x∂y

)
,

1g(x, y)= E
(
∂2(1ε

p
xx)

∂y2 +
∂2(1ε

p
yy)

∂x2 − 2
∂2(1ε

p
xy)

∂x∂y

)
.

(12)

In order to formulate the boundary conditions of the problem, we introduce the geometry of the plate
(see Figure 2). It is characterized by the narrowing that occurs in the middle of it and is present along a
half of its length. It is specified by the characteristic length a and the distance b such that the appropriate
parts of the boundary, i.e., E1 E2, F1 F2, are arcs of circles with centers O1(0, a/4+ b), O2(0,−a/4− b)
and a radius R =

√
b2+ a2/16. The appropriate boundary conditions imposed according to the sides of

the plate are given as

0AB and 0DC : ψyy = σB, ψxy = 0, (13a)

0E1B, 0E2C and 0F1A, 0F2D : ψxx = 0, ψxy = 0, (13b)

0E1E2, 0F1F2 : ψyynx −ψxyny = 0, ψxx ny −ψxynx = 0, (13c)

where nx , ny are components of a unit vector n defined at a given point of the boundary, normal to the
surface and directed outside of the plate.

Note that in the equations (13a)–(13c) and later in the paper, we use the abbreviated notation for partial
derivatives, i.e., ψxx = ∂

2ψ/∂x2, ψyy = ∂
2ψ/∂y2 and ψxy = ∂

2ψ/∂x∂y, respectively.
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Subsequently, we solve the elastic-plastic boundary-value problem given in the nondimensional form.
Hence, with new coordinates defined by

X = x/a, Y = y/a, 9 = ψ/(a2σ0), (14)

the governing equation (11) with (12) is of the form

∇
49 = b̃(X, Y ), (15)

with the boundary conditions

0AB and 0DC : 9Y Y = σ̃B, 9XY = 0, (16a)

0E1B, 0E2C and 0F1A, 0F2D : 9X X = 0, 9XY = 0, (16b)

0E1E2, 0F1F2 : 9Y Y nx −9XY ny = 0, 9X X ny −9XY nx = 0, (16c)

where σ̃B = σB/σ0 and

b̃(X, Y )=−(g̃(X, Y )+1g̃(X, Y )), (17)

g̃(X, Y )=
(
∂2ε

p
X X

∂Y 2 +
∂2ε

p
Y Y

∂X2 − 2
∂2ε

p
XY

∂X∂Y

)
, (18)

1g̃(X, Y )=
(
∂2(1ε

p
X X )

∂Y 2 +
∂2(1ε

p
Y Y )

∂X2 − 2
∂2(1ε

p
XY )

∂X∂Y

)
. (19)

The dimensionless plastic strains ε p
X X = ε

p
xx/ε0, ε p

Y Y = ε
p
yy/ε0 and ε p

XY = ε
p
xy/ε0, present in (18), are

given by the formulas

ε
p
X X =

k−1∑
m=1

1ε
p
X X,m, ε

p
Y Y =

k−1∑
m=1

1ε
p
Y Y,m, ε

p
XY =

k−1∑
m=1

1ε
p
XY,m, (20)

where the dimensionless increments of plastic strains used in (19)–(20) are defined as 1ε p
X X =1ε

p
xx/ε0,

1ε
p
Y Y =1ε

p
yy/ε0 and1ε p

XY =1ε
p
xy/ε0, respectively. Further, with the dimensionless Airy stress function

9 =9(X, Y ) applied, the dimensionless total strains and the elastic strains, are of the form

εX X = ε
e
X X + ε

p
X X +1ε

p
X X , εY Y = ε

e
Y Y + ε

p
Y Y +1ε

p
Y Y , εXY = ε

e
XY + ε

p
XY +1ε

p
XY , (21)

εe
X X =9Y Y −µ9X X , εe

Y Y =9X X −µ9Y Y , εe
XY =−(1+µ)9XY , (22)

where εX X = εxx/ε0, εY Y = εyy/ε0, εXY = εxy/ε0, εe
X X = ε

e
xx/ε0, εe

Y Y = ε
e
yy/ε0, εe

XY = ε
e
xy/ε0.

Note that for the algorithm proposed in Section 3 that is designed for solving the boundary value
equation (15)–(16) with (17)–(19), the dimensionless Prandtl–Reuss relations are also required. Hence,
from the formula (8) we obtain

1ε
p
X X =

1
2
1̃ε

p
eq

σ̃eq
(2σX X − σY Y ), 1ε

p
Y Y =

1
2
1̃ε

p
eq

σ̃eq
(2σY Y − σX X ), 1ε

p
XY =

3
2
1̃ε

p
eq

σ̃eq
σXY , (23)
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Figure 3. The distribution of the source, collocation, interpolation and discretization points.

where the dimensionless equivalent stress σ̃eq = σeq/σ0 and the dimensionless equivalent plastic strain
increments 1̃ε p

eq are of the form

σ̃eq =

√
σ 2

X X + σ
2
Y Y − σX XσY Y + 3σ 2

XY , (24)

1̃ε p
eq =

2
√

3

√
(1ε

p
X X )

2+ (1ε
p
Y Y )

2+1ε
p
X X1ε

p
Y Y + (1ε

p
XY )

2. (25)

The dimensionless stress components used in (24) are defined as σX X = σxx/σ0, σY Y = σyy/σ0, σXY =

σxy/σ0.

3. The successive-approximation iteration process and the meshless methods

Subsequently, we propose two algorithms that concern the solution of the boundary-value equation (15)–
(16) with (17)–(19). The first one deals with a case when the whole region of the plate corresponds to
the elastic behavior of the material. We propose the iteration process that proceeds until (for a given
increment of load) the first points such that the plastic behavior of the material occurs. After that we can
start the other two nested iteration processes described in detail in the second algorithm. The procedure
proposed there let us determine the distribution of the plastic strain increments corresponding to a given
conditions of loading. Moreover, the elastic and plastic strains and the stress state at each point of the
plate can be also computed.

Note that both algorithms make use of the meshless methods (in each iteration step), i.e., the method
of fundamental solutions and the method of particular solutions that is applied only in the Algorithm 2.
Due to this reason we first generate some sets of points [Chen et al. 2014] that are required for the
meshless methods (see also Figure 3, left). We denote by Ns the number of source points (Xsi , Ysi ),
i = 1, 2, . . . ,Ns, that are located outside of the problem domain in a distance s from the boundary. For
the numerical experiments they are uniformly distributed on a fictitious boundary similar to the physical
one. We also choose the total number Nc of collocation points, (X i , Yi ), i = 1, 2, . . . , Nc. These points
should be located as uniform as possible on the physical domain. Then, for the interpolation procedure
of the right-hand side function (17), we select Ni interpolation points, (X i , Yi ), i = 1, 2, . . . ,Ni, that
are located inside of the computational domain. They used to be uniformly distributed similarly as the
source and collocation points.
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Special requirements of the subsequent algorithms make it essential to choose another set of uniformly
distributed points, so-called, discretization points, (X i , Yi ), i = 1, 2, . . . ,Nd. This set of points includes
all the interpolation points together with some appropriate points located on the boundary (see Figure 3,
left). The discretization points are further used for computation of values of partial derivatives present in
(18)–(19) at the interpolation points. Note that the distances between two neighboring interpolation points
does not have to be very small for the MPS. In fact the number of these points should not be also too large
(because it can lead to an ill-conditioned matrix of coefficients further used in the MPS). On the other
hand, the accuracy of a finite difference approximation increases when the distance between the points
involved in a finite difference formula becomes small enough. Hence, we introduce the number iMd of
additional intermediate discretization points that are located between each two interpolation points (see
Figure 3, left). All these discretization points are involved in the finite difference approximation. Note
that we also increase a number of the interpolation points in such a way that we add to the set considered
some selected discretization points located near the boundary (see Figure 3, right). This approach is
essential due to the fact that the material starts exhibiting the plastic behavior on the boundary and inside
the plate in the neighborhood of the narrowing.

Now, with the assumptions and notations introduced above, the computational procedure can be for-
mulated in the following way.

Algorithm 1 (elastic case). Assumptions and preliminary steps. We start from the assumption that the
whole region of the plate corresponds to the elastic behavior of the material. Hence, for each iteration step
we take b̃(X, Y )≡ 0 in the governing equation (15). Then, we choose some loading path to a given state of
stress, i.e., we take m = 1, 2, . . . , kp that corresponds to related values of stress σ̃B = σ̃B1, σ̃B2, . . . , σ̃Bkp ,
respectively. The iteration step kp is the last one performed during the algorithm’s execution. For m = kp

the material starts exhibiting the plastic behavior.

Step 1. Take m = 1 (̃σB = σ̃B1).

Step 2. For a given value of m (̃σBm), compute the approximate solution of the boundary value equation
(15)–(16) using the MFS. We obtain

9(X, Y )≈
Ns∑

i=1

ciφ1i (X, Y )+
Ns∑

i=1

diφ2i (X, Y ), (26)

where the functions φ1 = φ1(X, Y ), φ2 = φ2(X, Y ) are the fundamental solutions related to the homoge-
neous biharmonic equation ∇49 = 0. We have

φ1i = φ1i (X, Y )= ln ri , φ2i = φ2i (X, Y )= r2
i ln ri , ri =

√
(X − Xsi )2+ (Y − Ysi )2. (27)

Unknown values of the coefficients ci , di , i = 1, 2, . . . ,Ns, in (26), can be found, if we solve a linear
system of equations (28) obtained by collocating the boundary conditions. We get

G1l(9(X j , Y j ))= g1l(X j , Y j ), G2l(9(X j , Y j ))= g2l(X j , Y j ), (28)

for l = 1, 2, . . . ,Nl, j = 1, 2, . . . , Nc(l), where 9 is of the form (26), G1l , G2l are the differential
operators acting on 9, g1l = g1l(X, Y ), g2l = g2l(X, Y ) are given functions, Nl denotes the number of
characteristic parts of the boundary and Nc(l) denotes the number of collocation points located on a
given part l of the boundary.
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Figure 5. The stress-strain curve with the path OABC [Mendelson 1968] that allows to
obtain the equivalent stress σ̃eq from the equivalent plastic strain increment 1̃ε p

eq.

Step 3. Compute the equivalent stress σ̃eq,m (the equation (24)) at each discretization point. Then, check
if there exist one or more interpolation points such that σ̃eq,m > 1. If so, then finish the execution of the
Algorithm 1 and start the Algorithm 2. Else, take m =m+ 1 (̃σB = σ̃Bm), go back to Step 2 and continue
the iteration process.

Algorithm 2 (elastic-plastic case). Assumptions and preliminary steps. On the basis of the results ob-
tained with the Algorithm 1, the elastic-plastic behavior of the material is now considered. Hence, the
right-hand side function in the governing equation (15) is no longer equal to zero. The Algorithm 2
consists of two nested iteration processes. In the case of the main iteration process we continue the
loading path started by the Algorithm 1, i.e.„ we take m = kp, kp + 1, . . . , that corresponds to the stress
σ̃B = σ̃Bkp , σ̃Bkp+1, . . . , respectively. Note that since for the last iteration step kp in the Algorithm 1 the
elastic-plastic behavior of the material has been detected, then we repeat computations taking m = kp

(̃σB = σ̃Bkp ) and some initial distribution for the unknown plastic strain increments (further referred
by iter = 0). Generally, for a given stress σ̃Bm , we start the internal iteration process, taking iter =
1, 2, . . . . We compute successive approximations 1ε p (iter)

X X , 1ε p (iter)
Y Y , 1ε p (iter)

XY for the plastic strain in-
crements until a desired accuracy is achieved.

Main iteration process:

Step 1-1. Take m = kp (̃σB = σ̃Bkp ).
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Step 1-2. For a given value of m (̃σBm), perform some preliminary steps, before the internal iteration
process starts. An initial distribution of plastic strain increments is denoted as iter= 0.

If m = kp, then

(a) take ε p
X X = ε

p
Y Y = ε

p
XY = 0 and g̃(X i , Yi )= 0, i = 1, 2, . . . ,Ni;

(b) choose some initial distribution for the plastic strain increments 1ε p (0)
X X , 1ε p (0)

Y Y , 1ε p (0)
XY for all

discretization points such that σ̃eq,kp > 1 (the Algorithm 1); for the remaining discretization points,
take 1ε p (0)

X X =1ε
p (0)
Y Y =1ε

p (0)
XY = 0.

Else, if m > kp, then

(a) use a final distribution of the plastic strain increments obtained for the stress σ̃Bm−1 to compute
current values of ε p

X X , ε p
Y Y , ε p

XY (the equation (20)) for all interpolation points such that σ̃eq,m−1 > 1;
otherwise, take ε p

X X = ε
p
Y Y = ε

p
XY = 0;

(b) compute current values of the function g̃(X i , Yi ) (the equation (18)) at all interpolation points such
that σ̃eq,m−1 > 1 (see also the remarks on the finite difference (FD) approximation of the partial
derivatives given below); otherwise, take g̃(X i , Yi )= 0;

(c) choose some initial distribution for the plastic strain increments 1ε p (0)
X X , 1ε p (0)

Y Y , 1ε p (0)
XY for all

discretization points such that σ̃eq,m−1 > 1; otherwise, take 1ε p (0)
X X =1ε

p (0)
Y Y =1ε

p (0)
XY = 0.

End If

Internal iteration process:

Step 2-1. Take iter= 1.

Step 2-2. Based on a given distribution of the plastic strain increments 1ε p (iter−1)
X X , 1ε p (iter−1)

Y Y ,
1ε

p (iter−1)
XY compute values of the function 1g̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni (the equation (19);

see also the remarks on the FD approximation of the partial derivatives).

Step 2-3. Compute values of the right-hand side function of the governing equation (15), i.e.,
b̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni (the equation (17)).

Step 2-4. Compute the approximate solution of the inhomogeneous boundary value equation (15)–
(16) using the MPS together with the MFS (see, e.g., [Chen et al. 2014]).

We represent the solution in a decomposed form as a sum of a particular solution 9(iter)
p (X, Y )

(see Step 2-4-1) and a general solution 9(iter)
h (X, Y ) (see Step 2-4-2), i.e.,

9(iter)(X, Y )=9(iter)
h (X, Y )+9(iter)

p (X, Y ). (29)

Step 2-4-1. Compute the particular solution.

The particular solution satisfies the governing equation (15) in the domain, although it does not
necessarily satisfy the boundary conditions. We can obtain the approximate particular solution if
we interpolate the right-hand side function given in (15) at the interpolation points using radial ba-
sis functions (RBFs) ϕk and some polynomial functions p j (for details see, e.g., [Chen et al. 2014;
Jankowska and Kołodziej 2015]). Note that we take the multiquadric (MQ) as RBFs. We have

ϕk =
√
(X − Xk)2+ (Y − Yk)2+ c2, (30)
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where c is a shape parameter. Hence, we obtain

b̃(iter−1)(X, Y )≈
Ni∑

k=1

αkϕk(X, Y )+
L∑

j=1

β j p j (X, Y ), (31)

where L , 0 ≤ L ≤ 6, denotes the number of polynomials p j = p j (X, Y ) in (31). Note that αk ,
β j in (31) are unknown coefficients to be determined. They can be obtained by solving the linear
system of equations of the form

Ni∑
k=1

αkϕk(X i , Yi )+

L∑
j=1

β j p j (X i , Yi )= b̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni,

Ni∑
j=1

α j pk(X j , Y j )= 0, k = 1, 2, . . . , L . (32)

When the constants αk and β j are computed, the approximate particular solution 9(iter)
p (X, Y ) is

of the following form:

9(iter)
p (X, Y )≈

Ni∑
k=1

αkψk(X, Y )+
L∑

j=1

β j q j (X, Y ), (33)

where ψk and q j are the particular solutions corresponding to the functions ϕk and p j , respectively.
Note that they are associated with the operator ∇4 of the governing equation such that the following
equations are satisfied ∇4ψk(X, Y )= ϕk(X, Y ) and ∇4q j (X, Y )= p j (X, Y ) (for details see, e.g.,
[Chen et al. 2014; Jankowska and Kołodziej 2015]).

Step 2-4-2. Compute the general solution.

The general solution 9(iter)
h (X, Y ) satisfies the homogeneous governing equation of the form

∇
49

(iter)
h (X, Y )= 0 with the modified boundary conditions

G1l(9
(iter)
h (X, Y ))= g1l(X, Y )−G1l(9

(iter)
p (X, Y )),

G2l(9
(iter)
h (X, Y ))= g2l(X, Y )−G2l(9

(iter)
p (X, Y )),

(34)

for l = 1, 2, . . . ,Nl. The above boundary value problem can be solved with the MFS. The approx-
imate general solution is of the form

9
(iter)
h (X, Y )≈

Ns∑
i=1

ciφ1i (X, Y )+
Ns∑

i=1

diφ2i (X, Y ), (35)

where the unknown values of coefficients ci , di , i = 1, 2, . . . ,Ns, present in (35), can be obtained,
if we solve a linear system of collocation equations (compare Step 2 of the Algorithm 1).

Step 2-5. Since the solution9(iter) is known, compute σ̃ (iter)
eq,m (the equation (24)) at all discretization

points.
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Note that Steps 2-2 to 2-4 describe how to compute the approximate solution of the inhomogeneous
boundary-value equation (15)–(16) based on the plastic strain increments obtained in the previous
iteration step. The successive approximations of the plastic strain increments can be found with
the approach proposed in [Mendelson 1968] in the following way.

Step 2-6. Compute a new distribution of the plastic strain increments at all discretization points.

For all discretization points such that σ̃ (iter−1)
eq,m > 1, apply a method presented in a block diagram

(see Figure 4). This approach uses the stresses σX X , σY Y , σXY obtained with the solution 9(iter)

together with the equivalent plastic strain increment 1̃ε p (iter−1)
eq (the equation (25)) and the corre-

sponding equivalent stress σ̃ (iter−1)
eq determined from the stress-strain curve (see Figure 5) to find

a new distribution 1ε p (iter)
X X , 1ε p (iter)

Y Y , 1ε p (iter)
XY of the plastic strain increments with the Prandtl–

Reuss relations (23).

For the remaining discretization points, take 1ε p (iter)
X X =1ε

p (iter)
Y Y =1ε

p (iter)
XY = 0.

Step 2-7. Take two successive distributions of the plastic strain increments to compute the max-
imum distance d between two approximate solutions and the root mean square error δ(iter) of the
boundary conditions fulfillment at Nt test points located on the boundary at each iteration step, i.e.,

d =max{dX X , dY Y , dXY }, δ(iter)
=

√∑Nt
i=1
[
σb(X i , Yi )− σ

(iter)
a (X i , Yi )

]2
/Nt, (36)

where
di j =

√∑Ni
k=1
[
1ε

p (iter)
i j (Xk, Yk)−1ε

p (iter−1)
i j (Xk, Yk)

]2
/Ni. (37)

σb denotes an exact value of the stress at a given test point on the boundary and σa represents the
approximate value of the stress computed with the method proposed. Choose a tolerance value
TOL. If d ≤ TOL and the root mean square error δ(iter) provides a sufficient accuracy of the result,
then stop the internal iteration process and go further to Step 1-3. Else, take iter= iter+1 and go
back to Step 2-2.

Note that if the distance d is increasing for successive iterations, then the iteration process is not
convergent and it is stopped. Similarly as in the case when the maximum number of iterations is
exceeded before the accuracy is achieved.

Step 1-3. Take m = m+ 1, go back to Step 1-2 and continue the main iteration process.

Finite difference approximation of partial derivatives. We can approximate values of all partial deriva-
tives of the plastic strain increments that are needed in (19) for the function 1g̃(X, Y ) with the finite
difference formulas (see, e.g., [Anderson et al. 1984; Orkisz 1998; Li and Wang 2003]). Then, values
of the partial derivatives of the accumulated plastic strains that are required in (18) for the function
g̃(X, Y ) can be easily obtained. The simplest method assumes the differentiation of the equations (20)
and then the computation of the sums of the appropriate partial derivatives of the plastic strain increments.
Note that values of the partial derivatives present in (19) are computed for the plastic strain increments
corresponding to the interpolation points but for the appropriate finite difference equations we take the
plastic strain increments that correspond to the discretization points. Such an approach increases an
accuracy of the finite difference approximation. That is why, throughout the Algorithm 2, we compute
values of the plastic strain increments at all discretization points.
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The discretization points used in finite difference formulas are presented in Figures 3 and 6. We denote
by O a given interpolation point. Furthermore, A1, A2, A3 and B1, B2, B3 represent the neighboring
discretization points lying on the same line as the point O along the x-axis. Similarly, C1, C2, C3 and
D1, D2, D3 are the neighboring discretization points lying along the y-axis. We can also distinguish
another set of uniformly distributed discretization points E , F , G, H (see Figure 6, left). The distance
between two points along the x-axis is equal to h and the distance between two points along the y-axis
is represented by k. Subsequently, we refer to these distances as mesh increments.

Let P stands for any interpolation or discretization point considered. Subsequently, we denote by u P

a value of the appropriate increment of plastic strains 1ε p
X X , 1ε p

Y Y or 1ε p
XY at the point P , respectively.

For the great majority of the interpolation points, values of the appropriate partial derivatives can be
approximated with the central finite difference formulas (see also Figure 6, left) given as

∂2uO

∂x2 ≈
u B1− 2uO + u A1

h2 ,
∂2uO

∂y2 ≈
u D1− 2uO + uC1

k2 ,
∂2uO

∂x∂y
≈

uE − uF − uG + u H

4hk
. (38)

Nevertheless, since the plate is of irregular domain, then for some selected interpolation points located
near the boundary, we have to use special formulas for the finite difference approximation. These for-
mulas take into account different mesh increments. Such a general case is presented in Figure 6, right.
As we can see, for given values of h and k, the distances between some neighboring points along the x
and y axes can be smaller. In general, they can be determined by the coefficients (positive and less or
equal to 1) denoted and defined as α1 = |A1O|/h, β1 = |B1O|/h, γ1 = |C1O|/k and η1 = |D1O|/k (see
Figure 6, right), respectively.

A choice of the appropriate finite difference formula depends on a position of the interpolation point
with respect to the boundary. In most cases, each interpolation point has all their neighboring discretiza-
tion points, i.e., A1, B1, C1, D1, E , F , G, H , even if some mesh increments are smaller than h and k.
Then, we can use the following central finite difference formulas:

∂2uO

∂x2 ≈
2(α1u B1− (α1+β1)uO +β1u A1)

α1β1(α1+β1)h2 ,
∂2uO

∂y2 ≈
2(γ1u D1− (γ1+ η1)uO + η1uC1)

γ1η1(γ1+ η1)k2 , (39)

∂2uO

∂x∂y
≈

1
2h

(
∂u B1

∂y
−
∂u A1

∂y

)
. (40)

Note that values of the partial derivatives of the first order present in (40) can be approximated with the
central finite difference formula (41)1, where P denotes a given discretization point (e.g., A1, B1 in (40))
and the notation |P indicates that the appropriate value is chosen with respect to the point P . We have

∂u P

∂y
≈

u D1|P − uC1|P

(γ1|P + η1|P )k
,

∂u P

∂y
≈

3u P − 4uC1|P + uC2|P

2k
,

∂u P

∂y
≈
−3u P + 4u D1|P − u D2|P

2k
. (41)

Finally, we consider the case when a given interpolation point (located very close to the boundary of
the narrowed region) does not have some of its neighboring discretization points. We deal with such a
situation rarely. If a number of uniformly distributed interpolation points is large, then a distance between
a given interpolation point and some corresponding (located on the boundary) discretization point that
should be also considered is equal or close to zero (see Section 3 and Figure 3). In such a case we do
not include this point in the set of all discretization points used for further computations. Hence, for the
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Figure 6. The distribution of the discretization points used in the finite difference formulas.

approximation of the second order derivatives with respect to x and y, we can use the backward (42)1,
(43)1 or forward (42)2, (43)2 finite difference formulas given as follows:

∂2uO

∂x2 ≈
2uO − 5u A1+ 4u A2− u A3

h2 ,
∂2uO

∂x2 ≈
2uO − 5u B1+ 4u B2− u B3

h2 , (42)

∂2uO

∂y2 ≈
2uO − 5uC1+ 4uC2− uC3

k2 ,
∂2uO

∂y2 ≈
2uO − 5u D1+ 4u D2− u D3

k2 . (43)

Similarly, in the case of the mixed second order partial derivative, we can apply the following backward
(44)1 or forward (44)2 finite differences:

∂2uO

∂x∂y
≈

1
2h

(
3
∂uO

∂y
− 4

∂u A1

∂y
+
∂u A2

∂y

)
,

∂2uO

∂x∂y
≈

1
2h

(
−3
∂uO

∂y
+ 4

∂u B1

∂y
−
∂u B2

∂y

)
. (44)

Depending on the existence and the location of the neighboring discretization points, for the approxima-
tion of the first order partial derivatives present in (44) we can choose the appropriate formula from (41).

Note that for the approximation of the partial derivatives proposed above, we take the finite difference
formulas of the second order. The only exception are the finite differences (39) and (41)1. They are of the
first order accuracy due to the mesh increments that are smaller than h and k. However, for α1 = β1 = 1
in (39)1 and γ1 = η1 = 1 in (39)2, the appropriate finite difference formulas reduce to the forms (38)1 and
(38)2 of the second order accuracy, respectively. Similarly, the equation (41)1 becomes for γ1 = η1 = 1
the central finite difference of the second order.

4. Numerical experiments

For the problem considered we choose the plate with two different depths of the narrowing. We refer to
them as: 1-A (if a = 1, b = 0.5) and 1-B (if a = 1, b = 0.25), respectively. We choose n = 0.5 for the
parameter of the elastic-plastic model (1) and we take the following material parameters: E = 2× 1011

[Pa], ν = 0.3, σ0 = 2× 108 [Pa], ε0 = 1× 10−3. Further, for these two boundary-value problems we
choose the loading paths to the state of stress σ̃B. The algorithm proposed in Section 3 produces a
sequence of results for each successive value of σ̃Bm , if the appropriate step size is chosen as hσ̃B =

σ̃Bm − σ̃Bm−1 = 0.0125. The first interpolation points such that the plastic deformation occurs can be
detected for σ̃B = 0.6375 in the case of the geometry 1-A and σ̃B = 0.475 in the case of the geometry 1-B.
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Figure 7. The root mean square error (left) and the root mean square error normalized
with σ̃B (right) of the boundary conditions fulfillment obtained for the plate of the ge-
ometry 1-B after a constant number of eight iteration steps.

The parameters of the meshless methods were chosen so that the acceptable and small root mean
square error of the solution could be achieved. Subsequently, we denote by Mc, Ms and Mi the number
of collocation, source and interpolation points located on the shorter side of the plate (e.g., AB or CD).
Furthermore, iMd is the number of additional intermediate discretization points placed between each
two interpolation points (see Figure 3). We have Mi= 11, iMd = 4, s = 0.2 and c = 0.1. We also take
Mc= 80, Ms= 80 for the geometry 1-A and Mc= 60, Ms= 60 for the geometry 1-B, respectively. For
these values of parameters the distance between two neighboring interpolation points along the x and y
axes is equal to 4.1667×10−2 and the mesh increments for the finite difference approximation are given
by h = k = 8.3333×10−3.

The optimal computational procedure preferred by the authors assumes that the number of iteration
steps required to obtain the solution related to succeeding stresses σ̃Bk is chosen so that the root mean

Geometry 1-A 1-B

Side of plate / Boundary condition δ δ

(0AB, 0DC) 9Y Y = σ̃B 6.220×10−4 3.601×10−4

(0E1B, 0E2C, 0F1A, 0F2D) 9X X = 0 2.777×10−3 7.253×10−4

(0AB, 0DC, 0E1B, 0E2C, 0F1A, 0F2D) 9XY = 0 2.287×10−3 2.174×10−4

(0E1E2) 9Y Y nx −9XY ny = 0 4.020×10−3 2.880×10−4

(0E1E2) 9X X ny −9XY nx = 0 1.637×10−3 6.977×10−4

(0F1F2) 9Y Y nx −9XY ny = 0 4.019×10−3 2.880×10−4

(0F1F2) 9X X ny −9XY nx = 0 1.636×10−3 6.977×10−4

(0) Total 2.496×10−3 4.691×10−4

Final distance d 4.825×10−4 4.018×10−3

Table 1. Values of the root mean square error δ of the boundary conditions fulfillment
for the different boundary conditions corresponding to the appropriate sides of the plate,
the final distance d between to two last successive distributions of the plastic strain
increments obtained with the algorithm proposed for σ̃B = 0.8 and the geometries 1-A
and 1-B. Eight iterations in total were used in each case.
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Figure 8. The comparison of the equivalent plastic strains ε̃ p
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p
eq (left), the equiv-

alent total strains ε̃eq (middle) and the equivalent stress σ̃eq (right) in the plate of the
geometry 1-A (top) and 1-B (bottom), respectively.

square error and a given tolerance imposed on the iteration process are sufficiently small. Nevertheless,
since the accuracy of the solution is acceptable also for the constant number of iterations, we always
perform eight iteration steps. Note that all computations were performed with the C++ libraries for the
floating-point conversions in the double extended precision format (dedicated for the Intel C++ compiler)
as proposed in [Jankowska 2010].

First, we present the accuracy of the approximate solution obtained for different conditions of loading
for the plate of the geometry 1-B. As we can see in Figure 7, the root mean square error and the normalized
root mean square error of the boundary conditions fulfillment obtained after a constant number of 8
iteration steps remain of the same order. The curve profiles indicate however that for larger values of
the stress σ̃B more iteration steps (or just their different numbers) are required to retain the assumed
accuracy.

In Table 1 we can see a comparison of values of the root mean square error of the boundary conditions
fulfillment for the different boundary conditions corresponding to the appropriate sides of the plate and
the final distance between two last successive distributions of the plastic strain increments. Such results
are provided for the loading state related to σ̃B = 0.8 and both geometries 1-A and 1-B. Then, the
appropriate distributions of the equivalent plastic strains, the equivalent total strains and the equivalent
stress in the plate obtained for the same value of σ̃B = 0.8 and both geometries are presented in Figure 8.
The regions of elastic and plastic deformation can be observed there.

5. Conclusions

A method for solving some plane elastoplastic boundary-value problem describing the stress state in the
plate subjected to uniaxial extension is proposed. It is based on the successive-approximation iteration
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process that is further combined with the meshless methods (the method of fundamental solutions and the
method of particular solutions). Due to the special form of the right-hand side function of the governing
equation the approximation of some partial derivatives with finite difference formulas is also applied. The
authors introduce a new set of auxiliary discretization points that is utilized to control the finite difference
approximation accuracy. Such points are not directly used for solving a sequence of nonhomogeneous
boundary-value problems involved. Hence, the dimensions of some linear systems of equations that
appear in each iteration step due to the meshless methods applied, are as always limited to the number
of collocation and interpolations points. Note that the discretization points are uniformly located in the
domain (except for the ones that are placed in the neighborhood of the narrowing). However, there is
an increasing number of papers that propose an application of irregular grid (cloud) of points for the
finite difference approximation (see the generalized finite difference (GFD) methods proposed, e.g., in
[Orkisz 1998; Benito et al. 2007]). On the other hand, an application of the meshless methods for the
problem considered is easy even in the case of complicated geometries. Furthermore, since the solution,
i.e., the stress function, is approximated by linear combinations of fundamental solutions and particular
solutions, we can compute values of stresses and strains not only in the interpolation or discretization
points but at any point in the domain.

In the opinion of the authors the meshless methods are good alternative to the mesh methods in the case
of many scientific problems. So far they were mainly used for solving some linear initial-boundary value
problems with the Picard iteration process or the Newton–Raphson method as possible algorithms for
nonlinear problems. Recently, several efficient algorithms that can be used together with the meshless
methods for solving the nonlinear problems, appeared in the literature. Some of them are based on
perturbation techniques that transform a nonlinear problem into a sequence of linear problems (see, e.g.,
the homotopy analysis method (HAM) described in [Liao 2004; Tsai 2012] and the asymptotic numerical
method (ANM) proposed in [Tri et al. 2012]). Furthermore, we can use the Kansa method [1990] by an
approximation of a solution with a linear combination of radial basis functions. Such an approach results
in a nonlinear system of equations to be solved.
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IMPLEMENTATION OF HAM AND MESHLESS METHOD FOR TORSION OF
FUNCTIONALLY GRADED ORTHOTROPIC BARS

ANITA UŚCIŁOWSKA AND AGNIESZKA FRASKA

The aim of this study is implementation of the Homotopy Analysis Method (HAM) and the Method of
Fundamental Solution (MFS) for solving a torsion problem of functionally graded orthotropic bars. The
boundary value problem is formulated for the Prandtl’s stress function, described by partial differential
equation of second order with variable coefficients and appropriate boundary conditions. In the solv-
ing process the HAM is used to convert nonlinear equation into a linear one with known fundamental
solutions. The Method of Fundamental Solutions supported by Radial Basis Functions and Monomi-
als is suggested for calculate this linear boundary value problem. The numerical experiment has been
performed to check the accuracy and the convergence of the presented method.

1. Introduction

The torsion problem of bars is an important issue in engineering science. And it is not a new question. Es-
pecially twisting of prismatic bars made with homogeneous and isotropic materials have been undertaken
by many authors [Kołodziej and Fraska 2005; Nowacki 1970; Naghdi 1994; Timoshenko and Goodier
1970]. In the last time, the case of inhomogeneous and/or anisotropic material is more often discussed
in literature [Chen 2011; Horgan and Chan 1998/99; Xu et al. 2010]. It is related to the research on
functionally graded materials (FGMs), designed for special engineering applications including aircraft,
aerospace, automobile industry and medicine. Functionally graded materials are characterized by the
continuous changes of their properties at least in one direction and this feature distinguishes them from
the conventional composite materials [Miyamoto et al. 1999]. In fact the concept of FGMs is inspired
with materials occurring in nature, such as: bones, skin and bamboo [Jha et al. 2013]. These materials
have functionally graded and hierarchical structure and they also have different architecture that results
in orthortropic behaviour [Birman and Byrd 2007].

In this work the torsion problem of linear elastic, orthotropic, prismatic bars made with FGMs is
investigated. This is a boundary value problem, described by partial differential equation of second
order with variable coefficients and appropriate boundary conditions. The problem is formulated for
the Prandtl’s stress function. Generally, when the shear flexibility moduli are arbitrary functions of
cross-sectional coordinates, the analytical solution is not available. In [Ecsedi 2013] non-homogenous
anisotropic (monoclinic) bars were considered, assuming that the shear flexibility moduli are given func-
tions of the Prandtl’s stress function of corresponding homogeneous problem. Due this formulation, the
obtained analytical solution of the torsion of non-homogeneous monoclinic bar is expressed in terms
of the Prandtl’s stress functions of a homogeneous monoclinic bar, which has the same cross-section

Keywords: homotopy analysis method, mesh-free methods, method of fundamental solutions, functionally graded materials,
orthotropic symmetry, torsion of a prismatic bar.
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Figure 1. Torsion of prismatic bar of arbitrary cross-section �.

as the non-homogenous bar. But, method proposed by Ecsedi is not universal for any kind of function
describing the non-homogeneity of a material. In contrast to Ecsedi’s paper, the method presented by us
is more general because functions describing the shear flexibility moduli are arbitrary functions of cross-
sectional coordinates. We propose the Homotopy Analysis Method combined with the meshless method
to solve considered problem. Used mesh-free method is the Method of Fundamental Solutions supported
by Radial Basis Functions and Monomials. Uściłowska has examined application of this method in case
of isotropic non-homogenous rod [Uściłowska 2010]. The MFS is highly effective method if the funda-
mental solution of considered equation is available. In the solving process the HAM is used to convert
considered equation into a linear one with known fundamental solutions. The HAM was proposed in
[Liao 1997]. It is a very useful tool for solving nonlinear problems. Moreover applying HAM with
auxiliary parameter h, allows to control the convergence. Compared with other method often used to
adapt MFS to nonlinear problems, based on Picard iteration, it is undoubted advantage of HAM, because
in method of Picard iteration the process of iteration may be divergent [Uściłowska 2008].

2. Problem description

Consider a functionally graded, orthotropic, linearly elastic bar of an arbitrary and uniform cross-section
�. The axis Oz is parallel to the longitudinal axis of the bar and the bar is twisted by two couples of
forces acting on its ends (see Figure 1). It is assumed that there are no body forces and the bar is free
from external forces on its lateral surface. There are no normal stresses on the frontal cross-sections also.

In case of orthotropic bar there are two independent material characteristics G13 and G23 in the torsion
equation (see Appendix), where G13 is a shear modulus in direction axis x on the plane whose is normal in
direction z and adequate G23 is a shear modulus in direction y on the plane whose is normal in direction z.
We assumed that the shear flexibility moduli G13 and G23, are the continuous and differentiable functions
depending on geometrical coordinates x and y.

The problem is formulated in terms of the Prandtl’s stress function u and it is described by the equation
[Lekhnitskii 1977]

∂

∂x

(
1

G23(x, y)
∂u
∂x

)
+
∂

∂y

(
1

G13(x, y)
∂u
∂y

)
=−2 for (x, y) ∈�, (1)

and the boundary condition

u = 0 for (x, y) ∈ 0. (2)
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The stresses are defined as
σxz = θ

∂u
∂y
, σyz =−θ

∂u
∂x
, (3)

where σxz and σyz are stress tensor components, and θ is the twist angle.

3. The numerical algorithm for solving the boundary value problem

The aim of this study is implementation of the Homotopy Analysis Method (HAM) and the Method
of Fundamental Solution (MFS) for solving above boundary value problem. For clarity the considered
boundary value problem (1)–(2) is rewritten in a general form

Au = f in �, (4)

Bu = g on 0, (5)

where A is the operator of the partial differential equation (PDE), B is the operator of the boundary
condition, u = u(x, y) is the unknown function, and f , g are the given functions on the right hand side
of the equations. In considered boundary value problem (BVP)

A =
∂

∂x

(
1

G23(x, y)
∂

∂x

)
+
∂

∂y

(
1

G13(x, y)
∂

∂y

)
, B = 1, f =−2 and g = 0.

In the solution procedure the HAM is applied to convert the considered PDE into a set of linear
inhomogeneous equations.

In order to apply the HAM, it is required to construct a linear problem

Lgu = Lgu0 in �, (6)

Lbu = Lbu0 on 0, (7)

where Lg, Lb — are certain linear operators, here Lg = ∇
2, Lb = 1, u0 = u0(x, y) is the zeroth-order

solution.
The proposed homotopy deforms the linear problem (6)–(7) to problem (4)–(5):

(1− λ)Lg(U − u0)= hλ(AU − f ) in �, (8)

(1− λ)Lb(U − u0)= hλ(BU − g) on 0, (9)

where λ is the homotopy parameter and λ ∈ [0, 1]. The additional parameter h allows controlling the
convergence, h < 0. The solution of the problem is denoted by U =U (x, y, λ, h). When λ= 1 we obtain
the equations (4)–(5) and when λ= 0 the problem reduces to linear problem (6)–(7) for calculating zeroth-
order solution u0 =U (x, y, 0, h).

This homotopy is assumed to be smooth function and the solution of the problem (8)–(9) can be
expanded by the Taylor series

U (x, y, λ, h)=U (x, y, 0, h)+
∞∑

i=1

λi

i !
∂ iU (x, y, λ, h)

∂λi

∣∣∣∣
λ=0
= u0(x, y)+

∞∑
i=1

λi

i !
u(i)0 (x, y), (10)

where u(i)0 (x, y)= ∂
iU (x, y, λ, h)

∂λi

∣∣
λ=0.
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Therefore, putting λ= 1, gives us the solution of equations (4)–(5)

u(x, y)=U (x, y, 1, h)= u0(x, y)+
∞∑

i=1

u(i)0 (x, y)
i !

. (11)

Substituting (10) into (8)–(9) and collecting the coefficients of the powers of λ we obtain sequence of
linear inhomogeneous PDEs{

Lgu(1)0 = h(Au0− f )

Lgu(i)0 = i
(
Lgu(i−1)

0 +
h

(i−1)!
∂ i−1(AU )
∂λi−1 |λ=0

)
for i = 2, 3, 4, . . .

in �, (12){
Lbu(1)0 = h(Bu0− g)

Lbu(i)0 = 0 for i = 2, 3, 4, . . .
on 0. (13)

The quantity ∂ i−1(AU )
∂λi−1

∣∣
λ=0 given in formula (12) for operator A has the following form ∂ i−1(AU )

∂λi−1

∣∣
λ=0 =

A ∂ i−1(U )
∂λi−1

∣∣
λ=0 = Au(i−1)

0 .
The solutions u(i)0 (x, y) of BVPs (12)–(13) are the elements of the series (10) and (11).
Now each of linear problems (12)–(13) for i = 1, 2, 3, . . . is solved by means of mesh-free methods

that is the MFS supported by approximation by Radial Basis Functions (RBFs).
Let’s rewrite the boundary value problem in a general form

Lgu(i)0 (x, y)= f (i)(x, y) in �, (14)

Lbu(i)0 (x, y)= g(i)(x, y) on 0, (15)

where f (i), g(i) are the right-hand side functions in (12) and (13), for i = 1, 2, 3, . . . .
In the methods of fundamental solutions, the general solution of the i-th order is decomposed into two

parts, a particular solution u(i)p and a homogeneous solution u(i)h

u(i)0 = u(i)p + u(i)h . (16)

The particular solution fulfils (14) but not necessary the boundary condition (15). In order to obtain
a particular solution of (14) the right-hand side function f (i) should be approximated by radial basis
function and monomials in the following way:

f (i)
(
x, y, u(i−1)(x, y)

)
∼=

Nw∑
k=1

a(i)k ϕk(x, y)+
Nl∑

l=1

b(i)l pl(x, y), (17)

where ϕk(x, y) = ϕ(‖(x − xa
k , y− ya

k )‖) is RBF, points (xa
k , ya

k ) ∈ �∪0, for k = 1, 2, . . . , Nw are the
approximation points placed in considered domain, Nw is a number of approximation points, and pl(x, y)
for l = 1, 2, . . . , Nl are monomials, where Nl is a number of monomials. As regards coefficients a(i)k

and b(i)k , these are real numbers determined successively in each iteration.
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The approximation formula (17) written for each approximation point in the domain, for j = 1, . . . , Nw,
has the form

f (i)
(
xa

j , ya
j , u(i−1)(xa

j , ya
j )
)
=

Nw∑
k=1

a(i)k ϕk(xa
j , ya

j )+

Nl∑
l=1

b(i)l pl(xa
j , ya

j ). (18)

Additionally, the condition (19) should be satisfied, to guarantee the limitation of the solution

Nw∑
k=1

a(i)k pl(xa
k , ya

k )= 0, for l = 1, 2, . . . , Nl . (19)

The approximate particular solution of (12) is expressed by the equation

u(i)p (x, y)=
Nw∑
k=1

a(i)k φk(x, y)+
Nl∑

l=1

b(i)l Pl(x, y), for (x, y) ∈�. (20)

The functions φk(x, y) and Pl(x, y) are the particular solutions of the equations

Lφk(x, y)= ϕk(x, y) for (x, y) ∈�, k = 1, 2, . . . , Nw, (21)

L Pl(x, y)= pl(x, y) for (x, y) ∈�, l = 1, 2, . . . , Nl . (22)

In this way the particular solution is obtained. Next stage consists of calculating the homogenous solution
on a basis of the dependence

u(i)h (x, y)=
Ns∑

n=1

c(i)n f sn(x, y), (23)

where f sn(x, y) = ln
√
(x − x s

n)
2+ (y− ys

n)
2 is fundamental solution of the Laplace equation, and

(x s
n, ys

n), for n = 1, 2, . . . , Ns , are the source points placed outside the region �, Ns is the number
of the source points.

By virtue of (16) the coefficients c(i)n are calculated from the modified boundary condition

Ns∑
n=1

c(i)n f sn(xb
m, yb

m)=−u(i)p (x
b
m, yb

m) for m = 1, 2, . . . , Nb. (24)

The points (xb
m, yb

m) ∈ 0 are the boundary points placed on the contour of the region �, and Nb is the
number of boundary points.

Finally the general solution of the considered problem is calculated from (11).
The procedure is finished if the parameter defined by formula (25) is a small number, of order 10−5

d = ‖u(i)0 (x, y)− u(i−1)
0 (x, y)‖ for i = 1, 2, . . . . (25)

At the moment the numerical algorithm for solving the boundary-value problem (12)–(13) is completed.
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n = 0.75 n = 0.5 n =−0.5 n =−0.75

Figure 2. Stress function of an FGM orthotropic bar of square cross-section for n1 =

n2 = n.

4. Numerical experiment

In order to validating the exactness of the proposed algorithm the numerical experiment has been per-
formed. For the convenient of the computer calculations the non-dimensional variables are introduced
as

X =
x
a
, Y =

y
a
, E =

b
a
, U (X, Y )=

u(x, y)
a2G0

, F1(X, Y )=
G0

G23(x, y)
, F2(X, Y )=

G0

G13(x, y)
(26)

where a, b are characteristic geometrical dimensions of the bar’s cross-section and the constant G0 has
dimension of the elastic moduli.

The function used during the tests is the thin plate spline RBF described by the formula

ϕk(X, Y )= (Rk)
2 ln(Rk), (27)

where Rk =
√
(X − Xk)2+ (Y − Yk)2.

The others parameters of the MFS are following, the tolerance d is equal to 0.00001. The boundary
points, the approximation points and the source points are distributed uniformly. The source contour
is similar to boundary contour and the distance between them s is 0.2. The number of approximation
points Nw = 441, the number of boundary points Nb = 80, the number of source points Ns = 80. The
functions describing the inhomogeneity of the material are expressed by the formulas

F1 = e−n1πX , F2 = e−n2πY . (28)

In the example torsion of a bar of a square cross section is considered. The Prandtl stress function
in case when n1 is equal to n2 is presented in Figure 2. It is easy to observe that the calculated stress
function fulfils the boundary condition.

Moreover, if the values of coefficients n1 and n2 tend to zero, we approach to homogeneous and
isotropic material (see Figure 2). Then analytical solution for the stress function is available and is given
by

Ua(X, Y )= X (1− X)− 8
∞∑

k=1,3,...

sinh(kπ(1− Y ))+ sinh(kπY )
k3π3 sinh(kπ)

sin(kπX). (29)
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Figure 3. Contour map of the stress function of an FGM orthotropic bar of square cross-
section for n1 = n2 = n.

Comparison of Figure 3, top right, with Figure 4, left, confirms convergence of results to homogeneous
and isotropic case if the coefficients n1 and n2 tend to zero. This argues the correctness of the results
obtained. The absolute value of the difference between the analytical solution for a homogeneous and
isotropic bar and the solution calculated for a orthotropic functionally graded bar in the case n1 = n2 = 0
is presented in Figure 4, right. The largest errors, occurring at the corners, are caused of a deficiency in
the numerical method. In the method of fundamental solution the maximal errors are localized in corners
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Figure 4. Left: Analytical solution for a homogeneous isotropic bar of square cross-
section: — the contour map of the stress function. Middle: Contour map of the stress
function of an FGM orthotropic bar for n1 = n2 = 0. Right: Plot of the absolute value
of the difference between the two solutions.
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Figure 5. Contour map of the stress function of an FGM orthotropic bar of square cross-section.

of the region. Behind the corners, an error of satisfying the boundary conditions is of order 10−5–10−10,
and error inside the considered region is oscillated among 10−8–10−9.

Figure 5 shows contour maps of the stress function in case when only one of the coefficients: n1 or
n2 decreases to zero. This situation refers to functionally graded material with properties of the material
changing only in one direction (see the middle and right parts of Figure 5.

Additionally in the method of fundamental solutions obtained approximated solution for the stress
function is a continuous function and can be used in the further analysis for instance in stresses calculation.
So that on the basis of (3), the resultant of shear stresses is equal to

t =
√

t2
xz + t2

yz, txz =
∂U
∂Y
, tyz =−

∂U
∂X

. (30)

Here txz and tyz are shear stresses in non-dimensional form, and

txz =
σxz

aθG0
, tyz =

σyz

aθG0
. (31)

For example the resultant of shear stresses of the investigated rod in case if coefficients n1 and n2 equal
to each other, are presented in Figure 6. The maximal values of the shear stresses are obtained on the
boundary, in the half-length side of the square. It is a result of a class of considered material. If in
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n = 1 n = 0.5 n = 0.1

Figure 6. Resultant of the shear stresses of an FGM orthotropic bar for n1 = n2 = n.

relations (28) exponents n1 or/and n2 tends to zero, functions describing elastic moduli limit to constant
values. Therefore the properties of this material reflect the properties of homogeneous one and the
maximal stresses occur on the boundary.

The other considered example is done for the orthotropic material defined by the characteristics

F1(X)= G1e−nπX , F2(X)= G2e−nπX , (32)

where G1, G2, n are real numbers. The analytical solution is known for the rectangular region of cross-
section with the edges length Xmax, Ymax and is given as

Ua(X, Y )=
2

G1nπ

(
enπ/2

2 sinh(nπ/2)
(enπX

− 1)− XenπX
)

−
4

G1π3(enπ − 1)

∞∑
k=1

enπn3π + (−1)kenπ (−n3π + k2(−2+ 2enπ
− nπ))+ k2(2+ enπ (−2+ nπ))

k(k2+ n2)2
·

sinh(λY )+ sinh(λ(E − Y ))
sinh(λE)

sin(kπX) (33)

where λ= π
√

G1
G2
(k2+ n2/4), E = Ymax/Xmax. For the numerical calculation Xmax is taken to be equal

to 1.0 and G1 = 1.0. The calculations were made for chosen set of values of material characteristics
parameters. The maximum relative error, defined as

Emax =max
�

∣∣∣∣U (X, Y )−Ua(X, Y )
Ua(X, Y )

∣∣∣∣, (34)

where �= {(X, Y )|0≤ X ≤ Xmax, 0≤ Y ≤ Ymax}, is presented in Table 1.
As we can observe the error increases with increase of all pointed parameters. The best result is

obtained for the case when material parameters tents to the anisotropic material (the lower error for
n = 0.1, G2 = 2). Moreover for all values of n and G2 the best results were achieved for square region
(see errors for Ymax = 1). And the values of the error included in Table 1 are not high and are of the
magnitude acceptable for numerical approach. The detailed results are presented on the example of three
versions of the geometry parameter and given in Figures 7, 8 and 9.

Figure 7 consists of Prandtl function calculated for n = 0.25 and G2 = 2.
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n G2 Ymax

1 2 3

0.1 2 0.036956 0.075664 0.066276
3 0.047287 0.081257 0.078933
4 0.054858 0.089432 0.080912

0.25 2 0.063310 0.070291 0.082494
3 0.082341 0.093817 0.091832
4 0.106689 0.100982 0.099155

0.5 2 0.066964 0.074529 0.093456
3 0.081334 0.090123 0.095321
4 0.091735 0.098231 0.100028

Table 1. Maximum relative error for a bar of rectangular cross-section.
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Figure 7. The Prandtl function for Ymax = 1, 2, 3.

The assumption that both material characteristics are functions of one variable — X , causes the ap-
pearance of one symmetry axes of the bar cross-section. The symmetry axes is the line Y = Ymax/2.
Using the symmetry property of Prandtl function and the information about the boundary conditions (2)
the maximum values of the Prandtl function may be noticed from Figure 8.
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Figure 8. Cross-section of the Prandtl function at Y = Ymax/2, for Ymax = 1, 2, 3.
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Figure 9. Plots of the shear stress for Ymax = 1, 2, 3.

We can observe that the increase of Ymax causes the increase of maximum value achieved by Prandtl
function. Moreover for larger values of the Prandtl function becomes steeper. Next figure (Figure 9)
consists of plots of shear stresses for considered bar with the rectangular cross-section.

The shear stresses get larger for higher values of geometry parameter Ymax. But for all cases the shear
stresses are equal to zero at angles of the bar cross-section. The shear stresses function achieves the
local maxima at the middle of each edge of the region �. Due to symmetry the solutions on the edges
Y = Ymin, Y = Ymax are the same, and the maximum value of the shear stress on those edges is the same.
On the other pair of edges the shear stress function has different values, so the local maxima are different.
One of them (on the edge for X = Xmax) is the total maximum of the shear stress function.

It is useful to look at the error of the obtained solutions. It is possible to compare the numerically
calculated results to the analytical solution (33). The absolute error

Eabs(X, Y )= |U (X, Y )−Ua(X, Y )| (35)

is plotted on Figure 10. The maximum absolute error appears at point (0.8, Ymax/2) for Ymax = 1. The
other maximum (local one) is located at (0.225, Ymax/2). For the other presented examples four local
maxima appear. For Ymax = 2 the local maxima are at points (0.24, 0.32), (0.24, 1.68), (0.78, 0.32),
(0.78, 1.68) and the absolute maximum at points (0.24, 0.32), (0.78, 0.32) achieves value 0.0072268255.
For the case when Ymax = 3 the local maxima are at points (0.24, 0.36), (0.24, 2.64), (0.78, 0.36), (0.78,
2.64) and the absolute maximum at points (0.24, 0.36), (0.78, 0.36) achieves value 0.0067483875. The
analysing the error plots gives the conclusion that the applied HAM with FSM is a good tool to solve
considered problem with demanded accuracy.

The next considered example is the torsion of the bar of elliptic cross-section. The orthotropic material
is defined by the characteristics

F1(X)= G1e−nπX , F2(X)= G2e−nπY . (36)

The influence of the characteristics (36) parameters on the shear stress function is investigated.
First, the special case of ellipse is taken into account, i.e. the circle — ellipse with both axes equal to

1.0.
The range of researched G1/G2 parameter is [1, 3]. The Prandtl function and shear stress function

are plotted in Figure 11 for G1/G2 = 2.
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Figure 10. Absolute error of the shear stress for Ymax = 1, 2, 3.
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Figure 11. Prandtl function (left) and shear stress (right) for a circular cross-section bar
with G1/G2 = 2.

Umax tmax (X, Y ) of tmax

1 0.6844922646 1.6955413372 (1.7289686274, 1.6845471059)
1.5 0.5475682789 1.3554568654 (1.7289686274, 1.6845471059)
2 0.456262953 1.127726558 (1.5877852523, 1.8090169944)
2.5 0.3910543383 0.9650844154 (1.535826795 , 1.8443279255)
3 0.3423152275 0.8432450812 (1.4817536741, 1.87630668)

Table 2. Maximum values of the Prandtl function and the shear stress for a circular
cross-section bar.

The Prandtl function has one maximum 0.456262953 at point (1.08571, 1.08571). The boundary
condition states that the Prandtl function should have value 0.0, and in Figure 11, left, we can see that
the boundary condition is fulfilled. Moreover, the shear stress function achieves the minimum value the
point (1.08571, 1.08571), which is consistent with physical and mathematical relation of Prandtl and
shear stress functions. The maximum value of the shear stress function appears at the boundary, at the
point (1.5877852523, 1.8090169944) and has value 1.127726558.

The parameter G1/G2 impacts on the maximum value of both the Prandtl function Umax and shear
stress tmax. In Table 2 the dependence of Umax and tmax on parameter G1/G2 is shown. For the G1/G2

greater than 1.0 the dependence possess the nonlinear decreasing character. The maximum of the Prandtl
function appears at the same point. The maximum of the stress function is achieved in different point,
but these point is always the boundary point.
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Figure 12. Contour maps of the Prandtl function (left) and the shear stress (right) for
an elliptic cross-section bar with G1/G2 = 2.
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Figure 13. Dependence of the Prandtl function (left) and the shear stress (right) of the
elliptic cross-section bar on the parameter G1/G2.

In next example we show the influence of material parameters on the stress function appeared in the
torsion of the bar with elliptical cross-section. The ratio of ellipse axis is equal to 3/2. The range of
researched G1/G2 parameter is (0, 3]. The Prandtl function and the shear stress function are plotted
in Figure 12 for G1/G2 = 2. It is more convenient to use contour plots to observe the minima and
maxima of these functions. The maximum of the Prandtl function (Figure 12a) has value of 0.575079
and is places at point (1.54286, 1.08571). At the same point the shear stress function (see Figure 12b)
achieves the minimum. The maximum of value 1.40104 is achieved by the shear stress function at point
(1.75308, 1.98566), which is the boundary point.

The plots given in Figure 13 present the dependence of the maximum values of Prandtl function and
the shear stress on the parameter G1/G2. For both functions the dependence has nonlinear character. In
the range of G1/G2 in (0, 1] the dependence is increasing function, for G1/G2 in (1, 3] is decreasing
one.

We have also consider the bar with cross-section of triangle shape. The triangle has the base of unit
length and the subtend angle equal to π/2. The characteristics of the material is given by the formula
(36). The top two plots in Figure 14 show the Prandtl and shear stress function for G1/G2 =

1
2 . We

notice that the maximum of the Prandtl function lays on the triangle height perpendicular to the base
and has value 0.0198738. The shear stress function has two maxima. They are achieved at the boundary
edges, which are not the base. The other situation for the shear stress appears when parameter G1/G2

is greater then 1.0. Next we look at the bottom plots in Figure 14, corresponding to G1/G2 = 2. The
maximum of the Prandtl function lies on the triangle height perpendicular to the base, as well. But the
shear stress function has only one maximum, which lies exactly on the middle of base edge.

In Table 3 the values and coordinates of maxima of the Prandtl and the shear stress functions are
presented. The functions of maximum value of Prandtl function and the shear stress with respect to the
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Figure 14. Plots of the Prandtl function (left) and the shear stress (right) for a triangular
cross-section bar with G1/G2 =

1
2 (top) and G1/G2 = 2 (bottom).

G1/G2 Umax (X, Y ) for Umax tmax (X, Y ) for tmax
1
2 0.0198738 (0.5, 0.216667) 0.230903 (0.63333, 0.366667)
2
3 0.0244673 (0.5, 0.215555) 0.280835 (0.6375 , 0.3625)
1 0.0322929 (0.5, 0.2) 0.361319 (0.66667, 0.33333)
3
2 0.0277619 (0.5, 0.199999) 0.309816 (0.5, 0.)
2 0.0246664 (0.5, 0.183333) 0.289877 (0.5, 0.)

Table 3. Values and coordinates of the Prandtl and the shear stress function for a trian-
gular cross-section.

parameter G1/G2 are nonlinear and increasing for G1/G2 in (0, 1], for G1/G2 in [1, 2] these functions
become decreasing. The points, at which the maximum of Prandtl function appears, are placed on the
triangle height perpendicular to the base and distance between these points and the triangle base decreases
with increase of parameter G1/G2. The position of points, at which the shear stress has maximum value,
depends on G1/G2 in following way. For G1/G2 in (0, 1] there are exists two maxima, at edges which
are not base edge. In this case the position of the maximum points is symmetrical, and the height
perpendicular to the triangle base is the axis of symmetry. The position of these points changes with the
changes of G1/G2. If tends G1/G2 to 0.0 the maximum point coordinates tend to the triangle vertex
subtend to the base. When G1/G2 achieves 1.0 the maximum points are places exactly at the middles
of the edges which are not base. When G1/G2 is greater than 1.0 the shear stress function has one
maximum, which is exactly in the middle of the triangle base.
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Figure 15. Plots of the Prandtl function (left) and the shear stress (right) for a trapezoidal
cross-section bar with G1/G2 =

1
2 (top) and G1/G2 = 2 (bottom)

The proposed numerical approach can be used for every shape of the bar cross-section. In this paper
the rectangular, elliptic and triangular cross-sections have been tested. The other proposal is to take into
account trapezoidal bar. The longer base edge of trapezoid has unit length. The geometrical parameter
1x , which is the half of difference of two parallel edges of the trapezoid, is introduced.

First, the orthotropic material is taken as in formula (36) with G1 = 1, G2 = 2, n = 0.1. The
Prandtl function and the shear stress are shown in the top two plots of Figure 15 for 1x = 0.2. Due to
the symmetry of the considered region, the plotted solutions are the symmetric functions, as well. The
maximum value of the Prandtl function appears at the point which is placed of the axis of symmetry. The
distance of the maximum point from the longer of parallel edges is equal to 0.514286. The maximum
value of the shear stress appears on the boundary. The plot presented in Figure 15, top right, shows two
maxima (of value 0.603268) on the nonparallel edges of the trapezoid. The other calculations showed
that the shear stress function possess two maxima for G1/G2 in the range (0, 1]. When tends G1/G2 to
0.0 the position of maximum points tends to the vertex at the shorter of parallel edges. For G1/G2 = 1
maxima are placed at the middle of nonparallel edges.

When G1/G2 = 2, the Prandtl function (Figure 15, bottom left) possesses a maximum, located on
the symmetry axis at the same distance from the longer of parallel edges as for G1/G2 =

1
2 . There

exists one maximum of the shear stress function (Figure 15, bottom right), placed on the middle of the
longer of parallel edges. For the limitary case, when 1x = 0.0, trapezoid becomes square and the second
maximum appears on the parallel edge.
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As we showed in some numerically solved examples, the proposed numerical algorithm is a good tool
for solving the torsion of the bar made of functionally graded materials. In the numerical experiment we
performed validation of the solutions using analytical solutions, known for some special cases. And, we
showed that the numerical simulations may be done for testing engineering systems, taking into account
values of material, geometry and numerical method parameters of certain ranges.

5. Conclusions

The homotopy analysis method combined with the meshfree method has been implemented for solving
the torsion problem of functionally graded bar with orthotropic symmetry. The numerical experiment
has been performed to check the accuracy and the convergence of the proposed method. The advantage
of the presented algorithm is easy verification of property calculations, because the precision of the
obtained numerical results is confirmed by checking the fulfillment of the boundary conditions. Moreover
the obtained solution is a continuous function and can be used in the future analysis for instance in
calculation of shear stresses. It is necessary to mention that the functions describing the shear flexibility
moduli may be arbitrary functions (continuous and differentiable) of cross-sectional coordinates, and it
confirms universality of the proposed method. The further analysis is required for other types of radial
basis functions and more complicated shapes of cross-sections or the other classes of FGMs.
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Appendix

The generalized Hooke’s law in case of orthotropic symmetry

εxx

εyy

εzz

εyz

εxz

εxy


=



a11 a12 a13 0 0 0
a12 a22 a23 0 0 0
a13 a23 a33 0 0 0
0 0 0 a44 0 0
0 0 0 0 a55 0
0 0 0 0 0 a66





σxx

σyy

σzz

σyz

σxz

σxy


(A.1)

where the elements of the compliance matrix ai j are given in terms of engineering properties by

εxx

εyy

εzz

εyz

εxz

εxy


=



1/E1 ν12/E2 ν13/E3 0 0 0
ν12/E2 1/E2 ν23/E3 0 0 0
ν13/E3 ν23/E3 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G12





σxx

σyy

σzz

σyz

σxz

σxy


(A.2)

E1, E2, E3 — Young moduli, ν12, ν13, ν23 — Poisson ratios, G12, G13, G23 — shear moduli.
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THE APPLICATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS
IN MODELING AUXETIC MATERIALS

TOMASZ WALCZAK, GRAZYNA SYPNIEWSKA-KAMIŃSKA,
BOGDAN T. MARUSZEWSKI AND KRZYSZTOF W. WOJCIECHOWSKI

The paper presents an application of the method of fundamental solutions to model auxetic materials.
The utility of the method has been illustrated by solution of basic elastostatic problem of searching
displacements distribution for materials with different auxetic properties. Some remarks on most often
difficulties occurring during computational process are also included. The presented numerical examples
show that the method of fundamental solutions could be effective numerical tool for researching various
properties of auxetic materials.

1. Introduction

Solving many modern engineering problems it requires to use more and more advanced computational
methods. Due to high progress in developing those methods in recent years, it was possible to take into
account many important and complex problems especially in the field of mechanics, bioengineering or
material science. In that domain, where the real problems could be described by differential equations,
the main numerical tool to provide computer simulation is the finite element method (FEM) [Zienkiewicz
and Taylor 2000]. That method is also most commonly used for describing materials of new properties
and their nontrivial behaviors.

In this paper an alternative numerical method has been used to solve elastostatic problems for mate-
rials with negative Poisson’s ratio as isotropic auxetic materials. The presented method, called Method
of Fundamental Solutions (FMS), is a numerical method for solving boundary problems of differen-
tial equations, which belongs to the group of meshless methods. That method has been developed by
Kupradze and Alexidze [Kupradze 1967; Kupradze and Aleksidze 1964]. Till now, MFS was successfully
applied to solve mechanical problems [Bogomolny 1985; Fairweather et al. 2003; Goldberg 1995; Kita
2003; Mathon and Johnston 1977; Poullikkas et al. 2001], and also the elastic ones [Karageorghis and
Fairweather 2000; de Medeiros et al. 2004; Poullikkas 1998; Poullikkas et al. 2002]. The main advantage
of MFS is a possibility to obtain (with the help of numerical approximation) analytical solution of the
problem in the entire considered region. One can obtain the solution by solving just one system of
linear equations. That fact simplifies the numerical procedures and calculations and gives a possibility
to control the approximation errors on the linear algebra level.

Some papers show that even in three-dimensional cases, the method could be effective and really
fast [Maruszewski et al. 2014]. Despite advantages of presented method it is still not commonly used
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in material science field. In a recent authors’ publication they proved, that it could be useful tool for
searching and modeling of modern materials [Walczak et al. 2014].

In this paper authors focused on modeling the group of materials of unusual mechanical proper-
ties, which Poisson’s ratio (PR) [Landau and Lifshitz 1986; Alderson et al. 2014] is negative. For
common materials PR is positive and if PR is negative, the body shrinks/expands transversally when
compressed/stretched. Such kind of materials we call auxetics and they were taken under considerations
already in eighties last century [Almgren 1985; Lakes 1987], although their properties [Gilat and Aboudi
2013; Lim 2004; Yang et al. 2013] and structures [Gaspar et al. 2011; Wojciechowski 2003; Chen et al.
2009] are still under intensive studies. In this context, developing of new numerical methods to simulate
them and to investigate various models seem to be important and are in particular interest.

The aim of the present paper is to show utility of described method as an excellent tool to investigate
uncommon behavior of materials with auxetic properties. It is continuation of authors’ study on devel-
oping of the MFS [Walczak et al. 2014] and to the best of their knowledge, the MFS method is used in
this paper for the first time in such investigations.

The structure of the paper is as follows. Mathematical model with governing equations for the studied
model is presented in Section 2. In Section 3 the MFS is briefly sketched, and the fundamental solu-
tions for the basic differential equations of the given problems are presented. Computer simulations are
discussed in Section 4, where the utility of the method is illustrated by solving the basic elastostatic
problem of searching displacement distribution in materials with different auxetic properties. Moreover,
a comparison to existing investigations and method used to consider the above problem has been also
presented. Summary and conclusions are presented in Section 5.

2. Mathematical model of the problem

In the paper a three-dimensional problem of equilibrium of a solid has been solved numerically using the
method of fundamental solutions (MFS). The body is assumed as homogeneous, isotropic and linearly
elastic one. The last assumption, in practice, is satisfied only when small deformations are taken into
account. Moreover, we assume that the material properties are constant (i.e., they do not depend on
time for instance). The mechanical response of such a solid due to a given loading is unambiguously
determined by two material constants. In continuum mechanics the Lamé constants λ and µ are usually
used. In literature devoted to the various engineering applications in the role of the two necessary material
constants appear rather Young’s modulus E and Poisson’s ratio (PR) ν. The relationship between those
material constants are as follows so:

λ=
νE

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (1)

The modulus of elasticity E and the constant µ (i.e., the shear modulus) are always positive. However
Poisson’s ratio and the Lamé constant λ may be negative, although for most solids they are also positive.
In the branch of physics dedicated to auxetic materials, which develops recently rapidly, more popular
is associating special features of auxetic solids with the negative values of PR.

Let us denote by � the region in space occupied by the body. It is bounded by a surface ∂� which
should be piecewise smooth. According to all previously mentioned assumptions, the equilibrium of the
considered solid is described by the Cauchy–Navier equations. In the absence of external body forces,
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they take the homogeneous form [Poullikkas 1998; Poullikkas et al. 2002]:

µ∇ · (∇u)+ (λ+µ)∇(∇ · u)= 0, (2)

where u is the displacement vector at the point x = (x1, x2, x3), and x ∈�.
On the surface ∂� we postulate the boundary conditions of mixed type. Let ∂�I be a part of ∂�, on

which the Dirichlet boundary conditions are given. Therefore, we can write:

u(x B)= f (x B), (3)

where xB ∈ ∂�I, and f (x B) is a known vector function.
On the other part of ∂�, which we denote by ∂�II, the Neumann boundary conditions are postulated.

We write them as follows:
t(x B)= g(x B), (4)

where x B
∈ ∂�II, t is the stress vector, and g(x B) is a known vector function describing external traction.

It should be noted, that due to existence and uniqueness of the solution of the formulated boundary
problem the following relation is required:

∂�I ∪ ∂�II = ∂�, ∂�I ∩ ∂�II =∅. (5)

3. Method of fundamental solutions

The equation of equilibrium (2) together with the boundary conditions (3) and (4) form the boundary
value problem. The fundamental solutions of this system are in the form

Gi j (x, z)=
(3− 4ν)|x− z|2δi j + (xi − zi )(x j − z j )

16πµ(1− ν)|x− z|3
, (6)

where |x− z| is the distance between the points x and z. One can observe that

Gi j (x, z)= G j i (x, z). (7)

The solutions given by (6) satisfy the differential equation (2) at each point of the space, except for one
point at which it is not defined. Each fundamental solution represents the displacements at the point x,
that are caused by an unit force acting at the source point z, namely the displacement at the point x in
the direction of the axis x j which has been caused by the i-th component of the force is equal to the
fundamental solution given by (6) [Poullikkas 1998].

Let us consider N source points zk, k = 1, 2, . . . , N placed outside the considered body. Then, one can
write the solution of the boundary value problem as the linear combination of the fundamental solutions

ui (x)=
N∑

k=1

ak j Gi j (x, zk), i = 1, 2, 3, (8)

where x ∈�∪ ∂�, z ∈ E3
− (�∪ ∂�), ak j are unknown coefficients. One can easily see, that since the

singularities of solutions are placed outside the body, any function of the form (8) satisfies the differential
equation (2) in the region �. However, it should be noticed, that the boundary conditions (3) and (4) may
be satisfied only approximately. To do that, one should define the set of collocation points placed on the
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surface ∂�, which satisfy the boundary conditions. Let us choose M collocation points. Introducing the
linear combinations (8) into the boundary conditions we obtain the system of linear equations with 3N
unknown coefficients ak j :

B · A= F, (9)

where A is the 3N-dimensional vector of unknown coefficients ak j , F is the 3M-dimensional vector
containing the values of known functions fi at each collocation point. 3M×3N-dimensional matrix B
consists of the terms which, after a suitable ordering each of the boundary conditions, are multipliers of
the unknown coefficients ak j .

Important advantage of the method of fundamental solutions is that the approximate solutions are
differentiable. The accuracy of obtained solutions strongly depends on geometry of the problem and
location of source points and collocation points. It is well known that in the case of elliptic differential
equations, the biggest errors in approximate solutions of the given boundary value problem occur on
the boundary of the considered region [Poullikkas et al. 2001; Karageorghis and Fairweather 2000;
de Medeiros et al. 2004; Poullikkas 1998; Poullikkas et al. 2002]. It implies that to find the most
accurate solution one should place the sets of the collocation points and the source points, respectively
to minimize those errors. Also number of points in those sets is the important method parameter. To
find some interesting remarks see [Poullikkas 1998; Poullikkas et al. 2002; Maruszewski et al. 2014;
Walczak et al. 2014].

4. Numerical simulations

Let us consider a boundary value problem with the mixed boundary conditions. The solid in the shape
of a cube with length of the edge 0.1 m, which is shown in Figure 1, is fixed on its one wall x1 = 0.
On the opposite wall there is applied the pressure p = 100 MPa. The remaining four walls are free of
loadings. It means that considered body is stretched in the direction of x1 axis. Therefore the boundary
value problem can be written as

µui,kk + (λ+µ)uk,ik = 0, i = 1, 2, 3, x ∈�, (10)
u(x)= 0, x ∈ ∂�1, (11)
t(x)= 0, x ∈ ∂�3 ∪�4 ∪�5 ∪�6, (12)
t(x)= pe1, x ∈�2, (13)

where e1 denotes the unit vector of the x1 axis and �= (0, 0.1)× (0, 0.1)× (0, 0.1),

∂�1 = {x : x1 = 0, 0≤ x2 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�2 = {x : x1 = 0.1, 0≤ x2 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�3 = {x : x2 = 0, 0≤ x1 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�4 = {x : x2 = 0.1, 0≤ x1 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�5 = {x : x3 = 0, 0≤ x1 ≤ 0.1, 0≤ x2 ≤ 0.1},
∂�6 = {x : x3 = 0.1, 0≤ x1 ≤ 0.1, 0≤ x2 ≤ 0.1}.

The subject of the numerical experiments is a set of the cubes, which are made of auxetic materials of
which Poisson’s ratio is from range ν = 〈−0.9,−0.3〉. The original software written in FORTRAN 95



FUNDAMENTAL SOLUTIONS IN MODELING AUXETIC MATERIALS 83

x1

x2

x3

p

(0.1, 0.1, 0.1)

Figure 1. Loads and boundary conditions of considered body.
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Figure 2. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν =−0.3 (left), ν =−0.5 (right).

with implemented MFS was used to simulate behavior of considered group of materials. For each simula-
tion exactly the same number of nodes (collocation points and source points) has been used. One should
also notice, that number of applied source points was equal to number of collocation points and was
equal to 864 in each considered case. That approach leads always to square main matrix of the system,
and authors’ experiences show that for mixed boundary conditions it gives the most accurate results.

Often considered problem where MFS is applied is a shape of the surface where the source points
are placed. Generally one can find two approaches: one when those points are located on the sphere
with the center placed in the middle of considered body having respectively big radius, and the other
one when the source points are placed on the surface which shape and distance is very close to that of
the considered body. Of course, it is placed outside of the body. In this paper the second way has been
applied to all computer simulations (see [Maruszewski et al. 2014]).

In Figure 2 the component u1 of the displacement vector on the plane x3 = 0.05 is shown for two
auxetic materials with ν =−0.3 (left) and ν =−0.5 (right). The observed symmetrical distribution of
displacements is consistent with the symmetry of the boundary conditions as well as the load. Fixing
only one wall results in the largest displacements close to the opposite one.
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Figure 3. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν =−0.7 (left), ν =−0.9 (right).

One can see that these two maps of displacements are similar. The values of the displacement u1 along
the left edge of each half of Figure 2 are zero, which is a consequence of fixing the wall. Positive values
of displacements u1 on the right hand side at both graphs are observed. Stretching state in the direction
of x1 axis and only little difference between values of displacement can also be observed. The situation
changes, when we take into account the lower value of Poisson’s ratio. In Figure 3 the component
u1 of the displacement vector on the plane x3 = 0.05 is shown for another two auxetic materials with
ν = −0.7 (left) and ν = −0.9 (right). One can observe, that there are some irregularities in those
distributions occurring near the left corners (close to the fixed wall). Especially, that is visible in the
Figure 3 (right), where the regions with different values of displacement component u1 could be seen.
That is not numerical effect, but it corresponds to auxetic nature of the considered body. In classical
material this effect doesn’t occur.

From the other hand, comparing the map included in Figure 2 to the map in Figure 3 we can observe,
that maximal values of the displacement u1 decrease with decreasing of PR value for considered materials.
It should also be noticed, that the lines of the constant displacements are more curved with decreasing
of PR value. Analyzing presented maps, one can see, that those lines are less perpendicular to x1 axis in
the case of material with the ν =−0.9 than in the other cases. To visualize in better way the situation,
the additional maps were drawn for all cases. In Figure 4 the component u1 of the displacement vector
is shown for materials with ν =−0.3 (left), ν =−0.5 (right), but this time cross-section of the cube was
made by the plane x1 = x3.

Left edge of this map represents the edge of the cube, that is placed along x2 axis and the right
edge is placed along the straight x2 = x3 = 0.1. One can see that these two maps of displacements are
similar to each other. The effect of bending of the lines of constant displacements is also visible what was
mentioned earlier, when material has lower value of PR. As can be also seen, the values of displacements
u1 on the fixed walls, are close to zero. Stretching in the direction of x1 axis, gives positive values of
displacements u1 in whole region of the both graphs. In Figure 5 the component u1 of the displacement
vector is presented for materials with ν− 0.7 (left), ν− 0.9 (right), in cross-section of the cube, that was
made by the plane x1 = x3.
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Figure 4. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν =−0.3 (left), ν =−0.5 (right).
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Figure 5. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν =−0.7 (left), ν =−0.9 (right).

One can see very close similarity between distributions presented in Figure 5 to distributions of dis-
placements shown in Figure 3. For auxetic material with Poisson’s ratio ν = −0.7 and especially for
material with ν =−0.9, exactly the same irregularities occur near left boundary. Because cross-section
used for creating maps presented in Figure 4 and Figure 5 is diagonal plane for considered cube, it
could be seen that the strongest irregularities occur near the cube corners. In comparison to the auxetic
materials the classical ones don’t have irregularities in their corners, what one can observe in Figure 6
and Figure 7.

We can also see in Figure 6 and Figure 7 that the isolines representing displacements u1 for both each
of the classical materials are getting parallel with the growth of a distance from fixed walls. The auxetic
materials, what is well visible, behave differently.

Generally we can conclude that some interesting effects in auxetics materials could be seen only for
lower value of negative Poisson’s ratio (close to −1).



86 WALCZAK, SYPNIEWSKA-KAMIŃSKA, MARUSZEWSKI AND WOJCIECHOWSKI

x1

x
2

displacements u1

 

 

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5 [m]

x1

x
2

displacements u1

 

 

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5 [m]

Figure 6. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν = 0.2 (left), ν = 0.4 (right).
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Figure 7. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν = 0.2 (left), ν = 0.4 (right).

An analysis of the results presented in Figures 2–7 allows us to draw additional important conclusions.

• The results obtained with the help of the fundamental solutions method applied to the basic equations of
elasticity (11) of the auxetic continua are practically the same as those obtained by Lakes [1992] who has
analyzed de Saint-Venant’s principle applied to auxetic elastic materials. It proves that the both methods
are equivalent each other. That equivalence results also from the fact that both models do not go beyond
the irreversible thermodynamics of continua for normal and auxetic materials. That fact has been shown
by Landau and Lifshitz [1986]. Considering the sufficient conditions for a minimum of the Helmholtz
free energy in the state of thermodynamic equilibrium, they proved that the value of Poisson’s ratio of
isotropic materials belongs to the interval (−1; 0, 5).

• From Figures 2–5 it can be seen that if the negative Poisson’s ratio is lower, the values of the component
u1,1 of the displacement gradient are generally smaller.
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• Comparing the displacement distribution in the auxetic material to that in the classical one (Figure 5
versus Figure 6 and Figure 7) we see that auxetic occurs faster stiff than normal material if Poisson’s
ratio decreases.

5. Conclusions

The presented method is effective and fast numerical tool for researching material behavior with different
mechanical properties. The biggest advantage of presented method in comparison to FEM is that in the
MFS there is no need to define classical mesh of considered body. Numerical procedures used for the
mesh generation processes are usually time-consuming ones. In the meshless method one can define
only the two sets of points that are not connected to each other. One may also treat it as two clouds of
points where one of them is applied to define boundary conditions (collocation points) and the second one
should be located just outside the considered body. What is also important (see Section 3) the obtained
results have analytical character — of course they are obtained in numerical way, but after solution of
just one linear system of equations (9), it is possible to find the displacements field in any point of
considered region only using relation (8) and without any additional approximation. It implies the much
more effective algorithm to providing numerical simulations especially in three-dimensional cases. Let
us underline that all computer simulations have been done during a relative short time (few minutes).

The only problems occurring during the use of the method of fundamental solutions are connected with
optimization of parameters like number of collocation points, number of source points or with the choice
how source points should be located outside the considered body. It is nontrivial task and it is especially
difficult, when one takes into account the boundary value problem with mixed boundary conditions (like
in presented example in this paper). Those problems were considered in some publications [Poullikkas
1998; Poullikkas et al. 2002; Maruszewski et al. 2014; Walczak et al. 2014], where authors have tested
MFS for such mechanical problems, for which the analytical solutions were known. However, one should
notice that the MFS is still under development.

Appendix

To determine the solution of any boundary value problem defined by relations (2)–(4) with use of MFS
one should write the system of linear algebraic equations (see (9)). We have assumed the displacement
vector in each point x ∈�∪ ∂� as a linear combination defined by (8). To applied Dirichlet’s boundary
conditions we can rewrite them in the form

u1(A, Z, x)=
N∑

k=1

ak1G11(x, zk)+

N∑
k=1

ak2G12(x, zk)+

N∑
k=1

ak3G13(x, zk),

u2(A, Z, x)=
N∑

k=1

ak1G21(x, zk)+

N∑
k=1

ak2G22(x, zk)+

N∑
k=1

ak3G23(x, zk),

u3(A, Z, x)=
N∑

k=1

ak1G31(x, zk)+

N∑
k=1

ak2G32(x, zk)+

N∑
k=1

ak3G33(x, zk),

where G are fundamental solutions (see (6)), the 3N-dimensional vector Z = [z1, z2, . . . , zN ] contains
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coordinates of N source points z j = [x
j
1 , x j

2 , x j
3 ] ∈�∪∂�, j = 1, . . . , N and 3N-dimensional vector A=

[a11, a21, . . . , aN1, a12, a22, . . . , aN2, a13, a23, . . . , aN3] contains unknown coefficients. If Neumann’s
boundary conditions have been postulated we can write the stress vector components in the form

t1(A, Z, x)=
N∑

k=1

ak1T11(x, zk)+

N∑
k=1

ak2T12(x, zk)+

N∑
k=1

ak3T13(x, zk),

t2(A, Z, x)=
N∑

k=1

ak1T21(x, zk)+

N∑
k=1

ak2T22(x, zk)+

N∑
k=1

ak3T23(x, zk),

t3(A, Z, x)=
N∑

k=1

ak1T31(x, zk)+

N∑
k=1

ak2T32(x, zk)+

N∑
k=1

ak3T33(x, zk),

where T (x, z) are functions analogous to the functions G(x, z) and should be defined as

T11(x, z)=
2µ

1−2ν

[
(1−ν)

∂G11

∂x1
+ν

∂G21

∂x2
+ν

∂G31

∂x3

]
n1+µ

(
∂G11

∂x2
+
∂G21

∂x1

)
n2+µ

(
∂G11

∂x3
+
∂G31

∂x1

)
n3,

T12(x, z)=
2µ

1−2ν

[
(1−ν)

∂G12

∂x1
+ν

∂G22

∂x2
+ν

∂G32

∂x3

]
n1+µ

(
∂G12

∂x2
+
∂G22

∂x1

)
n2+µ

(
∂G12

∂x3
+
∂G32

∂x1

)
n3

= T21(x, z),

T13(x, z)=
2µ

1−2ν

[
(1−ν)

∂G13

∂x1
+ν

∂G23

∂x2
+ν

∂G33

∂x3

]
n1+µ

(
∂G13

∂x2
+
∂G23

∂x1

)
n2+µ

(
∂G13

∂x3
+
∂G33

∂x1

)
n3

= T31(x, z),

T22(x, z)=
2µ

1−2ν

[
ν
∂G12

∂x1
+(1−ν)

∂G22

∂x2
+ν

∂G32

∂x3

]
n2+µ

(
∂G22

∂x1
+
∂G12

∂x2

)
n1+µ

(
∂G22

∂x3
+
∂G32

∂x2

)
n3,

T23(x, z)=
2µ

1−2ν

[
ν
∂G13

∂x1
+(1−ν)

∂G23

∂x2
+ν

∂G33

∂x3

]
n2+µ

(
∂G23

∂x3
+
∂G33

∂x2

)
n3+µ

(
∂G23

∂x1
+
∂G13

∂x2

)
n1

= T32(x, z),

T33(x, z)=
2µ

1−2ν

[
ν
∂G13

∂x1
+ν

∂G23

∂x2
+(1−ν)

∂G33

∂x3

]
n3+µ

(
∂G33

∂x2
+
∂G23

∂x3

)
n3+µ

(
∂G33

∂x1
+
∂G13

∂x3

)
n1,

where n1, n2, n3 denote the components of the unit vector normal to the surface ∂�.
Finally to find the solution of considered problem we should write the linear system of algebraic

equations (9) in the following form:
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G11(x1, z1) · · · G11(x1, zN ) G12(x1, z1) · · · G12(x1, zN ) G13(x1, z1) · · · G13(x1, zN )

G21(x1, z1) · · · G21(x1, zN ) G22(x1, z1) · · · G22(x1, zN ) G23(x1, z1) · · · G23(x1, zN )

G31(x1, z1) · · · G31(x1, zN ) G32(x1, z1) · · · G32(x1, zN ) G33(x1, z1) · · · G33(x1, zN )

...
...

...
...

...
...

G11(xM, z1) · · ·G11(xM, zN ) G12(xM, z1) · · ·G12(xM, zN ) G13(xM, z1) · · · G13(x1, zN )

G21(xM, z1) · · ·G21(xM, zN ) G22(xM, z1) · · ·G22(xM, zN ) G23(xM, z1) · · ·G23(xM, zN )

G31(xM, z1) · · ·G31(xM, zN ) G32(xM, z1) · · ·G32(xM, zN ) G33(xM, z1) · · ·G33(xM, zN )


×



a11
...

aN1

a12
...

a1N

a13
...

aN3



=



a11
...

aN1

a12
...

a1N

a13
...

aN3



,

where vector F= [ f 1
1, f 1

2, f 1
3, . . . , f M

1 , f M
2 , f M

3 ] contains the value of displacement vector or stress vector
components applied in M collocation points. If in any point the Neumann boundary condition is applied,
we only have to replace all functions G to the function T , respectively in three rows of the matrix which
are written for considered point. If the number of collocation points M is equal to the number of source
points N , we obtain square system of 3M = 3N equations. It is possible to define more collocation
points than sources (M > N ). In that case, one should find the approximate solution in the least square
sense.

After solving of the system and obtaining the vector of coefficients A we can easily determine the
displacement vector in each point of the considered body with the help of (8).
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mathematical sciences publishers msp

http://dx.doi.org/10.1016/0041-5553(64)90092-8
http://dx.doi.org/10.1126/science.235.4792.1038
http://dx.doi.org/10.1115/1.2894037
http://dx.doi.org/10.1023/B:JMSC.0000035347.69053.af
http://dx.doi.org/10.1201/b16513-31
http://dx.doi.org/10.1201/b16513-31
http://dx.doi.org/10.1137/0714043
http://dx.doi.org/10.1137/0714043
http://dx.doi.org/10.1016/S0955-7997(03)00099-7
http://dx.doi.org/10.1016/S0955-7997(03)00099-7
http://dx.doi.org/10.1016/S0045-7949(01)00174-2
http://dx.doi.org/10.1016/S0955-7997(01)00007-8
http://dx.doi.org/10.1016/S0955-7997(01)00007-8
http://dx.doi.org/10.1016/S0045-7949(01)00174-2
http://dx.doi.org/10.1016/S0045-7949(01)00174-2
http://dx.doi.org/10.1002/pssb.201484261
http://dx.doi.org/10.1002/pssb.201484261
http://dx.doi.org/10.1088/0305-4470/36/47/005
http://dx.doi.org/10.1007/s10853-012-6892-2
http://dx.doi.org/10.1007/s10853-012-6892-2
mailto:tomasz.walczak@put.poznan.pl
mailto:grazyna.sypniewska-kaminska@put.poznan.pl
mailto:bogdan.maruszewski@put.poznan.pl
mailto:kww@ifmpan.poznan.pl
http://msp.org


SUBMISSION GUIDELINES

ORIGINALITY

Authors may submit manuscripts in PDF format online at the Submissions page. Submission of a manuscript ac-
knowledges that the manuscript is original and has neither previously, nor simultaneously, in whole or in part, been
submitted elsewhere. Information regarding the preparation of manuscripts is provided below. Correspondence by
email is requested for convenience and speed. For further information, write to contact@msp.org.

LANGUAGE

Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be
self-contained and not make any reference to the bibliography. Also required are keywords and subject classification
for the article, and, for each author, postal address, affiliation (if appropriate), and email address if available. A
home-page URL is optional.

FORMAT

Authors can use their preferred manuscript-preparation software, including for example Microsoft Word or any
variant of TEX. The journal itself is produced in LATEX, so accepted articles prepared using other software will be
converted to LATEX at production time. Authors wishing to prepare their document in LATEX can follow the example
file at www.jomms.net (but the use of other class files is acceptable). At submission time only a PDF file is required.
After acceptance, authors must submit all source material (see especially Figures below).

REFERENCES

Bibliographical references should be complete, including article titles and page ranges. All references in the bibli-
ography should be cited in the text. The use of BibTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples); however, for submission you may use the format of your choice.
Links will be provided to all literature with known web locations; authors can supply their own links in addition to
those provided by the editorial process.

FIGURES

Figures must be of publication quality. After acceptance, you will need to submit the original source files in vector
format for all diagrams and graphs in your manuscript: vector EPS or vector PDF files are the most useful. (EPS
stands for Encapsulated PostScript.)

Most drawing and graphing packages—Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.—allow the
user to save files in one of these formats. Make sure that what you’re saving is vector graphics and not a bitmap.
If you need help, please write to graphics@msp.org with as many details as you can about how your graphics were
generated.

Please also include the original data for any plots. This is particularly important if you are unable to save Excel-
generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets
instead. Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice) and upload
on the link you been given at acceptance time.

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines
of vertical space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with
all figures at the end, if their placement is specified in the text by means of comments such as “Place Figure 1 here”.
The same considerations apply to tables.

WHITE SPACE

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize
line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred
fonts and layout.

PROOFS

Page proofs will be made available to authors (or to the designated corresponding author) at a Web site in PDF
format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may
cause publication to be postponed.

mailto:contact@msp.org
http://www.jomms.net
mailto:graphics@msp.org


Journal of Mechanics of Materials and Structures
Volume 11, No. 1 January 2016

Special issue
Trends in Continuum Physics (TRECOP 2014)

Preface BOGDAN T. MARUSZEWSKI, WOLFGANG MUSCHIK,
ANDRZEJ RADOWICZ and KRZYSZTOF W. WOJCIECHOWSKI 1

Stress and displacement analysis of an auxetic quarter-plane under a concentrated
force PAWEŁ FRITZKOWSKI and HENRYK KAMIŃSKI 3
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