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THE EFFECT OF SMALL SCALE ON THE FREE VIBRATION OF
FUNCTIONALLY GRADED TRUNCATED CONICAL SHELLS

YAGHOUB TADI BENI AND FAHIMEH MEHRALIAN

In this paper, the FG thin truncated conical shell formulation is developed using the modified couple
stress theory. The material distributions in FG conical shell are assumed to vary continuously along
shell thickness according to volume fraction of constituents based on power law distribution. The gov-
erning equations and boundary conditions are derived using Hamilton’s principle, and, in the special
case, the free vibration of the simply supported FG conical nanoshell is investigated using Galerkin
method. Finally, the effects of parameters such as dimensionless length scale parameter, apex angle,
gradient index and length on the natural frequency are examined. According to the studies conducted,
the modified couple stress theory predicts the stiffness of conical nanoshell with higher accuracy than
the classical continuum theory. Besides, the increasing effect of the length scale parameter on increase in
natural frequency caused by decrease in length and increase in circumferential and axial wave numbers
is investigated as well.

1. Introduction

Compared to homogeneous materials, laminated composite materials are considered as structural ele-
ments in different industries because of their high stiffness-weight and strength-weight ratios and the
ability of changing structural properties to meet specific needs. However, due to discontinuity existing in
material properties in the interfaces between two different materials, the stress concentration resulting in
cracks and delamination phenomenon has rendered the use of these materials difficult [Sahoo and Singh
2014; Xie et al. 2014; Li et al. 2014; Furlotti et al. 2014]. Today, FGMs which are made up two isotropic
materials — e.g., metal and ceramics — and enjoy the benefits of both materials are in demand by many
industries [Tajalli et al. 2013; Khalili et al. 2010; Shahba and Rajasekaran 2012]. The material properties
of FGMs are variable continuously and smoothly along a definite direction from one surface to the next,
solving the delamination problem in composite structures [Jomehzadeh et al. 2009]. The material’s high
toughness, low density and thermal resistance are properties that appeal to industries as varied as the
biomedical, defense and aerospace industries [Kahrobaiyan et al. 2012]. Hence, it is necessary to study
the behavior of FGMs in order to make a correct prediction of their static and dynamic behavior, as
various studies have to date been carried out on them [Tadi Beni et al. 2015a; 2015b; Tornabene and
Viola 2013; Sankar 2001; Aydogdu and Taskin 2007; Tornabene et al. 2015; Ying et al. 2008; Viola et al.
2012]. For example, using Navier’s solution for the rectangular plate and finite element model based on
the third order shear deformation plate theory, Reddy investigated the deformations and stresses under
the influence of material distribution based on the linear third-order theory and the nonlinear first order

Keywords: free vibration, modified couple stress theory, thin shell model, functionally graded material, truncated conical shell,
length scale parameter.
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theory by using von Karman’s geometric nonlinearity [Reddy 2000]. Li studied the dynamic and static
behaviors of the functionally graded beam by considering rotational inertia and shear deformation [Li
2008]. Using higher order shear and normal deformation theories, Kant et al. [2010] investigated the
displacements and stresses of the functionally graded beams and plates and examined the analytical
formulation of static behavior of simply supported functionally graded beams and plates based on higher
order theories.

Today, FGMs have extensive applications in nano/micro structures such as micro/nano-electromechani-
cal systems (MEMS/NEMS), thin films in the shape of memory alloys and atomic force microscopes
(AFMs) [Craciunescu and Wuttig 2003; Fu et al. 2004; Witvrouw and Mehta 2005]. The classical
continuum theory is used by most of the aforementioned studies to study micro-nanoscale devices [Yoon
et al. 2005; Zhang et al. 2005; Ansari et al. 2010]. However, the results obtained in the nanoscale
reveal a difference between the predictions of the results based on the classical continuum theory and
the experimental results in the nanoscale. For instance, McFarland et al. observed a considerable dif-
ference between the values of stiffness obtained by the classical continuum theory and those obtained
by the bending test of a polypropylene micro cantilever [McFarland and Colton 2005]. Therefore, the
appropriate theory is required to correct investigation of the FGMs behavior in micro-nanodimensions.
On the other hand, obtained experimental results demonstrate that mechanical properties of materials
in the micro-nanoscale are size-dependent; hence, the theories should be able to correctly predict and
investigate size-dependent behavior in micro-nanostructures. It should be noted that some conventional
methods used in the study of micro-nanostructures are: atomistic simulations, molecular dynamics, and
higher order continuum theories such as the modified couple stress theory, the strain gradient theory,
and the nonlocal theory. Using these theories and by considering the size effect, researchers have to
date conducted many studies showing the capabilities of these theories [Tadi Beni 2012; Tadi Beni and
Abadyan 2013; Tadi Beni et al. 2012; Ke et al. 2012; Zeverdejani and Tadi Beni 2013; Abadyan et al.
2011; Sahmani and Ansari 2013; Wang et al. 2013].

The couple stress theory, as a nonclassical continuum theory containing higher order stresses is initially
introduced by Toupin [1962], Mindlin and Tiersten [1962], Mindlin [1964] and Koiter [1964a; 1964b].
This theory which contains four material parameters, two lame constants and two higher order material
constants is employed by researchers such as Anthoine [2000] in an attempt to investigate beam bending.
Using moments of couples equilibrium equation as well as forces and moments of forces equilibrium
equations, the modified couple stress theory is introduced by Yang et al. [2002]. Many studies are
carried out using this theory which contains only one higher order material parameter [Roque et al. 2013;
Sahmani et al. 2013; Şimşek et al. 2013; Şimşek and Reddy 2013]. For example, using the modified
couple stress theory, Abbasnejad et al. [2013] examined the dynamic and static pull-in voltage of a FGM
microbeam under electrostatic load and demonstrated the effect of the distribution of materials in beam’s
thickness on the pull-in voltage. Tadi Beni et al. [2014] employed the modified couple stress theory
to examine the pull-in instability of rotational nano-mirror and to demonstrate the effect of the Casimir
force on size-dependent pull-in instability. By considering nonlinear geometry and using the modified
couple stress theory, Ansari et al. [2014] studied the dynamic behavior of functionally graded rectangular
Mindlin microplate and discussed the effects of parameters such as length scale parameter and boundary
conditions on the rectangular microplate. Based on the modified couple stress theory, Zeighampour et al.
[2014b] investigated vibration and instability of double-walled carbon nanotube conveying fluid using
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Donnell’s shell model. They found that the effects of parameters such as length and length scale parameter
are more considerable in the modified couple stress theory than in the classical continuum theory.

Since using an appropriate model is essential for studying the behavior of structures, the investiga-
tion of the nanoscaled structure requires an appropriate model. So far, many studies are carried out
to investigate the mechanical behavior of nanostructures using the beam model [Ansari et al. 2013;
Mohammad Abadi and Daneshmehr 2014; Şimşek 2010]. However, it should be noted that in these
investigations, nanoelements such as CNTs are also usually modeled as beams. Considering the geometry
of many nanostructure elements, which are conical or cylindrical, usage the shell model will certainly
results in correct prediction of the behavior of such structures. Thus, researchers are induced to investigate
the mechanical and static behavior of conical shell, which is one of the appealing structural elements to
many researchers due to its unique geometric properties and numerous applications [Dung et al. 2013;
Sofiyev 2009; Viola et al. 2014; Su et al. 2014]. Many studies, such as [Zhao and Liew 2011; Malekzadeh
and Daraie 2014], investigated the free vibration and dynamic behavior of functionally graded conical
shell panels and truncated conical shell respectively, have to date conducted on conical shell. Therefore,
today, considering the increasing growth of nanoscience and the high potentials of the shell model due to
its unique characteristics, it is highly essential to investigate static and dynamic behaviors of the conical
nanoshell. For that reason, researchers such as Zeighampour and Tadi Beni [2014a; 2015] examined the
behavior of single-walled carbon nanocones (SWCNC) using the modified couple stress theory.

Therefore, this study attempts to gain a better understanding of conical nanoshells by examining the
dynamic behavior of FGM conical nanoshells using the modified couple stress theory. In this paper, the
equations of the FG conical nanoshell are developed using Love’s thin shell theory and the modified
couple stress theory, proposing considerable advantages in the modeling of nanostructures. These advan-
tages include modeling the size effect with only one higher order material constant using the modified
couple stress theory for nanoscale calculations; modeling FGMs which expands the formulation to the
FG conical nanoshell and which can be extended for isotropic materials in special cases; and the ability to
obtain more precise results using the shell model for structure behavior in the nanoscale. To achieve this
goal, considering the above discussion, in this paper the modified couple stress theory and the thin shell
model are used to investigate the free vibration of FG truncated conical nanoshell. Using the Hamilton’s
principle, the governing equations and the boundary conditions are derived, and, the free vibration of
the simply supported FGM conical thin shell are studied in the special case using the Galerkin method.
Finally, the effects of parameters such as length, dimensionless length scale parameter and apex angle
on the vibration of this nanostructure are investigated as well.

2. Governing equations

Figure 1 illustrates an FG truncated conical shell of length L , radius R1, thickness h, and apex angle 2α,
and the coordinate system (x, θ, z) is located on the middle surface of the conical shell.

Based on the power law distribution, the material properties of the FG conical shell are assumed to
make up a mixture of metal and ceramic, are variable along shell thickness, and, based on the volume
fraction of elements, these properties are considered continuously variable from the inner shell surface
to outer one. The volume fraction of FG components is

Vm = (z̃/h)N , Vc = 1− Vm, (1)
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Figure 1. Schematic view of truncated conical shell.

where N is defined as the power index whose variation takes place in the 0 ≤ N ≤ ∞ interval and
according to Figure 1, z̃ is the distance of an arbitrary surface from the inner one of the conical shell.
Therefore, the material properties of the conical shell are defined as

E(z̃)= (Em − Ec)

(
z̃
h

)N

+ Ec,

ρ(z̃)= (ρm − ρc)

(
z̃
h

)N

+ ρc,

ν(z̃)= (νm − νc)

(
z̃
h

)N

+ νc,

(2)

where Ec, ρc and νc respectively represent Young’s modulus, density, and Poisson’s ratio of ceramics
when z̃ = 0, and, Em , ρm and νm represent Young’s modulus, density, and Poisson’s ratio of metals,
respectively, when z̃ = h.

According to the modified couple stress theory introduced by Yang et al. [2002], the strain energy is
expressed as a function of strain tensor and curvature tensor as

U = 1
2

∫
�

(σ : ε+m : χ) dV, (3)

where ε stands for the strain tensor, σ represents the Cauchy stress tensor, χ is the symmetric curvature
tensor and m is the deviatoric part of couple stress tensor, and, the components of the introduced tensors
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are defined as

εi j =
1
2(ui, j + u j,i ), (4)

χi j =
1
4(ei pqη j pq + e j pqηi pq), (5)

σi j = Ci jklεkl, (6)

mi j = 2l2µ(z̃)χi j , (7)

where ui , ei pq and ηi pq are the components of the displacement vector, permutation symbol and deviatoric
stretch gradient tensor, respectively, and l stands for the material length scale parameter. It should be
noted that this study is ignored the variation of parameter l with material coordinates, and the value of l
in the whole of the FG material is considered constant.

With the assumption of plane stress, the stress-strain equations for the FGM are defined as

σxx =
E(z̃)

1− ν2(z̃)
(εxx + ν(z̃)εθθ ), σθθ =

E(z̃)
1− ν2(z̃)

(εθθ + ν(z̃)εxx), σxθ = 2µ(z̃)εxθ , (8)

where µ(z̃) is the shear modulus and E(z̃) and ν(z̃) are Young’s modulus and Poisson’s ratio, respec-
tively. The displacement field of the conical shell based on Love’s thin shell along x, θ, z represented
respectively by u, v, w is defined [Leissa 1993] as

u(x, θ, z, t)=U (x, θ, t)− z
∂W (x, θ, t)

∂x
,

v(x, θ, z, t)= V (x, θ, t)−
z

x sinα

(
∂W (x, θ, t)

∂θ
− V (x, θ, t) cosα

)
,

w(x, θ, z, t)=W (x, θ, t),

(9)

where U (x, θ, t), V (x, θ, t), and W (x, θ, t) are neutral surface displacement of the conical shell, and the
position of this plate (z̃c) is determined by using the equilibrium of longitudinal forces [Barber 2011] as∫

A
σxx d A =

∫
A

E(z̃)
1− ν2(z̃)

(
z
∂2w

∂x2

)
d A = 0, (10)

where

z = z̃− z̃c. (11)

By substituting (11) into (10), we obtain

z̃c =

∫
A

E(z̃)
1− ν2(z̃)

z̃ d A

∫
A

E(z̃)
1− ν2(z̃)

d A

. (12)

The classic and nonclassical strain tensors in orthogonal coordinate system are obtained by using the
equations [Eringen 1980; Zhao and Pedroso 2008]
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ε
(i)
( j) = ε

i
j

√
gi i

g j j
=

1
2

√
gi i

g j j

[((
u(i)
√

gi i

)
, j
+0i

m j
u(m)
√

gmm

)
+ gnj gim

((
u(n)
√

gnn

)
,m
+0n

qm
u(q)
√

gqq

)]
, (13)

η
(k)
(i)( j) = η

k
i j

√
gkk

gi i g j j
=

1
2

√
gkk

gi i g j j
(uk
|i j + uk

| j i ), (14)

uk
|lm =

(
u(k)
√

gkk

)
,lm
+0k

ql

(
u(q)
√

gqq

)
,m
+0k

qm

(
u(q)
√

gqq

)
,l
−0

q
ml

(
u(k)
√

gkk

)
,q

+
(
(0k

lp),m +0
k
qm0

q
pl −0

k
pq0

q
ml

)( u(p)
√

gpp

)
, (15)

where u(i), ε(i)( j) and η(k)(i)( j) are the physical components of displacement vector ui , displacement gradient
εi j and higher-order displacement gradient ηk

i j , and gi i and 0i
jk stand for components of the metric

tensor and Christoffel symbols of the second kind. Underscores placed under the indices indicate lack of
addition on them. In the cylindrical coordinate system, the components of metric tensor and Christoffel
symbol are expressed as

gxx = 1, gθθ = (x sinα(1+ z/x tanα))2,

gzz = 1, gkl = 0 (k 6= l),

0θzθ = 0
θ
θ z =

1
x tanα(1+ z/x tanα)

,

0z
θθ =−x sinα cosα(1+ z/x tanα),

0θxθ = 0
θ
θx =

1
x(1+ z/x tanα)

,

0x
θθ =−x sin2 α(1+ z/x tanα).

(16)

Classical strain tensors components are obtained by substituting (16) into (13) as

εzz =
∂w

∂z
, εθθ =

1
x sinα(1+ z/x tanα)

[
∂v

∂θ
+ u sinα+w cosα

]
, εxx =

∂u
∂x
,

εxθ = εθx =
1

2x sinα(1+ z/x tanα)

[
∂u
∂θ
+ x sinα(1+ z/x tanα)

∂v

∂x
− v sinα

]
,

εθ z = εzθ =
1

2x sinα(1+ z/x tanα)

[
∂w

∂θ
+ x sinα(1+ z/x tanα)

∂v

∂z
− v cosα

]
,

εzx = εxz =
1
2

[
∂w

∂x
+
∂u
∂z

]
,

(17)

and the components of the deviatoric stretch gradient tensor are obtained by substituting (15) and (16)
into (14) as

ηxxx =
∂2u
∂x2 , ηzzz =

∂2w

∂z2 , ηxxθ =
∂2v

∂x2 , ηzzθ =
∂2v

∂z2 ,
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ηxθθ = ηθxθ =

∂2v

∂x ∂θ
−

1
x(1+ z/x tanα)

∂v

∂θ
−

u sinα+w cosα
x(1+ z/x tanα)

+ cosα
∂w

∂x
+ sinα

∂u
∂x

x sinα(1+ z/x tanα)
,

ηzθθ = ηθ zθ =

∂2v

∂z ∂θ
−

1
x tanα(1+ z/x tanα)

∂v

∂θ
−

w cosα+ u sinα
x tanα(1+ z/x tanα)

+ cosα
∂w

∂z
+ sinα

∂u
∂z

x sinα(1+ z/x tanα)
,

ηθxx = ηxθx =

∂2u
∂x ∂θ

−
1

x(1+ z/x tanα)
∂u
∂θ
− sinα

∂v

∂x
+

v sinα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηθ zz = ηzθ z =

∂2w

∂z ∂θ
−

1
x tanα(1+ z/x tanα)

∂w

∂θ
− cosα

∂v

∂z
+

v cosα
x tanα(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηθθx =

∂2u
∂θ2 − u sin2 α−w sinα cosα− 2 sinα

∂v

∂θ
+ x sinα(1+ z/x tanα)

(
cosα

∂u
∂z
+ sinα

∂u
∂x

)
(x sinα(1+ z/x tanα))2

,

ηθθ z =

∂2w

∂θ2 −w cos2 α− u sinα cosα− 2 cosα
∂v

∂θ
+ x sinα(1+ z/x tanα)

(
cosα

∂w

∂z
+ sinα

∂w

∂x

)
(x sinα(1+ z/x tanα))2

,

ηθθθ =

∂2v

∂θ2 − v+ x sin2 α(1+ z/x tanα)
∂v

∂x
+ 2 sinα

∂u
∂θ
+ 2 cosα

∂w

∂θ
+ x cosα sinα(1+ z/x tanα)

∂v

∂z
(x sinα(1+ z/x tanα))2

,

ηxθ z = ηθxz =

∂2w

∂x ∂θ
−

1
x(1+ z/x tanα)

∂w

∂θ
− cosα

∂v

∂x
+

v cosα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηzθx = ηθ zx =

∂2u
∂z ∂θ

−
1

x tanα(1+ z/x tanα)
∂u
∂θ
− sinα

∂v

∂z
+

v cosα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηxxz =
∂2w

∂x2 , ηzzx =
∂2u
∂z2 , ηzxθ = ηxzθ =

∂2v

∂x ∂z
.

(18)

Now, by substituting the displacement field according to (9) into (17) and (18) and using (5) and the
assumptions of Love’s thin shell theory as (1± z/x tanα) ≈ 1 and (z/x tanα)2 ≈ 0, the classical and
nonclassical nonzero strain components are respectively obtained as

εxx =
∂U
∂x
− z

∂2W
∂x2 ,

εθθ =
1

x sinα

[
∂V
∂θ
+U sinα+W cosα−

z
x sinα

∂2W
∂θ2 − z sinα

∂W
∂x

]
,

εxθ = εθx =
1

2x sinα

[
∂U
∂θ
+ x sinα

∂V
∂x
− V sinα− 2z

∂2W
∂x ∂θ

+
2z
x
∂W
∂θ

]
,

(19)
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and

χzz =
1

2x2 sin2 α

[
cosα

∂U
∂θ
+ x sinα cosα

[
∂V
∂x
−

V
x

]
− 2z cosα

∂2W
∂x ∂θ

+
2z cosα

x
∂W
∂θ

]
,

χxx =
1

x sinα

[
cosα

[
V
x
−
∂V
∂x

]
+
∂2W
∂x ∂θ

−
1
x
∂W
∂θ

]
,

χθθ =
1

2x sinα

[
cosα

[
∂V
∂x
−

V
x

]
−

1
x tanα

∂U
∂θ
− 2

∂2W
∂x ∂θ

+
2
x
∂W
∂θ

]
,

χxθ = χθx =
1

2x2 sin2 α

[
∂2W
∂θ2 − x2 sin2 α

∂2W
∂x2 + x sin2 α

∂W
∂x
− cosα

∂V
∂θ

]
,

χzθ = χθ z =
1

4x2 sin2 α

[
x sinα

∂2V
∂x ∂θ

+ sinα
∂V
∂θ
−
∂2U
∂θ2 + 2x sinα cosα

∂W
∂x

]
,

χxz = χzx =
1
4

[
1
x
∂V
∂x
+
∂2V
∂x2 −

V
x2 +

1
x sinα

[
1
x
∂U
∂θ
−
∂2U
∂x ∂θ

]]
. (20)

Now, by substituting Equations (19) and (20) into Equations (6) and (7) and determining the components
of classical and nonclassical stresses, the strain energy of the conical shell is obtained using (3) as

Us =
1
2

∫ 2π

0

∫ x0+L

x0

[
[Nxx ]

∂U
∂x
+

[
Nxθ

x sinα
−

Yθθ cosα

2x2 sin2 α
+

Yzz cosα

2x2 sin2 α
+

Yxz

2x2 sinα

]
∂U
∂θ

−

[
Yzθ

2x2 sin2 α

]
∂2U
∂θ2 −

[
Yzx

2x sinα

]
∂2U
∂x ∂θ

+

[
Nθθ
x
−

Nxx

x

]
U +

[
Yzθ

2x sinα

]
∂2V
∂x ∂θ

+

[
Yzx

2

]
∂2V
∂x2 +

[
Nxθ −

Yxx

x tanα
+

Yzz

2x tanα
+

Yθθ
2x tanα

+
Yxz

2x

]
∂V
∂x

+

[
Nθθ

x sinα
−

Yxθ cosα

x2 sin2 α
+

Yzθ

2x2 sinα

]
∂V
∂θ

+

[
−

Nxθ

x
+

Yxx

x2 tanα
−

Yzz

2x2 tanα
−

Yθθ
2x2 tanα

−
Yxz

2x2

]
V

+

[
2Mxx

x
−

Mθθ

x
+

Yzθ

x tanα
+

Yxθ

2x

]
∂W
∂x
− [Mxx + Yxθ ]

∂2W
∂x2 +

[
Nθθ

x tanα

]
W

−

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
∂2W
∂θ2 +

[
2Mxθ

x2 sinα
−

Yxx

x2 sinα
+

Yθθ
x2 sinα

+
Tzz cosα

x3 sin2 α

]
∂W
∂θ

−

[
2Mxθ

x sinα
−

Yxx

x sinα
+

Yθθ
x sinα

+
Tzz cosα

x2 sin2 α

]
∂2W
∂x ∂θ

]
x sinα dx dθ, (21)
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where the classical and nonclassical force and momentum are expressed as

Ni j =

∫ h−z̃c

−z̃c

σi j dz, Mi j =

∫ h−z̃c

−z̃c

σi j z dz, Yi j =

∫ h−z̃c

−z̃c

mi j dz, Ti j =

∫ h−z̃c

−z̃c

mi j z dz, (22)

and the kinetic energy of the conical thin shell is defined as

T = 1
2

∫
�

ρ(z̃)
[(
∂U
∂t

)2

+

(
∂V
∂t

)2

+

(
∂W
∂t

)2]
x sinα dx dθ dz, (23)

where ρ(z̃) stands for the density of the conical shell.
Also, the work done by external forces acting on the conical shell is expressed as

we = wd +wb, (24)

wd =

∫
θ

∫
x
( fxU + fθV + fzW )x sinα dx dθ, (25)

wb =

∫
θ

[
N u

xU + N v
x V + Nw

x W + P̂vh
x
∂V
∂x
+Mw

x
∂W
∂x

]
x sinα dθ

∣∣x0+L
x0

,

+

∫
x

[
N u
θU + N v

θV + Nw
θ W + P̂uh

θ

∂U
∂θ
+Mw

θ

∂W
∂θ

]
x sinα dx

∣∣θ0

0 , (26)

where fx , fθ and fz represent volume distributed forces and N u
x , N v

x , Nw
x , P̂vh

x , Mw
x , N u

θ , N v
θ , Nw

θ ,
P̂uh
θ , Mw

θ are the classical and nonclassical force and momentum applied to typical (x = constant) and
(θ = constant) lines and edge.

Now, the Hamilton’s principle is ∫ t2

t1
(δT − δUs + δWe) dt = 0. (27)

By substituting the work done by external forces applied as well as strain energy and kinetic energy of the
shell in Hamilton’s principle, and using variations method and performing direct, lengthy mathematical
calculations, the governing equations and boundary conditions are derived as

δU : −
D1,0

x
∂U
∂x
+

D1,0

x2 U − D1,0
∂2U
∂x2 +

D5,0

x2 sin2 α

[
−1+

l2

4x2 −
l2

x2 tan2 α

]
∂2U
∂θ2 −

D5,0l2

4x3 sin2 α

∂3U
∂x ∂θ2

+
D5,0l2

4x4 sin4 α

∂4U
∂θ4 +

D5,0l2

4x2 sin2 α

∂4U
∂x2∂θ2 +

1
x2 sinα

[
D1,0+ D5,0

[
1−

l2

4x2

]]
∂V
∂θ
−

D5,0l2

2x2 sinα
∂3V
∂x2∂θ

−
1

x sinα

[
D3,0+ D5,0

[
1−

l2

4x2

]]
∂2V
∂x ∂θ

−
D5,0l2

4x3 sin3 α

∂4V
∂x ∂θ3 −

D5,0l2

4x sinα
∂4V
∂x3∂θ

−
D5,0l2

4x4 sin3 α

∂3V
∂θ3

+
1

x3 sin2 α

[
D5,0l2

x tanα
− D1,1− 2D5,1−

D5,1l2

x2 tan2 α
− D3,1

]
∂2W
∂θ2 +

D1,0

x2 tanα
W −

1
x

[
D3,0

tanα
+

D1,1

x

]
∂W
∂x

−
1

x2 sin2 α

[
3D5,0l2

2x tanα
− D3,1− 2D5,1−

D5,1l2

x2 tan2 α

]
∂3W
∂x ∂θ2 + D1,1

∂3W
∂x3 +

D1,1

x
∂2W
∂x2 − fx + I1,0

∂2U
∂t2 = 0,

(28)
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δV : −
1

x2 sinα

[
D1,0+ D5,0

[
1−

3l2

4x2

]]
∂U
∂θ
−

1
x sinα

[
D3,0+ D5,0

[
1+

3l2

4x2

]]
∂2U
∂x ∂θ

+
D5,0l2

2x2 sinα
∂3U
∂x2∂θ

+
3D5,0l2

4x4 sin3 α

∂3U
∂θ3 −

D5,0l2

4x sinα
∂4U
∂x3∂θ

−
D5,0l2

4x3 sin3 α

∂4U
∂x ∂θ3

+
D5,0

x2

[
1−

3l2

x2 tan2 α
−

3l2

4x2

]
V −

D5,0

x

[
1−

3l2

x2 tan2 α
−

3l2

4x2

]
∂V
∂x
+

D5,0l2

2x
∂3V
∂x3

− D5,0

[
1+

3l2

x2 tan2 α
+

3l2

4x2

]
∂2V
∂x2 +

D5,0l2

4
∂4V
∂x4 −

1
x2 sin2 α

[
D1,0+

D5,0l2

x2

[
1

tan2 α
+

3
4

]]
∂2V
∂θ2

−
D5,0l2

4x3 sin2 α

∂3V
∂x ∂θ2 +

D5,0l2

4x2 sin2 α

∂4V
∂x2∂θ2 −

1
x2 sinα

[
3D5,0l2

x tanα
− D1,1+

2D5,1l2

x2 tan2 α

]
∂2W
∂x ∂θ

+
1

x3 sin3 α

[
D5,0l2

x tanα
+ D1,1

]
∂3W
∂θ3 −

1
x2 sin2 α

[
D1,0 cosα−

3D5,0l2 cosα
x2

]
∂W
∂θ

+
1

x sinα

[
5D5,0l2

2x tanα
+ D3,1+ 2D5,1+

D5,1l2

x2 tan2 α

]
∂3W
∂x2∂θ

− fθ + I1,0
∂2V
∂t2 = 0, (29)

δW :
1
x

[
D3,0

tanα
+

D1,1

x

]
∂U
∂x
+

1
x2

[
D1,0

tanα
−

D1,1

x

]
U −

1
x3 sin2 α

[
2D5,0l2

x tanα
−

2D5,1l2

x2 tan2 α
+ D1,1

]
∂2U
∂θ2

+
1

x2 sin2 α

[
3D5,0l2

2x tanα
−

D5,1l2

x2 tan2 α
− D3,1− 2D5,1

]
∂3U
∂x ∂θ2 − D1,1

∂3U
∂x3 −

2D1,1

x
∂2U
∂x2

+
1

x2 sinα

[
D1,0

tanα
−

2D5,0l2

x2 tanα
+

2D5,1

x
−

2D5,1l2

x3 tan2 α
−

D1,1

x
−

2D3,1

x

]
∂V
∂θ
−

1
x sinα

[
5D5,0l2

2x tanα

+
D5,1l2

x2 tan2 α
+ D3,1+ 2D5,1

]
∂3V
∂x2∂θ

−
1

x3 sin3 α

[
D5,0l2

x tanα
+ D1,1

]
∂3V
∂θ3

+
1

x2 sinα

[
2D5,0l2

x tanα
+

2D5,1l2

x2 tan2 α
+ D1,1

]
∂2V
∂x ∂θ

+
1

x2 tanα

[
D1,0

tanα
−

D1,1

x

]
W

+
1

x2 sin2 α

[
2D5,2l2

x2 tan2 α
+ 2D3,2+ 4D5,2+ 2D5,0l2

]
∂4W
∂x2∂θ2 +

2
x
[D1,2+ D5,0l2

]
∂3W
∂x3

+
1

x3 sin2 α

[
2D1,2

x
+

2D3,2

x
+

4D5,2

x
+

4D5,0l2

x
+

6D5,2l2

x3 tan2 α
−

2D1,1

tanα

]
∂2W
∂θ2

−
1

x3 sin2 α

[
6D5,2l2

x2 tan2 α
+ 2D3,2+ 4D5,2+ 2D5,0l2

]
∂3W
∂x ∂θ2 +

1
x3

[
D1,2+ D5,0l2

[
1+

1
tan2 α

]]
∂W
∂x

−
1
x

[
D1,2

x
+

D5,0l2

x

[
1+

1
tan2 α

]
+

2D3,1

tanα

]
∂2W
∂x2 + [D1,2+ D5,0l2

]
∂4W
∂x4

+
1

x4 sin4 α
[D1,2+ D5,0l2

]
∂4W
∂θ4 − fw + I1,0

∂2W
∂t2 = 0. (30)
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And the boundary conditions for x = constant are obtained as∫
θ

[
Nxx +

∂

∂θ

[
Yzx

2x sinα

]
+ N u

x

]
x sinα dθ |x = 0 or δU |x = 0, (31)

∫
θ

[[
Nxθ −

Yxx

x tanα
+

Yzz

2x tanα
+

Yθθ
2x tanα

+
Yxz

2x

]
−
∂

∂θ

[
Yzθ

2x sinα

]
−

1
x
∂

∂x

[
xYzx

2

]
+ N v

x

]
x sinα dθ |x = 0 or δV |x = 0, (32)

∫
θ

[[
Yzx

2

]
+ P̂vh

x

]
x sinα dθ

∣∣
x= 0 or δ

(
∂V
∂x

)∣∣∣
x
= 0, (33)

∫
θ

[
1
x
∂

∂x
[x Mxx + xYxθ ] +

[
2Mxx

x
−

Mθθ

x
+

Yzθ

x tanα
+

Yxθ

2x

]
+
∂

∂θ

[
2Mxθ

x sinα
−

Yxx

x sinα
+

Yθθ
x sinα

+
Tzz cosα

x2 sin2 α

]
+ Nw

x

]
x sinα dθ

∣∣
x= 0 or δW

∣∣
x= 0, (34)

∫
θ

[−[Mxx + Yxθ ] +Mw
x ]dθ

∣∣
x= 0 or δ

(
∂W
∂x

)∣∣∣
x
= 0. (35)

The boundary conditions for θ = constant are∫
x

[[
Nxθ

x sinα
−

Yθθ cosα

2x2 sin2 α
+

Yzz cosα

2x2 sin2 α
+

Yxz

2x2 sinα

]
+
∂

∂θ

[
Yzθ

2x2 sin2 α

]
+

1
x
∂

∂x

[
Yzx

2 sinα

]
+ N u

θ

]
x sinα dx

∣∣
θ
= 0 or δU

∣∣
θ
= 0, (36)

∫
x

[
−

[
Yzθ

2x2 sin2 α

]
+ P̂uh

θ

]
x sinα dx

∣∣
θ
= 0 or δ

(
∂U
∂θ

)∣∣∣
θ
= 0, (37)

∫
x

[[
Nθθ

x sinα
−

Yxθ cosα

x2 sin2 α
+

Yzθ

2x2 sinα

]
−

1
x
∂

∂x

[
Yzθ

2 sinα

]
+ N v

θ

]
x sinα dx

∣∣
θ
= 0 or δV

∣∣
θ
= 0, (38)

∫
x

[[
2Mxθ

x2 sinα
−

Yxx

x2 sinα
+

Yθθ
x2 sinα

+
Tzz cosα

x3 sin2 α

]
+

1
x
∂

∂x

[
2Mxθ

sinα
−

Yxx

sinα
+

Yθθ
sinα

+
Tzz cosα

x sin2 α

]
+
∂

∂θ

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
+ Nw

θ

]
x sinα dx

∣∣
θ
= 0 or δW

∣∣
θ
= 0, (39)

∫
x

[
−

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
+Mw

θ

]
x sinα dx

∣∣
θ
= 0 or δ

(
∂W
∂θ

)∣∣∣
θ
= 0. (40)
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In the equations above (equations of motion and boundary conditions) parameters D1,i , D3,i , D5,i and
I1,i are defined as

(D1,i)=

∫ h−z̃c

−z̃c

E(z̃)
1−ν2(z̃)

(zi ) dz, (i = 0, 1, 2),

(D3,i)=

∫ h−z̃c

−z̃c

E(z̃)ν(
_
z )

1−ν2(z̃)
(zi ) dz, (i = 0, 1, 2),

(D5,i)=

∫ h−z̃c

−z̃c

µ(z̃)(zi ) dz, (i = 0, 1, 2),

(I1,i )=

∫ h−z̃c

−z̃c

ρ(z̃)(zi ) dz, (i = 0, 1, 2).

(41)

Now, it can be argued that (28)–(30) are the equations of motion of the FG conical shell based on the
modified couple stress theory. Also, (31)–(40) are the classical and nonclassical boundary conditions
of the FG conical shell based on the modified couple stress theory. In special cases, these equations of
motion and boundary conditions are reduced to the following equations:

Case 1: By setting the length scale parameter to zero (l = 0), the equations obtained in this paper are
reduced to the equations of motion and boundary conditions in the classical continuum theory based on
the thin shell model for FG materials.

Case 2: By assuming constant mechanical properties (Young’s modulus, Poisson’s ratio and density),
the equations obtained in this paper are reduced to the equations of motion and classical and nonclassical
boundary conditions based on the modified couple stress theory and the thin shell model for the isotropic
homogeneous structure.

Case 3: By assuming cases (1) and (2), the equations obtained in this paper are reduced to the equations
of motion and boundary conditions in the classical continuum theory based on the thin shell model.

3. Case study

In this section, the free vibration of the simply supported FG conical shell in the special case is examined
so as to evaluate the equations derived. The equations governing the simply supported FG conical shell
are similar to (28)–(30); hence, it suffices to investigate the boundary conditions. It should be noted that
the boundary conditions in (36)–(40) are satisfied due to the variability of the θ angle from 0 to 2π edges;
thus, the boundary conditions in x = x0 and x = x0+ L edges must be investigated, which are (31)–(35).
By substituting (22) into (31)–(35), the boundary conditions for the simply supported FG conical shell
are obtained as

V |x=x0,x0+L = 0,

W |x=x0,x0+L = 0,
(42)
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[
D1,0

∂U
∂x
− D1,1

∂2W
∂x2 +

D3,0

x
U −

D3,1

x2 sin2 α

∂2W
∂θ2 −

D3,1

x
∂W
∂x
−

D5,0l2

4x2 sin2 α

∂3U
∂x ∂θ2

+
D5,0l2

4x3 sin2 α

∂2U
∂θ2 +

1
x sinα

[
D3,0−

D5,0l2

4x2

]
∂V
∂θ
+

D5,0l2

4x sinα
∂3V
∂x2∂θ

+
D5,0l2

4x2 sinα
∂2V
∂x ∂θ

+
D3,0

x tanα
W
]∣∣∣∣

x=x0,x0+L
= 0, (43)

[
−

D5,0l2

4x sinα
∂2U
∂x ∂θ

+
D5,0l2

4x2 sinα
∂U
∂θ
+

D5,0l2

4
∂2V
∂x2 +

D5,0l2

4x
∂V
∂x
−

D5,0l2

4x2 V
]∣∣∣∣

x=x0,x0+L
= 0, (44)

[
[D1,2+ D5,0l2

]
∂2W
∂x2 +

1
x
[D3,2− D5,0l2

]
∂W
∂x
+

1

x2 sin2 α
[D3,2− D5,0l2

]
∂2W
∂θ2

− D1,1
∂U
∂x
+

1
x sinα

[
D5,0l2

x tanα
− D3,1

]
∂V
∂θ
−

D3,1

x
U −

D3,1

x tanα
W
]∣∣∣∣

x=x0,x0+L
= 0. (45)

Hence, (28)–(30) as well as (42)–(45) are the governing equations and boundary conditions for the simply
supported FG thin conical shell, which must be simultaneously solved in order to investigate the free
vibration.

In order to solve the above equations and considering boundary conditions, the following approximate
solutions are used [Dung et al. 2014]:

U (x, θ, t)=U0 cos
(

mπ(x − x0)

L

)
sin(nθ) sin(ωt), V (x, θ, t)=U0 sin

(
mπ(x − x0)

L

)
cos(nθ) sin(ωt),

W (x, θ, t)=W0 sin
(

mπ(x − x0)

L

)
sin(nθ) sin(ωt). (46)

In the above equations ω, n and m stand for the natural frequency of the nanoshell, circumferential and
axial wave numbers, respectively. Given the above assumption, the majority of boundary conditions in
(42)–(45) are satisfied although some of them are not fully satisfied. However, in the references, it is
common that for a complicated formulation, like that one above, not all boundary conditions be satisfied.
Therefore, to investigate the free vibration of the nanoshell, it is necessary to solve the equations of
motion in (28)–(30). For this purpose, the Galerkin method is employed. To simplify integration, (28)–
(29) are multiplied by x4 and (30) is multiplied by x6, and, finally, using the Galerkin method and the
equations derived, the following equation is obtained:∫ x0+L

x0

∫ 2π

0
ψ1x cos

(
mπ(x − x0)

L

)
sinα dx dθ = 0,∫ x0+L

x0

∫ 2π

0
ψ2x sin

(
mπ(x − x0)

L

)
sinα dx dθ = 0,∫ x0+L

x0

∫ 2π

0
ψ3x sin

(
mπ(x − x0)

L

)
sinα dx dθ = 0,

(47)
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ρ (kg/m3) ν E (GPa)

Aluminum 70 2702 0.3
Ceramic 427 3100 0.17

Table 1. Material properties of aluminum and ceramic.

where the parameters ψ1, ψ2 and ψ3 are obtained as

ψ1 = x4
[A11(U0)+ A12(V0)+ A13(W0)],

ψ2 = x4
[A21(U0)+ A22(V0)+ A23(W0)],

ψ3 = x6
[A31(U0)+ A32(V0)+ A33(W0)]. (48)

In the above equation, Ai j are values obtained by substituting Equation (47) into Equations (28)–(30).
Hence, the matrix form of Equation (48) is

([K ] −ω2
[M])


U0

V0

W0

= 0. (49)

Considering the eigenvalue problem, in order to obtain a nontrivial solution to Equation (49), the deter-
minant of the coefficients must be set to zero, and, by solving the derived equation, one can determine
the frequency of nanoshell.

4. Results and discussion

This section is devoted to the investigation of the free vibration of the simply supported FG conical thin
shell using the modified couple stress theory. The effect of parameters such as dimensionless length scale
parameter, apex angle, dimensionless length parameter and circumferential and axial wave numbers on
the dimensionless natural frequency are studied and the results are compared with those obtained based
on the classical continuum theory. As mentioned before, assuming l = 0, the resulting equations are
obtained based on the classical continuum theory.

The geometric features of the conical shell are assumed to be h = 0.34 nm, L/R1= 2 and h/R1= 0.04,
and the FG conical shell is assumed to consist of aluminum or ceramic with the material properties in
Table 1 [Sahmani et al. 2013].

4.1. Comparison of results. Since according to the authors studies, so far, no study is carried out on
the FG conical nanoshell, in order to verify the results, first the correctness of the results are shown by
comparing the obtained results from the homogeneous conical shell based on the classical continuum
theory and assuming N = 0 with that of [Irie et al. 1984; Jin et al. 2014; Lam and Hua 1999a] in Tables 2
and 3. Afterwards, as shown in Figure 2, the correctness of using the size effect, is assessed by comparing
the results from an isotropic homogeneous conical nanoshell with that of [Zeighampour and Tadi Beni
2014a] based on the modified couple stress theory. Besides, according to Table 2, the size effect which
leads to increase in natural frequency are shown correctly. By way of comparison, the dimensionless
natural frequency is calculated based on �= ωR

√
ρ(1− ν2)/E .
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n [Irie et al. 1984] [Jin et al. 2014] Present Present l = h

1 0.5462 0.5462 0.5988 0.6791
2 0.631 0.6309 0.6371 0.6594
3 0.5065 0.5063 0.5101 0.5511
4 0.3947 0.3943 0.4044 0.4852
5 0.3348 0.3340 0.3436 0.4975
6 0.3248 0.3239 0.3290 0.5748
7 0.3524 0.3213 0.3264 0.6833
8 0.4033 0.4022 0.3934 0.8386
9 0.4684 0.4673 0.4635 1.0227

Table 2. Comparison of frequency parameter � for the conical shell. (E = 211 GPa,
ν = 0.3, ρ = 7800 kg m−3, R2 = 1 m, h/R2 = 0.01, α = 45, L sin(α)/R2 = 0.5).

α = 30◦ α = 45◦ α = 60◦

n A† B†† Present A† B†† Present A† B†† Present

2 0.7910 0.8420 0.8297 0.6879 0.7655 0.7534 0.5722 0.6348 0.6301
3 0.7284 0.7376 0.7329 0.6973 0.7212 0.7135 0.6001 0.6238 0.6208
4 0.6352 0.6362 0.6365 0.6664 0.6739 0.6699 0.6054 0.6145 0.6130
5 0.5531 0.5528 0.5552 0.6304 0.6323 0.6309 0.6077 0.6111 0.6102
6 0.4949 0.4950 0.4972 0.6032 0.6035 0.6029 0.6159 0.6171 0.6158
7 0.4653 0.4661 0.4662 0.5918 0.5921 0.5905 0.6343 0.6350 0.6322
8 0.4654 0.4660 0.4629 0.5992 0.6001 0.5962 0.6650 0.6660 0.6607
9 0.4892 0.4916 0.4848 0.6257 0.6273 0.6202 0.7084 0.7101 0.7016

Table 3. Comparison of frequency parameter � for the conical shell. (E = 211 GPa,
ν = 0.3, ρ = 7800 kgm−3, R2 = 1 m, h/R2 = 0.01, L sin(α)/R2 = 0.25). †Values in
column A are from [Irie et al. 1984]. ††Values in B are from [Lam and Hua 1999a].

As is visible, according to [Hua 2000; Lam and Hua 1997; 1999b; Sofiyev et al. 2009] using the
Galerkin method, the comparison study is carried out for n ≥ 2 in order to establish convergent validity;
therefore, in this study according to Table 2, the obtained results have good consistency for n ≥ 2; besides,
in order to gain confidence on the accuracy of the current study, an additional comparison is carried out
in different apex angle according to Table 3. As is clear, the results have appropriate precision, according
to Table 2, Table 3 and Figure 2.

4.2. Effects of size parameter and apex angle on natural frequency. Figure 3 illustrates the effect
of dimensionless length scale parameter on natural frequency for α = 30◦ according to the modified
couple stress theory. As can be seen in Figure 3, decrease in the dimensionless length scale parameter
is accompanied by increase in natural frequency according to the modified couple stress theory, and this
increase is intensified with the increase in the gradient index N . In fact, decrease in h/ l stiffens the
conical shell, leading to increase in natural frequency. Also, as N = 0 is according to the aluminum shell
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Figure 2. Comparison of dimensionless natural frequency versus dimensionless length
scale parameter for SWCNC.
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Figure 3. Effects of dimensionless length scale parameter on natural frequency based
on modified couple stress theory α = 30◦.

and N = infinite is according to the ceramic shell, an increase in the gradient index is accompanied by an
increase in Young’s modulus of FG conical nanoshell, which stiffens the shell and results in increasing
the natural frequency.

Figure 4 displays the effect of dimensionless length scale parameter on natural frequency for α = 60◦

based on the modified couple stress theory. As can be seen in Figures 3 and 4, as the apex angle increases,
the natural frequency increases with the decrease in dimensionless length scale parameter, and the effect
of increase in the gradient index on the natural frequency can still be seen; however, with the increases
of the apex angle, the effects of these two parameters, length scale parameter and gradient index, on the
increase of natural frequency are weakened.
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Figure 4. Effects of dimensionless length scale parameter on natural frequency based
on modified couple stress theory α = 60◦.

4.3. Effects of length besides circumferential and axial wave number on natural frequency. Figures 5,
6 show the effect of length parameter; in addition, the circumferential and axial wave numbers on the
natural frequency. As can be seen, an increase in the circumferential and axial wave numbers leads
to increase in the natural frequency. On the other hand, the decrease in length parameter induced the
decrease in stability in the shell leading to increase in natural frequency intensifies the increasing effect
of circumferential and axial wave numbers on the increase in natural frequency. Therefore, in l = h, as
length parameter decreases from L = 2R1 to L = R1, and the circumferential wave number increases from
n= 1 to n= 5, the natural frequency increases from 1.69 to 2.3 for L = 2R1 and from 3.9 to 9 for L = R1.
In addition, according to the illustration, increase in the length scale parameter has an increasing impact
on the effect of length parameter and circumferential and axial wave numbers on natural frequency. Thus,
in L = R1, as the axial wave number changes from m = 1 to m = 5, the dimensionless natural frequency
increases from 1.95 to 13.6 in l = h and in l = 2h, the natural frequency increases from 2.77 to 22.1.
Also, in n = 2, the decrease in length parameter from L = 2R1 to L = R1 leads to an increase in natural
frequency from 1.36 to 3.7 in l = h and from 1.77 to 5.66 in l = 2h.

5. Conclusion

Using the modified couple stress theory, a new formulation for the FG truncated conical thin shell is
developed in this paper. The size effect is considered using the modified couple stress theory, and
material distribution in the FG conical shell is assumed according to the power law distribution as
continuously variable along shell thickness. Governing equations as well as classical and nonclassical
boundary conditions are derived using Hamilton’s principle, and, in the special case, the free vibration of
the simply supported FG conical nanoshell is investigated. Also, the effects of parameters such as length
scale parameter, apex angle, length, and circumferential and axial wave numbers on natural frequency is
studied. Increase in natural frequency induced by increase in length scale parameter is shown based on
the modified couple stress theory and compared with the results of classical continuum theory. Moreover,
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natural frequency, α = 30◦, N = 1.

the increasing effect of length scale parameter on the natural frequency induced by the decrease in length
and increase in circumferential and axial wave numbers is investigated as well.
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CONDITIONS FOR THE LOCALISATION OF PLASTIC DEFORMATION IN
TEMPERATURE SENSITIVE VISCOPLASTIC MATERIALS

MARTIN K. PAESOLD, ANDREW P. BASSOM, KLAUS REGENAUER-LIEB AND MANOLIS VEVEAKIS

We study the onset of localisation of plastic deformation for a class of materials that exhibit both tem-
perature and rate sensitivity. The onset of localisation is determined via an energy bifurcation criterion,
defined by the postulate that viscoplastic materials admit a critical (mechanical) energy input above
which deformation becomes unstable and plastic localisation ensues. In analogy to the classical concepts
of mechanics, the conditions for the onset of localisation in temperature-sensitive viscoplastic materials
are reached at a critical stress. However, it is shown that in viscoplastic materials a material bifurcation
occurs when the heat supply through mechanical work surpasses the diffusion capabilities of the mate-
rial. This transition from near-isothermal stable evolution to near-adiabatic thermal runaway is the well-
known concept of shear heating. Here, it is generalised and the correspondence between this runaway
instability and the localisation of plastic deformation in solid mechanics is detailed. The obtained phase
space controlling the localisation is shown to govern the evolution of the system in the postyield regime.
These results suggest that the energy balance essentially drives the evolution of the plastic deformation
and therefore constitutes a physics-based hardening law for thermoviscoplastic materials.

1. Introduction

In this work, we present the hypothesis that the classical criterion for localisation can be generalised from
their isothermal and adiabatic limits through an extension of an energy bifurcation criterion suggested in
earlier studies [Cherukuri and Shawki 1995a; 1995b]. The criterion involves an analytical analysis of the
multiple steady states followed by a numerical analysis of the transients. We showcase the development
of the criterion, highlight its relation to the characteristics of hyperbolic differential equations (slip line
fields) and present a first numerical example. The problem of the localisation of plastic deformation
is commonly considered solved once both the spatial configuration of localisation and the necessary
loading conditions for its onset are extracted. The classical theory [Hill 1950; 1962; Rudnicki and Rice
1975; Rice 1977] of rate and temperature independent materials, provides a platform upon which modern
solid mechanics is built. These works suggest that the spatial configuration as well as the critical loading
conditions for the onset of localisation can be obtained from the stationary limit of a material dependent
wave equation.

In particular, the slip line field theory for ideal rigid plastic materials has been developed in the middle
of the last century [Hill 1950] and successfully applied to metal forming processes. The theory is based
on solving the hyperbolic differential equations of mass and momentum balance (at its stationary limit)
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and provides a closed form solution for the failure of such an idealised material using the method of
characteristics. The slip line field theory [Hill 1962] also forms the background for the development of
a criterion of localisation of plastic deformation stemming from a material bifurcation [Rudnicki and
Rice 1975; Rice 1977]. The study of this material bifurcation was the subject of the early approaches of
accelerating waves in rate and temperature independent solids [Hill 1962; Rudnicki and Rice 1975] and
shows that localisation instabilities occur at the stationary wave limit of the linear elasto-plastic wave
equation

L ikηk = ρc2ηi . (1-1)

In this eigenvalue problem ηi is the vector of the jump of the velocity gradient, c is the material velocity of
the accelerating wave and ρ the material density. The properties of the rate- and temperature-independent
material are encapsulated in the acoustic tensor

L ik = ν j C
ep
i jklνl, (1-2)

where Cep
i jkl is the elasto-plastic stiffness matrix of the material obeying an incremental elasto-plastic

response σ̇i j =Cep
i jkl ε̇kl . The vectors νi are the unit vectors of the discontinuity imposed by the propagating

acceleration wave. According to the theory of localisation of plastic deformation [Hill 1962; Rudnicki
and Rice 1975], localised failure occurs at the stationary limit of the propagating wave when c = 0. In
this regime, nontrivial solutions are obtained only when the determinant of the acoustic tensor is zero
and this condition allows for the calculation of both the orientation of the localised plane given by the
vectors νi , and the critical stress ratio for the onset of localisation, given by the critical value of the
tangent modulus.

Although slip line field theory has played an undeniable role in underpinning the theory of plastic-
ity, and has still some use in the limit analysis and design [Khan et al. 2008], it has been superseded
by advanced numerical techniques that are capable of modelling nonlinear, elastic, viscous and plastic
materials [Needleman and Tvergaard 1992]. The main drawback of the slip line field theory was that
it cannot be used for rate and temperature dependent constitutive laws which significantly hampered
the applicability to modern engineering applications since the importance of temperature is well known
in constitutive properties of most materials. Soil, rocks and ceramics are significantly influenced by
temperature with strain localisation being strongly affected by thermal loading [Hückel and Baldi 1990;
Hückel and Pellegrini 2002]. In polymers and polycarbonates temperature and strain rate are key pa-
rameters influencing the response of the material, even at ambient conditions [Bauwens-Crowet et al.
1974]. Finally, even in the analogue rigid materials for which the slip line field theory was developed,
i.e., metals, temperature was shown to be important. This becomes obvious in particular under conditions
of high speed deformation or at large strain where mechanical work is dissipated and the effects of heat
becomes important. An excellent example is the thermal cross that is often observed during forging of
mild steel caused by localised plastic dissipation on slip lines [Johnson et al. 1964].

The thermal cross becomes visible as heat lines owing to reaching temperatures of around 680 ◦C and
their pattern [Johnson et al. 1964, Figures 3 and 4]) closely resembles the original slip lines calculated
in theoretical plasticity [Hill 1950]. The coincidence of heat lines and slip lines suggests a strong re-
lationship and calls for an extension of the original theory beyond isothermal conditions. Later studies
[Benallal and Lemaitre 1991; 2004] generalised the localisation concepts and extended the acoustic tensor
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criterion to the realm of coupled thermomechanical response for rate-independent materials, involving
an updated formulation of the acoustic tensor for the limits of isothermal and adiabatic conditions.

However, when dealing with rate-dependent thermoplastic coupling, the mathematical study of the
eigenvalue problem (1-1) of plasticity breaks down. The procedure for determining the conditions for
the onset of localised deformation differs significantly from that of rate-independent materials [Anand
et al. 1987]. In this regime, the conditions for the loss of ellipticity that express the material instability
leading to localisation is approached through analyses of the full system of field equations, rather than
seeking for the loss of ellipticity of the momentum balance. These techniques were first introduced for
one-dimensional plastic shear deformation of nonlinear viscous fluids [Gruntfest 1963; Clifton 1980;
Bai 1981; 1982]. The one-dimensional problem of simple shear of a temperature dependent viscoplastic
layer has also been treated semianalytically [Chen et al. 1989; Leroy and Molinari 1992]. These concepts
gave rise to the proposition of an energy based localisation theory in which instabilities emerge when
the mechanical input rate rises significantly leading to a departure from the near isothermal limit towards
the near adiabatic limit [Cherukuri and Shawki 1995b; 1995a]. Since the energy equation can provide
information about the time evolution of the system, this regime has been extensively studied in earth
sciences [Regenauer-Lieb et al. 2013a; Regenauer-Lieb et al. 2013b] for one-dimensional failure patterns
seen in landslides [Veveakis et al. 2007] and fault mechanics [Veveakis et al. 2010].

The adiabatic limit of the energy equation, also known as adiabatic shear bands, was the focus of
considerable research efforts during past decades in material sciences [Gruntfest 1963]. It is of particular
interest since the adiabatic shear limit can act as a precursor to failure, irrespective of its mode (ductile
or brittle) [Dodd and Bai 2012]. In spite of the apparent relationship suggested by observations such
as reported by Johnson et al. [Johnson et al. 1964], a generalised slip line field theory that extends
Hill’s theory to nonlinear thermoviscoplastic materials is not yet developed. In this study we show that
such a theory can be obtained by expanding the conditions necessary for the loss of ellipticity of the
momentum equations, in the realm of coupled thermomechanical problems for temperature-dependent,
viscoplastic materials. This generalisation of the slip line field theory is two-pronged: firstly, at the limit
of stationary thermomechanical wave propagation (following the classical concepts of mechanics) the
stress equilibrium conditions define a spatial pattern of failure and dissipation (the product of stress and
velocity gradient). Secondly, the energy balance supplies the necessary conditions for the loss of elliptic-
ity that would lead to a jump in the dissipation. Further on, the transient analysis of the system provides
the evolution of plastic deformation from near-isothermal to near-adiabatic conditions and verifies the
results of the stationary analysis.

In the remainder of this article we present a detailed mathematical approach to the problem. In
Section 2 the continuum thermomechanical framework considered in this article is described. Section 3
extends the concepts of the slip line field theory from ideal plastic to viscoplastic materials. This entails
a generalisation of Hencky’s and Geiringer’s equations that determine the geometry and the onset of
localisation, respectively. These results are compared to finite element simulations of simple geometries
and Johnson’s heat lines (see [Johnson et al. 1964, Figures 3 and 4]) in Section 4. We conclude with
a discussion on the importance of the obtained results in Section 5. In the appendices more details on
the mathematical derivations are given and in Appendix A the energy budget of a viscoplastic material
is discussed, Appendix B details the derivation of the slip lines and Appendix C gives a perturbation
analysis of the energy equation.
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2. Fundamental principles of continuum thermomechanics

Here, we restrict ourselves to general plane strain loading and neglect the effect of gravity and inertia
terms so that the stress equilibrium reads

∂σ11

∂x1
+
∂σ12

∂x2
= 0, (2-1)

∂σ21

∂x1
+
∂σ22

∂x2
= 0. (2-2)

Further, we adopt the stress decomposition σi j = pδi j + si j , with p the volumetric mean stress and si j the
deviatoric stress. For such a problem, we formulate the governing equations in the equivalent coordinate
system where the stress tensor is rotated such that its elements are the mean stress p = I1/3 and the
von Mises stress q =

√
3J2. In these expressions I1 = tr(σi j ) is the first invariant of the stress tensor and

J2 = si j si j/2. The corresponding coordinate transformation dates back to Levy [Hill 1950] and is given
through the Mohr circle transformation

σ11 = p− q sin 2ψ, σ22 = p+ q sin 2ψ, σ12 = σ21 = q cos 2ψ, (2-3)

where ψ is the rotation angle of the coordinate system.

2A. Energy considerations. In this study we neglect higher-order energy terms in the energy equation.
These terms are expressed in terms of a second derivative of the Helmholtz free energy, ∂2ψ

∂ψ∂T ξ̇ and
are of secondary importance when studying the quasistatic the problem of localisation of viscoplastic
deformation. Frequently this is the case because ξ̇ = 0 at steady state. Such a case is the thermoelastic
heating term (see Appendix A) in which case the internal state variable is the elastic strain. Under this
assumption, the energy balance combined with the second law of thermodynamics can be written as

ρc
∂T
∂t
= α

(
∂2

∂x2
1
+
∂2

∂x2
2

)
T +8− rsink, (2-4)

where the right hand side represents the temporal change of energy within a volume element due to heat
flux and mechanical dissipation

8= βσi j ε̇
p
i j , (2-5)

and an energy sink rsink due to a postlocalisation transformation such as melting or endothermic chemical
reactions [Rosakis et al. 2000]. The constants in (2-4)–(2-5) denote the material density ρ, the specific
heat capacity c, heat conductivity α and the Taylor–Quinney coefficient β [Taylor and Quinney 1934].
This coefficient quantifies the amount of mechanical work converted to heat and β is of particular impor-
tance in the field of thermodynamics with internal state variables, as it incorporates the evolution of all
the internal state variables ξ of the system, as evident from its definition [Alevizos et al. 2014; Veveakis
et al. 2014]

β = 1−
Y ξ̇
σi j ε̇

p
i j
. (2-6)

In this expression Y is a thermodynamic potential, dual in energy with the internal state variable ξ .
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2B. Constitutive modelling. We first split the strain rate into elastic (reversible) and plastic (irreversible)
parts ε̇i j = ε̇

e
i j + ε̇

p
i j . For the elastic component we adopt a linear elastic law of the form

ε̇e
i j = C−1

i jkl σ̇kl . (2-7)

For the irreversible part, we assume that the Helmholtz free energy is invertible, such that the evolution
of the plastic strain depends on the stress and temperature through a smooth function of the plastic
potential g(σi j , T ). We focus on temperature contributions that act independently of the stress such that
the viscoplastic flow law can be decomposed as

ε̇
p
i j = ε̇0 e−T0/T

〈 f (g)〉
∂g(σi j )

∂σi j
, (2-8)

where the activation temperature is denoted by T0, and the Macaulay brackets 〈 · 〉 ensure zero plastic
strain before yield [Freed and Walker 1993]. This decomposition is supported by experimental data
at elevated temperatures, below the phase transition temperature of the material [Bauwens-Crowet et al.
1974] and the two most representative constitutive responses of temperature and rate dependent materials
are an Arrhenius-type dependency on temperature, with either a power-law or an exponential dependency
on stress. The function f (g) is an arbitrary scalar flow stress function. For the example of J2 associative
viscoplasticity the viscoplastic flow law takes the form

ε̇
p
i j = ėp

i j = ε̇0 e−T0/T
〈 f (g)〉

∂g
∂si j
= ε̇0

〈√
q

k
− 1

〉
si j

q
e−T0/T , (2-9)

where ėp
i j is the deviatoric part of the strain-rate plastic and k is the yield stress [Perzyna 1966]. The

flow stress function is in principle dependent on temperature, plastic strain and any other internal state
variable, but in this study we will not consider these dependencies for simplicity in the mathematical
treatment.

The exact form of the constitutive equation is not prescribed during the analysis of the bifurcation in
order to emphasise the generic nature of the formulation, where the onset of plastic deformation is derived
from the basic assumptions of the energetics. The only important aspect of the constitutive response of
the material is that it must obey a viscoplastic relationship linking the plastic strain-rate (i.e., plastic strain
increment) with the stress, in contrast to rate independent plasticity where an incremental relationship
between plastic strain increment and stress increment is required. The viscoplastic law is required so
that in the steady-state limit of the equations (σ̇i j = Ṫ = 0) the mechanical dissipation remains nonzero.

The formulation therefore encompasses most classes of physical behaviour described in the summary
of constitutive laws for viscoplastic materials [Chaboche 2008]. Since the rate-independent plasticity
case can be deduced from the equations of viscoplasticity as a limiting case [Chaboche 1977; Lubliner
2008], the presented formulation can be seen as a generic framework for temperature-sensitive plasticity.
For a more detailed discussion on the constitutive concepts of viscoplasticity the reader is encouraged to
consult the review article by Chaboche [2008].

As shown in earlier studies [Leroy and Molinari 1992; Cherukuri and Shawki 1995b; Veveakis et al.
2010], the choice of the form of the temperature dependence of the plastic flow law is not central for
the results of the present study. Those studies have shown that any nonlinear temperature dependence
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leads to the same physical behaviour with the Arrhenius type exponential dependency being the one that
allows for the most convenient mathematical treatment.

3. Steady state analysis: generalisation of the slip line field theory

We start by studying the steady-state limit of the system, in which Ṫ = σ̇i j = 0. Therefore, in this regime
the elastic contribution (2-7) is neglected and the problem reduces to that of the study of the response of a
rigid (visco-)plastic material. This setting can therefore be considered to be a direct extension of the slip
line field theory to thermoviscoplastic materials. We note that in the present formulation the temperature
equation (2-4) is active only when dissipation is nonzero. Since this is achieved in the postyield regime,
we expect that the orientation of possible localisation planes would arise from the characteristics of the
stress equilibrium, in accordance with the theory of plasticity [Hill 1950].

We therefore anticipate that given an arbitrary set of slip lines, two distinctly different cases of ma-
terial response can be identified from the energy balance equation. The plastic material may deform
homogeneously across the whole domain, and therefore across the slip lines; alternatively the material
deforms in a localised manner along the slip lines (the equivalent velocity gradient discontinuities in the
classical case). In our formulation the transition becomes an energy based transition expressed through
the multiple steady states which are possible. The complete field approach of the present work consists
of the identification of the generalised patterns of slip lines given by an arbitrary yield surface and the
derivation of the conditions for localised plastic deformation along these slip lines.

3A. Generalised Hencky’s equations. At the point of initial yield, where the temperature equation is
inactive, the response of the system is governed by the stress equilibrium equations. We assume a
generalised yield surface at a reference temperature of the form q = qY (p). In order to find the char-
acteristics of the hyperbolic differential stress equilibrium equations (slip lines) we substitute the Levy
stress transformations, (2-3), into the stress equilibrium equations, (2-1) and (2-2). The mathematical
treatment is detailed in Appendix B (see also [Lubliner 2008, Chapter 5]) and the results are summarised
below.

The slip lines are parametrised in terms of the arc-length s and the slopes of the characteristics along
the x1- and x2-axes read

∂x1

∂sk
=

µ(k)√
1+µ(k)2

,
∂x2

∂sk
=

1√
1+µ(k)2

(k = 1, 2), (3-1)

where µ(k) is the k-th left eigenvalue of the stress equilibrium equations (see Appendix B). For a general
yield surface q(p)

µ(1,2) =
∓
√

1− h2+ cos(2ψ)
h+ sin(2ψ)

, (3-2)

and the quantity h = q ′Y (p) is a generalised pressure modulus. Note that in this expression p must be
critical, i.e., equal to its yield value. For incompressible materials h = 0.

Rescaling (2-1) and (2-2) along the characteristics, Equation (3-1) provides

r (k)i Bi j
∂(p, ψ)
∂s

= 0 (k = 1, 2), (3-3)
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where the left eigenvectors are

r (1,2) =
(√

1− h2∓ cos(2ψ)
±(h− sin(2ψ))

, 1
)
. (3-4)

Equations (3-3) are derived in Appendix B and expanding them yields the generalised Henchky’s equa-
tions

0=
√

1− h2 ps ± 2qψs . (3-5)

In the case of a von Mises material, where qY = k is a constant, (3-2) simplifies (as h = 0) to the
familiar form

µ(1) =− tanψ, µ(2) = cotψ, (3-6)

and the eigenvectors (3-4) to

r (1) = (− tanψ, 1), r (2) = (cotψ, 1). (3-7)

The corresponding traces are commonly known as α/β-slip lines. Along the slip lines Equations (3-5)
reduce to the classical Hencky’s equations

p± 2kψ = Cα,β . (3-8)

3B. Generalised Geiringer’s equations. Traditionally the velocity components along the slip lines are
described by Geiringer’s equations which are obtained from the continuity equation, in conjunction with
the plastic flow rule and the small-strain compatibility equations [Hill 1950]. In the classical isothermal
formulation of slip line field theory velocity solutions are sought that satisfy the continuity equation and
localisation of plastic deformation is defined as a velocity jump across the slip line (velocity discontinuity)
of zero thickness. In the present formulation we relax the isothermal assumption and seek conditions of
localisation that replace the vanishing thickness by a finite width.

To this end, the mechanical dissipation 8 of (2-5) is combined together with the constitutive law of
plasticity (2-8) to provide a temperature sensitive dissipation term

8= βσi j ε̇
p
i j = βε̇0σi j 〈 f (g)〉e−T0/T ∂g

∂σi j
, (3-9)

where the term σi j (∂g/∂σi j ) represents a tensorial product. The stability and bifurcation of the energy
balance equation (2-4) is characterised by the nonlinear response of its steady state. This problem has
been extensively studied in the literature for shear zones [Gruntfest 1963; Chen et al. 1989; Leroy and
Molinari 1992; Vardoulakis 2002; Veveakis et al. 2010]. In this work we generalise it for 2D loading
conditions by first studying the response of the energy balance in the original geometry and then rescaling
it to a one-dimensional subspace defined by the directions of the characteristics.

3B.1. Steady state analysis in the original geometry. The steady state of the energy balance equation is
defined by

α

(
∂2

∂x2
1
+
∂2

∂x2
2

)
T +βε̇0σi j 〈 f (g)〉

∂g
∂σi j

e−T0/T
= 0. (3-10)
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The energy balance can be brought into dimensionless form by setting

θ =
T − Tb

Tb
, x̂i =

xi

L i
(i = 1, 2), Ar=

T0

Tb
, (3-11)

where Tb is the boundary temperature and L i is an appropriate length scale. Since we are interested in
deformation taking place under isothermal boundary conditions the final dimensionless equation is (the
superimposed hats are dropped for convenience)(

∂2

∂x2
1
+ λ2 ∂

2

∂x2
2

)
θ +Gr2D exp

(
Ar θ
1+ θ

)
= 0, (3-12)

where λ= L1/L2 is an aspect ratio and the superscript 2D refers to the dimension of the domain. The
exponential term stems from the mechanical dissipation 8 and we define the normalised dissipation
function

φ = exp
(

Ar θ
1+ θ

)
. (3-13)

In order to solve the partial differential equation (3-12) on the domain [−1, 1] × [−1, 1] a pseudo arc-
length continuation [Chan and Keller 1982] in Gr2D, the Gruntfest number [Gruntfest 1963], was carried
out where

Gr2D
=
βε̇0L2

1

αTb
σi j 〈 f (g)〉 e−Ar ∂g

∂σi j
, (3-14)

and (3-12) is subjected to isothermal boundary conditions

θ(±1, y)= 0, θ(x,±1)= 0. (3-15)

In physical terms, Gr represents the ratio between heat production due to mechanical deformation and
heat loss due to thermal conduction or additional energy sinks [Vardoulakis 2002; Veveakis et al. 2010].
At the low Gr limit the system deforms in virtually isothermal conditions, whereas as Gr→∞ so the
system deforms under near-adiabatic conditions [Veveakis et al. 2010].

It is well known that the steady state response of the system depends on the values of Gr and Ar [Law
2006; Veveakis et al. 2010], see Figure 1. In Figure 1(a) we sketch the maximum temperature at the centre
of the domain, θc, as a function of Gr for two values of Ar. We notice that between Ar= 4 and Ar= 5
the response of the system changes from a stretched (Ar= 4) to a folded S-curve (Ar= 5). The stability
of the system is determined by the eigenvalues of the Jacobian matrix, shown in Figure 1(b). Since the
maximum eigenvalue of the case Ar≤ 4 (stretched) is negative for all values of Gr, the stretched S-curve
is stable throughout. In contrast, the folded S-curve (Ar = 5) exhibits two points of stability change,
coinciding with the turning points of the S-curve. This means that the stationary solutions are initially
stable up to the first turning point, then unstable and after the second turning point restabilise.

The above arguments are independent of λ and the variation of the steady state response with respect
to λ are presented in Figure 2. This conclusion allows us to proceed with rescaling the energy equation
in a 1D equivalent, along the characteristic curves sk of the stress equilibrium equations.
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Figure 1. (a) Bifurcation diagram of the two-dimensional heat equation for Ar= 4, 5.
If the path of stationary states is folded (Ar= 5) the solutions change stability at the fold
and dotted lines denote unstable stationary states. (b) Largest eigenvalues of the Jacobian
matrix associated with (3-12). For Ar= 4 the largest eigenvalue remains negative, but
for Ar = 5 stability of the stationary solutions changes at the folds where the largest
eigenvalue changes sign.
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Figure 2. A change in aspect ratio λ shifts the steady states along the Gr-axis, but has
only little influence on the shape of the S-curve and no influence on the stability of the
steady states.

3B.2. Rescaling along the characteristics. In this work we look for the necessary conditions for locali-
sation of the plastic deformation to occur along the characteristics of the stress equilibrium. This means
that the characteristic curves sk also need to be the characteristics of the temperature equation. This
condition is satisfied in the limit where the elliptic operator vanishes, which is also the adiabatic limit.
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Hence, the loss of ellipticity of the temperature equation would ensure that localisation is achieved along
the characteristics of the momentum equation. Localisation should therefore be obtained through the
properties of the nonlinear response of the energy equation.

Replacing the spatial derivatives in (3-10) with (3-1) yields

α
(1+µ2)

µ2

(
(1+µ2)

∂2

∂s2 +
(µ2
− 1)
µ

∂µ

∂s
∂

∂s

)
T +βε̇0σi j 〈 f (g)〉

∂g
∂σi j

e−T0/T
= 0, (3-16)

and all super- and subscripts k have been dropped since the above arguments hold true for both sets of
characteristics. We consider the case of infinitesimal variations of the slip line geometry, so that the
derivatives ∂µ/∂s are small and can be ignored.

Analogously to (3-11), (3-16) is normalised and

∂2θ

∂s2 +Gr1D exp
(

Ar θ
1+ θ

)
= 0, (3-17)

where the Gruntfest number admits the following form

Gr1D
=
βε̇0L2

αTb

µ2

(1+µ2)2
e−Arσi j 〈 f (g)〉

∂g
∂σi j

, (3-18)

where L is a length scale. This Gruntfest number is spatially dependent through µ, and also incorporates
the dimensionality of the system at hand, through L and we conjecture that the critical values of the
Gruntfest number for the two dimensional and one dimensional case are related via

Gr1D
cr =

L2

L2
1

µ2

(1+µ2)2
Gr2D

cr , (3-19)

which follows upon comparing (3-14) and (3-18). As an example, we consider the experiment in [Johnson
et al. 1964] where the heat lines are oriented along the diagonals of a square sample. When rescaling a
von Mises material along the characteristics of a square domain (see the next section) with dimension
L1, then L =

√
2L1 and the geometric correction

L2

L2
1

µ2

(1+µ2)2
=

1
2

as µ=− tanψ or µ= cotψ . From here on forward we do not distinct between the Gr1D and Gr2D any
longer since there is no dis-ambiguity in terms of the physics between the one- and two-dimensional heat
equation.

The steady state response of this 1D equivalent equation follows that of the 2D case, as shown in
Appendix C. In Figure 3, we present the results of this analysis for the dissipation function φ and we find
three distinct steady states of alternating stability. The unstable branch BC corresponds to a localisation
instability across the characteristic trace for the normalised dissipation function φ. Since in Figure 3(a)
the branches AB and CD are stable in the dissipation the unstable branch BC cannot be admitted and the
solution jumps from stable near isothermal homogeneous plastic deformation on AB to localised near
adiabatic deformation on CD. The saddle point B therefore corresponds to the necessary condition for
the loss of ellipticity of the thermomechanical system, after which localisation is progressively achieved.
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Figure 3. (a) Folded S-curve. Along the branch AB the solution of (3-12) corresponds
to an isothermal temperature profile whereas along the section between the turning points
B and C the solutions localise. (b) Examples of the one-dimensional spatial pattern of the
dissipation profile for Ar= 10. The profiles are normalised with respect to the maximum
value of dissipation.

It is a similar condition to the traditional jump conditions for stress and velocity discontinuities in the
classical slip line field solution but is expressed here in terms of their product, the dissipation.

This transition from homogeneous to localised deformation is shown in Figure 3(b), where the nor-
malised dissipation is shown to localise towards the centre of the domain as it crosses the unstable BC
branch of the S-curve (see also the results of [Leroy and Molinari 1992; Veveakis et al. 2010]). The
critical threshold for the transition from the stable branch AB to the new steady state CD is characterised
by the turning point B and can be calculated asymptotically as shown in the Appendix C and Figure 10.

4. Transient analysis of the system

The steady state limit characterises the long-term behaviour of the system, but the evolution of the system
given a certain initial condition can only be obtained through direct time integration of the transient
system of equations of a von Mises elasto-(visco-)plastic material:

∂σi j

∂xi
= 0, ρc

∂T
∂t
= α

∂2T
∂x2

i
+βsi j ė

p
i j , ėi j =

˙si j

2G
+ ε̇0

〈√
q

k
− 1

〉
si j

q
e−T0/T . (4-1)

where G is the elastic shear modulus, and the last term of the third equation corresponds to the viscoplastic
contribution of an associative von Mises material. Notably, although the momentum balance is at its
stationary limit, the time evolution of the system is achieved through the temperature equation. The
energy balance therefore acts as a postfailure evolution equation similar to the ad hoc evolution laws of
the hardening modulus in classical plasticity.

In this section, we integrate this system of equations for the case of an ideal viscoplastic (G→∞) and
an elasto-viscoplastic material with thermomechanical coupling. To illustrate the results of the steady-
state analysis an elementary problem set is chosen, where in a plane strain setting the loading conditions
shown in Figure 4 are applied. A square cell is pinned in the x , y-direction on the left hand side and in
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A
F or v

x

y

Figure 4. Geometry of the problem configuration. A square is deformed by applying
either a constant force F or constant velocity v at the right hand side of the sample.
The sample is pinned on the left and in the y-direction. At the centre “A” the sample is
probed for various quantities. The theoretical analysis presented in the previous sections
for a rate-dependent von Mises material suggests that the slip lines of this model run
diagonally across the specimen and are represented by dashed lines [Johnson et al. 1964].

the y-direction on the right hand side. It is loaded on the right boundary with either a constant force F
or constant velocity v. The cell is surrounded by a reservoir that has a constant temperature Tb.

The results of the previous sections suggest that in such a configuration the slip lines should propagate
from the pinned corners of the rectangle, diagonally across the specimen as discussed in [Johnson et al.
1964]. Owing to the pressure independent von Mises yield envelope, the slip lines are expected to be
perpendicular to each other. In addition, the critical condition for the localisation of plastic deformation
is expected to be given by the critical value of the Gruntfest number, as shown in the previous sections. In
the time-dependent case, we may follow the same rules of normalisation ((3-11)) and define the Gruntfest
number as

Gr=
(
βε̇0L2

4αTb
e−Ar

)
si j

〈
q
k
− 1

〉
. (4-2)

Because the Gruntfest number incorporates the mechanical work, we expect the Gruntfest analysis of the
previous section to hold for both constant force and constant velocity conditions. The difference between
the two regimes would be that in the case of constant force conditions Gr will obtain a constant value,
once the stress equilibrates to a constant value. Under constant velocity conditions, the stress, and so Gr,
will continue to increase throughout the time of loading. Therefore, given enough time the system will
always be able to cross the critical Gr value for the onset of localisation.

In the following sections we present the results of the time-integration of the system (4-1). The analysis
was carried out using finite element techniques as implemented in the finite element code REDBACK1

in which the viscoplasticity is solved using Perzyna’s overstress formulation. REDBACK is an open
source application derived from the Multiphysics Object Oriented Simulation Environment (MOOSE)
[Gaston et al. 2009]. MOOSE provides a simulation environment that is focussed on the physics of
the problem at hand and it takes care of meshing and numerical handling of memory and structures
internally via the finite element library libMesh [Kirk et al. 2006] and the nonlinear parallel solver PETSc

1Available at http://github.com/pou036/redback.git.

http//github.com/pouzethsi/redback.git
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[Balay et al. 2014], respectively. Hence, MOOSE’s approach to the finite element method is mesh and
dimension independent which differentiates it from other solvers that require the user to define elements
and handle more in-depth numerical issues. MOOSE is based in Jacobian-free Newton–Krylov methods
for computational efficiency [Knoll and Keyes 2004].

Initially we present two cases for the deformation of an ideal viscoplastic material and an elasto-
viscoplastic material under constant force boundary conditions. Further, the response of the elasto-
viscoplastic material under a constant velocity boundary condition is studied.

4A. Ideal viscoplastic material under constant force boundary conditions. In the case of an ideal
viscoplastic material (G →∞) under constant force conditions the stress exerted onto the sample is
constant throughout the simulation and the sample enters the plastic regime immediately. Hence, Gr
is held constant throughout the loading. The evolution of the deforming system is best represented by
its orbits in Gr-θ space as shown in Figure 5 because this allows for a direct comparison between the
“S-curve” that marks the steady states in Gr-T space and the steady state attained by the sample. As
Gr is constant these orbits are vertical lines in the case of ideal viscoplasticity. Figure 5 summarises
the evolution of the deforming sample for various initial conditions (marked by grey squares) and their
final state (black squares). The results of these simulations confirm the concept of the “S-curve” that is
comprised of two stable branches that are linked by an unstable branch (BC). If Gr is chosen to be larger
than the critical value (turning point B) or the initial state lies above the unstable branch BC the system
converges to the high-energy (temperature), adiabatic branch. On the other hand, if Gr is smaller than
the critical value the system converges to the low-energy (temperature) isothermal branch.

When elasticity is incorporated and the system is loaded using constant force, the Gruntfest number
(i.e., the overstress) is expected to relax to a constant value after its initial evolution due to the elastic
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Figure 5. Evolution of an ideal viscoplastic material that is deformed with a constant
force. The solid black line marks steady states. The grey lines represent the trajectories
through the Gr-θ space as the system evolves in time. Initial and final conditions are
marked by grey and black squares, respectively.
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response of the system. This regime allows us to test the extent of the validity of the S-curve concept
established in Section 3B, since the orbits of the elasto-viscoplastic material are not constant in Gr. To
this end, the system of equations (4-1) was integrated for different initial conditions and values of Gr.
The results are summarised in Figure 6(a) where we observe that the phase space is indeed split into
two domains, in accordance with the concept of the S-curve. Grey squares denote initial conditions and
black squares denote the final state of each numerical experiment.

For initial conditions starting below the unstable branch (branch BC of Figure 3) the system evolves to-
wards a low-energy steady state, which coincides with the stable branch AB of Figure 3. Correspondingly,
for initial conditions above the unstable branch the orbits diverge and eventually relax in a high-energy
steady-state where dissipation localises along the characteristics of the stress equilibrium equations. This
high energy steady state corresponds to the branch CD of Figure 3. Runs that started very close to, but
above, branch BC (solid black squares) diverge towards the high temperature branch as well. The time
evolution of these orbits showcase the different responses (Figure 6(b,c)). Indeed, the low-energy orbits
converge quickly to the low-energy steady state where plastic deformation is not localised, whereas the
high-energy orbits provide an evolution of the system towards the localisation of dissipation along the
characteristics of the stress equilibrium equations. This transition is equivalent to the evolution from
secondary to tertiary creep in material science (Figure 6(b,c)).

4B. Elasto-viscoplastic material under constant force boundary conditions. Following the results of
Figure 3, we expect the orbits leading to the low-energy steady state to be stable without profound
localisation of the plastic deformation. On the contrary, the high-energy steady-state is expected to
provide the necessary conditions for localisation. In Figure 7 we plot the spatial distribution of the
mechanical dissipation for an orbit converging to a low-energy and high-energy steady-state. We notice
that in both cases the slip lines indeed propagate from the corners towards the diagonals of the specimen
as expected, but that in the low-energy case the plastic deformation is not localised across the slip lines,
whereas in the high energy case localisation is emerging, with localisation being more pronounced the
higher the value of Gr. We may therefore suggest indeed that the critical Gruntfest number constitutes a
material bifurcation criterion for temperature sensitive viscoplastic materials.

4C. Heat lines under constant velocity boundary conditions. When the elasto-viscoplastic material is
loaded at constant velocity conditions, the Gruntfest number initially grows rapidly and attains values
beyond its critical value. Hence, the temperature rises rapidly and the system can be assumed to transition
quickly from near-isothermal to near-adiabatic conditions.

An extreme end-member of this regime is the case of an elasto-viscoplastic material evolving under
fast loading, thus establishing directly adiabatic conditions. This regime which is also known as adia-
batic shear banding is crucial in metal forming and cutting [Gruntfest 1963], but also in geomaterials
[Vardoulakis 2002]. In the present study adiabatic shear banding constitutes just a limiting case of the
analysis, when Gr→∞. Such a case can be simulated by setting the thermal diffusion to zero in the
temperature equation which is equivalent to assuming that the diffusive capabilities of the material are
negligible as compared to the heat producing capabilities. In this case, the dimensionless form of the
temperature equation (4-1) reads

∂θ

∂tad
= exp

(
θ

1+ εθ

)
, (4-3)
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Figure 6. (a) Evolution of an elasto-viscoplastic material deformed with a constant force.
Grey and black squares mark initial and final states of the system of the simulation, re-
spectively. The solid black squares mark the final state of runs with initial conditions very
close to but above the separatrix BC and we find that the these runs are indeed intrinsically
unstable, blowing up in short times. (b) Centre temperature θA over time for the three runs
marked in (a). (c) Strain rate ε̇ at point A over time for the three runs marked in (a).

where tad =Gr ·t is finite only when t→ 0, since Gr→∞. This means that the limiting case of adiabatic
shearing takes place in explosive timescales of the order t ∼ O(1/Gr) [Gruntfest 1963; Veveakis et al.
2007]. Hence, the Gruntfest number Gr controls the time evolution of the adiabatic shear banding, in
addition to the onset of localisation.

Under such a scenario the localisation of dissipation along the slip lines is profound, and patterns re-
sembling the heat lines of [Johnson et al. 1964] are obtained, as shown in Figure 8. In this case the system
enters directly the unstable area of the S-curve, and traces the upper branch CD during the time of loading.
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Figure 7. Dissipation profiles for the final state of a run that converges towards the low
temperature branch AB and a run that converges towards branch CD. The spatial distribu-
tion of the mechanical dissipation: (a) isothermal low temperature stable branch without
significant localisation of plastic deformation. (b) simulation for the high temperature
branch with significant localised heating. The dissipation profiles were recorded along
the lines highlighted in (a) and (b) and are presented in (c) and (d), respectively.
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Figure 8. Heat lines under fast constant velocity loading. The heat lines emerge from
an initially homogeneous temperature state. The heat lines follow the slip lines and can
be observed as a localisation of (a) mechanical dissipation and (b) temperature.
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5. Discussion

The simulation of the temporal evolution of temperature and rate-sensitive materials under various load-
ing conditions verifies the results of the steady-state response. In conclusion, the problem of mechanical
deformation of a temperature-sensitive viscoplastic material can be elegantly captured by the bifurcation
curves of Figure 1. We have seen that for this class of materials the energy equation determines the
conditions for the onset of localisation of plastic deformation, which occurs along the characteristics of
the stress equilibrium equations.

The results of Figure 6 highlight this energy bifurcation as the main driver of the transient orbits in
the system, even when elasticity is considered. It therefore provides a material bifurcation criterion and,
combined with the analysis of Section 3A, a generalisation of the slip line field theory for thermovis-
coplastic materials. The main effect of an extension to rate and temperature dependence is that lines of
velocity discontinuity do not exist below a critical temperature and deformation rate corresponding to
a critical dissipation as captured by the Gruntfest number Gr. Above critical Gr the classical slip lines
emerge in terms of velocity discontinuities and below critical Gr homogeneous deformation is derived.

The extension of the analytical treatment of generalised slip line field theory to the transient regime
using a numerical scheme has allowed us to test it for the problem of metal forging [Johnson et al. 1964].
The constant velocity boundary condition applied during forging lead to a variation in Gr thereby crossing
the stability regimes from homogeneous deformation to the appearance of heat lines. The fast loading
during this deformation can lead the material directly to the extreme case of adiabatic deformation.

This work has therefore presented a generalised approach of slip line field theory showing that the
simple, but restrictive, rheology of a rigid-plastic body can be extended to included rate dependent and
temperature dependent material behaviour. We have detailed an energy based framework to obtain the
modified Hencky’s and Geiringer’s equations which still provide the information on the basic pattern
of slip lines underpinning the deformation process. We argue that this extension is therefore useful for
gaining a basic understanding into the more complex material behaviour from an analytical perspective.
The extension of the analytical approach reveals, however, a more complex material behaviour than in
the classical theory.

The results of the present study highlight the role of the energy balance in material bifurcations. Since
the critical condition for material instability is retrieved from an energy bifurcation, the temperature
equation can act as a hardening law and substitute the experimentally derived hardening laws. Such
a case would allow us to account explicitly for different physics as well as for the mechanisms acting
at different scales in a material through their energy budget. We are therefore one step further to our
quest on multiscale analyses, since all the necessary mechanisms can be explicitly accounted for in the
energy equation through the corresponding internal state variables of the microprocesses. The results of
the present work can provide the basis for a unified theory for material behaviour, starting from solid
mechanics and extending naturally to the fluid-like postfailure evolution of materials using explicitly the
energy considerations as the link.

Appendix A: The complete energy budget

A consistent description of the thermomechanical behaviour of viscoplastic materials must be based on
the conservation of (1) mass, (2) momentum and (3) energy. In addition to these conservation laws
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it must be ensured that the entropy production is positive at all times. The combination of these four
prerequisites leads to the heat equation

ρcṪ = ∂xiα∂xi T +8+ r + T (∂Tσi j )ε̇
e
i j (A-1)

that describes the local energy budget and where ρ denotes the material density, c the specific heat, α
the heat conductivity, 8 the mechanical dissipation, σi j the stress tensor, ε̇e

i j the elastic strain rate. The
significance of this equation is that it couples the temperature evolution to the mechanical properties of
the material.

In the context of thermomechanical coupling the term r in (A-1) could be thought of as a heat sink
that has the effect of limiting temperature production after the onset of localisation. Possible heat sinks
due to a postlocalisation transformation are melting or endothermic chemical reactions [Rosakis et al.
2000]. Without the heat sink uncontrolled thermal runaway would ensue and hence r acts as a stabiliser
[Veveakis et al. 2010]. In this work r is neglected, because the aim of this work is to find criteria for
the onset of localisation and a detailed study of the postlocalisation regime is not of central interest. In
doing so, the postfailure evolution of temperature will be exaggerated, since the heat-absorbing processes
gathered in r do not limit the temperature evolution.

The final term in (A-1) describes thermoelastic heating, but is ignored in this work for simplicity of
the mathematical treatment.

Appendix B: Characteristic traces and generalised Hencky equations

Here, the stress equilibrium equations (2-1) and (2-2) are rewritten as a system of first-order differential
equations by means of the method of characteristics and this process reveals the characteristic traces
inherent to the stress equilibrium equations. In the context of plasticity characteristic traces are often
referred to as slip lines along which failure will occur [Hill 1950]. Hence, in the remainder of this section
the geometry of the failure patterns is determined.

Rather than solving equations (2-1) and (2-2) for the stress components σi j themselves we employ the
Mohr circle transformation (2-3) and evaluate p, q and φ. Since there are three unknowns and only two
equations a further relation is required and we choose a general yield criterion that allows to express q
in terms of p, q = q(p).

After substituting the stress components (2-3), (2-1) and (2-2) can be conveniently written in matrix
form as

Ai j
∂(p, ψ)
∂x1

+ Bi j
∂(p, ψ)
∂x2

= 0, (B-1)

where

A =
(

1− q ′ sin(2ψ) −2q cos(2ψ)
q ′ cos(2ψ) −2q sin(2ψ)

)
, (B-2)

B =
(

q ′ cos(2ψ) −2q sin(2ψ)
q ′ sin(2ψ)+ 1 2q cos(2ψ)

)
, (B-3)
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and the prime (·)′ denotes differentiation with respect to p. In order to simplify (B-1) the two (left)
eigenvectors ri and eigenvalues µ that satisfy

r (k)i Ai j = µ
(k)r (k)i Bi j (k = 1, 2) (B-4)

are computed and (B-4) is substituted into (B-1) so that

r (k)i Bi j

(
µ(k)√

1+µ(k)2
∂(p, ψ)
∂x1

+
1√

1+µ(k)2
∂(p, ψ)
∂x2

)
= 0. (B-5)

Instead of solving (B-5) on the whole x1-x2 plane we restrict ourselves to one characteristic trace along
which the independent variables x1 and x2 can be parametrised in terms of the arc-length s. Parametrising
along the characteristic and identifying

∂x1

∂sk
=

µ(k)√
1+µ(k)2

,
∂x2

∂sk
=

1√
1+µ(k)2

(B-6)

allows us to write (B-5) as

r (k)i Bi j
∂(p, ψ)
∂sk

= 0, (B-7)

and the coupled system of ordinary differential equations (B-6) and (B-7) is equivalent to stress equilib-
rium equations (2-1)–(2-2) along the characteristic.

We wish to emphasise that (B-6) defines the geometry of the characteristic trace and that there are two
characteristic traces. In general, the eigenvalues µ(k) depend on ψ and q ′(p).

Appendix C: Asymptotic approximations

In this section asymptotic solutions to the nondimensional heat equation (3-12) are computed, but the
perturbation analysis requires us to identify a “small” parameter which is used as the perturbation pa-
rameter. If the temperature is measured in units of Ar such that θ̃ = Ar θ the heat equation (3-16) reads

θ̃ ′′+ G̃r exp
(

θ̃

1+ εθ̃

)
, (C-1)

where G̃r=Ar Gr and ε= 1/Ar� 1 and ε is a suitable perturbation parameter. We drop the∼ superscript
for convenience.

If θ ∼ O(1), εθ � 1 and the exponent in (C-1) can be expanded as a geometric series which yields

θ ′′+Gr exp(θ − εθ2
+ ε2θ3

+ · · · )= 0. (C-2)

In order to find the governing equations at increasing orders of ε we expand

θ = θ0+ εθ1+ · · · and Gr= Gr0+εGr1+ · · ·

and substitute into (C-2). Here, only asymptotic solutions up to O(ε2) are considered and we find

0= (θ0+ εθ1+ ε
2θ2+ · · · )

′′
+ (Gr0+εGr1+ε

2 Gr2+ · · · )

× exp(θ0+ ε(θ1− θ
2
0 )+ ε

2(θ2− 2θ0θ1+ θ
3
0 )+ · · · ). (C-3)
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We perturb Gr as well since the previously obtained numerical results suggest that the critical value of
the Gruntfest number, Grc, depends on Ar, and hence on the small parameter ε = Ar−1

� 1 (Figure 10).
After the exponential in the above expression is expanded as a Taylor series the zeroth-, first- and

second-order equations of an asymptotic series are obtained:

O(1) : θ ′′0 +Gr0 eθ0 = 0, (C-4)

O(ε) : θ ′′1 +Gr0 eθ0θ1 = Gr0 θ
2
0 eθ0 −Gr1 eθ0, (C-5)

O(ε2) : θ ′′2 +Gr0 eθ0θ2 = Gr0 eθ0
(
2θ0θ1− θ

3
0 −

1
2(θ1− θ

2
0 )

2)
−Gr1 eθ0(θ1− θ

2
0 )−Gr2 eθ0 . (C-6)

Equation (C-4) has a known solution

θ0(s)= θc− 2 ln cosh
(√

Gr0

2
eθc/2s

)
, (C-7)

which satisfies the boundary conditions θ0(0)= θc as θ ′0(0)= 0 [Fowler 1997]. The remaining boundary
condition, θ0(1)= 0 fixes the value of Gr0 and

Gr0 = 2 acosh2
[eθc/2]e−θc . (C-8)

Maximising Gr0 with respect to θc yields the critical value of Gr at leading order which is Gr0,cr ≈ 0.878.
In order to find the first-order approximations we note that the homogeneous part of (C-5) is solved by

tα = θ ′0 and tβ = sθ ′0+ 2. Based on the homogeneous solutions a particular solution tp can be constructed
and we set tp = ξ tα +ψ tβ . The parameters ξ and ψ are required to satisfy

0= ξ ′tα +ψ ′tβ, (C-9)

Gr0 θ
2
0 eθ0 −Gr1 eθ0 = ξ ′t ′α +ψ

′t ′β . (C-10)
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Figure 10. (a) Position of steady states of the heat equation (3-12) for ε = 0.1, 0.01.
Squares and circles denote numerical results and the solid lines represent a three-term
asymptotic approximation. The asymptotic approximation is suitable for θc < 3. (b) The
critical Gruntfest number, Grcr, as a function of ε. Circles denote numerical results and
the solid line represents a three-term asymptotic approximation. Note: here temperature
is measured in units of Ar as described in the main text.

The even solution of (C-5) then reads

θ1 = θ
2
0 − 2θ0+ 4sθ ′0+ 6−

Gr1

Gr0
− 2θ ′0

∫
θ0 ds+C1(sθ ′0+ 2), (C-11)

where Gr1 and C1 are fixed by the boundary conditions θ1(0) = θ1(1) = 0. After θ1 and Gr1 have
been established the second order corrections Gr2 and θ2 can be computed analogously to the first-order
correction.

In Figure 9 the coefficients of the expansion Gr= Gr0+Gr1 ε+Gr2 ε
2 are shown as functions of the

centre temperature θc and Figure 10(a) presents a comparison of the numerical results and asymptotic
approximation. An approximation in the low temperature regime is capable of estimating the critical
Gruntfest number to a good degree (see Figure 10(b)).
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A SIMPLE HARD-PARTICLE COLLISION MODEL
WITH A SMOOTH TRANSITION TO FULL SLIP

M. B. RUBIN

Hard-particle models assume that the collision between rigid bodies is instantaneous and they propose
algebraic equations for the jumps in the motions of the rigid bodies based on an assumed functional
form for the impulsive force acting during the collision process. These hard-particle models have
the advantage that they are significantly less computationally expensive than soft-particle models.
Moreover, they are sufficiently accurate for some applications and can also be used for preliminary
analysis of complicated processes with large numbers of particle interactions. Here, a simple three
parameter hard-particle collision model is developed which predicts a smooth transition from nor-
mal collisions with no slip to oblique collisions with full slip. This model automatically satisfies a
number of physical restrictions on the impulsive force. An additional physical restriction on non-
negative energy dissipation places nontrivial restrictions on the model parameters. Examples show
the importance of improved modeling of the transition region from normal to oblique collisions with
full slip.

1. Introduction

The mechanics of collision of two bodies is complicated by dynamic wave propagation, stick-slip fric-
tional contact conditions and plastic dissipation [Goldsmith 1960]. The Distinct Element Method (DEM)
is currently being used to model a broad range of physical phenomena like: granular flow [Walton 2004;
Di Renzo and Di Maio 2004; Ketterhagen et al. 2005], particle fluids [Lu et al. 2005; Prasanth et al.
2012], studies of agglomeration [Kosinski and Hoffmann 2010; 2011], powder technology [Liu et al.
2011] and shock waves in jointed geological media [Morris et al. 2004]. Most often the DEM methods
model the interaction of collections of rigid bodies with various shapes. The equations of motion of
the rigid bodies are integrated using constitutive equations for the interactions between bodies that are in
contact with each other. Soft-particle contact models use information about the virtual penetration regions
of the bodies to determine the normal and shearing components of the contact force. The constitutive
equations for the contact force attempt to model details of elastic and inelastic effects that are relevant
for the specific application. In addition to the extensive computational effort to determine the contact
regions, it is necessary to use small time steps to accurately integrate the equations of motion over the
short interaction times associated with abrupt collision events.

The computational effort in DEM calculations to identify and analyze the virtual penetration regions
can be significantly reduced when the bodies have simple shapes like spheres. Additional reduction in
computational effort can be obtained by simplifying the contact events as instantaneous collisions. This
simplification uses hard-particle models which assume that the contact region is small enough that only

Keywords: coefficient of restitution, collision, friction, hard-particle, rigid bodies, spheres.
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a single force acts at the point of contact between the bodies. Also, it is assumed that the collision events
are separated in time so that at any instant only a single contact process operates between two bodies.
Details of the contact event are modeled by proposing constitutive equations for the impulsive force that
acts between the bodies at the point of contact. Then, the equations of motion of the rigid bodies are
integrated to obtain algebraic equations that predict the motion of the bodies just after the collision in
terms of the motion of the bodies just before the collision. Hard-particle models have the advantage
that they are significantly less computationally expensive than soft-particle models. Moreover, they are
sufficiently accurate for some applications and can also be used for preliminary analysis of complicated
processes with large numbers of particle interactions.

A review of the numerical simulation of inelastic, frictional particle-particle interactions can be found
in [Walton 1993]. More recent reviews discuss: discrete particle modeling of fluidized beds [Deen et al.
2007] the extension of normal force models [Kruggel-Emden et al. 2007]; the simulation of particulate
systems [Zhu et al. 2007]; and particle collision modeling [Meyer and Deglon 2011]. Ketterhagen et al.
[2005] studied flows with a range of solid fractions to examine the limits of hard-particle collision models,
which are typically valid for dilute systems. Also, it is noted that Stevens and Hrenya [2005] have
presented a comparison of predictions of soft-sphere models and measurements of normal impacts.

The algebraic equations that describe the jumps in the motion of two colliding rigid bodies have
been discussed in [Rubin 1998; Chatterjee and Ruina 1998]. These equations are based on an energetic
coefficient of restitution η introduced by Ivanov [1992]. More specifically, the work in [Rubin 1998]
discusses physical restrictions on constitutive equations for the impulsive force acting between the two
rigid bodies during hard-particle collision events.

Walton [1993, sec. 25.5.1] discusses a hard-particle model for the collision of spheres that is based
on the elastic, frictional solutions of the dynamic equations of elasticity described in [Maw et al. 1976;
1981]. This model depends on three parameters: the usual coefficient of restitution e, which connects
jumps in the normal component of the relative velocity of the contact points of the bodies; a coefficient
of rotational restitution β, which connects jumps in the tangential component of the relative velocity of
the contact points of the bodies; and the constant shear coefficient µs which controls the ratio of the shear
component of the impulsive force to its normal component in a full slip region. More specifically, the
model is based on two straight lines in the space of auxiliary parameters {ψ1, ψ2}, which are measures of
the obliquity of the collision event at the point of contact, just before and just after collision, respectively.
One line characterizes oblique collisions with full slip and the other line characterizes partial slip during
the transition from normal to oblique collisions with full slip. In particular, the model has a sharp
transition at the intersection of these two lines.

The objective of the present paper is to analyze the model proposed in [Walton 1993] from the perspec-
tive of the physical restrictions discussed in [Rubin 1998]. This analysis reveals that the transition region
from zero slip to full slip is large with respect to the angle of obliquity. Consequently, it is important to
improve the modeling of this transition region from normal to oblique collisions with full slip. Moreover,
the present work suggests that the rotational coefficient of restitution be replaced by a shear coefficient µ,
which characterizes the ratio of the shear component of the impulsive force to its normal component. This
shear coefficient increases from zero for normal collisions to a maximum constant value µs for oblique
collisions with full slip. Specifically, a three parameter model is proposed with a smooth transition from
no slip to full slip. All three parameters can be determined directly from experimental data or from
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Figure 1. Sketch of the spheres, the unit outward normal vector n to sphere (A), the
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results of simulations using more complicated soft-particle models. In addition, a restriction is imposed
on the model parameters which ensures non-negative energy dissipation in the collision event.

An outline of this paper is as follows. Section 2 reviews the basic equations of the formulation
in [Rubin 1998] and specializes these equations to collision of two spheres. In particular, this section
reviews physical restrictions that are placed on constitutive equations for the impulsive force acting during
the collision event. Section 3 proposes a constitutive equation for the impulsive force that exhibits a
smooth transition from normal to oblique collisions. Section 4 reviews the hard-particle model of Walton
[1993] and Section 5 compares the smooth transition model with that of Walton. Section 6 considers the
example of a sphere that bounces off a fixed horizontal plane and Section 7 presents conclusions.

2. Basic equations

In this section the general formulation presented in [Rubin 1998] is specialized to the case of collision
of two rigid spheres. For simplicity, a number of equations are summarized without further reference to
the work in [Rubin 1998]. Specifically, consider two spherical rigid bodies with masses {m A,m B}, radii
{RA, RB} and moments of inertia {IA, IB} about their centers of mass, which have positions {x A, x B} rel-
ative to a fixed origin (see Figure 1). Just before collision, the centers of mass have velocities {vA1, vB1}

and the bodies have angular velocities {ωA1,ωB1}. Just after collision, the centers of mass have velocities
{vA2, vB2} and the bodies have angular velocities {ωA2,ωB2}.

The collision event is considered to be instantaneous with only a point force acting between the bodies.
Specifically, let F̂ denote the impulsive force applied by body B on body A at the common contact point
which is denoted as xC for the material point attached to body A and by x D for the material point attached
to body B. Also, let n be the unit outward normal to the body A at the impact point xC = x D , such that

n=
x B/A

|x B/A|
, n · n= 1, xC/A = RAn, x D/B =−RB n, (2-1)

where for simplicity use has been made of the notation

x B/A = x B − x A. (2-2)
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The impulsive forms of the balances of linear and angular momentum (about the centers of mass) can
be solved to deduce that

vA2 = vA1+
1

m A
F̂, vB2 = vB1−

1
m B

F̂,

ωA2 = ωA1+
RA

IA
n× F̂, ωB2 = ωB1+

RB

IB
n× F̂.

(2-3)

Moreover, the velocities {vC1, vD1} of the contact material points just before the collision and the veloc-
ities {vC2, vD2} just after the collision are given by

vC1 = vA1+ RAωA1× n, vD1 = vB1− RBωB1× n,
vC2 = vA2+ RAωA2× n, vD2 = vB2− RBωB2× n.

(2-4)

Next, it is convenient to define the velocity differences of the contact points {1v1,1v2} just before
and just after the collision by the expressions

1v1 = vC1− vD1, 1v2 = vC2− vD2, (2-5)

and to recall that

1v2 =1v1+
1
m

AF̂, A=
(

1+ Im

Im

)
I −

(
1
Im

)
n⊗ n, (2-6)

where A is a second order tensor and the effective mass m for linear momentum and the parameter Im

associated with angular momentum are defined by

m =
m Am B

m A+m B
, Im =

IA IB

m(IA R2
B + IB R2

A)
. (2-7)

Also, a⊗ b denotes the tensor product between two vectors {a, b}. Here, the spherical bodies are as-
sumed to have spherically symmetric mass distributions but are allowed to have inhomogeneous mass
distributions radially.

The incident slip velocity 1v1 and the unit normal n form a plane which contains the slip direction
τ , such that

1v1 =
|1v1|√
1+ψ2

1

(n+ψ1τ ), ψ1 = tan θ ≥ 0, τ =
1v1− (1v1 · n)n
|1v1− (1v1 · n)n|

, (2-8)

where θ is the incident angle of obliquity (see Figure 1). It follows that since

1v1 · n> 0, (2-9)

sphere A collides with sphere B.
Denoting {T1, T2} as the kinetic energy of the two-particle system just before and just after the collision

T1 =
1
2 m AvA1 · vA1+

1
2 IAωA1 ·ωA1+

1
2 m BvB1 · vB1+

1
2 IBωB1 ·ωB1,

T2 =
1
2 m AvA2 · vA2+

1
2 IAωA2 ·ωA2+

1
2 m BvB2 · vB2+

1
2 IBωB2 ·ωB2,

(2-10)
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it can be shown that

T1− T2 =−F̂ ·1v1−
1

2m
A · (F̂⊗ F̂), (2-11)

where A · (a⊗ b)= tr[A(a⊗ b)T ] is the inner product between the two second order tensors {A, a⊗ b}.
In [Rubin 1998] F̂ was expressed in the form

F̂ = f f , f · f = 1, f = m(1+ η)
[
− f ·1v1

A · ( f ⊗ f )

]
> 0, (2-12)

which can be used to show that (2-11) reduces to

T1− T2 =
1
2 m|1v1|

21T, 1T = 1
2 m(1− η2)

[
( f ·1v1/|1v1|)

2

A · ( f ⊗ f )

]
. (2-13)

In particular, the work in [Rubin 1998] suggests that the constitutive equation for the impulsive force
must satisfy the following four physical restrictions.

(P1) The impulse is not orthogonal to the relative velocity of the contact points just before the collision

F̂ ·1v1 6= 0. (2-14)

(P2) The impulse has a component that resists penetration and aids separation of the two bodies

F̂ · (−n) > 0. (2-15)

(P3) The two bodies have a tendency to separate after the collision event

1v2 · (−n)≥ 0. (2-16)

(P4) The dissipation of kinetic energy during the collision event is non-negative

T1− T2 ≥ 0. (2-17)

3. A constitutive equation for the impulsive force

Once a constitutive equation for the impulsive force F̂ is specified the motion of the two particles just
after collision is determined by the equations (2-3). This section presents a constitutive equation for F̂.
First it is noted that with the help of (2-9) and (2-12), the restrictions (2-14) and (2-15) require

− f ·1v1 > 0, − f · n> 0. (3-1)

Also, using (2-13), the restriction (2-17) on energy dissipation requires

1+ η > 0, (3-2a)

1− η ≥ 0. (3-2b)

The work in [Maw et al. 1976; 1981] and [Walton 1993, Sec. 25.5.1] suggests that a model for hard-
particle collision between two spheres can be formulated in terms of ψ1 in (2-8) and ψ2 defined by

ψ1 =
1v1 · τ

1v1 · n
≥ 0, ψ2 =−

[1v2 · τ

1v2 · n

]
. (3-3)
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The parameters {ψ1, ψ2} are measures of the obliquity of the collision event, just before and just after the
collision, respectively. Moreover, the model in [Walton 1993] uses the standard coefficient of restitution
e, which connects the normal components of relative velocities by

1v2 · n=−e(1v1 · n), 0≤ e ≤ 1, (3-4)

which with the help of (2-9) ensures that the restriction (2-16) is satisfied. Here, use is made of (3-4) to
obtain a constitutive equation for η. Specifically, from (2-6) and (2-12) it can be shown that (3-4) yields
the constitutive equation

(1+ η)= (1+ e)
[

A · ( f ⊗ f )
A · (− f ⊗ n)

](
n ·1v1

− f ·1v1

)
. (3-5)

The hard-particle model proposed by Walton [1993, Sec. 25.5.1] introduced a rotational coefficient of
restitution β associated with the tangential direction τ defined by

1v2 · τ =−β(1v1 · τ ), −1≤ β ≤ 1. (3-6)

Here, this constitutive assumption is replaced by a constitutive equation for a shear coefficient µ, which
is the ratio of the shearing component of the impulsive force to its normal component. Specifically, it is
assumed that the impulsive force is in the n− τ plane with

f =−
1√

1+µ2
(n+µτ ), µ= tanφ > 0, (3-7)

where φ is the friction angle (see Figure 1). Then, using (2-8) it can be shown that the restrictions (3-1)
are automatically satisfied

− f ·1v1 =
|1v1|√

1+ψ2
1

√
1+µ2

(1+µψ1) > 0, − f · n=
1√

1+µ2
> 0. (3-8)

It should be noted that although the impulsive force has been assumed to limited to the n− τ plane
this does not mean that the motion of the spheres is two-dimensional since the angular velocities of the
spheres need not be normal to this collision plane. Next, using (2-6), (2-8) and (3-7) it can be shown that

1+ η =
(

1+ e
1+µψ1

)[
1+

(
1+ Im

Im

)
µ2
]
> 0, (3-9)

which shows that the restriction (3-2a) is automatically satisfied. Then, the restriction (3-2b) can be
rewritten in the form

1− η = 2−
(

1
1+µψ1

)[
1+

(
1+ Im

Im

)
µ2
]
≥ 0, (3-10)

which imposes a non-trivial restriction on the functional form for the shear coefficient µ.
In order to motivate a functional form for µ use is made of (2-6), (2-8), (2-12), (3-3) (3-7), (3-8) and

(3-9) to deduce that
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F̂ =−m(1+ e)
|1v1|
√

1+ψ2
1

(n+µτ ),

1v2 =
e|1v1|
√

1+ψ2
1

(−n+ψ2τ ),

ψ2 =
1
e

[
ψ1− (1+ e)

(
1+ Im

Im

)
µ

]
.

(3-11)

The hard-particle model in [Walton 1993] assumes that ψ2 is a bi-linear function of ψ1 with a negative
slope in the region of partial slip and a positive slope in the region of full slip. Motivated by this model,
a constitutive equation for µ is specified by the form

µ= µs g(z), g(z)= 1−〈1− z〉1+α, α > 0, z =
ψ1

ψs
, ψs = (1+ e)

(
1+ Im

Im

)
µs, (3-12)

where 〈x〉 =max(x, 0) denotes the Macaulay brackets. Thus,ψ2 in (3-11) can be simplified to obtain

ψ2 = ψ2(ψ1)=
ψs

e
[z− g(z)]. (3-13)

It follows that

ψ2(0)= 0,
dψ2

dψ1
(0)=−

α

e
, ψ2(ψs)= 0,

dψ2

dψ1
(ψs)=

1
e
. (3-14)

This means that the measure ψ2 of the obliquity angle just after the collision is a smooth function of the
measure ψ1 of the obliquity angle just before the collision. The response characterizes partial slip with
negative values of ψ2 for ψ1 < ψs and full slip with positive values of ψ2 for ψ1 > ψs . Moreover, the
transition to full slip occurs when ψ2 changes sign with ψ1 = ψs . Also, the shear coefficient µ attains
and maintains its maximum constant value µs during full slip.

This hard-particle model is characterized by three model parameters

{e, µs, α}, (3-15)

with α controlling the shape of the transition region from partial slip to full slip. The model will satisfy
the physical restrictions (2-14)–(2-17) on the impulsive force when the values of these parameters ensure
that (3-10) is satisfied for all collision events. In the following sections this model is compared with the
hard-particle model of Walton [1993] and examples are considered which demonstrate the importance
of the smooth transition in the partial slip region.

4. The hard-particle collision model of Walton [1993]

The hard-particle model proposed by Walton [1993, Sec. 25.5.1] is characterized by the usual coefficient
of restitution e in (3-4) and a rotational coefficient of restitution β associated with the tangential direction
τ defined in (3-6) (see Figure 2). These expressions tacitly assume that 1v2 remains in the plane of
{n,1v1} with

1v2 =−[e(1v1 · n)n+β(1v1 · τ )τ ], (4-1)
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which with the help of (2-8) and (3-3) can be rewritten in the form

1v2 =
e|1v1|√
1+ψ2

1

(−n+ψ2τ ), ψ2 =−
β

e
ψ1. (4-2)

Moreover, Walton [1993] proposed a functional form for β defined by

β =min(β0, β
∗), β∗ =−1+

ψs

ψ1
, 0< β0 ≤ 1, (4-3)

where ψs is given by (3-12) and it is noted that K in [Walton 1993] is equal to Im here. It then follows
that (4-2) and (4-3) yield

ψ2 =−
β0

e
ψ1 for 0≤ ψ1 ≤

ψs

1+β0
, ψ2 =

1
e
(ψ1−ψs) for ψ1 ≥

ψs

1+β0
, (4-4)

which satisfy the conditions (3-14) when β0 = α. Moreover, using (3-12) the expression (3-11) can be
rewritten in the form

ψ2 =
1
e

[
ψ1−ψs

( µ
µs

)]
. (4-5)

Thus, comparing (4-2) and (4-5), replacing {µ, β0} by {µW , α} and using the definition of z in (3-12)
yields the constitutive equation

µ= µW = (1+β)µsz, β =min(α, β∗), β∗ =−1+
ψs

ψ1
, (4-6)

which causes the model described in Sections 2 and 3 to be the same as Walton’s hard-particle model.
The associated value ηW of η is given by (3-9) with µ replaced by µW

η = ηW = 1−
( 1

1+µWψ1

)[
1+

(
1+ Im

Im

)
µ2

W

]
. (4-7)

This functional form automatically satisfies the restriction

1+ ηW > 0, (4-8)

and must satisfy the restriction
1− ηW ≥ 0, (4-9)

in order to ensure non-negative energy dissipation during the collision.
In summary, Walton’s hard-particle model is given by (4-5)–(4-9) which depend on the same three

parameters (3-15) as the smooth transition model proposed in Section 3.

5. Comparison of the smooth model with Walton’s model

In the remainder of the paper attention is limited to the case of uniform spheres for which

IA =
2
5 m A R2

A, IB =
2
5 m B R2

B, Im =
2
5 . (5-1)
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ψ2

1
e

1

Full slip line

Partial slip line

β0

e
1 ψ1 = ψs

ψ1

Figure 2. Sketch of the hard-sphere collision model of [Walton 1993].

The results in Figures 3–5 compare the response of the smooth model (denoted by S) with that of Walton’s
model (denoted by W ) for

µs = 0.3, e = 1 or 0.8, α = 0.35, 1 or 5. (5-2)

where the value of α = 0.35 was suggested in [Walton 1993]. In these figures the subscript has been
removed from µW . These figures show that the differences between the two models can be significant,
especially for the larger values of α when e = 0.8. In particular, it can be seen from Figure 3(c) that for
the smooth model the transition to full slip occurs at an obliquity angle θ = 64.5◦ so the transition region
from no slip to full slip is large. Also, it can be seen from parts (d) and (e) of Figure 4 that during this
transition region Walton’s model predicts no dissipation whereas the smooth model predicts dissipation

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of the smooth model (S) with Walton’s model (W ) for e = 1,
α = 0.35 and µs = 0.3.
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Figure 4. Comparison of the smooth model (S) with Walton’s model (W ) for e = 1,
α = 1 and µs = 0.3.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of the smooth model (S) with Walton’s model (W ) for e = 0.8,
α = 5 and µs = 0.3.
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over the entire range of the response. The results in Figures 3 and 4 satisfy the dissipation inequalities
(3-9) and (3-10). Moreover, the parameters used for Figure 5 show that these inequalities are not trivially
satisfied. In particular, it can be seen from parts (d) and (e) of Figure 5 that Walton’s model would violate
the dissipation inequality (3-10), while the smooth model would satisfy the dissipation inequality (3-10).

6. Bouncing of a sphere off a fixed horizontal plane

Figure 6 shows a sketch of a uniform sphere (A) colliding with a fixed horizontal plane with attention
limited to the vertical e1− e2 plane. Also, the motion of each sphere is simplified to be two-dimensional
with its angular velocity in the e3 direction. The body force of gravity b per unit mass acts in the positive
e1 direction. The effect of gravity is used to determine the motion of the sphere between collision events
but is neglected during the collisions. This approximation causes the model to limited to strong collision
events.

Using the formulation in the previous sections the wall can be modeled by the sphere (B) with the
specifications

m B � m A, RB � RA, vB1 = vB2 = vD1 = vD2 = 0, ωB1 = ωB2 = 0. (6-1)

Next, consider a general collision event which occurs at t = tn with

vA1(tn)= u1(tn)e1+w1(tn)e2, u1(tn) > 0, ωA1(tn)= ω1(tn)e3,

vA2(tn)= u2(tn)e1+w2(tn)e2, u2(tn)≤ 0, ωA2(tn)= ω2(tn)e3,

1v1(tn)= vC1(tn)= u1(tn)e1+ [w1(tn)+ RAω1(tn)]e2,

1v2(tn)= vC2(tn)= u2(tn)e1+ [w2(tn)+ RAω2(tn)]e2,

n= e1, τ (tn)=
s1(tn)
|s1(tn)|

e2, s1(tn)= w1(tn)+ RAω1(tn),

(6-2)

= 

 

= 

• xA

b

xC e2

n= e1
1v1

θ
τ

f
φ

n= e1

Figure 6. Sketch of a sphere colliding with a fixed horizontal plane showing the normal
n and tangent τ unit vectors and the directions of 1v1 and f .
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where s1(tn) is the slip velocity just before collision. Then, with the help of (2-3), (2-6)–(2-8), (2-13),
(3-3), (3-7)–(3-9), (3-11)–(3-13), (5-1), (6-1) and (6-2) it follows that

m = m A, ψs =
7
2(1+ e)µs, ηn =−1+

[
1+ e+µsψs g2

n

1+µsψszngn

]
,

ψ1(tn)=
|s1(tn)|
u1(tn)

, zn =
ψ1(tn)
ψs

, gn = 1−〈1− zn〉
α+1,

ψ2(tn)=−
s1(tn)[w2(tn)+ RAω2(tn)]

|s1(tn)|u2(tn)
, F̂n =−m A(1+ e)u1(tn)

[
e1+µs gn

s1(tn)
|s1(tn)|

e2

]
,

u2(tn)=−eu1(tn), w2(tn)= w1(tn)− 2
7 u1(tn)ψs gn

[
s1(tn)
|s1(tn)|

]
,

RAω2(tn)= RAω1(tn)− 5
7 u1(tn)ψs gn

[
s1(tn)
|s1(tn)|

]
.

(6-3)

Also, with the help of (5-1) the kinetic energy T (tn) just before the collision is given by

T (tn)= 1
2 m A[u2

1(tn)+w
2
1(tn)+

2
5 R2

Aω
2
1(tn)]. (6-4)

Next, expressing the center of mass x A and the angular velocity ωA of the sphere in the forms

x A = xe1+ ye2, ωA = ωe3, (6-5)

the balance laws of linear and angular momentum of the sphere between collisions require

ẍ = b, ÿ = 0, ω̇ = 0. (6-6)

Using the values {u1(tn), w1(tn), ω1(tn)} just before the collision at t = tn , the equations (6-3) determine
the initial conditions {u2(tn), w2(tn), ω2(tn)} just after collision, with the initial values of {x, y, ω} for
(6-6) given by

x(tn)= 0, ẋ(tn)= u2(tn), y(tn)= y(t−n ), ẏ(tn)= w2(tn), ω(tn)= ω2(tn), (6-7)

where y(t−n ) is the value of y just before the collision. Then, the solution of (6-6) is given by

x(t)= u2(tn)(t − tn)+ 1
2 b(t − tn)2,

y(t)= y(tn)+w2(tn)(t − tn),

ω(t)= ω2(tn) for tn ≤ t ≤ tn+1.

(6-8)

The value t = tn+1 is the time when the next collision occurs with the wall

x(tn+1)= 0⇒ tn+1 = tn −
2u2(tn)

b
, (6-9)

with the value y(tn+1) for the collision at t = tn+1 being specified by

y(tn+1)= y(tn)−
2u2(tn)w2(tn)

b
. (6-10)
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Figure 7. Values of the obliquity angle θ as a function of the normalized variable z.

 

Figure 8. Examination of the restriction 1−η > 0 for positive energy dissipation on the
parameters e and α.

Moreover, the values of {u1(tn+1), w1(tn+1), ω1(tn+1)} just before the collision at t = tn+1 are given by

u1(tn+1)=−u2(tn), w1(tn+1)= w2(tn), ω1(tn+1)= ω2(tn), (6-11)

which with the help of (6-3) are used to determine the initial conditions {u2(tn+1), w2(tn+1), ω2(tn+1)}

just after collision at t = tn+1. Then, the process is repeated for additional collisions.
Before presenting the solution to bouncing, it is of interest to examine the dependence of the incident

obliquity angle θ and the quantity (1− η), which characterizes energy dissipation, on the parameter z for
different values of the model parameters. For the examples in this section µs is specified by the value
in (5-2) and the solution is considered for different values of e and α. Specifically, use is made of (2-8),
(3-10), (3-12), and (6-3) to determine values for θ and (1− η). Figure 7 plots θ as a function of z for
different values of e. From this figure it can be seen that the obliquity angles θ for e = 1 and 0.8 are
greater than 60◦ at the transition to full slip (z = 1) so the transition region with partial slip is significant.
Figure 8 plots (1− η) as a function of z for different values of e and α. Recalling that (1− η) must be
positive for positive energy dissipation during the collision, it can be seen that for e = 1, the value of α
has to be less than or equal to unity for positive energy dissipation, but for lower values of e the value
of α can be greater than unity and still satisfy the restriction of positive energy dissipation.
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In order to interpret the results of specific examples, it is convenient to define the following normalized
parameters

Un =
u1(tn)
u1(t1)

, Wn =
w1(tn)
u1(t1)

, �n =
RAω1(tn)

u1(t1)
,

Sn =
s1(tn)
ψsu1(t1)

=
Wn +�n

ψs
, T̄n =

T (tn)
1
2 m Au2

1(tn)
=U 2

n +W 2
n +

2
5�

2
n, En =

T̄n

T̄1
, (6-12)

where {Un,Wn, �n, Sn, T̄n, En} characterize, respectively, the vertical velocity, horizontal velocity, an-
gular velocity, slip velocity, kinetic energy and the energy reduction just before the collision at t = tn .
Then, equations (6-3), (6-11) and (6-12) yield

zn =
|Sn|

Un
, gn = 1−〈1− zn〉

1+α, ηn =−1+
[

1+ e+µsψs g2
n

1+µsψszngn

]
,

Un+1 = eUn, Wn+1 =Wn −
2
7
ψs

( Sn

zn

)
gn, �n+1 =�n −

5
7
ψs

( Sn

zn

)
gn,

Sn+1 = SnGn, Gn(zn)= 1−
gn

zn
. (6-13)

Next, consider special state defined by

Wn =
1
7(2+ 5γ )ψs Sn, �n =

5
7(1− γ )ψs Sn, T̄n =U 2

n +
1
7ψ

2
s S2

n(2+ 5γ 2). (6-14)

From these expressions it can be seen that the two states γ =±|γ |, with different values of the horizontal
velocity Wn and angular velocity �n , have the same slip velocity Sn and the same kinetic energy T̄n .
Moreover, it follows from (6-13) and (6-14) that

Wn+1 =
1
7(2+ 5γ̄ )ψs Sn+1, �n+1 =

5
7(1− γ̄ )ψs Sn+1,

T̄n+1 =U 2
n+1+

1
7ψ

2
s S2

n+1(2+ 5γ̄ 2), γ̄ =
γ

1− gn
zn

. (6-15)

Comparison of (6-14) and (6-15) indicates that consecutive collisions maintain the same structure so the
response of the slip velocity Sn and the energy reduction En for the two initial states specified by

U1 = 1, W1 =
1
7(2+ 5γ )ψs S1, �1 =

5
7(1− γ )ψs S1, T̄1 = 1+ 1

7ψ
2
s S2

1(2+ 5γ 2), (6-16)

with γ =±|γ | are the same. This means that the parameters in the model can be determined by experi-
ments or simulations for which the sphere has no initial angular velocity {γ = 1} and the results can be
used for general states. In the following examples the initial state is specified by (6-16) with

S1 = z1 > 0. (6-17)

From (6-13) it follows that when e is less than unity, the value of the vertical velocity Un decreases with
each collision, eventually attaining the value of zero. The function Gn(zn) in (6-13) which characterizes
the slip velocity satisfies the properties

Gn(0)=−α, Gn(1)= 0, Gn(∞)= 1,
dGn

dzn
≥ 0, −α ≤ G(zn)≤ 1. (6-18)
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Moreover, it can be shown that

−1< Gn(zn) < 1 for 0< α < 1 and 0≤ zn <∞, (6-19)

which in view of (6-13) means that the slip velocity decreases during each collision as long as zn remains
bounded. However, the rate of decrease in Un might be slower than that of Sn , causing zn to approach
infinity and the value of Sn to approach a non-zero constant.

6.1. Bouncing vertically with no slip. The simplest special solution is one where the sphere does not
translate horizontally and does not rotate with

zn = 0, Wn = 0, �n = 0, Sn = 0 for n = 1, 2, . . . . (6-20)

This solution is valid for any values of {e, α, µs} and consists of the sphere merely bouncing vertically.
If e is less than unity, the sphere loses energy during each collision and eventually stops bouncing.

6.2. Bouncing vertically with initial slip. For this example the initial slip velocity has the special value

S1 = z1 = 1, W1+�1 = ψs, (6-21)

which allows the sphere to initially have nonzero horizontal velocity W1 and nonzero angular velocity
�1. Since Gn(1)= 0 in (6-13) it follows that slip velocity Sn reduces to zero during the first collision
and remains zero

Sn = 0 for z1 = 1 and n = 2, 3, . . . . (6-22)

This result is also independent of the values of {e, α}. Although the slip velocity might be zero this
does not mean that the sphere has stopped rotating or translating. In particular, it can be seen from
(6-14)–(6-15) that {Wn, �n} will both vanish when Sn vanishes if

γ = 0,
Wn

�n
=

2
5

for n = 1, 2, . . . . (6-23)

6.3. Bouncing with partial energy dissipation. For an example of bouncing with partial energy dissipa-
tion, the parameters are specified by (6-16) and (6-17) with

e = 1, α = 0.35, µs = 0.3, γ = 1, z1 = 0.5. (6-24)

Figure 9 shows the response of this sphere which is initially not rotating. Since e= 1, the vertical velocity
Un before each collision shown in part (a) of the figure remains constant so there is only partial energy
dissipation. The slip velocity Sn in part (b) reduces to zero, the horizontal velocity Wn in part (c) attains a
constant positive value and the energy reduction En in part (d) decreases to a constant positive value. The
sphere continues to bounce, translating and rotating without slip at the contact points of the collisions.

6.4. Bouncing with dissipation of the vertical kinetic energy. For an example of bouncing with dissi-
pation of the vertical kinetic energy, the parameters are specified by

e = 0.8, α = 0.35, µs = 0.3, γ = 0, z1 = 1. (6-25)
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Figure 9. Bouncing with partial energy dissipation: The solution shows initial slip with
{Sn,Wn}. The parameters are specified by e = 1, α = 0.35, µs = 0.3, γ = 1, z1 = 0.5.

Figure 10 shows that for these special values {γ = 0, z1 = 1} the nonzero initial values of the slip velocity
Sn , the horizontal velocity Wn and the angular velocity �n all drop to zero during the first collision and
remain zero. This means that after the first collision the sphere bounces vertically until all its kinetic
energy is dissipated.

6.5. Bouncing with dissipation of the vertical kinetic energy and continued slip. For an example of
bouncing with dissipation of the vertical kinetic energy and continued slip the parameters are specified
by

e = 0.8, α = 0.35, µs = 0.3, γ = 1, z1 = 6, (6-26)

which has a much larger value of the slip velocity and obliquity angle than that in (6-25). Figure 11(a)
shows that the normal velocity Un decays to zero; in the rest of the figure it can be seen that the slip
velocity Sn (b), the horizontal velocity Wn (c) and the energy reduction En (d) all reduce to positive values.
In particular, the normal velocity Un decays faster than the slip velocity Sn , causing zn to approach infinity
with Gn in (6-13) approaching zero. Also, it is interesting to note that when zn approaches infinity the
parameter η approaches (−1).

As Un approaches zero the sphere chatters (bouncing with imperceptible amplitude). The kinetic
energy remains constant even though the sphere continues to slip because the force of gravity is neglected
during these small collision events. This is an unphysical result of the approximation that the impulsive
force dominates the bounded force of gravity during the collision and it identifies a limitation of the
model for certain situations with multiple collision events.
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Figure 10. Bouncing with dissipation of the vertical kinetic energy: The solution shows
initial slip with {Sn,Wn, �n} dropping to zero after the first collision. The parameters
are specified by e = 0.8, α = 0.35, µs = 0.3, γ = 0, z1 = 1.

 

 

Figure 11. Bouncing with dissipation of the vertical kinetic energy: The solution shows
continued slipping (Sn > 0) with the parameters specified by e= 0.8, α = 0.35, µs = 0.3,
γ = 1, z1 = 6.
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7. Conclusions

The smooth transition model for hard-particle collision of spheres presented here has been motivated by
the model of Walton [1993], which has a sharp transition between a region of partial slip for low obliquity
angles and a region of full slip for higher obliquity angles. Specifically, the notion of a coefficient of
rotational restitution in the Walton model is replaced by a constitutive equation for the shear coefficient
µ, which controls the ratio of the shear component of the impulsive force to its normal component. The
model depends on three parameters: the standard coefficient of restitution e for relative normal velocities;
a constant value µs of friction for sliding in the full slip region; and a parameter α in the function g(z)
in (3-12) that controls the shape of the transition region from partial to full slip.

The resulting smooth transition model is relatively simple and the three model parameters {e, µs, α}

can be evaluated from experimental data or from simulations using soft-particle contact models. Ex-
amples show that the smooth transition region is large with the obliquity angle θ being between 0 and
nearly 60◦. Moreover, it is shown that the physical condition of non-negative energy dissipation imposes
nontrivial restrictions on the model parameters.
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MULTIOBJECTIVE OPTIMIZATION OF LAMINATED COMPOSITE PLATE
WITH ELLIPTICAL CUT-OUT USING ANN BASED NSGA-II

P. EMMANUEL NICHOLAS, M. C. LENIN BABU AND A. SATHYA SOFIA

Laminated composites are highly in demand for the applications where high strength and stiffness are
required at less weight. They generally fail due to buckling, as they are modeled as thin plates and
are loaded compressively. Therefore, the design parameters of the laminated composite plates are to be
optimized for the multiple-conflicting objectives buckling strength and weight. However, the composite
plates, which are used in real world applications, are to be made with cut-outs and finite element analysis
is required to analyze them. As it makes the optimization process more complex, a methodology is
proposed in this paper to carry out a multiobjective optimization for the rectangular composite plate made
with a central elliptical cut-out. The nondominated solutions are obtained using nondominated sorting
genetic algorithm (NSGA-II) in which the multilayer feed-forward neural network is used to replace the
time consuming finite element analysis. The numerical results show that the proposed method finds the
nondominated solutions efficiently and reduces the computational cost prominently.

1. Introduction

Fiber reinforced laminated composite structures have high specific strength and stiffness and so, they
are widely used in aerospace industries, automobile industries and wind turbine blades. In those ap-
plications, they are generally modeled as thin plates and shells and are compressively loaded. Hence,
they generally fail due to buckling and it is mandatory to optimize the design variables of the composite
plates for the multiple objectives such as maximum buckling strength and minimum weight. Aymerich
and Serra [2008] optimized conventional ply angles (0◦/± 45◦/90◦) to increase the buckling strength of
the composite plate. Almeida and Awruch [2009] carried out a multiobjective optimization to minimize
the weight and deflection of the composite plate. The conventional ply angles were used as design
variables and finite element method was used to evaluate the buckling strength of the structure. Omkar et
al. [2009; 2011] have optimized the composite plate for the multiple objectives weight and the total cost.
These multiobjective optimization problems were solved in the similar fashion of the single objective
optimization problem by assigning the suitable weights to the objective functions. However, the exact
values of the weights cannot be obtained, as the importance of each objective function cannot be clearly
quantified in the multiobjective optimization problems. Further, the ply angles having the same orienta-
tion are grouped in the optimum stacking sequences, as conventional ply angles are generally optimized
to improve the structural behavior of the composites. Kim et al. [2005] and Kim [2007] stated that the
thickness of the ply having a particular orientation is increased when the plies having the same orientation
are stacked together. They also mentioned that the interlaminar normal and shear stresses are developed
due to the grouping of plies having the same orientation. Campbell [2010] and Emmanuel Nicholas et

Keywords: stacking sequence optimization, artificial neural network, NSGA-II, finite element analysis.
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al. [2014] recommend for maintaining the dispersed stacking sequences so as to avoid grouping of plies
having the same orientation.

In real world applications, it is indispensable to design the composite plates with cut-outs (holes) in
order to provide fasteners to assemble them as a complex structure. In aircraft industries, the cut-outs are
necessary to function as doors, windows and access ports. Al Qablan et al. [2009] stated that the cut-outs
are necessary for accessibility reasons and to reduce the weight of the composite structure. The finite ele-
ment analysis was used to find the buckling strength of the composite plate with cut-outs. Liu et al. [2006]
indicated that the design of interior cut-outs in laminated composite structures is of great importance in
the aerospace, automobile and structural engineering. Lopes et al. [2010] mentioned that the cut-outs on
composite structures are required to accommodate windows, doors, and bolted joints. Aydin Komur et
al. [2010] referred that the cut-outs are generally used in composites as design necessities. They analyzed
the buckling strength of a woven-glass-polyester laminated composite plate with circular/elliptical cutout.
The finite element method was used to study the effect of the cutout shape on the buckling strength. Erklig
and Yeter [2012] used finite element analysis to study the effects of various cut-out shapes on the lateral
buckling behavior of composite beams. Iyengar and Vyas [2011] carried out an optimization process
to maximize the buckling load of the laminated composite plate with and without cut-out. However,
the design space was restricted by using very few ply angles (±60◦,±45◦,±30◦, 0◦/90◦) as the design
variables. Liu et al. [2006] and Lopes et al. [2010] performed the shape optimization of multiple interior
cutouts by varying [θ/−θ ]2s stacking sequences. Rocha et al. [2014] considered the laminated composite
curved panel with a central circular cutout that is generally used in aerospace applications. He optimized
the structure consists of 8 plies by varying the conventional ply angles and ply thickness.

The artificial neural network is generally used as a prediction tool in the applications, where the oppor-
tunities are not available or not possible to find the actual targets. Recently, ANN has been successfully
used to approximate the mechanical behaviors of the laminated composites. Zheng et al. [2009] success-
fully used the wavelet neural network to estimate the delamination locality. Bilgehan [2011] used artificial
neural network to analyze the buckling strength of slender prismatic columns. Chakraborty [2005] used
natural frequencies as inputs to the artificial neural network and predicted the existence of embedded
delaminations based on their size, shape and location in FRP composites. The natural frequencies of
laminated composite for different blends of size, shape and location of an embedded delamination were
obtained using finite element method and these samples have been used to train a back propagation neural
network (BPNN) to predict the delaminations in the composite structure. Karnik et al. [2008] carried out
delamination analysis in high speed drilling with the application of artificial neural network model. The
spindle speed, feed rate and point angle were used as the input parameters to the network structure.

Tsao and Hocheng [2008] used radial basis function network (RBFN) and predicted the thrust force
and surface roughness in composite materials during the drilling process. Al-Assaf and El Kadi [2001]
applied ANN to predict the mechanical properties of fiber reinforced polymeric composites. They exam-
ined the possibility of using neural network to predict the failure due to fatigue. The ply angle, stress
ratio and maximum stress were given as the inputs to the network and the number of cycles to failure
has been found as the output. Al-Haik et al. [2006] studied the visco-plastic behavior of composites
using a neural networks formulation. Mishra et al. [2010] used artificial neural network to predict the
residual tensile strength of unidirectional glass fiber reinforced plastic laminates with drilled hole. The
drill point geometry, feed rate and the spindle speed have been used as the input variables to the network.
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The number of neurons in the input and output layers were equal to the number of input and output
parameters. The number of neurons in the hidden layer was optimally found based on trial and error
method. Reddy et al. [2013] used artificial neural networks to predict the deflection and stresses of car-
bon fiber reinforced plastic (CFRP) laminated composite square plate subjected to uniformly distributed
load. Cardozo et al. [2011] used ANN based optimization method to optimize the stacking sequence of
laminated composite. However, the work is limited by using only the conventional ply angles.

It is observed from the literature review that many research works have been done on stacking sequence
optimization of rectangular laminated composite plate to increase the buckling strength and reduce the
weight of the structure. The in-plane and buckling strengths of the rectangular composite plate were
computed analytically during the optimization process. However, the literature review also reveals that
the composite plate, which is to be used in real world applications, has to be made with cut-out. Further,
it is exposed that the plate made with cut-out has to be analyzed using FEM and this increases the
computational cost. Though many researchers used FEM and ANN and studied the influences of cut-
out size, shape and its location on buckling strength and other mechanical behaviors of the composite
plate, the design factors of the composite plate made with cut-out have not been optimized adequately.
In addition, the conventional ply angles have been generally used as the design variables and also the
complex multiobjective optimization problems have been solved like the single objective optimization
problems. Hence, the ANN based methodology is proposed in this paper to obtain the Pareto-optimal
designs for the laminated composite plate made with cut-out, whereas the design space is critically
increased with the choice of reduced ply angle intervals.

2. Problem definition and solution methodology

2.1. Problem definition. The rectangular composite plate with central elliptical cut-out shown in Figure 1
is considered in this research work whereas the cut-out is oriented at an angle 60◦ from the major coor-
dinate axis. The simply supported boundary conditions and biaxial compressive loads are applied on all
the four sides of the plate. The ply angle (θ), number of plies (n) and stacking sequence are chosen as
design variables and the in-plane strengths obtained using Tsai–Wu criterion is set as design constraint.
The design space is critically increased using the concept of ply angles having the reduced intervals so as
to improve the degree of the objective functions and to reduce the number of grouping of plies having the
same orientation. The objective functions, design variables and constraints are defined in Equation (1).

Maximize the buckling strength λb = f ([θ1/θ2/θ3 . . . /θn])

and minimize the weight (total thickness) T =
∑k

i=1 ti
subject to θi =−90◦ to 90◦with an increment “1”
ti = 0 or 0.125 mm
f1σ11i + f2σ22+ f6σ12+ f11σ

2
11+ f22σ

2
22++ f66σ

2
12+ 2 f12σ11σ22 ≤ 1

G ≤ 4
where n = number of plies in the plate
ti = thickness of each ply “i”
1= any value of 45◦, 15◦, 5◦ and 1◦

i = 1, 2, 3, . . . , n/2 (i.e., stacking sequence is symmetric)
and G = number of continuous plies having the same orientation. (1)
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2.2. Solution methodology. The artificial neural network is considered in the optimization procedure
to predict the buckling strength of the laminated composite plate made with cut-out. The proposed
optimization method comprises of three modules. In the first module, the stacking sequences of the
laminated plate made with cut-out are randomly generated using MATLAB code and buckling strength

�
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1000

Figure 1. Geometry of the structure.

Y

X

Figure 2. Loading and boundary conditions.
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Property Values

E1 133.86 GPa
E2 = E3 7.706 GPa

G12 = G13 4.306 GPa
G23 2.76 GPa

v12 = v13 0.301
v23 0.396
Vf 0.55

F1T 1500 MPa
F1C 1200 MPa
F2T 40 MPa
F2C 246 MPa
F6 68 MPa

Table 1. Material properties of the (AS4D/9310) carbon/epoxy composite.

of each configuration is evaluated using the commercial finite element analysis software ABAQUS. In
the second module, the neural network (ANN) structure is constructed using MATLAB code and it is
trained using the sample data generated in the first module. The genetic algorithm, in which the trained
ANN is used to predict the fitness values, is used as the optimization tool in the third module.

2.3. Finite element analysis and data generation. The finite element method is used to analyze the
structure when the geometry, material property or loading condition is irregular. The commercial finite
element analysis software ABAQUS is used in this paper to equip the sample data so as to train and test
the ANN. The stacking sequences of the rectangular composite plate made with the elliptical cut-out
are randomly generated from the specified design space and the buckling strength and the ply stresses
(through which the safety factor is found using Tsai–Wu criterion) of each configuration are calculated
using ABAQUS. The MATLAB code is used to generate the stacking sequences randomly and python
script is used to interface ABAQUS with MATLAB. The material properties listed in Table 1 are applied
to the plate. The maximum number of plies is set as 24, whereas each ply has a uniform thickness of 0
or 0.125 mm. The value of ply thickness is set as 0 so as to vary the number of plies.

The simply supported boundary conditions (as given in Equation (2)) and biaxial compressive load
are applied along the edges of the plate as shown in Figure 2. The finite element model of the plate is
generated using four node shell element (S4R) where each node has six degrees of freedom. The sample
finite element model of the plate with cut-out is shown in Figure 3. In this paper, the number of elements
is optimally found as 5300 by using the convergence graph shown in Figure 4.

w0(x, 0)= 0, w0(x, b)= 0, w0(0, y)= 0, w0(a, y)= 0,

Mxx(0, y)= 0, Mxx(a, y)= 0, Myy(x, o)= 0, Myy(x, b)= 0.
(2)

2.4. Artificial neural network. As the design space of this work is critically increased and FEA is re-
quired to analyze the plate, ANN is used in this paper to predict the buckling strength and the safety
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Figure 3. Finite element model of the composite plate with cut-out.
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MULTIOBJECTIVE OPTIMIZATION OF LAMINATED COMPOSITE PLATE 163

Sl.No Training Algorithm Acronym

1 resilient backpropagation RP
2 scaled conjugate gradient SCG
3 conjugate gradient with Powell/Beale restarts CGB
4 Fletcher–Powell conjugate gradient CGF
5 Polak–Ribière conjugate gradient CGP
6 Levenberg–Marquardt LM
7 BFGS quasi-Newton BFG

Table 2. Various training algorithms.

factor during the optimization process. A multilayer feed-forward back- propagation neural network is
used. The neural network is built in four stages. In the first stage, the sample data with their targets are
collected. The network object with suitable neuron in each layer, number of layers, transfer function for
each layer and the training algorithm of the network are chosen in the second stage. The created network
is trained in stage three with the samples generated in stage one. The network is tested in stage four
with the remaining samples and after the satisfaction of the performance of the network with these test
samples, the network is simulated for the new inputs.

The performance of the neural network during the training and after the training periods highly depends
on the choice of the network objects such as the numbers of hidden layers, number of neurons, transfer
functions and the training algorithm. Yuen and Lam [2006] mentioned that these parameters are to be de-
cided based on the experience or rule of thumb only. Bolanča et al. [2014] obtained the network structure
by optimally varying these parameters. Kermanshahi and Iwamiya [2002] and Chakraborty [2005] also
recommended for finding the network objects using the trial and error method. Four layers network is
chosen for this work with the neurons 24, 30, 15 and 2, respectively. The input and output layers consist
of 24 and 2 neurons, respectively, as the ANN has 24 inputs (layer angles) and 2 outputs (buckling
strength and safety factor). The number of neurons in the hidden layers, transfer functions and the
training algorithm are chosen based on the trial and error method [Mishra et al. 2010]. Since the design
space is increased here with the choice of dispersed layer angles, 1000 samples of stacking sequences
with their targets are generated for each ply angle interval. The inputs and the targets are normalized
between −1 to 1. Tan-sigmoid transfer function is used for the first three layers and linear transfer
function is used in the last layer. Seven networks having same number of layers, neurons and same
type of transfer functions have been constructed and they have been trained separately using the various
training algorithms given in the Table 2.

After the successful training, the networks were validated using the new data. Further, the average and
the maximum error have also been found for each training algorithm and they are compared in Figure 5.
It shows that the error level is high for the network trained by BFG type training algorithm and less
for the network trained by CGF type training algorithm. Similarly, the average error rate is found to be
maximum for the network trained by BFG type training algorithm and minimum for the network trained
by CGF type training algorithm. Hence, the CGF type training algorithm is selected to train the network.
The architecture of ANN is shown in Table 3.
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Figure 5. Networks error comparisons.

Ply angle interval Neurons in each layer Transfer functions Training algorithm

45◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

30◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

15◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

5◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

Table 3. Architecture of ANN. †Fletcher–Reeves conjugate gradient algorithm.

2.5. Nondominated sorting genetic algorithm. The nondominated sorting genetic algorithm (NSGA-
II), proposed by Deb [2001], is used in this research work to obtain the Pareto optimal designs of the
multiobjective optimization problem. It comes under the category of elitist multiobjective evolutionary
algorithm. As the name suggests, an elite-preserving operator favors the elites of a population by giving
them an opportunity to be directly carried over to the next generation. In this way, a good solution found
at the beginning of the run will never be removed unless a better solution is found out.

Initially, the population is randomly generated and the solutions are sorted into each front based on
nondomination. The dual objectives in the multiobjective optimization problem are maintained by using
a fitness assignment scheme that prefers nondominated solutions. In the current population, the very first
front is absolutely a nondominant set and the second front is dominated only by the solutions available
in the first front and the sorting of fronts happen so on. A solution “S1” is said to dominate another
solution “S2”, if the following conditions are completely satisfied:
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• The solution S1 is not inferior to S2 in all the objectives.

• The solution S1 is strictly better than S2 in at least one objective.

A rank (fitness) value is assigned to the individuals of each front based on the front number in which
they exist. Solutions available in the first front are assigned with a fitness value of 1 and solutions of the
second front are assigned with a fitness value of 2 and so on. In addition to the fitness value, a factor
called crowding distance is also calculated for each solution. The main objective of finding the crowding
distance is to show the closeness of a solution to the ones of its neighbours. The systematic procedure
of finding the crowding distance is given below.

• Let “P” be the number of solutions existing in a front and “M” the number of design objectives.

• For each objective function, the solutions in the front are sorted in the worst order of its objective
values (fm) and the sorted indices vector (Im) is found (usually the size of “I” is equal to the size
of “P”).

• A large distance values are assigned to the boundary solutions as given in (3).

dm
1 = dm

p =∞. (3)

• For the remaining solutions ( j = 2 to P − 1), the crowding distance is calculated using (4).

dm
j = I m

j +
I m

j+1− I m
j−1

f m
max− f m

min
. (4)

The parents are selected from the current population based on their rank and crowding distance by
using the tournament selection. The solution having a lower rank than another solution is selected. If
both solutions are having the same rank, then the crowding distance is used to select the best solution.
The solution with higher crowding distance is selected to the mating pool to reproduce the offspring. The
uniform crossover and mutation operators are applied to generate the next populations. As the number
of plies is also included as one of the design variables, the size of the chromosome in the multiobjective
optimization is increased twice than that of the size used in the single objective optimization. The
processes of uniform crossover and mutation applied in the multiobjective optimization problem are
given in Tables 4 and 5.

The symmetric laminated composite plate having maximum of eight plies above or below to the
mid-plane is considered in this example. As number of plies, angle of each ply and stacking sequence
are optimized in the multiobjective optimization problem, each chromosome has sixteen genes in this
example. The genes in first half of the chromosome represent the ply angle, whereas the genes in the next
half of the chromosome represent the ply thickness. The genes in the second half of the chromosome
remain unchanged during the crossover and mutation processes, as each ply has a constant thickness of
0.1 mm.

A distinct operator, named as ply deletion operator, is additionally used in the multiobjective opti-
mization to vary the number of plies of the laminated composite plate. The ply deletion operator is used
to take out a gene from the second half of the chromosome and to replace it with an empty stack code.
This operator is applied based on the probability given by the user. If the randomly generated number is
greater than the user given probability, the thickness of any ply is randomly chosen and set as zero. An
example for the ply deletion operator is given in Table 5.
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Before crossover

Ply angle Ply thickness

45 30 20 50 −45 −30 90 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
−20 10 30 −20 90 60 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After crossover

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
−20 10 20 −20 −45 60 90 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 4. An example of uniform crossover for NSGA-II.

Before mutation

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After mutation

Ply angle Ply thickness

45 30 30 50 90 −30 −25 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 5. An example of uniform mutation for NSGA-II.

Before ply deletion

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After ply deletion

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1

Table 6. An example of ply deletion operator for NSGA-II.

3. Numerical results and discussion

3.1. Validation of neural network. In general, the trained network performs well during the training
session. However, there may be possibilities of over fitting when the same network is applied to the newly
generated data. Hence, the trained network must be validated before it is included in the optimization
procedure. The laminated composite plate made with the elliptical cut-out is considered, in which the
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Figure 6. NN predictions versus actual targets for various ply angle intervals.

cutout is oriented at an angle 60◦ and located at the center of the plate as shown in Figure 1. Twenty
stacking sequences are generated for different ply angle intervals and the buckling strengths have been
predicted using the trained networks as well as the finite element method. The results obtained using
FEM and ANN have been compared in the Figure 6, which shows that the predictions of outputs are
nearer to the actual targets in all the cases.

3.2. Multiobjective optimization. The ANN based NSGA-II is constructed and used to find the Pareto
optimal solutions of the complex multiobjective optimization of the laminated composite plate with
cutout. The maximum thickness of the plate is set as 3 mm whereas each ply has a thickness of 0.125 mm.
The number of plies, angle of each ply and stacking sequences are optimized for five different ply angle
intervals (45◦, 30◦, 15◦ and 5◦). Hence, five different networks are constructed, trained and used for
the multiobjective optimization problem. After the training, the networks are validated using new data.
The performances of the networks during the testing period are shown in Figure 7 and it shows that the
predictions of the networks are very close to the FEM results. Hence, the networks are recommended to
be used in NSGA-II to predict the fitness values.

The Pareto optimal solutions obtained for different ply angle intervals using ANN based NSGA-II are
shown in Figure 8. The results prove that the number of solutions in the Pareto optimal set is significantly
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Figure 7. Performance of the networks during the testing.

increased by reducing the ply-angle interval. Only three solutions were found in the Pareto optimal set
when conventional ply angles have been optimized. The number of solutions in the Pareto optimal set
was increased from three to five when the ply angle interval has been reduced from 45◦ to 30◦. Further,
it is found that the number of solutions was increased to six and twelve when the ply angle interval has



MULTIOBJECTIVE OPTIMIZATION OF LAMINATED COMPOSITE PLATE 169

1600

1400

1200

1000

800

600

400

200

0

−200

0 5 10

Thickness (mm)

5 deg

15 deg

30 deg

45 deg

15 20 25 30

B
uc

kl
in

g 
st

re
ng

th
 (

N
/m

m
)

Figure 8. Pareto optimal solutions for the composite plate with cut-out.

been reduced to 15◦ and 5◦, respectively. The results also show that the boundaries of the Pareto optimal
front are significantly increased by using the concept of ply angles having the reduced intervals.

Based on the trial and error method the maximum number of generations is set as 300, whereas each
generation works with 40 populations. If FEM had been used to analyze the plate, ABAQUS would have
been called 12,000 times during the optimization process. As each run of FEM consumes approximately
18 seconds, more than sixty hours are required to complete the stacking sequence optimization problem.
Further, GA is one of the stochastic optimization (SO) methods and hence, it has to be run several times
in order to ensure for the global optima. This makes the FEM based optimization process more complex.
However, the same optimization problem has been completed in less than 15 minutes using ANN based
optimization method. Though the data generation task (for which FEM must be used) consumes about
5 hours, the weights and biases of the trained network are stored and used in future at any number of
times in order to find the optimum GA control parameters and to ensure for global optima.

The number of Pareto optimal solutions obtained for various ply angle intervals are given in Table 7
and they are compared based on the objective values of the boundary solutions. It is found that only
three Pareto optimal solutions were obtained when conventional ply angles have been optimized. The
number of Pareto optimal solutions was increased from three to five by reducing the ply angle interval
from 45◦ to 30◦. Further, the number of solutions in the Pareto optimal set was increased to six and
twelve, when the ply angle interval has been reduced to 15◦ and 5◦, respectively. Thus, the concept of
ply angles having the reduced intervals not only reduces the number of groupings of plies having the
same orientation, but also increases the number of solutions in the Pareto optimal set as well as enhances
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Ply angle
interval (“1”)

Number of
solutions

in the Pareto
optimal set

Maximum buckling strength
and the corresponding

plate thickness

Maximum plate thickness
and the corresponding

buckling strength

Buckling strength† Thickness†† Thickness†† Buckling strength†

ANN FEA ANN FEA

45◦ 3 28.29 27.88 10 15 130.55 134.7
30◦ 5 16.36 16.14 10 25 750.23 738.45
15◦ 6 6.856 7.05 7.5 27.5 1433.25 1485.2
5◦ 12 1.2 1.17 2.5 27.5 1403.15 1359.52

Table 7. Comparison of Pareto optimal solutions. Units are †N/mm and ††mm.

the degree of the objective functions. In addition, the predictions of ANN are once again compared using
FEA in Table 7, which proves that the performance of ANN is quite good even for the new data.

4. Conclusions

The Pareto optimal solutions for the laminated composite plate made with cut-out have been obtained
using ANN based NSGA-II. The predictions of ANN have been found to be very close to the actual
solutions. As weights and biases of the network can be stored, it is able to run NSGA several times
to ensure the global optima. The number of solutions in the Pareto optimal set has been significantly
increased by reducing the ply angle interval. The boundaries of the Pareto optimal set have been increased
using the concept of reduced ply angle intervals. Accordingly, the degree of the objective functions has
been enriched.
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ANALYTICAL ESTIMATES FOR THE LATERAL THRUST IN BOLTED STEEL
BUCKLING-RESTRAINED BRACES

GUIDO BREGOLI, FRANCESCO GENNA AND GIOVANNI METELLI

Analytical expressions are developed for the lateral thrust exerted by the core of a buckling-restrained
brace (BRB), when, upon a prescribed axial loading history, it buckles, coming into contact with the
external retaining structure. Account is taken of (i) the elastic stiffness of the containment case; (ii)
the possible flattened shape of each buckled wave in the zones of contact with the containment profiles;
and (iii) the increase in the lateral thrust due to loading-unloading in the presence of linear kinematic
hardening. Comparisons with both experimental and numerical results confirm the effectiveness of the
analytical predictions. The proposed calculation techniques for the lateral thrust might be of help in the
design procedures of BRBs.

1. Introduction

The design of buckling-restrained braces (BRB) is becoming an increasingly important topic in civil engi-
neering, both because BRBs have been recognized to be effective in dissipating energy, and because they
appear to be quite useful for structural upgrade with minimal interventions. Nevertheless, the behavior
of BRBs is not yet understood in full. For example, reliable formulas are still lacking with reference to
the design of the containing structure, an element expected to sustain large lateral forces deriving from
the contact with the buckled internal core; these lateral forces, if not properly accounted for, can lead to
the collapse, local or global, of the whole structural element.

Little attention seems to have been devoted, so far, to the calculation of the lateral thrust in BRBs
as consequence of a given loading history. Basic engineering approaches can be found in [Lin et al.
2012; Takeuchi et al. 2010; Wu et al. 2014; Chou and Chen 2010; Zhao et al. 2014]; in these works a
capacity design approach was often taken, with the aim of estimating only the maximum possible thrust
acting on the retaining profiles, independently on the actual loading history. Moreover, a standard Euler’s
relation between applied axial load and buckled wavelength was always assumed, which is incorrect in
the present situation.

Other work is mainly theoretical, such as that of [Chai 1998] which, however, considers the case of
large displacements, which entails complications that are unneeded in BRB applications, where the gap
between core and containment is usually very small. A brief discussion of the relevance of this type of
work to the case of BRBs can be found in [Genna and Bregoli 2014].

The present paper illustrates new results that exploit the theory developed in [Genna and Bregoli
2014], where only a generic, fully elastic problem of buckling with frictionless contact was studied, for
a monotonic loading condition only. The new results presented hereafter hold for BRBs in the elastic-
plastic case, and account both for friction and, at least in part, for the effect of cyclic loading. The main

Keywords: buckling-restrained braces, elastic-plastic buckling, unilateral contact, lateral thrust, restraining member design.
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goal is an attempt at obtaining working design expressions, for the lateral thrust in bolted steel BRBs, that
could be considered reliable in engineering terms, despite the uncertainty of several governing parameters,
such as the existing imperfections as well as the friction and the material properties.

The results thus obtained will be compared with available experimental and numerical ones described
in detail elsewhere [Bregoli et al. 2014; Bregoli 2014; Genna and Gelfi 2012a].

2. Theoretical background

The structural element herein considered is illustrated in Figure 1, which refers to a BRB made of two
main steel components: an internal plate, or core, which is the energy-dissipating element, and an external
containment structure, that can be made of steel profiles, bolted to each other and designed so as to leave
a nominal gap s between their internal surfaces and the external ones of the core.

The structural model of Figure 2 is adopted to describe the postbuckling mechanics of a steel-bolted
BRB. In it, the central linear element represents the deformable core; the upper and lower linear elements
represent the containment profiles, described as rigid surfaces free to translate only, and connected to

Figure 1. Sketch of the geometry of the studied BRB, showing the internal steel plate,
the distancing plates, the two external C-shaped retaining steel profiles (one of them has
been partially hidden), and the four connecting bolts. The transversal stiffening plates
define an assembly called “design” in Section 6.

Figure 2. Analytical model for the study of a BRB assembly.
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Figure 3. Buckled shapes (single waves shown): possible contact configurations consid-
ered in the analytical treatment. Image 1 is of a symmetric, single point contact. Image
2 is of an asymmetric point contact, which derives from the configuration of image 4
after local buckling of the flat top portion. Image 3 concerns a symmetric double point
contact, deriving from the simultaneous local buckling of the flat portions in image 5.
Image 4 is of an asymmetric line contact configuration, with line contact on top and
point contact on bottom. Image 5 is of a symmetric line contact configuration.

each other by means of a linear elastic spring, with elastic constant k (dimension of force divided by
displacement). This spring accounts for the actual deformability — both global and local — of the whole
containment structure of Figure 1. Assuming always small values of the gap s and small deflections, the
analysis of this model is carried out in a second-order theory; shear strain contributions are neglected.
It is assumed that the buckled configuration of the core is periodic, so that only half of a buckled wave
needs to be studied. Throughout this paper, compression and shortening will be assumed as positive.

In order to consider the presence of line (flat) contacts between core and containment, it is assumed
that the buckled shape can take any of the forms illustrated in Figure 3, which are of 3 types: (i) a pure
point contact configuration, which has 3 possible subcases: with a single contact point at each side of
each wave (image 1); or with one contact point at one side and two contact points at the other side of the
core (image 2); or with two contact points at each side of each wave (image 3); (ii) an asymmetric line
contact configuration (image 4), and (iii) a symmetric line contact configuration (image 5).

In the sequel of this work, E denotes the Young modulus of the core, A the area of its cross-section, L
its total length, F the compressive axial force existing in the buckled core, related to the axial shortening
1u, in the elastic range, by the expression

F =
E A
L
1u. (1)

Further, I denotes the minimum moment of inertia of the core, α the ratio defined by

α2
=

F
E I
, (2)
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Figure 4. Possible values of ξ , defined in (4), as a function of the normalized spring
stiffness k/(α2 FL). The horizontal solid lines describe maximum values for ξ in the
case of line contacts. The lines with symbols describe the possible values for ξ deriving
from situations of point contact only: black circles refer to asymmetric point contacts, as
in Figure 3, image 4; white squares refer to single point contacts, as in Figure 3, image 1;
black triangles refer to symmetric point contacts, as in Figure 3, image 5.

N denotes the number of buckled waves, and 2l0 the buckled wavelength. If the relationship between
applied axial force and buckled wavelength obeyed a standard Euler theory, the following would hold:

l0 =
π

α
. (3)

Euler’s theory is not applicable to this case, however, because of the presence of contact forces between
buckled core and external containment profiles.

Introducing a dimensionless parameter ξ to define l0 in a way similar to (3) as

l0 = ξ
π

α
, (4)

the theory developed in [Genna and Bregoli 2014] leads to the results summarized hereafter, valid in the
linear elastic case and for frictionless contact.

For the limiting case of k→∞, i.e., infinitely rigid retention profiles, 1.4303≤ ξ ≤ 4 was the range
of values that could be obtained for ξ of (4), depending on the buckled configuration assumed by the
core.

For finite values of k, the dependency shown in Figure 4 can be computed numerically for the three
possible cases of a point contact. In Figure 4, curve (a) refers to the case of an asymmetric point contact,
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as in Figure 3, image 2; curve (b) refers to a pure point contact, as in Figure 3, image 1; and curve (c)
refers to the case of a symmetric double point contact at each side of the beam, as in Figure 3, image 3.
It can be seen that, if only a point contact situation develops, the value of ξ can become very high for
small enough values of the stiffness k.

In the presence of a line contact, for any value of the stiffness k, it is proved that ξ = 3 in the case of
an asymmetric line contact, and ξ = 4 in the case of a symmetric line contact.

The actual value of ξ , given a value of the axial shortening, is strongly dependent on the shape of the
buckled configuration which, in turn, depends on several factors, among which the imperfections existing
in a real structure. Therefore, the actual buckled configuration is theoretically unpredictable, since there
are several possible alternatives among which to choose.

Given a buckled configuration, the corresponding expression for the lateral thrust Q can be also com-
puted; the following general result was derived in [Genna and Bregoli 2014], which gives the unit thrust
Qi , i.e., the contact force existing at each side of a single buckled wave:

Qi =
4πξαk Fs cos(πξβ)

cos(πξβ)(2π2ξ 2βk−α2 FL)− 2πξk sin(πξβ)
, (5)

where β is a parameter that identifies the length of the inclined portions of the wave between two suc-
cessive contact points, as shown in Figure 3.

Both in the limiting case k→∞, and for all the buckled configurations with incipient or fully formed
line contacts, with β = 1/ξ as shown in [Genna and Bregoli 2014], (5) reduces to the trivial one

Qi,∞ =
2Fαs
π

. (6)

In all these expressions, in the presence of a linear elastic material for the core, the value of F is given
by (1), and the value of α of (2) is

α =
1
ρ

√
1u
L
, (7)

where ρ is the radius of inertia corresponding to I , i.e., ρ2
= I/A.

The total lateral thrust Q is obtained by multiplying Qi for the number N of waves in the buckled
shape, i.e.,

Q = Qi N , (8)

with N an integer number. Genna and Bregoli [2014] propose to adopt the following expressions for ξ
and N , assuming that the containment profiles are stiff enough to allow the formation of line contacts:

l0 =
3π
α
, N = Int

( L
2l0
+ 0.5

)
, (9)

where Int denotes the integer part. This result, and specifically the choice ξ = 3, defines an axial force
nine times larger than the normally adopted Euler one corresponding to a given wavelength 2l0 in the
linear elastic range.

The analysis in [Genna and Bregoli 2014] concludes with the observation that an acceptable engineer-
ing choice for the value of parameter ξ , even in the elastic-plastic range, remains ξ = 3, as indicated in
(9). In the next two sections, therefore, we will adopt as the best compromise for the value of ξ the value
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Figure 5. Buckled shapes in two different situations. Left image (from a 3D analysis
with ABAQUS): the external containment can undergo rigid rotations. The number of
contact points is the same at each side, and the total number of waves is not an integer
(8.5, in this image). Right image (from a 2D analysis with ABAQUS in which the
containment is described as in Figure 2): the external containment can not rotate. The
number of contact points at one side (right, in the figure) is higher by one than at the
opposite side; the number of waves is integer (9, in this image).

ξ = 3, corresponding to a configuration of asymmetric line contact, and therefore to expression (9) for
the wavelength, and to expression (5) for the unit thrust, with β = 1/ξ . This implies that the containment
profiles are stiff enough to enable the development of line contacts. Only Section 5 will discuss possible
results deriving from different situations.

In the following, the calculation of the number N of waves associated to l0 is modified with respect
to the result given by (9) proposed in [Genna and Bregoli 2014]. In fact, the examination of both
experimental and numerical results (see [Bregoli et al. 2014; Bregoli 2014; Genna and Gelfi 2012a])
shows that it is possible to observe a fractional number of waves, associated to a configuration in which
both sides of the core have the same number of contact points. In this case, the number of unit contact
forces Qi , at each side of the core, is of the type I + 0.5, with I an integer number, as shown in Figure 5,
left image.

This situation derives from a rigid rotation of the external containment case, often possible in real
applications but ruled out in the analytical model of [Genna and Bregoli 2014]. This latter must always
show an integer number of waves, as in Figure 5, right image, whereas, if a rigid rotation occurs, the
configuration can become that of Figure 5, left picture, and the number of waves can be fractional, with
a possible difference of ±half wave with respect to the integer N case. In order to account for this
possibility, the suggested expression for N , once computed l0, is then

N = 1
2

Int
(L

l0
+ 0.5

)
, (10)

which yields a value for N rounded to the closest 0.5.
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3. Extension to linear kinematic hardening and cyclic loading

3.1. Linear hardening, monotonic loading. The material parameters describing the plastic properties
are now a yield stress of the virgin material, σ0, and either a tangent modulus Et , i.e., the slope of the
hardening branch in a uniaxial stress-strain curve, or, equivalently, a hardening coefficient h, i.e., the
slope of the hardening branch in a uniaxial stress-plastic strain curve. These parameters are related to
each other by the following relationships:

Et =
hE

E + h
, h =

E Et

E − Et
. (11)

In practical BRB applications, the core can undergo only small deflections, since the gap s is assumed
to be small. It is then appropriate to consider that, in the plastic range, buckling occurs under increasing
axial loading, i.e., with no local unloading at any point of any cross-section of the beam. In this case,
Shanley’s theory [Shanley 1947] of plastic buckling applies, which, for an Eulerian problem, would imply
to replace, in the expression of the buckling load, the Young modulus E with the tangent modulus Et .

The problem under study is not Eulerian, but Shanley’s theory holds also in this case, since the phe-
nomena involved can be seen as a sequence of local Eulerian bucklings in the plastic range. Therefore,
in the presence of an elastic-plastic linear hardening material (9) must be modified to

l0 = 3π

√
Et I
F
, (12)

where the correct expression for F , assigned a value 1u of the axial shortening, should be adopted,
according to the material behavior. Under the assumption of monotonic loading from zero up to an axial
shortening 1u, this is done by writing

F = Aσ (13)

and

σ = Et

(
ε+

σ0

h

)
, (14)

where

ε =
1u
L
. (15)

Finally, substituting (13) and (14) into (12), one obtains the desired result:

l0 =
3πρ√
ε+

σ0

h

(16)

Result (16) reduces to (9) in the case of linear elasticity (h→∞), and yields l0 = 0, i.e., an infinite
number of buckled waves, for the case of perfect plasticity (h = 0), when, under a compressive axial
load at the limit of the carrying capacity of the core, the stiffness vanishes.

In order to obtain the corresponding result for the lateral thrust, one must abandon expression (5),
which derives from the linear elastic analysis summarized in Section 2. Recalling that the value ξ = 3, in
expression (9) of l0, derives from a situation of line contact, one has the supplementary information that
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Figure 6. Deformed shape for the calculation of the unit thrust Qi in all the cases when
the bending moment at the contact point vanishes.

the bending moment, at the contact points at both sides of the core, is zero. Therefore, one can compute
the unit thrust Qi directly from equilibrium, as shown in Figure 6, thus obtaining

Qi =
2Fsk

βkl0− F N
, (17)

which, in the limit k→∞, reduces to

Qi,∞ =
2Fs
βl0

. (18)

Setting ξ = 3 and β = 1/3 in (17), using (9) for N and (16) for l0, one obtains the desired result for the
current situation.

3.2. Linear kinematic hardening, cyclic loading. In expression (16) for the buckled wavelength, the
driving stress was defined through (14), which holds for monotonic loading only, from zero up to the
prescribed axial displacement value.

In the case of cyclic loading, such expression does not hold anymore. One must in fact consider that,
after a tension cycle that develops sufficiently large plastic strains, such as is expected to occur in real
BRB applications, the core, during the next displacement reversal, and owing to irreversibility, starts
being subjected to a compressive axial force while it is still elongated. Buckling is therefore associated
to a different starting configuration than in the case of monotonic compressive loading.

This can be accounted for by redefining the current stress, at the end of a compressive loading cycle,
as if it were reached following a fictitious monotonic loading condition.

Figure 7 illustrates the problem in terms of a stress-plastic strain diagram. In this plot, where com-
pression and shortening are assumed positive, a loading cycle for a linear kinematic hardening material
is considered, as produced by an axial displacement cycle between limits −1ut and 1uc (subscripts t
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Figure 7. Stress-plastic strain loading cycle with linear kinematic hardening. Definition
of σcyc to be adopted for the calculation of the buckling load in the plastic range under
cyclic loading.

and c stand for tension and compression respectively), which correspond to strains −εt and εc, and to
plastic strains −ε p

t and ε p
c , respectively. The actual stress values corresponding to the cycle strain limits

εc and −εt would be σ c and −σ t respectively, both given by an equation of the type of (14).
Expression (16) for l0, derived for monotonic loading, can be extended to the case in which the

BRB core has undergone the nonmonotonic stress-strain history indicated in Figure 7, that can also
include an arbitrary number of previous cycles with the same limits. To do so, a modified stress value
must be inserted into equations (13) and (16), replacing the actual stress σ with a fictitious value σcyc.
The stress σcyc is defined as if the current plastic strain amplitude ε p

c in compression had been reached
monotonically, but starting from point A in Figure 7, after the elastic deformation recovery of the first
semicycle in tension.

This leads to the following calculation:

σcyc = σ0+ hε p
c + hε p

t = σ0+ h(εc− ε
e
c+ εt − ε

e
t )= σ0+ h

(
εc−

σ c

E
+ εt −

σ t

E

)
. (19)

Adopting for σ c and σ t the expression of (14), one obtains

σcyc = Et

(
εc+ εt +

σ0(E − h)
Eh

)
. (20)

The insertion of result (20) into (16) would allow one to obtain an expression for l0 holding for any
type of cycle. Nevertheless, in the present work we will consider only the special case of cycles of equal
amplitude in tension and compression, i.e., εc = εt = ε. This will be done because all the results presented
in the next sections will refer to the experimental cycles prescribed by the AISC regulations [AISC 2010],
which have equal amplitude in tension and in compression. In such case, it can be immediately seen that
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(20) implies a driving strain twice the one holding for monotonic loading:

σcyc = Et

(
2ε+

σ0(E − h)
Eh

)
. (21)

Restarting from (12) and (13), and replacing expression (21) for the stress into (13), one obtains what
follows for the semiwavelength:

l0 = 3πρ

√
hE

2εhE + σ0(E − h)
. (22)

This result must be inserted into (17) for the unit thrust. Nevertheless, since (17) derives just from
equilibrium, the expression of the axial force F , in it, should remain the same as in the case of monotonic
loading, i.e., (13) with stress σ given by (14).

4. Extension to contact with friction

Coulomb friction is assumed, with friction coefficient µ; typical values, for BRB applications, are
µ = 0.15 for lubricated steel surfaces, and µ = 0.25 for unlubricated steel surfaces, as measured, for
instance, in [Genna and Gelfi 2012a].

The correction for including friction amounts to increasing the driving axial compressive force F ,
associated to the prescribed axial shortening 1u, by the quantity

1F =
µQ0

2
, (23)

where Q0 denotes the total thrust of (8), with Qi as in (17), computed in the absence of friction, with
F associated to the real stress of (14), and l0 given by (22). This is only a first approximation, which,
however, appears to be effective from an engineering viewpoint.

As a consequence, the result for the wavelength should be recomputed replacing, in it, the value of F
with F +1F . Recalling (12), the final expression for l0 is thus

l0 =
3π
√

Et I√
σcyc A+µQ0/2

. (24)

The same correction to the axial force F must be applied to the formulas for the subsequent calculation
of the unit and total thrust, recalling that, in these calculations, the real value of the axial force associated
to σ , and increased by friction, should be considered.

We finally summarize the actual procedure to be followed to estimate the total thrust in a real BRB
subjected to cyclic loading, variable between equal positive and negative limits (a more general result
could be easily obtained adopting (20) for the corrected axial stress at the end of a nonsymmetric loading
cycle).

(1) Compute a first estimate of the wavelength with no friction from (22).

(2) From this, using (10), compute N0, the rounded number of waves associated to the estimated wave-
length.



ESTIMATES FOR THE LATERAL THRUST IN BOLTED STEEL BUCKLING-RESTRAINED BRACES 183

(3) Recompute a corrected wavelength as

l∗0 =
L

2N0
(25)

associated to the rounded number of waves.

(4) Recompute corrected values ξ∗ and β∗ = 1/ξ∗ from l∗0 , associated to the rounded number of waves.
This is done on the basis of definition (4), to be now rewritten in the elastic-plastic, cyclic loading
context, i.e., as

l0 = ξπ

√
Et I

σcyc A+µQ0/2
, (26)

with Q0 = 0 for the time being.

(5) Compute Q0 from (17) and (8). Recall that, so far, all these quantities hold for the frictionless case;
recall also that, in the calculation of the lateral thrust, the expression for the monotonic stress (14)
should be adopted when computing the axial force F .

(6) Compute a first estimate of the actual wavelength, with friction, from (24).

(7) Compute the correct rounded number of waves, N , using (10).

(8) Compute the correct wavelength as

l0 =
L

2N
(27)

associated to the rounded number of waves N .

(9) Compute the correct values for ξ and β = 1/ξ from l0, associated to the rounded number of waves
N , using (26).

(10) Compute Qi from (17) and Q from (8), with F associated to the monotonic stress of (14) and
increased to consider friction, using the rounded number of waves N .

An analysis of (17), using also (27), shows that the total thrust Q depends on the ratio sb/t , where b is
the width and t the height of the core cross-section.

5. Small stiffness of the containment structure

The containment structure, in real BRB applications, has a finite elastic stiffness that derives from the
presence of both the connection bolts and the global/local deformability of the profiles employed as a
retaining case. Such a stiffness can be taken into account, in the expressions proposed above, by suitably
computing the numerical value of the coefficient k, i.e., the elastic stiffness of the connection spring in
Figure 2.

Genna and Bregoli [2014] suggest to always use the results holding in the limit k→∞, in order to stay
clear of the complex behaviors deriving from the use of finite values for k. This implies a corresponding
attention in designing a sufficiently stiff containment structure. In fact, if a sufficient stiffness can not be
guaranteed, and even ruling out a situation of possible local plastic collapse of the containment profiles,
the situation becomes complicated:
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• Given a value of 1u, a reduction of k, assuming that the number of buckled waves remains the
same, implies an increase of the total thrust, which, in theory, could reach an infinite value.

• Given a value of 1u, a reduction of k might cause a decrease of the number of buckled waves, as
shown in Figure 4, and as is intuitive, considering that for k = 0 only one wave should appear; if
the number of waves is smaller, a smaller thrust is expected.

• Nevertheless, if a change in the number of buckled waves is also associated to a change of the
buckled configuration, then it is possible that an opposite effect happens. Consider the curves of
Figure 4, for example in the case of a symmetric double point contact configuration: for k/(α2 FL)=
0.03 the predicted value for ξ would be ξ ≈ 3.586287. If a reduction of the value of k to k/(α2 FL)=
0.01 is considered, then the corresponding value for ξ , for the same configuration, would be ξ ≈
5.548147, with a smaller number of waves and a smaller thrust to be expected, according to intuition.
But — and here lies the complication — if the value of k becomes small enough, then the occurrence
of a double point contact becomes less and less likely, since the confinement structure does not offer
enough support for this phenomenon, which can only descend from a previous line contact situation.
Therefore, it might well happen that, for k/(α2 FL) = 0.01, a single point contact configuration
occurs, for the given value of 1u, to which the value ξ ≈ 3.47089 corresponds: a number of waves
higher even than for the symmetric point contact configuration with k/(α2 FL)= 0.03, and a higher
thrust, contrary to the expectations, in the presence of a reduced value for k.

In view of these observations, the following procedure is suggested, for the choice of the appropriate value
for ξ in the presence of a given finite value for k: choose the value of ξ from the single point contact
curve of Figure 4 (the lowest of the three, with white square symbols), but use always ξ ≥ 3. This
choice seems reasonable because, as said, for small values of k line contacts are less and less expected.
According to this criterion, the set of values for ξ shown in Table 1 should be adopted, assuming that
even for very small values of k the assumptions underlying the theory hold.

Stiffness k range ξ

0.00055 < k/(α2 FL)≤ 0.000683 13.49249
0.000683< k/(α2 FL)≤ 0.000725 12.49189
0.000725< k/(α2 FL)≤ 0.000977 11.49118
0.000977< k/(α2 FL)≤ 0.00105 10.49034
0.00105 < k/(α2 FL)≤ 0.00151 9.489326
0.00151 < k/(α2 FL)≤ 0.00165 8.488068
0.00165 < k/(α2 FL)≤ 0.00265 7.486474
0.00265 < k/(α2 FL)≤ 0.003 6.484387
0.003 < k/(α2 FL)≤ 0.00583 5.481536
0.00583 < k/(α2 FL)≤ 0.007 4.477408
0.007 < k/(α2 FL)≤ 0.02169 3.47089
0.02169 < k/(α2 FL) 3

Table 1. Values of the coefficient ξ as a function of the normalized value of the spring
stiffness k.
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In practice, values ξ > 5 should not be expected since, in the case of such small values of the stiffness
k, a BRB would hardly behave as it should. In practice, again, all this suggests that the stiffness of the
containment structure, given a maximum value of the design axial force, should preferably be not less
than the limit value klim defined by

k ≥ klim, klim ≈ 0.022α2 FL , (28)

in order to use the “safe” results of the previous section and, at the same time, guarantee for the correct
functioning of the BRB.

If use is made of a stiffness-corrected value for ξ from Table 1, if ξ > 3 then a point contact configura-
tion is expected, and the value of parameter β, for the calculation of the unit thrust Qi , must be changed
accordingly, since β = 1/ξ is valid only for a situation of line contact. The value associated to a single
point contact situation is β = 0.5, as shown in [Genna and Bregoli 2014], and obvious from Figure 3.
Apart from the possible redefinition of ξ and β, everything else remains unchanged in the procedure
illustrated at the end of the previous section. Even the calculation of Qi from (17) remains still valid
because, in the fully plastic range, the bending moment, at the points of contact, is expected to be always
negligible.

Appendix A illustrates an example of how to compute the stiffness k for a specific arrangement of the
containment profiles.

6. Comparison with experimental and numerical results

The proposed analytical procedure has been tested for the reduced-scale BRBs studied in [Bregoli et al.
2014; Bregoli 2014; Genna and Gelfi 2012a]. These comprise a steel core plate enclosed into 2 bolted
C-shaped steel struts, that act as a retaining case, made of two UPN160 commercial profiles, as shown in
Figure 1. Eight different BRB assemblies have been tested: in five of them the steel core has a 50×5 mm
cross-section, and in the remaining three the core has a 50× 7 mm cross-section. The length of the core
is L = 560 mm. Five different core-case gap values have been considered: 2× 0.25, 2× 0.46, 2× 0.5,
2× 0.70, and 2× 1 mm, i.e., s = 0.25, 0.46, 0.5, 0.7, and 1 mm at each side of the core. In the sequel,
the different specimens will be denoted, according to the core thickness t and the nominal gap size s, by
5+0.25, 5+0.46, 5+0.5, 5+0.7, 5+1, 7+0.25, 7+0.5, and 7+1. For all the details of these samples,
see [Bregoli et al. 2014; Bregoli 2014; Genna and Gelfi 2012a].

The experimental results have been obtained following the AISC prescriptions for the cyclic loading
type [AISC 2010]. The final step has a value 1u =±11.2 mm, so as to have, at the end of the last two
cycles, ε =±0.02 in the core.

Three different arrangements of the retaining profiles have been considered. The basic one, denoted
in the following by “design”, makes use of two UPN160 profiles with transversal stiffening ribs welded
to them (see Figure 1). A stiffer geometry has also been tested, denoted by “rigid” in the following, in
which an additional longitudinal plate has been welded in the center of the UPN web, along its main
axis; the reinforcing plate was doubled, and welded at the thirds of the web length, in the central zone
of the assembly. In other cases, also a more deformable assembly was tested, in which no stiffening rib
at all was welded to the UPN160 profiles. This setup will be denoted as “Deformable” in the following.
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BRB type 5+ 0.25 5+ 0.46 5+ 0.5 5+ 0.7 5+ 1 7+ 0.25 7+ 0.5 7+ 1

k[N/mm]
“Deformable” 340708 340616 340598 340510 340379 324224 324124 323925
“Design” 551968 551725 551679 551449 551103 527214 526951 526425
“Rigid” 671904 671545 671477 671136 670624 643129 642737 641955

F[kN]

“Deformable” 102.6 104.8 105.2 107.3 110.5 141.5 143.2 147.2
“Design” 102.4 104.4 104.8 106.8 109.7 141.5 143.0 146.8
“Rigid” 102.3 104.3 104.7 106.6 109.5 141.4 143.0 146.7
k→∞ 102.1 103.9 104.3 106.0 108.7 141.3 142.8 146.3

l0[mm]

“Deformable” 37.33 37.33 37.33 37.33 37.33 56 56 50.91
“Design” 37.33 37.33 37.33 37.33 37.33 56 56 50.91
“Rigid” 37.33 37.33 37.33 37.33 37.33 56 56 50.91
k→∞ 37.33 37.33 37.33 37.33 37.33 56 56 50.91

N

“Deformable” 7.5 7.5 7.5 7.5 7.5 5 5 5.5
“Design” 7.5 7.5 7.5 7.5 7.5 5 5 5.5
“Rigid” 7.5 7.5 7.5 7.5 7.5 5 5 5.5
k→∞ 7.5 7.5 7.5 7.5 7.5 5 5 5.5

Q[kN]

“Deformable” 36.7 70.1 76.8 111.3 167.5 22.5 45.8 107.0
“Design” 33.8 64.3 70.3 101.4 151.3 21.3 43.4 100.2
“Rigid” 33.1 62.8 68.6 98.8 147.3 21.0 42.7 98.4
k→∞ 30.0 56.7 61.9 88.7 131.3 19.7 40.0 91.0

Table 2. Summary of all the analytical results obtained for the geometries of [Genna
and Gelfi 2012a] and [Bregoli 2014].

The reference numerical analyses, which replicate the experimental setup, have been run using the
finite element code ABAQUS [Hibbitt et al. 2013], employing a full 3-dimensional mesh for all the parts.
The core material was treated as elastic-plastic with nonlinear kinematic hardening; the analysis was
run for arbitrarily large displacements and strains, under prescribed displacements. Coulomb friction
was defined between the contacting surfaces, with friction coefficient µ= 0.15. More details about the
numerical model can be found in [Bregoli 2014].

Simpler numerical analyses have also been run, again using ABAQUS, on planar beam models, in
which the containment structure was described by rigid surfaces connected to each other by an elastic
spring, and free to translate only. This was done in order to have a direct comparison between the results
of the theoretical model and those of finite element simulations adopting exactly the same geometrical and
material description. Therefore, in these analyses, that made use of linear Timoshenko beam elements, a
linear kinematic hardening model was defined for the core material, and only two loading steps, from 0
to −1u and from −1u to 1u, with 1u = 11.2 mm, were prescribed. The material parameters describe
a metal that corresponds roughly to the real steel of the tests; the yield stress is σ0 = 330 MPa and
the hardening coefficient is h = 3850 MPa. These values have been adopted both for the analytical
calculations and for the beam type numerical analyses; the value for the hardening coefficient h was
chosen corresponding to the maximum average strain applied to the BRB, i.e., ε = 0.02, even though the
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local strain could reach values twice as larger or more. An initial geometrical imperfection was defined
as an irregularity of the axis line of the beam, of the order of ±s/600.

The calculation of the value for the stiffness constant k of the elastic connection spring was done as
illustrated in Appendix A, and adopting suitable values for the stiffness of the UPN160 profiles. For
the “design” assembly, the value for the moment of inertia of a UPN160 profile, referred to its weakest
principal axis, is Ie = 853000 mm4. For the case of the “deformable” assembly, in order to estimate the
effects of the local deformability of the UPN webs, an equivalent moment of inertia was evaluated nu-
merically, again using ABAQUS for a full 3D model of a single unreinforced UPN160 profile. The result
thus obtained is Ie,deform = 466605 mm4. Finally, the equivalent moment of inertia of the containment
profile, in the “rigid” configuration, was calculated to be Ie,rigid = 1120000 mm4.

The value of the bolt stiffness kB was also taken into account case by case, according to the various
bolt geometries and properties.

Inserting all these parameters into (A.4) of Appendix A, one obtains an estimate of the elastic stiffness
k of the connection spring in the model of Figure 2. This value was adopted both in the analytical
calculations and as a datum for the numerical analyses on the beam models.

Table 2 reports a summary of all the analytical results, as furnished by the procedure illustrated in
Sections 4 and 5.

The table reports the calculated values of the stiffness k, of the axial force F +1F associated to
1u = 0.02 mm and accounting for the increase due to friction, of the semiwavelength l0, of the wave
number N , and of the total lateral thrust Q.

All the effects described in previous work [Genna and Gelfi 2012a; 2012b] can be recognized already
for the limiting case of k→∞. Moreover, it is seen that, for decreasing values of k, the thrust increases
progressively, the wave number remaining always constant.

The maximum difference in the predicted total thrust due to the difference in the external case stiffness
occurs in the 5+ 1 case, and is of about 28% between the “rigid” and the “deformable” setup. This
suggests that, for this BRB, the “design” configuration should be appropriate.

Table 3 shows a comparison between the analytical results and the numerical ones given by the planar
beam models. The largest differences appear in the cases s = 1 mm and for the smaller values of the
stiffness k. All the geometries with s = 1 mm seem to offer a stronger challenge to the analytical model
than the geometries with s = 0.25 mm. In general, the larger is the gap s the poorer is expected to be
the approximation given by the analytical technique. This is due both to increasing lack of validity of
a second-order theory and to possible lack of validity of Shanley’s theory. Nevertheless, the analytical
results of Table 3 appear always acceptable for sufficiently high values of k.

Table 4 reports a summary of numerical (3D), experimental, and analytical results. In the columns,
the superscript (a) indicates that the experimental results have been taken from [Genna and Gelfi 2012a],
whereas the superscript (b) indicates experimental results taken from [Bregoli 2014]. In both experi-
mental and numerical results, when present, the superscripts (I) and (II) refer to the end of the first and
the second compressive cycle of maximum amplitude, respectively. The numerical results refer only to
the 3D analyses, that replicate the full AISC cyclic loading history [AISC 2010]. The analytical results
marked as “best k” are obtained adopting, for the stiffness k, the value corresponding to the actual
containment case arrangement, as illustrated previously.
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BRB Type
F [kN] l0 [mm] N Q [kN]

Beam
Anal.

Beam
Anal.

Beam
Anal.

Beam
Anal.model model model model

5+ 0.25 “Deformable” 110.5 102.6 35 37.33 8 7.5 67.3 36.7
5+ 0.25 “Design” 106.4 102.4 35 37.33 8 7.5 43.0 33.8
5+ 0.25 “Rigid” 105.9 102.3 35 37.33 8 7.5 38.9 33.0
5+ 0.25 k→∞ 104.5 102.1 35 37.33 8 7.5 29.0 30.0
5+ 1 “Deformable” 112.1 110.5 40 37.33 7 7.5 101.6 167.5
5+ 1 “Design” 111.8 110.0 40 37.33 7 7.5 99.7 151.3
5+ 1 “Rigid” 111.7 109.5 40 37.33 7 7.5 97.4 147.3
5+ 1 k→∞ 112.3 108.7 40 37.33 7 7.5 92.5 131.3
7+ 0.25 “Deformable” 146.8 141.5 46.67 56 6 5 38.8 22.5
7+ 0.25 “Design” 145.5 141.5 46.67 56 6 5 29.1 21.3
7+ 0.25 “Rigid” 146.0 141.4 46.67 56 6 5 27.2 21.0
7+ 0.25 k→∞ 144.5 141.3 46.67 56 6 5 21.9 19.7
7+ 1 “Deformable” 147.9 147.2 46.67 50.91 6 5.5 86.7 107.0
7+ 1 “Design” 150.6 146.8 46.67 50.91 6 5.5 90.4 100.2
7+ 1 “Rigid” 151.1 146.7 46.67 50.91 6 5.5 89.5 98.4
7+ 1 k→∞ 151.4 146.3 46.67 50.91 6 5.5 82.0 91.0

Table 3. Comparison between analytical predictions and numerical results. These last
are given by planar beam models reproducing exactly the assembly of Figure 2, and
adopting a linear kinematic hardening material model for the core.

The thrust values Q obtained numerically agree well with the experimental results. In most cases, the
analytical results with k→∞ provide acceptable estimates of the thrust, whereas the results obtained
including a finite value of the stiffness k can be somewhat off the mark, and more so as k decreases
and/or the gap s increases, i.e., when the amplitude of the buckled shape increases.

Some analytical results (especially the 5+0.25 “deformable” and 7+0.25 cases) should be interpreted
with caution, because for those there is some uncertainty about the actual value of the nominal gap s,
which was not controlled after the BRB assemblage. Nevertheless, considering also that the experimental
values of the lateral thrust can change significantly just after a repetition of the same cycle, for the same
value of 1u — a phenomenon that has not been described, in the calculations developed here — the
overall accuracy of the analytical results appears acceptable from the engineering viewpoint.

As said, there is another effect that influences in a significant way the value of the lateral thrust in BRBs
subjected to cyclic loading. As shown also in Table 4, and confirmed by other published and unpublished
results, the lateral thrust value depends not only on the current value of the axial shortening 1u, but also
on the number of loading cycles applied to the BRB at constant value of 1u. At each repetition of
a cycle with the same amplitude, the thrust Q increases, probably as an effect of the accumulation of
plastic dissipation, which leads to a progressive change of geometry of the core. One of the consequences
of this effect is shown in the last rows of Table 4, which report the increase 1s of the nominal gap, at
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5+0.25 5+0.46 5+0.5 5+0.7 5+1 7+0.25 7+0.5 7+1

Def.(b) Des.(b) Rigid(b) Des.(b) Des.(a) Rigid(b) Des.(b) Des.(a) Des.(a) Des.(a) Des.(a)

F
[k

N
]

Exper. 106.4(I)

108.6(II) 110.5(II)
107.2(I)

108.8(II)
106.5(I)

110.1(II) 121.5 110.1(I)

112.9(II)
106.3(I)

107.4(II) 123.0 158.8 157.4 160.8

Num. 114.6(I)

114.8(II)
116.4(I)

115.7(II)
121.7(I)

121.7(II)
122.7(I)

106.6(II)

Analyt.,
best k 102.6 102.4 102.3 104.4 104.8 104.7 106.8 109.7 141.5 143.0 146.8

Analyt.,
k→∞ 102.1 103.9 104.3 106.0 108.7 141.3 142.8 146.3

l 0
[m

m
]

Exper. 37.5(I)

37.33(II) 35(II) 35(II)
33(I)

33(II) 37.3 40(II)
35(I)

35(II) 46.65 50.91 50.91 50.91

Num. 40(I)

40(II)
40(I)

40(II)
40(I)

40(II)
40(I)

40(II)

Analyt.,
best k 37.33 37.33 37.33 37.33 37.33 37.33 37.33 37.33 56 56 50.91

Analyt.,
k→∞ 37.33 37.33 37.33 37.33 37.33 56 56 50.91

N

Exper. 7.5(II) 8(II) 8(II)
8.5(I)

8.5(II) 7.5 7(II)
8(I)

8(II) 6 5.5 5.5 5.5

Num. 7.5(I)

7.5(II)
7.5(I)

7.5(II)
7.5(I)

7.5(II)
7.5(I)

7.5(II)

Analyt.,
best k 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5 5 5.5

Analyt.,
k→∞ 7.5 7.5 7.5 7.5 7.5 5 5 5.5

Q
[k

N
]

Exper. 52.1(I)

61.9(II)
31.4(I)

37.5(II)
35.5(I)

41.3(II)
49.8(I)

66.2(II) 93.7 67.7(I)

77.1(II)
83.3(I)

86.6(II) 136.4 63.6 61.0 121.1

Num. 32.4(I)

34.2(II)
58.1(I)

61.7(II)
64.7(I)

71.1(II)
89.6(I)

96.7(II)

Analyt.,
best k 36.7 33.8 33.1 64.3 70.3 68.6 101.4 151.3 21.3 43.4 100.2

Analyt.,
k→∞ 30.0 56.7 61.9 88.7 131.3 19.7 40.0 91.0

1
s[

m
m
]

Exper. 1.0 0.09 0.07 0.16 0.18 0.23

Num. 0.063 0.14 0.15 0.21

Analyt.,
best k

0.054
(0.216 s)

0.031
(0.124 s)

0.025
(0.1 s)

0.058
(0.126 s)

0.064
(0.128 s)

0.051
(0.102 s)

0.092
(0.131 s)

0.137
(0.137 s)

0.02
(0.086 s)

0.041
(0.082 s)

0.095
(0.095 s)

Table 4. Comparison of numerical, experimental, and analytical results. Numerical results are
given by 3D FE models that replicate the experimental setup. Experimental results marked (a)

are from [Genna and Gelfi 2012a]; those marked (b) are from [Bregoli 2014]. Superscript I and II

refer to the first and second cycles of maximum amplitude. The rows show, from top to bottom:
maximum axial compressive force F ; semiwavelength l0; number N of buckled waves; total
lateral thrust Q; increase 1s in the nominal gap s due to deflection of the containment profiles.
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each side of the buckled core, due to the deformation of the external profiles. Both the experimental
and numerical results are systematically much higher than the analytical ones. This is certainly due to
some inaccuracy in the estimate of the elastic stiffness of the containment structure, as well as to the
approximations inherent into the analytical procedure; but it is certainly also due to the fact that the
analytical procedure neglects the increase of the lateral thrust produced by the accumulation of plastic
strains at each repetition of the same loading cycle. This aspect deserves more attention, and is currently
under investigation.

It is worth remarking that even though the analytical predictions for 1s are systematically too small,
they indicate a displacement 1s of the order of 10 to 20% of the nominal gap, showing that the de-
formability of the external profiles plays an important role, that can not be neglected when computing
the lateral thrust.

Appendix B will report an example of application of the proposed procedure to a full-scale BRB, in
order to illustrate the calculations to be done by an engineer when designing a “real” BRB.

7. Conclusions

The theoretical results developed in [Genna and Bregoli 2014] have been adopted, and suitably extended,
to obtain engineering usable estimates for the lateral thrust in steel BRBs. The new expressions derived
here for such thrust overcome several important limitations of previous work:
• The elastic stiffness of the containment structure is explicitly accounted for.

• The presence of line contacts is explicitly considered in the expressions for the buckled wavelength.

• An important modification, in the calculation of the buckled wavelength and of the associated value
of the lateral thrust, is introduced here, in order to take into account the expected presence of tensile-
compressive loading cycles, accompanied by the development of plastic strains of both signs.

All these developments allow for analytical estimates that appear consistently acceptable from the engi-
neering viewpoint, with the important limitation of being valid only in situations implying small buckled
amplitudes. Therefore, both cases of a too large nominal gap and/or of an insufficiently stiff containment
assembly might prevent the applicability of the analytical technique. A condition was defined to indi-
viduate a lower limit of the containment stiffness to be employed, which should be coupled with other
possible conditions, such as, for example, the one that guarantees the absence of global buckling or of
plastic collapse of the BRB under the prescribed axial shortening.

The analysis of the mechanical behavior of BRBs is a relatively new and challenging research topic,
with many aspects to be considered. The present work constitutes an attempt at development and syn-
thesis of previous theoretical work, and should provide a good engineering approach to the analytical
calculation of the lateral thrust in steel BRBs. More work is still in progress, concerned with several
other topics of interest:
• the accumulation of experimental evidence about several details still not fully explored, such as the

dependency of the lateral thrust on the loading history and on several other factors;

• the understanding of the real loading condition to be applied in the analysis of BRBs;

• the development of reasonably accurate yet not too expensive numerical models for this type of
problems;
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• the acquisition of a deeper understanding of all the theoretical aspects involved in this type of
problems; an example of these is suggested, for instance, in [Chai 1998], where it is pointed out
that even in the case of a fully conservative situation (linear elasticity for all the materials and
frictionless unilateral contact) the postbuckled behavior of BRBs, under loading-unloading cycles,
might entail some form of hysteresis loop, of unclear explanation;

• the understanding, both experimentally and numerically, of the low-cycle fatigue behavior of the
buckled core, and specially the possibility of predicting the number of cycles before its failure.

All these aspects, for which there is no space in the present work, deserve more study, which is currently
under way.

Appendix A: Example of calculation of the spring stiffness k

An example of how to compute a stiffness value k accounting for the elastic stiffness of the containment
structure exploits the scheme of Figure 8, which considers two retention profiles with two bolted con-
nections. Other configurations, possibly with more bolts along the containment profiles axis, could be
found in practical applications; in these cases it is necessary to suitably modify the expressions proposed
next, and, in particular, result (A.1).

One possible way to relate the stiffness k to the stiffness kB of the connection bolts at each side, and to
the elastic bending stiffness Ee Ie of the external profiles, is to make the total displacement ηm , at each side
of the model of Figure 2, due to the total thrust Q, equal to the total displacement ηe, at each side of the

Figure 8. Top image: structural scheme of the external containment structure in the case
of two profiles connected by two bolts in the central portion, loaded by a unit thrust Qi

located at an arbitrary position along the BRB length. Bottom image: model of Figure 2,
rigid surfaces only, loaded by the total thrust Q. Each rigid surface translates by
ηm = Q/(2k).
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real structural arrangement, under the same thrust, evaluated at the mid-point along the external profile
axis. The symbol Le denotes the distance between the connection bolts in the real structural arrangement.
Contact can occur both in the external and in the central portions of the containment profiles, i.e., both
outside and between the two bolts.

One can then exploit the assumption of periodicity of the buckled shape of the core, which implies
that all the unit thrust forces Qi have the same value at all the contact points. The displacement ηe,i at
the mid-point of each lateral containment profile, due to a single force Qi placed at a distance λi L from
its left extremity, with 1≤ i ≤ N/2, as in Figure 8, has the following expression:

ηe,i = Qi

(
1

4kB
+

ci,e

32Ee Ie
+

ci,i

96Ee Ie

)
,

ci,e = 2λi L L2
e + L3

e − L2
e L , 0≤ λi ≤

L − Le

2L
,

ci,i = 2L3
e − 3Le L2

+ L3
+ 12λ2

i L2(L − Le)− 6λi L2(L − 2Le)− 8λ3
i L3,

L − Le

2L
≤ λi ≤

1
2
.

(A.1)

Then, the total displacement ηe, due to a number N of unit forces Qi of equal intensity, has the following
expression:

ηe = Q
(

1
4kB
+

1
48Ee Ie N

N∗∑
i=1

ci,e+
1

96Ee Ie N

N∑
i=N∗+1

ci,i

)
, (A.2)

where N ∗ denotes the number of contact points outside the bolts. Since the corresponding opening in
the model of Figure 2 is given by

ηm =
Q
2k

(A.3)

by equating the results of (A.2) and (A.3) it is immediate to obtain

k =
48Ee Ie NkB

24Ee Ie N + 3kB
∑N∗

i=1 ci,e+ kB
∑N

i=N∗+1 ci,i
. (A.4)

The values λi that appear in coefficients ci,e and ci,i in expressions (A.1) to (A.4) can be easily related to
the total number of buckled waves, N , exploiting once more the assumption of periodicity of the buckled
shape. One thus finds

λi =
1

2N
+

i − 1
N

, 0≤ λi ≤
1
2
, 1≤ i ≤

N
2
. (A.5)

The values of λi corresponding to the contact forces located in the right portion of the structure are then
obtained from symmetry.

The value for kB depends on the bolt configuration employed in the real BRB, and is of course related
to the elementary expression holding for a single bolt of area AB , Young modulus EB and length lB , i.e.,

kB =
EB AB

lB
. (A.6)
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Figure 9. Geometrical details of the section of a full-scale BRB (a); and scheme for the
calculation of the case local stiffness (b).

Since the number N of buckled waves is unknown, at the moment of estimating the stiffness k as in
(A.4), one must iterate, at least in principle, in order to reach a working expression. One can start from
an estimate with N = 1, or, better, compute N assuming k→∞, and then iterate if necessary to reach
a final value for N and then of the total thrust Q.

This elementary calculation has neglected a possible contribution to the elastic stiffness k deriving from
the local deformability of the containment at each contact point. This could be due to three-dimensional
effects (i.e., plate behavior) possibly important, depending on the actual design of the containment pro-
files; if necessary, this contribution should be computed case by case adopting specific techniques, either
analytical or numerical, for instance based on plate bending theory.

Appendix B: Design of the connecting bolts in a full scale all-steel BRB

This appendix illustrates the design of the bolts connecting the restraining profiles of a real all-steel BRB,
following the procedure presented in the paper for the calculation of the lateral thrust exerted by the core
during its high-mode buckling. Two cases are presented: in the former, symmetric axial displacement
cycles of the BRB core are considered, as occurring in a quasistatic cyclic test following the AISC
loading protocol; in the latter, the lateral thrust is calculated for a BRB core undergoing nonsymmetric
axial displacement cycles, such as it may happen in reality under a seismic event [Lin et al. 2012].

Figure 9 shows the details of the considered BRB, which was designed and tested at University of
Brescia [Gelfi and Metelli 2007]. The brace is 6.0 m long, with a dissipative core length L = 3.0 m. The
considered gap is s = 1.0 mm. The four L-shaped members that act as a retaining structure are connected
by means of high strength 10.9 bolts having a diameter of 10 mm, whose spacing must be calculated
on the basis of the lateral thrust generated by the core on the restraining profiles. The core is made of
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S275 grade steel, with a nominal yield strength fym = 321 MPa. The friction coefficient between the
lubricated surfaces is taken equal to µ= 0.15.

This brace is designed to be employed in the first floor of a seven-story building located in a typical
medium-seismic zone in Northern Italy (soil type C , peak ground acceleration ag = 0.20 g). Details
of the design of this BRB are to be found in [Gelfi et al. 2007; Gelfi and Metelli 2007]. The adopted
Young modulus of the material is E = 210000 MPa; for ε = 0.02 [AISC 2010], the hardening coefficient
was taken equal to h = 3850 MPa, and the core yield strength is fy = Ry fyk = 1.15× 275= 316 MPa,
Ry = 1.15 being the material overstrength factor [AISC 2010]. The restraining member will first be
considered as infinitely rigid (k→∞), then as having a finite stiffness, in order to highlight the differences
entailed by this factor. The calculation of a finite value for the stiffness k is based on the scheme of
Figure 9, and was done numerically. The resulting value is k = 880 kN/mm.

Example 1: symmetric cycles [AISC 2010]. By considering the BRB core undergoing an average axial
core strain ε = 0.02 with cycles of equal amplitude in tension and compression, as required by the AISC
loading protocol, the presented design procedure gives the following results.

• Infinitely rigid containment profiles (k→∞):

(1) F = 729 kN is the maximum axial compressive force accounting also for the increase due to
friction;

(2) l0 = 115.4 mm is the predicted semiwavelength of the buckled shape under the maximum axial
shortening;

(3) N = 13 is the predicted number of contact points at each side of the core;
(4) q = 0.165 kN/mm is the predicted lateral thrust per unit length.

• Deformable containment profiles (k = 880 kN/mm):

(1) F = 741.5 kN is the maximum axial compressive force accounting also for the increase due to
friction;

(2) l0 = 115.4 mm is the predicted semiwavelength of the buckled shape under the maximum axial
shortening;

(3) N = 13 is the predicted number of contact points at each side of the core;
(4) q = 0.237 kN/mm is the predicted lateral thrust per unit length;
(5) 1s = 0.4 mm is the increase of the gap due to the opening between the containment profiles.

Such an increase is the main responsible for the significant increase (order of 40%) of the lateral
thrust with respect to the value given by k→∞; this shows how, in this case, the deformability
of the retaining case plays an important role.

The total tensile force T acting in the bolts is also calculated on the basis of the scheme of Figure 9,
including contributions due to the prying action, according to [CEN 2005]. This calculation yields
T = 29.63 kN. By using high strength bolts ( fub = 1000 MPa), two M10 bolts with a longitudinal spacing
p = 100 mm are needed, having calculated their tensile strength as Ft,Rd = 0.9 fub As/γM2 = 41.76 kN.

It is interesting to compare these results with the corresponding ones obtained experimentally for this
type of BRB, that will be described elsewhere. These are: maximum axial compressive force F = 825 kN;
average value of the buckled semiwavelength l0 = 113 mm; estimated value of the total lateral thrust
(not measured experimentally), from (23): Q = 21F/µ = 1080 kN, where 1F is the experimentally
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measured difference between the peak axial forces in compression and in tension, to be compared with
the analytical prediction Q = q L = 711 kN for the case of k = 880 kN/mm.

Example 2: nonsymmetric displacement cycles. In order to understand the influence of the cycle type
on the predicted response of a BRB, we consider now the case of a nonsymmetric axial displacement
cycle, such as it is expected to occur under a real seismic event. Lin et al. [2012] report results of tests
performed on BRBs subjected to a seismic excitation; from these results it can be seen that, ignoring
a possible global shift of the displacement maximum values, the ratio between the maximum tensile
average strain and the maximum compressive one, in a typical cycle, is of about 0.375. Therefore, we
keep fixed the value ε = 0.02 as the maximum compressive axial strain, which governs the current value
of the axial force, but we consider a strain cycle ranging between −εt =−0.007 and εc = 0.02. Therefore,
use is made of (20) instead of (21) to calculate the driving stress for the calculation of the wavelength.
The corresponding results are as follows.

• Infinitely rigid containment profiles (k→∞):
(1) F = 727 kN is the maximum axial compressive force accounting also for the increase due to

friction;
(2) l0 = 120 mm is the predicted semiwavelength of the buckled shape under the maximum axial

shortening;
(3) N = 12.5 is the predicted number of contact points at each side of the core;
(4) q = 0.149 kN/mm is the predicted lateral thrust per unit length.

• Deformable containment profiles (k = 880 kN/mm):
(1) F = 735 kN is the maximum axial compressive force accounting also for the increase due to

friction;
(2) l0 = 120 mm is the predicted semiwavelength of the buckled shape under the maximum axial

shortening;
(3) N = 12.5 is the predicted number of contact points at each side of the core;
(4) q = 0.205 kN/mm is the predicted lateral thrust per unit length;
(5) 1s = 0.35 mm is the increase of the gap due to the opening between the containment profiles.

The compressive axial force remains, as expected, practically unaltered, with respect to the case of
symmetric cycles ending to the same shortening displacement; the lateral thrust reduces of about 15%,
as a consequence of the reduced strain excursion in tension. Since the design of this element must
comply with the AISC regulations, which prescribe tests under symmetrical loading cycles, this last set
of calculations should be seen only as a check, and not as a design procedure.
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