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WITH A SMOOTH TRANSITION TO FULL SLIP

M. B. RUBIN

Hard-particle models assume that the collision between rigid bodies is instantaneous and they propose
algebraic equations for the jumps in the motions of the rigid bodies based on an assumed functional
form for the impulsive force acting during the collision process. These hard-particle models have
the advantage that they are significantly less computationally expensive than soft-particle models.
Moreover, they are sufficiently accurate for some applications and can also be used for preliminary
analysis of complicated processes with large numbers of particle interactions. Here, a simple three
parameter hard-particle collision model is developed which predicts a smooth transition from nor-
mal collisions with no slip to oblique collisions with full slip. This model automatically satisfies a
number of physical restrictions on the impulsive force. An additional physical restriction on non-
negative energy dissipation places nontrivial restrictions on the model parameters. Examples show
the importance of improved modeling of the transition region from normal to oblique collisions with
full slip.

1. Introduction

The mechanics of collision of two bodies is complicated by dynamic wave propagation, stick-slip fric-
tional contact conditions and plastic dissipation [Goldsmith 1960]. The Distinct Element Method (DEM)
is currently being used to model a broad range of physical phenomena like: granular flow [Walton 2004;
Di Renzo and Di Maio 2004; Ketterhagen et al. 2005], particle fluids [Lu et al. 2005; Prasanth et al.
2012], studies of agglomeration [Kosinski and Hoffmann 2010; 2011], powder technology [Liu et al.
2011] and shock waves in jointed geological media [Morris et al. 2004]. Most often the DEM methods
model the interaction of collections of rigid bodies with various shapes. The equations of motion of
the rigid bodies are integrated using constitutive equations for the interactions between bodies that are in
contact with each other. Soft-particle contact models use information about the virtual penetration regions
of the bodies to determine the normal and shearing components of the contact force. The constitutive
equations for the contact force attempt to model details of elastic and inelastic effects that are relevant
for the specific application. In addition to the extensive computational effort to determine the contact
regions, it is necessary to use small time steps to accurately integrate the equations of motion over the
short interaction times associated with abrupt collision events.

The computational effort in DEM calculations to identify and analyze the virtual penetration regions
can be significantly reduced when the bodies have simple shapes like spheres. Additional reduction in
computational effort can be obtained by simplifying the contact events as instantaneous collisions. This
simplification uses hard-particle models which assume that the contact region is small enough that only

Keywords: coefficient of restitution, collision, friction, hard-particle, rigid bodies, spheres.

137

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2016.11-2
http://msp.org


138 M. B. RUBIN

a single force acts at the point of contact between the bodies. Also, it is assumed that the collision events
are separated in time so that at any instant only a single contact process operates between two bodies.
Details of the contact event are modeled by proposing constitutive equations for the impulsive force that
acts between the bodies at the point of contact. Then, the equations of motion of the rigid bodies are
integrated to obtain algebraic equations that predict the motion of the bodies just after the collision in
terms of the motion of the bodies just before the collision. Hard-particle models have the advantage
that they are significantly less computationally expensive than soft-particle models. Moreover, they are
sufficiently accurate for some applications and can also be used for preliminary analysis of complicated
processes with large numbers of particle interactions.

A review of the numerical simulation of inelastic, frictional particle-particle interactions can be found
in [Walton 1993]. More recent reviews discuss: discrete particle modeling of fluidized beds [Deen et al.
2007] the extension of normal force models [Kruggel-Emden et al. 2007]; the simulation of particulate
systems [Zhu et al. 2007]; and particle collision modeling [Meyer and Deglon 2011]. Ketterhagen et al.
[2005] studied flows with a range of solid fractions to examine the limits of hard-particle collision models,
which are typically valid for dilute systems. Also, it is noted that Stevens and Hrenya [2005] have
presented a comparison of predictions of soft-sphere models and measurements of normal impacts.

The algebraic equations that describe the jumps in the motion of two colliding rigid bodies have
been discussed in [Rubin 1998; Chatterjee and Ruina 1998]. These equations are based on an energetic
coefficient of restitution η introduced by Ivanov [1992]. More specifically, the work in [Rubin 1998]
discusses physical restrictions on constitutive equations for the impulsive force acting between the two
rigid bodies during hard-particle collision events.

Walton [1993, sec. 25.5.1] discusses a hard-particle model for the collision of spheres that is based
on the elastic, frictional solutions of the dynamic equations of elasticity described in [Maw et al. 1976;
1981]. This model depends on three parameters: the usual coefficient of restitution e, which connects
jumps in the normal component of the relative velocity of the contact points of the bodies; a coefficient
of rotational restitution β, which connects jumps in the tangential component of the relative velocity of
the contact points of the bodies; and the constant shear coefficient µs which controls the ratio of the shear
component of the impulsive force to its normal component in a full slip region. More specifically, the
model is based on two straight lines in the space of auxiliary parameters {ψ1, ψ2}, which are measures of
the obliquity of the collision event at the point of contact, just before and just after collision, respectively.
One line characterizes oblique collisions with full slip and the other line characterizes partial slip during
the transition from normal to oblique collisions with full slip. In particular, the model has a sharp
transition at the intersection of these two lines.

The objective of the present paper is to analyze the model proposed in [Walton 1993] from the perspec-
tive of the physical restrictions discussed in [Rubin 1998]. This analysis reveals that the transition region
from zero slip to full slip is large with respect to the angle of obliquity. Consequently, it is important to
improve the modeling of this transition region from normal to oblique collisions with full slip. Moreover,
the present work suggests that the rotational coefficient of restitution be replaced by a shear coefficient µ,
which characterizes the ratio of the shear component of the impulsive force to its normal component. This
shear coefficient increases from zero for normal collisions to a maximum constant value µs for oblique
collisions with full slip. Specifically, a three parameter model is proposed with a smooth transition from
no slip to full slip. All three parameters can be determined directly from experimental data or from
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Figure 1. Sketch of the spheres, the unit outward normal vector n to sphere (A), the
unit tangent vector τ and the directions of 1v1 and f .

results of simulations using more complicated soft-particle models. In addition, a restriction is imposed
on the model parameters which ensures non-negative energy dissipation in the collision event.

An outline of this paper is as follows. Section 2 reviews the basic equations of the formulation
in [Rubin 1998] and specializes these equations to collision of two spheres. In particular, this section
reviews physical restrictions that are placed on constitutive equations for the impulsive force acting during
the collision event. Section 3 proposes a constitutive equation for the impulsive force that exhibits a
smooth transition from normal to oblique collisions. Section 4 reviews the hard-particle model of Walton
[1993] and Section 5 compares the smooth transition model with that of Walton. Section 6 considers the
example of a sphere that bounces off a fixed horizontal plane and Section 7 presents conclusions.

2. Basic equations

In this section the general formulation presented in [Rubin 1998] is specialized to the case of collision
of two rigid spheres. For simplicity, a number of equations are summarized without further reference to
the work in [Rubin 1998]. Specifically, consider two spherical rigid bodies with masses {m A,m B}, radii
{RA, RB} and moments of inertia {IA, IB} about their centers of mass, which have positions {x A, x B} rel-
ative to a fixed origin (see Figure 1). Just before collision, the centers of mass have velocities {vA1, vB1}

and the bodies have angular velocities {ωA1,ωB1}. Just after collision, the centers of mass have velocities
{vA2, vB2} and the bodies have angular velocities {ωA2,ωB2}.

The collision event is considered to be instantaneous with only a point force acting between the bodies.
Specifically, let F̂ denote the impulsive force applied by body B on body A at the common contact point
which is denoted as xC for the material point attached to body A and by x D for the material point attached
to body B. Also, let n be the unit outward normal to the body A at the impact point xC = x D , such that

n=
x B/A

|x B/A|
, n · n= 1, xC/A = RAn, x D/B =−RB n, (2-1)

where for simplicity use has been made of the notation

x B/A = x B − x A. (2-2)
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The impulsive forms of the balances of linear and angular momentum (about the centers of mass) can
be solved to deduce that

vA2 = vA1+
1

m A
F̂, vB2 = vB1−

1
m B

F̂,

ωA2 = ωA1+
RA

IA
n× F̂, ωB2 = ωB1+

RB

IB
n× F̂.

(2-3)

Moreover, the velocities {vC1, vD1} of the contact material points just before the collision and the veloc-
ities {vC2, vD2} just after the collision are given by

vC1 = vA1+ RAωA1× n, vD1 = vB1− RBωB1× n,
vC2 = vA2+ RAωA2× n, vD2 = vB2− RBωB2× n.

(2-4)

Next, it is convenient to define the velocity differences of the contact points {1v1,1v2} just before
and just after the collision by the expressions

1v1 = vC1− vD1, 1v2 = vC2− vD2, (2-5)

and to recall that

1v2 =1v1+
1
m

AF̂, A=
(

1+ Im

Im

)
I −

(
1
Im

)
n⊗ n, (2-6)

where A is a second order tensor and the effective mass m for linear momentum and the parameter Im

associated with angular momentum are defined by

m =
m Am B

m A+m B
, Im =

IA IB

m(IA R2
B + IB R2

A)
. (2-7)

Also, a⊗ b denotes the tensor product between two vectors {a, b}. Here, the spherical bodies are as-
sumed to have spherically symmetric mass distributions but are allowed to have inhomogeneous mass
distributions radially.

The incident slip velocity 1v1 and the unit normal n form a plane which contains the slip direction
τ , such that

1v1 =
|1v1|√
1+ψ2

1

(n+ψ1τ ), ψ1 = tan θ ≥ 0, τ =
1v1− (1v1 · n)n
|1v1− (1v1 · n)n|

, (2-8)

where θ is the incident angle of obliquity (see Figure 1). It follows that since

1v1 · n> 0, (2-9)

sphere A collides with sphere B.
Denoting {T1, T2} as the kinetic energy of the two-particle system just before and just after the collision

T1 =
1
2 m AvA1 · vA1+

1
2 IAωA1 ·ωA1+

1
2 m BvB1 · vB1+

1
2 IBωB1 ·ωB1,

T2 =
1
2 m AvA2 · vA2+

1
2 IAωA2 ·ωA2+

1
2 m BvB2 · vB2+

1
2 IBωB2 ·ωB2,

(2-10)
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it can be shown that

T1− T2 =−F̂ ·1v1−
1

2m
A · (F̂⊗ F̂), (2-11)

where A · (a⊗ b)= tr[A(a⊗ b)T ] is the inner product between the two second order tensors {A, a⊗ b}.
In [Rubin 1998] F̂ was expressed in the form

F̂ = f f , f · f = 1, f = m(1+ η)
[
− f ·1v1

A · ( f ⊗ f )

]
> 0, (2-12)

which can be used to show that (2-11) reduces to

T1− T2 =
1
2 m|1v1|

21T, 1T = 1
2 m(1− η2)

[
( f ·1v1/|1v1|)

2

A · ( f ⊗ f )

]
. (2-13)

In particular, the work in [Rubin 1998] suggests that the constitutive equation for the impulsive force
must satisfy the following four physical restrictions.

(P1) The impulse is not orthogonal to the relative velocity of the contact points just before the collision

F̂ ·1v1 6= 0. (2-14)

(P2) The impulse has a component that resists penetration and aids separation of the two bodies

F̂ · (−n) > 0. (2-15)

(P3) The two bodies have a tendency to separate after the collision event

1v2 · (−n)≥ 0. (2-16)

(P4) The dissipation of kinetic energy during the collision event is non-negative

T1− T2 ≥ 0. (2-17)

3. A constitutive equation for the impulsive force

Once a constitutive equation for the impulsive force F̂ is specified the motion of the two particles just
after collision is determined by the equations (2-3). This section presents a constitutive equation for F̂.
First it is noted that with the help of (2-9) and (2-12), the restrictions (2-14) and (2-15) require

− f ·1v1 > 0, − f · n> 0. (3-1)

Also, using (2-13), the restriction (2-17) on energy dissipation requires

1+ η > 0, (3-2a)

1− η ≥ 0. (3-2b)

The work in [Maw et al. 1976; 1981] and [Walton 1993, Sec. 25.5.1] suggests that a model for hard-
particle collision between two spheres can be formulated in terms of ψ1 in (2-8) and ψ2 defined by

ψ1 =
1v1 · τ

1v1 · n
≥ 0, ψ2 =−

[1v2 · τ

1v2 · n

]
. (3-3)
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The parameters {ψ1, ψ2} are measures of the obliquity of the collision event, just before and just after the
collision, respectively. Moreover, the model in [Walton 1993] uses the standard coefficient of restitution
e, which connects the normal components of relative velocities by

1v2 · n=−e(1v1 · n), 0≤ e ≤ 1, (3-4)

which with the help of (2-9) ensures that the restriction (2-16) is satisfied. Here, use is made of (3-4) to
obtain a constitutive equation for η. Specifically, from (2-6) and (2-12) it can be shown that (3-4) yields
the constitutive equation

(1+ η)= (1+ e)
[

A · ( f ⊗ f )
A · (− f ⊗ n)

](
n ·1v1

− f ·1v1

)
. (3-5)

The hard-particle model proposed by Walton [1993, Sec. 25.5.1] introduced a rotational coefficient of
restitution β associated with the tangential direction τ defined by

1v2 · τ =−β(1v1 · τ ), −1≤ β ≤ 1. (3-6)

Here, this constitutive assumption is replaced by a constitutive equation for a shear coefficient µ, which
is the ratio of the shearing component of the impulsive force to its normal component. Specifically, it is
assumed that the impulsive force is in the n− τ plane with

f =−
1√

1+µ2
(n+µτ ), µ= tanφ > 0, (3-7)

where φ is the friction angle (see Figure 1). Then, using (2-8) it can be shown that the restrictions (3-1)
are automatically satisfied

− f ·1v1 =
|1v1|√

1+ψ2
1

√
1+µ2

(1+µψ1) > 0, − f · n=
1√

1+µ2
> 0. (3-8)

It should be noted that although the impulsive force has been assumed to limited to the n− τ plane
this does not mean that the motion of the spheres is two-dimensional since the angular velocities of the
spheres need not be normal to this collision plane. Next, using (2-6), (2-8) and (3-7) it can be shown that

1+ η =
(

1+ e
1+µψ1

)[
1+

(
1+ Im

Im

)
µ2
]
> 0, (3-9)

which shows that the restriction (3-2a) is automatically satisfied. Then, the restriction (3-2b) can be
rewritten in the form

1− η = 2−
(

1
1+µψ1

)[
1+

(
1+ Im

Im

)
µ2
]
≥ 0, (3-10)

which imposes a non-trivial restriction on the functional form for the shear coefficient µ.
In order to motivate a functional form for µ use is made of (2-6), (2-8), (2-12), (3-3) (3-7), (3-8) and

(3-9) to deduce that
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F̂ =−m(1+ e)
|1v1|
√

1+ψ2
1

(n+µτ ),

1v2 =
e|1v1|
√

1+ψ2
1

(−n+ψ2τ ),

ψ2 =
1
e

[
ψ1− (1+ e)

(
1+ Im

Im

)
µ

]
.

(3-11)

The hard-particle model in [Walton 1993] assumes that ψ2 is a bi-linear function of ψ1 with a negative
slope in the region of partial slip and a positive slope in the region of full slip. Motivated by this model,
a constitutive equation for µ is specified by the form

µ= µs g(z), g(z)= 1−〈1− z〉1+α, α > 0, z =
ψ1

ψs
, ψs = (1+ e)

(
1+ Im

Im

)
µs, (3-12)

where 〈x〉 =max(x, 0) denotes the Macaulay brackets. Thus,ψ2 in (3-11) can be simplified to obtain

ψ2 = ψ2(ψ1)=
ψs

e
[z− g(z)]. (3-13)

It follows that

ψ2(0)= 0,
dψ2

dψ1
(0)=−

α

e
, ψ2(ψs)= 0,

dψ2

dψ1
(ψs)=

1
e
. (3-14)

This means that the measure ψ2 of the obliquity angle just after the collision is a smooth function of the
measure ψ1 of the obliquity angle just before the collision. The response characterizes partial slip with
negative values of ψ2 for ψ1 < ψs and full slip with positive values of ψ2 for ψ1 > ψs . Moreover, the
transition to full slip occurs when ψ2 changes sign with ψ1 = ψs . Also, the shear coefficient µ attains
and maintains its maximum constant value µs during full slip.

This hard-particle model is characterized by three model parameters

{e, µs, α}, (3-15)

with α controlling the shape of the transition region from partial slip to full slip. The model will satisfy
the physical restrictions (2-14)–(2-17) on the impulsive force when the values of these parameters ensure
that (3-10) is satisfied for all collision events. In the following sections this model is compared with the
hard-particle model of Walton [1993] and examples are considered which demonstrate the importance
of the smooth transition in the partial slip region.

4. The hard-particle collision model of Walton [1993]

The hard-particle model proposed by Walton [1993, Sec. 25.5.1] is characterized by the usual coefficient
of restitution e in (3-4) and a rotational coefficient of restitution β associated with the tangential direction
τ defined in (3-6) (see Figure 2). These expressions tacitly assume that 1v2 remains in the plane of
{n,1v1} with

1v2 =−[e(1v1 · n)n+β(1v1 · τ )τ ], (4-1)
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which with the help of (2-8) and (3-3) can be rewritten in the form

1v2 =
e|1v1|√
1+ψ2

1

(−n+ψ2τ ), ψ2 =−
β

e
ψ1. (4-2)

Moreover, Walton [1993] proposed a functional form for β defined by

β =min(β0, β
∗), β∗ =−1+

ψs

ψ1
, 0< β0 ≤ 1, (4-3)

where ψs is given by (3-12) and it is noted that K in [Walton 1993] is equal to Im here. It then follows
that (4-2) and (4-3) yield

ψ2 =−
β0

e
ψ1 for 0≤ ψ1 ≤

ψs

1+β0
, ψ2 =

1
e
(ψ1−ψs) for ψ1 ≥

ψs

1+β0
, (4-4)

which satisfy the conditions (3-14) when β0 = α. Moreover, using (3-12) the expression (3-11) can be
rewritten in the form

ψ2 =
1
e

[
ψ1−ψs

( µ
µs

)]
. (4-5)

Thus, comparing (4-2) and (4-5), replacing {µ, β0} by {µW , α} and using the definition of z in (3-12)
yields the constitutive equation

µ= µW = (1+β)µsz, β =min(α, β∗), β∗ =−1+
ψs

ψ1
, (4-6)

which causes the model described in Sections 2 and 3 to be the same as Walton’s hard-particle model.
The associated value ηW of η is given by (3-9) with µ replaced by µW

η = ηW = 1−
( 1

1+µWψ1

)[
1+

(
1+ Im

Im

)
µ2

W

]
. (4-7)

This functional form automatically satisfies the restriction

1+ ηW > 0, (4-8)

and must satisfy the restriction
1− ηW ≥ 0, (4-9)

in order to ensure non-negative energy dissipation during the collision.
In summary, Walton’s hard-particle model is given by (4-5)–(4-9) which depend on the same three

parameters (3-15) as the smooth transition model proposed in Section 3.

5. Comparison of the smooth model with Walton’s model

In the remainder of the paper attention is limited to the case of uniform spheres for which

IA =
2
5 m A R2

A, IB =
2
5 m B R2

B, Im =
2
5 . (5-1)
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Partial slip line
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e
1 ψ1 = ψs

ψ1

Figure 2. Sketch of the hard-sphere collision model of [Walton 1993].

The results in Figures 3–5 compare the response of the smooth model (denoted by S) with that of Walton’s
model (denoted by W ) for

µs = 0.3, e = 1 or 0.8, α = 0.35, 1 or 5. (5-2)

where the value of α = 0.35 was suggested in [Walton 1993]. In these figures the subscript has been
removed from µW . These figures show that the differences between the two models can be significant,
especially for the larger values of α when e = 0.8. In particular, it can be seen from Figure 3(c) that for
the smooth model the transition to full slip occurs at an obliquity angle θ = 64.5◦ so the transition region
from no slip to full slip is large. Also, it can be seen from parts (d) and (e) of Figure 4 that during this
transition region Walton’s model predicts no dissipation whereas the smooth model predicts dissipation

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of the smooth model (S) with Walton’s model (W ) for e = 1,
α = 0.35 and µs = 0.3.
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Figure 4. Comparison of the smooth model (S) with Walton’s model (W ) for e = 1,
α = 1 and µs = 0.3.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of the smooth model (S) with Walton’s model (W ) for e = 0.8,
α = 5 and µs = 0.3.
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over the entire range of the response. The results in Figures 3 and 4 satisfy the dissipation inequalities
(3-9) and (3-10). Moreover, the parameters used for Figure 5 show that these inequalities are not trivially
satisfied. In particular, it can be seen from parts (d) and (e) of Figure 5 that Walton’s model would violate
the dissipation inequality (3-10), while the smooth model would satisfy the dissipation inequality (3-10).

6. Bouncing of a sphere off a fixed horizontal plane

Figure 6 shows a sketch of a uniform sphere (A) colliding with a fixed horizontal plane with attention
limited to the vertical e1− e2 plane. Also, the motion of each sphere is simplified to be two-dimensional
with its angular velocity in the e3 direction. The body force of gravity b per unit mass acts in the positive
e1 direction. The effect of gravity is used to determine the motion of the sphere between collision events
but is neglected during the collisions. This approximation causes the model to limited to strong collision
events.

Using the formulation in the previous sections the wall can be modeled by the sphere (B) with the
specifications

m B � m A, RB � RA, vB1 = vB2 = vD1 = vD2 = 0, ωB1 = ωB2 = 0. (6-1)

Next, consider a general collision event which occurs at t = tn with

vA1(tn)= u1(tn)e1+w1(tn)e2, u1(tn) > 0, ωA1(tn)= ω1(tn)e3,

vA2(tn)= u2(tn)e1+w2(tn)e2, u2(tn)≤ 0, ωA2(tn)= ω2(tn)e3,

1v1(tn)= vC1(tn)= u1(tn)e1+ [w1(tn)+ RAω1(tn)]e2,

1v2(tn)= vC2(tn)= u2(tn)e1+ [w2(tn)+ RAω2(tn)]e2,

n= e1, τ (tn)=
s1(tn)
|s1(tn)|

e2, s1(tn)= w1(tn)+ RAω1(tn),

(6-2)

= 

 

= 

• xA

b

xC e2

n= e1
1v1

θ
τ

f
φ

n= e1

Figure 6. Sketch of a sphere colliding with a fixed horizontal plane showing the normal
n and tangent τ unit vectors and the directions of 1v1 and f .
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where s1(tn) is the slip velocity just before collision. Then, with the help of (2-3), (2-6)–(2-8), (2-13),
(3-3), (3-7)–(3-9), (3-11)–(3-13), (5-1), (6-1) and (6-2) it follows that

m = m A, ψs =
7
2(1+ e)µs, ηn =−1+

[
1+ e+µsψs g2

n

1+µsψszngn

]
,

ψ1(tn)=
|s1(tn)|
u1(tn)

, zn =
ψ1(tn)
ψs

, gn = 1−〈1− zn〉
α+1,

ψ2(tn)=−
s1(tn)[w2(tn)+ RAω2(tn)]

|s1(tn)|u2(tn)
, F̂n =−m A(1+ e)u1(tn)

[
e1+µs gn

s1(tn)
|s1(tn)|

e2

]
,

u2(tn)=−eu1(tn), w2(tn)= w1(tn)− 2
7 u1(tn)ψs gn

[
s1(tn)
|s1(tn)|

]
,

RAω2(tn)= RAω1(tn)− 5
7 u1(tn)ψs gn

[
s1(tn)
|s1(tn)|

]
.

(6-3)

Also, with the help of (5-1) the kinetic energy T (tn) just before the collision is given by

T (tn)= 1
2 m A[u2

1(tn)+w
2
1(tn)+

2
5 R2

Aω
2
1(tn)]. (6-4)

Next, expressing the center of mass x A and the angular velocity ωA of the sphere in the forms

x A = xe1+ ye2, ωA = ωe3, (6-5)

the balance laws of linear and angular momentum of the sphere between collisions require

ẍ = b, ÿ = 0, ω̇ = 0. (6-6)

Using the values {u1(tn), w1(tn), ω1(tn)} just before the collision at t = tn , the equations (6-3) determine
the initial conditions {u2(tn), w2(tn), ω2(tn)} just after collision, with the initial values of {x, y, ω} for
(6-6) given by

x(tn)= 0, ẋ(tn)= u2(tn), y(tn)= y(t−n ), ẏ(tn)= w2(tn), ω(tn)= ω2(tn), (6-7)

where y(t−n ) is the value of y just before the collision. Then, the solution of (6-6) is given by

x(t)= u2(tn)(t − tn)+ 1
2 b(t − tn)2,

y(t)= y(tn)+w2(tn)(t − tn),

ω(t)= ω2(tn) for tn ≤ t ≤ tn+1.

(6-8)

The value t = tn+1 is the time when the next collision occurs with the wall

x(tn+1)= 0⇒ tn+1 = tn −
2u2(tn)

b
, (6-9)

with the value y(tn+1) for the collision at t = tn+1 being specified by

y(tn+1)= y(tn)−
2u2(tn)w2(tn)

b
. (6-10)
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Figure 7. Values of the obliquity angle θ as a function of the normalized variable z.

 

Figure 8. Examination of the restriction 1−η > 0 for positive energy dissipation on the
parameters e and α.

Moreover, the values of {u1(tn+1), w1(tn+1), ω1(tn+1)} just before the collision at t = tn+1 are given by

u1(tn+1)=−u2(tn), w1(tn+1)= w2(tn), ω1(tn+1)= ω2(tn), (6-11)

which with the help of (6-3) are used to determine the initial conditions {u2(tn+1), w2(tn+1), ω2(tn+1)}

just after collision at t = tn+1. Then, the process is repeated for additional collisions.
Before presenting the solution to bouncing, it is of interest to examine the dependence of the incident

obliquity angle θ and the quantity (1− η), which characterizes energy dissipation, on the parameter z for
different values of the model parameters. For the examples in this section µs is specified by the value
in (5-2) and the solution is considered for different values of e and α. Specifically, use is made of (2-8),
(3-10), (3-12), and (6-3) to determine values for θ and (1− η). Figure 7 plots θ as a function of z for
different values of e. From this figure it can be seen that the obliquity angles θ for e = 1 and 0.8 are
greater than 60◦ at the transition to full slip (z = 1) so the transition region with partial slip is significant.
Figure 8 plots (1− η) as a function of z for different values of e and α. Recalling that (1− η) must be
positive for positive energy dissipation during the collision, it can be seen that for e = 1, the value of α
has to be less than or equal to unity for positive energy dissipation, but for lower values of e the value
of α can be greater than unity and still satisfy the restriction of positive energy dissipation.
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In order to interpret the results of specific examples, it is convenient to define the following normalized
parameters

Un =
u1(tn)
u1(t1)

, Wn =
w1(tn)
u1(t1)

, �n =
RAω1(tn)

u1(t1)
,

Sn =
s1(tn)
ψsu1(t1)

=
Wn +�n

ψs
, T̄n =

T (tn)
1
2 m Au2

1(tn)
=U 2

n +W 2
n +

2
5�

2
n, En =

T̄n

T̄1
, (6-12)

where {Un,Wn, �n, Sn, T̄n, En} characterize, respectively, the vertical velocity, horizontal velocity, an-
gular velocity, slip velocity, kinetic energy and the energy reduction just before the collision at t = tn .
Then, equations (6-3), (6-11) and (6-12) yield

zn =
|Sn|

Un
, gn = 1−〈1− zn〉

1+α, ηn =−1+
[

1+ e+µsψs g2
n

1+µsψszngn

]
,

Un+1 = eUn, Wn+1 =Wn −
2
7
ψs

( Sn

zn

)
gn, �n+1 =�n −

5
7
ψs

( Sn

zn

)
gn,

Sn+1 = SnGn, Gn(zn)= 1−
gn

zn
. (6-13)

Next, consider special state defined by

Wn =
1
7(2+ 5γ )ψs Sn, �n =

5
7(1− γ )ψs Sn, T̄n =U 2

n +
1
7ψ

2
s S2

n(2+ 5γ 2). (6-14)

From these expressions it can be seen that the two states γ =±|γ |, with different values of the horizontal
velocity Wn and angular velocity �n , have the same slip velocity Sn and the same kinetic energy T̄n .
Moreover, it follows from (6-13) and (6-14) that

Wn+1 =
1
7(2+ 5γ̄ )ψs Sn+1, �n+1 =

5
7(1− γ̄ )ψs Sn+1,

T̄n+1 =U 2
n+1+

1
7ψ

2
s S2

n+1(2+ 5γ̄ 2), γ̄ =
γ

1− gn
zn

. (6-15)

Comparison of (6-14) and (6-15) indicates that consecutive collisions maintain the same structure so the
response of the slip velocity Sn and the energy reduction En for the two initial states specified by

U1 = 1, W1 =
1
7(2+ 5γ )ψs S1, �1 =

5
7(1− γ )ψs S1, T̄1 = 1+ 1

7ψ
2
s S2

1(2+ 5γ 2), (6-16)

with γ =±|γ | are the same. This means that the parameters in the model can be determined by experi-
ments or simulations for which the sphere has no initial angular velocity {γ = 1} and the results can be
used for general states. In the following examples the initial state is specified by (6-16) with

S1 = z1 > 0. (6-17)

From (6-13) it follows that when e is less than unity, the value of the vertical velocity Un decreases with
each collision, eventually attaining the value of zero. The function Gn(zn) in (6-13) which characterizes
the slip velocity satisfies the properties

Gn(0)=−α, Gn(1)= 0, Gn(∞)= 1,
dGn

dzn
≥ 0, −α ≤ G(zn)≤ 1. (6-18)
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Moreover, it can be shown that

−1< Gn(zn) < 1 for 0< α < 1 and 0≤ zn <∞, (6-19)

which in view of (6-13) means that the slip velocity decreases during each collision as long as zn remains
bounded. However, the rate of decrease in Un might be slower than that of Sn , causing zn to approach
infinity and the value of Sn to approach a non-zero constant.

6.1. Bouncing vertically with no slip. The simplest special solution is one where the sphere does not
translate horizontally and does not rotate with

zn = 0, Wn = 0, �n = 0, Sn = 0 for n = 1, 2, . . . . (6-20)

This solution is valid for any values of {e, α, µs} and consists of the sphere merely bouncing vertically.
If e is less than unity, the sphere loses energy during each collision and eventually stops bouncing.

6.2. Bouncing vertically with initial slip. For this example the initial slip velocity has the special value

S1 = z1 = 1, W1+�1 = ψs, (6-21)

which allows the sphere to initially have nonzero horizontal velocity W1 and nonzero angular velocity
�1. Since Gn(1)= 0 in (6-13) it follows that slip velocity Sn reduces to zero during the first collision
and remains zero

Sn = 0 for z1 = 1 and n = 2, 3, . . . . (6-22)

This result is also independent of the values of {e, α}. Although the slip velocity might be zero this
does not mean that the sphere has stopped rotating or translating. In particular, it can be seen from
(6-14)–(6-15) that {Wn, �n} will both vanish when Sn vanishes if

γ = 0,
Wn

�n
=

2
5

for n = 1, 2, . . . . (6-23)

6.3. Bouncing with partial energy dissipation. For an example of bouncing with partial energy dissipa-
tion, the parameters are specified by (6-16) and (6-17) with

e = 1, α = 0.35, µs = 0.3, γ = 1, z1 = 0.5. (6-24)

Figure 9 shows the response of this sphere which is initially not rotating. Since e= 1, the vertical velocity
Un before each collision shown in part (a) of the figure remains constant so there is only partial energy
dissipation. The slip velocity Sn in part (b) reduces to zero, the horizontal velocity Wn in part (c) attains a
constant positive value and the energy reduction En in part (d) decreases to a constant positive value. The
sphere continues to bounce, translating and rotating without slip at the contact points of the collisions.

6.4. Bouncing with dissipation of the vertical kinetic energy. For an example of bouncing with dissi-
pation of the vertical kinetic energy, the parameters are specified by

e = 0.8, α = 0.35, µs = 0.3, γ = 0, z1 = 1. (6-25)
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Figure 9. Bouncing with partial energy dissipation: The solution shows initial slip with
{Sn,Wn}. The parameters are specified by e = 1, α = 0.35, µs = 0.3, γ = 1, z1 = 0.5.

Figure 10 shows that for these special values {γ = 0, z1 = 1} the nonzero initial values of the slip velocity
Sn , the horizontal velocity Wn and the angular velocity �n all drop to zero during the first collision and
remain zero. This means that after the first collision the sphere bounces vertically until all its kinetic
energy is dissipated.

6.5. Bouncing with dissipation of the vertical kinetic energy and continued slip. For an example of
bouncing with dissipation of the vertical kinetic energy and continued slip the parameters are specified
by

e = 0.8, α = 0.35, µs = 0.3, γ = 1, z1 = 6, (6-26)

which has a much larger value of the slip velocity and obliquity angle than that in (6-25). Figure 11(a)
shows that the normal velocity Un decays to zero; in the rest of the figure it can be seen that the slip
velocity Sn (b), the horizontal velocity Wn (c) and the energy reduction En (d) all reduce to positive values.
In particular, the normal velocity Un decays faster than the slip velocity Sn , causing zn to approach infinity
with Gn in (6-13) approaching zero. Also, it is interesting to note that when zn approaches infinity the
parameter η approaches (−1).

As Un approaches zero the sphere chatters (bouncing with imperceptible amplitude). The kinetic
energy remains constant even though the sphere continues to slip because the force of gravity is neglected
during these small collision events. This is an unphysical result of the approximation that the impulsive
force dominates the bounded force of gravity during the collision and it identifies a limitation of the
model for certain situations with multiple collision events.
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Figure 10. Bouncing with dissipation of the vertical kinetic energy: The solution shows
initial slip with {Sn,Wn, �n} dropping to zero after the first collision. The parameters
are specified by e = 0.8, α = 0.35, µs = 0.3, γ = 0, z1 = 1.

 

 

Figure 11. Bouncing with dissipation of the vertical kinetic energy: The solution shows
continued slipping (Sn > 0) with the parameters specified by e= 0.8, α = 0.35, µs = 0.3,
γ = 1, z1 = 6.
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7. Conclusions

The smooth transition model for hard-particle collision of spheres presented here has been motivated by
the model of Walton [1993], which has a sharp transition between a region of partial slip for low obliquity
angles and a region of full slip for higher obliquity angles. Specifically, the notion of a coefficient of
rotational restitution in the Walton model is replaced by a constitutive equation for the shear coefficient
µ, which controls the ratio of the shear component of the impulsive force to its normal component. The
model depends on three parameters: the standard coefficient of restitution e for relative normal velocities;
a constant value µs of friction for sliding in the full slip region; and a parameter α in the function g(z)
in (3-12) that controls the shape of the transition region from partial to full slip.

The resulting smooth transition model is relatively simple and the three model parameters {e, µs, α}

can be evaluated from experimental data or from simulations using soft-particle contact models. Ex-
amples show that the smooth transition region is large with the obliquity angle θ being between 0 and
nearly 60◦. Moreover, it is shown that the physical condition of non-negative energy dissipation imposes
nontrivial restrictions on the model parameters.
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