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NONLOCAL FORCED VIBRATION OF A
DOUBLE SINGLE-WALLED CARBON NANOTUBE SYSTEM
UNDER THE INFLUENCE OF AN AXIAL MAGNETIC FIELD

MARIJA B. STAMENKOVIĆ, DANILO KARLIČIĆ, GORAN JANEVSKI AND PREDRAG KOZIĆ

The influence of various physical phenomena on the dynamic behavior of nanostructures has been attract-
ing more and more attention of the scientific community. This paper discusses the effects of the axial
magnetic field on the externally excited double single-walled carbon nanotube (DSWCNT) coupled by a
Winkler elastic medium. It is assumed that both carbon nanotubes are identical and under the influence
of compressive axial load with simply supported ends. Based on the Eringen nonlocal elasticity and
Euler–Bernoulli beam theory, the system of two coupled nonhomogeneous partial differential equations
of motion is derived, where the effects of the Lorentz magnetic force are obtained via a Maxwell relation.
The dynamic responses of the DSWCNT system for four different cases of external transversal load are
considered. The closed form solutions for the transversal displacements are obtained by applying the
Bernoulli–Fourier method of particular integrals on the system of nonhomogeneous partial differential
equations of motion. Also, analytical expressions of the amplitude ratio for forced vibration are derived
and then validated with existing results. Moreover, the obtained analytical results for fundamental nat-
ural frequency are validated with results obtained by molecular dynamics (MD) simulation and show
fine agreements. The effects of compressive axial load, nonlocal parameter, axial magnetic field and
stiffness coefficient of the elastic medium on the forced dynamic behavior of DSWCNT are considered
through numerical examples. From numerical results we can conclude that the dynamical behavior of
DSWCNT is greatly influenced by the magnetic field and nonlocal parameter. Furthermore, by selecting
the intensity of the axial magnetic field in a certain range, it is possible to adjust the stiffness of the
system without changing the material and geometric parameters. This effect implies a change in the
natural frequencies of the system.

1. Introduction

In the last few decades, carbon nanotubes (CNTs) [Iijima 1991; Hata et al. 2004; Iijima et al. 1996]
have drawn considerable attention from scientists and engineers in the field of nanotechnology due to
their extraordinary physical [Reich et al. 2008], chemical [Hu et al. 1999], and mechanical properties
[Lu 1997]. Salvetat et al. [1999] explain the properties of nanotubes in the wider context of materi-
als science, where experimental results confirm the theoretical predictions that carbon nanotubes have
high strength, extraordinary flexibility and resilience. Moreover, these superior characteristics provide
them with a wide range of applications in nanoscale devices, such as biosensors [Murmu and Adhikari
2012; Adhikari and Chowdhury 2010], mass sensors [Murmu and Adhikari 2011; Li and Chou 2004],
nanoactuators [Li et al. 2008; Roth and Baughman 2002], field emitters [Saito 2003], nanoelectronic
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devices [Avouris et al. 2007], and fillers for nanocomposite structures [Moniruzzaman and Winey 2006;
Ajayan et al. 2006]. Single-walled carbon nanotubes (SWCNT) are cylindrical macromolecules obtained
in specific technological processes by rolling the two-dimensional structures such as graphene sheets into
a tube. Based on the experimental analyses [Ruoff et al. 2003; Dresselhaus et al. 2005] and atomistic
theories [Dubay and Kresse 2003; Liu et al. 2003], it has been shown that the “size-effect” plays an
important role in describing the physical and mechanical properties of materials on the nanoscale level
of CNTs. However, conducting experiments on the nano level is a very complex and expensive task due
to difficulties in the control of all system parameters.

Furthermore, an atomistic theory such as molecular dynamic (MD) simulation [Duan et al. 2007]
is suitable only for systems with a small number of particles; such theories can be expensive in view
of time or computational resources for larger systems. Due to the disadvantages of these two methods,
researchers are increasingly turning to models obtained through continuum mechanics. However, because
of the existence of small-scale effects, the classical continuum theories need to be reformulated to take
these effects into account.

This can be done by introducing nonlocality in the space domain, modifying the corresponding consti-
tutive equation and introducing the material parameter, which takes into account the effects of length scale
and influence of the interatomic forces. One of the first scale-dependent continuum theories proposed by
Eringen and coworkers [Eringen 1972; 1983; Eringen and Edelen 1972], which takes nonlocal effects
into account is known as the nonlocal elasticity theory. According to Eringen [2002], the nonlocal
theory gives great approximation for a large class of problems in nanosystems where the influence of
length-scales is very pronounced. Yang et al. [2010] investigated nonlinear free vibration of single-
walled carbon nanotubes (SWCNTs), while Ke et al. [2009] investigated nonlinear free vibration of
embedded double-walled carbon nanotubes (DWNTs), based on Eringen’s nonlocal elasticity theory and
von Kármán geometric nonlinearity.

Consideration of magnetic field effects is important to complete the knowledge of the mechanical
behavior of nanomaterials such as CNTs [Bellucci et al. 2007; Correa-Duarte et al. 2005] and graphene
sheets [Goerbig et al. 2006; Ghorbanpour Arani and Shokravi 2014]. Arani et al. [2013] studied ther-
mononlocal vibration of a double bounded graphene sheet under the influence of two-dimensional mag-
netic field with biaxial in-plane load. They obtained a numerical solution of the coupled partial dif-
ferential equation by the differential quadrature method for simply supported boundary conditions and
analyzed the influences of the magnetic field on the frequency ratio. Based on the nonlocal elasticity the-
ory, Kiani [2012] reformulated Rayleigh, Timoshenko and higher-order beam theories for modeling wave
propagation in embedded SWCNT under the influence of an axial magnetic field. The authors derived
phase and group velocity and investigated the influence of small-scale parameters, longitudinal magnetic
field stiffness coefficients of the surrounding medium on the flexural and shear waves. Narendar et al.
[2012] analyzed the effects of a longitudinal magnetic field on wave dispersion characteristics of SWCNT
embedded in a Pasternak elastic medium in the framework of nonlocal elasticity. They found that the
nonlocality reduces the wave velocity in the presence of a magnetic field, but without the influence on the
higher frequency region. In the paper proposed by Murmu et al. [2012b], authors considered transversal
vibration of magnetic influenced double walled carbon nanotubes (DWCNT) according to the Eringen
nonlocal continuum theory. Analytical solutions of natural frequency and transversal displacements of
DWCNT were obtained for simply supported boundary conditions. Also, the effects of different materials
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parameters on the vibration behavior were analyzed and discussed in detail. Consideration of the effects
of an axial magnetic field on the dynamical behavior of double single-walled carbon nanotubes using
the nonlocal Euler–Bernoulli beam theory is shown in the work of Murmu et al. [2012a]. Applying a
method of separation of variables, they solved the system of two coupled partial differential equations and
obtained a closed form solution for natural frequency. The effects of a nonlocal parameter and intensity
of longitudinal magnetic field on the synchronous and asynchronous vibration phases of a double single
walled carbon system were also investigated. Karličić et al. [2014c] investigated the influence of damping
and axial magnetic field effects on the vibration behavior of a viscoelasticity system of m coupled carbon
nanotubes based on the nonlocal viscoelasticity theory. They obtained an analytical solution for damping
natural frequency, damping ratio and their critical values in the case when the mode and number of
nanotubes tend to infinity.

The modeling of forced vibration states in nanosystems becomes a more and more important part
in the design of MEMS and NEMS devices [Kacem et al. 2011; Lazarus et al. 2012]. Based on the
Kirchhoff plate theory and Eringen constitutive relation, governing equations of motion are derived and
then solved by using the Galerkin procedures for vibration frequencies and forced response. Aksencer
and Aydogdu [2012] investigated forced vibration of nanoplates by using the nonlocal elasticity and
Kirchhoff plate theory. The Navier-type solution method was used for simply supported nanoplates
where forced vibration response was obtained in the analytical form. Claeyssen et al. [2013] explored
the forced response of a single carbon nanotube modeled via the nonlocal Euler–Bernoulli beam theory.
Forced responses were determined for different external loads and boundary conditions using the Galerkin
method. Recently, researchers have focused their investigations on the particular problem of forced
vibration such as the influence of moving nanoparticles on nanostructural elements such as nanotubes
and nanoplates [Kiani and Mehri 2010; Şimşek 2010a]. Şimşek [2011] presented an analytical method
for the forced vibration of an elastically connected double-carbon nanotube system carrying a moving
nanoparticle based on the nonlocal elasticity and Euler–Bernoulli beam theory. The closed-form solutions
for the dynamic deflections of the two nanobeams were derived for two sets of critical velocity, and
then effects of the nonlocal parameter, aspect ratio, velocity of the moving nanoparticle and the elastic
layer between the nanotubes on the dynamic responses were discussed. Zhang et al. [2008] introduced
compressive axial load on the external excited double beam system. They obtained analytical solutions
of forced vibration responses for two cases of particular excitation loadings. Oniszczuk [2003] analyzed
undamped forced transverse vibrations of an elastically connected complex double-beam system, based
on the Euler–Bernoulli beam and classical elasticity theory. Several cases of particularly interesting
excitation loadings such as of stationary harmonic loads and moving forces were investigated.

In this paper, using the Euler–Bernoulli beam theory we analyze the effects of axial compressive
load and magnetic field on the forced transversal vibration of a magnetically sensitive double SWCNT
system. The Eringen nonlocal continuum theory is used to introduce small-scale effects via a material
parameter. It is assumed that the double coupled SWCNT system is modeled as a system of two slender
parallel nanobeams elastically connected by a Winkler elastic medium. The system of two coupled
partial differential equations of motion is derived by considering the nonlocal Euler–Bernoulli beam
theory and classical Maxwell relation. Analytical solutions for natural frequencies, amplitude ratio and
forced response in four cases of external excitation load are determined by applying the Bernoulli–Fourier
methods. Numerical simulations show that the nonlocal parameter and intensity of axial magnetic fields
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have a significant influence on the natural frequencies and dynamical response of the DSWCNT system.
It should be noted that this study is limited only to the armchair SWCNT system, where the influence
of rotation of magnetically influenced nanotubes is neglected [Popov et al. 2014; Krstić et al. 2004;
Slavcheva and Roussignol 2011]. Then molecular dynamics (MD) simulation is implemented to obtain
fundamental frequencies of nanotubes for armchair SWCNT and values of aspect ratio to compare them
with the results obtained by the nonlocal beam models, presented by Ansari and Sahmani [2012] and
Ansari et al. [2012]. The results presented here are validated with the results found in the literature.

2. Problem formulation

2.1. Nonlocal elastic constitutive relation. The fundamental equations of the nonlocal elasticity theory
are considered in this section. The basic assumption in this continuum theory is that the stress at a
point is a function of the strains at all points of the whole body. The constitutive elastic relation for a
three-dimensional homogeneous isotropic body in the integral form is given by Eringen and coworkers
[Eringen 1972; Eringen and Edelen 1972] as

σi j (x)=
∫
α(|x − x ′|, τ )Ci jklεkl(x ′) dV (x ′) for all x ∈ V, (1a)

σi j, j = 0, (1b)

εi j =
1
2(ui, j + u j,i ), (1c)

where Ci jkl is the elastic modulus tensor for classical isotropic elasticity; σi j and εi j are the stress and the
strain tensors, respectively, and ui is the displacement vector. By α(|x − x ′|, τ ) we denote the nonlocal
modulus or attenuation function, which incorporates nonlocal effects into the constitutive equation at a
reference point x produced by the local strain at a source x ′. The above absolute value of the difference
|x − x ′| denotes the Euclidean metric, and τ is the parameter τ = (e0a)/ l, where l is the external
characteristic length (crack length, wave length), a describes the internal characteristic length (lattice
parameter, granular size and distance between C-C bounds) and e0 is a constant appropriate to each
material that can be identified from atomistic simulations or by using the dispersive curve of the Born–
Karman model of lattice dynamics.

As Equation (1) is difficult to use in practical examples, simplified constitutive relations in the differ-
ential form are developed. According to Eringen [1983], constitutive relations in differential form are
given as

σxx −µ
d2σxx

dx2 = Eεxx , (2)

σxz −µ
d2σxz

dx2 = Gγxz, (3)

where E and G are the elastic modulus and the shear modulus of the beam, respectively, µ = (e0a)2

is the nonlocal parameter, σxx , σxz are the normal and the shear nonlocal stresses, respectively, and
εxx = ∂u/∂x is the axial deformation. The internal characteristic lengths (e0a) are often assumed to be
in the range 0–2 [nm] for nanomaterials such as carbon nanotubes, zinc oxide, etc. When e0a = 0, the
nonlocal constitutive relation is reduced to the classical constitutive relation of the elastic body.
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2.2. Maxwell’s relation. According to Murmu et al. [2012b; 2012a], the equation which connects the
current density J , distributing vector of magnetic field h, strength vector of the electric fields e, and
magnetic field permeability η, is represented by Maxwell’s expressions [Kraus 1984] as

J =∇ × h, ∇ × e=−η
∂h
∂t
, ∇ · h = 0, (4)

where the vectors of distributing magnetic field h and the electric field e are defined as

h =∇ × (U × H), e=−η
(
∂U
∂t
× H

)
, (5)

in which ∇ = (∂/∂x)i + (∂/∂y) j + (∂/∂z)k is the Hamilton operator, U = (x, y, z) is the displacement
vector and H = (Hx , 0, 0) is the vector of the axial magnetic field. In the present study, we assume that
the axial magnetic field acts on the double SWCNT in the x-direction of the system. Now, we can write
the vector of the distributing magnetic field [Murmu et al. 2012b; 2012a] in the form

h =−Hx

(
∂v

∂y
+
∂w

∂z

)
i + Hx

∂v

∂x
j + Hx

∂w

∂x
k. (6)

Then we introduce (6) into the first expression of (4):

J =∇× h= Hx

(
−
∂2v

∂x∂z
+
∂2w

∂x∂y

)
i−Hx

(
∂2v

∂y∂z
+
∂2w

∂x2 +
∂2w

∂z2

)
j+Hx

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z∂y

)
k. (7)

Introducing (7) into the expressions for the Lorentz force induced by the axial magnetic field yields

f = fx i + fy j + fz k = η(J × H), (8)

where fx , fy and fz express the Lorentz force along the x , y and z directions, as follows:

fx = 0, (9a)

fy = ηH 2
x

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z∂y

)
, (9b)

fz = ηH 2
x

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2v

∂z∂y

)
. (9c)

We assume that the transversal displacements of the first and second SWCNT in the system are denoted
as w1(x, t) and w2(x, t), respectively, and the Lorentz force acts only in the z direction, which can be
written as

fz,i = ηH 2
x
∂2wi

∂x2 , i = 1, 2. (10)

Finally, it is possible to obtain force per unit length of both SWCNTs in the system as

q̃i (x, t)=
∫

A
fz,i dA = ηAH 2

x
∂2wi

∂x2 , i = 1, 2. (11)
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Figure 1. The system of double SWCNT affected by an axial magnetic field. Left: the
physical model of external excited DSWCNTS with fixed single layer of carbon atoms
[Ansari and Sahmani 2012] coupled by an elastic medium and influenced by an axial
magnetic field. Right: the equivalent mechanical model.

2.3. Mathematical model. Consider a compressive nonlocal double SWCNT system which is under the
influence of an axial magnetic field as shown in Figure 1, left. The nonlocal double SWCNT system is
assumed to be modeled as a system composed of two parallel nanobeams, which have the same length and
are continuously joined by a Winkler elastic layer. It should be noted that the fixed atomic layers on the
sides of the carbon nanotubes represent, from the mechanical point of view, simply supported boundary
conditions, as shown in [Ansari and Sahmani 2012]. The stiffness modulus of the Winkler elastic layer
is denoted with k. The transversal displacement over the two nanobeams is denoted by w1(x, t) and
w2(x, t), respectively; see Figure 1, right. For the sake of simplicity, we will consider only the case
of identical nanobeams, where geometric and physical properties are the same for both nanobeams and
defined as follows: A is the cross-sectional area, E is the Young’s modulus, ρ is the mass density, I is
the moment of inertia and L is the length of the nanobeam. Also, we assume that nanobeams 1 and 2
are subjected to positive axial compressions F1 and F2 and arbitrarily distributed transverse continuous
loads f1(x, t) and f2(x, t), respectively, that are positive when they act downward. The influence of the
Lorentz magnetic force on the double nanobeam system is caused by the axial magnetic field which acts
in the x direction, as shown in Figure 1.

Using the Euler–Bernoulli beam theory and Eringen nonlocal elasticity following the methodology
presented in the work of Kozić et al. [2014], the governing equations of motion of the nonlocal double
nanobeam system (NDNBS) can be given as

ρA
∂2w1

∂t2 − f1+ k(w1−w2)+ F1
∂2w1

∂x2 − ηAH 2
x
∂2w1

∂x2 + E I
∂4w1

∂x4

= µ
∂2

∂x2

[
ρA

∂2w1

∂t2 − f1+ k(w1−w2)+ F1
∂2w1

∂x2 − ηAH 2
x
∂2w1

∂x2

]
, (12)

ρA
∂2w2

∂t2 − f2− k(w1−w2)+ F2
∂2w2

∂x2 − ηAH 2
x
∂2w2

∂x2 + E I
∂4w2

∂x4

= µ
∂2

∂x2

[
ρA

∂2w2

∂t2 − f2− k(w1−w2)+ F2
∂2w2

∂x2 − ηAH 2
x
∂2w2

∂x2

]
. (13)
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The boundary conditions of the NDNBS are assumed to be simply supported and considered as

wi (0, t)= wi (L , t)= 0, (14)

∂2wi

∂x2 (0, t)=
∂2wi

∂x2 (L , t)= 0, i = 1, 2, (15)

where L is the length of the two nanobeams, and t is the time.
In order to simplify the solving of Equations (12) and (13), we introduce the dimensionless parameters

µ= L2η2, x = Lξ, L =
x
ξ
, t2

= τ 2L4c2, c2
=
ρA
E I
, f i =

L3

E I
fi ,

F i =
L2 Fi

E I
, K =

kL4

E I
, MP=

L2

E I
ηAH 2

x , wi = Lwi , i = 1, 2.

(16)

Introducing dimensionless parameters (16) into Equations (12) and (13), we can write the system of
partial differential equations as

∂2w1

∂τ 2 + K (w1−w2)+ (F1−MP)
∂2w1

∂ξ 2 +
∂4w1

∂ξ 4

− η2 ∂
2

∂ξ 2

[
∂2w1

∂τ 2 + K (w1−w2)+ (F1−MP)
∂2w1

∂ξ 2

]
= f 1− η

2 ∂
2 f 1

∂ξ 2 , (17)

∂2w2

∂τ 2 − K (w1−w2)+ (F2−MP)
∂2w1

∂ξ 2 +
∂4w1

∂ξ 4

− η2 ∂
2

∂ξ 2

[
∂2w1

∂τ 2 − K (w1−w2)+ (F2−MP)
∂2w1

∂ξ 2

]
= f 2− η

2 ∂
2 f 2

∂ξ 2 , (18)

where ξ is the dimensionless axial coordinate, and τ is the dimensionless time. Expressions (17) and
(18) represent dimensionless governing equations of motion of the NDNBS shown in Figure 1, right.

3. Analytical solution of equations

3.1. Free vibrations. The homogeneous governing partial differential equations (17) and (18) of the
NDNBS with boundary conditions (14) and (15) can be solved by the Bernoulli–Fourier method, assum-
ing the solutions in the forms

w1(ξ, τ )=

∞∑
n=1

Xn(ξ)T1n(τ ), (19)

w2(ξ, τ )=

∞∑
n=1

Xn(ξ)T2n(τ ), (20)

where T1n(τ ) and T2n(τ ) denote the unknown dimensionless time functions, and Xn(ξ) is the known
mode shape function for the simply supported single nanobeam, which is defined as

Xn(ξ)= sin(knξ), (21)
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with

kn = nπ, n = 1, 2, 3, . . . . (22)

The substitution of Equations (19) and (20) into Equations (17) and (18), neglecting the external transver-
sal load f 1 and f 2, yields

T̈1n +

[
K − (F1−MP)k2

n +
k4

n

1+ η2k2
n

]
T1n − K T2n = 0, (23)

T̈2n +

[
K − (F2−MP)k2

n +
k4

n

1+ η2k2
n

]
T2n − K T1n = 0. (24)

We assume the solutions of differential equations (23) and (24) in the forms

T1n = Cne jωnτ , T2n = Dne jωnτ , j =
√
−1, (25)

where ωn denotes the natural frequency of the double-nanobeam system, and Cn and Dn represent the
amplitude coefficients of the two nanobeams, respectively. Substituting (25) into (23) and (24) yieldsK − (F1−MP)k2

n +
k4

n
1+η2k2

n
−ω2

n −K

−K K − (F2−MP)k2
n +

k4
n

1+η2k2
n
−ω2

n

{Cn

Dn

}
=

{
0
0

}
. (26)

Nontrivial solutions for the constants Cn and Dn can be obtained only when the determinant of the
coefficients in equations (26) vanishes. This gives the following frequency equation:

ω4
n −ω

2
n

[
2K − F1k2

n − F2k2
n + 2M Pk2

n + 2
k4

n

1+ η2k2
n

]
+

[
K − (F1−MP)k2

n +
k4

n

1+ η2k2
n

][
K − (F2−MP)k2

n +
k4

n

1+ η2k2
n

]
− K 2

= 0. (27)

From (27) we obtain

ω2
nI =

1
2

[
b−

√
b2
− 4c

]
, (28)

ω2
nII =

1
2

[
b+

√
b2
− 4c

]
, (29)

where ωnI is the lower natural frequency of the system, and ωnII is the higher natural frequency. In the
relations (28) and (29) the parameters are given as

b =
[

2K − F1k2
n − F2k2

n + 2M Pk2
n + 2

k4
n

1+ η2k2
n

]
, (30)

c =
[

K − (F1−MP)k2
n +

k4
n

1+ η2k2
n

][
K − (F2−MP)k2

n +
k4

n

1+ η2k2
n

]
− K 2. (31)
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For each of the natural frequencies, the associated amplitude ratio of vibration modes of the two nanobeams
is given by

αni =
Dni

Cni

=

K − (F1−MP)k2
n +

k4
n

1+η2k2
n
−ω2

ni

K
=

K

K − (F2−MP)k2
n +

k4
n

1+η2k2
n
−ω2

ni

, i = I, II. (32)

By entering ω2
nI and ω2

nII from (28) and (29) into (32), respectively, we obtain

3αnI =
K − (F1−MP)k2

n +
k4

n
1+η2k2

n
−ω2

nI

K
=

K

K − (F2−MP)k2
n +

k4
n

1+η2k2
n
−ω2

nI

, (33)

αnII =
K − (F1−MP)k2

n +
k4

n
1+η2k2

n
−ω2

nII

K
=

K

K − (F2−MP)k2
n +

k4
n

1+η2k2
n
−ω2

nII

. (34)

3.2. Forced vibrations. The above analysis showed the solution of the homogeneous system of par-
tial differential equations. In the following analysis we will consider the nonhomogeneous differential
equations (17) and (18) representing forced vibrations of the (SWCNT) system, assuming solutions in
the forms

w1(ξ, τ )=

∞∑
n=1

Xn(ξ)

II∑
i=I

Sni (τ ), (35)

w2(ξ, τ )=

∞∑
n=1

Xn(ξ)

II∑
i=I

αni Sni (τ ), (36)

where Sni (τ ), i = I, II, denote the unknown dimensionless time functions corresponding to the natural
frequencies ωni , i = I, II. Introduction (35) and (36) into (17) and (18), we obtain

∞∑
n=1

Xn

II∑
i=I

[
S̈ni+

(
K−(F1−MP)k2

n+
k4

n

1+η2k2
n
−Kαni

)
Sni

]
(1+η2k2

n)= f 1−η
2 ∂

2 f 1

∂ξ 2 , (37)

∞∑
n=1

Xn

II∑
i=I

[
S̈ni+

(
K−(F2−MP)k2

n+
k4

n

1+η2k2
n
−Kα−1

ni

)
Sni

]
(1+η2k2

n)αni = f 2−η
2 ∂

2 f 2

∂ξ 2 . (38)

By multiplying relations (37) and (38) by the mode shape function Xm(ξ), then integrating with respect
to ξ from 0 to 1 and using the orthogonality condition

∫ 1

0
Xm(ξ)Xn(ξ) dξ =

∫ 1

0
sin(mπξ)sin(nπξ) dξ = βδmn =

∫ 1

0
Xn

2(ξ) dξ = 1
2 , (39)
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where δmn is the Kronecker delta function, we have

II∑
i=I

[
S̈ni+

(
K−(F1−MP)k2

n+
k4

n

1+η2k2
n
−Kαni

)
Sni

]
= 2M

∫ 1

0

(
f 1−η

2 ∂
2 f 1

∂ξ 2

)
Xn(ξ) dξ, (40)

II∑
i=I

[
S̈ni+

(
K−(F2−MP)k2

n+
k4

n

1+η2k2
n
−Kα−1

ni

)
Sni

]
αni = 2M

∫ 1

0

(
f 2−η

2 ∂
2 f 2

∂ξ 2

)
Xn(ξ) dξ, (41)

with

M =
1

1+ η2k2
n
. (42)

By combining equations (33), (34), (40) and (41) we obtain

II∑
i=I

[S̈ni +ω
2
ni Sni ] = 2M

∫ 1

0

(
f 1− η

2 ∂
2 f 1

∂ξ 2

)
Xn(ξ) dξ, (43)

II∑
i=I

[S̈ni +ω
2
ni Sni ]αni = 2M

∫ 1

0

(
f 2− η

2 ∂
2 f 2

∂ξ 2

)
Xn(ξ) dξ. (44)

From equations (43) and (44) we obtain

S̈ni +ω
2
ni Sni = Rni (τ ), i = I, II, (45)

where

RnI = 2M
1

αnII−αnI

∫ 1

0

[
αnII

(
f 1− η

2 ∂
2 f 1

∂ξ 2

)
−

(
f 2− η

2 ∂
2 f 2

∂ξ 2

)]
Xn(ξ) dξ, (46)

RnII = 2M
1

αnI−αnII

∫ 1

0

[
αnI

(
f 1− η

2 ∂
2 f 1

∂ξ 2

)
−

(
f 2− η

2 ∂
2 f 2

∂ξ 2

)]
Xn(ξ) dξ. (47)

From the equations (45) we obtain

Sni (τ )=
1
ωni

∫ τ

0
Rni (s) sin[ωni (τ − s)] ds, i = I, II. (48)

By combining (35), (36) and (48), the forced vibrations of the (SWCNT) system can be described by

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)
II∑

i=I

1
ωni

∫ τ

0
Rni (s) sin[ωni (τ − s)] ds, (49)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)
II∑

i=Iαni

αni
1
ωni

∫ τ

0
Rni (s) sin[ωni (τ − s)] ds. (50)

Solutions (49) and (50) can be used to find the dynamic responses of this system for an arbitrary
exciting transversal loading in cases with both stationary and moving loads. For the sake of simplicity
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in further consideration, it is assumed that only the first nanobeam is subjected to the exciting load.
Introducing f 1(ξ, τ ) 6= 0 and f 2(ξ, τ )= 0 into (46) and (47), we obtain

RnI = 2M
αnII

αnII−αnI

∫ 1

0

(
f 1− η

2 ∂
2 f 1

∂ξ 2

)
sin(nπξ) dξ, (51)

RnII = 2M
αnI

αnI−αnII

∫ 1

0

(
f 1− η

2 ∂
2 f 1

∂ξ 2

)
sin(nπξ) dξ. (52)

In the following, we conduct an analysis of forced vibrations for four cases of exciting loadings:
uniformly distributed harmonic continuous load, concentrated harmonic force, moving constant force F
and moving harmonic force.

3.2.1. Uniformly distributed harmonic load. The uniformly distributed harmonic load

f 1(ξ, τ )= r sin(�τ) (53)

acts upon the SWCNT system (see Figure 2), where r is the amplitude and � is the frequency of the
exciting harmonic load. By substituting Equation (53) into (51) and (52), we obtain

RnI = 4Mr
αnII

nπ(αnII−αnI)
sin(�s), n = 1, 3, 5, . . . , (54)

RnII = 4Mr
αnI

nπ(αnI−αnII)
sin(�s), n = 1, 3, 5, . . . . (55)

The introduction of equations (54) and (55) into equations (49) and (50) gives

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnI sin(�τ)+
II∑

i=I

Bni sin(ωniτ)

]
, (56)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnII sin(�τ)+
II∑

i=I

αni Bni sin(ωniτ)

]
, (57)

where

AnI = λ1

[
αnII

(ω2
nI−�

2)
−

αnI

(ω2
nII−�

2)

]
, (58)

AnII = λ1αnIαnII

[
1

(ω2
nI−�

2)
−

1
(ω2

nII−�
2)

]
, (59)

BnI =−λ1�αnII
1
ωnI
·

1
(ω2

nI−�
2)
, (60)

BnII = λ1�αnI
1
ωnII
·

1
(ω2

nII−�
2)
, (61)

λ1 =
4Mr

nπ(αnII−αnI)
and M =

1
1+ η2k2

n
. (62)

It can be noticed that equations (56) and (57) consist of two parts. The first part, containing the
term sin(�τ), represents the steady-state forced vibrations of the SWCNT system, while the second part,
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Figure 2. The double nanobeam system coupled by the Winkler elastic medium sub-
jected to the uniformly distributed harmonic load.

Figure 3. The double nanobeam system coupled by the Winkler elastic medium sub-
jected to the concentrated harmonic force.

involving the terms sin(ωτ), denotes the free vibration of the SWCNT system. Assuming that only the
steady-state response has practical significance, and ignoring the free response, the forced vibrations of
the SWCNT system can be obtained by

w1(ξ, τ )= sin(�τ)
∞∑

n=1

AnI sin(nπξ), (63)

w2(ξ, τ )= sin(�τ)
∞∑

n=1

AnII sin(nπξ), (64)

where AnI and AnII denote the steady-state vibration amplitudes of the two nanobeams, respectively.

3.2.2. Concentrated harmonic force. The concentrated harmonic force

f 1(ξ, τ )= r sin(�τ)δ
(
ξ − 1

2

)
(65)

acts at the middle of the SWCNT system (see Figure 3), where r is the amplitude and � is the frequency
of the exciting harmonic force and δ(ξ) is the Dirac delta function.
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By substituting (65) into equations (51) and (52), we obtain

RnI = 2Mr
αnII

αnII−αnI
sin
( 1

2 nπ
)

sin(�τ)[1+ η2k2
n], (66)

RnII = 2Mr
αnI

αnI−αnII
sin
( 1

2 nπ
)

sin(�τ)[1+ η2k2
n]. (67)

The introduction of (66) and (67) into (49) and (50) gives

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnI sin(�τ)+
II∑

i=I

Bni sin(ωniτ)

]
, (68)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnII sin(�τ)+
II∑

i=I

αni Bni sin(ωniτ)

]
, (69)

where

AnI = λ2

[
αnII

(ω2
nI−�

2)
−

αnI

(ω2
nII−�

2)

]
, (70)

AnII = λ2αnIαnII

[
1

(ω2
nI−�

2)
−

1
(ω2

nII−�
2)

]
, (71)

BnI =−λ2�αnII
1
ωnI
·

1
(ω2

nI−�
2)
, (72)

BnII = λ2�αnI
1
ωnII
·

1
(ω2

nII−�
2)
, (73)

M =
1

1+ η2k2
n

and λ2 =
2r M(1+ n2π2η2)

(αnII−αnI)
sin
( 1

2 nπ
)
=

2r
(αnII−αnI)

sin
( 1

2 nπ
)
, (74)

It can be noticed that equations (68) and (69) consist of two parts described in Section 3.2.1. Assuming
that only the steady-state response has practical significance, and ignoring the free response, the forced
vibrations of the SWCNT system can be obtained by relations (63) and (64).

3.2.3. Moving constant force F. The moving loads with constant force F(τ )= F and

f 1(ξ, τ )= Fδ(ξ − vτ) (75)

act upon the SWCNT system (see Figure 4), where F is the magnitude of a constant force and δ(ξ) is
the Dirac delta function. By substituting (75) into (51) and (52), we obtain

RnI = 2M F
αnII

αnII−αnI
sin(nπvτ)[1+ η2k2

n], n = 1, 3, 5, . . . , (76)

RnII = 2M F
αnI

αnI−αnII
sin(nπvτ)[1+ η2k2

n], n = 1, 3, 5, . . . . (77)
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The introduction of (76) and (77) into (49) and (50) gives

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnI sin(�nτ)+

II∑
i=I

Bni sin(ωniτ)

]
, (78)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnII sin(�nτ)+

II∑
i=I

αni Bni sin(ωniτ)

]
, (79)

where

AnI = λ3

[
αnII

ω2
nI−�

2
n
−

αnI

ω2
nII−�

2
n

]
, (80)

AnII = λ3αnIαnII

[
1

ω2
nI−�

2
n
−

1
ω2

nII−�
2
n

]
, (81)

BnI =−λ3�nαnII
1
ωnI
·

1

(ω2
nI−�

2
n)
, (82)

BnII = λ3�nαnI
1
ωnII
·

1

(ω2
nII−�

2
n)
, (83)

λ3 =
2F M(1+ η2k2

n)

(αnII−αnI)
=

2F
(αnII−αnI)

, (84)

�n = nπv = knv, n = 1, 3, 5, . . . . (85)

It can be noticed that equations (78) and (79) consist of two parts described in Section 3.2.1. Assuming
that only the steady-state response has practical significance, and ignoring the free response, the forced
vibrations of the SWCNT system can be obtained by

w1(ξ, τ )= sin(�nτ)

∞∑
n=1

AnI sin(nπξ), (86)

w2(ξ, τ )= sin(�nτ)

∞∑
n=1

AnII sin(nπξ), (87)

where AnI and AnII denote the steady-state vibration amplitudes of the two nanobeams, respectively.

3.2.4. Moving concentrated harmonic force. The moving loads with harmonic concentrated force F(τ )=
F sin(�τ) and

f 1(ξ, τ )= F sin(�τ)δ(ξ − vτ) (88)

acts upon the SWCNT system (see Figure 4), where F is the amplitude and � is the frequency of the
harmonic force. By substituting (88) into (51) and (52), we obtain

RnI = 2M F
αnII

αnII−αnI
sin(�τ) sin(nπvτ)[1+ η2k2

n], (89)

RnII = 2M F
αnI

αnI−αnII
sin(�τ) sin(nπvτ)[1+ η2k2

n]. (90)
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Figure 4. The double nanobeam system coupled by the Winkler elastic medium sub-
jected to the moving concentrated force.

The introduction of (89) and (90) into (49) and (50) gives

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnIsin(�nτ)sin(�τ)+BnIcos(�nτ)cos(�τ)+
II∑

i=I

Cni cos(ωniτ)

]
, (91)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)
[

AnIIsin(�nτ)sin(�τ)+BnIIcos(�nτ)cos(�τ)+
II∑

i=I

αni Cni cos(ωniτ)

]
, (92)

where

AnI = λ4

[
αnIIunI

nnImnI
−
αnIunII

nnIImnII

]
, (93)

AnII = λ4αnIαnII

[
unI

nnImnI
−

unII

nnIImnII

]
, (94)

BnI = 2λ4�n�

[
αnI

nnIImnII
−

αnII

nnImnI

]
, (95)

BnII = 2λ4�n�αnIαnII

[
1

nnIImnII
−

1
nnImnI

]
, (96)

CnI =
2λ4�n�αnII

nnImnI
, (97)

CnII =−
2λ4�n�αnI

nnIImnII
, (98)

λ4 =
2F M(1+ η2k2

n)

(αnII−αnI)
=

2F
(αnII−αnI)

, (99)

�n = nπv = knv, (100)

mni = ω
2
ni − (�n −�)

2, (101)

nni = ω
2
ni − (�n +�)

2, (102)

uni = ω
2
ni −�

2
n −�

2, i = I, II. (103)
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It can be noticed that equations (91) and (92) consist of three parts. Assuming that only the steady-state
response has practical significance, and ignoring the free response, the forced vibrations of the SWCNT
system can be obtained by

w1(ξ, τ )=

∞∑
n=1

sin(nπξ)[AnIsin(�nτ)sin(φτ)+ BnIcos(�nτ)cos(�τ)], (104)

w2(ξ, τ )=

∞∑
n=1

sin(nπξ)[AnIIsin(�nτ)sin(φτ)+ BnIIcos(�nτ)cos(�τ)], (105)

where AnI and AnII and BnI and BnII denote the steady-state vibration amplitudes of the two nanobeams,
respectively. In this paper we will analyze only AnI and AnII steady-state vibration amplitudes.

4. Comparative study and numerical results

The presented methodology for the analyzed forced response of the double nanobeam system coupled
by the elastic medium based on the nonlocal elasticity theory can be applied for the forced transversal
vibration analysis of coupled carbon nanotubes, ZnO nanotubes, boron-nitride nanobeams and other
magnetically affected nanomaterials [Barone and Peralta 2008; Kumar and Mohammad 2011]. Also, the
Winkler elastic layer may represent some interatomic forces between two nanotubes, such as van der
Waals interaction [Ru 2001]. We present a comparative study of the analytical results obtained in this
paper and the results found in the literature.

This section is divided into three parts. In the first part, the fundamental frequency of the first
nanobeam is compared with [Şimşek 2010b] and implemented via the MD simulation of vibrational
response of the SWCNT according to Ansari and Sahmani [2012] and Ansari et al. [2012]. In the second
part, the obtained numerical results for the ratio of the steady-state vibration amplitude of the double
nanobeam system influenced by the axial magnetic field are compared with the results obtained by the
scale-free structural theory proposed by Zhang et al. [2008], who analyzed the forced response of an
axially compressed double beam system using the classical elasticity theory where the influence of the
magnetic field was neglected. The third part discusses the influence of small scale and the axial magnetic
field on the forced response of the double nanobeam system.

4.1. Fundamental frequency results. In this section, the natural frequency of the first nanobeam is
compared with [Şimşek 2010b]. For DSWCNT it is well known that the lowest natural frequency and
buckling load of such a system represents the fundamental frequency and critical buckling load and it is
independent of the influence of the number of nanobeams in the system and chain coupling conditions;
see [Karličić et al. 2014b; 2014a]. Fundamental frequency and critical buckling load are equivalent to
the natural frequency and buckling load of a single nanobeam. The following parameters are used in
computing the numerical results: E = 1 TPa, ρ = 2300 kg/m3, d = 1 nm, tb = 0.35 nm [Şimşek 2010b].
The length of the nanotube is taken as variable for the various values of the aspect ratio L/d. The
parameter e0 was estimated as e0 = (π

2
− 4)1/2/2π ∼= 0.39 by Eringen [1983]. Therefore, in this study,

the nonlocal parameter µ is taken as 0, 1, 2, 3, 4.
Excellent agreement between the present frequencies and those of [Şimşek 2010b] can be observed

from Table 1. It is shown that inclusion of the nonlocal parameter µ decreases the frequencies of the
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L/d µ ω0
nI

Şimşek [2010b] Present study Present study Present study
(MP= 0) (MP= 10) (MP= 20)

10 0 9.8696 9.8696 11.3501 12.6586
1 9.4158 9.4158 10.9578 12.3081
2 9.0194 9.0194 10.6191 12.0076
3 8.6692 8.6692 10.3233 11.7468
4 8.3569 8.3569 10.0625 11.5182

20 0 9.8696 9.8696 11.3501 12.6586
1 9.7501 9.7501 11.2463 12.5656
2 9.6347 9.6347 11.1464 12.4763
3 9.5234 9.5234 11.0504 12.3906
4 9.4158 9.4158 10.9578 12.3081

50 0 9.8696 9.8696 11.3501 12.6586
1 9.8501 9.8501 11.3332 12.6435
2 9.8308 9.8308 11.3164 12.6285
3 9.8116 9.8116 11.2998 12.6135
4 9.7925 9.7925 11.2832 12.5987

Table 1. Comparison of the nondimensional frequencies from Equation (111) for the
simply supported nanobeam.

nanobeam 1. It is seen that the effect of the magnetic field (MP= 10, 20) is to increase frequencies of
SWCNT. When the value of L/d is increased, the effect of the nonlocal parameter µ on the frequencies
decreases.

Without loss of generality, we assume

F2 = χF1, 0≤ χ ≤ 1. (106)

Based on (106), we obtain the same form of natural frequencies for (28) and (29) with different coeffi-
cients b1 and c1:

ω2
ni =

1
2

[
b∓

√
b2− 4c

]
, i = I, II, (107)

where

b1 = 2K − (χ + 1)F1k2
n + 2M Pk2

n + 2
k4

n

1+ η2k2
n
, (108)

c1 =

[
K − (F1−MP)k2

n +
k4

n

1+ η2k2
n

][
K − (χF1−MP)k2

n +
k4

n

1+ η2k2
n

]
− K 2. (109)

By substituting the new expressions (107) for natural frequencies into (33) and (34), we obtain the new
expressions for the amplitude as

αni =
K − (F1−MP)k2

n +
k4

n
1+η2k2

n
−ω2

ni

K
, i = I, II. (110)
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When the axial compression is absent, we obtain

(ω0
nI)

2
=

k4
n

1+ η2k2
n
+ k2

n M P, (111)

(ω0
nII)

2
= 2K +

k4
n

1+ η2k2
n
+ k2

n M P, (112)

α0
nI = 1, α0

nII =−1. (113)

To determine the effect of the axial compressive load and magnetic field on the steady-state vibration
amplitudes AnI and AnII of the system and also for the comparative study, we define the ratio of the
steady-state vibration amplitudes as

ψ1 =
AnI

A0
nI
, ψ2 =

AnII

A0
nII
, (114)

where A0
nI and A0

nII are the steady-state vibration amplitudes of the two beams without axial compression.
We then introduce the ratio of the axial compressive force and critical buckling load as

p =
F
Pcr
, (115)

with

Pcr =
π2

1+ η2π2 , (116)

where Pcr is the nonlocal critical buckling load, which is the smallest load at which a single nanobeam
ceases to be in stable equilibrium under axial compression. From (27) it follows that

F =
k2

n

1+ η2k2
n
. (117)

By substituting the dimensionless F from (16) we can write

Pcr =
1

1+ η2π2 E I
π2

L2 . (118)

For η = 0, namely for an ordinary beam,

Pcr = E I
π2

L2 , (119)

where Pcr is known as the Euler load, which is the smallest load at which a single beam ceases to be in
stable equilibrium under axial compression [Zhang et al. 2008].

4.1.1. Molecular dynamics simulation results. In order to justify the accuracy of this paper, it is neces-
sary to implement the MD simulation of vibrational response of the SWCNT. Molecular dynamics (MD)
simulation is an atomistic method for analysis of different nanostructures. Through the fast development
of various fields of nanotechnology, MD simulation has been considered as a powerful and accurate
implement to study of systems at nanoscale, according to Ansari et al. [2012]. Without introducing the
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L/d MD simulation Present study Present study
[Ansari et al. 2012] (ηH 2

x = 0) (ηH 2
x > 0)

8.3 0.5299 0.5485 0.8284
10.1 0.3618 0.3707 0.6306
13.7 0.1931 0.2016 0.4267
17.3 0.1103 0.1264 0.3236
20.9 0.0724 0.0860 0.2613
24.5 0.0519 0.0630 0.2195
28.1 0.0425 0.0479 0.1895
31.6 0.0358 0.0379 0.1674
35.3 0.0287 0.0303 0.1491
39.1 0.0259 0.0247 0.1341

Table 2. Fundamental frequencies (THz) for (8, 8) armchair SWCNT obtained from
MD simulations of Euler–Bernoulli beam models, R/ l = 3, l = µ1/2, Hx = 1 · 108 A/m,
η = 4π · 10−7.

dimensionless expression (16), the fundamental frequency of the first nanobeam is presented in the form

ωn1 =

√
ηH 2

x

ρ
(nπ/L)2+

E I (nπ/L)4

ρA(1+µ(nπ/L)2)
. (120)

Authors have found MD simulation results for vibration and buckling of a single-layer graphene sheet
presented by Ansari and Sahmani [2012] and Ansari et al. [2012]. Thus, our results for the lowest natural
frequency of DSWCNT can be used to validate them with the results obtained for the free vibration of a
SWCNT via molecular dynamics simulation in [Ansari and Sahmani 2012] and [Ansari et al. 2012].

In the current study, the effective thickness of the SWCNTs is assumed to be equal to the spacing of
graphite, h = 0.34 nm, radius of the nanotubes is R = d/2, where d is diameter of the SWCNT [Ansari
et al. 2012]. The Poisson’s ratio ν = 0.3, Young’s modulus E = 1.1 TPa and mass density ρ = 2300 kg/m3

are considered in the analysis. To validate the present approach, MD simulations are conducted for a
simply supported (8, 8) armchair SWCNT with different aspect ratios ranging from 8.3 to 39.1. Table 2
present the values of fundamental frequency obtained from MD simulations and also the Euler–Bernoulli
beam models based on the nonlocal elastic theory. The results predicted by the present models are found
to be in excellent agreement with the ones obtained from MD simulation, which indicates the capability
of the present approach to accurately predict frequencies of SWCNT. From Table 2, the frequency of
SWCNT is decreasing with increasing length-to-diameter ratio.

It can be noticed that the results obtained by using the Bernoulli–Fourier method, when is ηH 2
x = 0, are

in agreement with the results presented by Ansari and Sahmani [2012] and Ansari et al. [2012]. Between
these values there is a very little variation because we neglected moment of inertia. Taking into account
the value of magnetic field permeability η and axial magnetic field Hx from [Murmu et al. 2012b], as
expected, the values of frequency of SWCNT are greater than the values from [Ansari and Sahmani
2012] and [Ansari et al. 2012].
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4.2. Steady-state amplitudes results of the DSWCNT system. In the second part, to validate the results
obtained for the steady-state vibration amplitude we adopt the values for material characteristics from
[Zhang et al. 2008], where E = 1010 [Pa] is the elastic modulus, I = 4 ∗ 10−4 [m4] is the moment of
inertia, L = 10 [m] is the length of beam, and K = 2 ∗ 105 [N/m2] is the stiffness coefficient of the elastic
medium. The results obtained by the classical and nonlocal theories are comparable in the case when the
results are given in the dimensionless form. Since the steady-state vibration amplitude is expressed in
dimensionless form here, it is possible to compare these results with the results obtained in [Zhang et al.
2008]. It should be noted that the validation of the obtained results was conducted for cases of uniform
and concentrated harmonic load, and excellent agreement is shown with the results proposed by Zhang
et al. [2008].

In order to compare the obtained results for the ratio of the steady-state amplitudes for the case of the
uniformly distributed harmonic load, we determine the steady-state vibration amplitudes (AnI and AnII)
and (A0

nI and A0
nII) by substituting equations (107)–(110) and (111)–(113) into equations (58) and (59),

respectively. For the vibration mode number n = 3 and the exciting frequency �= 0.6ωnII, the variation
of the steady-state amplitude ratios ψ1 and ψ2 with a change in the axial force ratio for different values
of axial magnetic fields is shown in Figure 5. It can be observed that the steady-state amplitude ratios
ψ1 and ψ2 increase with an increase in the axial compressive load, which leads to an increase in the
steady-state amplitudes AnI and AnII of DNBS. Moreover, it can be noticed that the axial compression
ratio χ has negligible effects on the first steady-state amplitude ratio ψ1, but a significant influence on the
second steady-state amplitude ratio ψ2. Also, decreasing the axial compression ratio χ causes an obvious
reduction of the second steady-state amplitude AnII. It is clear from Figure 5 that larger values of the
amplitude of the axial magnetic field lead to a reduction in the ratios ψ1 and ψ2, which implies that the
amplitudes of the steady-state vibrations AnI and AnII also decrease. However, from the physical point
of view, the axial magnetic field leads to an increase in the overall stiffness and thereby to an increase
in the natural frequencies of the system. This effect allows us the practical application of such a system,
because it is possible to change the natural frequencies ωnI and ωnII and the steady-state amplitudes AnI

and AnII without changing any other material and geometric parameters of the DNBS. It should be noted
that when the intensity of the axial magnetic field and nonlocal parameter are equal to zero, the nonlocal
double nanobeam system is reduced to the classical double beam system analyzed in [Zhang et al. 2008].
The results for ratios ψ1 and ψ2 obtained in the case when MP= 0 and η = 0 are also shown in Figure 5.
The comparative study for the case of the concentrated harmonic force is also carried out in a similar
manner. The analysis of the obtained results for the ratios ψ1 and ψ2 shows that we get exactly the same
results as in the case of the continuous uniformly distributed load. The results obtained in this study are
in line with the results obtained in [Zhang et al. 2008].

In the following part of the comparative study we provide an analysis of the steady-state amplitude
ratios ψ1 and ψ2 for the cases of the uniformly distributed load (Figures 5 and 6), and the moving
concentrated harmonic force (Figures 7 and 8). The dimensionless parameters of the coupled DNBS
which are used in numerical simulations in Figures 6, 7 and 8 are: K = 50, χ = 0.5, ξ = 0.5, v = 0.3
and n = 1. As already mentioned, the results obtained for the steady-state amplitude ratio in the case
of the harmonic concentrated load are identical with the results obtained for the first case of excitation,
while the case of the moving constant force represents only a special case of the moving harmonic
concentrated force.
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Figure 5. The relationship between the dimensionless parameter p = F/Pcr and (left)
the ratio ψ1 = AnI/A0

nI and (right) the ratio ψ2 = AnII/A0
nII, for different axial compres-

sion ratios χ and magnetic fields MP in the case of a uniformly distributed load.

Figure 6. The relationship between the dimensionless parameter p = F/Pcr and (left)
the ratio ψ1 = AnI/A0

nI and (right) the ratio ψ2 = AnII/A0
nII for different nonlocal param-

eters η in the case of a uniformly distributed load.

Figure 6 shows the relationship between the ratios ψ1 and ψ2 in the case of the uniformly distributed
load, and the dimensionless parameter p = F/Pcr in the range 0–1 for different nonlocal parameters η.
From these figures, the ratios ψ1 and ψ2 decrease with an increase in the nonlocal parameter η, which
implies that the magnitudes of the steady-state vibration amplitudes AnI and AnII get smaller when the
nonlocal parameter η becomes larger. Also, it is interesting to note that from the physical point of view
the nonlocal parameter has dampening effects on the steady-state vibration amplitudes. In addition, an
increase in the ratio p leads to an increase in both steady-state amplitude ratios ψ1 and ψ2 in a similar
manner. So from the physical point of view, it can be concluded that the overall stiffness of the system
decreases with the increase in the ratio p.

Figures 7 and 8 show the influence of the longitudinal magnetic field MP and the nonlocal parameter η
on the relationship between the ratios ψ1 and ψ2, and ratio p = F/Pcr in the range 0–1 in the case of the
moving harmonic concentrated force, respectively. From these figures we can see that the steady-state
vibration amplitude ratios ψ1 and ψ2 decrease with the increase in the parameter of the magnetic field
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Figure 7. The relationship between the dimensionless parameter p = F/Pcr and (left)
the ratio ψ1 = AnI/A0

nI and (right) the ratio ψ2 = AnII/A0
nII for different axial magnetic

fields MP in the case of a moving concentrated harmonic force.

Figure 8. The relationship between the dimensionless parameter p = F/Pcr and (left)
the ratio ψ1 = AnI/A0

nI and (right) the ratio ψ2 = AnII/A0
nII for different nonlocal param-

eters η in the case of a moving concentrated harmonic force.

and nonlocality η. This implies that the magnitudes of the steady-state vibration amplitudes AnI and AnII

act in a similar manner to the case of the uniform harmonic excitation. It is interesting to note that
values for the steady-state amplitude ratio are higher for the moving harmonic load than for the uniform
harmonic loads. However, from the physical point of view, it can be noted that the speed of the moving
load significantly affects the value of the steady-state vibration amplitudes AnI and AnII of the coupled
nanobeams. The present results for the ratio of amplitudes are consistent with the results found in the
literature [Zhang et al. 2008].

In order to compare the results of the presented study with those in the existing study by Zhang et al.
[2008], the values of the steady-state vibration amplitude ratios ψ1 and ψ2 for the uniformly distributed
harmonic load and the concentrated harmonic force are represented in Table 3. It is found that the ratios
ψ1 and ψ2 in this case are totally the same. From the presented data we can conclude that the influence
of the longitudinal magnetic field MP and the nonlocal parameter η on the relationship between ratio ψ1

and ψ2 causes a decrease in their values, as shown in the above figures.
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[Zhang et al. 2008]
MP η ψ1 = AnI/A0

nI ψ2 = AnII/A0
nII

0 0 1.1965 1.3019
50 0.3 1.1499 1.2277
50 0.5 1.0872 1.1309

100 0.3 1.0779 1.1175
100 0.5 1.0436 1.0658

Table 3. Analytical validation of the steady-state vibration amplitude ratios ψ1 and ψ2.
Here χ = 0.5.

4.3. Forced vibration response. In this subsection, forced vibration responses at the nanobeams mid-
points are analyzed for two cases of external excitation under the influence of the longitudinal magnetic
field within the framework of the nonlocal elasticity theory. In the first case we consider that the uniform
harmonic load acts on the first nanobeam in the DNBS (Figure 2) while in the second one we consider
the moving harmonic concentrated force (Figure 4). Also, we assume that both nanobeams in the DNBS
have the same geometric and material characteristics and are subjected to the axial compressive loads F1

and F2. By using the analytical solution for transversal displacements obtained for these two particular
cases of external excitation, we plot w1(ξ, τ ) and w2(ξ, τ ) as functions of time for different nonlocal
and magnetic field parameters, as shown in Figures 9–12.

To analyze forced vibrations, we use smaller values for the dimensionless stiffness modulus K and
magnetic fields MP, because using larger values leads to obtaining very smaller values for the vibration
amplitude of transversal displacements w1(0.5, τ ) and w2(0.5, τ ). The following dimensionless param-
eters of the coupled DNBS are used here in the numerical simulations: K = 5, χ = 0.5, F1 = 0.2,
ξ = 0.5, and n = 1, where the exciting frequency is � = 0.6ωnII. It can be observed that the axial
magnetic field diminishes the amplitudes of transversal vibration w1(ξ, τ ) and w2(ξ, τ ) in both cases
of external excitation. Moreover, this effect allows us to change the stiffness of the carbon nanotubes
and therefore change the overall stiffness of the DNBS. However, changing the stiffness of the system
leads to changes in the natural frequency of the system, so it is possible to avoid the resonance region
for different cases of external excitation [Karličić et al. 2014c]. Furthermore, by carefully selecting the
intensity of the magnetic field we can set the response vibration amplitude in a certain range without
changing any other material and geometric characteristics of the DNBS. This fact has significance in
practical applications for the control of vibration amplitude in the NEMS and nanocomposite structures
based on the CNTs. Also, these figures show how the coupled DNBS responds to changes in the nonlocal
parameter η for different cases of external excitation. It can be noticed that the nonlocal parameter has
a dampening effect on both response vibration amplitudes of the DNBS, but in the case of the moving
harmonic concentrated force we observe a larger effect on the vibration amplitude. This means that the
effect of nonlocality causes a larger reduction of the vibration amplitude of transversal displacements
w1(0.5, τ ) and w2(0.5, τ ) than in the first case of external excitation.

The presented work shows the possibility to control vibration amplitudes and natural frequencies in a
certain range by changing only the external magnetic field parameter without changing any other physical
parameter of the DNBS. Also, this ability provides us with a great practical application of such systems
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Figure 9. The relationship between forced vibrations w1(0.5, τ ) (left) and w2(0.5, τ )
(right) and dimensionless time for different nonlocal parameters η in the case of the
uniformly distributed harmonic load.

Figure 10. The relationship between forced vibrations w1(0.5, τ ) (left) and w2(0.5, τ )
(right) and dimensionless time for different axial magnetic fields MP in the case of the
uniformly distributed harmonic load.

in dynamic absorbers, nanoresonators and nanoactuator devices. It should be noted that the longitudinal
magnetic field can be considered analogous to a Pasternak-type foundation, where the Winkler medium
represented by stiffness of the springs and magnetic field parameter represents shear coefficients of the
Pasternak foundation, as shown in reference [Murmu et al. 2012a].

5. Conclusions

On the basis of the Euler–Bernoulli beam theory and Eringen nonlocal elasticity, this paper investigates
a compressive nonlocal double single-walled carbon nanotube (SWCNT) system, under the influence
of an axial magnetic field. The dynamic responses of the DSWCNT system for four different cases
of external transversal load are considered. By using the nonlocal Euler–Bernoulli beam theory and
classical Maxwell relation, the system of two nonhomogeneous partial differential equations of transver-
sal motion is derived for the coupled DNBS. Closed form solutions for natural frequencies, amplitude
ratio and forced vibration response under the influence of the magnetic field and the nonlocal parameter
for four cases of external excitation are obtained by applying the method of separation of variables.
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Figure 11. The relationship between forced vibrations w1(0.5, τ ) (left) and w2(0.5, τ )
(right) and dimensionless time for different nonlocal parameters η in the case of the
moving concentrated harmonic force.

Figure 12. The relationship between forced vibrations w1(0.5, τ ) (left) and w2(0.5, τ )
(right) and dimensionless time for different axial magnetic fields MP in the case of the
moving concentrated harmonic force.

Analytical expressions for the steady-state vibration amplitudes of the two nanobeams with the influence
of the magnetic field and the nonlocal parameter are obtained, and numerical results based on them are
presented. From the obtained results, we found that the nonlocal parameter and longitudinal magnetic
field have a damping effect on the response vibration amplitude. In order to validate our results we
compared the obtained results for the steady-state amplitude ratios with the results found in the literature
and excellent agreement was achieved. It was found that the natural frequencies and response vibration
amplitude of the system can change by varying the intensity of the axial magnetic field without the
necessity to change any other material and geometric parameter of the DNBS. We analyzed amplitudes
of transversal displacements for four cases of external excitation vibration and numerically presented
the case of the uniformly distributed harmonic load and the case of the moving harmonic concentrated
force with different nonlocal parameters and different axial magnetic fields. The obtained amplitudes
of transversal vibration in both cases of external excitation are reduced due to the influence of the axial
magnetic field. We noted that the effect of the magnetic field allows a change in the stiffness of carbon
nanotubes and therefore a change in the overall stiffness of the DNBS. Changing the stiffness of the
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system causes changes in the natural frequency of the system, thus avoiding the resonance region for
different cases of external excitation. This possibility has great practical importance in the design of
NEMS devices such as nanoactuators, nanoresonators, dynamic absorbers and nanocomposite structures
based on the CNTs. Also, to validate the present analysis, MD simulations were conducted for an
armchair SWCNT with different aspect ratios. The results predicted by the present model are found
to be in agreement with the ones obtained from MD simulation, which indicates the capability of the
present approach in accurately predicting frequencies of SWCNTs.
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