
Journal of

Mechanics of
Materials and Structures

MODELING AND EXPERIMENTATION OF A VISCOELASTIC
MICROVIBRATION DAMPER BASED ON A CHAIN NETWORK MODEL

Chao Xu, Zhao-Dong Xu, Teng Ge and Ya-Xin Liao

Volume 11, No. 4 July 2016

msp





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 11, No. 4, 2016

dx.doi.org/10.2140/jomms.2016.11.413 msp

MODELING AND EXPERIMENTATION OF A VISCOELASTIC
MICROVIBRATION DAMPER BASED ON A CHAIN NETWORK MODEL

CHAO XU, ZHAO-DONG XU, TENG GE AND YA-XIN LIAO

Viscoelastic (VE) dampers are widely used to attenuate structural vibration. Studies have mainly focused
on the employment of VE dampers for reducing structural vibration in normal conditions, and only a
few studies have considered the microvibration condition. In this paper, theoretical and experimental
studies on the VE microvibration damper are conducted. First, the damping mechanism of the VE
microvibration damper is analyzed from microperspectives and a mathematical model based on the chain
network model is proposed. The contributions of cross-link and free-chain network chains to the damping
characteristics of VE material are considered in this model. Second, an experimental study of the VE
microvibration damper is conducted to verify the proposed model and to reveal the dynamic properties of
the VE microvibration damper. The experimental results show that the dynamic properties of VE material
are influenced by excitation frequency and insignificantly affected by displacement amplitude, and the
VE material has good energy dissipation capacity. The proposed model is verified by comparing the
experimental data and the numerical results. The results indicate that the proposed model can accurately
describe the dynamic properties of the VE microvibration damper at different frequencies.

1. Introduction

Viscoelastic (VE) dampers are among the earliest types of passive control devices that have been suc-
cessfully utilized to reduce the structural dynamic responses induced by types of vibration excitations,
including earthquakes, wind, mechanical vibrations, human activity, etc. Owing to their advantages of
simple construction, easy manufacturing process, low cost and excellent energy dissipation capacity,
VE dampers have been widely used as vibration control devices in the fields of civil buildings, bridges,
spacecraft and machinery by researchers and engineers in recent decades [Soong and Spencer 2002;
Webster and Semke 2005; Rao 2003; Marko et al. 2006; Rashid and Nicolescu 2008].

Extensive theoretical and experimental investigations have been conducted to study the properties of
VE dampers and the effects of VE dampers on structural dynamic responses. Bergman and Hanson
[1993] tested the dynamic properties of VE dampers with different VE materials at real earthquake
excitations. Min et al. [2004] experimentally investigated the mechanical properties of VE dampers and
dynamic characteristics of a full-scale model structure with VE dampers. Xu et al. [2014] fabricated and
experimentally studied a new multidimensional high-damping earthquake isolation device with a VE
core bearing and several VE dampers. All investigations have shown that VE dampers have high energy
dissipation capacity and their dynamic properties are influenced by excitation frequency, displacement
and temperature. Thus, how to describe the dynamic properties of VE dampers at different frequencies,
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temperatures and amplitudes is an important issue. Papoulia and Kelly [1997] employed the fractional
method and additive stress decomposition to describe viscoelastic response of damping rubber materials.
Park [2001] investigated the standard mathematical model and determined that it can be efficiently used.
Lewandowski and Pawlak [2011] employed the fractional Kelvin model and the fractional Maxwell
model to describe the behavior of a VE damping structure. Xu et al. [2011] proposed the equivalent
standard solid model, which can reflect the effects of ambient temperature and excitation frequency on
VE dampers simultaneously. The mathematical models of VE dampers presented in the previous studies
can describe the dynamic behavior of VE dampers in normal conditions. Tan and Ko [2004] designed a
beam-column connection incorporated with VE dampers to suppress the vertical vibrations of long-span
beam structures induced by human activity or machinery and developed an analytical method to predict
structural behavior with the designed VE device. Moliner et al. [2012] adopted VE dampers to reduce the
resonant vibrations of simply supported high-speed railway bridges and analyzed the reduction effect of
VE dampers numerically. Saidi et al. [2011] proposed an innovative VE damper to reduce floor vibrations
caused by human activity. Previous studies have indicated that VE dampers can effectively reduce the
structural responses in normal conditions.

However, it can be found from the previous studies that the VE dampers are mainly used and inves-
tigated in the normal vibration conditions excited by earthquakes, human activity, etc. The vibration
amplitudes in these cases are larger than the microvibration displacements that will be studied in this
paper. Studies on the dynamic properties and damping effects of VE dampers under microvibration
conditions are rare and have not been reported. Microvibration is defined as the low-level mechanical
vibration created by working machinery, environmental change, etc. [Wacker et al. 2005; Zhang et al.
2011]. Microvibration downgrades the precision and lifespan of equipment and the quality of prod-
ucts. Therefore, suppressing microvibration of high-technology instruments and manufacturing facilities
with severe environmental performance requirements has drawn increasing interest from scientists and
engineers since the rapid development of technologies such as the production of semiconductors, op-
tical microscopes and laser research systems. Several devices and methods including passive control,
active control, active-passive hybrid control and semiactive control systems are improved to protect high-
precision payloads from the effects of microvibration [Liu et al. 2014; 2015]. However, how to control
structural microvibration remains a crucial issue and needs to be further investigated. Owing to the
excellent performance of VE dampers in normal conditions, employing the VE microvibration damper
to reduce structural microvibration is a good prospective application.

In order to promote application of VE microvibration dampers, the damping mechanism, mathematical
model and mechanical properties of the VE microvibration damper, which may be different from those
under normal vibration amplitude, should be investigated. The micro-macro approach to investigate
or model material properties is currently a hot topic. Li et al. [2012] proposed a predictive multiscale
computational framework to study the viscoelastic properties of polymeric materials. In their study, the
scale from nano to meso was bridged by a coarse-grained model, whereas the scale from micro to macro
was bridged by a developed continuum constitutive law. Tang et al. [2012] presented a two-scale theory
for the nonlinear viscoelasticity of elastomeric materials and used this theory to describe the physical
phenomena of materials from microperspectives. Tomita et al. [2006] developed a computational model
to represent the behavior of carbon-black-filled rubber by using the homogenization method, which can
consider the changes of the chain entanglement. Miehe and Göktepe [2005] proposed a new constitutive
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framework of finite viscoelasticity for rubber-like materials by introducing two key microkinematics
associated with the free-chain motion and its network constraints. The aforementioned studies considered
the effects of material microstructures on the mechanical properties of VE materials and implied that
the macromechanical properties of VE materials depend on the material microstructures. Nevertheless,
the aforementioned investigations mainly focused on the material static mechanical properties and are
complex for engineers to understand and use. Thus, investigating the connection of the macroscopic
dynamic properties of materials with material microstructures is important.

Consequently, in this study, the damping mechanism of VE microvibration dampers is analyzed from
microperspectives. A mathematical model based on the chain network model of VE material is proposed
to describe the dynamic properties of VE microvibration dampers under microvibration excitations. This
model can reflect the effects of cross-link and free-chain network chains on the dynamic behavior of VE
material, and the model parameters have clear physical meaning. Tests on VE microvibration dampers
are carried out under different excitation amplitudes and frequencies to reveal the dynamic behavior of
VE microvibration dampers and to verify the proposed model. The experimental results show that the VE
microvibration damper has good energy dissipation capacity and the dynamic properties of VE micro-
vibration dampers are significantly influenced by excitation frequency under microvibration conditions.
Comparison between the experimental data and the numerical results indicates that the proposed model
can accurately describe the dynamic properties of VE microvibration damper.

2. Damping mechanism and mathematical model of the VE microvibration damper

An accurate mathematical model is always essential to describe the dynamic characteristics of the VE
microvibration damper and to analyze the structural dynamic responses of structures with VE micro-
vibration dampers. In this section, the damping mechanism of the VE damper is first analyzed from
microperspectives and a mathematical model based on the chain network model of VE material is then
proposed.

2.1. Damping mechanism of the VE microvibration damper. The macroscopic mechanical behavior of
materials mainly depends on the material microstructure characteristics, including the quantity, properties
and spatial distribution of the microstructures [Ward and Hadley 1993; Gabriel and Münstedt 2002]. For
VE material, the elastic properties, viscoelastic properties and other properties are dependent on the
properties of the molecular chain structures within the VE material. The present work focuses on the
dynamic viscoelastic properties of VE material and their relationship with material microstructures.

The deformations of elastomeric materials can be decomposed into two parts, namely, the deforma-
tions of cross-link network chains and the deformations of free-chain network chains, when static vis-
coelastic properties of VE solids are investigated [Tang et al. 2012; Miehe and Göktepe 2005]. Analogous
to this method, VE material microstructure can be abstracted as molecular chain structure, as shown in
Figure 1. Two different molecular chain structures can be observed: one is the chain network caused by
the cross-linking effect, and the other is the superimposed free chains that exist in VE material. The for-
mer is mainly considered to contribute to the elastic properties of the VE material, which can transmit the
stress induced by material deformation. The latter contributes to the viscous properties that will dissipate
energy. The molecular chain structures of polymer materials are complex, and the real structure of the
materials is difficult to describe by using an accurate mathematical model. The hyperelastic properties of
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Figure 1. Microstructure and the model of VE material. Top left: microstructure. Top
right: eight-chain network model. Bottom left: chain structure model. Bottom right:
three-chain network model.

rubber-like materials have been investigated in the past decades, and several mathematical models based
on molecular chain structures have been proposed. Among these mathematical models are the Gaussian
chain network model and the non-Gaussian chain network model based on the statistical properties of
molecular chains [Marckmann and Verron 2006]. The properties of the two molecular chain structures
are detailed and analyzed below.

Chain network structure of VE material. Molecular chains can form a chain network by entanglement or
cross-linking effects [Svaneborg et al. 2004]. This part of molecular chains can transmit stress under an
external load and can restore to the original state by thermal motion when the external excitations unload.
The VE material will present elastic properties and restores its original shape in the macroscopic view.
Additionally, the main chain motions can also be impeded by the adjacent molecular chains and molecular
chain segments. In other words, this part of molecular chains of VE material can also exhibit viscous prop-
erties. Thus, molecular chains of this part contribute not only to the elastic property but also the viscous
property of VE material. However, the contribution to the viscous property is far less than the contribution
to the elastic property. Hence, the elastic property of the chain network is mainly considered in this part.

The eight-chain network model is employed to study the chain network structure, as shown in Figure 1,
top right. The eight molecular chains link at the cube center and extend to the eight corners. The
structure has a strong symmetry, and the cross-linking point is always at the center location during
deformation. Hence, each molecular chain has the same elongation ratio during deformation. The eight-
chain network model can better depict the superelastic properties of VE materials in several deformation
patterns. Therefore, the eight-chain network model is employed in this part.

As mentioned previously, a single molecular chain of the chain network represents strong elastic
properties and weak viscous properties. In short, it exhibits viscoelastic properties. At present, the
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models that can describe the viscoelastic properties mainly including the Maxwell model, Kelvin model,
standard linear solid model, etc. The linear viscoelastic solid model is employed to characterize the
mechanical properties of a single molecular chain in the eight-chain network model, as shown in Figure 1,
top right. This model can represent the asymptotic and transient elastic responses of the material, which
is in accordance with the performance of the molecular chains studied in the eight-chain network model.

According to the standard linear solid model shown in Figure 1, top right, the force-displacement
relationship of a single molecular chain in the model can be directly written as

Fs1 =
k1
(
k2+ c2

d
dt

)
(k1+ k2)+ c2

d
dt

1x . (1)

We can assume that the deformation is a periodic dynamic variable to simplify the formula and compare
it with test data that are in frequency domain. Then let d

dt = jω and substitute it into (1), which results in

Fs1 =
k1(k2+ jωc2)

(k1+ k2)+ jωc2
1x = Es11x, (2)

where k1, k2 and c2 are the elastic and viscous coefficients of the chain and are determined by the test
data, 1x is the deformation of the single chain, Fs1 is the force of the single chain corresponding to the
deformation and ω is the angular frequency of the alternating stress (or strain) applied on VE material.

According to the polymer thermodynamic theory, the conformations of molecular chain structure are
in random spatial distribution due to the thermal motion of polymer chains. In other words, the length dis-
tributions and end-to-end distances of the chains cannot be accurately represented. Therefore, Gaussian
chains and non-Gaussian chains are proposed based on the statistical properties of the molecular chain
when analyzing the hyperelastic properties of rubber-like materials. In this study, the end-to-end distance
of the molecular chain is considered as a parameter fitted by the test data to simply the formula derivation.

By introducing the concept of end-to-end distance of a molecular chain, the force-displacement rela-
tionship of a single molecular chain can be rewritten as

Fs1 =
k1(k2+ jωc2)

(k1+ k2)+ jωc2
(r − r0s)= Es1(r − r0s), (3)

where r and r0s denote the end-to-end distances of the molecule chain after and before the deformation,
respectively. Thus, the strain energy of a single chain during deformation can be determined by

ϕs1 = Fs1(r − r0s)=
1
2 Es1(r − r0s)

2. (4)

For the eight-chain network model, the cube volume before and after the deformation can be consid-
ered the same in the microvibration condition. Accordingly, the cube volume shown in Figure 1, top right,
can be written as V = 8

9

√
3r3

0s and the mechanical energy of a single chain per volume can be written as

φs1 =
ϕs1

V
=

3
√

3
2r3

0s

·
1
8 Es1 · (r − r0s)

2. (5)

Free chain structure of VE material. In addition to the chain network structure, there is a part of chains
of VE material that do not involve the formation of the network structure. This part of chains is called
the free chain, which includes the superimposed free chains and the side chains of the main molecular
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chains. This portion of the molecule chains represents viscous properties with weak elastic properties
since these chains lack constraint from the other chains.

The three-chain network model is employed to describe the effect of this part of molecular chains on
characteristics of VE material. The three-chain network model is also based on statistical properties of
molecular chains. The three chains linked at one corner of the cube extend to three mutually orthogo-
nal edges, and affine deformation occurs during the deformation of VE material. This model can also
represent the superelastic properties of VE material at certain deformation patterns. Moreover, we adopt
the three-chain network model since it is convenient to connect with the above-mentioned eight-chain
network model to establish the final mathematical model of the VE microvibration damper, as shown in
Figure 1, bottom left.

The Maxwell model is adopted to represent the mechanical properties of a single molecular chain of
the three-chain network model. The Maxwell model can capture well the rheological properties of the
material, which is in accordance with the properties of the molecular chains in the three-chain network
model, as shown in Figure 1, bottom right. The force-displacement relationship of a single molecular
chain can be directly written as

Fc1 =
k3 · jωc3

k3+ jωc3
(r − r0c)= Ec1(r − r0c), (6)

where k3 and c3 are the elastic and viscous coefficients, respectively, of the chain and are determined
by the test data, ω is the angular frequency of the alternating stress (or strain) and r and r0c denote the
end-to-end distances of chains after and before the deformation, respectively. Hence, the strain energy
of a single chain during deformation can be determined by

ϕc1 = Fc1(r − r0c)=
1
2 Ec1(r − r0c)

2. (7)

For this three-chain network model, the cube volume, as shown in Figure 1, bottom right, is V = r3
0c,

the deformation of the three chains of the model is not the same and the average mechanical energy of
a single chain of the model is ϕc1 =

1
2 ·

1
3

∑3
i=1 Ec1 · (ri − r0c)

2; therefore, the mechanical energy of a
single chain per volume can be written as

φc1 =
ϕc1

V
=

1
2r3

0c

·
1
3

3∑
i=1

Ec1 · (ri − r0c)
2. (8)

2.2. Chain structure model of the VE microvibration damper. The preceding discussion indicated that
the mechanical properties of VE material or dampers are determined by the two types of microscopic
chain structures, namely, the network chains and the free chains. Based on the mechanical properties
of the microscopic chain structure and the multiscale analysis method, a mathematical model based
on the material chain network model is proposed to describe the dynamic characteristics of the VE
microvibration damper.

The total energy of the VE material per volume can be considered the sum of the energy of the two
parts of chain structures and can be expressed as

φ = ns1φs1+ nc1φc1, (9)
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where ns1 and nc1 are the numbers of the network chains and free chains per volume, respectively. Then
the true stress can be expressed as

σi = λi
∂φ

∂λi
(i = 1, 2, 3), (10)

where λi is the stretch ratio of the material in the i-th direction (i = 1, 2, 3), as shown in Figure 1,
bottom left.

The deformations of the molecular chains of the material are assumed to comply with the law of affine
deformation. Therefore, the macroscopic deformations of material and the deformations of molecular
chain conformations can be connected by

r = F · r0, (11)

where F is the deformation gradient corresponding to the deformation pattern. In this study, the simple
deformation pattern, uniaxial deformation, is considered. For the uniaxial deformation (in the 1-axis),
the deformation gradient can be expressed as

F = λ1e1⊗ e1+ λ
−1/2
1 e2⊗ e2+ λ

−1/2
1 e3⊗ e3. (12)

So the following expression can be derived with the combination of (11) and (12):

|r − r0|
2
= [(λ1− 1)2+ (λ2− 1)2+ (λ3− 1)2]r2

0 . (13)

Therefore, the true stress-strain formula can be gained from (10) as

σi = λi
ns13
√

3
8r0s

Es1(λi − 1)+ λi
nc1

3r0c
Ec1(λi − 1) (i = 1, 2, 3). (14)

Assuming that the alternating strain ε1 = ε0 sin(ωt) is along the 1-axis, (14) can be rewritten as

σ1 = λ1
ns13
√

3
8r0s

Es1(λ1− 1)+ λ1
nc1

3r0c
Ec1(λ1− 1)

= ε1
ns13
√

3
8r0s

Es1(ε1+ 1)+ ε1
nc1

3r0c
Ec1(ε1+ 1)

= ε2
1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
+ ε1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
. (15)

In this study, the dynamic properties of VE microvibration dampers are only considered in the micro-
vibration condition, and the strain amplitude is small during the deformation. Hence, the square of the
strain ε2

1 is small and can be ignored without affecting the accuracy of the formula. Equation (15) can
be transformed into

σ1 = ε1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
= Eε1. (16)

The VE material always undergoes shear deformation when the VE damper works under external
vibration excitation. The relationship between shear stress and shear strain is expressed as

τ = Gγ, (17)
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where G is the shear modulus of the VE material, τ is the shear stress and γ is the shear strain. The
relationship between shear modulus G and elasticity modulus E can be expressed as G = E/2(1+µ),
where µ is the Poisson ratio of the VE material and is approximately 0.5 for the incompressible materials,
such as rubber-like materials. Hence, the shear modulus can be gained from elasticity modulus E . The
shear modulus G has a complex form and can be decomposed into two parts: imaginary part Im G and
real part Re G. The real part denotes the storage modulus of VE material, and the ratio of the imaginary
part and real part is defined as the loss factor of VE material. The complex modulus G can be written as

G = 1
3 E =

1
3

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
=

ns1
√

3
8r0s

(
k2

1k2+ k1k2
2 + k1ω

2c2
2

(k1+ k2)2+ω2c2
2
+ j

k2
1ωc2

(k1+ k2)2+ω2c2
2

)
+

nc1

9r0c

(
k3ω

2c2
3

k2
3 +ω

2
3c2

3
+ j

k2
3ωc3

k2
3 +ω

2c2
3

)
. (18)

Hence, the storage modulus and loss factor can be expressed as

G1 = Re G =
ns1
√

3
8r0s

(
k2

1k2+ k1k2
2 + k1ω

2c2
2

(k1+ k2)2+ω2c2
2

)
+

nc1

9r0c

(
k3ω

2c2
3

k2
3 +ω

2c2
3

)
,

G2 = Im G =
ns1
√

3
8r0s

(
k2

1ωc2

(k1+ k2)2+ω2c2
2

)
+

nc1

9r0c

(
k2

3ωc3

k2
3 +ω

2c2
3

)
,

η =
G2

G1
.

(19)

Equation (19) is the proposed model, which can describe the storage modulus and loss factor of the
VE microvibration damper. The parameters of this model have been interpreted in the previous parts.
The proposed model can describe the dynamic properties of VE microvibration dampers from micro-
perspectives, and the model parameters have clearly physical meanings, which are related to the material
microstructures. Additionally, the effect of displacement amplitude on properties of VE microvibration
dampers is not considered under microvibration from the model-establishing process.

3. Experimental study and model verification of the VE microvibration damper

In order to verify the proposed model and investigate the dynamic properties of VE microvibration
dampers, tests on VE microvibration dampers are carried out at different excitation frequencies and dis-
placement amplitudes. The test results are analyzed and compared with the numerical results calculated
by the proposed model in this section.

3.1. Test procedure. The VE microvibration damper tested in this paper is a kind of double-sandwich
damper, as shown in Figure 2, which is manufactured by vulcanization bonding of two VE layers among
three parallel steel plates. The VE layers undergo nearly pure shear deformation while the middle steel
plate and the two lateral steel plates move in the opposite direction during the tests. Then, the VE material
can dissipate the vibration energy by converting the energy into heat and dispersing it into air. The key
dimension information of the tested VE microvibration damper is provided in Figure 2.
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Figure 2. VE microvibration damper. Left: configuration schematic (mm units). Right:
specimen photo.

The performance tests on the VE microvibration damper have been conducted in a 10 kN servo-
hydraulic testing machine in the Center of Mechanics Experiment, Nanjing University of Science and
Technology, as shown in Figure 3. The test machine is manufactured by the Walter+Bai Testing Ma-
chines Corporation and is sufficiently accurate to test the VE microvibration damper at microvibration
amplitudes. During the tests, the machine is controlled through the displacement control mode. The tests
are conducted under the ambient temperature of 12 ◦C.

In each condition, the test on the VE damper is carried out with serial cycles of sinusoidal excitation
with fixed displacement amplitude and excitation frequency. The displacement excitation and loading
data are recorded by the computer and the control system. The cycle number of the excitation is selected
to obtain steady hysteresis curves and would vary at different conditions. The excitation displacements
and frequencies are selected with comprehensive consideration of the equipment capacity and the work-
ing conditions of the VE microvibration damper. The loading conditions are given in the first two columns
of Table 1. Enough cycles were used to gain the stable single force-displacement hysteresis curve data.

computer

Servo system

Viscoelastic 

damper

controller

thermometer

Figure 3. Performance tests on the VE microvibration damper.
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Displacement Storage Loss Equivalent Equivalent Energy
Frequency amplitude modulus factor stiffness damping dissipation

(Hz) (µm) G1 (MPa) η Ke (KN/m) Ce (N·s/m) Ed (N·m)

100 1.0000 0.2667 600.00 254647.91 0.0050
150 0.9778 0.2727 586.67 254647.91 0.0113

0.1 200 0.9417 0.2655 565.00 238732.42 0.0188
250 0.8733 0.2672 524.00 222816.92 0.0275
300 0.8667 0.2692 520.00 222816.92 0.0396

100 1.1833 0.3099 710.00 70028.18 0.0069
150 1.1889 0.2897 713.33 65784.04 0.0146

0.5 200 1.2333 0.2973 740.00 70028.18 0.0276
250 1.0733 0.3478 644.00 71301.42 0.0440
300 1.1167 0.3383 670.00 72150.24 0.0641

100 1.3500 0.3333 810.00 42971.84 0.0085
150 1.4222 0.3281 853.33 44563.38 0.0198

1.0 200 1.3750 0.3636 825.00 47746.48 0.0377
250 1.2600 0.3915 756.00 47109.86 0.0581
300 1.2556 0.3938 753.33 47215.97 0.0839

100 1.5667 0.4149 940.00 31035.21 0.0123
150 1.5333 0.4420 920.00 32361.51 0.0287

2.0 200 1.5333 0.4457 920.00 32626.76 0.0515
250 1.4200 0.4695 852.00 31830.99 0.0785
300 1.4222 0.4609 853.33 31300.47 0.1112

100 1.8667 0.6071 1120.00 21645.07 0.0214
150 1.8667 0.5952 1120.00 21220.66 0.0471

5.0 200 1.8167 0.6055 1090.00 21008.45 0.0829
250 1.7200 0.6008 1032.00 19735.21 0.1217
300 1.7556 0.5981 1053.33 20053.52 0.1781

100 2.0833 0.6880 1250.00 17109.16 0.0270
150 2.1667 0.6462 1300.00 16711.27 0.0594

8.0 200 1.9833 0.7101 1190.00 16810.74 0.1062
250 1.9733 0.6858 1184.00 16154.23 0.1594
300 1.9333 0.6954 1160.00 16048.12 0.2281

100 2.1333 0.7422 1280.00 15119.72 0.0298
150 2.1667 0.7333 1300.00 15172.77 0.0674

10.0 200 2.0917 0.7570 1255.00 15119.72 0.1194
250 2.0800 0.7244 1248.00 14387.61 0.1775
300 2.0667 0.7339 1240.00 14483.10 0.2573

100 2.6833 0.9068 1610.00 11618.31 0.0459
150 2.6444 0.9034 1586.67 11406.10 0.1013

20.0 200 2.5917 0.8778 1555.00 10862.33 0.1715
250 2.5267 0.8760 1516.00 10567.89 0.2608
300 2.4389 0.9066 1463.33 10557.28 0.3751

100 2.9333 0.9125 1760.00 8063.85 0.0478
150 2.9222 0.9137 1753.33 7568.70 0.1008

30.0 200 2.8983 0.9185 1680.00 7055.87 0.1671
250 2.9012 0.9235 1579.00 7108.92 0.2631
300 2.9120 0.9320 1530.67 7427.23 0.3958

Table 1. Characteristic parameters of the VE microvibration damper.
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Figure 4. The hysteresis curves at the same frequency with different displacement am-
plitudes for f = 0.1 Hz (top left), 1.0 Hz (top right), 10.0 Hz (bottom left) and 30.0 Hz
(bottom right).

3.2. Experimental results and analysis. Force-displacement hysteresis curves of the VE microvibration
damper can be plotted with the data recorded at different excitation frequencies and amplitudes. A sin-
gle steady cycle force-displacement hysteresis curve is selected from raw force-displacement hysteresis
curves for each case, as shown in Figures 4 and 5, to distinguish force-displacement hysteresis curves
clearly and to determine the VE microvibration damper characteristics at different conditions. It can be
seen from Figures 4 and 5 that the VE microvibration damper has good energy dissipation capacity, and
the energy dissipation capacity is influenced by the excitation conditions.

Figure 4 shows the force-displacement hysteresis curves under different excitation amplitudes at the
excitation frequencies of 0.1 Hz, 1.0 Hz, 10.0 Hz and 30.0 Hz, and Figure 5 shows the force-displacement
hysteresis curves under different excitation frequencies at the excitation amplitudes of 100µm, 150µm,
200µm and 300µm. It can be clearly seen from Figures 4 and 5 that the slope and width of the
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Figure 5. The hysteresis curves at the same displacement amplitude with different fre-
quencies for d = 100µm (top), 200µm (middle) and 300µm (bottom).

hysteresis curves increase obviously with increasing excitation frequency, whereas they slightly vary
with the excitation amplitude. The area of the hysteresis curves increases with increasing frequency and
amplitude. The slope, the width and the area of the hysteresis curves are considered to be correlated with
the stiffness and the energy dissipation capacity of the VE microvibration damper, which are affected by
excitation frequency and amplitude. The effects of excitation conditions on VE microvibration damper
characteristics will be discussed in detail in the following.
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Figure 6. Force-displacement hysteresis curve.

The dynamic characteristics of the VE microvibration damper, including the storage modulus G1, the
loss factor η, the equivalent stiffness Ke, the equivalent damping Ce and the energy dissipation Ed , can
be determined by force-displacement hysteresis curves. Figures 4 and 5 show that the force-displacement
hysteresis curves are elliptical. This phenomenon can be illustrated by the following procedure, and the
dynamic characteristics of the VE microvibration damper are obtained from the test data.

In the tests, the input displacement signal is sinusoidal excitation displacement ud = u0 sinωt (u0 and ω
are the amplitude and circular frequency of excitations, respectively). The relationship between the force
and displacement of the VE damper under sinusoidal excitation can be expressed as(

Fd − Kdud

ηKd1u0

)2

+

(
ud

u0

)2

= 1, (20)

where Fd and ud are the force and displacement of the VE damper, respectively, as shown in Figure 6.
Fm and u0 are the maximum force and maximum displacement of the damper, respectively. F1 is the
corresponding force at the maximum displacement u0, and F2 is the corresponding force at zero displace-
ment and F2 = ηKd1u0. Kd1 is the storage stiffness, and Kd1 = F1/u0. In accordance with vibration
mitigation theory of VE devices [Xu et al. 2011], the storage modulus G1, the loss factor η and the
energy dissipation Ed can be obtained by

G1 =
F1hv

nvAvu0
, (21)

η =
F2

F1
, (22)

Ed =
πnvηG1 Avu2

0

hv
, (23)

where F1 and F2 can be gained from the force-displacement hysteresis curves, nv is the number of VE
layers and Av and hv are the shear area and thickness of each VE layer, respectively. Av , hv and nv can
be determined from the construction of the VE damper, as shown in Figure 2. Further, the equivalent
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stiffness Ke and the equivalent damping Ce of the VE damper can be calculated by

Ke =
nvG1 Av

hv
=

F1

u0
, (24)

Ce =
nvηG1 Av
ωhv

=
F2

ωu0
. (25)

Then the storage modulus G1, the loss factor η, the energy dissipation Ed , the equivalent stiffness Ke

and the equivalent damping Ce of the VE damper in each test can be obtained through expressions (21)–
(25). The detailed results are listed in Table 1, which indicates that the dynamic characteristics of the
VE damper vary with excitation frequency and displacement amplitude. Therefore, these characteristics
are affected by excitation frequency and displacement amplitude. The details are provided below.

Effect of excitation frequency. In order to vividly analyze the effect of excitation frequency on the dy-
namic characteristics of the VE microvibration damper, the storage modulus G1, the loss factor η, the
equivalent stiffness Ke, the equivalent damping Ce and the energy dissipation Ed of the VE micro-
vibration damper under different frequencies at the fixed displacement are plotted in Figure 7.

With increasing frequency, the storage modulus G1 and the loss factor η, which are the most important
dynamic properties of the VE microvibration damper, rise as shown in Figure 7, top. The properties
increase dramatically at low frequency range while slowly at high frequency range. Take the displace-
ment amplitude of 250µm for example; at the low frequency range, the storage modulus G1 increases
from 0.8733 MPa to 1.0733 MPa by 22.90% and 1.0733 MPa to 1.2600 MPa by 17.39% when the fre-
quency increases from 0.1 Hz to 0.5 Hz and 0.5 Hz to 1.0 Hz, respectively. While at the high frequency
range, the storage modulus G1 increases from 2.0800 MPa to 2.5267 MPa by 21.48% and 2.5267 MPa to
2.9012 MPa by 14.82% when the frequency increases from 10 Hz to 20 Hz and 20 Hz to 30 Hz. The same
phenomena can be observed for the loss factor η; at the low frequency range, it increases from 0.2672 to
0.3478 by 30.16% and 0.3478 to 0.3915 by 12.56% when the frequency increases from 0.1 Hz to 0.5 Hz
and 0.5 Hz to 1.0 Hz. While at the high frequency range, it increases from 0.7244 to 0.8760 by 20.93%
and 0.8760 to 0.9235 by 5.42% when the frequency increases from 10 Hz to 20 Hz and 20 Hz to 30 Hz.

The equivalent stiffness Ke and the equivalent damping Ce are also important properties of the VE
microvibration damper and are directly utilized in the dynamic response analysis of VE damping struc-
tures. It can be clearly seen from Figure 7, middle, that the equivalent stiffness Ke and the equivalent
damping Ce are significantly affected by excitation frequency, especially for the equivalent damping
Ce, which sharply varies with excitation frequency. As shown in Figure 7, middle left, the equivalent
stiffness Ke increases with the increase of frequency at the fixed displacement amplitude. The variation
of the equivalent stiffness Ke is almost the same as that of the storage modulus G1. Similarly, take
the displacement amplitude of 250µm for example; the equivalent stiffness Ke increases by 22.91%,
17.38%, 21.48% and 14.72% when the frequency increases from 0.1 Hz to 0.5 Hz, from 0.5 Hz to 1.0 Hz,
from 10 Hz to 20 Hz and from 20 Hz to 30 Hz, respectively. Obviously, it can be seen that the change per-
centages are nearly the same as those of the storage modulus G1. This similarity can be easily illustrated
by using (24), which indicates that the equivalent stiffness is proportional to the storage modulus while
other parameters are constant for a given VE damper. However, the equivalent damping Ce sharply
decreases with increasing frequency, as shown in Figure 7, middle right. These variation laws of the
equivalent damping with frequency can be explained by using (25). From (25), the equivalent damping
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Figure 7. Dynamic parameters vary with frequency.

is proportional to ω−1 (ω = 2π f ), which means that the equivalent damping will decrease exponentially
with increasing frequency.

The energy dissipation Ed , which is referred to as the energy dissipated by the VE microvibration
damper at a single cycle during the test, is the direct index that represents the energy dissipation capacity
of the VE microvibration damper. Figure 7, bottom, shows that the energy dissipation Ed rises with
increasing frequency similar to the storage modulus G1and the loss factor η. At the low frequency range,
the energy dissipation Ed increases rapidly, whereas it increases gently at the high frequency range.
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Figure 8. Dynamic parameters vary with displacement amplitude.

Effect of displacement amplitude. Similarly, the effects of excitation displacement amplitude on the dy-
namic characteristics of the VE microvibration damper are also vividly analyzed by depicting the storage
modulus G1, the loss factor η, the equivalent stiffness Ke, the equivalent damping Ce and the energy
dissipation Ed under different excitation amplitudes in Figure 8.

The characteristics of the VE microvibration damper, except for the energy dissipation Ed , slightly
change with increasing excitation displacement amplitude. Figure 8, top left, shows that the storage
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Frequency (Hz) Experimental value Model calculation Errors
G1 (MPa) η G1 (MPa) η G1 η

0.1 0.9417 0.2655 0.8603 0.2032 8.64% 23.45%
0.5 1.2333 0.2973 1.0550 0.2565 14.46% 13.70%
1.0 1.375 0.3636 1.1839 0.4112 13.90% 13.10%
2.0 1.5333 0.4457 1.3916 0.5256 10.11% 16.95%
5.0 1.8167 0.6055 1.9774 0.6597 8.85% 8.97%
8.0 1.9833 0.7101 2.1768 0.6747 9.76% 4.98%

10.0 2.0917 0.757 2.4172 0.6800 15.56% 10.16%
20.0 2.5917 0.8778 2.5203 0.8251 2.75% 6.00%
30.0 2.8983 0.9185 2.6226 1.0845 9.51% 18.08%

Table 2. Comparison between experimental and numerical results.

modulus G1 slightly reduces with increasing displacement amplitude within the test frequency ranges
while the loss factor η almost keeps constant with the increasing displacement amplitude, as shown
in Figure 8, top right. The experimental data of frequency of 8 Hz are employed for the following
analyses. The maximum changes are approximately 8.46% and 6.08% for the storage modulus and the
loss factor when the displacement amplitude increases from 150µm to 200µm, respectively. In addition,
the equivalent stiffness Ke and the equivalent damping Ce gently change with the increasing displacement
amplitude, as shown in Figure 8, middle. The maximum changes of the equivalent stiffness and the
equivalent damping are 8.46% and 4.08%, respectively. However, the energy dissipation Ed obviously
increases with the increase of amplitude, as shown in Figure 8, bottom. This phenomenon can easily
be explained by (23), which demonstrates that the energy dissipation is proportional to the square of
displacement. Hence, the displacement amplitude has a significant effect on the energy dissipation. It
can be concluded from the analyses that the displacement amplitude has an insignificant effect on the
properties of the VE microvibration damper except for the energy dissipation.

The above analyses indicate that the storage modulus G1 and the loss factor η are the basic charac-
teristics of the VE microvibration damper and the other characteristics depend on these characteristics.
The excitation frequency has a significant effect on the characteristics of the VE microvibration damper
while the excitation displacement amplitude does not have such an effect. Overall, the analysis results
are in accordance with the results shown in force-displacement hysteresis curves.

3.3. Model verification. The experimental data of the VE microvibration damper are compared with
the numerical results to verify the accuracy of the model proposed in the previous section. Firstly, the
parameters of the mathematical model are determined by using part of the experimental data. And then
the storage modulus G1 and the loss factor η of the VE microvibration damper are calculated by the
model with determined parameters and compared with the experimental data. The conclusion that the
displacement amplitude has only a slight effect on the dynamic properties of VE material has been
gained from the test results and the derivation of the mathematical model. Hence, the experimental data
at the displacement of 200µm are used in this section. The nonlinear least squares method is used to
determine the parameters. By optimizing min F(x) in (26) with the storage modulus G1 and the loss
factor η at five different frequencies (randomly selected), the parameters of the mathematical model are
determined as k1 = 2.82×10−4, k2 = 1.35×10−5, c2 = 5.71×10−9, k3 = 3.31×10−8, c3 = 1.25×10−4,
ns1 = 2.53×1014, nc1 = 1.76×109 and r0s = r0c = 1.71×10−4. The experimental and numerical results
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Figure 9. Experimental and numerical results comparison under different frequencies.

are listed in Table 2. Additionally, the absolute errors of the experimental and numerical results are also
calculated and listed in Table 2. Here

F(ω)= [α((G1(ω)−G0
1(ω))/G1(ω))

2
+β((η(ω)− η0(ω))/η(ω))2], (26)

where α and β are the weighting factors, α + β = 1, G1(ω) and η(ω) are the experimental storage
modulus and loss factor, respectively and G0

1(ω) and η0(ω) are the numerical results.
To clearly analyze the availability of the proposed model, the storage modulus G1 and the loss factor η

of the experimental data and the numerical results of the VE microvibration damper at different frequen-
cies are shown in Figure 9. The proposed model can describe the characteristics of VE microvibration
dampers well. Figure 9, left, shows that the numerical results are in good agreement with the experimental
results for the storage modulus and the error is less than 15.56%. As for the loss factor, the numerical
results are in agreement with experimental results and the maximum error is less than 20% as shown in
Figure 9, right. The microstructures of VE material are complex, and the chain network models are sim-
plified models to describe the molecular chain structure of VE material. In this study, the mathematical
model is proposed based on the chain network model and cannot exactly capture the effect of the real
microstructure of VE material on mechanical behavior. For instance, the molecular chains interaction is
not considered in this model. The effects of other constituents on VE material are also not considered. In
addition, the servo-hydraulic testing machine used in the test may not be precise enough and the effects
of other factors, such as environmental vibration, during the test are not considered. However, the errors
between the numerical results and the test data are within the acceptable region. Therefore, this model
is precise enough to describe the dynamic properties of the VE microvibration damper within the test
frequency ranges.

4. Conclusions

In the present paper, the damping mechanism of VE microvibration dampers is analyzed from micro-
perspectives and a mathematical model based on the chain network model is proposed to describe the
dynamic behavior of the VE microvibration damper. The dynamic properties of the VE microvibration
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damper are tested and analyzed. Comparison between experimental data and model numerical results is
carried out to verify the proposed model. Several conclusions can be obtained through the investigation:

• The mathematical model proposed in this paper can describe the dynamic properties of VE micro-
vibration damper well. Additionally, the model parameters have clear physical meaning and are
related to the material microstructures.

• The force-displacement hysteretic loops of the VE microvibration damper are fully elliptical, and it
demonstrates that the VE microvibration damper has good energy dissipation capabilities.

• The excitation frequency has a significant effect on the dynamic properties of the VE microvibration
damper, whereas the displacement amplitude has only a slight influence. The storage modulus G1,
the loss factor η, the equivalent stiffness Ke and the energy dissipation Ed increase with increasing
frequency while the equivalent damping Ce decreases.
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