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INTERFACE STRESS OF ORTHOTROPIC MATERIALS WITH A NANODEFECT
UNDER ANTIPLANE SHEAR LOADING

JUNHUA XIAO, CHUANFU SHI, YAOLING XU AND FUCHENG ZHANG

A theoretical study is conducted on an orthotropic solid with a nanodefect (e.g., inclusion, hole, or crack)
under far-field antiplane shear loading. A rigorous analytical solution of the stress fields is presented
using the Gurtin–Murdoch surface/interface model and a conformal mapping technique. Several new
and existing solutions are considered for the special and degenerated cases. The major results of the
study are as follows:

(1) Interface stresses are greatly dependent on size when the size of a defect is at the nanometer scale,
and the interface stresses approach the classical elasticity results when a defect has large character-
istic dimensions.

(2) The interface effect of a nanodefect decreases with an increase in defect section aspect ratio.
(3) When the modulus of the defect (inclusion) increases, the interface effect decreases, i.e., the inter-

face effect can be neglected when the inclusion is sufficiently hard.

1. Introduction

Several composite materials can be regarded as orthotropic solids in engineering applications. The
general properties, as well as the fracture and damage properties, of orthotropic solids have received
considerable attention with respect to elastic-plastic and fracture damage theories. When the size of
defects (e.g., inclusion, hole, or crack) in an orthotropic solid is at the nanometer scale, the interface
effect of nanodefects plays an important role in micromechanical properties because of the high surface-
to-volume ratios of this solid material [Nan and Wang 2013; Grekov and Yazovskaya 2014].

In recent years, significant progress has been made in addressing the fracture characteristics of or-
thotropic solids with holes or cracks from a fundamental perspective by applying classical elastoplastic
theory. Tang and Hwang [1991] discussed the near-tip field solution for a plane stress mode I stationary
crack in an elastic-perfectly orthotropic plastic material based on phenomenological plasticity theory.
Gao and Tong [1995] used the Cauchy integral method to study the fundamental solutions for the complex
stress functions and the stress intensity factors of an equal-parameter orthotropic plate with an elliptical
hole or crack. Ozturk and Erdogan [1997] formulated the mode I crack problem for an inhomogeneous
orthotropic plane and obtained a solution for various loading conditions and material parameters. Kim,
Lee, and Joo [1999] presented a numerical solution by applying the Fourier integral transform method on
the problem of a three-layered orthotropic material with a center crack that was subjected to an arbitrary
antiplane shear loading. Berbinau and Soutis [2001] presented a new analytical method for solving
mixed boundary value problems along holes in orthotropic plates. Kwon and Meguid [2002] proposed
a general solution for the field intensity factors and the energy release rate of a Griffith crack normal to

Keywords: orthotropic materials, nanodefects, interface stresses, antiplane shear, Gurtin–Murdoch surface/interface model.
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the interface between a rectangular piezoelectric ceramic and two of the same rectangular orthotropic
materials with finite lengths under combined in-plane electrical and antiplane mechanical loadings. Lee,
Kwon, Lee, and Kwon [2002] provided the dynamic field intensity factors for the problem of an inter-
facial crack moving along the interface between a piezoelectric material and two orthotropic materials
under electromechanical longitudinal shear loading. Li [2003] analytically determined the stress intensity
factors for the problem of an orthotropic strip with two collinear cracks normal to the strip boundaries
under remote uniform antiplane shear loading. Faal and Fariborz [2007] derived the stress fields in an
orthotropic infinite plane with Volterra-type climb and glide edge dislocations. Chalivendra [2008] de-
veloped quasistatic stress fields for a crack oriented along one of the principal axes of an inhomogeneous
orthotropic medium by conducting asymptotic analysis coupled with the Westergaard stress function
approach. Zhang and Deng [2008] derived elastic stress fields near the cohesive zone of a crack aligned
with the principal axes of a degenerated orthotropic material using complex variable and eigenfunction
expansion methods. Xiao and Jiang [2009] obtained a closed-form solution for orthotropic materials
weakened by a doubly periodic array of cracks under far-field antiplane shear loading by applying ellipti-
cal function and analytical function theories on the boundary value problems. Moharrami and Ayatollahi
[2011] conducted stress analysis on an orthotropic plane with a Volterra-type dislocation. The distributed
dislocation technique was adopted to obtain the integral equations for an orthotropic plane weakened by
cracks under time-harmonic antiplane traction. Goldstein and Shifrin [2012] investigated a crack that
was initially located on a symmetry axis of an orthotropic plane and subjected to biaxial loading. Liu
and Zhou [2014] presented a solution for a plane rectangular crack in a 3D infinite orthotropic elastic
material by applying a generalization of Almansi’s theorem and the Schmidt method. Liu, Zhou, Wu,
and Wu [2015] investigated a nonlocal theory solution for a rectangular crack in a 3D infinite orthotropic
elastic medium using a generalization of Almansi’s theorem and the Schmidt method. Peng, Li, and
Feng [2015] investigated the interaction between a mode I crack and a symmetrical shape inclusion in
an orthotropic medium subjected to remote stress by using transformation toughening theory and the
Eshelby inclusion method.

Extensive investigations have also been conducted on the effective properties of orthotropic composite
solids. Zhao and Yu [2000] presented a model for orthotropic damage on materials by combining the
macroscopic mechanical properties with the microstructure parameters of a material based on Eshelby’s
equivalence principle. Bouyge, Jasiuk, Boccara, and Ostoja-Starzewski [2002] determined the couple-
stress moduli and characteristic lengths of a 2D matrix-inclusion composite with the inclusions arranged
in a periodic square array and both linear elastic constituents being of Cauchy type. Yang and Becker
[2004] studied the effective properties and microscopic deformation of anisotropic plates with periodic
holes via direct mathematical homogenization. Ieşan and Scalia [2007] investigated linear theory of
inhomogeneous and orthotropic elastic materials with voids. Nie, Chan, Shin, and Roy [2008] presented
analytic solutions for elastic fields induced by normal and shear eigenstrains in an elliptical region embed-
ded into orthotropic composite materials by applying conformal transformation and the complex function
method. Monchiet, Gruescu, Cazacu, and Kondo [2012] achieved effective compliance of an orthotropic
medium with arbitrarily oriented cracks by using newly derived expressions of the Eshelby tensor.

The present work constitutes research on the interface stresses of an orthotropic solid with a nanodefect.
A closed-form solution for the problem of orthotropic materials with a nanosized elliptical defect is
presented under antiplane shear loading by applying the Gurtin–Murdoch surface/interface model and a



INTERFACE STRESS OF MATERIALS WITH A NANODEFECT UNDER ANTIPLANE SHEAR LOADING 493

conformal mapping technique. The influences of defect size, matrix material moduli ratio, defect shape
ratio, and defect elastic property on stress fields are discussed.

2. Computational model and basic equations

A schematic diagram of an orthotropic solid with an isotropic nanodefect (i.e., nanoelliptical inclusion)
that considers the interface effect is presented in Figure 1. Regions �I and �M denote the elliptical
defect and the matrix, respectively. The Gurtin–Murdoch surface/interface model [Gurtin and Murdoch
1975; 1978; Gurtin et al. 1998] indicates that interface L can be regarded as a layer without thickness and
with different material properties from the defect and the matrix. The semimajor and semiminor axes of
the elliptical defect are denoted as a and b, respectively. I, 0, and M denote the defect, interface, and
matrix, respectively. GI denotes the antiplane shear modulus of the defect (inclusion). C44 and C55 are
the principal shear moduli of the orthotropic solid, which are located along the y- and x-axes in Figure 1,
respectively. The Oz-axis is perpendicular to the section in the Cartesian coordinate system. The matrix
is subjected to far-field antiplane shear stress τ∞yz .

The governing equation and the constitutive equation of the matrix can be given as [Li 2003]

∂τxz

∂x
+
∂τyz

∂y
= 0, (1){

τxz

τyz

}
=

[
C55 0
0 C44

]{
∂w/∂x
∂w/∂y

}
, (2)

where w is the antiplane displacement.

τ∞yz

y

xy

L

A x

B
ρb
θ

a
nanodefect

defect interfacematrix

�I�M O

Figure 1. Schematic diagram of an orthotropic solid with an nanodefect (nanoelliptic
inclusion) considering interface effect (z-plane, z = x + iy).
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Nonclassical boundary conditions on nanodefect interface L can be written as [Luo and Wang 2009;
Sharma et al. 2003]

wP(t)= wM(t) t = ρeiθ , (3)

τP
r z(t)− τ

M
r z (t)=

2µS

ρ

∂ε0
θ z

∂θ
t = ρeiθ , (4)

where (ρ, θ) denotes the polar coordinates on the interface L; τ 0
θ z and ε0

θ z denote the stress and strain
components on the interface, respectively; µS

= C S
44|sin θ | + C S

55|cos θ |; and C S
44 and C S

55 denote the
interface elastic constants along the y- and x-axes in Figure 1, respectively. The unit for interface elastic
constants C S

44 and C S
55 is N/m. The expression of µS in terms of θ is merely an assumption made by the

authors.
The interfacial strain for a coherent interface is equal to the associated tangential strain in the abutting

materials, i.e.,

ε0
θ z = ε

P
θ z = ε

M
θ z. (5)

3. Analysis and solution

By substituting (2) into (1), a second-order linear homogeneous partial differential equation with constant
coefficients on w is obtained as

C55
∂2w

∂x2 +C44
∂2w

∂y2 = 0. (6)

The solution for (6) can be expressed as

w = ReF(zm), (7)

where f (zm) is an analytical function with respect to zm , zm = x + imy, and m =
√

C55/C44.
By substituting (7) into (2), the expressions obtained are

τxz = C55
∂Re f (zm)

∂x
= C55Re f ′(zm),

τyz = mC44
∂Re f (zm)

∂(my)
=−mC44Im f ′(zm),

(8)

where f ′(zm) denotes the derivative with respect to zm . Then, (8) can be rewritten as

τxz

C55
− i

τyz
√

C44C55
= Re f ′(zm)+ iIm f ′(zm)= f ′(zm). (9)

The zm-plane (Figure 2) is generated by the map of zm = x + imy from the z-plane (Figure 1), where
O1 and O2 denote the foci of the elliptical inclusion.

To solve the problem in Figure 2, a new variable ζ is introduced as

ζ = ξ + iη = leiφ, (10)
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τ∞yz

my

L

x
ρmb
φ

O2aOO1

�I�M

Figure 2. zm-plane corresponding to the plane z (zm = x + imy).

η

ξ

L0

Ol0

�′O�′P�′M

Figure 3. Conformal mapping in the ζ -plane (ζ = ξ + iη).

where (l, φ) denotes the polar coordinates in the ζ -plane. The zm-plane is mapped onto the ζ -plane via
conformal transformation,

zm =�(ζ)= ζ +
n
ζ
, (11)

where n = (a2
−m2b2)/4. Region �I in the zm-plane is mapped onto circular region �′O, with radius l0,

and circular region �′P, with radius L0, shown in Figure 3, respectively.
From the transformation relationship between Figures 2 and 3, the equations obtained are

x = ξ + nξ
ξ 2+η2 , my = η− nη

ξ 2+η2 . (12)
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From (12), the following expressions are derived:

l0 =
√

n, (13)

L0 =
a+mb

2
. (14)

In an annular region, an analytical function F(ζ ) can be expanded into a Laurent series [Muskhelishvili
1953]:

F(ζ )= a∗ ln ζ +
∞∑

k=−∞

akζ
k, (15)

where a∗ and ak are complex constants to be determined. The exact solution can be obtained by taking
the following finite terms of the series:

FI(ζ )= A1

(
ζ + n/ζ

)
= A1

(
leiφ
+

ne−iφ

l

)
in �′I, (16)

FM(ζ )= B1ζ + B−1
1
ζ
= B1leiφ

+
B−1

l
e−iφ in �′M, (17)

where A1, B1, and B−1 are complex constants.
By applying far-field conditions, coefficient B1 can be obtained from (9) and (17) as

B1 =−i
τ∞yz

√
C44C55

. (18)

The boundary conditions on L0 in Figure 3 can be summarized as

wI(z)= wM(z), (19)

τ I
r z(z)− τ

M
r z (z)=

2µS

L0

∂ε
L0
θ z

∂θ
, (20)

where µS
= C S

44|sin θ | +C S
55|cos θ |, and C S

44 and C S
55 denote the interface elastic constants along the y-

and x-axes in Figure 1, respectively.
From boundary conditions (19) and (20), the expressions obtained are(

1+ n
L2

0

)
A1 = B1−

B−1

L2
0
, (21)[

GI

(
1− n

L2
0

)
+
µS

L0

(
1+ n

L2
0

)]
A1 = C44

(
B1+

B−1

L2
0

)
. (22)

By integrating (21) and (22) into (18), the expressions

A1 = S1 B1, B−1 = S−1 B1, (23)
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are derived, where

S1 =
2C44

GI(1− n/L2
0)+ (µ

S/L0)(1+ n/L2
0)+C44(1+ n/L2

0)
,

S−1 =
GI(1− n/L2

0)+ (µ
S/L0)(1+ n/L2

0)−C44(1+ n/L2
0)

GI(1− n/L2
0)+ (µ

S/L0)(1+ n/L2
0)+C44(1+ n/L2

0)
L2

0.

(24)

From (9), (16), (17), (18), and (23), the overall stress fields in the composites can be expressed as

τyz + iτxz = GIS1
τ∞yz

√
C44C55

in the inclusion, (25)

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
−S−1
ζ 2−n

τ∞yz
√

C44C55
in the matrix, (26)

where ζ = ξ + iη = (zm +
√

z2
m − 4n)/2, zm = x + imy.

4. Special cases

(1) Orthotropic solid with a rigid nanoelliptical inclusion:
Let GI→∞ in (25) and (26). The stress fields degenerate into

τyz + iτxz =
2C44

1− n/L2
0

τ∞yz
√

C44C55
in the inclusion, (27)

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
− L2

0

ζ 2− n

τ∞yz
√

C44C55
in the matrix. (28)

(2) Orthotropic solid with a nanoelliptical hole:
Let GI = 0. Equation (26) degenerates into

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
− (µS/L0−C44)/(µ

S/L0+C44)L2
0

ζ 2− n

τ∞yz
√

C44C55
. (29)

Equation (29) agrees with the existing results [Xiao et al. 2014, Equation (23)].

(3) Nanocrack in an orthotropic solid:
Take b = 0 in (29). The crack tip stress field can be obtained as

τyz
√

C44C55
+ i

τxz

C55
=

4ζ 2
− (2µS/a−C44)/(2µS/a+C44)a2

4ζ 2− a2

τ∞yz
√

C44C55
. (30)

The III-type stress intensity factor at tip A in Figure 1 can be defined as

K A
III = lim

y=0
z→a

τyz
√

2π(z− a)= τ∞yz
√
πa

C44

C44+ 2µs/a
= K ∗Aτ

∞

yz
√
πa, (31)

where K ∗A = K A
III/(τ

∞
yz
√
πa) denotes the dimensionless stress intensity factor at tip A. When ignor-

ing the interface effect of inclusion, i.e., µs
= 0, (31) degenerates into the existing solution presented

by Hwu [1991], i.e.,
K A

III = τ
∞

yz
√
πa. (32)
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5. Results and discussion

The interface elastic constant can be obtained through atomistic simulations. Studies on orthotropic
solids remain lacking; thus, we consider C S

44/C S
55 = C44/C55 in this work. We assume that the ratio

of the elastic constant C S
44 of the interface to that of the matrix along the y-axis is a real constant α,

i.e., α = C S
44/C44, where α varies from −2 ·10−10 m to 2 ·10−10 m [Luo and Wang 2009]. Then, µS =

C S
44|sin θ | +C S

55|cos θ | = C S
44(|sin θ | +C55/C44|cos θ |). We then define the section aspect ratio of the

elliptical inclusion as γ = b/a, β = GI/C44.

Example 1. A comparison of the present solution for α = 0 (classical elasticity theory) with the finite
element results is plotted in Figure 4, where a = 5 nm, γ = b/a = 0.5, β = GI/C44 = 0, C55 = 12 GPa,
and C44 = 5.7 GPa. The finite element results agree with the present solution when α = 0. With the
increase in angle θ from 0◦ to 90◦, the interface stress concentration factors decrease monotonously when
α = 2 ·10−10 m and α = 0, whereas the interface stress concentration factors initially decrease and then
increase when α =−2 ·10−10 m.

Example 2. The variation in the stress concentration factors at points A and B (Figure 1) with the
semimajor axis of the inclusion is plotted in Figure 5, where γ = b/a = 0.2, β = GI/C44 = 2, and
C55/C44 = 2. Stress τ A

yz is calculated using (26) when ρ = a and θ = 0◦ (Figure 1). Then, stress τ A
yz is

the bulk stress, and stress concentration factor τ A
yz/τ

∞
yz is dimensionless.

Figure 5 shows that stress concentration factors are dramatically dependent on size when the size of an
elliptical inclusion is at the nanometer scale. The present solution approaches classical elasticity theory
when the inclusion has large characteristic dimensions.

Example 3. The material moduli ratio C55/C44 can be regarded as a parameter in studying the influence
of material orthotropy on stress concentration factors. The variation in the stress concentration factors

α = 0 (classical elasticity theory)
FEM (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
yz
/
τ
∞ yz

θ (°)

Figure 4. Distribution of the interface stress concentration factors on the interface of
the elliptic hole.
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

a (nm)

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

a (nm)

Figure 5. Variation of the stress concentration factors at points A (top) and B (bottom)
with the size of the elliptic inclusion.

at points A and B with lg(C55/C44) is plotted in Figure 6, where a = 5 nm, γ = b/a = 0.2, and
β = GI/C44 = 2.

When the ratio of the elastic main direction lg(C55/C44) increases, the increase in C55/C44 shields
the stress concentration factor at point A but amplifies said factor at point B.

Example 4. Figure 7 shows the variation in the stress concentration factors at points A and B with the
inclusion section aspect ratio γ = b/a, where a = 5 nm, β = GI/C44 = 2, and C55/C44 = 2.

When the inclusion section aspect ratio γ increases gradually from 0 to 1, the stress concentration
factor at point A decreases monotonically, whereas at point B it increases monotonically. The interface
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

lg(C55/C44)

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

lg(C55/C44)

Figure 6. Variation of the stress concentration factors at points A (top) and B (bottom)
with the ratio of the elastic main direction C55/C44.

effect of the nanoinclusion decreases with the increase in the inclusion section aspect ratio γ .

Example 5. The variation in the stress concentration factors at points A and B with the dimensionless
logarithmic inclusion shear modulus lg(GI/G44) is plotted in Figure 8, where a = 5 nm, γ = b/a = 0.2,
and C55/C44 = 2.

Figure 8 illustrates an interesting phenomenon in which the interface effect can be neglected when
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α = 0 m (classical elasticity theory)

α = 2 ·10−10 m

α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

γ

α = 0 m (classical elasticity theory)

α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

γ

Figure 7. Variation of the stress concentration factors at points A (top) and B (bottom)
with the elliptic inclusion shape ratio γ = b/a.

the inclusion is sufficiently hard. The influence of the interface effect depends on the modulus of the
inclusion, i.e., the interface effect decreases with the increase in the modulus of the inclusion.

6. Conclusions

The problem of an orthotropic solid with a nanodefect under far-field antiplane shear loading was in-
vestigated using the Gurtin–Murdoch surface/interface model and a conformal mapping technique. An
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

lg(CI/C44)

(a) Stress concentration factor at point A.

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

lg(CI/C44)

(b) Stress concentration factor at point B.

Figure 8. Variation of the stress concentration factors at points A and B with the elliptic
cavity shape ratio γ = b/a.

analytical solution for the overall stress field in the nanoinhomogeneous material was obtained. The
proposed solution is generalized, such that several new and existing solutions can be regarded as special
or degenerate cases. The effects of defect size, matrix material moduli ratio, defect shape ratio, and
inclusion elastic property on the interface stresses were discussed.
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PROPAGATION OF WAVES IN MASONRY-LIKE SOLIDS

MARIA GIRARDI, CRISTINA PADOVANI AND DANIELE PELLEGRINI

This paper deals with the propagation of progressive elastic waves in masonry-like solids. The constitu-
tive equation of masonry-like materials models the mechanical behavior of materials (such as masonry,
rocks and stones) that do not withstand tensile stresses. The stress function T delivering the Cauchy
stress T corresponding to an infinitesimal strain tensor E is nonlinear and differentiable on an open
subset W of the set of all strains. We consider the propagation of small amplitude elastic waves in
a masonry-like body subjected to a given homogenous strain field E belonging to W . We obtain the
propagation condition, which involves the acoustic tensor A.E ;n/, which depends on both E and the
direction of propagation n, and prove that, due to the presence of cracks, the wave propagation velocities
in masonry are lower than in a linear elastic material.

Introduction

The study of elastic waves finds its main applications in addressing earthquakes and seismological prob-
lems [Ewing et al. 1957], in the evaluation of cracks in elastic media [Crampin 1981], as well as in the
acoustic determination of third-order elastic constants and residual stresses [Winkler and Liu 1996; Pao
et al. 1984; Ogden and Singh 2011]. A further application is in assessing the mechanical behavior of
constructions in response to earthquakes by studying the propagation properties of seismic waves. In
[Safack 1999] the changes in the propagation characteristics of seismic waves in a building were shown
to be more reliable indicators of damage than changes in natural frequencies. In [Ivanovic et al. 2001;
Safak et al. 2009] the wave propagation method is used for structural health monitoring purposes.

A detailed treatment of elastic waves is available in [Royer and Dieulesaint 2000], which addresses
the different types of waves that propagate in isotropic and anisotropic solids, with particular focus
on the propagation and generation of waves in crystals. Progressive waves and the Fresnel–Hadamard
condition for their propagation, involving the acoustic tensor, are discussed in [Truesdell and Toupin
1960]. Progressive waves have been studied in [Gurtin 1972; Chadwick 1989] for isotropic and trans-
versely isotropic linear elastic media. Lastly, the acoustic tensor and its eigenvalues and eigenvectors are
explicitly calculated in [Chadwick 1989].

This paper deals with the propagation of progressive elastic waves in a masonry-like body subjected
to a given homogeneous strain field. Unlike [Gurtin 1972; Chadwick 1989], which deal with linear
elasticity, here we consider the constitutive equation of masonry-like materials [Del Piero 1989; Lucchesi
et al. 2008], which models the mechanical behavior of materials (such as masonry, rocks and stones) that

This research has been cofunded by the Fondazione Cassa di Risparmio di Lucca within the framework of the MONSTER
project (Structural Monitoring of Heritage Buildings by Wireless Technologies and Innovative Computing Tools, 2014-2016).
This support is gratefully acknowledged.
Keywords: nonlinear elasticity, masonry-like materials, progressive waves, acoustic tensor.
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do not withstand tensile stresses. A masonry-like material is a nonlinear hyperelastic material with zero
tensile strength and infinite compressive strength. For the Cauchy stress T and the infinitesimal strain
E (both belonging to the set Sym of symmetric tensors), the stress-strain relation is determined by the
nonlinear relation T D CŒP.E/�, where C is the fourth-order elasticity tensor, and P is the nonlinear
projection of the strain tensor onto the image of the set C�1Sym� of negative-semidefinite stresses
Sym� under C�1 with respect to the energetic scalar product on Sym. The tensor Ef D E �P.E/,
which is positive-semidefinite and orthogonal to T , is called fracture strain and is different from zero
where fractures arise.

The constitutive equation of isotropic masonry-like materials is briefly described in Section 1, which
also presents the explicit expression for the stress function T.E/ D CŒP.E/� as E varies in the four
regions Vi , i D 0; 1; 2; 3. Regions Vi characterize the different types of behavior that a masonry-like
material can exhibit. In V3 the material behaves like a linear elastic material, since the stress is negative-
semidefinite. In V0 the stress tensor is zero and the material can crack in all directions. Regions V1 and
V2 exhibit mixed behavior: the stress tensor has respectively two and one eigenvectors corresponding to
the zero eigenvalue, and the material can fracture orthogonally to these directions. As demonstrated in
[Lucchesi et al. 2008; Padovani and Šilhavý 2015], the function T is differentiable on W D

S3
iD0 Wi ,

with Wi being the interior of set Vi . The derivative DET.E/ of T with respect to E is a symmetric
fourth-order tensor from Sym with values in Sym, whose spectral representation has been calculated in
[Lucchesi et al. 2008] and is recalled here.

The boundary-initial-value problem of the dynamics of masonry-like solids has been addressed in
[Casarosa et al. 1998; Lucchesi et al. 1999; Degl’Innocenti et al. 2006], which deal with the nonlinearity
of the equation of motion. The exact solution to the problem of free longitudinal vibrations of both
finite and infinite beams has been calculated in [Casarosa et al. 1998; Lucchesi et al. 1999]. The main
features of the solution is the development of a shock wave [Šilhavý 1997] at the interface between
the cracked and compressed parts of the beam, which determines a loss of mechanical energy and a
progressive decay of the solution. As far as the numerical solution of the dynamic problem of masonry
structures is concerned, Degl’Innocenti et al. [2006] proposed a method to integrate with respect to
time the system of ordinary differential equations obtained by discretizing the structure into finite ele-
ments. The method has been implemented in the NOSA–ITACA code [Binante et al. 2014] and was
used to study the dynamic behavior of historical masonry buildings [Callieri et al. 2010; De Falco et al.
2014].

The approach followed in this paper is rather different: instead of addressing the boundary-initial-
value problem of dynamics, we consider the propagation of progressive elastic waves in a masonry-like
body subjected to a given homogeneous strain field E belonging to W . By using the differentiability
of the stress function at E and considering elastic displacements superimposed on E , we obtain the
linearized equation of the motion involving the constant fourth-order tensor DET.E/. We then consider
progressive waves and determine the condition they must satisfy in order to propagate in the masonry
body. This condition involves the acoustic tensor A.E ;n/, whose eigenvalues and eigenvectors are
calculated in Section 2.

Unlike the linear elastic case, in which the acoustic tensor depends only on the direction of propagation
n, here it depends on the strain E as well. Moreover, even though symmetric, A.E ;n/ is positive–
semidefinite, since its eigenvalues are non-negative.
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The acoustic tensor and the properties of progressive waves are analyzed as the given homogeneous
strain field E varies in the regions Wi ; i D 0; 1; 2; 3. For E 2W0, the material is completely cracked and
elastic waves cannot propagate. For E 2W1;W2, due to the presence of cracks, the wave propagation
velocities in masonry are lower than in a linear elastic material. Moreover, longitudinal waves propagate
only for some values of n, depending on the directions of cracking. For the remaining values of n the
waves are neither longitudinal nor transverse and propagate with different velocities in different directions.
Finally, if E 2W3, masonry behaves like a linear elastic material.

Section 3 provides a detailed description of the two-dimensional case. In order to highlight the differ-
ence between a masonry-like and a linear elastic material, pictures illustrating the effects of the presence
of cracks on the propagation of elastic waves are presented.

1. The constitutive equation

Let Lin be the set of all second-order tensors with the scalar product

A �B D tr.AT B/

for any A;B 2 Lin, with AT the transpose of A. For Sym, the subspace of symmetric tensors, Sym�

and SymC are the sets of all negative-semidefinite and positive-semidefinite elements of Sym. Given the
symmetric tensors A and B , we denote by A˝B the fourth-order tensor defined by

A˝B ŒH �D .B �H /A

for H 2 Lin, and by ISym the fourth-order identity tensor on Sym. For a and b vectors, the dyad a˝b

is defined by a˝bhD .b �h/a, for any vector h, and � is the scalar product in the space of vectors. We
define the subspaces

Span.a;b/D fv D aaC bb W a; b 2 Rg;

Span.a/? D fv W a � v D 0g

of the three-dimensional vector space.
Now, let C be the isotropic fourth-order tensor of the elastic constants

CD 2�ISymC�I ˝ I ; (1-1)

where I 2 Sym is the identity tensor and � and � are the Lamé moduli of the material satisfying the
conditions

� > 0; �� 0: (1-2)

C is symmetric,
A �CŒB �DB �CŒA� for all A;B 2 Sym; (1-3)

and in view of (1-2) is positive-definite on Sym,

A �CŒA� > 0 for all A 2 Sym; A ¤ 0: (1-4)

Then C is invertible, with inverse C�1. We define the energetic scalar product on Sym by setting
.A;B/DA �CŒB � for any A;B 2 Sym.
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A masonry-like material is a nonlinear elastic material characterized by the fact that, for E 2 Sym,
there exists a unique triplet .T ;Ee;Ef / of elements of Sym such that [Lucchesi et al. 2008]

E DEe
CEf ; (1-5)

T D CŒEe �; (1-6)

T 2 Sym�; Ef
2 SymC; (1-7)

T �Ef
D 0: (1-8)

T is the Cauchy stress corresponding to strain E ; Ee and Ef are respectively the elastic and inelastic
parts of E ; Ef is also called fracture strain. Denoting by P W Sym! Sym the metric projection onto
the closed convex cone C�1Sym� with respect to the energetic scalar product, it is possible to prove that
Ee D P.E/ and T D CŒP.E/� [Padovani and Šilhavý 2015]. The stress function T W Sym! Sym is
given by

T.E/D T D CŒP.E/� for any E 2 Sym: (1-9)

The explicit expression for the stress function T, calculated in [Lucchesi et al. 2008], is recalled in
the following.

For E 2 Sym, let e1� e2� e3 be its ordered eigenvalues and q1, q2; q3 the corresponding eigenvectors.
We introduce the orthonormal basis of Sym (with respect to the scalar product �)

O11 D q1˝ q1; O22 D q2˝ q2; O33 D q3˝ q3;

O12 D 1=
p

2.q1˝ q2C q2˝ q1/; O13 D 1=
p

2.q1˝ q3C q3˝ q1/;

O23 D 1=
p

2.q2˝ q3C q3˝ q2/: (1-10)

Given E , the corresponding stress satisfying the constitutive equation of masonry-like materials is given
by

if E 2 V0; then T D 0; (1-11)

if E 2 V1; then T DEe1O11; (1-12)

if E 2 V2; then T D 2�=.2C˛/fŒ2.1C˛/e1C˛e2�O11C Œ˛e1C 2.1C˛/e2�O22g; (1-13)

if E 2 V3; then T D CŒE �; (1-14)

where the sets Vk are

V0 D fE 2 Sym W e1 � 0g; (1-15)

V1 D fE 2 Sym W e1 � 0; ˛e1C 2.1C˛/e2 � 0g; (1-16)

V2 D fE 2 Sym W ˛e1C 2.1C˛/e2 � 0; 2e3C˛ tr E � 0g; (1-17)

V3 D fE 2 Sym W 2e3C˛ tr E � 0g; (1-18)

with ˛D �=� and the Young’s modulus E D�.2�C3�/=.�C�/. As for the fracture strain, we have
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if E 2 V0; then Ef
DE ; (1-19)

if E 2 V1; then Ef
D
�
e2C˛=.2.1C˛//e1

�
O22C

�
e3C˛=.2.1C˛//e1

�
O33; (1-20)

if E 2 V2; then Ef
D Œe3C˛=.2C˛/.e1C e2/�O33; (1-21)

if E 2 V3; then Ef
D 0: (1-22)

Thus, as E varies in the four regions Vi , i D 0; 1; 2; 3, the corresponding stress tensor T and fracture
strain Ef have rank i D 0; 1; 2; 3 and r D 3; 2; 1; 0, respectively.

For Wk , the interior of Vk , function T turns out to be differentiable on W D
S3

iD0 Wi [Lucchesi et al.
2008; Padovani and Šilhavý 2015]. The derivative DET.E/ of T.E/ with respect to E in the regions
Wi has been calculated in [Lucchesi et al. 2008]. DET.E/ is a symmetric fourth-order tensor from Sym
into itself and has the following expressions:

if E 2W0; then DET.E/DO; (1-23)

where O is the null fourth-order tensor,

if E 2W1; then DET.E/DE

�
O11˝O11�

e1

e2� e1

O12˝O12�
e1

e3� e1

O13˝O13

�
; (1-24)

if E 2W2; then DET.E/D 2�O12˝O12�
2�

2C˛

2.1C˛/e1C˛e2

e3� e1

O13˝O13

�
2�

2C˛

˛e1C 2.1C˛/e2

e3� e2

O23˝O23C
2�.2C 3˛/

2C˛

O11CO22
p

2
˝

O11CO22
p

2

C 2�
O11�O22
p

2
˝

O11�O22
p

2
; (1-25)

if E 2W3; then DET.E/D C: (1-26)

From (1-24) and (1-25), bearing in mind that they are the spectral decomposition of DET.E/ for
E 2W1 and E 2W2 [Itskov 2015], by taking (1-16) and (1-17) into account, we conclude that DET.E/

has non-negative eigenvalues [Lucchesi et al. 2008] and is positive-semidefinite; hence it satisfies the
Legendre–Hadamard condition [Šilhavý 1997]

a˝bCb˝a

2
�DET.E/

�
a˝bCb˝a

2

�
� 0 for each vector a;b: (1-27)

For E 2W3, DET.E/ coincides with the tensor of elastic constants (1-1); it is positive-definite and
then strongly elliptic [Gurtin 1972].

2. Progressive waves

We are interested in studying the propagation of small amplitude elastic waves in an infinite masonry-like
solid B with homogeneous mass density �, homogeneous material properties �, and � satisfying (1-2),
subjected to a uniform stress T DT.E/, with E being a given uniform strain belonging to W D

S3
iD0 Wi :

From the differentiability of T at E in W [Padovani and Šilhavý 2015], it follows that

T.E CH /D T CDET.E/ŒH �C o.H /; H 2 Sym; H ! 0: (2-1)
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We consider small elastic displacements u, defined on B� .0;1/, such that their gradient ru is small,
and denote by @2u=@t2 the acceleration and by div the divergence. For such displacements superimposed
on strain E , from (2-1), neglecting terms of order o.ru/, we obtain the linearized equation of motion
in the absence of body forces

div
�
DET.E/Œ.ruCruT /=2�

�
D �@2u=@t2 on B: (2-2)

A progressive wave has the form

u.x; t/Dm .n �x� vt/; (2-3)

where the unit vectors m and n are respectively the polarization vector (or direction of motion) and the
direction of propagation, v is the wave velocity and  an arbitrary function of class C2 on .�1;1/
such that

d2 =ds2
¤ 0: (2-4)

The wave u in (2-3) is longitudinal if mD˙n, and transverse if m � nD 0. Moreover, u is elastic if it
satisfies the equation of motion (2-2).

From (2-3) we get [Gurtin 1972]

ruD  0m˝n; (2-5)

@2u=@t2
D  00v2m; (2-6)

with

 0 D d =dsj
sDn�x�vt

; (2-7)

 00 D d2 =ds2
j
sDn�x�vt

: (2-8)

From (2-5) it follows that

DET.E/

�
ruCruT

2

�
D  0DET.E/

�
m˝nCn˝m

2

�
: (2-9)

Moreover, since DET.E/ is independent of x,

div
�
DET.E/

�
ruCruT

2

��
D  00DET.E/

�
m˝nCn˝m

2

�
nD � 00A.E ;n/m; (2-10)

where A.E ;n/ is the tensor defined by

A.E ;n/aD ��1DET.E/

�
a˝nCn˝a

2

�
n for every vector a: (2-11)

We call A.E ;n/ the acoustic tensor for strain E and direction n. From (2-2), by taking (2-6), (2-10)
and (2-4) into account, we obtain the condition

A.E ;n/mD v2m; (2-12)

which expresses the Fresnel–Hadamard propagation condition [Gurtin 1972]. Thus, for an elastic pro-
gressive wave to propagate in a direction n, its polarization vector must be an eigenvector of the acoustic
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q3

q1

q2

m

n

vt

wave front at time t

wave front at time 0

fracture plane

Figure 1. Depiction of a plane wave with direction of propagation n and polarization
vector m in a cracked body.

tensor A.E ;n/ and the square of the velocity of propagation must be the associated eigenvalue. Figure 1
depicts a progressive wave with direction of propagation n and polarization m in an infinite body sub-
jected to a homogeneous strain field E 2W2. According to (1-21), the fracture planes are orthogonal
to q3. For a given constant �, at any time t , the displacement field u in (2-3) is constant on the plane
Pt D fx W x �n� v t D �g, called the wave front.

2A. The acoustic tensor. In this subsection we state some properties of the acoustic tensor A.E ;n/

defined in (2-11) and obtain its expression in the four regions Wi .

Proposition 2.1.

(a) A.E ;n/ is symmetric.

(b) For E in
S2

iD1 Wi , let

DET.E/D

6X
jD1

ıj .E/Vj .E/˝Vj .E/; (2-13)

be the spectral decomposition of DET.E/, with ıj .E/ eigenvalues and Vj .E/ eigentensors of
DET.E/, j D 1; : : : ; 6. Thus

A.E ;n/D ��1
6X

jD1

ıj .E/Vj .E/n˝Vj .E/n: (2-14)

(c) A.E ;n/ is positive-semidefinite for E 2
S2

iD0 Wi , and positive-definite for E in W3.

(d) A.E ;n/DA.E ;�n/ for each unit vector n.
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(e) Let Orth be the subset of Lin of orthogonal tensors Q, QQT DQT Q D I . The acoustic tensor
satisfies the relation

QA.E ;n/QT
DA.QEQT ;Qn/ for each Q 2 Orth: (2-15)

Proof.

(a) By taking the symmetry of DET.E/ into account, for each vector l and p we have,

l �A.E ;n/p D l � ��1DET.E/

�
p˝nCn˝p

2

�
n

D l ˝n � ��1DET.E/

�
p˝nCn˝p

2

�
D

l˝nCn˝l

2
� ��1DET.E/

�
p˝nCn˝p

2

�
D ��1DET.E/

�
l˝nCn˝l

2

�
�
p˝nCn˝p

2

D p � ��1DET.E/

�
l˝nCn˝l

2

�
n

D p �A.E ;n/l : (2-16)

(b) From (2-13) it follows that

DET.E/

�
p˝nCn˝p

2

�
nD

6X
jD1

ıj .E/

�
Vj .E/ �

�
p˝nCn˝p

2

��
Vj .E/n

D

6X
jD1

ıj .E/.Vj .E/n �p/Vj .E/n

D

6X
jD1

ıj .E/.Vj .E/n˝Vj .E/n/p; (2-17)

for all vectors p, and (2-14) follows from (2-11).

(c) If E 2
S2

iD0 Wi , from (2-16) for l D p, by taking the condition (1-27) into account, we obtain
that A.E ;n/ is positive-semidefinite. If E 2W3, DET.E/D C is positive-definite and A.E ;n/

coincides with the acoustic tensor of an isotropic linear elastic material and is positive-definite (see
(2-24)).

(d) A trivial consequence of (2-11).

(e) We note that from the isotropy of the stress function T [Lucchesi et al. 2008],

T.E/D T.QEQT / for each E 2 Sym; Q 2 Orth; (2-18)

the invariance of its derivative DET.E/ [Gurtin 1981]

QDET.E/ŒH �QT
DDET.QEQT /ŒQHQT �; (2-19)



PROPAGATION OF WAVES IN MASONRY-LIKE SOLIDS 513

follows for each E 2
S3

iD0 Wi ; Q 2 Orth; H 2 Sym.
Thus, for E 2

S3
iD0 Wi and n unit vector, from (2-11) and (2-19), we obtain

A.E ;n/DQT A.QEQT ;Qn/Q for each Q 2 Orth: (2-20)

Equation (2-20) extends an analogous relation proved in [Gurtin 1972] for isotropic linear elastic
materials. From (2-20) it follows that if m is an eigenvector of A.E ;n/ corresponding to the
eigenvalue v2, then Qm is an eigenvector of A.QEQT ;Qn/ corresponding to the same eigenvalue
v2. �

From Proposition 2.1, tensor A.E ;n/ defined in (2-11) turns out to be symmetric and positive-
semidefinite, hence, for each n, there exist three orthogonal eigenvectors m1;m2;m3, and three as-
sociated non-negative eigenvalues v2

1
; v2

2
; v2

3
, whose expressions are calculated in the following.

Due to the different expressions of DET.E/ in the regions Wi , from (2-11) it follows that the acoustic
tensor A.E ;n/ has different expressions Ai.E ;n/ in the four regions Wi . In view of Proposition 2.1(b)
we have:

if E 2W0; then A0.E ;n/D 0; (2-21)

if E 2W1; then A1.E ;n/DE��1

�
O11n˝O11n

�
e1

e2� e1

O12n˝O12n�
e1

e3� e1

O13n˝O13n

�
; (2-22)

if E 2W2; then A2.E ;n/D 2���1

�
O12n˝O12n

�
2.1C˛/e1C˛e2

.2C˛/.e3� e1/
O13n˝O13n�

˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
O23n˝O23n

C
2C 3˛

2C˛

O11CO22
p

2
n˝

O11CO22
p

2
nC

O11�O22
p

2
n˝

O11�O22
p

2
n

�
; (2-23)

if E 2W3 then A3.E ;n/D .2�C�/�
�1n˝nC���1.I �n˝n/: (2-24)

Our goal is to find the eigenvalues c
.i/
1
.E ;n/� c

.i/
2
.E ;n/� c

.i/
3
.E ;n/ and eigenvectors m

.i/
1
.E ;n/,

m
.i/
2
.E ;n/, m

.i/
3
.E ;n/ of the acoustic tensor Ai.E ;n/, for i D 1; 2; 3.

For E 2W1, from (2-22) we get

A1.E ;n/DE��1

��
.n � q1/

2
�

e1

2.e2� e1/
.n � q2/

2
�

e1

2.e3� e1/
.n � q3/

2

�
O11

�
e1

2.e2� e1/
.n � q1/

2O22�
e1

2.e3� e1/
.n � q1/

2O33�
e1

p
2.e2� e1/

.n � q1/.n � q2/O12

�
e1

p
2.e3� e1/

.n � q1/.n � q3/O13

�
: (2-25)
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Thus, if nD q1, then

A1.E ; q1/DE��1

�
O11�

e1

2.e2� e1/
O22�

e1

2.e3� e1/
O33

�
; (2-26)

whose eigenvalues and eigenvectors are

c
.1/
1
.E ; q1/DE��1; c

.1/
2
.E ; q1/D�

E��1e1

2.e2� e1/
; (2-27)

c
.1/
3
.E ; q1/D�

E��1e1

2.e3� e1/
; (2-28)

m
.1/
1
.E ; q1/D q1; m

.1/
2
.E ; q1/D q2; m

.1/
3
.E ; q1/D q3: (2-29)

If n � q1 D 0, then

A1.E ;n/D�E��1

�
e1

2.e2� e1/
.n � q2/

2
C

e1

2.e3� e1/
.n � q3/

2

�
O11; (2-30)

whose eigenvalues and eigenvectors are

c
.1/
1
.E ;n/D�

E��1e1

2

�
1

e2�e1
.n � q2/

2
C

1

e3�e1
.n � q3/

2

�
; (2-31)

c
.1/
2
.E ;n/D c

.1/
3
.E ;n/D 0; (2-32)

m
.1/
1
.E ;n/D q1; m

.1/
2
.E ;n/D q2; m

.1/
3
.E ;n/D q3: (2-33)

In particular, if nD q2, then

c
.1/
1
.E ; q2/D�

E��1e1

2.e2� e1/
; (2-34)

and for nD q3, then

c
.1/
1
.E ; q3/D�

E��1e1

2.e3� e1/
: (2-35)

If n � q2 D 0, then the eigenvalues and eigenvectors of A1.E ;n/ are

c
.1/
1
.E ;n/D

E��1

2

�
.n � q1/

2
�

e1

2.e3�e1/
C

r�
.n � q1/2�

e1

2.e3�e1/

�2
C 2

e1

e3�e1
.n � q1/4

�
;

(2-36)

c
.1/
2
.E ;n/D�

E��1e1

2.e2� e1/
.n � q1/

2;
(2-37)

c
.1/
3
.E ;n/D

E��1

2

�
.n � q1/

2
�

e1

2.e3�e1/
�

r�
.n � q1/2�

e1

2.e3�e1/

�2
C 2

e1

e3�e1
.n � q1/

4

�
(2-38)

(where c
.1/
2
� c

.1/
3

or c
.1/
2
� c

.1/
3

depending on E ) and

m
.1/
2
.E ;n/D q2; m

.1/
1
.E ;n/; m

.1/
3
.E ;n/ 2 Span.q1; q3/: (2-39)
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Analogously, if n � q3 D 0, the eigenvalues and eigenvectors of A1.E ;n/ are

c
.1/
1
.E ;n/D

E��1

2

�
.n � q1/

2
�

e1

2.e2�e1/
C

r�
.n � q1/2�

e1

2.e2�e1/

�2
C 2

e1

e2�e1
.n � q1/4

�
;

(2-40)

c
.1/
2
.E ;n/D

E��1

2

�
.n � q1/

2
�

e1

2.e2�e1/
�

r�
.n � q1/2�

e1

2.e2�e1/

�2
C 2

e1

e2�e1
.n � q1/4

�
;

(2-41)

c
.1/
3
.E ;n/D�

E��1e1

2.e3� e1/
.n � q1/

2; (2-42)

(where c
.1/
2
� c

.1/
3

or c
.1/
2
� c

.1/
3

depending on E ) and

m
.1/
1
.E ;n/; m

.1/
2
.E ;n/ 2 Span.q1; q2/; m

.1/
3
.E ;n/D q3: (2-43)

For n � q1 ¤ 0, n � q2 ¤ 0, n � q3 ¤ 0, the eigenvalues of A1.E ;n/ can be determined by using the
formulae in [Kachanov 1974]:

c
.1/
1
.E ;n/D 2p

3
�.1/ cos.� .1/� �

3
/C 1

3
I
.1/
1
; (2-44)

c
.1/
2
.E ;n/D 2p

3
�.1/ cos.� .1/C �

3
/C 1

3
I
.1/
1
; (2-45)

c
.1/
3
.E ;n/D� 2p

3
�.1/ cos � .1/C 1

3
I
.1/
1
; (2-46)

where

�.1/ D

q
1
3
..I

.1/
1
/2� 3I

.1/
2
/; (2-47)

cos 3� .1/ D�
3
p

3 .1/

2.�.1//3
; (2-48)

 .1/ D I
.1/
3
�

1
3
I
.1/
1

I
.1/
2
C

2
27
.I
.1/
1
/3; (2-49)

with

I
.1/
1
D tr A1.E ;n/

DE��1
n
.n � q1/

2
�

e1

2.e2�e1/
Œ.n � q1/

2
C .n � q2/

2��
e1

2.e3�e1/
Œ.n � q1/

2
C .n � q3/

2�
o
; (2-50)

I
.1/
2
D

1
2
Œ.tr A1.E ;n//

2
� tr A1.E ;n/

2�; (2-51)

I
.1/
3
D det A1.E ;n/D

E3��3e2
1
.n � q1/

6

4.e2� e1/.e3� e1/
; (2-52)

the principal invariants of A1.E ;n/. The angle � .1/ varies between 0 and �=3.
Since n � q1 ¤ 0, then I

.1/
3
¤ 0 and A1.E ;n/ has no zero eigenvalues.

For j D 1; 2; 3, given c
.1/
j .E ;n/, the corresponding eigenvector m

.1/
j .E ;n/ can be calculated by

solving the system
.A1.E ;n/� c

.1/
j .E ;n/I/m

.1/
j .E ;n/D 0: (2-53)
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Let us now consider the case in which E 2W2. From (2-23) we obtain

A2.E ;n/D �
�1

�
'.n � q1/

2
C�.n � q2/

2
��

2.1C˛/e1C˛e2

.2C˛/.e3� e1/
.n � q3/

2

�
O11

C ��1

�
�.n � q1/

2
C'.n � q2/

2
��

˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
.n � q3/

2

�
O22

� ��1

�
�

2.1C˛/e1C˛e2

.2C˛/.e3� e1/
.n � q1/

2
C�

˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
.n � q2/

2

�
O33

C���1
p

2
2C3˛

2C˛
.n � q1/.n � q2/O12

����1
p

2
2.1C˛/e1C˛e2

.2C˛/.e3� e1/
.n � q1/.n � q3/O13

����1
p

2
˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
.n � q2/.n � q3/O23; (2-54)

with
' D

4�.1C˛/

2C˛
: (2-55)

If nD q1, then

A2.E ; q1/D '�
�1O11C��

�1O22���
�1 2.1C˛/e1C˛e2

.2C˛/.e3� e1/
O33; (2-56)

whose eigenvalues and eigenvectors are

c
.2/
1
.E ; q1/D '�

�1; c
.2/
2
.E ; q1/D ��

�1; (2-57)

c
.2/
3
.E ; q1/D�

���1

2C˛

2.1C˛/e1C˛e2

e3� e1

; (2-58)

m
.2/
1
.E ; q1/D q1; m

.2/
2
.E ; q1/D q2; m

.2/
3
.E ; q1/D q3: (2-59)

If nD q2, then

A2.E ; q2/D ��
�1O11C'�

�1O22���
�1˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
O33; (2-60)

whose eigenvalues and eigenvectors are

c
.2/
1
.E ; q2/D '�

�1; c
.2/
2
.E ; q2/D ��

�1; (2-61)

c
.2/
3
.E ; q2/D�

���1

2C˛

˛e1C 2.1C˛/e2

e3� e2

; (2-62)

m
.2/
1
.E ; q2/D q2; m

.2/
2
.E ; q2/D q1; m

.2/
3
.E ; q2/D q3: (2-63)

If nD q3, then

A2.E ; q3/D���
�1 2.1C˛/e1C˛e2

.2C˛/.e3� e1/
O11���

�1˛e1C 2.1C˛/e2

.2C˛/.e3� e2/
O22; (2-64)
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whose eigenvalues and eigenvectors are

c
.2/
1
.E ; q3/D�

���1

2C˛

2.1C˛/e1C˛e2

e3� e1

; c
.2/
2
.E ; q3/D�

���1

2C˛

˛e1C 2.1C˛/e2

e3� e2

; (2-65)

c
.2/
3
.E ; q3/D 0; (2-66)

m
.2/
1
.E ; q3/D q1; m

.2/
2
.E ; q3/D q2; m

.2/
3
.E ; q3/D q3: (2-67)

If n ¤ q1, q2, q3, then the eigenvalues of A2.E ;n/ can be determined by using the formulae in
[Kachanov 1974]:

c
.2/
1
.E ;n/D 2p

3
�.2/ cos.� .2/� �

3
/C 1

3
I
.2/
1
; (2-68)

c
.2/
2
.E ;n/D 2p

3
�.2/ cos.� .2/C �

3
/C 1

3
I
.2/
1
; (2-69)

c
.2/
3
.E ;n/D� 2p

3
�.2/ cos � .2/C 1

3
I
.2/
1
; (2-70)

where

�.2/ D

q
1
3
..I

.2/
1
/2� 3I

.2/
2
/; (2-71)

cos 3� .2/ D�
3
p

3 .2/

.2�.2//3
; (2-72)

 .2/ D I
.2/
3
�

1
3
I
.2/
1

I
.2/
2
C

2
27
.I
.2/
1
/3; (2-73)

with

I
.2/
1
D tr A2.E ;n/:

I
.2/
2
D

1
2
Œ.tr A2.E ;n//

2
� tr A2.E ;n/

2�; (2-74)

I
.2/
3
D det A2.E ;n/: (2-75)

the principal invariants of A2.E ;n/. The angle � .2/ varies between 0 and �=3.
As in the case of E 2W1, for j D 1; 2; 3, given c

.2/
j .E ;n/, the corresponding eigenvector m

.2/
j .E ;n/

can be calculated by solving the system

.A2.E ;n/� c
.2/
j .E ;n/I/m

.2/
j .E ;n/D 0: (2-76)

Note that the acoustic tensor A3.E ;n/ for E 2 W3 coincides with the acoustic tensor of a linear
elastic material with Lamé moduli � and �; its eigenvalues are

c
.3/
1
D ��1.2�C�/; c

.3/
2
D c

.3/
3
D ��1�; (2-77)

and the corresponding eigenvectors

m
.3/
1
.E ;n/D n; m

.3/
2
.E ;n/ and m

.3/
3
.E ;n/ belong to Span.n/?: (2-78)
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2B. Behavior of plane waves in the regions Wi . Let us now analyze the behavior of progressive waves
in a body composed of a masonry-like material with homogeneous stress T associated to a homogeneous
strain field E . This behavior is different in the four regions Wi introduced in Section 1, since it depends
on A.E ;n/, which has a different expression Ai.E ;n/ in Wi (see (2-21) , (2-22), (2-23) and (2-24)).

If E 2W0, from (2-21) it follows that no waves propagate in the medium.
For E 2 Wi ; i D 1; 2; 3, Tables 1, 2 and 3 report the eigenvalues c

.i/
1
� c

.i/
2
� c

.i/
3

of A.E ;n/, for
each unit vector n. The associated wave velocities are v.i/j D

q
c
.i/
j , for i; j D 1; 2; 3.

Let us consider the case of E 2W1.
For the eigenvalues c

.1/
1

, c
.1/
2

, c
.1/
3

in (2-27)–(2-28), it is a simple matter to prove that

c
.1/
1
.E ; q1/ < c

.3/
1
D ��1.2�C�/ (2-79)

and
c
.1/
2
.E ; q1/ < c

.3/
2
D ��1�; c

.1/
3
.E ; q1/ < c

.3/
3
D ��1�: (2-80)

The first inequality in (2-80) follows from the condition ˛e1C 2.1C˛/e2 > 0, which characterizes
W1 (see (1-16)).

As for c
.1/
1

in (2-31), simple calculations show that

c
.1/
1
.E ;n/ < ��1�: (2-81)

For the eigenvalues in (2-36)–(2-38) and (2-40)–(2-42) we have

c
.1/
1
.E ;n/ < c

.3/
1
D ��1.2�C�/; c

.1/
2
.E ;n/ < c

.3/
2
D ��1�;

c
.1/
3
.E ;n/ < c

.3/
2
D ��1�:

(2-82)

The polarization vector and the squared velocity of waves propagating in the masonry body subjected
to a uniform strain field E 2W1 are summarized in Table 1, for varying directions of propagation n.

E 2W1 c
.1/
1

c
.1/
2

c
.1/
3

nD q1
E��1

longitudinal wave, q1

(2-27)
transverse wave, q2

(2-28)
transverse wave, q3

n � q1 D 0
(2-31)

transverse wave, q1

0

no propagation
0

no propagation

n � q2 D 0 (2-36) (2-37)
transverse wave, q2

(2-38)

n � q3 D 0 (2-40) (2-41) (2-42)
transverse wave, q3

n � q1 ¤ 0

n � q2 ¤ 0

n � q3 ¤ 0

(2-44) (2-45) (2-46)

Table 1. Wave velocities squared for E 2W1.
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If nD q1, there are one longitudinal wave and two transverse waves,

A1.E ; q1/q1 D �
�1Eq1; (2-83)

A1.E ; q1/q2 D�
E��1e1

2.e2� e1/
q2; A1.E ; q1/q3 D�

E��1e1

2.e3� e1/
q3: (2-84)

Due to (2-79) and (2-80), the velocities of the longitudinal and transverse waves are lower than those
of the corresponding waves in a linear elastic material. In particular, if e2 D e3, the transverse waves
have equal velocities; if not, the lowest velocity is associated with the direction of motion q3, which
corresponds to the highest values of the fracture strain (see (1-20)).

If n � q1 D 0, only a transverse wave can propagate with square velocity (2-31), which, because of
(2-81), is less than the squared velocity of the transverse linear elastic wave.

In the case of n � q2 D 0 or n � q3 D 0, three waves propagate, a single transverse one with squared
velocity less than ��1�, while the other two have squared velocities respectively less than ��1.2�C�/,
and less than ��1� (see (2-82)).

Let us consider E 2W2. For the eigenvalues c
.2/
1
; c
.2/
2
; c
.2/
3

, in (2-57)–(2-58), it is an easy matter to
prove that

c
.2/
1
.E ; q1/ < c

.3/
1
D ��1.2�C�/; c

.2/
3
.E ; q1/ < c

.3/
2
D ��1� (2-85)

where the last inequality comes from the condition 2e3C˛.e1C e2C e3/ > 0, which holds in W2 (see
(1-17)).

Analogously, for c
.2/
3

in (2-62) we have

c
.2/
3
.E ;n/ < c

.3/
3
D ��1�: (2-86)

The polarization vector and the squared velocities of waves that propagate in the masonry medium for
E 2W2 are summarized in Table 2, for different values of the propagation vector n.

If nD q1 or nD q2, there are one longitudinal wave and two transverse waves:

A2.E ; q1/q1 D '�
�1q1; A2.E ; q1/q2 D ��

�1q2; (2-87)

A2.E ; q1/q3 D�
���1

2C˛

2.1C˛/e1C˛e2

e3� e1

q3I (2-88)

E 2W2 c
.2/
1

c
.2/
2

c
.2/
3

nD q1
'��1

longitudinal wave, q1

���1

transverse wave, q2

(2-58)
transverse wave, q3

nD q2
'��1

longitudinal wave, q2

���1

transverse wave, q1

(2-62)
transverse wave, q3

nD q3
(2-65)

transverse wave, q1

(2-65)
transverse wave, q2

0

no propagation

n¤ q1, q2, q3 (2-68) (2-69) (2-70)

Table 2. Wave velocities squared for E 2W2.



520 MARIA GIRARDI, CRISTINA PADOVANI AND DANIELE PELLEGRINI

A2.E ; q2/q2 D '�
�1q2; A2.E ; q2/q1 D ��

�1q1; (2-89)

A2.E ; q2/q3 D�
���1

2C˛

˛e1C 2.1C˛/e2

e3� e2

q3: (2-90)

Due to (2-85) and (2-86), the velocities of longitudinal and transverse waves are less than those of the
corresponding waves in a linear elastic material.

If nD q3, no longitudinal waves propagate, and two transverse waves propagate with velocities (2-65)
that, in view of (2-85) and (2-86), are less than the velocity of the transverse linear elastic waves.

Note that even though the elasticity tensor is not strongly elliptic in W1 and W2, and hence the
hypotheses of the Fedorov–Stippes theorem [Gurtin 1972] are not satisfied, longitudinal and transverse
progressive waves do exist. In particular, for E 2W1, then a longitudinal wave exists only for nD q1.
The other two progressive waves in direction q1, whose directions of motion are equal to q2 and q3, are
transverse. For n 2W2, two longitudinal waves exist, one for nD q1, and another for nD q2.

For E 2W3 the material behaves like an isotropic linear elastic material, and there are but two types
of progressive waves: longitudinal and transverse, as shown in Table 3.

E 2W3 c
.3/
1

c
.3/
2

c
.3/
3

n
.2�C�/��1

longitudinal wave
���1

transverse wave
���1

transverse wave

Table 3. Wave velocities squared for E 2W3.

3. The two-dimensional case

Let us consider a plane strain state and, for fixed q3, strain tensors E such that Eq3 D 0. Let us indicate
with the same symbols E , T and Ef the restriction of E , T and Ef to the two-dimensional subspace
of the three-dimensional vector space orthogonal to q3.

Let e1 � e2 be the ordered eigenvalues of E , and q1, q2 the corresponding eigenvectors and put

O11 D q1˝ q1; O22 D q2˝ q2; O12 D 1=
p

2.q1˝ q2C q2˝ q1/: (3-1)

Define the sets

S0 D fE W e1 � 0g; (3-2)

S1 D fE W e1 � 0; ˛e1C .2C˛/e2 � 0g; (3-3)

S2 D fE W ˛e1C .2C˛/e2 � 0g; (3-4)

depicted on the next page in Figure 2. Given E , the corresponding stress T D T.E/ satisfying the
constitutive equation of masonry-like materials in the plane strain case is given as follows [Lucchesi
et al. 2008]:

if E 2 S0; then T D 0I (3-5)

if E 2 S1; then T D 'e1O11; with ' as in (2-55); (3-6)

if E 2 S2; then T D �Œ.2C˛/e1C˛e2�O11C�Œ˛e1C .2C˛/e2�O22: (3-7)
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e2

S0\S1

S0
e2 D e1

e2 D�
˛

2C˛
e1

e1

S1

S1 \S2

S2

O

Figure 2. Subdivision of the half-plane e1 � e2 into the regions S0, S1 and S2.

As for the fracture strain, we have

if E 2 S0; then Ef
DE ; (3-8)

if E 2 S1; then Ef
D .e2C

˛

2C˛
e1/O22; (3-9)

if E 2 S2; then Ef
D 0: (3-10)

For Zi the interior of Si , the derivative DET.E/ in regions Zi has been calculated in [Lucchesi et al.
2008] and has the expressions:

if E 2Z0; then DET.E/DO; (3-11)

if E 2Z1; then DET.E/D 'O11˝O11�'
e1

e2� e1

O12˝O12; (3-12)

if E 2Z2; then DET.E/D C: (3-13)

For E 2
S2

iD0 Zi and unit vector n, the acoustic tensor A.E ;n/ defined in (2-11) has different
expressions Ai.E ;n/ in the three regions Zi [Degl’Innocenti et al. 2006]:

if E 2Z0; then A0.E ;n/D 0; (3-14)

if E 2Z1; then A1.E ;n/D '�
�1
h
.q1 �n/

2
�

e1

2.e2�e1/
.q2 �n/

2
i
O11 (3-15)

�'��1 e1

2.e2� e1/
.q1 �n/

2O22�'�
�1 e1
p

2.e2� e1/
.q1 �n/.q2 �n/O12;

if E 2Z2; then A2.E ;n/D .2�C�/�
�1n˝nC���1.I �n˝n/: (3-16)

As in the three-dimensional case, our goal is to determine the eigenvalues c
.i/
1
.E ;n/� c

.i/
2
.E ;n/ and

eigenvectors m
.i/
1
.E ;n/;m

.i/
2
.E ;n/ of the acoustic tensor Ai.E ;n/, for i D 1; 2.
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Let us now consider E 2 Z1. The components Aij .E ;n/D qi �A1.E ;n/qj of the acoustic tensor
A1.E ;n/ in (3-15) with respect to the basis (q1, q2) are

A11.E ;n/D '�
�1.q1 �n/

2
�'��1 e1

2.e2� e1/
.q2 �n/

2; (3-17)

A22.E ;n/D�'�
�1 e1

2.e2� e1/
.q1 �n/

2; (3-18)

A12.E ;n/D�'�
�1 e1

2.e2� e1/
.q1 �n/.q2 �n/: (3-19)

If nD q1, then

A1.E ; q1/D '�
�1O11�'�

�1 e1

2.e2� e1/
O22; (3-20)

whose eigenvalues, both greater than zero, and eigenvectors are

c
.1/
1
.E ; q1/D '�

�1; c
.1/
2
.E ; q1/D�'�

�1 e1

2.e2� e1/
; (3-21)

m
.1/
1
.E ; q1/D q1; m

.1/
2
.E ; q1/D q2: (3-22)

If nD q2, then

A1.E ; q2/D�'�
�1 e1

2.e2� e1/
O11; (3-23)

whose eigenvalues and eigenvectors are

c
.1/
1
.E ; q2/D�'�

�1 e1

2.e2� e1/
; c

.1/
2
.E ; q2/D 0; (3-24)

m
.1/
1
.E ; q2/D q1; m

.1/
2
.E ; q2/D q2: (3-25)

If n¤ q1 and n¤ q2, the eigenvalues and eigenvectors of (3-15) are

c
.1/
1
.E ;n/D

'��1

2

�
.n � q1/

2
�

e1

2.e2�e1/
C

s
e2Ce1

e2�e1
.n � q1/4�

e1

e2�e1
.n � q1/2C

e2
1

4.e2�e1/2

�
;

(3-26)

c
.1/
2
.E ;n/D

'��1

2

�
.n � q1/

2
�

e1

2.e2�e1/
�

s
e2Ce1

e2�e1
.n � q1/4�

e1

e2�e1
.n � q1/2C

e2
1

4.e2�e1/2

�
;

(3-27)

m
.1/
1
.E ;n/D

1

m1

�
q1C

c
.1/
1
.E ;n/�A11.E ;n/

A12.E ;n/
q2

�
; (3-28)

m
.1/
2
.E ;n/D

1

m2

�
c
.1/
2
.E ;n/�A22.E ;n/

A12.E ;n/
q1C q2

�
; (3-29)

where A11.E ;n/, A22.E ;n/ and A12.E ;n/ (which is different from zero since n¤ q1 and n¤ q2 and
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E 2Z1) are given by (3-17), (3-18) and (3-19) and

m1 D

s
1C

.c
.1/
1
.E ;n/�A11.E ;n//2

A12.E ;n/2
; (3-30)

m2 D

s
1C

.c
.1/
2
.E ;n/�A22.E ;n//2

A12.E ;n/2
: (3-31)

Note that, taking (3-3) into account, it is a simple matter to prove that

c
.1/
1
.E ;n/ < .2�C�/��1; c

.1/
2
.E ;n/ < ���1; (3-32)

for c
.1/
1

and c
.1/
2

given in (3-21), (3-24), and (3-26)–(3-27).
If E 2Z2, the acoustic tensor A2.E ;n/ coincides with the acoustic tensor of a linear elastic material

subjected to a plane strain state. Its eigenvalues are

c
.2/
1
D .2�C�/��1; c

.2/
2
D c

.3/
3
D ���1; (3-33)

and the corresponding eigenvectors are

m
.1/
1
.E ;n/D n; m

.2/
2
.E ;n/ belonging to Span.n/?: (3-34)

Thus, the behavior of progressive waves in a body composed of a masonry-like material with homo-
geneous stress T associated to a homogeneous plane strain field E 2

S2
iD0 Zi can be summarized in

Table 4, which reports the polarization vector and the squared velocity of waves propagating in masonry
solids for different directions of propagation n. If E 2Z0, no propagation occurs. If E 2Z1, for nD q1

E 2Z0 c
.0/
1

c
.0/
2

n
0

no propagation
0

no propagation

E 2Z1 c
.1/
1

c
.1/
2

nD q1
'��1

longitudinal wave, q1

�'��1e1=.2.e2� e1//

transverse wave, q2

nD q2
�'��1e1=.2.e2� e1//

transverse wave, q1

0
no propagation

n¤ q1; q2 (3-26) (3-27)

E 2Z2 c
.2/
1

c
.2/
2

n
.2�C�/��1

longitudinal wave
���1

transverse wave

Table 4. Wave velocities squared for E 2Zi ; i D 0; 1; 2.
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there is one longitudinal wave and one transverse wave,

A1.E ; q1/q1 D '�
�1q1; (3-35)

A1.E ; q1/q2 D�
'��1e1

2.e2� e1/
q2: (3-36)

Due to (3-32), the velocities of the longitudinal and transverse waves are less than those of the cor-
responding waves in a linear elastic material. For nD q2, only one transverse wave propagates, with
squared velocity (3-24), which because of (3-32), is less than the squared velocity of the transverse linear
elastic wave. For n¤ q1 and n¤ q2, two waves propagate with the squared velocities (3-26) and (3-27),
that are less than the squared velocities of the longitudinal and transverse waves in a linear elastic material
(see (3-32)).

For E 2Z2, masonry material behaves like a linear elastic material and for each unit vector n, there
are a longitudinal wave and a transverse wave with the squared velocities in (3-33).

Now, we wish to analyze the behavior of eigenvalues c
.1/
1
.E ;n/ and c

.1/
2
.E ;n/ of A1.E ;n/, as n

varies.
Let us put

z D .n � q1/
2; z 2 Œ0; 1�; (3-37)

and

k D�e2=e1; (3-38)

with k satisfying the inequality

k >
˛

2C˛
; (3-39)

because E belongs to Z1.
By taking (3-37) and (3-38) into account, the eigenvalue c

.1/
1
.E ;n/ in (3-26) can be expressed in

terms of z and k via the expression

f1.zI k/D
'��1

2

�
zC

1

2.kC1/
C

r
k�1

kC1
z2C

1

kC1
zC

1

4.kC1/2

�
: (3-40)

For each k satisfying (3-39), f1.zI k/ is an increasing function of z, with

f1.0I k/D c
.1/
1
.E ; q2/D

'��1

2.kC1/
; (3-41)

f1.1I k/D c
.1/
1
.E ; q1/D '�

�1; (3-42)

thus,

f1.zI k/� '�
�1 for each z 2 Œ0; 1�; (3-43)

and
lim

k! ˛
2C˛

f1.0I k/D ��
�1;

lim
k!1

f1.zI k/D '�
�1z for each z 2 Œ0; 1�:

(3-44)
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Analogously, the eigenvalue c
.1/
2
.E ;n/ in (3-27) can be expressed in terms of z and k via the expression

f2.zI k/D
'��1

2

�
zC

1

2.kC1/
�

r
k�1

kC1
z2C

1

kC1
zC

1

4.kC1/2

�
: (3-45)

In particular, for each k satisfying (3-39),

f2.0I k/D c
.1/
2
.E ; q2/D 0; (3-46)

f2.1I k/D c
.1/
2
.E ; q1/D

'��1

2.kC 1/
; (3-47)

and
f2.zI k/�

'��1

2.kC1/
for each z 2 Œ0; 1�; (3-48)

moreover,
lim

k!1
f2.zI k/D 0; lim

k!˛=.2C˛/
f2.1I k/D ��

�1 for each z 2 Œ0; 1�: (3-49)

As for the elastic constants, we have assumed E=� D 500000 .m/s/2 and � D 0:2 for the Poisson’s
ratio. Consequently, we have �=�DE=.2�.1C�//D 208333 .m/s/2, �=�D �E=.�.1C�/.1�2�//D

138889 .m/s/2, '=�D 520833 .m/s/2, .2�C�/=�D 555556 .m/s/2 and ˛ D 0:7.
Figures 3 and 4 show the behavior of f1.zI k/ and f2.zI k/ versus z for different values of k compared

with the eigenvalues .2�C �/��1 and ���1 of the acoustic tensor corresponding to a linear elastic
material. The dashed line represents the function limk!1 f1.zI k/ in (3-44). In particular, we have
chosen k D 0:25 (corresponding to ˛=.2C˛/) and k D 0:3; 0:5; 1; 2; 10. Both (3-44) and (3-49) are in
agreement with the jump conditions (3-65) and (3-67), reported in the Appendix, of the acoustic tensor
at the interfaces S0 \ S1 and S1 \ S2, which are reached when k !1 and k ! ˛=.2C ˛/. Note
that waves propagating in a masonry-like material are slower than waves propagating in a linear elastic
material and that their velocities decrease as k increases.

5:6 �105

4:2 �105

2:8 �105

1:4 �105

z

linear elastic kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 3. Function f1.zI k/ vs. z 2 Œ0; 1� for different values of k.
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2:1 �105

1:4 �105

7:0 �104

z

lin. elastic kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 4. Function f2.zI k/ vs. z 2 Œ0; 1� for different values of k.

Figure 5 shows a plot of the curves C1.k/ composed of the points having coordinates

.�f1.�
2
I k/;

p
1� �2f1.�

2
I k// (3-50)

6:0 �105

4:0 �105

2:0 �105

2:0 �105 4:0 �105 6:0 �105

f1.�
2I k/

0

C1.k/

Pk

q2

n

q1

lin. elastic kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 5. Curve C1.k/ formed by the points with coordinates in (3-50), for k D 0:25,
0.30, 0.50, 1.00, 2.00, and 10.00, from the top down. The thick black curve represents
the linear elastic case.
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2:0 �105

1:0 �105

f2.�
2I k/

1:0 �105 2:0 �1050

Pk C2.k/

q2

n

q1

lin. elastic kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 6. Curve C2.k/ formed by the points with coordinates in (3-51), for k D 0:25,
0.30, 0.50, 1.00, 2.00, and 10.00, from the top down. The thick black curve represents
the linear elastic case.

with respect to the Cartesian coordinate frame fq1; q2;Og, with � D n � q1 2 Œ0; 1� for k D 0:25, 0:3, 0:5,
1, 2, 10. For Pk the intersection point of curve C1.k/ and the line passing from the origin and parallel to
the unit vector n of components .n � q1;n � q2/, the length of the segment OPk is f1..n � q1/

2I k/, which
coincides with the maximum squared velocity of a wave propagating along n.

Analogously, Figure 6 plots the curves C2.k/, composed of the points having coordinates

.�f2.�
2
I k/;

p
1� �2f2.�

2
I k// (3-51)

with respect to the Cartesian coordinate frame fq1; q2;Og, with � D n � q1 2 Œ0; 1� for k D 0:25, 0:3, 0:5,
1, 2, 10. For Pk the intersection point of curve C2.k/ and the line passing from the origin and parallel to
the unit vector n of components .n � q1;n � q2/, the length of the segment OPk is f2..n � q1/

2I k/, which
coincides with the minimum squared velocity of a wave propagating along n.

Figure 7 shows the quantities

d1.� I k/D
j
p
f1.�2I k/�

p
.2�C�/��1jp

.2�C�/��1
; d2.� I k/D

j
p
f2.�2I k/�

p
���1jp

���1
(3-52)

as a function of � for different values of k. They measure the relative distance between the maximum
(top half) and minimum (bottom half) squared velocities of waves propagating in a masonry-like and a
linear elastic material. Figure 7 shows that, for a given k, the relative distances d1.� I k/ and d2.� I k/
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d1.� I k/

�

d2.� I k/

�

kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 7. Functions d1.� I k/ and d2.� I k/ vs. � 2 Œ0; 1� for k D 0:25, 0.30, 0.50, 1.00,
2.00, and 10.00, from the bottom up.

have a maximum for � D n � q1 D 0, namely when the propagation vector is orthogonal to the direction
of maximum compression q1, and have a minimum when the propagation vector coincides with q1.

Figure 8 shows the behavior of the scalar product r.� I k/Dm
.1/
1
.E ;n/ �n as a function of � D n �q1 2

Œ0; 1�; it is a measure of the deviation of the eigenvector m
.1/
1
.E ;n/ from the direction of propagation n,

along which the longitudinal wave travels in the linear elastic case.
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r.� I k/

�

kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 8. Function r.� I k/ vs. � 2 Œ0; 1� for different values of k.

Let us now consider the homogenous wave

u.x; t/Dm sin.n �x� vt/: (3-53)

We wish to analyze the behavior of u as function of time t in order to highlight the differences between
a linear elastic and a masonry-like material. For nD q1, we can distinguish the longitudinal wave

uL.x1; t/D q1 sin.x1�

p
'��1t/; (3-54)

and the transverse wave

uT .x1; t/D q2 sin
�

x1�

s
'��1

2.kC 1/
t

�
; (3-55)

with x1 D q1 �x and t � 0. The longitudinal and transverse waves in the case of linear elastic materials
are respectively

ue
L.x1; t/D q1 sin.x1�

p
.2�C�/��1t/; (3-56)

ue
T .x1; t/D q2 sin.x1�

p
���1t/; (3-57)

Figure 9 shows the functions uL.x1; t/ (red line) and ue
L
.x1; t/ (black line) versus t at x1D 0. Figure 10
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uL.x1; t/

t

linear elastic masonry-like

Figure 9. Longitudinal wave propagating along nD q1, uL.x1; t/ at x1 D 0 vs. t for
different values of k.

uT .x1; t/

t

linear elastic kD0:25 kD0:30 kD0:50 kD1:00 kD2:00 kD10:00

Figure 10. Transverse wave propagating along n D q1, uT .x1; t/ at x1 D 0 vs. t for
different values of k.

shows the functions uT .x1; t/ and ue
T
.x1; t/ versus t at x1 D 0. Displacement uT .x1; t/ is plotted for

k D 0:25, 0:3, 0:5, 1, 2, 10.
For nD q2, there is only one transverse wave,

uT .x2; t/D q1 sin
�

x2�

s
'��1

2.kC 1/
t

�
; (3-58)

with x2 D q2 �x, and no longitudinal waves propagate in the material,

uL.x2; t/D 0: (3-59)
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As for the linear elastic case, we have

ue
L.x2; t/D q2 sin.x2�

p
.2�C�/��1t/; (3-60)

ue
T .x2; t/D q1 sin.x1�

p
���1t/: (3-61)

By replacing ' with E, we obtain the results for the plane stress state. Note that in view of the
inequality ' > E, the velocities of elastic waves, both longitudinal and transverse, in the plane strain
state are greater than the velocities in the plane stress state.

Conclusions

The propagation of elastic waves in an infinite masonry-like body subjected to a given homogeneous
strain field has been investigated. Masonry-like materials are characterized by the fact that they cannot
withstand tensile stresses and, as a consequence, they can crack. The stress function T defined on Sym
with values in the subset of the negative-semidefinite symmetric tensors is nonlinear and differentiable
on an open subset W of Sym. Starting with the differentiability of T with respect to E on W and using
the explicit expression for DET.E/, we obtain the condition that a progressive wave must satisfy in
order to propagate in a masonry body subjected to a given homogeneous strain field E . The propagation
condition involves the acoustic tensor, which is a function of E and the direction of propagation n. We
show that the behavior of progressive waves propagating in the solid depends on the state of prestrain E

and on the corresponding crack distribution. In particular, due to the presence of cracks, the propagation
velocity of waves in masonry-like solids is lower than in linear elastic materials. A peculiar aspect of
masonry-like solids is that there exist directions n along which waves cannot propagate. The preliminary
results obtained in this paper can constitute a basis for the study of the propagation of small elastic waves
in masonry constructions. The problem is quite relevant to technical applications: in fact, measurement
of the wave propagation velocities in masonry buildings can furnish important information about the
mechanical behavior of their undamaged and cracked portions.

Appendix

As pointed out in [Lucchesi et al. 2008], no tangential discontinuity affects DET.E/ across the interfaces
S0\S1 and S1\S2. In fact its jumps are

ŒDET.E/�D 'O11˝O11 for E 2 S0\S1; (3-62)

and

ŒDET.E/�D �
n
˛2

2C˛
O11˝O11C .2C˛/O22˝O22C˛.O11˝O22CO22˝O11/

o
for E 2 S1\S2: (3-63)

For the jumps that the acoustic tensor inherits from DET.E/, from (3-14), (3-15) and (3-16) we get

ŒA.E ;n/�D '��1.q1 �n/
2O11 for E 2 S0\S1; (3-64)

and, in particular,
ŒA.E ; q1/�D '�

�1O11; ŒA.E ; q2/�D 0: (3-65)
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Moreover,

ŒA.E ;n/�D ���1

�
1C

.1C˛/.˛�2/

2C˛
.q1 �n/

2
C

2.1C˛/e1

.2C˛/.e2� e1/
.q2 �n/

2

�
O11

C���1

�
1C

2.1C˛/e1

.2C˛/.e2� e1/
.q1 �n/

2
C .1C˛/.q2 �n/

2

�
O22

�'��1 ˛e1
p

2.e2� e1/
.q1 �n/.q2 �n/O12 for E 2 S1\S2; (3-66)

and

ŒA.E ; q1/�D ��
�1 ˛2

2C˛
O11; ŒA.E ; q2/�D .2�C�/�

�1O22: (3-67)
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TWO-DIMENSIONAL FRETTING CONTACT OF PIEZOELECTRIC MATERIALS
UNDER A RIGID CONDUCTING CYLINDRICAL PUNCH

JIE SU, LIAO-LIANG KE AND YUE-SHENG WANG

This paper investigates the fretting contact between a transversely isotropic piezoelectric half-plane and
a rigid cylindrical punch in a plane strain state. It is assumed that the punch is a perfect conductor with a
constant electric potential within the contact region. Since the fretting contact problem is frictional and
history dependent, the two bodies are brought into contact first by a monotonically increasing normal
load, and then by a cyclic tangential load, which is less than that necessary to cause complete sliding. It
is assumed that the contact region contains an inner stick region and two outer slip regions in which
Coulomb’s friction law is applied. With the use of the superposition principle and Fourier integral
transform technique, the problem is reduced to a set of coupled Cauchy singular integral equations.
An iterative method is used to determine the unknown stick/slip region, normal contact pressure, electric
charge and tangential traction. The effects of the friction coefficient, electric load and conductivity of
the punch on the surface electromechanical fields are discussed during different loading phases.

1. Introduction

Piezoelectric materials are important smart materials and have been widely used in various electrome-
chanical devices such as actuators, sensors, transducers and micropower generators. Piezoelectric devices
are often subjected to highly localized loading indented by a concentration load or rigid punches. Thus,
failure and degradation of the piezoelectric components may be caused by the inharmonious contact be-
tween piezoelectric devices and the punch due to the innate brittleness of the piezoelectric ceramics. As a
result of the aforementioned reasons, many theoretical investigations concerning indentation, frictionless
contact and frictional contact of piezoelectric materials have received considerable concerns and been
solved perfectly.

Using the state space framework, Sosa and Castro [1994] obtained the solutions of a piezoelectric half-
plane loaded by a concentrated line force and a concentrated line charge. Fan et al. [1996] investigated the
two-dimensional contact problem of an anisotropic piezoelectric half-plane by the nonslip or slip indentor.
Chen [1999] analyzed the contact problem of an inclined rigid conducting circular flat punch indenting
a transversely isotropic piezoelectric half-space. Ding et al. [2000] investigated the three-dimensional
frictionless contact problem including a spherical indenter, a conical indenter and an upright circular
flat indenter on a transversely isotropic piezoelectric half-space. The contact problem of piezoelectric
materials was also examined by Giannakopoulos and Suresh [1999], Chen [2000], Ramirez and Heyliger
[2003], Wang et al. [2008], Zhou and Lee [2012] and Wu et al. [2012] for the frictionless case; Makagon

Liao-Liang Ke is the corresponding author.
Keywords: fretting contact, cyclic load, piezoelectric materials, conducting punch, singular integral equation.
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et al. [2009], Zhou and Lee [2011; 2014] and Ma et al. [2014] for the sliding frictional case; and Chen
and Yu [2005] and Guo and Jin [2009] for the adhesive case.

Fretting is a frictional contact phenomenon that occurs when two bodies are brought into contact
by a normal load, and are subjected to cyclic tangential loads causing small relative oscillations with
respect to each other. The whole contact surface is divided into an inner stick region, where there is
no relative motion between the two bodies, and two outer slip regions at the two edges. The surface
tractions near the ends of contact, where the contact surfaces undergo the relative tangential motion,
initiate surface cracks that are known as fretting fatigue. Contact damage and fretting fatigue, which
occur in engineering structures, gas turbine engines, electric power, aircraft, traffic tools, etc., are the main
causes of failure of key components. In some engineering components, the normal load for contacting
bodies often does not vary significantly, whereas the tangential load varies cyclically with time. An initial
theoretical investigation of the fretting contact was made by Cattaneo [1938], who extended the Hertz
contact theory to include a monotonically increasing tangential force. Subsequently, the fretting contact
of elastically similar bodies under tangential loading was considered by Mindlin and Deresiewicz [1953],
Mindlin et al. [1951], Ciavarella [1998a; 1998b] and Ciavarella and Hills [1999]. The fretting contact
of elastically dissimilar bodies was studied by Spence [1973] for monotonically normal loading, Spence
[1986] for monotonically tangential loading, Keer and Farris [1987], Hanson et al. [1989], Nowell et al.
[1988] for cyclic tangential loading.

Since piezoelectric devices are often in vibration environments, fretting contact damage inevitably
occurs in these devices. Unfortunately, so far the work done on the fretting contact of piezoelectric
materials is quite limited despite the importance of their application in smart devices. We only found
that Su et al. [2015] analyzed the two-dimensional fretting contact between a transversely isotropic
piezoelectric half-plane and a rigid insulating cylindrical punch. This paper further studies the fretting
contact of a piezoelectric half-plane under a rigid conducting cylindrical punch with a constant electric
potential. It is assumed that the whole contact region contains a centrally located stick region between
the two regions of slip in which Coulomb’s friction law is applied. The two dissimilar bodies are first
acted upon by a monotonically increasing normal load, and then by a cyclic tangential load. The fretting
contact problem is reduced to a set of coupled Cauchy singular integral equations which are then solved
by using an iterative method. The numerical results highlight the effects of the friction coefficient, electric
loading and conductivity of the punch on the normal contact pressure, electric charge, tangential traction,
in-plane stress and in-plane electric displacement.

Unlike the insulating punch problem in Su et al. [2015], the conductivity of the punch will lead to
electric charge distribution at the contact surface. Moreover, the conducting punch problem is governed
by the coupled Cauchy singular integral equations with unknown contact pressure and electric charge,
which is more difficult to solve than the insulating punch problem. The present results indicate that
the insulation of the punch may lead to the concentration of the tangential traction, which may cause a
serious influence on the fretting contact damage.

2. Problem formulation

Figure 1 shows the two-dimensional fretting contact between a transversely isotropic piezoelectric half-
plane and an infinitely long rigid conducting cylindrical punch with the radius R in a plane strain state.
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Figure 1. Sketch map of the fretting contact between a homogeneous piezoelectric half-
plane and a rigid conducting cylindrical punch in a plane strain state.

The x-axis is along the longitudinal direction at the contact surface while the z-axis is along the thick-
ness direction and points downwards. The two bodies are brought into contact first by a monotonically
increasing normal load P to form a contact region −a ≤ x ≤ a, and then by a cyclic tangential load
Q which is less than that necessary to cause complete sliding, i.e., |Q| < ηP where η is the friction
coefficient. It is assumed that the punch is a perfect conductor with a constant electric potential φ0

within the contact region. The resultant electric charge 0 is also applied on the punch. The normal
displacement component is known from the given punch profile within the contact region whereas the
surface normal and tangential tractions are zero outside the contact region.

To solve the present fretting contact problem, the first step is to derive the fundamental solutions of
the piezoelectric half-plane subjected to a normal linear load P , a tangential linear load Q and a linear
electric charge 0. Recently, Ma et al. [2014] developed these fundamental solutions which are written
as (refer to [Ma et al. 2014, Equations (27)–(29)])

ux0 =−
i f11 P
π

∫
+∞

0

sin(sx)
s

ds−
f12 Q
π

∫
+∞

0

cos(sx)
s

ds−
i f130

π

∫
+∞

0

sin(sx)
s

ds, (1)

uz0 =−
f21 P
π

∫
+∞

0

cos(sx)
s

ds−
i f22 Q
π

∫
+∞

0

sin(sx)
s

ds−
f230

π

∫
+∞

0

cos(sx)
s

ds, (2)

φ0 =−
f31 P
π

∫
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0

cos(sx)
s

ds−
i f32 Q
π

∫
+∞

0

sin(sx)
s

ds−
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π

∫
+∞

0

cos(sx)
s

ds. (3)

Here ux0 = ux(x, 0) and uz0 = uz(x, 0) are the surface displacement components in the x- and y- direc-
tions, respectively; φ0 = φ(x, 0) is the surface electric potential of the piezoelectric half-plane; i=

√
−1

and s is the transform variable; fi j (i, j = 1, 2, 3) are the parameters given in the Appendix.
Let p(x), q(x) and g(x) be the normal contact pressure, tangential traction and electric charge within

the contact region, respectively. The superposition principle gives the surface displacement components



538 JIE SU, LIAO-LIANG KE AND YUE-SHENG WANG

and surface electric potential
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Differentiating Equations (4)–(6) with respect to x yields
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Using the Fourier representation of generalized functions gives [Gradshteyn and Ryzhik 2000; Choi and
Paulino 2008]

∫
∞

0
sin[s(x − t)] ds =

1
x − t

,

∫
∞

0
cos[s(x − t)] ds = πδ(x − t), (10)
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Figure 2. The normal contact with a monotonically increasing normal load P in a plane
strain state.

Equations (7)–(9) can be reduced to the following coupled Cauchy singular integral equations for the
unknowns p(x), q(x) and g(x)

−i f11 p(x)− i f13g(x)−
f12

π

∫ a

−a

q(t)
t − x

dt =
∂ux0
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π
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The resultant force P , Q and resultant electric charge 0 related to p(x), q(x) and g(x) are given by∫ a

−a
p(t) dt = P, (14)∫ a

−a
q(t) dt = Q, (15)∫ a

−a
g(t) dt = 0. (16)

Equations (11)–(16) are the general governing equations for the fretting contact problem of the piezo-
electric half-plane acted upon by a rigid conducting punch. Since the fretting contact is frictional and
loading history dependent, the analysis is often divided into the normal loading process and tangential
loading process. These two processes are discussed in the next two sections.

3. Normal loading

For the first step of fretting contact analysis, we consider the normal contact with a monotonically in-
creasing normal load P to form a contact region −a ≤ x ≤ a, while the tangential load Q is neglected
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as shown in Figure 2. Due to two dissimilar contact bodies pressed together under the action of a purely
normal load, the corresponding surface particles will undergo different tangential displacements, and this
relative tangential motion will lead to the development of the tangential traction at the interface. That
is to say, an applied normal load will lead to both normal and tangential displacements. Therefore, the
normal contact of two dissimilar bodies is fully coupled to the normal contact pressure and tangential
traction. It is assumed that the whole contact region contains a centrally located stick region (|x | ≤ b)
between two slip regions (b < |x | ≤ a) in which Coulomb’s friction law is applied. The slip direction
must also be consistent with the direction of the frictional force in the slip regions, which means that the
slips in both slip regions are in opposite directions.

Referring to [Nowell et al. 1988] and [Hills et al. 1993], the tangential traction in the slip and stick
regions is written as

q(x)=
{
−ηp(x)sign(x) b < |x | ≤ a,
−ηp(b)(x/b)+ q∗(x) |x | ≤ b,

(17)

where q∗(x) is an unknown function equal to zero at x =±b.
For a cylindrical punch, the derivative of uz0 may be approximately represented as [Johnson 1985]

∂uz0

∂x
=

x
R
, |x | ≤ a. (18)

The surface electric potential φ0 is a constant inside the contact region, so we have

∂φ0

∂x
= 0, |x | ≤ a. (19)

Spence [1973] proposed the self-similarity assumption that the stress fields were self-similar at each
stage during monotonically increasing normal loading. In the inner stick region, the prior prestrain of
surface points before they enter the stick region is proportional to |x | as given by

∂ux0

∂x
= C |x |, |x | ≤ b, (20)

where C is unknown and denotes the slope of the tangential displacement gradient at this stage. In the
slip regions b < |x | ≤ a, ∂ux0/∂x cannot be specified.

With the aid of (18) and (19), (12) and (13) can be rewritten as

1
π

∫ a

−a

p(t)
t − x

dt =
f33x
γ1 R
− i

γ2

γ1
q(x), |x | ≤ a, (21)

−
f23

π

∫ a

−a

g(t)
t − x

dt =
x
R
+

f21

π

∫ a

−a

p(t)
t − x

dt + i f22q(x), |x | ≤ a, (22)

where
γ1 = f31 f23− f21 f33, γ2 = f32 f23− f22 f33.

For the conducting cylindrical punch, the contact pressure is smooth at x = ±a, while the electric
charge can be divided into two parts [Ke et al. 2008]

g(x)= g1(x)+ g2(x), (23)
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where g1(x) is induced by the normal load P and is smooth at x =±a, while g2(x) is induced by the
constant electric potential φ0 and has the square root singularity at both ends.

Then, by representing t = aθ and x = aτ (−1≤ (τ, θ)≤ 1), (21), (14), (22) and (16) are normalized as

1
π

∫ 1

−1

p(θ)
θ − τ

dθ = h0(τ ), (24)∫ 1

−1
p(θ) dθ = P

a
, (25)

−
f23

π

∫ 1

−1

g1(θ)

θ − τ
dθ = h1(τ ), (26)∫ 1

−1
g1(θ) dθ =

01

a
, (27)

−
f23

π

∫ 1

−1

g2(θ)

θ − τ
dθ = 0, (28)∫ 1

−1
g2(θ) dθ =

0−01

a
, (29)

where

h0(τ )=
f33aτ
γ1 R

− i
γ2

γ1
q(τ ), (30)

h1(τ )=
aτ
R
+

f21

π

∫ 1

−1

p(θ)
θ − τ

dθ + i f22q(τ ). (31)

Next, substituting (17) into (11) yields the equation about q∗(x),

1
π

∫ b

−b

q∗(t)
t − x

dt = N1(x), |x | ≤ b, (32)

where

N1(x)=−
C |x |

f12
−i

f11

f12
p(x)−i

f13

f12
g(x)+

η

π

∫ a

b

p(t)
t − x

dt−
η

π

∫
−b

−a

p(t)
t − x

dt+
ηp(b)

bπ

∫ b

−b

t
t − x

dt. (33)

By introducing the normalized quantities t = bκ and x = bα, (32) may be expressed as

1
π

∫ 1

−1

q∗(κ)
κ −α

dκ = N1(α), |α| ≤ 1. (34)

In addition, the following consistency condition should be satisfied [Muskhelishvili 1958]:∫ 1

−1

N1(ς)√
1− ς2

dς = 0. (35)

Using the method of Erdogan and Gupta [1972], this integral equation may be reduced to a set of
linear equations that satisfy the consistency condition (35). Through setting q∗(κ)= ϕ(κ)

√
1− κ2, we
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can discretize (34) to give

M∑
l=1

(1− κ2
l )ϕ(κl)

(M + 1)(κl −αr )
= N1(αr ), |αr | ≤ 1, (36)

where κl = cos[lπ/(M + 1)], αr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M+1, and M is the total num-
ber of the discrete points of ϕ(κl) in (−1, 1). By setting p(θ)=ψ(θ)

√
1− θ2 and g1(θ)= λ(θ)

√
1− θ2,

(24)–(27) are also discretized as

M∑
l=1

(1− θ2
l )ψ(θl)

(M + 1)(θl − τr )
= h0(τr ), |τr | ≤ 1, (37)

M∑
l=1

(1− θ2
l )ψ(θl)

M + 1
=

P
aπ
, (38)

M∑
l=1

−
f23(1− θ2

l )λ(θl)

(M + 1)(θl − τr )
= h1(τr ), |τr | ≤ 1, (39)

M∑
l=1

(1− θ2
l )λ(θl)

M + 1
=
01

aπ
, (40)

where θl = cos[lπ/(M + 1)], τr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, where M is the total
number of the discrete points of ψ(θl) and λ(θl) in (−1, 1).

Because g2(x) has the square root singularity at both ends, we can set g2(θ)= ϑ(θ)/
√

1− θ2. Then
(28) and (29) can be reduced to

1
M

M∑
l=1

f23ϑ(θl)

(θl − τr )
= 0, |τr | ≤ 1, (41)

1
M

M∑
l=1

ϑ(θl)=
0−01

aπ
, (42)

where θl = cos[(2l − 1)π/2M], τr = cos[rπ/M], r = 1, 2, . . . ,M − 1, where M is the total number of
the discrete points of ϑ(θl) in (−1, 1).

In (36), (37), (39) and (41), we have 4M + 2 equations and 4M + 3 unknowns, ϕ(κ1), . . . , ϕ(κM),
ψ(θ1), . . . , ψ(θM), λ(θ1), . . . , λ(θM), ϑ(θ1), . . . , ϑ(θM), a, b and C ; the problem is also undercon-
strained. As we know, the tangential traction must be continuous at the stick-slip interface, which leads
to the requirements ϕ(±1)= 0 [Keer and Farris 1987; Hanson et al. 1989]. This condition can therefore
be utilized to determine b and q(x), to make the analysis self-contained. This technique would require
a sequence of iteration, which can be specified as follows:

(1) Input the values of a and b. The frictionless solutions of the contact pressure p0(θ) and electric
charge g0(θ) from Ke et al. [2008] are selected as the initial values for p(θ) and g(θ).

(2) Solve (36) to obtain the tangential traction q1(κ) for q(κ), and substitute q1(κ) into (37), (39) and
(41). Then, p1(θ) and g1(θ) can be solved from this set of equations.
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(3) Calculate ϕ(±1) from (36). If ϕ(±1)= 0, go to the next step; if ϕ(±1) 6= 0, return to steps 1 and
2. Then, the new values must be selected for b and a, and the procedure is repeated.

(4) Calculate pn(θ), gn(θ) and qn(κ) (the superscript n denotes the n-th iteration), together with C ,
which satisfy (36), (37), (39) and (41) and are the solutions of the coupled normal contact problem.
Then, we can get P and 0 from (38), (40) and (42).

4. Tangential loading

4.1. A monotonically increasing tangential load. At the end of the normal loading phase, the whole
contact region is divided into the inner stick region |x | ≤ b and two outer slip regions b < x ≤ a and
−a ≤ x <−b. Then, we apply a cyclic tangential load Q (|Q|< ηP) to the punch as shown in Figure 1.
The tangential loading history is depicted in Figure 3 to define the tangential load Q as a function of
time. In the first step of the tangential loading problem, the cylindrical punch is acted upon by a constant
normal load P , and then subjected to a monotonically increasing tangential load from zero to a maximum
value Qmax, i.e., point A in Figure 3.

The normal contact pressure, tangential traction and electric charge distributions at the end of the
normal loading phase can be found from the fully coupled normal contact in previous section. The
resulting values of the relative tangential displacement gradient ∂ux0/∂x in the whole contact region are
then calculated using (11) and stored. We expect an inner stick region at the interval −b1 ≤ x ≤ b2

bordered by two slip regions (−a ≤ x <−b1 and b2 < x ≤ a) with the same slip direction as shown in
Figure 1. In the slip regions, the tangential traction q(x) is strictly related to the local normal contact
pressure p(x) by Coulomb’s friction law. Hence, (11) is rewritten as

1
π

∫ b2

−b1

q∗∗(t)
t − x

dt = N2(x), −b1 ≤ x ≤ b2, (43)

where

q∗∗(x)=−ηp(x)+ q(x), (44)

N2(x)=−
1
f12

∂ux0

∂x
−

i f11

f12
p(x)−

i f13

f12
g(x)−

η

π

∫ a

−a

p(t)
t − x

dt. (45)

Once the tangential load is applied, the normal contact pressure and electric charge distributions may
become asymmetric. Therefore, the contact patch may be not central about the center-line of the punch

G

time 

Q 

Qmax 

-Qmax F

D

A

A0 

E

B

C

Figure 3. Load history of the tangential load Q as a function of time.
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which allows for an eccentricity e between the center-line and the origin [Nowell et al. 1988]. Thus, (21)
and (22) have the form

1
π

∫ a

−a

p(t)
t − x

dt =
f33(x − e)
γ1 R

− i
γ2

γ1
q(x), |x | ≤ a, (46)

−
f23

π

∫ a

−a

g(t)
t − x

dt =
x − e

R
+

f21

π

∫ a

−a

p(t)
t − x

dt + i f22q(x), |x | ≤ a. (47)

In addition, the static equilibrium for the normal contact pressure and tangential traction must be
satisfied by (14) and (15). Substituting (44) and (14) into (15) yields∫ b2

−b1

q∗∗(t) dt = Q− ηP. (48)

Introducing the following normalized quantities

t =
b1+ b2

2
κ +

b2− b1

2
, x =

b1+ b2

2
α+

b2− b1

2
, (49)

Equations (43) and (48) may be expressed in the form of

1
π

∫ 1

−1

q∗∗(κ)
κ −α

dκ = N2(α), |α| ≤ 1, (50)∫ 1

−1
q∗∗(κ) dκ =

2(Q− ηP)
b1+ b2

. (51)

Using (23), (46) and (47) are normalized by introducing t = aθ and x = aτ ,

1
π

∫ 1

−1

p(θ)
θ − τ

dθ = h2(τ ), |τ | ≤ 1, (52)

−
f23

π

∫ 1

−1

g1(θ)

θ − τ
dθ = h3(τ ), |τ | ≤ 1, (53)

where

h2(τ )=
f33(aτ − e)
γ1 R

− i
γ2

γ1
q(τ ), (54)

h3(τ )=
aτ − e

R
+

f21

π

∫ 1

−1

p(θ)
θ − τ

dθ + i f22q(τ ). (55)

Equations (52) and (53) are also discretized by setting p(θ)=ψ(θ)
√

1− θ2 and g1(θ)= λ(θ)
√

1− θ2

to give

M∑
l=1

(1− θ2
l )ψ(θl)

(M + 1)(θl − τr )
= h2(τr ), |τr | ≤ 1, (56)

M∑
l=1

−
f23(1− θ2

l )λ(θl)

(M + 1)(θl − τr )
= h3(τr ), |τr | ≤ 1, (57)
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where θl = cos[lπ/(M + 1)], τr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, where M is the total
number of the discrete points of ψ(θl) and λ(θl) in (−1, 1).

Equations (50) and (51) are also discretized by setting q∗∗(κ)= ϕ(κ)
√

1− κ2 to give

M∑
l=1

(1− κ2
l )ϕ(κl)

(M + 1)(κl −αr )
= N2(αr ), |αr | ≤ 1, (58)

M∑
l=1

(1− κ2
l )ϕ(κl)

M + 1
=

2(Q− ηP)
(b1+ b2)π

, (59)

where κl = cos[lπ/(M + 1)], αr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, and M is the total
number of the discrete points of ϕ(κl) in (−1, 1). In (41), (56), (57) and (58), there are 4M+2 equations
for 4M + 3 unknowns, ϕ(κ1), . . . , ϕ(κM), ψ(θ1), . . . , ψ(θM), λ(θ1), . . . , λ(θM), ϑ(θ1), . . . , ϑ(θM), b1,
b2 and e. It should be noted that the discretization of (58) yields M + 1 equations for M unknowns ϕ(κl),
since in this case there is no constant C to be determined, as the stick zone is receding. The iterative
procedure is given below:

(1) Input a value of b1 and a trial value of b2, and drop the (M + 1)-th equation of (58).

(2) Compute the solution of the coupled equations (41), (56), (57) and (58) by using the iterative pro-
cedure described in Section 3.

(3) Check whether the solution satisfies the (M + 1)-th equation of (58). If it satisfies, we obtain the
consistent solution; then go to the next step. Otherwise, a new value of b2 must be chosen for step
1 and the iteration procedure is continued till the consistent solution is achieved.

(4) Compute the applied normal load P , electric charge 0 and tangential load Q from (38), (40), (42)
and (59).

4.2. A cyclic tangential load. In the previous subsection, we analyzed the tangential load Q, which
increased monotonically from 0 to Qmax. However, the tangential load is generally cyclic between limits
in fretting fatigue. So, we further consider a cyclic tangential load varying between the limits ±Qmax

applied to the rigid conducting cylindrical punch. Starting immediately at unloading, the pressure cannot
sustain the stick at the outer edge of contact where the tangential traction becomes q(x)=−ηp(x). Since
the frictional contact problem depends on the loading history, the contact tractions and electric charge
can be first obtained at the end of the monotonically increasing tangential loading phase (Q = Qmax);
∂ux0/∂x can be calculated and stored by considering (43). Equation (11) is resolved in the new stick
region, −c1 ≤ x ≤ c2, and reverse slip regions, −a ≤ x <−c1 and c2 < x ≤ a, and thus can be expressed
as

1
π

∫ c2

−c1

q∗∗∗(t)
t − x

dt = N3(x), −c1 ≤ x ≤ c2, (60)

where

q∗∗∗(x)= q(x)+ ηp(x), (61)

N3(x)=−
1
f12

∂ux0

∂x
− i

f11

f12
p(x)− i

f13

f12
g(x)+

η

π

∫ a

−a

p(t)
t − x

dt. (62)



546 JIE SU, LIAO-LIANG KE AND YUE-SHENG WANG

-0.02 -0.01 0.00 0.01 0.02
0.00

0.03

0.06

0.09

 

p
(x

) 
(G

P
a)

x(mm)

 Present results

 Nowell et al. (1988)

-0.02 -0.01 0.00 0.01 0.02
-0.02

-0.01

0.00

0.01

0.02
 Present results

 Nowell et al. (1988)

 

 

q
(x

) 
(G

P
a)

x(mm)

Figure 4. Comparison of the present results with the results obtained in [Nowell et al.
1988]: (left) normal contact pressure; and (right) tangential traction.

In addition, the static equilibrium for the contact tractions must satisfy∫ c2

−c1

q∗∗∗(t) dt = Q+ ηP. (63)

Equation (60) is also solved together with (41), (56) and (57) by using the iterative procedure developed
in Section 4.1. Note that this process may be continued for the reverse loading phase (DF in Figure 3),
reverse unloading phase (FG in Figure 3) and other loading cycles.

5. In-plane stress and in-plane electric displacement

After we obtain the tangential contact stress σzx0 =−q(x), along with the normal contact stress σzz0 =

−p(x) and electrical displacement Dz0 = −g(x) for the normal and tangential loading processes, the
in-plane stress σxx0 and in-plane electric displacement Dx0 at the contact surface can be solved as

σxx0(x)=−(11+ i f1113)p(x)− (12+ i f1313)g(x)−
13 f12

π

∫ a

−a

q(t)
t − x

dt, (64)

Dx0(x)=−( e15
c44
− i f3214)q(x)+

14 f31

π

∫ a

−a

p(t)
t − x

dt +
14 f33

π

∫ a

−a

g(t)
t − x

dt, (65)

where
11 =

e31e33+ c13ε33

e2
33+ c33ε33

, 12 =
c13e33− c33e31

e2
33+ c33ε33

,

13 =
c11e2

33− c2
13ε33+ c33e2

31+ c11c33ε33− 2c13e31e33

e2
33+ c33ε33

,14 =
e2

15

c44
+ ε11.

6. Results and discussion

Before the analysis of the fretting contact of piezoelectric materials, we first verify the effectiveness of
the present method. If we neglect the anisotropy and piezoelectric effect of materials, the present contact
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Figure 5. Comparison of the present results with the results obtained in [Zhou and Lee
2012]: (left) normal contact pressure; and (right) electric charge distributions.

problem can be easily reduced to the fretting contact of an isotropic elastic half-plane under a rigid
cylindrical punch. Figure 4 plots the normal contact pressure and tangential traction for the coupled
normal contact with η = 0.3, R = 10 mm and P = 2.24 ·103 N/m. The elastic half-plane is made of
aluminum with the shear modulus µ= 27.3 GPa and Poisson’s ratio ν = 0.3. The results in [Nowell et al.
1988] are also provided in Figure 4 for a direct comparison. It is observed that the present results agree
well with the results given in [Nowell et al. 1988].

If we neglect the friction, the present contact problem is reduced to the frictionless contact of piezo-
electric materials. Zhou and Lee [2012] obtained the exact solutions for the frictionless contact of a
piezoelectric half-plane under a rigid conducting cylindrical punch. Figure 5 presents the normal con-
tact pressure and electric charge distributions for the frictionless contact of piezoelectric materials with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m. The present results show good agreement with the
exact solutions.

In what follows, we will discuss the fretting contact behavior of a piezoelectric half-plane under a rigid
conducting cylindrical punch. The half-plane is made of piezoceramic PZT-4 whose electromechanical
properties are listed in Table 1 [Ke et al. 2008]. Unless otherwise stated, the resultant normal load,
resultant electric charge and radius of the punch are selected as P = 2000 N/m, 0 = 6 ·10−7 C/m and
R = 60 mm. Note that Su et al. [2015] studied the fretting contact of a piezoelectric half-plane under
an insulating punch. Their results are also given in Figures 8, 9, 10, 16 and 19 to show the effect of the
conductivity of the punch.

6.1. Normal loading. Figure 6 plots the effect of the friction coefficient η on the normal contact pressure
p(x), electric charge g(x) and tangential traction q(x). As can be expected, the electric charge is singular
at the edge of the contact region, whereas the normal contact pressure and tangential traction are quite
smooth. It is observed that p(x) and g(x) are symmetric, and q(x) is antisymmetric with respect to x = 0.
The friction coefficient has a slight effect on p(x) and g(x). However, it has a marked effect on q(x).
The peak value of q(x) occurs at the interface between the stick region and slip region, and increases
rapidly with the increase of η.
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Figure 6. The effect of the friction coefficient η on the (left) normal contact pressure,
(right) electric charge distributions and (bottom) tangential traction with R = 60 mm,
P = 2000 N/m and 0 = 6 ·10−7 C/m.

c11 (GPa) c13 (GPa) c33 (GPa) c44 (GPa)
139 74.3 115 25.6

e31 (C/m2) e33 (C/m2) e15 (C/m2)
−5.2 15.1 12.7

ε11 (10−10 C/Vm) ε33 (10−10 C/Vm)
64.61 56.2

Table 1. Piezoelectric material properties of PZT-4.

The effect of the friction coefficient η on the in-plane stress σxx0 and in-plane electric displacement
Dx0 is given in Figure 7. The in-plane stress σxx0 is symmetric with x = 0 and compressive at all regions.
The maximum value of σxx0 increases with the decrease of η, and occurs at the interface between the stick
region and slip region. The in-plane electric displacement Dx0 is insensitive to the friction coefficient. It
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Figure 7. The effect of the friction coefficient η on the (left) in-plane stress σxx0 and
(right) in-plane electric displacement Dx0 with R = 60 mm, P = 2000 N/m and 0 =
6 ·10−7 C/m.
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Figure 8. The relations between the stick region size and the friction coefficient with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m.

has the antisymmetric distribution with the positive value at the region x > a and negative value at the
region x < a. The maximum value of Dx0 occurs at the two edges of the contact region.

Figure 8 depicts the relation between the stick region size b/a and friction coefficient η for both
insulating and conducting punches. For both punches, the value of b/a increases with the increase of η,
and is close to the value of fully adhesive contact (i.e., b/a ≈ 1) for large η. It can be concluded that the
higher the friction coefficient is the less likely the slip occurs. It is found that the conducting punch has
a greater value of b/a than the insulating punch for a given η.Therefore, the conductivity of the punch
has a significant effect on the fretting contact behavior of piezoelectric materials.

Figure 9 presents the relation between the slope of the tangential displacement gradient C and the
friction coefficient η for both insulating and conducting punches. With the increase of η, the value of
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Figure 9. The relations between the slope of the tangential displacement gradient and
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Figure 10. The effect of the resultant electric charge 0 on the tangential traction with
R = 60 mm, η = 0.3, P = 2000 N/m.

C decreases rapidly when η < 0.3 (especially for the insulating punch), and then changes slightly when
0.3≤ η ≤ 0.8. Moreover, the value C of the insulating punch is larger than that of the conducting punch
for a given η.

Figure 10 analyzes the effect of the resultant electric charge 0 on the tangential traction for both
insulating and conducting punches with η = 0.3. We found that the peak value of q(x) for the insulating
punch is greater than that of the conducting punch, but the size of the stick region is smaller than that of
the conducting punch. With the increase of 0, the value of q(x) decreases at the stick region and changes
slightly at the slip region. The results indicate that the insulation of the punch may lead to a concentration
of the tangential traction, which may cause a serious influence on the fretting contact damage.
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Figure 11. Normal contact pressure during monotonically increasing tangential loading
with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0 in
Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.

-0.050 -0.025 0.000 0.025 0.050
0.000

0.005

0.010

0.015

 K = 0.1 

 K = 0.2 

 K = 0.3

 

 

g
(x

) 
(C

/m
2
)

x(mm)

-0.050 -0.025 0.000 0.025 0.050
0.000

0.005

0.010

0.015

 

 

 K = 0.1 

 K = 0.2 

 K = 0.3

g
(x

) 
(C

/m
2
)

x(mm)

Figure 12. Electric charge distribution during monotonically increasing tangential load-
ing with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0

in Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.

6.2. Tangential loading. Figures 11–13 discuss the effect of the friction coefficient η on the normal
contact pressure p(x), electric charge g(x) and tangential traction q(x) at the loading phase (points A0

and A in Figure 3), respectively. Because of the action of the tangential load, the normal contact pressure,
electric charge distributions and tangential traction are asymmetric during the loading phase. The friction
coefficient has a minor effect on the normal contact pressure and electric charge distributions, but it has
a significant effect on the tangential traction. It shows that the maximum value of the tangential traction
increases with the increase of the friction coefficient and appears at the interface of the stick/slip region.
Additionally, because the eccentricity e is very small, the normal contact pressure and electric charge
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Figure 13. Tangential traction during monotonically increasing tangential loading with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0 in
Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.
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Figure 14. Tangential traction during cyclic tangential loading with R = 60 mm, P =
2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point C in Figure 3; and (right)
Q/ηP = 0.0, point D in Figure 3.

at the tangential loading phase is very close to those at the normal loading phase. Hence, the normal
contact pressure and electric charge distributions will not be discussed in the following analysis.

Figures 14 and 15 analyze the effect of the friction coefficient η on the tangential traction at the
unloading and reverse loading phases (points C, D, E and F in Figure 3). At first, near the two edges of the
contact region, we see that the reverse slip occurs during the unloading phase; and the tangential traction
becomes q(x)=−ηp(x). Due to the effect of the loading history, the distribution of the tangential traction
becomes quite complex at the stick region, and a localized increase or decrease occurs at the interface
of the stick/slip region during the unloading phase. Comparing Figure 13 (right) to Figure 15 (right), we
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Figure 15. Tangential traction during cyclic tangential loading with R = 60 mm, P =
2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP =−0.3, point E in Figure 3; and (right)
Q/ηP =−0.5, point F in Figure 3.
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Figure 16. Tangential traction during monotonically increasing tangential loading with
R = 60 mm, P = 2000 N/m, η = 0.3 and Q/ηP = 0.3, point A0 in Figure 3.

can observe that the distribution of tangential traction is completely reversed when the tangential load is
completely reversed from Q = Qmax to Q =−Qmax.

Figure 16 shows the effect of the resultant electric charge 0 on the tangential traction q(x) during the
loading phase (points A0 in Figure 3) for both insulating and conducting punches. Similar to the normal
loading phase, the peak value of q(x) for the insulating punch is greater than that of the conducting
punch during the tangential loading phase. With the increase in 0, the value of q(x) has a slight change
at the stick region, and is almost unchanged at the slip region.

Figure 17 plots the effect of the friction coefficient η on the in-plane stress σxx0 when Q/ηP =±0.5.
For Q/ηP = 0.5, σxx0 is compressive at the region x < 0, but changes from compressive to tensile and
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Figure 17. The effect of the friction coefficient η on the in-plane stress σxx0 with R =
60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.5, point A in Figure 3;
and (right) Q/ηP =−0.5, point F in Figure 3.
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Figure 18. The effect of the friction coefficient η on the in-plane electric displacement
Dx0 with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.5, point A
in Figure 3; and (right) Q/ηP =−0.5, point F in Figure 3.

increases as η increases throughout most of the region x > 0. The behavior of σxx0 for Q/ηP =−0.5
is opposite of that for Q/ηP = 0.5. In particular, the maximum tensile stress σxx0 increases with the
increase of η, and occurs at x = a for Q/ηP = 0.5 and at x = −a for Q/ηP = −0.5. The maximum
tensile stress implies the possible site of the fretting crack initiation.

Figure 18 analyzes the effect of the friction coefficient η on the in-plane electric displacement Dx0

when Q/ηP =±0.5. During tangential loading phase, the in-plane electric displacement distribution is
quite similar to that of the normal loading phase. The friction coefficient η also has little effect on the
in-plane electric displacement.
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Figure 19. The effect of the resultant electric charge 0 on the (left) in-plane stress σxx0

and (right) in-plane electric displacement Dx0 with R = 60 mm, P = 2000 N/m, η = 0.3
and Q/ηP = 0.5, point A in Figure 3.

Figure 19 discusses the effect of the resultant electric charge 0 on the in-plane stress σxx0 and the
in-plane electric displacement Dx0 for both insulating and conducting punches with Q/ηP = 0.5 and
η = 0.3. We can observe that the in-plane stress distribution of the insulating punch is similar to that
of the conducting punch. The maximum tensile stress of the insulating punch is greater than that of the
conducting punch. However, the in-plane electric displacement distribution is totally different than that
of the conducting punch. The in-plane electric displacement is singular at the edge of the contact region
for the conducting punch whereas it is quite smooth for the insulating punch. The change of 0 has a
slight effect on both σxx0 and Dx0.

7. Conclusions

In this paper, the two-dimensional fretting contact between a homogeneous transversely isotropic piezo-
electric half-plane and a rigid conducting cylindrical punch was considered. The two dissimilar bodies
are first acted upon by a monotonically increasing normal load, and then by a cyclic tangential load.
The fretting contact problem is reduced to a set of coupled Cauchy singular integral equations which
are solved by using an iterative method to determine the contact tractions, electric charge and unknown
stick/slip region. It was found that:

(1) The electric charge is singular at the edge of the contact region whereas the normal contact pressure
and tangential traction is quite smooth.

(2) The friction coefficient has a slight effect on the normal contact pressure and electric charge. The
peak value of the tangential traction occurs at the interface between the stick region and slip region,
and increases rapidly with the increase of the friction coefficient.

(3) With the increase of the applied electric charge, the value of the tangential traction decreases at the
stick region and changes slightly at the slip region.
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(4) The peak values of tangential traction for the insulating punch is greater than that of the conducting
punch, but the size of the stick region is smaller than that of the conducting punch.

(5) The maximum values of the in-plane tensile stress and the in-plane electric displacement occur at
the edges of the contact region during the tangential loading phase, which implies a possible site of
electromechanical damage.

Acknowledgments

The work described in this paper is supported by the Fundamental Research Funds for the Central Uni-
versities under grant number 2016YJS113.

Appendix

The parameters fi j may be written in the form

fi j = s Fi j , i, j = 1, 2, 3, (A.1)

where

[F]=

 1 1 1
a1 a2 a3

b1 b2 b3

c13is+ c33a1n1+ e33b1n1 c13is+ c33a2n2+ e33b2n2 c13is+ c33a3n3+ e33b3n3

c44n1+ c44isa1+ e15isb1 c44n2+ c44isa2+ e15isb2 c44n3+ c44isa3+ e15isb3

e31is+ e33a1n1− ε33b1n1 e31is+ e33a2n2− ε33b2n2 e31is+ e33a3n3− ε33b3n3

−1

,

and [ ]−1 is the inverse matrix.
For the piezoceramic PZT-4 half-plane, the parameters fi j can be written as

f11 =−7.5241 ·10−12i, f12 = 1.8396 ·10−11, f13 = 1.7328 ·10−2i,

f21 = 1.7728 ·10−11, f22 = 7.4241 ·10−12i, f23 = 2.2085 ·10−2,

f31 = 2.2085 ·10−2, f32 =−1.7328 ·10−2i, f33 =−8.8307 ·107.

(A.2)
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AN ANISOTROPIC MODEL FOR THE MULLINS EFFECT IN MAGNETOACTIVE
RUBBER-LIKE MATERIALS

M. H. B. M. SHARIFF AND ROGER BUSTAMANTE

An anisotropic phenomenological model is proposed to describe the Mullins phenomena for magneto-
active elastomers. The model is based on the use of direction-dependent damage parameters and a set
of spectral invariants presented recently in the literature. The effect of the magnetic field on the Mullins
phenomena for simple tension and simple shear is discussed.

1. Introduction

Magnetosensitive (MS) elastomers correspond to a class of rubber-like materials, which are filled with
magnetoactive particles during the curing process, where the particles are usually made of iron and
carbonyl iron (see, for example, [Bellan and Bossis 2002; Boczkowska and Awietjan 2012]). When such
an elastomer solidifies, the MS particles remain locked inside it. Subsequently, if an external magnetic
field is applied, it is possible to obtain relatively large deformations [Bellan and Bossis 2002; Boczkowska
and Awietjan 2012] that can be controlled by this external field, and for this reason this class of elastomers
is classified as a smart material [Ginder et al. 2001; Ghafoorianfar et al. 2013]. There are many possible
applications for these elastomers, such as in the design of flexible robots and in vibration suppression
[Böse et al. 2012; Farshad and Roux 2004; Kashima et al. 2012; Zhu et al. 2012].

Due to the potential applications of these MS elastomers, in the last few years there has been an
interest in the mathematical modeling of the mechanical behavior of such materials. Some relatively
recent works on this topic are the series of papers by Dorfmann and Ogden [2003; 2004a; 2004b; 2005],
Triantafyllidis and coworkers [Kankanala and Triantafyllidis 2004; Danas et al. 2012], Steigmann [2004]
and Vu and Steinmann [2010]1.

In most of these works, the MS elastomers were assumed to be hyperelastic bodies; however, when
mixing a rubber-like material with MS particles, we expect to observe some inelastic phenomena since
most elastomers, especially elastomers with fillers, exhibit an anisotropic stress-softening phenomenon
widely known as the Mullins effect [Mullins 1947; Coquelle and Bossis 2006]. Quite often, the stress is
softened significantly, hence modeling MS elastomers as purely elastic deformations can be erroneous.
In addition to this, modeling the nonvirgin reference stress-free state of an MS material as isotropic is
not accurate, since generally it is not isotropic in the stress-free reference state and the type of anisotropy
depends on the history of strain.

Keywords: magnetoactive materials, Mullins effect, anisotropic stress-softening, spectral invariants.
1See the book by Ogden and Steigmann [2010] for more references on this topic; the interested reader can also see [Brown

1966; Eringen and Maugin 1990; Maugin 1988] for some older works on the interaction of electromagnetic fields and continua.
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In the present communication, the mechanical behavior of MS elastomers is modeled via an anisotropic
Mullins model, which is based on the direction-dependent model proposed by Shariff [2014]. In partic-
ular, we are interested in studying the influence of the magnetic field on the anisotropic stress soft-
ening behavior of MS elastomers, where we currently believe there is no model that could describe
three-dimensional anisotropic stress-softening behavior (Mullins effect) of MS materials in the pres-
ence of a magnetic field. Our proposed model is based on the model of Shariff [2014], where he uses
direction-dependent damage parameters (that depend on the history of strain) to simulate the anisotropic
behavior that manifests due to the Mullins effect. His model is able to reasonably predict a variety
of nonproportional (i.e., successive loadings with different directions of stretching or types of loading)
experimental data on the anisotropic Mullins effect for different types of rubber-like materials. The
constitutive equations for MS elastomers proposed in the present paper are characterized using a set of
(useful) experimentally spectral invariants recently developed in the literature by Shariff and coworkers
[Bustamante and Shariff 2015; Shariff 2008]. Most MS elastomers are nearly incompressible, however,
in this communication it is assumed, for simplicity, that they are incompressible.

This paper is divided in the following parts: in Section 2 the main elements of the theory of Dorfmann
and Ogden [2003; 2004b; 2004a; 2005] for MS elastomers are presented. In Section 3 the model for
the Mullins effect is shown, while in Section 4 some boundary value problems are studied. Finally, in
Section 5 some final comments are given.

2. Preliminary

2.1. Kinematics. In this paper, all subscripts i , j and k take the values 1, 2, 3, unless stated otherwise.
Let B denote the MS body, and x ∈ Bt denote the position of a particle X ∈ B in the current con-

figuration Bt . The position of the same particle in the reference configuration is denoted as X ∈ Br ,
where Br is the body in the reference configuration, which is assumed to be undeformed and unstressed.
It is assumed that there exists a one-to-one mapping χ such that x = χ(X, t) for any time t > 0. The
deformation gradient, the left Cauchy–Green B and right Cauchy–Green C deformation tensors are
respectively defined as

F = ∂x
∂X , B = F FT

= V 2, C = FT F = U2, (1)

where χ is assumed such that J = det F > 0.
In this communication, only quasistatic deformations and time-independent fields are considered, and

the mechanical body forces are assumed to be negligible.

2.2. Governing equations for magnetosensitive elastomers.

2.2.1. The Maxwell equations. The theory of magnetosensitive elastomers (with no dependence on time)
employed here makes use of three vector fields in the current configuration — the magnetic field h, the
induction b and the magnetic polarization m — to describe the magnetic effects in an MS body. In the
absence of electric interactions and time effects, the magnetic field and the magnetic induction have to
satisfy the simplified form of the Maxwell equations

div b= 0, curl h = 0, (2)
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where, respectively, div and curl are the divergence and curl operators with respect to x. Using the global
form of (2), it is possible to define the following Lagrangian counterparts (in the reference configuration)
of the magnetic field hl , and the magnetic induction bl

hl = FT h, bl = F−1b. (3)

The above variables satisfy [Dorfmann and Ogden 2004a]

Div bl = 0, Curl hl = 0, (4)

where Div and Curl are the divergence and curl operators with respect to X , respectively.
In vacuum, the magnetic field and the magnetic induction are related by the equation

b= µ0h, (5)

where µ0 is the magnetic permeability in vacuo. For condensed matter, an additional field is required,
which is the magnetization field m and it is related to b and h through (see [Kovetz 2000] for more details
on the theory of electromagnetism)

b= µ0(h+m). (6)

2.2.2. The theory of magnetoelastic interactions by Dorfmann and Ogden . In nonlinear magnetoelastic-
ity, there are different ways to express the equation of motion, the relation between the stresses, the strains
and the magnetic variables; there are also different possible definitions for the stress tensor [Hutter et al.
2006]. In this communication, as a basis for our work the theory developed by Dorfmann and Ogden
[2004a] is used, where they define a total stress tensor T that incorporates in its definition the magnetic
body forces (which are expressed as the divergence of a Maxwell stress tensor). The total (symmetrical)
stress tensor T is related to the nonsymmetrical (elastic) Cauchy σ stress via the relation [Dorfmann and
Ogden 2004b]

T = σ + 1
µ0

[
b⊗ b− 1

2(b · b)I
]
+ (m · b)I − b⊗m, (7)

where ⊗ and · denote the dyadic and dot products, respectively. The nonsymmetrical mechanical Cauchy
stress σ is part of the symmetrical total stress, and its role is important in deriving the proposed total
energy (see (16) below). A key ingredient of this theory is the definition of a total energy function (see
[Dorfmann and Ogden 2004a, Equation 3.10] and Section 3.3 below), where relatively simple expressions
for the total stress and one of the magnetic variables are obtained.

2.2.3. Equation of equilibrium and continuity conditions. The total stress tensor T must satisfy the bal-
ance equation [Dorfmann and Ogden 2004a, Equation 2.13]

div T = 0. (8)

Through the surface of the body ∂Bt the magnetic variables and the total stress tensor must satisfy
the continuity conditions [Kovetz 2000]

n · [[b]] = 0, n×[[h]] = 0, T n= t̂ + T M n, (9)

where n is the unit outward normal vector to ∂Bt , t̂ is the external mechanical traction, [[ ]] denotes the
difference of a quantity from outside and inside a body, and T m is the Maxwell stress tensor with the
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relation [Kovetz 2000]
T M = h⊗ b− 1

2(h · b)I . (10)

3. Anisotropic stress softening model

When rubber is loaded in simple tension from its virgin state, and is then unloaded and reloaded, due to
some damage, the stress required is less than that of the initial loading for stretches up to the maximum
stretch achieved on the initial loading. This stress softening phenomenon is referred to as the Mullins
effect. Here, a brief description on the behavior of the ideal Mullins effect is given; the unloading
and reloading (in the same direction and up to the same “maximal” strain) paths coincide, and there
is no permanent set. This description is made clear in Figure 1 below. In this section, we also define
direction-dependent damage parameters, introduce the concept of the damage function [Shariff 2006;
2014] and construct a total energy function using a set of spectral invariants. In this communication, the
term “damage” is interpreted in its widest sense; for example, it may mean “rupture of molecular bonds
that reform to create new microstructure” or “conversion of hard phase to soft phase” or “any change in
the ground state mechanical properties that are induced by strain”. We are only concerned with strain
induced damages that lead to stress softening.

3.1. Description of the ideal Mullins effect in nonproportional uniaxial loadings with no permanent
set. Consider the case when there is no magnetic field (h = 0) and a magnetosensitive (MS) material
is being prestretched uniaxially as shown on the primary (virgin material response) loading path Oa
in Figure 1. On unloading from a the elastic path aE O is followed; we call this path elastic because
when the material is loaded again up to point a the path aE O is retraced as O Ea, hence the material
behaves elastically and its ground-state-material-constant values are fixed during this deformation. From
the point a the material is loaded to the point b via the primary loading path Oab. When the material
is unloaded from b, the elastic bE O path is followed. After unloading completely, a simple tension
deformation is applied in a direction 30◦ from the prestretch loading direction on a smaller specimen cut

nominal stress

O

O

h 6= 0

a

b

E
c

E

b

h = 0
E

c

aE

E

E
E

stretch

elastic curve

Figure 1. Schematic loading-unloading curves in simple tension of an MS Mullins material.
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from the prestretched material. This sequence of deformations was done experimentally by Machado et
al. [2012] on a non-MS material. The nonelastic 30◦ path is depicted by the path Ocb and the elastic
paths (unloading from c and b) are depicted by cE O and bE O . The elastic properties for the elastic paths
O Ea, O Eb and O Ec are different. The nominal stress on any path can be obtained by differentiating
the area under an elastic path. From Figure 1, the stress-strain behavior in different loading directions
are not the same, which suggests that the damage caused by strain is anisotropic. The areas under
different elastic paths can be represented by different direction dependent total elastic energy functions,
although the material itself is not elastic. Note that the ground state material properties may change
during deformation. With these in mind, following the work of Shariff [2006; 2014], we introduce a
“free” energy function for an inelastic solid that can be portrayed by an infinite family of total elastic
energy functions parameterized by the direction-dependent damage parameter defined in Section 3.2.

When a magnetic field (h 6= 0) is applied on the undeformed reference configuration, the material will
deform due to the magnetic forces. In this case, an external stress is required to maintain that undeformed
configuration F = I . Consider the sequence of uniaxial deformations described previously, where the
directions of the magnetic field are always in the uniaxial directions. The behavior of the loading paths
are similar to the loading paths mentioned before, but due to the presence of a magnetic field the uniaxial
stresses are generally higher (as depicted in Figure 1) than the stresses when there is no magnetic field
[Bellan and Bossis 2002].

3.2. Direction-dependent damage parameter and damage function. Based on simple tension defor-
mations, in the original work by Mullins [1947], it was assumed that stress softening takes place if
the current (principle) tensile stretch is less than the maximum stretch. In view of this, most previous
models [Mullins 1947; Govindjee and Simo 1991; Johnson and Beatty 1993; Itskov et al. 2010] used
maximum tensile stretch as their damage parameter. However, in simple tension there are three principal
stretches, one in tension and two in compression; hence one should consider both the maximum tensile
and minimum compressive stretches. It is worth noting that the Pawelski [2001] experiment showed that
stress softening also occurs in compression. This suggests that minimum compressive stretch should
not be ignored in stress softening modeling and hence, in our model, we include both the maximum
and minimum stretches. They are related to the proposed direction-dependent damage parameter αi as
explained below.

The principal stretches satisfy the following inequality

s(min)
i ≤ λi ≤ s(max)

i , (11)

where
s(max)

i = max
0≤z≤t

√
ei ·C(z)ei and s(min)

i = min
0≤z≤t

√
ei ·C(z)ei . (12)

Physically, s(max)
i and s(min)

i are the maximum and minimum “stretch” values of the ei line element
throughout the history of the deformation, respectively. From the above equation it is clear that s(max)

i ≥ 1,
s(min)

i ≤ 1 and λi is bounded by s(min)
i and s(max)

i . Consider, for example, a material being prestretched
by a simple tension deformation process. A simple tension deformation is then applied on this prestretch
material in the same direction as the prestretch direction, where the deformation is described by

U(λ)≡
(
λ, 1/
√
λ, 1/
√
λ
)
, (13)
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where 1 ≤ λ ≤ λm = s(max)
1 , s(min)

2 = s(min)
3 = 1/

√
λm ≤ 1/

√
λ ≤ 1 and s(min)

1 = s(max)
2 = s(max)

3 = 1. In
(12), s(max)

i and s(min)
i are related to the amount of damage; the interval in (11) widens as the amount of

damage increases.
For a non-MS Mullins material, Shariff [2006; 2014] proposed an anisotropic stress softening damage

model using the direction-dependent damage parameter αi , where

αi =

{
s(max)

i when λi > 1,
s(min)

i when λi < 1.
(14)

Note that in (14) we do not consider λi = 1, because our model is constructed in such a way that αi does
not contribute to the stress softening when λi = 1 (see Section 3.5 below). In the case when λi = λ j

(i 6= j), the directions of ei and e j are not unique. In view of this, we let

αi = α j =

1/
√

s(min)
k when λi = λ j > 1,

1/
√

s(max)
k when λi = λ j < 1,

(15)

where i 6= j 6= k 6= i . In the case when all the principal stretches are equal, the principal directions ei are
all nonunique. However, for an incompressible material this can only happen when λ1 = λ2 = λ3 = 1 and,
as mentioned above, the corresponding αi in this case do not contribute to the stress softening; hence
their values are not given here.

Stress softening models usually have softening functions which control the softening behavior. The
softening function is governed by the amount of damage [Simo 1987; Ogden and Roxburgh 1999; Itskov
et al. 2010]. The rate of change of the amount of damage with respect to time or any deformation
parameter that increases with primary loading should be nonnegative. In our model, in view of the
definition of the damage parameter αi , a measure of an amount of damage (damage function) related
to the ei line element is proposed. The proposed damage function g (which may depend on material
properties) is defined such that 0 = g(1) ≤ g(x), x ∈ R, x > 0. The function g has also the properties
that ĝ′(α)≥ 0, where ĝ(α)= g((1−α)+αw), 0< α ≤ 1 and w > 0 ( 6= 1) is a constant. The function
ĝ′(α) need not be defined at α = 0. If it is defined then ĝ′(0)= 0. In view of our definition, g increases
monotonically as x moves away from the point x = 1; hence, g(λi ) ≤ g(αi ). Physically, g(αi ) can be
considered as a measure of an amount of damage related to the ei line element; for a strictly monotonic
g, the higher the value of g the bigger the damage induced on the ei line element. Specific forms of g
are given below in (64) and (72).

3.3. Constitutive equations and spectral invariants . For an isothermal problem the Clausius–Duhem
inequality take the form

σ : D− ρ0ψ̇ −m · ḃ≥ 0, (16)

where the superposed dot represents the time derivative, : denotes the inner product of two second order
tensors, ρ0 is the density of the incompressible material, ψ is the Helmholtz free energy function, D =
grad v, grad is the gradient operator with respect to x and v is the velocity. Following [Dorfmann and
Ogden 2004a] and [Shariff 2014] the Helmholtz free energy can be expressed as

ρ0ψ = ψa(F, b, g), (17)
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where the vector g ≡ [g(α1), g(α2), g(α3)]
T is an internal variable. Taking note that, for an incompress-

ible material tr(D)= 0, and since σ : D = (F−1σ )T : Ḟ, (16) and (17) give the relations(
σ + p I − F

∂ψa

∂F

)
: Ḟ−

(
m+

∂ψa

∂b

)
· ḃ−

3∑
i=1

∂ψa

∂g(αi )
ġ(αi )≥ 0, (18)

σ =−p I + F
∂ψa

∂F
, m =−

∂ψa

∂b
, (19)

and the inequality

−

3∑
i=1

∂ψa

∂g(αi )
ġ(αi )≥ 0 . (20)

In view of the property of g, ġ(αi )≥ 0, and to satisfy (20), the condition

∂ψa

∂g(αi )
≤ 0 (21)

is imposed. If we define
8(F, bl, g)= ψa(F, Fbl, g), (22)

the nonsymmetric Cauchy stress [Dorfmann and Ogden 2004a] takes the form

σ =−p I + F ∂8
∂F − (m · b)I + b⊗m, (23)

where p is the associated Lagrange multiplier due to the incompressibility constraint and I is the second
order identity tensor.

Following [Dorfmann and Ogden 2004a], an amended free energy function

�m(F, bl, g)=8(F, bl, g)+ 1
2µ0

bl ·Cbl (24)

is defined and using (24) the simplified relation

hl =
∂�m

∂bl
(25)

is obtained.
In this paper, hl is chosen (instead of bl) as the independent variable and a complementary (total)

energy function �e =�a(F, hl) is defined through the partial Legendre transformation as

�e =�a(F, hl, g)=�m(F, bl, g)− bl · hl, (26)

where, in view of the inequality (21), the inequality

∂�e

∂g(αi )
≤ 0 (27)

is automatically satisfied. The relation

bl =−
∂�e

∂hl
(28)
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is obtained from (26).
If �e is treated as a function of C, the objectivity condition is automatically satisfied and can be

written as
�e =�c(C, a, g, h)=�a(F, hl, g), (29)

where the unit vector a= hl/h and h = |hl |. Following the work of Spencer [1971], �e can be expressed
in terms classical invariants, i.e.,

�e =�d(I1, I2, I4, I5, g, h), (30)

where

I1 = tr(C), I2 =
I 2
1 − tr(C2)

2
, I4 = a ·Ca, I5 = a ·C2a (31)

and tr denotes the trace of a second order tensor. Except for I4, the rest of the above classical invariants
have no immediate physical interpretation. Hence, they are not attractive in seeking to design a rational
program of experiments2 for MS solids. For example, it is not straightforward to design an experiment
to construct (rigorously) a specific functional form of the total energy �e, where the experiment requires
varying a single classical invariant while keeping the remaining classical invariants fixed [Holzapfel
and Ogden 2009; Humphrey et al. 1990; Lin and Yin 1998]. In this paper our total energy function is
characterized using a set of spectral invariants, where each invariant has a clear physical meaning and
have an experimental advantage [Shariff 2008] over the standard (classical and its variants) invariants
commonly used in dealing with anisotropic problems. Note that

C =
3∑

i=1

λ2
i ei ⊗ ei , (32)

where λi is a principal value (stretch) of the right stretch tensor U , and ei is a principal direction of U .
In view of (29) and (32),

�e =� f (λ1, λ2, λ3, e1⊗ e1, e2⊗ e2, e3⊗ e3, a, g, h). (33)

Hence, following the work presented in [Shariff 2008], �e can be written in terms of h and the
corresponding spectral invariants, i.e.,

�e =�(λ1, λ2, λ3, ζ1, ζ2, ζ3, g, h), (34)

where ζi = (a · ei )
2. The physical meaning of λi is obvious, and it is clear that ζi is the square of the

cosine of the angle between the principal direction ei and the preferred direction a. Since a is a unit
vector, this implies ζ3 = 1− ζ1− ζ2. The invariant h and the spectral invariants have an experimental
advantage over classical invariants presented in the literature, e.g., a simple triaxial test can vary a single
invariant while keeping the remaining invariants fixed [Shariff 2008].

Note that (34) has the symmetrical property

�(λ1, λ2, λ3, ζ1, ζ2, ζ3, g, h)=�(λ2, λ1, λ3, ζ2, ζ1, ζ3, g, h)=�(λ3, λ2, λ1, ζ3, ζ2, ζ1, g, h). (35)

2See [Criscione 2003] for a criticism on the use of the classical invariants by Spencer and Rivlin [1962].
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In view of the nonunique values of ei and e j when λi = λ j , a unique valued � should be independent of
ζi and ζ j when λi = λ j and � should be independent of ζ1, ζ2 and ζ3 when λ1 = λ2 = λ3. We call this
independent property together with the symmetrical property (35) the P-property [Shariff 2016]. Our
total energy function proposed later in this paper is required to satisfy the P-property.

In view of (22), (23), (24), (26) and (7),

T = 2F
∂�e

∂C
FT
− p I . (36)

The total nominal stress S is given by [Dorfmann and Ogden 2004b]

S= F−1T . (37)

Following the results presented in [Shariff 2008], the Lagrangean spectral components of ∂�e
∂C can be

expressed as (
∂�e

∂C

)
i i
=

1
2λi

∂�

∂λi
(i not summed), (38)

and the shear components (
∂�e

∂C

)
i j
=

ei · Ae j

(λ2
i − λ

2
j )

(
∂�

∂ζi
−
∂�

∂ζ j

)
, (39)

where A = a⊗ a. The Eulerian spectral components of Ti j of the total stress T are [Bustamante and
Shariff 2015]

Ti i = λi
∂�

∂λi
− p, (40)

Ti j = 2λiλ j
ei · Ae j

(λ2
i − λ

2
j )

(
∂�

∂ζi
−
∂�

∂ζ j

)
, i 6= j. (41)

Expressed in terms of spectral components, the magnetic induction has the form [Bustamante and
Shariff 2015]

bl =

3∑
k=1

bk ek, (42)

where in view of (28)

bk =−(a · ek)

[
∂�

∂h
+

2
h

(
∂�

∂ζk
−

3∑
i=1

∂�

∂ζi
ζi

)]
. (43)

The magnetic induction in the deformed configuration is obtained from (3), i.e.,

b= Fbl . (44)

The Eulerian expression of b is simply

b=
3∑

k=1

λkbkvk, (45)

where vk is the principal direction of the left stretch tensor V .
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3.4. The undeformed configuration. Magnetic fields distort an MS body, so if the body is to remain in
the undeformed state (F = I) when a magnetic field is applied, then it must be subject to an external
traction that depends on the magnetic field. In the undeformed state, λ1 = λ2 = λ3 = 1 and the principal
directions of U are not unique. For simplicity, let a = e3 such that ζ3 = 1, ζ1 = ζ2 = 0. From (40) and
(41), for the case of when hl is constant, it is necessary to apply an external traction such that the body
remains undeformed, i.e.,

T = T 0 =

3∑
i=1

∂�

∂λi
(1, 1, 1, 0, 0, 1, h)ei ⊗ ei − p I . (46)

From (42) and (43), the magnetic induction takes the form,

b=−�′0(h)e3, (47)

where

�′0(h)=
∂�

∂h
(1, 1, 1, 0, 0, 1, h). (48)

3.5. A specific constitutive equation. Using the damage parameter αi and the above set of spectral
invariants and following the work of [Bustamante and Shariff 2015; Shariff 2014], a simple separable
constitutive equation

�e =

3∑
i=1

[
η̂(g(λi ), g(αi ))r(λi )+φ(λi , αi )+ ζi z(λi , h)

]
(49)

=

3∑
i=1

[∫ λi

1
η̂(g(y), g(αi ))r ′(y) dy+ ζi z(λi , h)

]
(50)

is proposed, where

φ(λi , αi )=−

∫ λi

1
r(y)

dη̂
dy
(g(y), g(αi )) dy (51)

and

z(y, h)= q(y, h)−
µ0h2

2y2 . (52)

The first term of the total energy �e (50) can be considered as the sum of energies, where each energy
depends on λi and on the damage function g(αi ) of the ei line element, while the second term can
be considered as the sum of energies, where each energy depends on λi , the magnitude of h and its
components in the principal directions of U . The Eulerian magnetic induction then takes the form

b=−F ∂Q
∂hl
+µ0h (53)

and the magnetization is

m =− F
µ0

∂Q
∂hl

, (54)
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where

Q =
3∑

i=1

ζi q(λi , h). (55)

For simplicity of notation, let
η(y, d)= η̂(g(y), g(d)). (56)

The stress softening function η is introduced in (50) to soften the stress and has the properties 0<η≤ 1
and η(s, s)= 1. In view of (53), (54) and (55), it is clear that in vacuum b= µ0h and m = 0, and our
model suggests that the magnetic induction and the magnetization are independent of the stress-softening,
although the stress is affected by the magnetic field and the softening function.

The free energy (50) satisfies the P-property and is direction dependent since the damage parameter
αi is direction-dependent and hence it describes anisotropic damage.

On the primary loading η = 1, the free energy function simply becomes

�e =

3∑
i=1

[r(λi )+φ(λi , αi )+ ζi z(λi , h)]. (57)

Based on the work of Shariff [2000] on nonlinear isotropic elasticity, we let

r(λi )=

∫ λi

1

f (y)
y

dy, (58)

where f (1)= 0 and f is strictly monotone. It is clear that r(1)= 0, r ′(1)= 0, 0= r(1)≤ r(y) and r(y)
increases (strictly) monotonically away from y = 1.

The condition
∂η̂

∂g(αi )
(g(λi ), g(αi )) < 0 (59)

ensures that the inequality (27) is satisfied.
In this paper, we are not concerned with specific forms of the functions f , η, g and q, since there is

no available experimental data in the literature about Mullins effect for MS elastomers. However, some
qualitative properties of the functions f , η and g are discussed in [Shariff 2014] and specific forms for
f , η and g can be found in [Shariff 2000; 2014], i.e.,

f (y)=
4∑

i=1

aiφi (y), (60)

where

φ1(y)= 2
3 ln(y), φ2(y)= e(1−y)

+ y− 2, φ3(y)= e(y−1)
− y, (61)

φ4(y)=
(y− 1)3

yk , (62)

a1, a2, a3, a4 and k are material constants,

η̂(g(y), g(d))= eb1(g(y)−g(d))g(y)b2
− b3e−b4g(y)(g(d)− g(y)), (63)
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where b1, b2 and b3 are material constants and

g(y)=
(yc1 − 1)2

yc2
, (64)

where c1 and c2 are material constants and must be constrained so that g(y) increases monotonically as
y moves away from the point y = 1 [Shariff 2014]. In this paper we let

z(y, h)= d1
µ0h2

2y2 −
µ0h2

2y2 , (65)

where d1 is a material constant.

4. Homogeneous deformations

The objective of this section is to discuss the anisotropic mechanical behavior of the proposed constitutive
model in simple tension and simple shear deformations, where it can be important from the experimental
point of view. We note in passing, that for non-Mullins behavior, simple tension experiments have been
done by Bellan and Bossis [2002] and a simple shear experiment has been done by Jolly et al. [1996].
Results for nonproportional loadings to analyze the anisotropic behavior of Mullins materials are given
in this section. In the simple shear case, results on the anisotropic behavior due to the application of a
magnetic field in different directions are also given.

4.1. Simple tension. Due to edge effects, the continuity conditions on the surfaces are not easily sat-
isfied when simple tension is applied on a rectangular slab. To reduce the edge effects, a specific slab
configuration is considered, where the slab thickness in the e3 direction is very small relative to its width
(which is in the e1 direction), and its length in the e2 direction is very large relative to its width3. This
configuration is denoted as the S-configuration. A simple tension is applied in the e2 direction.

4.1.1. Simple tension in a fixed direction. To discuss the effect of a magnetic field on stress-softening
materials in fixed direction loadings, a simple tension in the Cartesian 2-direction is considered and the
magnetic field hl ≡ [0, h, 0]T is applied (where h is a constant) in the undeformed configuration which
automatically satisfies (4). With this particular type of deformation, the spectral variables take values
ζ2=1, ζ1=ζ3=0. Consider 1≤λ2=λ≤λm , hence s(max)

2 =λm and s(max)
3 = s(max)

1 =1/
√
λm=1/

√
s(max)

2 .
The total uniaxial stress simply takes the form

T22(λ2, h)= η(λ, s(max)
2 ) f (λ)− η

(
1
√
λ
,

1√
s(max)

2

)
f
(

1
√
λ

)
+λ

∂z
∂λ
(λ, h)−µ0

h2

2λ2 . (66)

The derivation of (66) has taken into account the effect of the Maxwell stress

TM33 =−µ0
h2

2λ2 (67)

3It is assumed that the length in direction 2 is very large in comparison with the dimensions in the other two directions so
that the continuity conditions (9) and (10) are satisfied only for the surface with normal e3.
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at the exterior surfaces of the material, where it is assumed that there are no mechanical stresses at these
surfaces. In the undeformed configuration,

T22(1, h)= ∂z
∂λ
(1, h)−µ0

h2

2
. (68)

Without the magnetic field it is expected that T22(1, 0)= 0 in the undeformed configuration. Hence, the
condition ∂z

∂λ
(1, 0)= 0 is imposed. It is assumed that the magnetic induction and the magnetization are

given as b≡ [0,−λ( ∂z
∂h (λ, h)), 0]T and m ≡ [0,m, 0]T , where

m =− 1
µ0
λ
∂q
∂h
(λ, h). (69)

In this section, for illustrative purposes, it is assumed

z(y, h)= µ0h2
(

d1

(y− a)2+ y
−

1
2y2

)
(70)

which satisfies the property ∂z
∂λ
(1, 0)= 0 mentioned previously. For simplicity, consider [Shariff 2014]

η(y, d)= eb1(g(y)−g(d))g(y)b2
, (71)

g(y)= (y−1)2

y
(72)

and
f (y)= a1φ1(y)+ a2φ2(y), (73)

with the ad hoc values

a = 1.2, a1 = a2 = 1.0 kPa, b1 = 2, b2 = 0.5, d1 =−2 kPa

for the material constants.
In Figure 2, the nominal stress (T22/λ2)-strain behavior is depicted for λm = 2.5, and from the figure

it is clear that our model produces stiffer stress when a magnetic field is applied and stress softening
Mullin’s behavior is simulated. The behavior of the stress difference depicted in Figure 3 due to two
different magnetic field values is similar to the experimental behavior found in Coquelle and Bossis
[2006].

4.1.2. Anisotropy induced by a uniaxial prestretch. Here, uniaxial deformations of the nonvirgin MS
material in directions different from the uniaxial prestretch direction are studied. Experiments on these
types of deformations on a non-MS material have been done by Machado et al. [2012], and Shariff
[2014] has developed a model to successfully describe these deformations. Consider a uniaxial prestretch
deformation in the 2-direction (corresponds to 0◦) of S-configuration virgin samples defined by

U(λ)≡ diag(1/
√
λ, λ, 1/

√
λ), (74)

where 1≤ λ≤ λm .
Then a set of smaller S-configuration specimens is cut from each of these preconditioned large samples

in different directions and each direction corresponds to an angle θ (the angle subtended, anticlockwise,
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Figure 2. Simple tension in a fixed 2-direction for different magnetic field values.

1
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)

λ2

Figure 3. Simple tension in a fixed 2-direction, where λ= λ2 and 1t2 = T22/λ2 (λ, 10)− T22/λ2 (λ, 0).

from the 2 direction). Each of these smaller specimens is then subjected to a uniaxial deformation in one
of these directions and we let this direction to be the e2 direction, where the Cartesian components of
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the principal directions of U are given by

e1 ≡

c
s
0

 , e2 ≡

−s
c
0

 , e3 ≡

0
0
1

 , (75)

where c = cos(θ), s = sin(θ) and 0≤ θ ≤ π/2. Consider the extremum values

ŝ(max)
i = max

1≤λ≤λm

√
ei ·U2(λ)ei , ŝ(min)

i = min
1≤λ≤λm

√
ei ·U2(λ)ei (76)

of the prestretch deformation in the ei directions. The extremum values given in (76) are [Shariff 2014]:

ŝ(max)
1 =

{
1, 1≥ c ≥

√
λm(1+ λm)/(1+ λm + λ2

m),

fc(λm), 0≤ c ≤
√
λm(1+ λm)/(1+ λm + λ2

m),
(77)

ŝ(min)
1 =


1, 0≤ c ≤

√
2
3 ,

fc
(
c2/(2(1− c2))

)1/3
,

√
2
3 ≤ c ≤

√
2λ3

m/(1+ 2λ3
m),

fc(λm),
√

2λ3
m/(1+ 2λ3

m)≤ c ≤ 1,

(78)

ŝ(max)
2 =

{
1, 1≥ s ≥

√
(λm(1+ λm))/(1+ λm + λ2

m),

fs(λm), 0≤ s ≤
√
(λm(1+ λm))/(1+ λm + λ2

m),
(79)

ŝ(min)
2 =


1, 0≤ s ≤

√
2
3 ,

fs
(
s2/(2(1− s2))

)1/3
,

√
2
3 ≤ s ≤

√
2λ3

m/(1+ 2λ3
m),

fs(λm),
√

2λ3
m/(1+ 2λ3

m)≤ s ≤ 1,

(80)

ŝ(max)
3 = 1, ŝ(min)

3 =
1
λm
, (81)

where

fc(λ)=

√
(1/λ− λ2)c2+ λ2, fs(λ)=

√
(1/λ− λ2)s2+ λ2. (82)

The maximum and minimum values for the principal-direction line elements corresponding to (75)
during the deformation of the prestretch nonvirgin material are

s(max)
i =

{
ŝ(max)

i , 1≤ λi ≤ ŝ(max)
i ,

λi , λi ≥ ŝ(max)
i ,

s(min)
i =

{
ŝ(min)

i , 1≥ λi ≥ ŝ(min)
i ,

λi , λi ≤ ŝ(min)
i .

(83)

Here, the magnetic field hl = he2 is considered. For this type of deformation ζ1 = ζ3 = 0 and ζ2 = 1.
For θ = 0◦, λ1 = λ3 and the axial nominal stress

S2 =

η(λ2, s(max)
2 ) f (λ2)− η(1/

√
λ2, 1/

√
s(max)

2 ) f (1/
√
λ2)+ λ2

∂z
∂λ2

(λ2, h)−µoh2/(2λ2
2)

λ2
. (84)
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Figure 4. Induced anisotropy represented by the theoretical uniaxial stress-strain re-
sponses for the different angles between the first and second loading directions
(hl = he2).

In the case of when θ is nonzero, λ1 6= λ3 in general and

S2 =

η(λ2, s(max)
2 ) f (λ2)− η(λ3, s(min)

3 ) f (λ3)+ λ2
∂z
∂λ2

(λ2, h)−µoh2/(2λ2
2)

λ2
. (85)

Note that for the non-0◦ deformations, the value for λ3 in (85) is obtained from λ2 via the equation

η(λ3, s(min)
3 ) f (λ3)= η(1/(λ2λ3), s(min)

1 ) f (1/(λ2λ3)), (86)

considering the boundary stress condition T33 =−µ0h2/(2λ2
2), the incompressibility condition λ1λ2λ3 =

1 and assuming T11 = T33, where Ti j are the components of the total stress T relative to a basis that
coincide with the basis {e1, e2, e3}.

The anisotropic stress softening behavior for λm = 2.5 is clearly shown in Figure 4, where the behavior
for h = 0 is similar to the Machado et al. [2012] experiment.

4.2. Anisotropy induced by a simple shear predeformation. The proposed model is based on direction-
dependent parameters where their values depend on the principal directions of U . Hence, it is important to
study stress-softening behavior in a sequence of deformations when the principal directions of U change
continuously. An example of such deformation is the simple shear deformations where the principal
directions of U change continuously during the deformation. Shariff [2014] has studied anisotropic
simple shear stress softening behavior for non-MS materials and the calculations in this section follow
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that paper. Consider the prestretching of a material by a simple shear deformation described by

U2(γ )≡

1 γ 0
γ 1+ γ 2 0
0 0 1

 , (87)

where 0≤ γ ≤ γm and γ is commonly called the amount of shear.
Without loss of generality, the total stress normal to the plane of shear is assumed to be zero, since

incompressibility allows the superposition of an arbitrary hydrostatic stress without effecting the defor-
mation. In view of this, the total shear stress is

σs =

[
η(λ1, α1) f (λ1)− η(λ2, α2) f (λ2)+ ζ1λ1

∂z
∂λ1

(λ1, h)− ζ2λ2
∂z
∂λ2

(λ2, h)
]

cs

+
2

λ2
1− λ

2
2

[
z(λ1, h)− z(λ2, h)

]
(e1 · a)(e2 · a)γ cs

=

[
η(λ1, α1) f (λ1)− η(λ2, α2) f (λ2)

+µ0h2
(
−d1ζ1λ1

2(λ1− a)+ 1
((λ1− a)2+ λ1)2

+ d1ζ2λ2
2(λ2− a)+ 1

((λ2− a)2+ λ2)2
+
ζ1

λ2
1
−
ζ2

λ2
2

)]
cs

+
2µ0h2

λ1+ λ2

(
d1(2a− 1− λ1− λ2)

[(λ1− a)2+ λ1][(λ2− a)2+ λ2]
−
λ1+ λ2

2λ1λ2

)
(e1 · a)(e2 · a)γ cs, (88)

where [Bustamante and Shariff 2015]

c =
1

√

1+ λ2
1

, s =
λ1

√

1+ λ2
1

, c2
− s2
=−γ cs, (89)

λ1 =
γ +

√
γ 2+ 4
2

≥ 1, λ2 =
1
λ1
=

√
γ 2+ 4− γ

2
≤ 1, λ3 = 1. (90)

Note that c and s in this section are different from those defined in Section 4.1.2.

4.2.1. Simple shear of the prestretch in the primary shear direction. Consider a simple shear deformation
of the prestretched material in the same direction as the primary shear direction of the virgin material
[Shariff 2014]. The components of the principal directions of U of this nonvirgin simple shear are

e1 ≡

c
s
0

 , e2 ≡

−s
c
0

 , e3 ≡

0
0
1

 . (91)

For a fixed c and s,

s(max)
1 = max

0≤γ≤γm

√
(γ s+ c)2+ s2, s(min)

1 = min
0≤γ≤γm

√
(γ s+ c)2+ s2,

s(max)
2 = max

0≤γ≤γm

√
(γ c− s)2+ c2, s(min)

2 = min
0≤γ≤γm

√
(γ c− s)2+ c2,

s(max)
3 = s(min)

3 = 1 .
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Figure 5. Simple shear loadings and unloadings in the primary shear direction.

After some manipulation, the values

s(max)
1 =

√
(γms+ c)2+ s2, s(min)

1 = 1, 0≤ γ ≤ γm, γm ≥ 0,

are obtained. For 0≤ γm ≤ 2,
s(max)

2 = 1, 0≤ γ ≤ γm,

and for γm > 2

s(max)
2 =

{√
(γmc− s)2+ c2 , 0≤ γ ≤ (γ 2

m − 4)/(2γm),

1, (γ 2
m − 4)/(2γm) < γ ≤ γm .

For γm > 1,

s(min)
2 =

{
c, 0≤ γ < (γ 2

m − 1)/γm,√
(γmc− s)2+ c2, (γ 2

m − 1)/γm ≤ γ ≤ γm,

and for 0≤ γm ≤ 1

s(min)
2 =

√
(γmc− s)2+ c2, 0≤ γ ≤ γm .

The shear stress σs for the primary loading is

σs = ( f (λ1)− f (λ2))cs. (92)

The shear stress for the unloading and reloading of the prestretched material is given by

σs =
(
η1(λ1, s(max)

1 ) f (λ1)− η2(λ2, s(min)
2 ) f (λ2)

)
cs. (93)

For illustration purposes the ad-hoc values

a = 1.2, a1 = a2 = 1.0 kPa, b1 = 1.5, b2 = 0.5, d1 =−2 kPa,
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Figure 6. Simple shear loadings and unloadings in the primary shear direction in the
presence of the Lagrangean magnetic field hl ≡ [h, 0, 0]T .

are used.
Figure 5 depicts the loading and unloading curves for γm = 2 and γm = 3 when h = 0. It is clear from

Figure 5 that the stress-deformation curves behave as expected.
Only results for constant magnetic fields hl ≡ [h, 0, 0]T , hl ≡ [0, h, 0]T and hl ≡ [0, 0, h]T are given,

taking note that the conditions in (4) are automatically satisfied. In Figure 6, the stress-strain curves
for hl ≡ [h, 0, 0]T are depicted for h = 0, 5, 10. From the figure, it is found that the magnitude of the
shear stress is reduced, when a magnetic field in the same direction as the shear direction is applied. The
results for hl ≡ [0, h, 0]T are depicted in Figure 7, where in this case, a larger shear stress is required in
the presence of a magnetic field. It is clear from (88), as expected, the shear stress is not affected by the
magnetic field hl ≡ [0, 0, h]T ; hence, the corresponding graph will not be depicted.

In view of (88), in contrast to the simple tension case described in Section 4.1, no shear stress is re-
quired to maintain the undeformed deformation when the magnetic field h 6= 0 for the magnetic directions
considered in this section.

4.2.2. Simple shear of the prestretch in the opposite direction to the primary loading direction. In this
section, the prestretched material is sheared in the direction opposite to the primary direction up to γ = 2.
The components of the principal eigenvectors for this opposite direction shearing are

e1 ≡

−c
s
0

 , e2 ≡

s
c
0

 , e3 ≡

0
0
1

 . (94)

Consider the extremum prestretch values

ŝ(max)
i = max

0≤γ≤2

√
ei ·U2(γ )ei , ŝ(min)

i = min
0≤γ≤2

√
ei ·U2(γ )ei , (95)
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Figure 7. Simple shear loadings and unloadings in the primary shear direction in the
presence of the Lagrangean magnetic field hl ≡ [0, h, 0]T .

of the line elements of the presheared material in the ei directions for γm = 2.

ŝ(max)
1 =

√
(2s− c)2+ s2, ŝ(min)

1 = s,

ŝ(max)
2 =

√
(2c+ s)2+ c2, ŝ(min)

2 = 1.

The maximum and minimum values for the relevant principal-stretch line elements when 0≤ γ ≤ 2 are

s(max)
1 =

{
ŝ(max)

1 , 1≤ λ1 ≤ ŝ(max)
1 ,

λ1, ŝ(max)
1 ≤ λ1 ≤ 1+

√
2,

s(min)
2 =

{
ŝ(min)

2 , 1≥ λ2 ≥ ŝ(min)
2 ,

λ2, ŝ(min)
2 ≥ λ2 ≥

√
2− 1,

s(max)
3 = s(min)

3 = 1.

4.2.3. Simple shear of the prestretch in a direction perpendicular to the primary plane of shear. Here,
the prestretched material is sheared in a direction perpendicular to the initial plane of shear up to γ = 2.
The components of the principal eigenvectors for this shearing are

e1 ≡

0
s
c

 , e2 ≡

 0
c
−s

 , e3 ≡

1
0
0

 . (96)

In view of (95), the extremum values of the prestretch line elements are

ŝ(max)
1 =

√
4s2+ 1, ŝ(min)

1 = 1, ŝ(max)
2 =

√
4c2+ 1, ŝ(min)

2 = 1.
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Figure 8. Simple shear in directions different from the preshear direction.

The maximum and minimum values for the relevant principal-stretch line elements for 0≤ γ ≤ 2 are

s(max)
1 =

{
ŝ(max)

1 , 1≤ λ1 ≤ ŝ(max)
1 ,

λ1, ŝ(max)
1 ≤ λ1 ≤ 1+

√
2,

s(min)
2 =

{
ŝ(min)

2 , 1≥ λ2 ≥ ŝ(min)
2 ,

λ2, ŝ(min)
2 ≥ λ2 ≥

√
2− 1,

s(min)
3 = s(max)

3 = 1.

Figure 8 depicts, for h= 0, the results for various loadings given in Sections 4.2.2 and 4.2.3. The theory
closely predicts the experimental results of Muhr et al. [1999], where they stated that “the softening is
greatest for simple shear in the same direction, least for simple shear in the opposite direction and
intermediate for shear at 90 degrees”. The shear stress-strain behavior in the presence of a Lagrangean
magnetic field in a direction parallel to the shear direction or perpendicular to the shear direction and
parallel to the shear plane or perpendicular to the shear plane is similar to that described in 4.2.1.

5. Conclusions

The motivating key for this work is to provide a phenomenological model that could describe three
dimensional anisotropic stress softening behavior (Mullins effect) of MS materials in the presence of a
magnetic field, which up-to-date has not been proposed in the literature. The proposed model uses a set
of spectral invariants, where each invariant has a clear physical meaning, and hence have an experimental
advantage over other types of invariants with no physical interpretation such as the classical invariants
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by Spencer and Rivlin [1962]. Due to the absence of relevant experimental data, at the moment we are
not concerned with the construction of specific forms of the functions f , η, g and q; nevertheless, the
crude specific forms proposed in this paper seem to reasonably predict the anisotropic stress softening
behavior of MS elastomers in the presence of a magnetic field.
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PREDICTIVE MODELING OF MECHANICAL PROPERTIES OF METAL FILLED
ANODIC ALUMINUM OXIDE

VLADIMIR V. BARDUSHKIN, YULIA I. SHILYAEVA, SERGEY A. GAVRILOV, MAXIM V. SILIBIN,
VICTOR B. YAKOVLEV, MIKHAIL L. ZHELUDKEVICH AND NATALIA I. POPENKO

Filling dielectric porous matrices, particularly anodic aluminum oxide, with metal confers a promising
solution for nanocomposite creation. In this regard, the problem of estimating and predicting the phys-
ical and mechanical properties of such materials is of prime importance. The present work focuses on
the numerical modeling of the effective and ultimate stress-strain (under compression) characteristics
of nanocomposites based on anodic aluminum oxide with unidirectional filamentary pores filled with
different metals (In, Sn, and Zn). The dependences of the tensor components of the effective elastic
moduli, coefficients of elastic anisotropy (in different directions), and compression strength (along the
nanowires) on the structure parameters and the concentration of nanowires are investigated.

1. Introduction

One of the possible ways to create nanocomposites is filling dielectric ordered porous matrices with metal.
In this regard, porous anodic aluminum oxide (AAO) [Yao et al. 2008] is the most widely used candidate.
AAO-based nanocomposites have unique characteristics and are promising for a wide range of possible
applications for optical systems and sensors, as well as functional parts of solar and thermoelectric
batteries [Poddubny et al. 2013]. The high thermal stability and the possibility of precise control of
geometrical parameters and consequently size-dependent properties make AAO the material of choice
in many cases. Produced by a two-step anodization by the method of [Masuda and Fukuda 1995], AAO
has a high degree of ordering — representing an array of hexagonal cells with cylindrical pores. It allows
the creation of nanocomposites with well controllable properties and is an ideal model structure for fun-
damental research. Moreover, AAO-based template synthesis is an alternative to expensive lithographic
techniques.

The mechanical properties of nanocomposites become very important when considering practical
applications. The basis of such analysis is the calculation of performance (effective) and ultimate
stress-strain properties [Shermergor 1977; Pobedrya 1984; Khoroshun et al. 1989; Mori and Tanaka
1973; Kanaun and Levin 1993; Milton 2002; Buryachenko 2007; Böhm 2013; Bardushkin and Yakovlev
2011; Sychev and Bardushkin 2013]. Thus, the task of developing predictive methods for physical and
mechanical properties of matrix composites like “AAO-nanowires” is very relevant.

The problem of predicting the effective elastic properties of heterogeneous media has been considered
by many authors. A detailed review of studies on this subject can be found in [Buryachenko 2007; Böhm
2013; Bardushkin and Yakovlev 2011; Sychev and Bardushkin 2013].

Keywords: nanocomposite, modeling, anodic aluminum oxide, performance elastic characteristics, compressive strength.

583

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2016.11-5
http://dx.doi.org/10.2140/jomms.2016.11.583
http://msp.org


584 BARDUSHKIN, SHILYAEVA, GAVRILOV, SILIBIN, YAKOVLEV, ZHELUDKEVICH AND POPENKO

Predicting the distribution of local (internal) stress and deformation fields is key for a correct analysis
of the ultimate strength properties of heterogeneous media. The local elastic characteristics include
operators (tensors) of stress/deformation concentration and volumetric density of deformation energy
[Buryachenko 2007; Böhm 2013; Bardushkin and Yakovlev 2011; Sychev and Bardushkin 2013]. The
distribution analysis of the above characteristics allows correct predictions of the behavior of materials
under loads (especially extreme). It can provide recommendations on the selection of components taking
into account the concentration of heterogeneous elements and features of the shape structure and inclusion
orientation in the material matrix.

The concept of concentration tensors connecting the average values in the phase with average values in
the whole body (or in a representative volume element) was introduced by Hill [1963]. The solution to the
problem of strength concentration on the surface of an ellipsoidal heterogeneity in an anisotropic medium
was obtained in [Laws 1977; Kunin and Sosnina 1973; Buryachenko and Lipanov 1986; Yakovlev and
Nikitin 1997; Shermergor and Yakovlev 1998; Maslov 1987]. Concentration functionals and operators
expressing stress and strain in a heterogeneous body by using those in a homogeneous body with effi-
cient features were described in [Pobedrya and Gorbachev 1984]. In [Pobedrya and Gorbachev 1984;
Gorbachev 1989], explicit analytical expressions for the concentration tensors in the case of a layered
composite and in the case of a cylindrical hole in an infinite homogeneous isotropic medium were ob-
tained. The concentration tensors in an n-dimensional elastic medium with an n-dimensional spherical
inclusion were suggested in [Gorbachev and Mikhailov 1993]. By assuming homogeneity of the stress
and strain fields (via the generalized singular approximation used to determine the effective properties of
heterogeneous media [Shermergor 1977]), the expressions for calculating these operators were obtained
in [Yakovlev 2000; Kolesnikov et al. 2005; Bardushkin and Yakovlev 2005; Bardushkin et al. 2013], in
which the effect of composite microstructures on their local characteristics was investigated.

2. Formulation of the problem and model

The aim of this work is to solve the two main issues of predicting the elastic-strength properties of
nanocomposites based on anodic aluminum oxide with filamentary pores filled with metal (In, Sn, and
Zn), namely:

(1) predicting the operational (effective) elastic characteristics, and

(2) predicting the ultimate stress-strain (under compression) characteristics.

The problem of predicting the mechanical properties can be solved firstly by constructing a model taking
into account the structure of the nanocomposites by introducing a dimensionless structural parameter
associated with the concentration of heterogeneous elements; and secondly by performing the numerical
modeling of elastic-strength characteristics.

2.1. Introduction of a dimensionless structural parameter. The following points should be resolved
before creating a numerical model for the performance and ultimate stress-strain properties of matrix
composites like “AAO-nanowires”:

(a) a correlation between the distance between the nanowires and structural parameters that can be
measured directly, and
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Figure 1. Schematic representation of the composite structure (left), several elementary
volumes (middle), an elementary volume in the cross-sectional plane (right).

(b) the derivation of mathematical formulas convenient for numerical analysis without losing informa-
tion about the structure of the composite [Bardushkin and Yakovlev 2011; 2005; Kolesnikov et al.
2005; Bardushkin et al. 2013; Shilyaeva et al. 2013b; 2013a; 2014].

The actual structure of composites must be taken into account when conducting simulations, as described
earlier [Shilyaeva et al. 2014]. As it is known, AAO consists of densely packed hexagonal cells that are
adjacent to each other with their sides. Therefore, we assume that in a considered uniaxially reinforced
composite the components are isotropic and the position of nanowires in the template is random. How-
ever, the material is assumed to be statistically homogeneous as a whole. This assumption results in
the existence of an average distance between wires that may be related to the loading of the metal in
the composite matrix. An average volume element in the shape of a regular hexagonal prism with one
cylindrical nanowire oriented along the z axis in the center can be considered. Some of these elementary
volumes are schematically shown in Figure 1.

One can assume that each nanowire has an average radius r and the distance from the center of a
regular hexagon to its side is r + h (see Figure 1, right). The base area of the elementary cell is then
S = 2

√
3(r + h)2, and the cross sectional area of the wire is Sw = πr2. Defining the concentration of

wires as vw = Sw/S, we have vw = π/(2
√

3(1+ h/r)2), vm = 1− vw.
The index “w” here and below denotes the values related to the metallic wires, while “m” indicates

those related to the matrix.
The characteristic parameter h/r defining the structure of the composite can thus be represented by

the concentration of nanowires as
h
r
=

√
π

2
√

3 · vw
− 1. (1)

It is evident that the maximum theoretical value of the concentration of nanowires is observed when
h/r→ 0, which corresponds to vw→ π/(2

√
3)≈ 0.9. The minimum value of the concentration of wires

is observed when h/r→∞; hence, vw→ 0. This range of concentrations for nanowires corresponds to
the boundaries of the applicability for the suggested approach of simulating such materials.

2.2. Elastic characteristics. The effective elastic characteristics of the considered composites can be
determined by the fourth-rank tensor c∗ (“∗” here and below indicates that composite’s effective char-
acteristics are considered) connecting the average values of stresses 〈σi j (r)〉 and strains 〈εkl(r)〉 in the
material via

〈σi j (r)〉 = c∗i jkl〈εkl(r)〉, i, j, k, l = 1, 2, 3,
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where r is the radius-vector of a random point in the medium. Angular brackets here and below define the
procedure of ensemble averaging. For statistically homogeneous composites, i.e., when performing the
hypothesis of ergodicity, it coincides with the averaging in volume [Shermergor 1977; Pobedrya 1984;
Khoroshun et al. 1989; Mori and Tanaka 1973; Kanaun and Levin 1993; Milton 2002; Buryachenko
2007; Böhm 2013; Bardushkin and Yakovlev 2011; Sychev and Bardushkin 2013; Walter et al. 1993;
Mitin et al. 2001].

The equations for the equilibrium of an elastic heterogeneous medium should be solved to conduct
a correct analysis of elastic properties of composites which depend on the interaction of elements of
heterogeneity, composition, shape, orientation, and concentration of components. The ratio for the
numerical calculations of an effective elastic moduli tensor c∗ is usually hard to obtain. Therefore,
various approximations are used for its calculation. Within the framework of the generalized singular
approximation of the theory of random fields [Shermergor 1977], only the singular component of Green’s
tensor of equations for the equilibrium is used. It depends only on the Dirac delta function. A homoge-
neous reference body whose material constants are included in the final expression for calculating c∗ is
also introduced. The physical meaning of the generalized singular approximation is the assumption of
homogeneity of the stress and strain fields within the element of heterogeneity. In this case, the expression
for calculating c∗ is (indices omitted) [Shermergor 1977; Walter et al. 1993; Mitin et al. 2001]

c∗ = 〈c(r)(I − g(r)c′′(r))−1
〉〈(I − g(r)c′′(r))−1

〉
−1, (2)

where I is the fourth-rank unit tensor; c(r) is elastic modulus tensor; the double primes indicate the
difference between the corresponding parameters of a heterogeneous medium and a homogeneous refer-
ence body, characteristics of which are denoted hereinafter by the superscript “ref”: c′′(r)= c(r)− cref;
g(r) is the integral of the singular component of the second derivative of Green’s tensor of equations for
the equilibrium, which is a fourth-rank tensor. Components gi jkl of g(r) tensor can be calculated upon
knowing components aikl j of the fourth-rank tensor A as

aikl j =−
1

4π

∫
nkn j t−1

il d�, (3)

and then symmetrization [Shermergor 1977; Walter et al. 1993; Mitin et al. 2001] is performed using
pairs of i and jand k and l indices.

In (3), d� = sin θ dθ dφ is an element of the solid angle in a spherical system of coordinates; t−1
il

are the elements of the reverse matrix T where elements til = cref
ikl j nkn j ; nk and n j (k, j = 1, 2, 3) are

components of a vector of an external normal to the inclusion’s surface. For ellipsoidal inclusions with
principal semiaxes l1, l2, and l3, the components of the normal vector are determined by the relationship

n1 =
1
l1

sin θ cosφ, n2 =
1
l2

sin θ sinφ, n3 =
1
l3

cos θ.

The relation (2), as shown in [Bardushkin and Yakovlev 2011], can be used to calculate the effective char-
acteristics of a statistically homogeneous matrix composite with ellipsoidal inclusions oriented relative
to each other.

As it was mentioned, under the condition of ergodicity it is possible to use volume averaging for each
component of the composite [Shermergor 1977; Pobedrya 1984; Khoroshun et al. 1989; Mori and Tanaka
1973; Kanaun and Levin 1993; Milton 2002; Buryachenko 2007; Böhm 2013; Bardushkin and Yakovlev
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2011; Sychev and Bardushkin 2013]. Then, the averaging operation over the entire material volume for
some random variable a(r) is reduced to summing

〈a(r)〉 =
∑

s

vs〈as(r)〉,

where vs is the volumetric concentration of the s-type component and as(r) is random variable
∑

s vs = 1
corresponding to the specified component. In particular, for a two-component composite containing
isotropic inclusions and the matrix, the procedure of averaging is reduced to summing

〈a(r)〉 = vwaw + vmam . (4)

When considering inclusions in the form of nanowires with principal semiaxes l1 = l2 = r and l3→∞

for the normal vector components, the obtained ratios are

n1 =
1
r

sin θ cosφ, n2 =
1
r

sin θ sinφ, n3→ 0.

The elastic characteristics of the matrix can be taken as the parameters of the reference body [Khoroshun
et al. 1989]. Then in (2) c′′(r)= c(r)− cm , and c′′(r)= cw− cm in calculations for the nanowires and
c′′(r) = 0 for the matrix. Considering (4), (2) will take the form for calculating the effective elastic
properties of composites as

c∗ = (vwcw(I − gw(cw − cm))
−1
+ vmcm)× (vw(I − gw(cw − cm))

−1
+ vm I )−1. (5)

In (5), cw and cm are the elastic moduli tensors for the wires and matrix, respectively; gw is a tensor g(r)
(for the wires) with the components calculated by (3).

2.3. Ultimate strength characteristics. When solving the problem of predicting ultimate strength prop-
erties of composites under compression, the situation associated with the fast fracture of materials is
considered. The solution is based on the method of predicting the ultimate strength properties of matrix
composites under compression, which is based on the use of the stress concentration operator (fourth-
rank tensor). This operator binds the local values of the stress tensor σi j (r) with the average external
stress of material 〈σkl(r)〉 [Buryachenko 2007; Böhm 2013; Bardushkin and Yakovlev 2011; Sychev and
Bardushkin 2013]

σi j (r)= K σ
i jkl(r)〈σkl(r)〉, i, j, k, l = 1, 2, 3. (6)

The kind and magnitude of the stress σi j (r) occurring inside the heterogeneous element of any type can
be determined knowing the nature of the external impact 〈σkl(r)〉 based on the definition (6) for K σ (r).
It should be emphasized that the emerging local (internal) stresses either in the matrix or in the wires
will differ in appearance and size from the applied impact 〈σkl(r)〉 [Bardushkin and Yakovlev 2011].

The idea of using the relation (6), providing a means to link macroscopic stresses with microscopic
stresses within the microstructure of the material, in order to predict the ultimate strength characteristics
was described in [Fritsch et al. 2009; 2010; 2013; Pichler and Hellmich 2011]. The solution to the
problem of predicting the strength characteristics for the matrix composites (within the framework of the
generalized singular approximation of random field theory [Shermergor 1977]) is given in [Kolesnikov
et al. 2014].
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The matrix plays a fundamental role in the composites by making the material monolithic and redis-
tributing the mechanical stresses between all elements of heterogeneity. The matrix breakdown leads to
full failure of the material. Therefore, it is believed [Kolesnikov et al. 2014; Bardushkin et al. 2015] that
stress applied to the composite (for example, compression in a certain direction) becomes destructive only
when the internal stress in the matrix exceeds its ultimate strength. Here the magnitude of the internal
stress in the matrix under external impact is compared to the known value of the ultimate strength of
the matrix set experimentally or taken from the respective references. The value of the ultimate strength
of the matrix should correspond to the external stress (for example, compression performed in the same
direction as that for the considered composite) applied to a homogeneous body consisting only of the
matrix material.

The equations for the equilibrium of an elastic heterogeneous medium must be solved for the correct
analysis of the local stress concentration in the composite that allows the consideration of the interaction
of elements of heterogeneity, composition and structure of the material, and concentration of wires.
However, in general (as well as when calculating the effective elastic properties c∗), it is impossible
to derive the relation for numerical calculations of the stress concentration operator K σ (r). Therefore,
we use the generalized singular approximation of the theory of random fields for its evaluation (see
Section 2.2). In this case, the expression for K σ (r) is (indices omitted) [Bardushkin and Yakovlev 2011;
Sychev and Bardushkin 2013]

K σ (r)= c(r)(I − g(r)c′′(r))−1
×〈c(r)(I − g(r)c′′(r))−1

〉
−1. (7)

The analysis of (7) shows that when evaluating the local stress-strain state of a heterogeneous medium
using a stress concentration operator, the information about an external mechanical impact is excluded,
because K σ (r) depends only on the material parameters of the medium and the composite structure. As
before (see Section 2.2), taking the elastic characteristics of the matrix as the parameters for the reference
body and considering (4), (7) will take the form

K σ
m = cm(vwcw(I − g(cw − cm))

−1
+ vmcm)

−1. (8)

3. Numerical calculations

3.1. Numerical modeling of the elastic properties. For unidirectional matrix composites with isotropic
components, like metal nanowires of In, Sn, and Zn in the AAO matrix, the model calculations for the
effective elastic moduli c∗ were carried out. Information about elastic characteristics of the composite
components is known from the literature [Grigor’ev and Meilikhov 1991; Xia et al. 2004; Gu et al. 2004],
and is given in Table 1.

Material Young’s modulus E (GPa) Poisson’s ratio ν

Indium 10.5 0.46
Tin 48 0.33
Zinc 115 0.325

Aluminum oxide 140 0.32

Table 1. Elastic characteristics of the composite components.
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Figure 2. Effective elastic moduli as a function of h/r for model composites.

Considering wires as ellipsoids of rotation with semiaxes l1 = l2 = r = 1 and l3→∞, calculations of
the tensor components c∗ depending on the structural parameter h/r were carried out using (5).

In the calculations, we used tensors written in the matrix form. The nonzero elements ci j (i, j =
1, . . . , 6) of the symmetrical matrix of the elastic moduli tensor c for an isotropic material can be ex-
pressed through its Young’s modulus E and Poisson’s ratio ν [Shermergor 1977]:

c11 = c22= c33 =
E(1− ν)

(1+ ν)(1− 2ν)
;

c44 = c55= c66 =
E

2(1+ ν)
;

c12 = c13= c23 =
Eν

(1+ ν)(1− 2ν)
.

The results of the numerical modeling of the nonzero elements c∗i j of the matrix of the effective elastic
moduli tensor c∗ depending on the structural parameter h/r are given in Figure 2.

The model calculations of the elastic anisotropy coefficients Ax and Az (along x and z axes respec-
tively) were also carried out: Ax = (c∗11 − c∗12)/(2c∗44), Az = (c∗33 − c∗23)/(2c∗66). The values of the
anisotropy coefficient Ay (along the y axis) are similar to the values of the anisotropy coefficient Ax .
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Figure 3. Anisotropy coefficients as a function of h/r for model composites.

Figure 3 shows the results of the numerical modeling of the anisotropy coefficients Ax and Az depending
on the structural parameter h/r .

Note that in Figures 2 and 3, the resulting curves for the composite with Zn nanowires are shown
separately. This is because the symmetry of the effective elastic properties of the material is close
to isotropic (see the elastic moduli of the components presented in Table 1). Thus, for the effective
elastic moduli the relations can be expressed as c∗11 = c∗22 ≈ c∗33, c∗44 = c∗55 ≈ c∗66, c∗12 ≈ c∗13 = c∗23,
c∗66 = (c

∗

11− c∗12)/2, and are applied [Shermergor 1977], and the anisotropy coefficients Ax and Az for
this composite are slightly different from 1.

3.2. Numerical modeling of the ultimate stress properties. This subsection discusses failure of compos-
ites when exposed to compressive stress directed along the z axis (i.e., along the wires). This situation
is most frequently encountered in practice.

The analysis of the dependence of compressive strength limits on the composition and concentration
of components was carried out for model composites.

The computational procedure used to determine the ultimate compressive characteristics for model
composites was arranged in the work as follows. It was assumed that the external action 〈σkl(r)〉 (MPa)
was given in the laboratory coordinate system Oxyz by a (3× 3) matrix with the only nonzero element
σ33 = B. First, any value of the structural parameter h/r was recorded for the model composite. Then the
operator K σ

m was calculated by formula (8). Then a certain positive value B was assumed. Then, elements
σi j (i, j = 1, 2, 3) of the matrix of the stress tensor (in AAO) were calculated based on the definition (6)
of the stress concentration operator. After that the comparison of the values of the computed element σ33

with the value of the limit of compressive stress for aluminum oxide equal to σm = 4000 MPa [Grigor’ev
and Meilikhov 1991, p. 63] was made. If σ33 < σm , then value B was increased by 1 MPa and the
calculation of the stress tensor matrix elements σi j in AAO was repeated again. The computational
procedure in each case was stopped as soon as the condition σ33 ≥ σm was met, and the last value of B
was taken as the compressive strength limit of the whole composite in the direction parallel to the wires.
Then a new value of the structural parameter h/r was recorded and the calculation of the compressive
strength limit for the model composite was repeated again.
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Figure 4. Compressive strength as a function of h/r for model composites.

Figure 4 shows the results of the numerical modeling of compressive strength limits σst for the above
described load mode of model composites depending on the structural parameter.

4. Conclusions

The performed model studies allow us to draw the following conclusions.
The considered composites possess hexagonal symmetry for the effective elastic properties [Shermer-

gor 1977], since for nonzero elements c∗i j in the symmetric matrix tensor c∗ the following relations were
performed: c∗11 = c∗22, c∗44 = c∗55, c∗13 = c∗23, c∗66 = (c

∗

11− c∗12)/2 (Figure 2).
When 0 < h/r < 6, the dependence of the nonzero c∗i j values on the average distance between the

wires is essentially nonlinear. When h/r > 6 (i.e., when νw→ 0), c∗i j stabilizes around values equal to
the isotropic elastic moduli of AAO, for the elements ci j of the matrix elastic moduli tensor of which
the following relations are valid: c11 = 200.34; c44 = 53.03; c12 = 94.28. Indeed, when h/r > 6, the
following equations for c∗i j start executing: c∗11 = c∗22 = c∗33, c∗44 = c∗55 = c∗66, c∗12 = c∗13 = c∗23 (Figure 2).
Moreover, Ax → 1, Az→ 1 (Figure 3). The strongest variation of anisotropy occurs along z axis. The
values of anisotropy parameters in the composites show the strongest deviations from 1 when changing
the structural parameter h/r in the range of 0 to 2.

In the considered composites, the dependence of σst on the parameter h/r has a steady and nonlinear
character; moreover at 0.3< h/r < 3 this nonlinearity manifests itself most significantly.

Numerical modeling showed that the values σst are the same for composites with In, Sn, and Zn wires.
This result is explained by the known stress properties of the aluminum oxide and the direction of the
applied compression load. This follows from the simulation results of changing the values of the stress
concentration tensor components K σ

m (in matrix), described in [Bardushkin et al. 2013], since these values
were similar for composites with In, Sn, and Zn wires.

At average distances between the wires h/r > 6 there occurs a stabilization of σst values. With the
increase of h/r there is an increase in σst values of the ultimate stress limit for the composites up to the
values σm = 4000 MPa for ultimate strength of the AAO matrix.

At average distances between the wires h/r < 1, the ultimate stress limit value σst is most sensitive
to changes in its volume fraction.
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THE HEMISPHERICAL NANOPIT AT THE PLANE BOUNDARY
OF AN ELASTIC HALF-SPACE SUBJECTED TO

STATICALLY EQUIVALENT SHEAR TRACTIONS

CHANGWEN MI, ZHONGWEI SUN AND DEMITRIS KOURIS

The elastic deformation of a semi-infinite substrate containing a nanosized hemispherical pit on its plane
boundary crucially relies on the mechanical response of the pit surface. In this paper, we develop a mi-
cromechanical model that couples Gurtin and Murdoch’s model of surface mechanics with the classical
theory of elasticity, and we explicitly evaluate the stress concentration, displacement and stress distribu-
tion resulting from a family of statically equivalent shear tractions applied on the pit surface. We found
that two intrinsic dimensionless parameters, both constructed from the characteristic length and material
properties, govern the highly localized elastic field. Both the magnitude and sign of these parameters are
of great importance. Negative values tend to increase stress concentrations, whereas positive ones have
the opposite effect. We further highlight the consequences of our analysis by comparing a number of
shear tractions that correspond to the same torque. The comparison provides the means of evaluating the
degree of difference in elastic fields in the immediate vicinity of statically equivalent force distributions.

1. Introduction

The discontinuities in geometry and load distribution are primary causes of stress concentrations that
affect the otherwise smooth stress variations in elastic solids. The presence of geometric defects and
concentrated loads typically results in high stresses that are multiple times greater than their nominal
values in small and localized regions [Barber 2010]. Experimental methods and advanced theoretical and
numerical analysis are means of determining stress concentrations. Many results of practical engineering
importance can be found in the literature [Young and Budynas 2002].

Nevertheless, recent advancements in surface/interface mechanics call for a reevaluation of stress
concentrations near geometric defects at the nanoscale [Wang et al. 2011]. It is a fact that the area-
to-volume ratio of an elastic element is inversely proportional to its characteristic length [Sharma et al.
2003; Mi and Kouris 2014b]. The order of magnitude of this ratio can be as large as nine as the relevant
characteristic length goes from the macroscopic level down to the nanoscale. At such a small length
scale, the contribution of surface strain energy becomes comparable or even dominant to that of its
bulk counterpart in the total strain energy stored in the system [Streitz et al. 1994; Wang et al. 2011].
The linearly elastic model specifically tailored for a coherent surface/interface proposed by Gurtin and
Murdoch [1975; 1978] has gained major popularity in a continuous effort to couple surface effects with
the classical theory of elasticity [Sharma et al. 2003; Mi and Kouris 2006; 2014a; 2014b; He and Li
2006; Kushch et al. 2013; Steigmann and Ogden 1999]. Closed-form, semianalytical and numerical
solutions have all been developed to investigate the consequences of material surface/interface on both
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the overall effective modulus and the localized elastic field [Wang et al. 2011]. Among these works,
stress concentration near geometric defects at the nanoscale is one of the most important foci [He and Li
2006; Mi and Kouris 2013].

Theoretical analysis performed within the context of Gurtin–Murdoch’s surface mechanics model
and the classical theory of elasticity shows that the introduction of surface effects inevitably calls for
a modification to the solution predicted by the classical theory of elasticity alone. The net effect is
dependent on the type of surface model and the material properties describing the mechanical behavior
of a solid surface. For example, for a spherical nanocavity embedded in an infinite or semi-infinite elastic,
substrate positive surface material parameters tend to alleviate the stress concentration effect, in the case
of a metal surface [He and Li 2006; Mi and Kouris 2013; 2015]. This argument is supported by molecular
dynamics simulations of a spherical cavity inside an aluminum substrate axially loaded at a high strain
rate [Mi et al. 2011]. It can also be expected that the inclusion of a surface mechanics model worsens
the stress concentration, provided that the sign of surface materials properties is reversed.

While previous studies focus on the stress concentration behavior near a nanoscale geometric defect
subjected merely to nontorsional loads, the present work is directed towards the investigation of stress
concentrations under torsional deformation modes. When a twisting moment is transmitted through a
rigid-sphere embedded in an elastic medium, shear tractions develop on the surface of the rigid inclusion
[Hill 1966; Miyao et al. 1975]. In geotechnical engineering, both the static and dynamic behaviors of
rigid inclusions provide practical means of exploring the response of infrastructure foundations resting in
soil environments [Kausel 2010; Osman and Rouainia 2012]. Rigid inclusions also find applications in
offshore engineering, where vessels and floating structures are supported by anchors of different shapes.
In large scale systems, attention is typically paid to the dynamic propagation of elastic waves generated
by programming the motion of a distant rigid sphere or by applying dynamic loads on the surface of a
distant void. Stress distributions in the vicinity of the rigid sphere or cavity are another concern [Eringen
1957]. Torsion is one of the most important loading conditions considered in the literature [Reissner and
Sagoci 1944; Williams 1971; Chadwick and Johnson 1971; Zakout et al. 1999].

The behavior of these solutions due to a rigid sphere or void at the nanoscale is intricate and requires
further consideration. These problems naturally arise in nanoelectromechanical systems, particularly in
those systems involving structural elements made from soft materials. Since both the bulk and surface
material properties of soft materials are several orders of magnitude lower than those of metals [Gere and
Goodno 2009; Markidou et al. 2005; Białopiotrowicz and Jańczuk 2002; Weijs et al. 2014], particles of
secondary phases easily serve as rigid inclusions. In this case, torsional loading naturally kicks in, due
to the strong resistance of rigid particles to both volume and shape changes. As an early attempt to reach
this goal, here we consider a nanosized hemispherical pit at the plane boundary of an elastic half-space
subjected to a family of statically equivalent shear tractions.

The static equivalence means that the first moment of any traction mode with respect to the z-axis
reduces to the same torque. The effects of the pit surface were modeled by the coherent surface model of
Gurtin and Murdoch. This model consists of three components: a definition of surface strain, a surface
constitutive relation, and a force-balance law, as detailed in the original article [Gurtin and Murdoch
1978] as well as in the main body of the present paper. The method of displacement potential renders us an
efficient solution strategy for a three-dimensional torsional problem like the one we are examining [Barber
2010]. A single Boussinesq displacement potential function represented by an infinite series is sufficient
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to yield the required solution that satisfies a given shear traction boundary condition. The obtained
solution converges rapidly as a function of the number of terms included in the series and is available in
closed-form for certain forms of shear tractions. This approach is capable of generating displacements
and stresses at any point in the pitted half-space, including the stress concentration conditions at the pit
surface.

We show that the resultant elastic field is extremely localized and is dependent upon to two key intrinsic
dimensionless parameters that are constructed from the pit radius, shear modulus of the half-space, and
the residual surface tension and shear modulus of the pit surface. The surface material parameter that
represents the dilatational deformation of an area element turns out to be irrelevant to twisting deforma-
tion. Depending on both the magnitude and sign of the two intrinsic dimensionless parameters, the pit
surface model could alleviate or aggravate the stress concentration and distribution to a certain extent.
Dimension analysis suggests that the pit surface effects are much more significant for a soft solid than
for a metal material. In addition, by comparing different modes of shear tractions resulting in the exact
same torque, the developed solution provided us a means of examining the degree of difference in elastic
stresses near statically equivalent force distributions.

In Section 2, we derive a micromechanical model to determine the displacements and stresses in the
half-space, which we use to derive both closed-form and semianalytical solutions in Section 3. The
causes and consequences of these solutions will also be discussed in detail in this section. Finally, in
Section 4, we discuss a number of conclusions drawn from the theoretical and numerical analysis.

2. Method of solution

We consider a hemispherical pit of radius a, centered at the free surface of a semi-infinite elastic solid,
as shown in Figure 1. The center of the pit was chosen as the common origin for the cylindrical (r, θ, z)
and spherical (R, ϕ, θ ) coordinates. The elastic half-space is modeled as an isotropic and linearly elastic
material with shear modulus G and Poisson’s ratio ν. The external loading is modeled by a family
of statically equivalent shear tractions applied on the hemispherical pit surface. The net moment of
these shear tractions with respect to the symmetry axis z corresponds to the exact same torque T . The
mechanical property of the pit surface is characterized by the residual surface stress τ0 and two surface
Lamé constants λ0 and µ0.

The method of displacement potentials was adopted to tackle the present problem. For the case of
axial symmetric torsion in the absence of body forces, a single harmonic function (e.g., λ3) is sufficient
to represent the solution. This harmonic function is part of the well known Boussinesq displacement
potentials that was first proposed by Boussinesq in his memoirs in 1888, and later quoted by Todhunter
and Pearson [2010]. The harmonic function λ3 automatically satisfies the elastostatic Navier’s equation

∇
2u+

1
1− 2ν

∇(∇ · u)= 0, (1)

via the representation 2Gu = ∇ × (kλ3), where u is the displacement vector and k denotes a unit
vector oriented in the z-direction. The displacement potential λ3 could be related to the more familiar
Papkovich–Neuber solution to the equilibrium equation of displacements (1) via [Barber 2010]

φ =−
1

4(1− ν)
∇ × (kλ3). (2)
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Figure 1. Geometry of the problem.

In terms of spherical coordinates, the displacements resulting from the single torsional potential λ3

read

2Gu R =
1
R
∂λ3

∂θ
, 2Guϕ =

cotϕ
R

∂λ3

∂θ
, 2Guθ =−

cosϕ
R

∂λ3

∂ϕ
− sinϕ

∂λ3

∂R
. (3)

The change of variable µ= cos[ϕ] transforms the displacement components into

2Gu R =
1
R
∂λ3

∂θ
, 2Guϕ =

µ

R
√

1−µ2

∂λ3

∂θ
, 2Guθ =

√
1−µ2

(
µ

R
∂λ3

∂µ
−
∂λ3

∂R

)
. (4)

Recall that under the condition of axial symmetry, all derivatives with respect to θ vanish and hence

u R = uϕ = 0, 2Guθ =
√

1−µ2

(
µ

R
∂λ3

∂µ
−
∂λ3

∂R

)
. (5)

The corresponding stress components are then given by

σR R = σϕϕ = σθθ = σRϕ = 0,

σRθ√
1−µ2

=
1

2R
∂λ3

∂R
−

1
2
∂2λ3

∂R2 +
1

2R2(1−µ2)

∂2λ3

∂θ2 −
µ

R2

∂λ3

∂µ
+
µ

2R
∂2λ3

∂R∂µ
,

σϕθ =
µ

R
∂λ3

∂R
+
µ

2
∂2λ3

∂R2 −
(1+µ2)

2R2

∂λ3

∂µ
+
(1−µ2)

2R
∂2λ3

∂R∂µ
.

(6)

Since Pn[cosϕ]/Rn+1, where Pn is the Legendre polynomial with the argument µ= cos[ϕ], is a spher-
ical harmonic function for an arbitrary integer n [Arfken and Weber 2013], a more general representation
can be written in the form

λ3 = G
∞∑

n=0

An
a2n+3

R2n+1 P2n[µ], (7)
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where An stands for the unknown coefficients to be determined from the boundary conditions. The shear
modulus and power function of the pit radius were introduced to make the unknown coefficients dimen-
sionless. It should also be noted that in this representation only even orders of Legendre polynomials
were incorporated in order to clear tractions at the straight boundary of the pitted half-space.

Upon substituting the potential function (7) into (5) and (6), the nonzero displacement and stress
components become

2Guθ = G
√

1−µ2
∞∑

n=0

{
An

a2n+3

R2n+2

(
(2n+ 1)P2n[µ] +µP ′2n[µ]

)}
, (8)

σRθ =−
1
2 G
√

1−µ2
∞∑

n=0

{
An

a2n+3

R2n+3 (2n+ 3)
(
(2n+ 1)P2n[µ] +µP ′2n[µ]

)}
,

σϕθ =−
(1−µ2)

2
G
∞∑

n=1

An
a2n+3

R2n+3

{
(2n+ 2)P ′2n[µ] +µP ′′2n[µ]

}
.

(9)

The above expressions can be simplified to

2Guθ =−G
∞∑

n=0

{
An

a2n+3

R2n+2 P1
2n+1[µ]

}
, (10)

σRθ =
1
2 G

∞∑
n=0

{
An

a2n+3

R2n+3 (2n+ 3)P1
2n+1[µ]

}
, σϕθ =−

1
2 G

∞∑
n=1

{
An

a2n+3

R2n+3 P2
2n+1[µ]

}
. (11)

by the introduction of the recurrence relation of Legendre polynomials [Arfken and Weber 2013]

P ′2n+1[µ] = (2n+ 1)P2n[µ] +µP ′2n[µ], (12)

and the associated Legendre function of the first kind [loc. cit.]

Pm
n [µ] = (−1)m(1−µ2)m/2

dm

dµm Pn[µ]. (13)

At the straight boundary of the half-space, as illustrated by (6) and (11),

σϕR = σϕϕ = 0, σϕθ =−
1
2

∞∑
n=1

{
An

a2n+3

R2n+3 P2
2n+1[0]

}
. (14)

The parity relation satisfied by the associated Legendre functions exemplifies that Pm
n [µ] is an odd

function provided that n+m is an odd number [Arfken and Weber 2013]. As a result, the only nonzero
stress component σϕθ also disappears on the straight boundary of the half-space µ= 0.

As one of the most adopted models of surface mechanics, Gurtin and Murdoch [1975] chose to treat
a solid surface as an elastic layer of material boundary whose thickness is vanishingly small. Within
the context of their theory, the fundamental equations that govern the mechanical behavior of the pit
surface (i.e., the surface version of the displacement-strain relation, surface constitutive law and force
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equilibrium condition) can be formulated as [Gurtin and Murdoch 1978]

Eαβ = 1
2((∇Su)αβ + (∇Su)βα), (15)

6αβ = τ0δαβ + 2(µ0− τ0)Eαβ + (λ0+ τ0)Eγ γ δαβ + τ0〈∇Su〉αβ, 63α = τ0〈∇Su〉3α, (16)

σi j n j = (∇S ·6)i + T (n)
i , (17)

where E stands for the 2× 2 surface strain tensor defined on the hemispherical pit surface with unit
normal vector n=−eR . Its four components are the same as the corresponding ones in the bulk strain
tensor when confined to the pit surface. In contrast, the surface stress tensor 6 is defined as a 3× 2
superficial tensor, i.e., only those three of its nine components applied perpendicular to the pit surface
were not taken into account [Mogilevskaya et al. 2010]. As a result, the surface stress tensor is not a
symmetric one, a well known property possessed by its bulk counterpart. To completely describe the
mechanical response of the pit surface, three surface moduli (τ0, λ0 and µ0) are required.

Particularly, the first term in the right hand side of the first equation of (16) states that the two normal
components 611 and 622 do not vanish in the absence of external loads. Namely, this term is deformation-
independent. Nonetheless, if we decompose the work done by the surface stress tensor against the surface
strain field, the contribution due to this term will only enter into the resultant area component but not the
distorsional one. Consequently, this deformation-independent term is not compatible with the torsional
deformation considered in the present work. Its effects should be studied in terms of loading conditions
that result in area/volume changes [He and Li 2006; Mogilevskaya et al. 2008; Mi and Kouris 2013].

It is also worth mentioning that the net traction at the pit surface does not vanish — in contrast, it
must be balanced by the surface divergence of the surface stress. Equation (17) directly bridges the gap
between surface mechanics and the classical bulk elasticity.

The above unique properties of a solid material surface serve as a fundamental tool for understanding
the various counter-classical phenomena that have been observed in nanoscale materials and structures.
The finite curvature of radius a of the hemispherical pit surface suggests that its surface mechanics effects
are of primary importance when compared to those of the half-space straight boundary. As a result, we
have chosen not to account for the latter in the present work.

In (15) and (16), the explicit expressions of the surface gradient of displacements should be self-
explanatory in Cartesian coordinates. In spherical coordinates, however, unit coordinate vectors (eR, eϕ, eθ )
are themselves functions of the angular coordinates (ϕ, θ). Consequently, the rate of change of unit
vectors with respect to spherical coordinate variables must be also considered. Based on the definition of
surface strain, the surface gradient of displacements can simply be extracted from the bulk displacement
gradient projected onto the pit surface

(∇Su)ϕϕ =
1
R

(
u R +

∂uϕ
∂ϕ

)
, (∇Su)ϕθ =

1
R

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)
,

(∇Su)θϕ =
1
R
∂uθ
∂ϕ

, (∇Su)θθ =
1

R sinϕ

(
∂uθ
∂θ
+ cosϕuϕ + sinϕu R

)
,

(∇Su)Rϕ =
1
R

(
∂u R

∂ϕ
− uϕ

)
, (∇Su)Rθ =

1
R

(
1

sinϕ
∂u R

∂θ
− uθ

)
.

(18)
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Plugging the above expressions into (15) produces the surface strain components

Eϕϕ =
u R

R
+

1
R
∂uϕ
∂ϕ

, Eθθ =
u R

R
+

1
R sinϕ

∂uθ
∂θ
+

cotϕuϕ
R

,

Eϕθ = 1
2

(
1
R
∂uθ
∂ϕ
−

cotϕuθ
R
+

1
R sinϕ

∂uϕ
∂θ

)
.

(19)

By the use of (18) and (19) the surface constitutive law (16) can be reformulated directly in terms of
surface displacements

6ϕϕ =
1
R

{
(λ0+ 2µ0)

(
u R +

∂uϕ
∂ϕ

)
+ (λ0+ τ0)

(
u R +

cosϕ
sinϕ

uϕ +
1

sinϕ
∂uθ
∂θ

)}
,

6ϕθ =
1
R

{
µ0

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)
+ (µ0− τ0)

∂uθ
∂ϕ

}
,

6θϕ =
1
R

{
µ0
∂uθ
∂ϕ
+ (µ0− τ0)

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)}
,

6θθ =
1
R

{
(λ0+ 2µ0)

(
u R +

cosϕ
sinϕ

uϕ +
1

sinϕ
∂uθ
∂θ

)
+ (λ0+ τ0)

(
u R +

∂uϕ
∂ϕ

)}
,

6Rϕ =
τ0

R

{
∂u R

∂ϕ
− uϕ

}
,

6Rθ =
τ0

R

{
1

sinϕ
∂u R

∂θ
− uθ

}
.

(20)

The transform of the force balance condition (17) is less straightforward. Following Gurtin et al.
[1998], explicit expressions of its three component equations can be developed with the help of a constant
vector. In the present analysis, we have derived these expressions by first evaluating the surface gradient
of the superficial surface stress tensor and subsequently contracting the second and third base vectors of
the resultant third-order tensor. It should be noted that the surface gradient operator should be applied
on the surface stress tensor from right to left [Malvern 1969], based on the argument in [Gurtin and
Murdoch 1978]. Thus,

σR RnR =
1
R

{
1

sinϕ
∂6Rθ

∂θ
+
∂6Rϕ

∂ϕ
+ cotϕ6Rϕ − (6θθ +6ϕϕ)

}
+ TR,

σRϕnR =
1
R

{
1

sinϕ
∂6ϕθ

∂θ
+
∂6ϕϕ

∂ϕ
+ cotϕ(6ϕϕ −6θθ )+6Rϕ

}
+ Tϕ,

σRθnR =
1
R

{
1

sinϕ
∂6θθ

∂θ
+
∂6θϕ

∂ϕ
+ cotϕ(6θϕ +6ϕθ )+6Rθ

}
+ Tθ ,

(21)

where {TR, Tϕ, Tθ } denote the surface traction vector due to external loads. The above boundary condi-
tions are valid for a general spherical free surface with unit normal vector n=±eR . To proceed further,
we could substitute (20) into (21) in order to develop general expressions of the surface divergence
of the surface stresses in terms of displacements. It is these three boundary equations that couple the
mechanics of a spherical free surface into the classical theory of elasticity for the abutting bulk solid.
The development of their explicit expressions are straightforward yet quite tedious. Instead, we provide
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a simplified version that is particularly tailored for the present axial torsion condition (TR = Tϕ = 0). In
view of (5), it becomes obvious that only the last equation of (21) is nontrivial,

−σRθ = (∇S ·6)θ + Tθ . (22)

In this condition, Tθ now represents the distributed shear traction due to the external torque. The combi-
nation of equations (20) and (21) results in

(∇S ·6)θ =−
2τ0

R2 uθ +
µ0

R2

(
∂2uθ
∂ϕ2 +

cosϕ
sinϕ

∂uθ
∂ϕ
−

cos2ϕ

sin2ϕ
uθ + uθ

)
. (23)

Furthermore, the change of the polar angular variable ϕ to µ= cos[ϕ] transforms the above equation to

(∇S ·6)θ =−
2τ0

R2 uθ +
µ0

R2

(
(1−µ2)

∂2uθ
∂µ2 − 2µ

∂uθ
∂µ
+

1− 2µ2

1−µ2 uθ

)
. (24)

Substituting the hoop displacement uθ from (5) into the above relation and noting the harmonic property
of the displacement potential λ3,

∇
2λ3 =

∂2λ3

∂R2 +
2
R
∂λ3

∂R
+
(1−µ2)

R2

∂2λ3

∂µ2 −
2µ
R2

∂λ3

∂µ
. (25)

We may recast (24) in the form

(∇S ·6)θ =
τ0

2G R
2
√

1−µ2

R2

{
R
∂λ3

∂R
−µ

∂λ3

∂µ

}
−

µ0

2G R

√
1−µ2

R2

{
2R
∂λ3

∂R
− 2R2 ∂

2λ3

∂R2 − R3 ∂
3λ3

∂R3 −µ

(
2
∂λ3

∂µ
− R2 ∂3λ3

∂R2∂µ

)}
. (26)

In view of the proposed form of λ3 from (7) we arrive at

(∇S ·6)θ =−G
√

1−µ2
∞∑

n=0

{
An
(2n(2n+ 3)µ0+ 2τ0)

2aG
((2n+ 1)P2n[µ] +µP ′2n[µ])

}
. (27)

Eventually, by the use of (12) and (13) the surface divergence of the surface stress tensor is given by

(∇S ·6)θ =
G
2

∞∑
n=0

{
An(2n(2n+ 3)µ′0+ 2τ ′0)P

1
2n+1[µ]

}
, (28)

where µ′0 = µ0/aG and τ ′0 = τ0/aG are two intrinsic dimensionless parameters that characterize the
strength of the hemispherical pit surface. It is worth noting that the other surface Lamé constant, λ0,
turns out to be irrelevant to the present axial-symmetric torsion problem.

Next, we substitute the shear stress σRθ from (11) and the surface divergence component (∇S ·6)θ
from (28) into the nonclassical boundary condition (22)

1
2 G

∞∑
n=0

An((2n+ 3)(2nµ′0+ 1)+ 2τ ′0)P
1
2n+1[µ] = −Tθ [µ]. (29)
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Since for each m, the associated Legendre functions Pm
n of different n are orthogonal and form a complete

basis, thus it is possible to perform the series expansion

Tθ [µ] =
∞∑

n=0

fn P1
2n+1[µ], (30)

where the coefficients fn are found by multiplying the series by P1
2m+1[µ] and integrating term by term

in the interval µ ∈ [0, 1]. Using the orthogonality property of the associated Legendre functions∫ 1

−1
P1

2n+1[µ]P
1
2m+1[µ] dµ=

2(2n+ 1)(2n+ 2)
4n+ 3

δnm, (31)

and the parity relation

P1
2n+1[−µ] = P1

2n+1[µ], (32)

we obtain ∫ 1

0
P1

2n+1[µ]P
1
2m+1[µ] dµ=

(2n+ 1)(2n+ 2)
4n+ 3

δnm . (33)

As a result, it is derived that

fn =
4n+ 3

(2n+ 1)(2n+ 2)

∫ 1

0
Tθ [µ]P1

2n+1[µ] dµ. (34)

A simple comparison of (29) and (30) implies that the unknown coefficients An can be connected to
the expansion coefficients fn via

An =−
2 fn

G{(2n+ 3)(2nµ′0+ 1)+ 2τ ′0}
. (35)

Upon successful derivation of the unknown dimensionless coefficients An , the azimuthal displacement
(10) and two shear stress components (11) can be evaluated as a function of the shear traction distribution
Tθ and material parameters (G, ν, µ′0 and τ ′0).

3. Results and discussion

Clearly, the determination of the shear traction distribution Tθ from the applied net torque T is an indeter-
minate problem. Different distributions might result in the same torque. Nevertheless, force equilibrium
requires that

T = 2πa3
∫ 1

0
Tθ [µ]

√
1−µ2 dµ. (36)

For a perfect elastic half-space without surface pits, a concentrated torque applied at the origin pro-
duces a shear stress distribution that is proportional to the sinϕ [Hill 1966; Miyao et al. 1975]. Thus, we
may assume

Tθ [µ] = T0

√
1−µ2, (37)
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Figure 2. Distributions of five example shear tractions that result in the same torque
load at the hemispherical pit surface (µ= cosϕ).

where T0 is the maximum shear traction evaluated at µ= cos[π/2] = 0. For the shear traction distribution
(37), an expression that relates the maximum shear traction and the applied torque can be determined as

T0 =
3T

4πa3 . (38)

For the general case of a pitted elastic half-space, the shear traction at the pit surface is treated as a
distribution of the applied load and thus may have a different form. It was found that for an arbitrary
nonnegative integer b, the shear traction distribution

Tθ [µ] = (T0/3)(3+ 4b+ b2)µb
√

1−µ2, (39)

will result in the exact same torque as that of the fundamental distribution form (37). A few example
distributions are

Tθ [µ] =



T0
√

1−µ2, b = 0,

5T0µ
2
√

1−µ2, b = 2,

16T0µ
5
√

1−µ2, b = 5,

33T0µ
8
√

1−µ2, b = 8,

56T0µ
11
√

1−µ2, b = 11.

(40)

For comparison purposes, the distributions of these five shear tractions are shown in Figure 2. It can be
seen that the maximum value of the traction function transfers from the pit rim toward the hemispherical
pit pole as b increases.

Replacing Tθ [µ] under the integral sign in (34) with the proposed shear traction distribution (39) and
noticing the definite integral [Gradshteyn and Ryzhik 2014]∫ 1

0
µb(1−µ2)

m/2
Pνm
[µ] dµ=

(−1)m2−m−10
[1

2 +
1
2 b
]
0
[
1+ 1

2 b
]
0[1+m+ ν]

0[1−m+ ν]0
[
1+ 1

2 b+ 1
2 m− 1

2ν
]
0
[3

2 +
1
2 b+ 1

2 m+ 1
2ν
] , (41)
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it can be derived that

fn =−
T0

12
(3+ 4b+ b2)(4n+ 3)
(2n+ 1)(2n+ 2)

0
[1

2 +
1
2 b
]
0
[
1+ 1

2 b
]
0[2n+ 3]

0[2n+ 1]0
[
1+ 1

2 b− n
]
0
[ 5

2 +
1
2 b+ n

] , (42)

where 0[z] = (z− 1)0[z− 1] is referred to as the Gamma-factorial function [Arfken and Weber 2013].
The interesting result 0[1/2] =

√
π becomes very useful in the subsequent evaluation of the expansion

coefficients fn in the Legendre series (30).
In view of (10), (11), (35) and (42), the semianalytical series representations of the solution have been

successfully developed for the present problem. Prior to exploring solutions that must be represented by
the Legendre series, let us examine a few simplified cases for which closed-form solutions are available.
We first consider the fundamental distribution of shear tractions (37). We observe that for this case
Tθ [µ]=−T0 P1

1 [µ] and thus only the zeroth mode f0=−T0 contributes to the series expansion. Evidently,
(35) becomes

A0 =−
2 f0

G(2τ ′0+ 3)
=

2T0

G(2τ ′0+ 3)
. (43)

A closed-form solution is now developed for the fundamental distribution of shear tractions

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ], σRθ =

3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ], σϕθ = 0. (44)

Note that in this special case the stress component σϕθ vanishes.
The next case we examine is for b = 2 in (40). It is not hard to find that only two terms in the series

expansion (30) are required since

Tθ [µ] = 5T0µ
2
√

1−µ2 = f0 P1
1 [µ] + f1 P1

3 [µ], (45)

where the two coefficients required in the expansion are given by f0 = −T0 and f1 = −2T0/3. As a
result, (35) results in

A0 =
2T0

G(2τ ′0+ 3)
, A1 =

4T0

3G(10µ′0+ 2τ ′0+ 5)
. (46)

Similar to the case of fundamental traction distribution, closed-form displacements and stresses can now
be identified as

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ] −

4T0

3(10µ′0+ 2τ ′0+ 5)
a5

R4 P1
3 [µ],

σRθ =
3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ] +

10T0

3(10µ′0+ 2τ ′0+ 5)
a5

R5 P1
3 [µ],

σϕθ =−
2T0

3(10µ′0+ 2τ ′0+ 5)
a5

R5 P2
3 [µ].

(47)

The availability of closed-form solutions is not an accident. As a matter of fact, the expansion coeffi-
cients fn are truncated by n < 1+ b/2 for a nonnegative even integer b since 0[z] has simple poles at
z = 0,−1,−2,−3,−4, . . . . Such behavior is solely due to 0[1+ b/2− n] in the denominator of (42).
Thus, for a b even and equal to 2s, where s is a positive integer, the shear traction distribution can be
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represented by a truncated Legendre series expansion. Only the first s + 1 terms are required in (30),
e.g., s = 4 for the fourth case (b = 8) in (40). In this case, the closed-form displacements and stresses
are given by

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ] −

112T0

39(10µ′0+ 2τ ′0+ 5)
a5

R4 P1
3 [µ]

−
352T0

195(28µ′0+ 2τ ′0+ 7)
a7

R6 P1
5 [µ] −

128T0

221(54µ′0+ 2τ ′0+ 9)
a9

R8 P1
7 [µ]

−
256T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R10 P1
9 [µ],

σRθ =
3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ] +

280T0

39(10µ′0+ 2τ ′0+ 5)
a5

R5 P1
3 [µ]

+
1232T0

195(28µ′0+ 2τ ′0+ 7)
a7

R7 P1
5 [µ] +

576T0

221(54µ′0+ 2τ ′0+ 9)
a9

R9 P1
7 [µ]

+
1408T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R11 P1
9 [µ],

σϕθ =−
56T0

39(10µ′0+ 2τ ′0+ 5)
a5

R5 P2
3 [µ] −

176T0

195(28µ′0+ 2τ ′0+ 7)
a7

R7 P2
5 [µ]

−
64T0

221(54µ′0+ 2τ ′0+ 9)
a9

R9 P2
7 [µ] −

128T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R11 P2
9 [µ],

(48)

It is worth noting that if b is odd, the coefficients of the Legendre series expansion fn are well defined
for every n. Fortunately, the coefficient of expansion fn behaves as a strong decaying function of n and
thus it is possible to truncate the series with a desired accuracy.

In the remainder of this section, parametric study was employed to facilitate the investigation of
surface effects. In view of (35), (44), (47) and (48) it can be seen that the influence of surface mechanics
becomes important when τ ′0 and µ′0 approach the order of magnitudes of unity and one tenth, respectively.
For smaller magnitudes of τ ′0 and µ′0, the incorporation of surface mechanics introduces inappreciable
modifications to the classical solution. The magnitude of both the residual surface stress τ0 and the
surface shear modulus µ0 of typical crystalline metal materials is 1 N/m [Mi et al. 2008] whereas that of
their bulk modulus is ∼ 1010 Pa [Gere and Goodno 2009]. As a result, the order of magnitude of the pit
radius a must be nearly as large as the subnanoscale to cause noticeable surface effects. This is because
only the deformation-dependent component of the surface constitutive law (17) can be accommodated
in a torsion problem. This scenario is in sharp contrast with that of the dilatational deformation mode in
which significant surface influence can still be observed at much larger characteristic length scales [He
and Li 2006; Mi and Kouris 2014b].

Nevertheless, the story could be quite different for soft materials in which the relative magnitude
between surface elastic parameters and bulk shear modulus increases remarkably. As intuition could
expect, soft materials possess much smaller bulk shear modulus in magnitude. For example, the shear
modulus of rubber falls in the interval of 0.2−1 MPa [Gere and Goodno 2009]. More strikingly, the shear
modulus of gelatin is in the order of tens of kPa (∼ 104 N/m2). Specimens made by these soft materials
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Figure 3. The distribution of normalized shear stress (σRθ/T0) as a function of the polar
angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the two intrinsic
dimensionless parameters are taken as µ′0 = τ

′

0 = 1.

stay fairly linearly elastic for strains below 10% of such a level of shear modulus, while the Young’s
modulus ranges from a few kPa to a few hundred kPa [Markidou et al. 2005]. The shear modulus
of gelatin gels fluctuates with a few factors including concentration, preparation procedure of testing
samples and temperatures at which the measurement was performed.

Little work has been done on the estimation of the surface mechanical properties for soft materials
compared to that of crystalline systems. Bialopiotrowicz and Janczuk [2002] managed to employ the
method of contact angle measurement to investigate the wetting characteristics of gelatin films and a
number of liquids. For those probe liquids with known energy components, the surface free energy of
a gelatin film is able to be determined. Experimental measurements demonstrate that the surface free
energy of gelatin films with concentrations ranging 0.005−100 mg/mL is in the magnitude of a few tens of
mJ/m2. Based on the force equilibrium, Weijs et al. [2014] developed a microscopic model that correlates
the interface stress and interface energy for an interface separating a liquid and an amorphous soft solid.
Although the quantitative behavior of their model is governed by the Poisson’s ratio of the interfacial
region, the interface stress and interface energy share the same order of magnitude. Furthermore, the
definition of elastic modulus [Gumbsch and Daw 1991; Mi et al. 2008] explains that interface energy,
interface stress and interface elastic moduli are all about the same order of magnitude (∼ 10−2 N/m).

To summarize the dimension analysis up to this point, for soft materials such as gelatin gels the effects
of surface mechanics become noticeable and even significant when the characteristic length goes down
to the microscale (a ≤ 10−6 m). At such a length scale, those two intrinsic dimensionless parameters
are both comparable to unity (µ′0 = µ0/aG ∼ 1 and τ ′0 = τ0/aG ∼ 1) and thus the model of surface
mechanics starts to participate in the mechanics and physics of the concerned material systems. Of course,
for rubber-like soft materials, a smaller length scale is preferred for highlighting the surface effects.

Figure 3 shows the distributions of the normalized shear stress σRθ/T0 at the hemispherical pit surface
resulting from the five example shear tractions emphasized in Figure 2. Undoubtedly, these shear stress
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Figure 4. The distribution of normalized stress component (σϕθ/T0) as a function of
the polar angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the
two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison, the
corresponding classical solutions (µ′0 = τ

′

0 = 0) are also shown, indicated by ∗.

distributions would exactly recover to the shear tractions within the framework of the classical theory of
elasticity. Nonetheless, the model of surface mechanics (µ′0 = τ

′

0 = 1) has reduced the maximum shear
stress by more than 40% for all cases. The strength of surface mechanics increases monotonically with
b. For b = 11, the maximum shear stress becomes less than one fourth of its classical counterpart. Close
examination reveals that the value of the polar angle coordinate ϕ at which the maximum shear stress
takes place is now closer to the vertex A of the hemispherical pit. Furthermore, the stress level at the
pit perimeter (ϕ = 90◦) seems to converge to a limit value (σRϕ ∼−0.2T0) as the parameter b increases.
This behavior is clearly not observed in the classical solutions, cf. Figure 2.

The comparison of Figures 2 and 3 makes it clear that the parameter combination µ′0= τ
′

0= 1 represents
a fairly strong effect of surface mechanics. To better illustrate the effects of surface mechanics, we now
adjust these parameters to µ′0 = τ

′

0 = 0.1. The curves in Figure 4 show the distributions of the normalized
stress component σϕθ/T0 at the pit surface for four traction distributions (b = 2, 5, 8 and 11). Note that
this stress component vanishes for the case of b= 0, see (44). Both the curves with and without the model
of surface mechanics are plotted for the purpose of comparison. For both groups, σϕθ becomes zero at
the pit vertex A and the pit perimeter B, defined in Figure 1. For a given value of b, the maximum stress
occurs at the same place for both the classical and corrected solution. These places are ϕ = 55, 38, 31
and 27 degrees for b = 2, 5, 8 and 11, respectively. We expect that the value of ϕ at which the stress
extremities take place will converge to a specific value as b continues to increase. The strength of
surface mechanics depends on how the shear tractions distribute — the larger the value of b, the stronger
the surface effects become.

Figure 5 shows the distributions of the dimensionless displacement 2Guθ/T0/a at the pit surface
for the five example traction loads. These curves share similar distribution characteristics as those of



THE NANOPIT AT THE PLANE BOUNDARY OF AN ELASTIC HALF-SPACE 609

ho
op

di
sp

la
ce

m
en

t2
G

u θ
/

T 0
/
a

polar angle ϕ (◦)

b = 0∗
b = 0
b = 2∗
b = 2
b = 5∗
b = 5
b = 8∗
b = 8
b = 11∗
b = 11

Figure 5. The distribution of normalized hoop component (2Guθ/T0/a) as a function
of the polar angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the
two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison, the
corresponding classical solutions (µ′0 = τ

′

0 = 0) are also shown, indicated by ∗.

the shear stress σRθ . Displacement extremities roughly occur at the same locations. Once again, the
significance of surface mechanics depends on loading mode of surface tractions. For b = 2, 5, 8 and
11, crossovers are observed between the classical and perturbed curves belonging to the same traction
mode. The coordinates of these intersections behave as functions of the loading mode — the larger the
parameter b, the farther the crossover deviates from the pit perimeter.

To investigate the range of the elastic field resulting from the surface tractions applied at the pit surface,
we further performed numerical experiments to evaluate the displacements and stresses on a couple of
concentric hemispherical coordinate surfaces. Shown in Figure 6 is the distribution of the normalized
shear stress σRθ/T0 for three surface traction loads (b= 0, 5 and 11) at two radial distances (R= 1.5a and
R= 2a). The classical solutions for which µ′0= τ

′

0= 0 are also plotted for each of the six cases. Although
the variation characteristics for an individual curve is quite similar to its corresponding counterpart at
the pit surface, see Figures 2 and 3, the stress magnitude decays drastically as the radial coordinate
increases. For example, the maximum stress for the case of b = 11 reduced more than nine tenths as the
radial coordinate changes from R = a to R = 1.5a. The rate of decay is slightly slower for the solution
accounting for surface effects as the maximum stress decreased approximately two thirds. For both the
classical and modified solutions, the traction loads applied at the pit surface on the plane boundary of an
elastic half-space is a short-range force field since the resulting elastic field is completely localized and
confined within a distance that is just a couple of multiples of the pit radius.

Numerical results shown in Figure 7 and Figure 8 further support the argument of a localized elastic
field made above in which the normalized stress σϕθ/T0 and displacement component 2Guθ/T0/a are
now plotted for the radial coordinates R = 1.25a and R = 1.5a. It should be noted that Figure 7 only
shows two modes of traction loads (b = 5 and 11) since σϕθ is identically zero for the fundamental
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Figure 6. The distribution of normalized shear stress (σRθ/T0) as a function of the polar
angle (ϕ) for two constant radial coordinates (R = 1.5a and 2a). Numerical values of
the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison,
results due to three traction distributions (b = 0, 5 and 11) are plotted with the classical
solutions indicated by ∗.
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Figure 7. The distribution of normalized stress component (σϕθ/T0) as a function of
the polar angle (ϕ) for two constant radial coordinates (R = 1.25a and 1.5a). Numerical
values of the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For
comparison, results due to two traction distributions (b = 5 and 11) are plotted with the
classical solutions indicated by ∗.
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Figure 8. The distribution of normalized hoop displacement (2Guθ/T0/a) as a function
of the polar angle (ϕ) for two constant radial coordinates (R = 1.25a and 1.5a). Numer-
ical values of the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For
comparison, results due to three traction distributions (b = 0, 5 and 11) are plotted with
the classical solutions indicated by ∗.

traction distribution (b = 0). The trend of decay as a function of the radial coordinate is obvious for the
stress σϕθ (Figure 7) and the displacement component uθ (Figure 8). These elastic components become
numerically negligible at a distance only a few radii away from the pit center.

4. Concluding remarks

In this paper, we analyzed in detail the axial-symmetric torsion problem of a nanoscale hemispherical
pit on the plane boundary of a semi-infinite elastic solid. We considered a number of traction loads,
see (39), that are proportional to the shear stress distribution on a hemispherical coordinate surface
due to a concentrated torque applied on an intact half-space. Although all considered traction loads
resulted in the exact same torque, displacement and stress distributions differ from one case to another,
reflecting the indeterminate nature of the problem. Semianalytical solutions in the form of infinite series
were successfully developed. Within the framework of Gurtin and Murdoch’s theory of surface elasticity
[1978], two intrinsic dimensionless parameters, µ′0=µ0/Ga and τ ′0= τ0/Ga, were formulated to account
for the significance of the pit surface. The other surface Lamé parameter λ0, which is indispensable to a
torsionless problem, turns out to be irrelevant in the present analysis.

Dimension analysis carried out in the previous section suggests that the assumed model of a pit surface
can reasonably be neglected for a metal substrate. The drastic difference between metals’ surface and
bulk elastic constants make the two dimensionless parameters comparable to unity only for picoscale pits.
Nonetheless, for soft substrates, such as gelatin gels, the pit surface effects became a dominant factor
that affected the resulting stress levels. To bring the model of surface mechanics into effect, we inferred
that µ′0 and τ ′0 should be at the order of magnitude of unity and one tenth, respectively — which is fairly
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practical for a soft substrate [Białopiotrowicz and Jańczuk 2002; Weijs et al. 2014]. It can be further
argued that the surface shear modulus µ0 is more important than the residual surface stress τ ′0 in a torsion
problem. This interpretation is in opposition to a dilatational problem in which the residual surface stress
proves to be much more important than surface Lamé constants [Mi and Kouris 2014b]. The reason is due
to the fact that the deformation-dependent component of the surface constitutive relation is not applicable
in the torsion analysis. Numerical results prove that the parameter combination of µ′0 = τ

′

0 = 0.1 is strong
enough to change both the magnitude and distribution of the classical solution when the model of surface
mechanics is excluded.

We have based our calculations merely on nominal values of the two dimensionless parameters, µ′0
and τ ′0. For a practical soft material, it is a challenge to determine accurate values of surface and bulk
elastic parameters. Considering what has been done for metal systems [Gumbsch and Daw 1991; Shenoy
2005; Mi et al. 2008], this could be one future line of research. Another possibility is to extend the static
problem to investigate the coupling effects of surface mechanics and dynamic loading.
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A number of books and papers reporting theoretical and experimental research in mechanics of struc-
tures and materials functioning at high temperatures were published during the last fifty years. The
range of thermostrength applications widens all the time due to the generation of thermal stresses and
inhomogeneous thermal fields in many modern technologies.

The reviewed monograph starts from analytical generalization of research done by a multidisciplinary
academic community, including a substantial contribution from the author. Professor B. F. Shorr is a
leading Russian scholar in the area of material and structure thermostrength. He has been affiliated with
the Baranov Central Institute of Aviation Motors (CIAM) in Moscow for many years and participated in
the design of a number of high temperature gas turbines.

This book has several peculiarities which distinguish it from other publications on the subject. It brings
the general ideas of modern approaches to basic thermostrength problems and appeals to both academic
and engineering communities. The phenomenological treatment of thermostrength phenomena in solids
adopted in the book is based on the thorough analysis of data from numerous experiments, revealing
most typical and verified models of material behavior. Preference is given to models characterized by
a minimal number of experimentally evaluated parameters. An obvious advantage of the book is that it
combines rigorous formulations and solution methods with a user friendly presentation style. This makes
it attractive for audiences with various levels of theoretical background.

The first and second chapters deal with the basics of thermoelasticity, which are necessary for strength
analyses of machine parts. The content of these chapters is crucial for understanding the rest of the book.
Here, the conventional energy principles and variational equations underlying the finite element method
(FEM) are introduced.

The problems of thermoplasticity and nonisothermal creep, including cyclic loading, are central to the
book. They are considered in six of the twelve chapters based on the detailed analysis of experimental
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results. In particular, data from the author’s colleagues from CIAM are incorporated in the chapters. The
importance of a material property’s adaptivity is emphasized. This results in the stabilization of material
response in case of long-term or cyclic mechanical and thermal loading.

The author shows that well known theories of plastic flow, plastic deformation and isotropic and
anisotropic hardening have certain restrictions when applied to modeling nonstationary processes. The
novel theory of stabilizing anisotropic ray hardening is suggested for implementation in thermoplasticity
and nonisothermal creep. It takes into account the history of loading trajectories and operates only with
measured material parameters.

Chapter nine is devoted to evaluating the strength and life span of machine parts and structures under
nonisothermal loading. This distinguishes the book from numerous publications analyzing stress and
strain calculation only. Along with local strength, load carrying capacity of the whole mechanical
system is also studied. The design of uniform strength structures is also discussed. The weak link
approach used for avoiding global catastrophes is also mentioned. A robust methodology for a statistical
analysis of thermostrength using a limited amount of experimental data under the conditions simulating
the operational environment is proposed.

The next two chapters deal with the loss of elastic and nonelastic stability of isotropic mechanical
systems and the strength of anisotropic structures, respectively. Basic methods are addressed, and the
peculiarities of the side buckling of compressed rods are also discussed, taking into account the effects of
plasticity and creep. The von Mises frame example clearly demonstrates a jump of a mechanical system
to a new equilibrium due to the variation of its temperature field.

A monocrystal nickel alloy used in high temperature gas turbine blades is considered as a typical
anisotropic material. Theoretical arguments and experimental evidence are presented to show that the
maximal value of the Schmid factor characterizing shear stress levels along monocrystal yield surfaces
cannot be generally chosen as a reliable strength characteristic. Better results are achieved by making
use of the maximal shear stress as a characteristic.

Researchers in solid mechanics and academics interested in a better understanding of material and
structure behavior in the presence of high temperatures will benefit from reading the last chapter treating
special issues in thermostrength, which is mainly ignored in other publications. In particular, it is shown
that variations of contact conditions as well as thermal stresses may change the overall stiffness of the
system. This is especially true for thin walled structures. For the latter, the associated frequency spectra
may be strongly affected. The author also clarifies without referencing hard-core mathematics that the
decay of elastic vibration may be caused by the thermodynamic coupling of mechanical and thermal
phenomena and an infinite heat propagation speed in the classical theory of heat transfer.

The author pays tribute to the theoretical and experimental considerations of his predecessors without
avoiding the criticism of some established statements. In particular, he argues that the modeling of
elastic-plastic flow without its separation into elastic and plastic parts is justified only for special types
of loading. He also demonstrates that the Odqvist parameter in the case of cyclic loading varies over
broad limits and is hardly an adequate measure of damage and fracture.

Limited attention in the book is given to purely computational aspects because of the relatively easy
access to modern commercial FEM software. A detailed numerical procedure is only described for
nonstationary thermoplasticity and thermocreep problems within the framework of the aforementioned
theory of stabilizing anisotropic ray hardening.
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The monograph might be criticized for not covering several interesting topics: low temperature
strength is not considered, and the range of analyzed materials is often restricted to those used in aviation.
At the same time, the content of the book is dictated by its size and originates from the author’s research
interests.

This book will be of obvious interest to researchers, engineers, university lecturers and postgraduate
students specializing in the design and modeling of the thermostrength of materials, machine parts and
structures, as well as those dealing with various applications related to thermal stress analysis. The solid
mechanics academic community will also benefit from this book.
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