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FRACTIONAL CALCULUS IN NEURONAL ELECTROMECHANICS

CORINA S. DRAPACA

Traumatic brain injuries (TBI) are among the leading causes of death and permanent disability worldwide.
Recent experimental observations suggest that damage in brain tissue involves complex local as well as
nonlocal chemomechanical interactions that happen on multiple spatiotemporal scales. Biomechanical
models of TBI existing in the literature do not incorporate either electrochemical or multiscaling features.
Given that neurons are the brain cells responsible for electrochemical signaling on multiplexed temporal
scales we propose a novel mathematical model of neuronal electromechanics that uses a constrained La-
grangian formulation and Hamilton’s principle to couple Newton’s law of motion for a linear viscoelastic
Kelvin–Voigt solid-state neuron and the classic Hodgkin–Huxley equations of the electronic neuron. We
will use fractional order derivatives of variable order to model multiple temporal scales. Numerical
simulations of possible damage dynamics in neurons due to mechanical trauma will be presented and
discussed.

A list of symbols can be found on page 53.

1. Introduction

Traumatic brain injuries (TBI) are among the main causes of death and disability worldwide, contributing
to approximately 30% of all injury deaths in the United States in 2010 [CDC 2016]. The data collected
in the United States during the period 2001-2010 [CDC 2016] show a dramatic increase of 70% in
TBI-related visits to emergency rooms, while the death rates decreased only by 7%. This prompted
an unprecedented unified effort from various US organizations (government, health and social services)
to come up with a public health approach for TBI in [Bell et al. 2015]. The authors of that article
concluded it by emphasizing the need for continued progress in brain science that can “inform and
suggest solutions for a problem that is of significant concern to the public”. In particular, mathematical
models and corresponding computer simulations can increase our comprehension of brain responses to
TBI and help us design better experiments for measurements and hypothesis testing that ultimately will
lead to improved medical diagnostic and therapeutic protocols. In the last few decades a multitude of
mathematical models have been proposed to study brain biomechanics and, independently, brain bio-
chemistry at cell and tissue levels (see [Goldsmith 2001; Goriely et al. 2015] for comprehensive reviews
of these models). However, most of these models have many physical parameters which are hard, if not
impossible, to find experimentally and the high complexity of the corresponding computations makes
these models hard to use in today’s clinical applications. In addition, these biomechanical models were
built at the tissue level and thus they cannot predict the mechanochemical responses of brain cells to
mechanical and/or electrochemical events that happen at the tissue and organ scales.

Keywords: fractional derivatives of variable order, entangled scales, Hamilton’s principle, fractional calculus,
Hodgkin–Huxley model, neuronal electromechanics, TBI.
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Following the recommendation of Goriely et al. [2015] for the development of bottom-up mathe-
matical models that link brain mechanics and electrochemistry at each relevant length scale as well as
across scales, we recently proposed a lower-dimensional electromechanical model of a neuron which is
simple enough so that its predictions may be experimentally verified, and could be used as a foundation
model for more advanced multiscaling mathematical models [Drapaca 2015]. By assuming that the
electrochemical activity of a neuron is described by the classic Hodgkin–Huxley [1952] equations and
that the neuron behaves mechanically like a linear viscoelastic Kelvin–Voigt solid, we showed through
numerical simulations that very fast initially applied speeds (jabbing) inhibit the action potentials and
thus might cause neuronal damage.

In this paper we generalize the model from [Drapaca 2015] by incorporating multiple time scales
using fractional order temporal derivatives of variable orders. In the last few decades fractional calculus
has been successfully used in a wide range of applications to model stochastic, multiscaling and nonlocal
phenomena in various physical systems (some relevant books on fractional calculus and its applications
are [Podlubny 1999; Samko et al. 1993; Oldham and Spanier 2006; Hilfer 2000; Baleanu et al. 2012;
Milici and Draganescu 2015; West 2015; Tarasov 2010]). Given that neuronal electrochemical dynamics
are stochastic [Schiff 2012] and fractional calculus is a natural mathematical representation of stochas-
ticity [West 2015], Sherief et al [2012] generalized the classic Hodgkin–Huxley model by replacing
the first order temporal derivatives with fractional order ones. The use of fractional order derivatives
in mathematical models of neuronal dynamics is supported by the experimental observations made in
[Lundstrom et al. 2008], and only last year Grevesse et al. [2015] showed empirically that mechanical
creep of neurons follow a power law of fractional order. Thus we propose to replace the first order time
derivatives in the model from [Drapaca 2015] with fractional temporal derivatives with variable orders.
The time-dependency of the fractional orders represents the biological variability of neurons as well as
the intrinsic entanglement of states existing in the complex mixture of physical components that makes
up a neuron. We call this inseparability of time scales entangled scales.

In this paper we use the respective left and right Riemann–Liouville fractional derivatives of variable
order which were introduced in [Atanackovic and Pilipovic 2011] as

0 Dα(t)
t f (t)=

f (0)
0(1−α(t))tα(t)

+

∫ t

0

d f (τ )/dτ
0(1−α(t − τ))(t − τ)α(t−τ)

dτ, (1-1)

t Dα(t)
T f (t)=

f (T )
0(1−α(T − t))(T − t)α(T−t) −

∫ T

t

d f (τ )/dτ
0(1−α(τ − t))(τ − t)α(τ−t) dτ, (1-2)

where f is an absolutely continuous1 function on [0, T ] with f (t)= 0, ∀t ∈ R−[0, T ], and the variable
order α(t) is a continuous function on [0, T ) and 0≤α(t)< 1. Definitions (1-1) and (1-2) allow us to use a
nonconservative form of Hamilton’s principle proposed in [Atanackovic and Pilipovic 2011] and obtain
the generalized integro-differential Euler–Lagrange equations corresponding to our electromechanical
model.

Although Definitions (1-1) and (1-2) can model the fading memory of materials with variable visco-
elasticity [Lorenzo and Hartley 2002], it was shown in [Chicone and Mashhoon 2002] that in the case of

1The absolute continuity of a real-valued function f on an interval [0, T ] is equivalent to the existence almost everywhere
of the derivative d f/dt which is Lebesgue integrable and f (t)= f (0)+

∫ t
0 (d f/ds)ds, ∀t ∈ [0, T ].
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piecewise uniform accelerated (linear and circular) motions these derivatives introduce additional mem-
ory effects that infringe causality. On the other hand, the respective left and right Marchaud fractional
derivatives of variable order

0 D̃α(t)
t f (t)=

f (0)
0(1−α(t))tα(t)

+
1

0(1−α(t))

∫ t

0

d f (τ )/dτ
(t − τ)α(t)

dτ, (1-3)

t D̃α(t)
T f (t)=

f (T )
0(1−α(t))(T − t)α(t)

−
1

0(1−α(t))

∫ T

t

d f (τ )/dτ
(τ − t)α(t)

dτ, (1-4)

satisfy the causality law [Chicone and Mashhoon 2002] and therefore their mathematical properties and
applications have been increasingly studied [Coimbra and Kobayashi 2002; Coimbra 2003; Soon et al.
2005; Sun et al. 2012; Almeida and Torres 2013]. However, it is easy to check (using power series
expansions) that for variable order functions α : [0, T ] → [0, 1) which are differentiable with continuous
derivatives and |dα/dt(t)| � 1, t ∈ (0, T ), the approximations

0 Dα(t)
t f (t)≈ 0 D̃α(t)

t f (t) and t Dα(t)
T f (t)≈ t D̃α(t)

T f (t) (1-5)

hold, which are identically satisfied for α(t)= constant ∈ [0, 1). Thus, in this paper we will use the left
and right Riemann–Liouville fractional derivatives (1-1) and (1-2) with variable orders belonging to the
following class of functions: C= {α : [0, T ] → [0, 1)/(dα/dt) exists and is continuous |(dα/dt)| � 1}
such that, thanks to the approximations (1-5), the causality and nonlocality criteria introduced in [Chicone
and Mashhoon 2002] are satisfied and the expansion formulas with higher-order derivatives proposed in
[Almeida and Torres 2013] can be applied.

We model a neuron as a linear viscoelastic Kelvin–Voigt solid with variable viscoelasticity whose
electrochemical activity is described by fractional order Hodgkin–Huxley equations with variable order.
In addition, we introduce three linear viscoelastic Maxwell fluid elements with variable viscoelasticity
that provide a physical representation for the three ionic gates with gating variables m,n, and h introduced
by the Hodgkin–Huxley model. The physical analogy of the ionic gates is that of door closers. We use
a Lagrangian formulation and Hamilton’s principle to obtain the equations of motion that couple macro-
scopic (cell level) and microscopic (ionic level) mechanical and electrical information and therefore they
can describe neuronal mechanotransduction. As in [Drapaca 2015], we assume that at the macroscopic
level the membrane’s capacitance depends on the mechanical displacement of the neuron and that the
Young’s modulus of the neuron depends on the gated variables m,n, and h. Our numerical simulations
solve a simplified version of the proposed equations using Matlab. Our results are comparable to those
in [Drapaca 2015]: when a constant external electric current is applied and the initial displacement and
speed are of orders of magnitude comparable to the size of the membrane, the action potentials look
similar to the ones seen in healthy neurons, while at very fast initial speeds (which could model a serious
traumatic event) and in the presence of a constant applied external current, high persisting oscillations
in the volume of the neuron are observed and the action potentials do not happen. Some points of note:
these results were obtained for a variable fractional order of the macroscopic Kelvin–Voigt element,
which was chosen based on mathematical simplicity rather than physical inspiration; and the classic
Hodgkin–Huxley equations were used instead of those of the microscopic Maxwell elements. The classic
Hodgkin–Huxley model has very finely adjusted equations and parameters which might have hidden the
possible effects of the variable viscoelasticity modeled with fractional order time derivatives of variable
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order. It is also possible that there exist other variable fractional orders that enclose physical information
that complements the Hodgkin–Huxley model. The lack of experimentally supported information on
neuronal mechanics and mechanotransduction limits our ability to explore the full capabilities of the
proposed model. However, the model is general enough and can be adapted to practical applications. For
instance, the model is independent of the Hodgkin–Huxley equations and thus simpler equations could
be used together with fractional order time derivatives of variable orders (and possibly the corresponding
evolution equations of the variable order functions) to observe action potentials and neuronal mechanics.
In this case the model might have fewer parameters with better prospects of finding experimental proof.
Therefore the work presented here can be seen as a first step towards a simpler chemomechanical model
of a neuron and its membrane.

In short, the main contributions of this paper are:

(1) Providing the physical structure of door closers to the ionic gates m,n, and h.

(2) Introducing the concept of entangled temporal scales for the stochastic nature of the action potential
and for the inseparability of the multiple time scales involved in the neuronal mechanochemical
processes.

(3) Use of fractional temporal derivatives of variable orders to model the entangled temporal scales.

(4) Showing through numerical simulations that after a serious traumatic event the elastic behavior
of a neuron dominates over its viscoelastic response, which appears to be in agreement with the
experimental observations reported in [Grevesse et al. 2015].

In the next section we present our mathematical model, followed by our results. The paper ends with
a section of conclusions and future directions which contains a first attempt at modeling entanglement
using an area law and level sets.

2. Mathematical model

We model the neuron as an axisymmetric circular cylindrical annulus whose inner core is filled with the
intracellular space and the outer core is the cell’s membrane (Figure 1). We assume that the intracellular
space and the membrane are homogeneous and thus reduce the study of neuronal electromechanics to
the study of a simple electromechanical element that we introduce here. Our low-dimensional elec-
tromechanical model couples spring-dashpot-mass mechanical elements for the intracellular space and
for the ionic gates located in the cell’s membrane to an electric circuit model of the cell’s membrane
(Figure 1). Motivated by the experimental findings in [Lu et al. 2006; Grevesse et al. 2015], we model
the intracellular space as a linear viscoelastic Kelvin–Voigt solid. We use the Hodgkin–Huxley [1952]
electric circuit to model the macroscopic electric dynamics of neuron’s membrane. Besides providing
a mathematical representation for neuronal electric dynamics, the Hodgkin–Huxley model introduces
three ion gates, m,n, and h, that produce action potentials by controlling the ionic flow into and out of
the neuron. Although m,n, and h are seen as nondimensional gate positions whose open or close state
is determined by phenomenologically established first order ordinary differential equations, no physical
structure has been given to them so far. In this paper we propose to model the m,n, and h gates as linear
viscoelastic Maxwell fluid elements located in the cell’s membrane (Figure 1). The physical analogy
for these ionic gates is a door closer. It is important to notice here that the electric circuit and Maxwell
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intracellular space membrane
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kl ηl
c̃
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Figure 1. Schematic of the proposed model: the neuron is an axisymmetric homoge-
neous circular cylinder whose inner core is the intracellular space, and the outer layer
is the membrane. Due to the symmetry (dashpot line) and material homogeneity, it is
enough to study half of the neuron whose properties are encapsulated into a spring-
dashpot-mass mechanical system with the spring and dashpot connected in parallel
(Kelvin–Voigt model), and the membrane is represented as an electric circuit governed
by the classic Hodgkin–Huxley equations.

elements shown in Figure 1 might not actually be independent and this could be further investigated
using the method of mechanoelectric analogy, which is commonly employed in systems engineering
[Koenig and Blackwell 1961] (a few insightful comments on the mechanoelectric analogy are stated after
formula (2-32)). However, given the empirical nature of the Hodgkin–Huxley model and the current lack
of knowledge of neuronal mechanotransduction, in this paper we will treat the electric circuit and the
Maxwell elements as independent. The coupling of the Kelvin–Voigt and Maxwell mechanical elements
to the Hodgkin–Huxley electric circuit is achieved by using a Lagrangian formulation and Hamilton’s
principle. We introduce a Lagrangian of the form [Drapaca 2015; Galley et al. 2014]

L(qNa, qK, ql, u, dm, dn, dh, m̃, ñ, h̃)= 1
2 M(0 Dα(t)

t u)2+ 1
2 ã(0 Dβ(t)

t (r + dm))
2

+
1
2 b̃(0 Dβ(t)

t (r + dn))
2
+

1
2 c̃(0 Dβ(t)

t (r + dh))
2

−
1

2C(u)
q2

C −
1
2 k(m̃, ñ, h̃)u2

−
1
2 km(qC , u)(r + dm − m̃)2

−
1
2 kn(qC , u)(r + dn − ñ)2− 1

2 kh(qC , u)(r + dh − h̃)2, (2-1)

where M is half of the constant mass of the neuron with constant cross-sectional area A; u(t) is the
macroscopic (cell scale) displacement of mass M that depends on time t ; ã, b̃, and c̃ are the masses of
the gates m, n, and h, respectively; r + dm , r + dn , and r + dh are the relative displacements between
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mass M and each of the masses ã, b̃, and c̃, respectively; r is the constant thickness of the membrane;
and m̃, ñ, and h̃ are the microscopic (ionic scale) displacements of the dashpots in the Maxwell elements
corresponding to the m, n, h gates, respectively. In addition, C(u) is the macroscopic capacitance of
membrane’s lipid bilayer modeled as a capacitor of electric charge qC , k(m̃, ñ, h̃) is the spring constant
of the Kelvin–Voigt element, while km , kn , and kh are the spring constants of the corresponding Maxwell
elements. Lastly, qNa, qK, and ql are the electric charges of Na+, K+, and leakage channels, respectively.
For simplicity, we assume that the relative displacements dm , dn , and dh are independent of displacement
u. The fractional derivative in formula (2-1) is given by (1-1) for a variable order α ∈ C. In formula (2-1)
we identify the first term of the Lagrangian L with a macrokinetic mechanical energy, and the second,
third and fourth terms with microkinetic mechanical energies. The fifth term in formula (2-1) represents
a macropotential electric energy, the sixth term is a macropotential mechanical energy, and the last three
terms are micropotential mechanical energies.

The conservation law of electric charges provides the constraint

qC + qNa+ qK+ ql = 0. (2-2)

We take qNa, qK, ql , u, dm , dn , dh , m̃, ñ, and h̃ to be generalized coordinates and introduce corresponding
independent variations δqNa, δqK, δql , δu, δdm , δdn , δdh , δm̃, δñ, and δh̃ that vanish at times t = 0 and
t = T . Using formula (2-2) we calculate the first variation of the Lagrangian L as

δL= lim
ε→0

dL
dε
(qNa+ εδqNa, qK+ εδqK, ql + εδql, u+ εδu, dm + εδdm, dn + εδdn,

dh + εδdh, m̃+ εδm̃, ñ+ εñ, h̃+ εh̃)

=

[
M0 Dα(t)

t u0 Dα(t)
t (δu)− ku− 1

2
∂km

∂u
(r + dm − m̃)2

−
1
2
∂kn

∂u
(r + dn − ñ)2− 1

2
∂kh

∂u
(r + dh − h̃)2+

1
2C2 q2

C

]
δu

+
[
ã0 Dβ(t)

t (r + dm)0 Dβ(t)
t (δdm)− km(r + dm − m̃)

]
δdm

+
[
b̃0 Dβ(t)

t (r + dn)0 Dβ(t)
t (δdn)− kn(r + dn − ñ)

]
δdn

+
[
c̃0 Dβ(t)

t (r + dh)0 Dβ(t)
t (δdh)− kh(r + dh − h̃)

]
δdh +

[
−

1
2
∂k
∂m̃

u2
+ km(r + dm − m̃)i

]
δm̃

+

[
−

1
2
∂k
∂ ñ

u2
+ kn(r + dn − ñ)

]
δñ+

[
−

1
2
∂k

∂ h̃
u2
+ kh(r + dh − h̃)

]
δh̃

+

[
−

1
C

qC −
1
2
∂km

∂qC
(r + dm − m̃)2− 1

2
∂kn

∂qC
(r + dn − ñ)2

−
1
2
∂kh

∂qC
(r + dh − h̃)2

]
(−δqNa− δqK− δql). (2-3)

We define the virtual work done by nonconservative forces by [Drapaca 2015]
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δW=−
[
RNa(0 Dγ (t)

t qNa)δqNa+ RK(0 Dγ (t)
t qK)δqK+ Rl(0 Dγ (t)

t ql)δql
]

−
[
η(0 Dα(t)

t u)δu+ ηm(0 Dβ(t)
t m̃)δm̃+ ηn(0 Dβ(t)

t ñ)δñ+ ηh(0 Dβ(t)
t h̃)δh̃

]
+
[
−ENaδqNa− EKδqK− Elδql + Fmδdm + Fnδdn + Fhδdh + Fδu

]
. (2-4)

In formula (2-4), the terms inside the first two sets of parentheses represent dissipative forces: the first
is due to the resistors with resistances RNa,RK, and Rl in the Hodgkin–Huxley electric circuit, and
the second is due to the linear dashpots in the Kelvin–Voigt and Maxwell elements whose damping
coefficients are η,ηm ,ηn , and ηh . The last set of parentheses in (2-4) contain the reverse potentials ENa,EK,
and El of the Hodgkin–Huxley model and the forces Fm, Fn, Fh , and F which are work conjugates for
the Maxwell elements and the Kelvin–Voigt element, respectively. Again, the fractional derivatives in
formula (2-4) are given by (1-1) with variable orders β, γ ∈ C. The choice of signs in formula (2-4)
guarantees that δW is thermodynamically consistent. The nomenclature of the physical and structural
quantities used throughout the paper is given on page 53.

We use now the nonconservative form of Hamilton’s principle∫ T

0
δL+ δW dt = 0. (2-5)

We assume that the generalized coordinates and their variations are absolutely continuous functions on
[0, T ] so that the following integration by parts formula can be applied [Atanackovic and Pilipovic 2011]:∫ T

0

(
0 Dα(t)

t f (t)
)(

0 Dα(t)
t δ f (t)

)
dt =

∫ T

0
t Dα(t)

T (0 Dα(t)
t f (t))δ f (t) dt. (2-6)

Thus, by replacing formulas (2-3) and (2-4) into (2-5), using the integration by parts formula (2-6), the
independence of the variations of generalized coordinates and the fact that these are zero at 0 and T , we
obtain the generalized Euler–Lagrange equations2

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2

−
1
2

[
∂km

∂u
(r + dm − m̃)2+

∂kn

∂u
(r + dn − ñ)2+

∂kh

∂u
(r + dh − h̃)2

]
+ F = 0, (2-7)

ãt Dβ(t)
T (0 Dβ(t)

t (r + dm))− km(r + dm − m̃)+ Fm = 0, (2-8)

b̃t Dβ(t)
T (0 Dβ(t)

t (r + dn))− kn(r + dn − ñ)+ Fn = 0, (2-9)

c̃t Dβ(t)
T (0 Dβ(t)

t (r + dh))− kh(r + dh − h̃)+ Fh = 0, (2-10)

−ηm0 Dβ(t)
t m̃+ km(r + dm − m̃)− 1

2
∂k
∂m̃

u2
= 0, (2-11)

−ηn0 Dβ(t)
t ñ+ kn(r + dn − ñ)− 1

2
∂k
∂ ñ

u2
= 0, (2-12)

−ηh0 Dβ(t)
t h̃+ kh(r + dh − h̃)− 1

2
∂k

∂ h̃
u2
= 0, (2-13)

2These equations can also be obtained directly from [Atanackovic and Pilipovic 2011, Equation (35)].
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−RNa(0 Dγ (t)
t qNa)+ V − ENa

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-14)

−RK(0 Dγ (t)
t qK)+ V − EK

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-15)

−Rl(0 Dγ (t)
t ql)+ V − El

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-16)

where V = qC/C is the electric potential of the capacitor.
As in [Sherief et al. 2012], we introduce a generalized Kirchhoff’s current law of the form

0 Dγ (t)
t (CV + qNa+ qK+ ql)= I, (2-17)

where I is a known external current applied on the membrane. By replacing Equations (2-14), (2-15),
and (2-16) into (2-17) we obtain an equation for the membrane potential given as

0 Dγ (t)
t (CV )= I − 1

RNa
(V − ENa)−

1
RK
(V − EK)−

1
Rl
(V − El)

−
1

2C

(
1

RNa
+

1
RK
+

1
Rl

)[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
. (2-18)

The unknown functions u, dm , dn , dh , m̃, ñ, h̃, and V can be found by solving the coupled Equations
(2-7), (2-8)–(2-13) and (2-18) with appropriate initial conditions. Given the insufficient knowledge of
neuronal mechanotransduction processes, it is very difficult to provide expressions for ã, b̃, c̃, k, km , kn ,
kh , ηm , ηn , ηh , C , Fm , Fn , and Fh which are needed in order to solve these equations. Therefore, we
now make some simplifying assumptions. We start by observing that the equations are not only coupling
neuronal mechanical and electrical behaviors but also microscopic (ionic level) and macroscopic (cell
level) length scales. This mixture of length scales will cause the system of differential equations to be
stiff numerically. Considering how little is known about most of the parameters in our model, a proper
analysis of the system and separation of the length scales using perturbation theory is not feasible at this
time. Thus we will give a qualitative rather than quantitative analysis of the terms of the equations. We
assume that the microscopic masses ã, b̃, and c̃ are negligible with respect to the cell’s mass M and thus
we remove Equations (2-8)–(2-10) from the system of equations and also remove dm , dn , and dh from
the set of unknowns. We further assume that the first variations of the spring constants km , kn , and kh of
the microscopic Maxwell elements with the macroscopic functions V and u are very small and thus we
neglect these terms from Equations (2-7) and (2-18). For simplicity, we take F = 0. Lastly, we introduce
the nondimensional displacements

m = m̃/r, n = ñ/r, h = h̃/r. (2-19)
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With these assumptions, the system of equations reduces to

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2
= 0, (2-20)

0 Dβ(t)
t m =−

km

ηm
m+

[
km

ηm
(1+ dm/r)−

1
2r2ηm

∂k
∂m

u2
]
, (2-21)

0 Dβ(t)
t n =−

kn

ηn
n+

[
kn

ηn
(1+ dn/r)−

1
2r2ηn

∂k
∂n

u2
]
, (2-22)

0 Dβ(t)
t h =−

kh

ηh
h+

[
kh

ηh
(1+ dh/r)−

1
2r2ηh

∂k
∂h

u2
]
, (2-23)

0 Dγ (t)
t (CV )= I − 1

RNa
(V − ENa)−

1
RK
(V − EK)−

1
Rl
(V − El). (2-24)

We notice now that when β(t)= 1, Equations (2-21)–(2-23) have the same forms as the classic Hodgkin–
Huxley equations for the gating variables m, n, and h and thus we identify our nondimensional displace-
ments m, n, and h with the variables representing the activations of the Na+ and K+ channels and the
inactivation of Na+ channel, respectively. Consequently, we have provided a physical meaning for m,n,
and h and their evolution equations which was, missing from the original ad hoc derivation of the classic
Hodgkin–Huxley [1952] model. Since the physical parameters required by Equations (2-21)–(2-23) are
not known we will replace the right-hand sides of these equations and Equation (2-24) by the expressions
from the Hodgkin–Huxley model [Dayan and Abbott 2001] and thus obtain the system of equations

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2
= 0, (2-25)

0 Dβ(t)
t m = αm(1−m)−βmm, (2-26)

0 Dβ(t)
t n = αn(1− n)−βnn, (2-27)

0 Dβ(t)
t h = αh(1− h)−βhh, (2-28)

0 Dγ (t)
t (CV )= I − gNam3h Ã(V − ENa)− gKn4 Ã(V − EK)− gl Ã(V − El), (2-29)

where Ã is the surface area of the neuron, gNa, gK, and gl are respectively the maximal conductances of
the Na+, K+, and leakage currents, and

αm =
0.1(V+40)

1−exp(−0.1(V+40))
, βm = 4 exp(−0.0556(V + 65)),

αn =
0.01(V+55)

1−exp(−0.1(V+55))
, βn = 0.125 exp(−0.0125(V + 65)),

αh = 0.07 exp(−0.05(V + 65)), βh =
1

1+exp(−0.1(V+35))
. (2-30)

The physical units of the parameters in (2-30) are the same as those of the left-hand sides of the Equations
(2-26)–(2-28), since all the constants multiplying potential V are meant to remove its physical units (mV).
Lastly, we notice that for a constant C , Equations (2-26)–(2-29) reduce to either the equations proposed
in [Sherief et al. 2012] when β(t) and γ (t) are constants between 0 and 1, or the equations of the classic
Hodgkin–Huxley model [Dayan and Abbott 2001] when β(t)= γ (t)= 1.
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In addition, we need to provide expressions for C(u), k(m, n, h), α(t), β(t), and γ (t). As in [Drapaca
2015], we assume that the membrane acts like a parallel plate capacitor and introduce

C = cm Ã = ε Ã
r(1+u/r)

≈
ε Ã
r
(1− u/r), (2-31)

where cm is the specific membrane capacitance and ε is membrane’s permittivity. For the dynamic spring
constant k(m, n, h) we propose the expression [Drapaca 2015]

k(m, n, h)= k0(1+m3(1− h)n4), (2-32)

where k0 is the spring constant of the neuron in the inactive state. Equation (2-32) suggests that the cell
stiffens during an action potential which appears to be in agreement with the observations made in [Hille
2001; Zou et al. 2013]. Lastly, due to a lack of knowledge of relationships among the multiple time
scales on which physical processes in a neuron take place, mathematical simplicity rather than physical
inspiration was used to select expressions for α(t), β(t), and γ (t) and these will be provided in the results
section.

The system of Equations (2-25)–(2-29) with parameters given by (2-30), (2-31), and (2-32) can be
solved either by direct numerical discretization or, as we will see below, by using higher order expansion
formulas that transforms the system into a system of first and second order differential equations which
can be solved using existing software such as Matlab. Before proceeding further it is worthwhile to
comment on the features of some of these equations. For the sake of argument we take β(t)= γ (t)= 1.
Then, Equations (2-26)–(2-29) and (2-30) become the classic Hodgkin–Huxley equations. The amount
of combined work, intuition and inspiration needed to obtain these very well tuned equations is obvious
from their expressions and this is why we decided to keep these formulas in our model. However, given
our interpretation of the gating variables m, n, and h as nondimensional displacements of the dashpots
in the microscopic Maxwell elements that model the ionic gates present in the membrane, we could
use the mechanoelectric analogy [Koenig and Blackwell 1961] to provide a macroscopic mechanical
description of the membrane corresponding to the Hodgkin–Huxley electric circuit. According to the
mechanoelectric analogy, the capacitance C is the average mass of the membrane seen as a multicom-
ponent and multiphasic porous medium, the voltage V is the average velocity of the membrane, the
external current I is an external force, the reverse potentials ENa, EK, and El are flux velocities of
Na+, K+, and Cl− (leakage), and the inverses of the resistances 1/RNa,1/RK, and 1/Rl are viscous
damping coefficients describing the friction caused by the transport of ions through the membrane. In
this analogy, Equation (2-24) (or (2-29)) is Newton’s second law of motion where the only internal forces
are the damping forces (1/RNa)(V − ENa), (1/RK)(V − EK), and (1/Rl)(V − El) corresponding to the
ion fluxes expressed relative to the average velocity of the membrane. One advantage of this mechanical
analog is that thermodynamics theory can be used to relate the flux velocities of the considered ionic
species to their concentrations via their chemical potentials [Doi and Edwards 1986] and thus recover
the Nernst equations, which are commonly used to express the dependency of the reverse potentials on
ion concentrations (see for instance [Wei et al. 2014]). Another possible advantage is that as experimen-
tally supported information on the chemomechanical properties of the membrane’s components becomes
available, the validation of a simpler mechanical model with fewer parameters may become possible. In
this context we notice that our model is not only independent of the Hodgkin–Huxley equations but also
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could be made to have fewer parameters thanks to the use of fractional order derivatives of variable order.
For instance, according to the Hodgkin–Huxley model, the damping coefficients 1/RNa, 1/RK, and 1/Rl

in the mechanical analog model depend on m, n, and h and thus vary in time according to (2-26)–(2-29).
This means that the mechanical analog model implements already variable viscoelasticity. Alternatively,
using a fractional order derivative of variable order γ (V (t)) ∈ [0, 1) in Equation (2-24) to model variable
viscoelasticity could drastically simplify Equations (2-26)–(2-28) and (2-30) and reduce the number of
parameters needed to be found experimentally. Thus the work presented in this paper can be seen as a
first step towards a simpler chemomechanical model of a neuron and its membrane.

We propose to simplify the system of Equations (2-25)–(2-29) even more by using (1-5) and the
expansion formulas (written here for a generic function f ) [Almeida and Torres 2013]

0 Dα(t)
t f (t)≈ 1

0(1−α(t))

[
1+

N∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

]
t−α(t) f (t)

+
1

0(2−α(t))

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]
t1−α(t) d f

dt
(t)

+

N∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

t1−k−α(t)Fk(t), (2-33)

dFk

dt
(t)= (k− 1)tk−2 f (t), Fk(0)= 0, k = 2, 3, . . . , N , (2-34)

t Dα(t)
T f (t)≈ 1

0(1−α(t))

[
1+

N∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

]
(T − t)−α(t) f (t)

−
1

0(2−α(t))

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]
(T − t)1−α(t) d f

dt
(t)

+

N∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

(T − t)1−k−α(t)Gk(t), (2-35)

dGk

dt
(t)= (1− k)(T − t)k−2 f (t), Gk(T )= 0, k = 2, 3, . . . , N . (2-36)

By replacing formula (2-33) into formula (2-35) the expression

t Dα(t)
T (0 Dα(t)

t f (t))≈− 1
0(2−α(t))2

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]2

(t (T − t))1−α(t)
d2 f
dt2

+ lower order terms (2-37)

is obtained, where some of the lower order terms are linear in f and d f/dt and the rest of the terms
are combinations of the extra functions Fk , Gk , k = 2, 3, . . . N . Formulas (2-33)–(2-36) suggest that
the extra terms in (2-37) introduce additional memory effects which could invalidate the causality law.
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Thus in Equation (2-20) we take t Dα(t)
T (0 Dα(t)

t u)=−(d2u)/(dt2) and obtain a much simplified form of
the equation of motion for displacement u. If we replace formula (2-33) into Equations (2-20)–(2-24)
and add the extra N − 1 equations (2-34) corresponding to each unknown function u, m, n, h, V we
obtain a system of integer order differential equations with 5N equations. It was shown in [Almeida
and Torres 2013] that a value of N = 3 gives very accurate results, so we take N = 3 and obtain a total
of 15 equations: 14 of them are first order and one is a second order differential equation. We notice
that these mathematical approximations replace the variable fractional order time derivatives by integer
(first or second) order derivatives and the effect of the variable orders is contained in extra memory terms
(represented as power functions of time with variable fractional order) which are added to the proposed
equations and their corresponding evolution equations.

3. Results

In our numerical simulations we used the following parameters [Dayan and Abbott 2001]:

ENa = 50 mV,
EK =−77 mV,
El =−54.387 mV,

gNa = 1.2 mS/mm2,

gK = 0.36 mS/mm2,

gl = 0.003 mS/mm2,

r = 4 nm,
r0 = 2µm,
Ã = 0.01 mm2,

(3-1)

where r0 is the radius of the neuron. At mechanical equilibrium (u = 0), the specific membrane capaci-
tance is 0.01µF/mm2, which combined with formula (2-31) gives

cm = 0.01(1− u/r) µF/mm2.

We also used E0 = 200 Pa as an average Young’s modulus of a neuron [Lu et al. 2006; Zou et al. 2013],
M = 0.1 ng as half of the neuronal mass [Corbin et al. 2014], and µ = 4 mPa · s as neuronal dynamic
viscosity [Park et al. 2010]. From these parameters and the assumption of circular cylindrical shape, the
following parameters can be calculated [Drapaca 2015]:

k0 = 0.0013 mg/ms2, η = 2.5 · 10−11 mg/ms, vol0 = 9.95 · 10−6 mm3,

where vol0 is the volume of the neuron at mechanical equilibrium. In all numerical simulations we applied
a constant external current per unit surface area I = 0.1µA/mm2. Lastly, we used a characteristic time
of 25 ms, and α(t) = 0.001 exp(1 − t/25) ∈ C, β(t) = γ (t) = 1. We chose a simple function α(t)
that belongs to the class C, looks similar to the parameters from formulas (2-30), and gives apparently
reasonable results when the neuronal electrochemistry is described by the classic Hodgkin–Huxley model
(β(t)= γ (t)= 1).
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In this case the system of Equations (2-20)–(2-24) with approximations (2-33)–(2-34) become
d
dt

u = v, (3-2)

d
dt
v =−

[
k
M
+
η

M
1

0(1−α(t))

(
1+

3∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

)
t−α(t)

]
u

−
η

M
1

0(2−α(t))

(
1+

3∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

)
t1−α(t)v

−
η

M

3∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

t1−k−α(t)Fk +
1
2

dC
du

V 2, (3-3)

d
dt

Fk = (k− 1)tk−2u, k = 2, 3, (3-4)

d
dt

m = αm(1−m)−βmm, (3-5)

d
dt

n = αn(1− n)−βnn, (3-6)

d
dt

h = αh(1− h)−βhh, (3-7)

d
dt
(V )= 1

C
[
I − gNam3h Ã(V − ENa)− gKn4 Ã(V − EK)− gl Ã(V − El)

]
−

1
C
v

dC
du

V . (3-8)

We solved the system (3-2)–(3-8) with the initial conditions

V (0)=−65 mV, m(0)= αm(V (0))
αm(V (0))+βm(V (0))

, (3-9)

n(0)= αn(V (0))
αn(V (0))+βn(V (0))

, h(0)= αh(V (0))
αh(V (0))+βh(V (0))

, (3-10)

Fk(0)= 0, k = 2, 3 (3-11)

Set 1: u(0)= 1 nm, v(0)= 10 nm/ms,

Set 2: u(0)= 0, v(0)= 1 nm/µs,

Some numerical experimentation with physically plausible values for u(0) and v(0) showed the existence
of two trends in the behavior of stable solutions and thus the initial conditions given by sets 1 and 2 were
chosen such that both of these situations could be presented.

We used Matlab’s built-in function ode15s that solves stiff ordinary differential equations using

(1) a modified linear multistep backward difference formula of order up to 5 known to have good
stability, and

(2) an adaptive step size that changes according to a numerical scheme that calculates relative and
absolute error tolerances [Shampine and Reichelt 1997].

In our simulations we kept the default values of ode15s for the relative error tolerance (10−3) and for
the absolute error tolerance (10−6). For the chosen parameters and initial conditions we noticed that the
order of magnitude of dC/duV in Equations (3-3) and (3-8) is much bigger than the rest of the terms in
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Figure 2. Results for initial displacement of 1 nm and initial speed of 10 nm/ms: voltage;
functions n (blue curve), m (red), and h (green); volume; and Young’s modulus.

these equations and no action potentials are observed. Thus, as in [Drapaca 2015], we remove this term
from Equations (3-3) and (3-8). This simplification preserves a weaker coupling between the mechanical
and electrical behaviors of the neuron expressed by (2-31) and (2-32).

In Figures 2 and 3 we show the evolutions of the voltage, gating variables, volume and Young’s
modulus for the mechanical initial conditions in set 1 and set 2, respectively. For set 1, the action
potentials occur and the Young’s modulus and the volume variations appear to be physically admissible
and possibly within a healthy range. The dynamics of the cell’s stiffness (Figure 2, bottom right) seems
in agreement with the experimental observations in the normally functioning regime reported in [Zou
et al. 2013]. The initial conditions in set 2 mimic a more serious traumatic event and our simulations
show that there are no action potentials (Figure 3, top left), and the displacements of the gates m, n, and
h (top right) as well as the Young’s modulus (bottom right) remain at their corresponding initial values.
The solutions obtained in this case might show damaging effects of a very fast initial speed (jabbing)
on the material structure and electrochemical activity of a neuron. To better understand the simulated
neuronal mechanotransduction, in Figures 4 and 5 we look closer at the voltages and corresponding
volumes obtained using the mechanical initial conditions in set 1 and set 2. While oscillations in the
cell’s volume are quickly attenuated for set 1 of initial conditions (Figure 4, right) such that the action
potential can develop soon afterwards (Figure 4, left); for the initial conditions of set 2 the amplitudes of
the oscillations in volume are much higher than in the previous case and do not appear to diminish in time
(Figure 5, right), and thus the membrane’s depolarization does not happen. These results look similar to
the ones we reported in [Drapaca 2015], even though here Equation (3-3) has extra, time-dependent terms



FRACTIONAL CALCULUS IN NEURONAL ELECTROMECHANICS 49

vo
lta

ge
(m

V
)

m
,n

,h

timetime

Y
ou

ng
’s

m
od

ul
us

(P
a)

timetime

vo
lu

m
e

(m
m

3 )

·10−6

Figure 3. Results for zero initial displacement and initial speed of speed of 10 nm/ms:
voltage; functions n (blue curve), m (red), and h (green); volume; and Young’s modulus.
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Figure 4. A zoom-in of Figure 2: voltage potential (top) and volume (bottom).
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Figure 5. A zoom-in of Figure 3: voltage potential (top) and volume (bottom).

that account for the variable viscoelasticity. This might suggest that — for the chosen initial conditions,
parameters and electromechanical couplings — after a serious traumatic event the elastic behavior of a
neuron dominates over its viscoelastic response, which agrees with the experimentally supported claims
made in [Grevesse et al. 2015].

4. Conclusions and future directions

In this paper we proposed a generalization of our electromechanical model from [Drapaca 2015] in
which the temporal variations of the physical fields are represented using Riemann–Liouville fractional
derivatives of variable orders. The neuron was modeled as a linear viscoelastic Kelvin–Voigt solid
with variable viscoelasticity whose electrochemical activity was described by fractional order Hodgkin–
Huxley equations. In addition, we introduced three linear viscoelastic Maxwell fluids with variable
viscoelasticity to model the three ionic gates with gating variables m,n, and h. This provides a physical
structure for the ionic gates which can be interpreted as door closers. The fractional orders of the
derivatives model the multiple temporal scales used by a neuron for electrochemical signaling. The time
dependency of the fractional orders models the biological variability of neurons as well as the intrinsic
entanglement of states existing in the complex mixture that makes up a neuron. For this reason we call
these time scales entangled scales. We used a Lagrangian formulation and Hamilton’s principle to obtain
the coupled equations of motion. This approach links macroscopic (cell level) and microscopic (ionic
level) mechanical and electrical information and hence it can describe neuronal mechanotransduction
[Drapaca 2015]. As in [Drapaca 2015], we assumed that at the macroscopic level the membrane’s
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capacitance depends on the mechanical displacement of the neuron and the Young’s modulus of the
neuron depends on the nondimensional displacements of the dashpots in the Maxwell elements. In order
to satisfy the physical criterion of causality, we restrict the class of allowable variable order functions to
the class of differentiable functions with continuous first order derivatives and of slow variation. For such
variable order functions, we can approximate the Riemann–Liouville derivatives to Marchaud fractional
derivatives and further use the higher integer order expansions proposed in [Almeida and Torres 2013] to
transform the integro-differential Euler–Lagrange equations into classic Euler–Lagrange equations with
extra time-dependent terms, some with their own evolution equations. We further performed numerical
simulations in Matlab using the built-in function ode15s to solve simplified versions of our differential
equations. We used the same initial conditions and physical constants as in [Drapaca 2015] and we ob-
tained results comparable with those in the same paper. Namely, when a constant external electric current
was applied and the initial displacement and speed were of orders of magnitude comparable to the size of
the membrane, the action potentials occurred and looked similar to the ones seen in healthy neurons. In
this case the dynamics of the neuron’s stiffness seemed to agree with experimental measurements done
on healthy neurons [Zou et al. 2013]. At very fast initial speeds (which could model a serious traumatic
event) and in the presence of a constant applied external current, our numerical simulations showed
high persisting oscillations in the volume of the neuron and the action potentials did not happen. Also,
the Young’s modulus of the neuron and the displacements m, n, and h of the dashpots in the Maxwell
elements were almost constant, suggesting possible structural and functional damage of the neuron.

Some of the limitations of the proposed model and solution approach are as follows. One limi-
tation is finding physically valid capacitance-displacement and, respectively, stiffness-gating variable
relationships because there are no experimental observations that could guide us. Given the simplicity
of the proposed model, we hope that our model will inspire future experimental work that will provide
empirical relationships among the model’s mechanical and electrical parameters. Another limitation
of our approach is the use of the Matlab built-in function ode15s to solve the simplified system of stiff
differential equations. Shampine and Bogacki [1989] advised caution in drastically reducing the step size
in the discretization implemented in ode15s since this action could increase numerical error and cause
instabilities in the solutions. In addition, the class of admissible variable order functions is too restrictive.
In our future work we plan to develop our own numerical solver for the stiff system of differential
equations that uses the Riemann–Liouville fractional derivatives of variable orders. We believe that for
living neurons the causality law should not be imposed and therefore by removing this restriction on
our model we could use the Riemann–Liouville derivatives with variable order functions belonging to a
larger class of admissible (continuous) functions. A numerical solver will allow us to address another
limitation of our model: providing a more physically meaningful expression for the variable fractional
order α(t). One approach is to use the experimentally found dependence of a power law exponent on the
stress reported in [Grevesse et al. 2015] to calculate a corresponding α(t). Another approach is to add the
unknown function α(t) to the list of generalized coordinates and use Hamilton’s principle to obtain one
more Euler–Lagrange equation that presumably could be solved for α [Atanackovic and Pilipovic 2011].
Another possible limitation is the use in our numerical simulations of the classic Hodgkin–Huxley model,
whose very well tuned equations and parameters might have hidden the possible effects of the variable
viscoelasticity modeled with fractional order time derivatives of variable order. Since the proposed model
is not dependent on the Hodgkin–Huxley equations, we could use the mechanoelectric analogy mentioned
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in Section 2 to obtain a macroscopic mechanical analog model of the neuronal membrane made of the
membrane’s mass and three dashpots connected in parallel and located between the neuronal mass M
and the membrane’s mass. The corresponding equations of motion with classic time derivatives as well
as with fractional order derivatives of variable orders will not only have much simpler forms but also
may be easier to analyze and solve. In particular, a bifurcation analysis might be possible in this case
and the role of variable fractional order derivatives in critical transitions could be investigated.

Lastly, we intend to generalize our model by including spatial variations. Let �⊂ R3 be the domain
occupied by the intracellular space, the cell’s membrane, and a very small ε-neighborhood of the mem-
brane located in the extracellular space that contains the ions exchanged with the neuron through its
membrane. This domain is filled with a very complex mixture of solids, fluids, ionic components and
other proteins and molecules that interact dynamically with each other on multiple time and space scales
and thus there exists a subset ω ⊂� that contains the entangled state. This region ω could be seen as a
sort of black hole in the sense that once components enter ω, any information about them is lost (however,
unlike black holes, components can “escape” ω). Thus the energies contributing to the Lagrangian form
are the kinetic and potential energies as well as an interfacial energy due to the presence of ω. All these
energies are in fact part of the total entropy of domain �, and the entanglement entropy, which is the
entropy of ω, satisfies a so-called area law that says that the entanglement entropy is proportional to the
surface area of ω [Eisert et al. 2010]. If we introduce the level set function

φ(x)=


dx if x ∈�−ω,
−dx if x ∈ ω,

0 if x ∈ ∂ω,

then we can introduce the Lagrangian

L=

∫
�

1
2ρM(0 Dα(t,x)

t u)2 H(φ)+ 1
2ρã(0 Dβ(t,x)

t (r + dm))
2 H(φ)

+
1
2ρb̃(0 Dβ(t,x)

t (r + dn))
2 H(φ)+ 1

2ρc̃(0 Dβ(t,x)
t (r + dh))

2 H(φ)

−
1

2C(u)
q2

C H(φ)− σu · εu H(φ)− σdm · εdm H(φ)

− σdn · εdn H(φ)− σdh · εdh H(φ)+ λδ(φ)||∇φ|| dx, (4-1)

where H(φ) is the Heaviside function; δ(φ) is the Dirac distribution; ρM , ρã, ρb̃, and ρc̃ are the densities
of the masses represented as subindices; σu, σdm, σdn, σdh are the stress tensors for the displacements
u, r + dm − m̃, r + dn − ñ, r + dh − h̃ with εu, εdm, εdn , and εdh the corresponding strain tensors. We
denoted by ||∇φ|| the Euclidean norm of the Jacobian matrix of φ. The last term in formula (4-1) is the
surface area of ω. An expression for the corresponding virtual work can be obtained from formula (2-4)
in a similar manner. Hamilton’s principle will provide again the system of nonlinear integro-differential
Euler–Lagrange equations, which will have to be completed with the Kirchhoff current law and an evo-
lution equation for the level set function φ. Appropriate initial and boundary conditions will complete
this model which we intend to fully describe and study in the near future.
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List of Symbols

A neuronal cross-sectional area
Ã neuronal surface area
r0 neuronal radius
r thickness of neuronal membrane
t time (independent variable)
α, β, γ ∈ [0, 1) time-dependent fractional orders (entangled time scales)
M half of the neuronal mass
ã, b̃, c̃ masses attached to the Maxwell elements
u neuronal displacement
r + dm, r + dn, r + dh relative displacements between M and each of ã, b̃, c̃
m̃, ñ, h̃ displacements of the dashpots in the Maxwell elements
k spring constant of the Kelvin–Voigt element
η damping coefficient of the Kelvin–Voigt element
F force (work conjugate) for the Kelvin–Voigt element
km, kn, kh spring constants of the Maxwell elements
ηm, ηn, ηh damping coefficients of the Maxwell elements
Fm, Fn, Fh forces (work conjugates) for the Maxwell elements
C capacitance of neuronal membrane
cm specific membrane capacitance
qC electric charge of the capacitor
V electric potential (voltage) of the capacitor
ε membrane’s permittivity
I external current
qNa,qK,ql electric charges of Na+,K+, and leakage channels
RNa, RK, Rl resistances of the resistors
ENa, EK, El reverse potentials
gNa, gK, gl maximal conductances of the Na+,K+, and leakage currents
αm, αn, αh, βm, βn, βh voltage-dependent parameters of the Hodgkin–Huxley model
Fk,Gk , k = 2, 3 extra memory terms due to mathematical approximations
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