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NONLOCAL PROBLEMS WITH LOCAL DIRICHLET AND
NEUMANN BOUNDARY CONDITIONS

BURAK AKSOYLU AND FATIH CELIKER

We present novel governing operators in the theory of peridynamics (PD) which will allow the extension
of PD to applications that require local boundary conditions (BC). Due to its nonlocal nature, the original
PD governing operator uses nonlocal BC. The novel operators agree with the original PD operator in the
bulk of the domain and simultaneously enforce local Dirichlet or Neumann BC. Our construction is
straightforward and easily accessible. The main ingredients are antiperiodic and periodic extensions of
kernel functions together with even and odd parts of functions. We also present governing operators
that enforce antiperiodic and periodic BC and the corresponding compatibility conditions for the right-
hand side function in a given operator equation. Finally, we present the basic idea in extending the 1D
construction to 2D.

1. Introduction

We present novel governing operators in the theory of peridynamics (PD), a nonlocal extension of con-
tinuum mechanics developed by Silling [2000]. We consider problems in 1D and choose the domain
� WD Œ�1; 1�. By suppressing the dependence of u on the time variable t , the original bond based PD
governing operator is given as

Lorigu.x/ WD

Z
�

yC .x0�x/u.x/ dx0�

Z
�

yC .x0�x/u.x0/ dx0; x 2�: (1-1)

Due to its nonlocal nature, the operator Lorig uses nonlocal boundary conditions (BC); see [Silling 2000,
p. 201]. We define the operator that is closely related to Lorig as

Lu.x/ WD cu.x/�

Z
�

yC .x0�x/u.x0/ dx0; x 2�; (1-2)

where c WD
R
� C.x0/ dx0. We will prove that the two operators agree in the bulk. As the main contribution,

we present novel governing operators that agree with L in the bulk of �, and, at the same time, enforce
local Dirichlet or Neumann BC.

Since PD is a nonlocal theory, one might expect only the appearance of nonlocal BC. Indeed, so far
the concept of local BC does not apply to PD. Instead, external forces must be supplied through the
loading force density [Silling 2000]. On the other hand, we demonstrate that the anticipation of local
BC being incompatible with nonlocal operators is not quite correct. Hence, our novel operators present
an alternative to nonlocal BC and we hope that the ability to enforce local BC will provide a remedy for
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surface effects seen in PD; see [Madenci and Oterkus 2014, Chapters 4, 5, 7, and 12] and [Kilic 2008;
Mitchell et al. 2015].

For x;x0 2 Œ�1; 1�, it follows that x0 � x 2 Œ�2; 2�. Hence, in (1-1), the kernel function C.x/ needs
to be extended from � to the domain of yC .x0�x/, which is y� WD Œ�2; 2�. The default extension is the
zero extension defined by

yC .x/ WD

8<:
0 if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

0 if x 2 .1; 2�:

Furthermore, the kernel function C.x/ is assumed to be even. Namely, C.�x/D C.x/. An important
first choice of C.x/ is the canonical kernel function �ı.x/ whose only role is the representation of the
nonlocal neighborhood, called the horizon, by a characteristic function. More precisely, for x 2�,

�ı.x/ WD

�
1 if x 2 .�ı; ı/;

0 otherwise.
(1-3)

The size of nonlocality is determined by ı and we assume ı < 1. Since the horizon is constructed by
�ı.x/, a kernel function used in practice is in the form

C.x/D �ı.x/�.x/; (1-4)

where �.x/ 2L2.�/ is even.
We define the periodic and antiperiodic extensions of C.x/ from � to y�, respectively, as follows

yCa.x/ WD

8<:
�C.xC 2/ if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

�C.x� 2/ if x 2 .1; 2�;

yCp.x/ WD

8<:
C.xC 2/ if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

C.x� 2/ if x 2 .1; 2�:

(1-5)

Even for smooth �.x/, note that yC .x/, yCa.x/, and yCp.x/ are not necessarily smooth; see Figure 1.
Throughout the paper, we assume that

u.x/ 2L2.�/\C 1.@�/: (1-6)

Even and odd parts of the function u are used in the novel governing operators. Here we provide their
definitions. We denote the orthogonal projections that give the even and odd parts, respectively, of a
function by Pe;Po W L2.�/ ! L2.�/; whose definitions are

Peu.x/ WD 1
2

�
u.x/Cu.�x/

�
; Pou.x/ WD 1

2

�
u.x/�u.�x/

�
: (1-7)

Theorem 1.1 (Main Theorem). Let c D
R
� C.x0/ dx0. The following operators MD and MN defined by

.MD� c/u.x/W D �

Z
�

�
yCa.x

0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/

�
dx0;

.MN� c/u.x/W D �

Z
�

�
yCp.x

0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/

�
dx0

agree with Lu.x/ in the bulk, i.e., for x 2 .�1C ı; 1� ı/. Furthermore, the operators MD and MN

enforce homogeneous Dirichlet and Neumann BC, respectively. More precisely, for u.˙1/ D 0 and
u0.˙1/D 0, we obtain MDu.˙1/D 0 and MNu0.˙1/D 0, respectively.
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Related work and structure of the paper. In [Beyer et al. 2016], one of our major results was the finding
that, in R, the PD governing operator is a function of the governing operator of (local) classical elasticity.
This result opened the path to the introduction of local boundary conditions into PD theory. Building
on [Beyer et al. 2016], we generalized the results in R to bounded domains, a critical feature for all
practical applications. In [Aksoylu et al. 2017b], we laid the theoretical foundations and in [Aksoylu
et al. 2017a], we applied the foundations to prominent BC such as Dirichlet and Neumann, as well as
presented numerical implementation of the corresponding wave propagation. We carried out numerical
experiments by utilizing MD and MN as governing operators in the previously cited work. In [Aksoylu
and Celiker 2016], we studied other related governing operators. In [Aksoylu et al. 2017c], we presented
the extension of the novel operators to 2D. In [Aksoylu and Kaya 2017], we studied the condition numbers
of the novel governing operators. Therein, we proved that the modifications made to the operator Lorig

to obtain the novel operators are minor as far as the condition numbers are concerned.
The rest of the article is structured as follows. In Section 2, we present the main observation that

leads to the construction of the novel operators that enforce Dirichlet and Neumann BC. In Section 3,
we give the proof of the main theorem. In Section 4, we show how to obtain the operators that enforce
antiperiodic and periodic BC by choosing suitable combinations of kernel functions. In Section 5, when
an equation using the governing operators is solved, we show that the right-hand side function should
satisfy the same the BC enforced by the governing operator. In Section 6, we provide the highlights of
the extension from the 1D construction to 2D. We conclude in Section 7.

2. The main observation and the construction

Let us study the definition of yCa.x/ given in (1-5) by explicitly writing the expression of the kernel in
(1-4) as follows:

yCa.x/D

8̂<̂
:
��ı.xC 2/�.xC 2/; x 2 Œ�2;�1/;

�ı.x/�.x/; x 2 Œ�1; 1�;

��ı.x� 2/�.x� 2/; x 2 .1; 2�:

Let us closely look at the first expression in the above definition of yCa.x/:

yCa.x/jx2Œ�2;�1/ D��ı.xC 2/�.xC 2/: (2-1)

The expression in (2-1) is equivalent to

yCa.x/jx2Œ�2;�1/ D

�
��.xC 2/ if xC 2 2 .�ı; ı/ and x 2 Œ�2;�1/;

0 if xC 2 … .�ı; ı/ and x 2 Œ�2;�1/:
(2-2)

Due to the set equivalence˚
x W xC 2 2 .�ı; ı/ and x 2 Œ�2;�1/

	
D
˚
x W x 2 Œ�2� ı;�2C ı/\ Œ�2;�1/D Œ�2;�2C ı/

	
;

the expression in (2-2) reduces to

yCa.x/jx2Œ�2;�1/ D

�
��.xC 2/ if x 2 Œ�2;�2C ı/;

0 if x 2 Œ�2C ı;�1/:
(2-3)
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Figure 1. The kernel function C.x/D �ı.x/�.x/ with �ı.x/ given in (1-3), ı D 0:4,
and �.x/ D 0:25 � x2. The zero, periodic, and antiperiodic extensions of C.x/ are
denoted by yC .x/, yCp.x/, and yCa.x/, respectively. For plotting, we employ bivariate
versions of yC .x0 � x/, yCp.x

0 � x/, and yCa.x
0 � x/ defined by C.x;x0/ WD yC .x0 � x/,

Cp.x;x
0/ WD yCp.x

0�x/, and Ca.x;x
0/ WD yCa.x

0�x/.
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Similarly, for x 2 .1; 2�, we have

yCa.x/jx2.1;2� D

�
0 if x 2 .1; 2� ı�;

��.x� 2/ if x 2 .2� ı; 2�:
(2-4)

Combining (2-3) and (2-4), for x 2 Œ�2; 2�, we obtain

yCa.x/D

8̂̂̂<̂
ˆ̂:
��.x� 2/ if x 2 Œ�2;�2C ı/;

�.x/ if x 2 .�ı; ı/;

��.xC 2/ if x 2 .2� ı; 2�;

0 otherwise:

(2-5)

Similarly, we obtain the following expression for the periodic extension:

yCp.x/D

8̂̂̂<̂
ˆ̂:
�.x� 2/ if x 2 Œ�2;�2C ı/;

�.x/ if x 2 .�ı; ı/;

�.xC 2/ if x 2 .2� ı; 2�;

0 otherwise.

(2-6)

Lemma 2.1. Let the kernel function C.x/ be in the form

C.x/D �ı.x/�.x/;

where �.x/ 2 L2.�/ is even. Let yC .x/, yCa.x/, and yCp.x/ denote the zero, antiperiodic, and periodic
extensions of C.x/ to y� WD Œ�2; 2�, respectively. Then,

yC .x/D yCa.x/D yCp.x/; x 2 .�2C ı; 2� ı/: (2-7)

Furthermore, we have the following agreement in the bulk. For x 2 .�1C ı; 1� ı/,

yC .x0�x/D yCa.x
0
�x/D yCp.x

0
�x/; x0 2 Œ�1; 1�: (2-8)

Proof. By the definition of the functions yCa.x/ and yCp.x/ in (2-5) and (2-6), respectively, they differ
from yC .x/ only on Œ�2;�2Cı/[.2�ı; 2�. Also, see Figure 1. Hence, yC .x/, yCa.x/, and yCp.x/ coincide
on Œ�2C ı; 2� ı/, i.e., (2-7) holds.

Since for x in the bulk, i.e., x 2 .�1C ı; 1� ı/ and x0 in the range of integration, i.e., x0 2 Œ�1; 1�,
we have x0�x 2 .�2C ı; 2� ı/. From (2-7), we conclude (2-8). �
Remark 2.2. The kernel yC .x/ W Œ�2; 2�!R is a univariate function. The operator Lorig utilizes yC .x0�x/.
In order to visualize (2-7), it is more useful to define bivariate versions of yC .x0�x/, yCa.x

0�x/, and
yCp.x

0�x/, respectively, as follows:

C; Ca; Cp W Œ�1; 1�� Œ�1; 1�! R:

For brevity, with a slight abuse of notation, we represent the bivariate functions using the same name of the
univariate function C.�/, i.e., C.x;x0/ WD yC .x0�x/, Ca.x;x

0/ WD yCa.x
0�x/, and Cp.x;x

0/ WD yCp.x
0�x/.

This notation is also used in Figure 1. Hence, analogous to (2-7), in the bulk (i.e., x 2 .�1C ı; 1� ı/),
kernel functions coincide

C.x;x0/D Ca.x;x
0/D Cp.x;x

0/: (2-9)
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We first prove that the operators L and Lorig agree in the bulk.

Lemma 2.3. Lu.x/D Lorigu.x/; x 2 .�1C ı; 1� ı/.

Proof. For x in the bulk, we have .x� ı;xC ı/\�D .x� ı;xC ı/. Hence,Z
�

yC .x0�x/ dx0 D

Z
�

y�ı.x
0
�x/y�.x0�x/ dx0

D

Z
.x�ı;xCı/\�

y�.x0�x/ dx0

D

Z
.x�ı;xCı/

y�.x0�x/ dx0

D

Z
.�ı;ı/

�.x0/ dx0

D

Z
�

�ı.x
0/�.x0/ dx0

D

Z
�

C.x0/ dx0:

The result follows. �

3. Dirichlet and Neumann BC, and differentiation under the integral sign

Imposing Neumann (also antiperiodic and periodic) BC requires differentiation. Thus, we present techni-
cal details regarding differentiation under the integral sign which are provided in Lemma 3.1. The proof
of Lemma 3.1, which is omitted here, is by the Lebesgue dominated convergence theorem. Similarly, the
limit in the definition of the Dirichlet BC can be interchanged with the integral, again by the Lebesgue
dominated convergence theorem.

Lemma 3.1. Suppose that the function k W�x ��x0 ! R satisfies the following conditions.

(1) The function k.x;x0/ is measurable with respect to x0 for each x 2�x .

(2) For almost every x0 2�x0 , the derivative @k=@x.x;x0/ exists for all x 2�x .

(3) There is an integrable function ` W�x0 ! R such that j@k=@x.x;x0/j � `.x0/ for all x 2�x .

Then,
d

dx

Z
�x0

k.x;x0/ dx0 D

Z
�x0

@k

@x
.x;x0/ dx0:

We use Lemma 3.1 to check if the operator MN enforces homogeneous Neumann BC. First, we want
to identify the integrand associated to MN. We start with writing Pe and Po explicitly and utilizing a
simple change of variable as follows:

.MN� c/u.x/D�

Z
�

�
yCp.x

0
�x/1

2

�
u.x0/Cu.�x0/

�
C yCa.x

0
�x/1

2

�
u.x0/�u.�x0/

��
dx0

D�

Z
�

KN.x;x
0/u.x0/ dx0;

(3-1)
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where
KN.x;x

0/ WD 1
2

˚
Œ yCa.x

0
�x/� yCa.x

0
Cx/�C Œ yCp.x

0
�x/C yCp.x

0
Cx/�

	
:

Analogous to the construction given in [Aksoylu et al. 2017a], we assume that C.x/ 2L2.�/, and hence,

yC .x/; yCa.x/; yCp.x/ 2L2. y�/: (3-2)

We are now in a position to determine the necessary conditions needed to apply Lemma 3.1. First, we
set �x D�x0 D� and

k.x;x0/DKN.x;x
0/u.x0/:

Considering the jumps and the fact that the BC is enforced at the boundary, we assume that yCa.x/ and
yCp.x/ are piecewise continuously differentiable in y� and continuously differentiable functions up to @ y�.
Hence, the first two conditions of Lemma 3.1 are satisfied. To satisfy the third condition, we define

`.x0/ WD ess sup
x2�x

ˇ̌̌̌
@KN

@x
.x;x0/

ˇ̌̌̌
ju.x0/j;

and assume that

ess sup
x2�x

ˇ̌̌̌
@KN

@x
.x;x0/

ˇ̌̌̌
2L2.�x0/: (3-3)

The integrability of `.x0/ is sufficient to satisfy the third condition. We could choose any Lp.�x0/ space.
We choose the space L2.�x0/ in (3-3) in order to align with the construction given in [Aksoylu et al.
2017a]. Since u.x0/ 2L2.�x0/, we obtain `.x0/ 2L2.�x0/.

We are now ready to prove our Main Theorem.

Proof of Theorem 1.1. We exploit (2-9) in constructing the governing operators that enforce Neumann
and Dirichlet BCs by rewriting the L operator in the following way. For x 2 .�1C ı; 1� ı/, we have

.L� c/u.x/D�

Z
�

yC .x0�x/u.x0/ dx0

D�

Z
�

yC .x0�x/.PeCPo/u.x
0/ dx0

D�

Z
�

�
yC .x0�x/Peu.x0/C yC .x0�x/Pou.x0/

�
dx0

D�

Z
�

�
yCp.x

0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/

�
dx0

D .MN� c/u.x/:

Similarly, for x 2 .�1C ı; 1� ı/,

.L� c/u.x/D�

Z
�

�
yC .x0�x/Peu.x0/C yC .x0�x/Pou.x0/

�
dx0

D�

Z
�

�
yCa.x

0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/

�
dx0

D .MD� c/u.x/:
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Next, we show that MN and MD enforce homogeneous Neumann and Dirichlet BC, respectively.

The operator MN: First we remove the points at which the derivative of KN.x;x
0/ does not exist from

the set of integration. Note that such points form a set of measure zero, and hence, do not affect the value
of the integral. We differentiate both sides of (3-1) and apply Lemma 3.1 to interchange the differentiation
with the integral. We can differentiate the integrand KN.x;x

0/ in a piecewise fashion and obtain

d
dx
Œ.MN� c/u�.x/D�

Z
�

@KN

@x
.x;x0/u.x0/ dx0; (3-4)

where
@KN

@x
.x;x0/D 1

2

˚
Œ yC 0a.x

0
�x/� yC 0a.x

0
Cx/�C Œ yC 0p.x

0
�x/C yC 0p.x

0
Cx/�

	
:

We check the boundary values by plugging x D˙1 in (3-4):

d
dx
Œ.MN� c/u�.˙1/D�

Z
�

@KN

@x
.˙1;x0/u.x0/ dx0: (3-5)

The functions yC 0a and yC 0p are 2-antiperiodic and 2-periodic because they are the derivatives of 2-antiperiodic
and 2-periodic functions, respectively. Hence,

yC 0a.˙1Cx0/D� yC 0a.�1Cx0/ and yC 0p.�1Cx0/D yC 0p.˙1Cx0/: (3-6)

Hence, the integrand in (3-5) vanishes, i.e.,

@KN

@x
.˙1;x0/D 0:

Therefore, we arrive at
d

dx
MNu.˙1/D cu0.˙1/: (3-7)

Since we assume that u satisfies homogeneous Neumann BC, i.e., u0.˙1/ D 0, we conclude that the
operator MN enforces homogeneous Neumann BC as well.

The operator MD: In order to check if the operator MD enforces homogeneous Dirichlet BC, we start
again with writing Pe and Po explicitly and utilizing a simple change of variables as follows:

.MD� c/u.x/D�

Z
�

yCa.x
0
�x/1

2
.u.x0/Cu.�x0// dx0�

Z
�

yCp.x
0
�x/1

2
.u.x0/�u.�x0// dx0

D�

Z
�

KD.x;x
0/u.x0/ dx0;

where
KD.x;x

0/ WD 1
2

˚
Œ yCa.x

0
�x/C yCa.x

0
Cx/�C Œ yCp.x

0
�x/� yCp.x

0
Cx/�

	
: (3-8)

By the Lebesgue dominated convergence theorem, the limit in the definition of the Dirichlet BC can be
interchanged with the integral. Now, we check the boundary values by plugging x D˙1 in (3-8):

.MD� c/u.˙1/D�

Z
�

KD.˙1;x0/u.x0/ dx0: (3-9)
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Since yCa and yCp are 2-antiperiodic and 2-periodic, respectively, we have

yCa.�1Cx0/D� yCa.˙1Cx0/ and yCp.�1Cx0/D yCp.˙1Cx0/: (3-10)

Hence, the integrand in (3-9) vanishes, i.e., KD.˙1;x0/D 0. Therefore, we arrive at

MDu.˙1/D cu.˙1/: (3-11)

Since we assume that u satisfies homogeneous Dirichlet BC, i.e., u.˙1/ D 0, we conclude that the
operator MD enforces homogeneous Dirichlet BC as well. �

Remark 3.2. We have defined MD and MN in a way that they are linear bounded operators. More
precisely, MD;MN 2L.X;X / where X DL2.�/\C 1.@�/. For MD, the choice of X can be relaxed
as L2.�/\C 0.@�/. This choice is implied when we study MD. Boundedness of MD and MN follows
from the choice of (1-6) and (3-2). In addition, since MD and MN are both integral operators, their self-
adjointness follows easily from the fact that the corresponding kernels are symmetric (due to evenness
of C ), i.e., KD.x;x

0/DKD.x
0;x/ and KN.x;x

0/DKN.x
0;x/.

4. Other possible boundary conditions

The construction employed to satisfy local BC is based on the following decomposition of u.x0/:

u.x0/D Peu.x0/CPou.x0/;

and the agreement of yC .x0 � x/ with yCa.x
0 � x/ and yCp.x

0 � x/ in the bulk; see (2-8). By replacing
yC .x0�x/ with either yCa.x

0�x/ or yCp.x
0�x/, we have the following four combinations for the integrand

of L:

yC .x0�x/u.x0/D
˚
yCa.x

0
�x/; yCp.x

0
�x/

	
Peu.x0/C

˚
yCa.x

0
�x/; yCp.x

0
�x/

	
Pou.x0/:

Denoting the choice of yCa.x
0�x/ and yCp.x

0�x/ by a and p, respectively, the combinations ap and pa
give rise to Dirichlet and Neumann BC, respectively; see Theorem 1.1. Namely,

Dirichlet (ap): yC .x0�x/u.x0/D yCa.x
0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/;

Neumann (pa): yC .x0�x/u.x0/D yCp.x
0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/:

We show that the combinations aa and pp give rise to antiperiodic and periodic BC, respectively. Namely,

Antiperiodic (aa): yC .x0�x/u.x0/D yCa.x
0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/D yCa.x

0
�x/u.x0/;

Periodic (pp): yC .x0�x/u.x0/D yCp.x
0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/D yCp.x

0
�x/u.x0/:

Then, the operators Ma and Mp are defined by

.Ma� c/u.x/ WD �

Z
�

yCa.x
0
�x/u.x0/ dx0;

.Mp� c/u.x/ WD �

Z
�

yCp.x
0
�x/u.x0/ dx0:
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We recall the space of functions used to enforce antiperiodic and periodic BC, respectively [Aksoylu
et al. 2017a]:˚

u 2L2.�/\C 1.@�/ W lim
x!�1

u.x/D� lim
x!1

u.x/; lim
x!�1

u0.x/D� lim
x!1

u0.x/
	
;˚

u 2L2.�/\C 1.@�/ W lim
x!�1

u.x/D lim
x!1

u.x/; lim
x!�1

u0.x/D lim
x!1

u0.x/
	
:

Since yCa and yC 0a are 2-antiperiodic and yCp and yC 0p are 2-periodic, similar to (3-10) and (3-6), we have

yCa.�1�x0/D� yCa.1�x0/; yCp.�1�x0/D yCp.1�x0/;

yC 0a.�1�x0/D� yC 0a.1�x0/; yC 0p.�1�x0/D yC 0p.1�x0/:

Consequently,

.Ma� c/u.�1/D�.Ma� c/u.1/; (4-1)

.Mp� c/u.�1/D .Mp� c/u.1/: (4-2)

In addition, by applying Lemma 3.1, we obtain

d
dx
Œ.Ma� c/u�.�1/D�

d
dx
Œ.Ma� c/u�.1/; (4-3)

d
dx
Œ.Mp� c/u�.�1/D

d
dx
Œ.Mp� c/u�.1/: (4-4)

These imply that the operators Ma and Mp enforce antiperiodic and periodic BC, respectively.

5. Compatibility conditions

When we solve an equation using the operators MBC where BC 2 fD; N; a; pg, i.e.,

MBCuD fBC;

we want to identify the conditions imposed on fBC. Since the operator MBC enforces the corresponding
BC, we observe that the same BC is imposed on fBC. To see this, we start by assuming that u satisfies
the corresponding BC. Then, we choose fBC from the same space to which u belongs, i.e.,

fBC 2L2.�/\C 1.@�/:

From (4-1) and (4-2), respectively, we immediately see that

fa.�1/D�fa.1/; fp.�1/D fp.1/:

From (4-3) and (4-4), respectively, we also get

f 0a.�1/D�f 0a.1/; f 0p.�1/D f 0p.1/:

In addition, from (3-11) and (3-7), respectively, we obtain

fD.˙1/D 0;
dfN

dx
.˙1/D 0:
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6. The extension to a 2D problem

In this section, we present the extension of the present work to 2D problems. The main idea of this
extension relies on our 1D construction but it is nontrivial. Its proof requires a significant amount of
technical detail. Here, we provide only a small part of the results without proof.

We choose the domain in 2D to be �D Œ�1; 1�� Œ�1; 1�. There are various combinations of BC one
can enforce. Here, we report only pure Dirichlet and pure Neumann BC, the 2D analogues of the ones
presented in Theorem 1.1. The proofs, a comprehensive discussion, and numerical results are provided
in [Aksoylu et al. 2017c].

In 2D, the governing operator in (1-1) takes the form

Lorigu.x;y/ WD

“
�

yC .x0�x;y0�y/u.x;y/ dx dx0�

“
�

yC .x0�x;y0�y/u.x0;y0/ dx0 dy0:

Similar to (1-2), we define the operator that is closely related to Lorig as

Lu.x;y/ WD cu.x;y/�

“
�

yC .x0�x;y0�y/u.x0;y0/ dx0 dy0; .x;y/ 2�;

where c D
’
�

C.x0;y0/ dx0 dy0. The kernel function C.x;y/ is assumed to be even. Namely,

C.�x;�y/D C.x;y/:

Similar to the 1D case, we choose the kernel function C.x;y/ to be the canonical kernel function
�ı.x;y/, whose definition is given as follows. For .x;y/ 2�,

�ı.x;y/ WD

�
1 if .x;y/ 2 .�ı; ı/� .�ı; ı/;
0 otherwise:

The agreement of the operators L and Lorig in the 1D bulk shown in Lemma 2.1 carries over to the 2D
bulk whose definition is given by

bulkD
˚
.x;y/ 2� W .x;y/ 2 .�1C ı; 1� ı/� .�1C ı; 1� ı/

	
:

Inspired by the projections that give the even and odd parts of a univariate function given in (1-7), we
define the following operators that act on a bivariate function.

Pe;x0 ;Po;x0 ;Pe;y0 ;Po;y0 WL2.�/!L2.�/;

whose definitions are

Pe;x0u.x0;y0/ WD 1
2
.u.x0;y0/Cu.�x0;y0//; Po;x0u.x0;y0/ WD 1

2
.u.x0;y0/�u.�x0;y0//; (6-1)

Pe;y0u.x0;y0/ WD 1
2
.u.x0;y0/Cu.x0;�y0//; Po;y0u.x0;y0/ WD 1

2
.u.x0;y0/�u.x0;�y0//: (6-2)

Each operator is an orthogonal projection and possesses the following decomposition property:

Pe;x0 CPo;x0 D Ix0 ; Pe;y0 CPo;y0 D Iy0 :
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One can easily check that all four orthogonal projections in (6-1) and (6-2) commute with each other.
We define the following new operators obtained from the products of these projections:

Pe;x0Pe;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/Cu.x0;�y0/�C Œu.�x0;y0/Cu.�x0;�y0/�

	
;

Pe;x0Po;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/�u.x0;�y0/�C Œu.�x0;y0/�u.�x0;�y0/�

	
;

Po;x0Po;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/�u.x0;�y0/�� Œu.�x0;y0/�u.�x0;�y0/�

	
;

Po;x0Pe;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/Cu.x0;�y0/�� Œu.�x0;y0/Cu.�x0;�y0/�

	
:

These operators are also orthogonal projections and satisfy the following decomposition property:

Pe;x0Pe;y0 CPe;x0Po;y0 CPo;x0Pe;y0 CPo;x0Po;y0 D Ix0;y0 :

They will be used in the definition of the operators MD and MN.

Theorem 6.1 (Main Theorem in 2D). Let � WD Œ�1; 1�� Œ�1; 1� and the kernel function be separable in
the form

C.x;y/DX.x/Y .y/; (6-3)

where X and Y are even functions. Then, the operators MD and MN defined by

.MD� c/u.x;y/ WD

�

“
�

�
yXa.x

0
�x/Pe;x0 C yXp.x

0
�x/Po;x0

��
yYa.y

0
�y/Pe;y0 C yYp.y

0
�y/Po;y0

�
u.x0;y0/ dx0 dy0;

.MN� c/u.x;y/ WD

�

“
�

�
yXp.x

0
�x/Pe;x0 C yXa.x

0
�x/Po;x0

��
yYp.y

0
�y/Pe;y0 C yYa.y

0
�y/Po;y0

�
u.x0;y0/ dx0 dy0;

agree with Lu.x;y/ in the bulk, i.e., for .x;y/ 2 .�1C ı; 1� ı/� .�1C ı; 1� ı/. Furthermore, the
operators MD and MN enforce pure Dirichlet and pure Neumann BC, respectively:

.MD� c/u.x;˙1/D .MD� c/u.˙1;y/D 0;

@

@n
Œ.MN� c/u�.x;˙1/D

@

@n
Œ.MN� c/u�.˙1;y/D 0;

where n denotes the outward unit normal vector.

Remark 6.2. Although we assume a separable kernel function C.x;y/D X.x/Y .y/ as in (6-3), note
that we do not impose a separability assumption on the solution u.x;y/.

Remark 6.3. In Theorem 6.1, the function u is scalar valued, which corresponds to the solution of a
nonlocal diffusion problem. In higher dimensional PD problems, the function u is vector valued. The
extension of our construction to such problems is the subject of ongoing work.
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7. Conclusion

We presented novel governing operators MD and MN in the theory of PD constructed by the guiding
principle that they agree with the original PD operator Lorig in the bulk, and, at the same time, enforce
local Dirichlet or Neumann BC. We also presented the operators Ma and Mp that enforce local antiperi-
odic and periodic BC. In [Aksoylu et al. 2017d], we give an overview of local BC in general nonlocal
problems. We believe that our contribution is an important step towards extending the applicability of
PD to problems that require local BC such as contact, shear, and traction. For future research, we plan
to investigate if our approach of enforcing local BC can be used to eliminate surface effects. Finally, we
presented the extension of the 1D governing operators to 2D on rectangular domains. The generalization
to 3D box domains is straightforward. The construction of the operators for general geometries remains
an open problem and constitutes the subject of ongoing work.
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