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ORDINARY STATE-BASED PERIDYNAMICS
FOR OPEN-HOLE TENSILE STRENGTH PREDICTION

OF FIBER-REINFORCED COMPOSITE LAMINATES

XIAO-WEI JIANG AND HAI WANG

This study presents an ordinary state-based peridynamic model (OSB PD) for open-hole tensile strength
prediction of fiber-reinforced composite laminates. The transverse Poisson’s effect of composites is con-
sidered in the present OSB PD composite model, ensuring a precise capture of typical damage patterns
and failure modes of composite laminates, especially when capturing the effect of thickness on damage
patterns. The out-of-plane bond considers not only the adjacent plies, but also all the plies within the
spherical horizon. The in-plane mesh could be much larger than the out-of-plane mesh, forming an
“uneven spherical horizon”. The validation of the present model is demonstrated by several numerical
results. Typical damage patterns and failures modes of open-hole composite laminates under tensile
loading are illustrated, and the effect of thickness on damage patterns is also discussed.

1. Introduction

Aircraft structures are ideal applications of fiber-reinforced composite laminates, due to their high specific
stiffness/strength, low coefficient of thermal expansion, and excellent fatigue resistance [Camanho and
Lambert 2006]. For the design of composite structures, open-hole tensile strength is a fundamental datum
for structural design allowables [ASTM 2011]. In the building block approach for designing composite
structures, testing and analysis are both needed due to the overall consideration of cost and reliability
[US-DoD 2002]. Conventional analysis methods, normally the finite element method (FEM), have been
widely used in open-hole tensile strength predictions of fiber-reinforced composite laminates [Camanho
et al. 2007; Hallett et al. 2009; Chen et al. 2013; Aidi and Case 2015; Su et al. 2015; Bao and Liu 2016;
Bartan et al. 2016; Moure et al. 2016; Mohammadi et al. 2017]. However, as stated in [Askari et al. 2006;
Xu et al. 2008; Kilic et al. 2009; Oterkus and Madenci 2012a; 2012b; Hu et al. 2015; Diyaroglu et al.
2016; Hu and Madenci 2016; Sun and Huang 2016; Yu et al. 2016], conventional analysis methods based
on classical continuum mechanics require that the displacement field of the body should be continuously
differential for the spatial displacement derivatives of partial differential equations; this requirement
contradicts the inherent discontinuity that exists in fracture and damage. Besides, conventional analysis
methods, including FEM, usually need a preset damage path, which might not be available for complex
loading conditions.

As an alternative to conventional analysis methods, the peridynamic (PD) theory of solid mechanics,
which attempts to unite the mathematical modeling of continuous media, cracks, and particles within a
single framework, was introduced [Silling 2000; Silling et al. 2007; Silling and Lehoucq 2010]. Peri-
dynamic theory replaces the partial differential equation of the classical theory of solid mechanics with

Keywords: peridynamics, composite laminates, ordinary state-based, open-hole Strength, damage, delamination.

53

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2018.13-1
http://dx.doi.org/10.2140/jomms.2018.13.53
http://msp.org


54 XIAO-WEI JIANG AND HAI WANG

integral or integral-differential equations, and “spontaneous” formation of fracture and damage could
be simulated without any prior knowledge of damage path. These two features suggest great potential
advantages of PD in the analysis of composite structures. Matrix cracking, fiber breakage, and delami-
nation: these typical damage modes of composites could bring about severe discontinuities in structures
during the loading process. Besides, in most cases, a preset for the damage path of these damage modes
is impossible or leads to a huge expense. For example, in order to precisely capture the delamination
damage of composite laminates based on FEM, a cohesive zone element (CZE) has to be preset between
each adjacent ply, which could result in huge computation cost and convergence problems.

The application of the peridynamic theory into the analysis of composite structures is emerging. Askari
et al. [2006] analyzed the damage and failure of composite panels under static and dynamics loads. Xu et
al. [2007; 2008] predicted in detail the delamination and matrix damage process in composite laminates
under biaxial loads and low-velocity impact. Kilic et al. [2009] predicted the damage in center-cracked
laminates with different fiber orientations. Oterkus et al. [2010] present an approach based on the merger
of classical continuum theory and peridynamic theory to predict failure simulations in bolted composite
lap joints. Hu et al. [2011; 2012] proposed a homogenization-based peridynamic model for simulating
fracture and damage in fiber-reinforced composites, and analyzed the dynamic effects induced by differ-
ent types of dynamic loading. Oterkus and Madenci [2012a; 2012b] present an application of PD theory
in the analysis of fiber-reinforced composite materials subjected to mechanical and thermal loading con-
ditions. Damage growth patterns of preexisting cracks in fiber-reinforced composite laminates subjected
to tensile loading were computed. Oterkus et al. [2012] present an analysis approach based on a merger
of the finite element method and the peridynamic theory. The validity of the approach is established
through qualitative and quantitative comparisons against the test results for a stiffened composite curved
panel with a central slot under combined internal pressure and axial tension. Hu et al. [2014] developed
a PD composite model that accounts for the variation of bond micromodulus based on the angle between
the bond direction and fiber orientation. As an extension of this model, Hu et al. [2015] developed an
energy-based approach to simulate delamination under different fracture mode conditions. Furthermore,
Hu and Madenci [2016] present a new bond-based peridynamic modeling of composite laminates without
any limitation to specific fiber orientation and material properties in order to consider arbitrary laminate
layups. Sun and Huang [2016] proposed a peridynamic rate-dependent constitutive equation and a new
interlayer bond describing interlayer interactions of fiber-reinforced composite laminates.

The above peridynamic models for the analysis of composite structures are bond-based peridynamics.
Comparatively, ordinary state-based (OSB) peridynamic models for the analysis of composite structures
are quite few. Colavito, Madenci, and Oterkus [Colavito 2013; Colavito and Barut 2013; Madenci and
Oterkus 2014] presented an OSB peridynamic laminate theory (PDLT) for composite structures. This
OSB PDLT was used by Hu et al. [2016] for progressive damage predictions in open-hole quasi-isotropic
laminates under tension and compression, and by Diyaroglu et al. [2016] to predict nonlinear transient
deformation and damage behavior of composites under shock or blast types of loadings due to explosions.
However, the transverse Poisson’s effect is neglected in this OSB PDLT model. The out-of-plane horizon
of this OSB PDLT model considers only the adjacent layers, and two different types of out-of-plane
bonds, the normal bonds and the shear bonds, are introduced in this OSB PDLT model. For a symmetric-
layup composite laminate under in-plane tensile loading, which has no coupling between bending and
extension, the out-of-plane deformation caused by transverse Poisson’s ratio ν13 and ν23 is neglected
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by this OSB PDLT model. This neglect might make this OSB PDLT model insensitive to the effect of
thickness on damage patterns of composite laminates, especially for delamination damage.

In the present paper, we are trying to present an ordinary state-based peridynamic (OSB PD) composite
model for the open-hole tensile strength prediction of fiber-reinforced composite laminates that consid-
ers the transverse Poisson’s effect of composites. A spherical horizon, instead of the adjacent-layer
horizon in the previous OSB PDLT model, for out-of-plane bonds is used. The out-of-plane normal
bond and shear bond in the previous OSB PDLT model are also abandoned. The deformation caused
by transverse Poisson’s ratios ν13 and ν23 of composites is taken into account in the present OSB PD
composite model, ensuring a precise capture of typical damage patterns and failure modes of composite
laminates, especially when capturing the effect of thickness on damage patterns. Although each ply has
to be meshed, the in-plane mesh could be much larger than the out-of-plane mesh, forming an “uneven
spherical horizon”. The validation of the present model is demonstrated by several numerical results.
Typical damage patterns and failures modes of open-hole composite laminates under tensile loading are
illustrated, and the effect of thickness on damage patterns is also discussed. The numerical analysis is
carried out via PGI CUDA FORTRAN compiler (GPU-parallel computing), on the P100 cluster node at
the High Performance Computing Center (HPCC) of Shanghai Jiao Tong University.

2. Ordinary state-based peridynamic model for composite laminates

2.1. Governing equation. Starting from the work done by Colavito, Madenci and Oterkus [Colavito
2013; Colavito and Barut 2013; Madenci and Oterkus 2014], the governing equation of the present
ordinary state-based (OSB PD) peridynamic model for composite laminates can be expressed by

ρ
(n)
(k) ü

(n)
(k) =

∞∑
j=1

[t(k)( j)− t( j)(k)]V( j)+ b(n)(k), (1)

where ρ(n)(k) is the density of material point x(n)(k) , ü(n)(k) is instantaneous acceleration of x(n)(k) , and n denotes
the layer number of laminates, as shown in Figure 1. Furthermore, b(n)(k) is the external load density; t(k)( j)

and t( j)(k) are the PD force densities between x(n)(k) and x( j), where x( j) includes both in-plane material
points and out-of-plane material points. The PD force density can be expressed as

t(k)( j) = A(k)( j)
y( j)− y(n)(k)
| y( j)− y(n)(k) |

, (2)

t( j)(k) = B( j)(k)
y(n)(k) − y( j)

| y(n)(k) − y( j)|
, (3)

with

A(k)( j) = 2ad
δ

|x( j)− x(n)(k) |
3(k)( j)θ(k)+ 2δbs(k)( j)+ 2δ(µF bF +µT bT )s

(n)(n)
(k)( j) , (4)

B( j)(k) = 2ad
δ

|x(n)(k) − x( j)|
3(k)( j)θ( j)+ 2δbs( j)(k)+ 2δ(µF bF +µT bT )s

(n)(n)
( j)(k) , (5)
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Figure 1. Peridynamic notations.

and

s(k)( j) =
| y( j)− y(n)(k) | − |x( j)− x(n)(k) |

|x( j)− x(n)(k) |
, (6)

s(n)(n)(k)( j) =
| y(n)( j) − y(n)(k) | − |x

(n)
( j) − x(n)(k) |

|x(n)( j) − x(n)(k) |
, (7)

and

µF =

{
1 (x(n)( j) − x(n)(k) )‖ fiber direction,
0 otherwise,

(8)

µT =

{
1 (x(n)( j) − x(n)(k) )⊥ fiber direction,
0 otherwise,

(9)

where s(k)( j) is the stretch of bonds, s(n)(n)(k)( j) denotes the in-plane fiber direction bond stretch. In (4) and
(5), δ is the radius of the horizon zone. The direction cosines of the relative position vectors between the
material points x(n)(k) and x( j) in the undeformed and deformed states are defined as

3(k)( j) =
y( j)− y(n)(k)
| y( j)− y(n)(k) |

·
x( j)− x(n)(k)
|x( j)− x(n)(k) |

. (10)

The three-dimensional PD dilatation θ(k) can be expressed as

θ(k) = d
∞∑
j=1

δs(k)( j)3(k)( j)V( j). (11)

The PD material parameters a, d characterize the effect of dilation, and b, bF , bT are associated with
the deformation of material points in arbitrary directions (in-plane fiber direction and in-plane transverse
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direction, respectively). These parameters are related to material properties of composite laminates,
horizon radius, and ply direction. The main derivation procedures to get these PD material parameters
are illustrated in Section 2.2, and the detailed derivation process will be given in the Appendix. Here we
directly give the derived results as

a = 1
2(C33− 3C55), (12)

d =
9

4πδ4 , (13)

b =
15C55

2πδ5 , (14)

bF =
C11−C33

2δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

, (15)

bT =
C22−C33

2δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

, (16)

where C11, C22, C33, and C55 are coefficients of composite material stiffness matrix C , and are defined as

C11 =
1− ν23ν32

E2 E31
, C22 =

1− ν13ν31

E1 E31
, C33 =

1− ν12ν21

E1 E21
, C55 = G31, (17)

1=
1− ν12ν21− ν23ν32− ν13ν31− 2ν21ν32ν13

E1 E2 E3
. (18)

It may be worth noting that the present OSB PD composite model differs from the OSB PDLT model
by using a spherical horizon for out-of-plane bonds, and the transverse Poisson’s effect is taken into
account, as shown in the parameters in (12)–(18).

2.2. Derivation of PD material parameters. Derivation of the PD material parameters for the present
OSB PD composite model follows a similar procedure for deriving the OSB PDLT model presented by
Colavito, Madenci, and Oterkus [Colavito 2013; Colavito and Barut 2013; Madenci and Oterkus 2014].
Nevertheless, it might be worth noting that as the normal bond and shear bond in the OSB PDLT model
are abandoned in the present OSB PD composite model, the out-of-plane spherical horizon is used and
transverse Poisson’s effect is considered, so the derivation involving out-of-plane bonds shall be different
from OSB PDLT’s derivation process.

The PD strain energy density of the present OSB PD composite model for composite laminates can
be expressed as

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)

+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j) + bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j) . (19)

The PD material parameters in (4), (5), and (14) can be derived by comparing the PD strain energy
density and the strain energy density of continuum mechanics under simple loading conditions. In the
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Figure 2. Transverse pure shear loading on xz-plane (γ13).

present model, we derive these parameters by assuming a unidirectional composite laminate under four
simple loading conditions:

(1) transverse pure shear loading on xz-plane (γ13);

(2) transverse tensile loading (ε33);

(3) in-plane uniaxial tension in x direction (ε11);

(4) in-plane uniaxial tension in y direction (ε22).

Here we only show the main derivation procedure, and the detailed derivation processes are presented in
the Appendix.

2.2.1. Transverse pure shear loading on xz-plane (γ13). Under this loading condition, we assume γ13 =

ζ and all other strains equal zero. From three-dimensional elasticity of orthotropic composite materials,
we get

θC M
(k) = 0, W C M

(k) =
1
2C55ζ

2. (20)

Firstly, the stretch of bonds s(k)( j) in (6) should be calculated under γ13 = ζ . As shown in Figure 2,
under this simple loading condition, material point M moves to M ′:

O M ′ =
√

O M ′2+M ′P ′2 =
√

O B2+ B P ′2+M ′P ′2

=

√
(ξ sinϕ sin θ)2+ (ξ sinϕ cos θ + ζ ξ cosϕ)2+ (ξ cosϕ)2

=

√
ξ 2+ 2ξ sinϕ cos θ ζ ξ cosϕ+ (ζ ξ cosϕ)2

≈

√
ξ 2+ 2ξ sinϕ cos θ ζ ξ cosϕ. (21)

s(k)( j) =
O M ′−O M

O M
=

√
ξ 2+ 2ξ sinϕ cos θ ζ ξ cosϕ− ξ

ξ
=
√

1+ ζ2 sinϕ cos θ cosϕ− 1

≈ 1+ 1
2ζ2 sinϕ cos θ cosϕ− 1= ζ sinϕ cosϕ cos θ. (22)
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Then the PD strain energy can be derived as

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

= b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j) = b

∞∑
j=1

δξ(ζ sinϕ cosϕ cos θ)2V( j)

= ζ 2bδ
∫ 2π

0

∫ π

0

∫ δ

0
ξ sin2 ϕ cos2 ϕ cos2 θ ξ 2 sinϕ dr dϕ dθ = ζ 2bπ

2

15
δ5.

(23)

Comparing with (23), we get

b =
1/2 C55ζ

2

ζ 2 π/15 δ5 =
15C55

2πδ5 . (24)

2.2.2. Transverse tensile loading (ε33). Setting ε33=ζ and conducting the same procedure in Section 2.2.1,
we get

θC M
(k) = ζ, W C M

(k) =
1
2C33ζ

2, (25)

s(k)( j) = ζ cos2 ϕ, (26)

θ(k) = ζd 4
9πδ

4, W (n)
(k) = aζ 2

+ ζ 2 3
2C55. (27)

Comparing (28) and (30), we get

d =
9

4πδ4 , a = 1
2(C33− 3C55). (28)

2.2.3. In-plane uniaxial tension in x-direction (ε11). Similarly, setting ε11 = ζ , we get

θC M
(k) = ζ, W C M

(k) =
1
2C11ζ

2, (29)

s(k)( j) = ζ sin2ϕ cos2θ, (30)

θ(k) = ζd 4
9πδ

4, W (n)
(k) = aζ 2

+ ζ 2bπ
5
δ5
+ ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) . (31)

Substituting a and b, and comparing (32) and (34), we get

d = 9
4πδ4 , bF =

1/2 (C11−C33)

δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

. (32)

2.2.4. In-plane uniaxial tension in y-direction (ε22). Similarly, setting ε22 = ζ , we get

θC M
(k) = ζ, W C M

(k) =
1
2C22ζ

2, (33)

s(k)( j) = ζ sin2 ϕ cos2 θ, (34)

θ(k) = ζd 4
9πδ

4, W (n)
(k) = aζ 2

+ ζ 2bπ
5
δ5
+ ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) . (35)
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Figure 3. “Uneven spherical horizon” for OSB PD composite model of composite lam-
inates. Left: 3D view, δ = dx , dx = 2h. Right: 2D view, δ = 3dx , dx = 2h.

Substituting a and b, and comparing (36) and (39), we can get

d =
9

4πδ4 , bT =
1/2 (C22−C33)

δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

. (36)

2.3. Uneven spherical horizon. The present OSB PD composite model of composite laminates uses a
spherical horizon for out-of-plane bonds. The out-of-plane bonds consider not only the adjacent plies,
but also all the plies within the spherical horizon. In order to precisely capture the delamination damage
between plies of composite laminates, each ply has to be meshed. In the present model, an uneven mesh
is adopted for computational efficiency. The in-plane mesh could be much larger than the out-of-plane
mesh, forming an “uneven spherical horizon”, as shown in Figure 3. The effect of a truncated spherical
horizon near the boundaries must be considered. In the present OSB PD composite model, we use the
similar surface effect correction procedure as stated in [Madenci and Oterkus 2014], which calculates
the surface effect correction factors by comparing the theoretical PD dilatation and strain energy density
with numerically discrete PD dilatation and strain energy density under simple loading conditions. For
material points which have complete spherical horizon, this correction factor is around 1. For those
with a truncated spherical horizon near boundaries, such as top and bottom surfaces of laminates, the
correction factor is around 2. By adding these surface effect correction factors into the equation, the
surface effect can be significantly reduced.

2.4. Failure criteria. The failure criteria used in the present model is similar to other PD models [Hu
et al. 2014; 2016]. When the bond stretch between two material points exceeds a critical value, the
interaction between these two material points is irreversibly removed. The critical stretches for the in-
plane fiber bonds, in-plane matrix bonds, and the remaining arbitrary bonds are shown in Figure 4, and
their values can be calculated by

sft
0 = X T /E1, s ≥ 0 (fiber bonds),

sfc
0 = XC/E1, s < 0 (fiber bonds),

smt
0 = Y T /E2, s ≥ 0 (matrix bonds and arbitrary bonds),

smc
0 = Y C/E2, s < 0 (matrix bonds and arbitrary bonds),

(37)
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Figure 4. Force-stretch relationships for peridynamic interactions.

where X T , XC , Y T , Y C are strengths of composite materials.
Local damage at a material point is defined as the weighted ratio of the number of eliminated interac-

tions to the total number of initial interactions of the material point with its family members. The local
damage at a point can be quantified as [Silling and Askari 2005; Diyaroglu et al. 2016]

ϕ(x, t)= 1−

∫
H µ(x

′
− x, t) dV ′∫

H dV ′
. (38)

The status variable µ is defined as

µ=

{
1 s < sc (no damage),
0 s ≥ sc (damage).

(39)

To be specific for the present model, three kinds of typical damage modes of composite laminates
can be captured: fiber breakage, in-plane matrix cracking, and delamination. These damage modes are
indicated by

ϕfiber breakage = 1−

∑J
j=1 µ

(n)(n)
(k)( j)

J
, ϕmatrix cracking = 1−

∑N (n)
(i)

j=1 µ
(n)(n)
(k)( j)

N (n)
(k)

,

ϕ
(n)
out-of-plane upper = 1−

∑N (upper)
(k)

j=1 µ
(n)(n)
(k)( j)

N (upper)
(k)

, ϕ
(n+1)
out-of-plane lower = 1−

∑N (lower)
(k)

j=1 µ
(n)(n)
(k)( j)

N (lower)
(k)

,

ϕ
(n)(n+1)
delamination =

1
2

(
ϕ
(n)
out-of-plane upper+ϕ

(n+1)
out-of-plane lower

)
,

(40)

where J is the number of fiber material points inside the horizon, N (n)
(k) is the number of in-plane matrix

material points inside the horizon, N (upper)
(k) is the number of upper side out-of-plane material points inside

the horizon, and N (lower)
(k) is the number of lower side out-of-plane material points inside the horizon.
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3. Numerical implementation

Although the peridynamic governing equation is in dynamic form, it can still be used to solve quasistatic
or static problems by using the adaptive dynamic relaxation (ADR) method [Kilic and Madenci 2010].

According to the ADR method, (1) at the n-th iteration can be rewritten as

Ün(X, tn)+ cnU̇n(X, tn)= D−1 Fn(Un,U ′n, X, X ′), (41)

where D is the fictitious diagonal density matrix and c is the damping coefficient, which can be expressed
by

cn
= 2

√
((Un)T 1 K nUn)/((Un)T Un), (42)

in which 1 K n is the diagonal “local” stiffness matrix, which is given as

1K n
ii =−(F

n
i /λi i − Fn−1

i /λi i )/(1t u̇n−1/2
t ), (43)

where Fn
i is the value of force vector Fn at material point x, which includes both the peridynamic force

state vector and external forces. Here, λi i is the diagonal elements of D which should be large enough
for numerical convergence.

By utilizing central-difference explicit integration, displacements and velocities for the next time step
can be obtained:

U̇n+1/2
=
((2− cn1t)U̇n−1/2

+ 21t D−1 Fn)

(2+ cn1t)
(44)

and
U̇n+1

= Un
+1tU̇n+1/2. (45)

To start the iteration process, we assume that U0
6= 0 and U̇0

= 0, so the integration can be started by

U̇1/2
=
1t D−1 F0

2
. (46)

Due to the large computational cost of the PD model, GPU-parallel computing is introduced. The PGI
CUDA FORTRAN compiler, PGI/16.10 Community Edition, is used for compiling. The P100 cluster
node at the High Performance Computing Center (HPCC) of Shanghai Jiao Tong University is applied
for running the GPU-parallel program. The P100 cluster node has two NVIDIA Tesla P100 graphic cards
(3584 CUDA Cores, 16 GB graphic memory), two Intel Xeon E5-2680 CPUs, and 96 GB memory. The
GPU block threads are fixed to 256, and the number of blocks depends on the total number of parallel
processes [Ruetsch and Fatica 2013].

4. Numerical results

4.1. Deformation of composite laminated plate. As shown in Figure 5, a composite laminated plate
[45/0/45] under tensile loading is simulated both by the present OSB PD composite model and FEM.
The dimensions of the composite laminated plate are L = 12.5 mm and W = 6.25 mm. The thickness of
the plate is 0.375 mm, with 0.125 mm for each ply. The material is the fiber-reinforced composite from
[Madenci and Oterkus 2014]. The material properties of the composite are: ρ = 8000 kg/m3, elastic
modulus in the fiber direction E1 = 159.96 GPa, elastic modulus in transverse direction E2 = 8.96 GPa,
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 Figure 5. Composite laminated plate [45/0/45] under tensile loading.

in-plane Poisson’s ratio ν12 = 0.33, and in-plane shear modulus G12 = 3.0054 GPa. The mesh of the
PD model is 100× 50× 3, with dx = h = 0.125 mm, and horizon δ = 3 dx .

Under the tensile loading condition, with 0.2 mm displacement at the right end, the deformation of the
composite laminated plate is presented in Figure 6. The simulation results of the displacement fields in
three directions, U1, U2, and U3, are all compared between PD and FEM. The variation of the in-plane
and out-of-plane displacement in the three directions are compared with FEM results in Figure 7. It can
be seen from these figures that deformation simulation of the present OSB PD composite model fits the
FEM results well. The influence of fiber direction on the displacement fields, especially U2, is precisely
captured by the present model. The out-of-plane deformation caused by transverse Poisson’s effect is
accurately captured by the present OSB PD composite model, as shown in Figure 7, bottom. It should be
noted that as FEM and PD use different mesh methods, the calculated points have different coordinates.
This is the reason that PD is unable to fit a curved tendency with three mesh points, as seen in Figure 7,
bottom. Better results can be seen when a composite laminate with large number plies is simulated, as
shown in Figure 12, bottom.

4.2. Deformation of composite laminated plate with open-hole. As shown in Figure 8, the deformation
of a composite laminated plate with an open-hole is considered. With the same plate dimension, material
system, mesh, and loading condition as Section 4.1, the composite laminated plate with an open-hole
in this section only has an additional hole with radius R = 0.5 mm. Similarly, simulation results of
displacement fields, U1, U2, and U3, by both PD and FEM are presented in Figure 9. The variation
of the in-plane and out-of-plane displacement in the three directions are compared with FEM results in
Figure 10. All the deformation results of the present OSB PD composite model fit the FEM results well.
The influence of the fiber direction on the displacement field can also be precisely captured. The effect
of the hole on the deformation is also obviously observed by comparing Figure 6 and Figure 9. Also,
the out-of-plane deformation caused by transverse Poisson’s effect is accurately captured by the present
OSB PD composite model, as shown in Figure 10, bottom.

In order to illustrate that the present OSB PD composite model is also valid for calculating the de-
formation of composite laminates with a large number plies, an 8-layer [90/45/0/− 45]S composite
laminate with an open-hole is simulated. The dimensions, material system, and loading condition are
similar to the case in Figure 8, and only the ply number is changed. The deformation contour is compared
with FEM results in Figure 11. The variation of the in-plane and out-of-plane displacement in the three
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Figure 6. Comparison of the deformation of composite laminated plate [45/0/45] (mm).
Left: PD. Right: FEM.

directions are compared with FEM results in Figure 12. It can be seen from these figures that the
calculated deformation results by the present OSB PD composite model fit the FEM results well. The
out-of-plane deformation shown in Figure 12, bottom, is mainly induced due to the transverse Poisson’s
effect, as the layup is symmetric and there is no bending-extension coupling under tensile loading. This
transverse deformation will be neglected if the transverse Poisson’s ratio ν13 and ν23 is not introduced
into the PD model.

4.3. Open-hole strength prediction of fiber-reinforced composite laminates. Three different experi-
ments for open-hole tensile strength of fiber-reinforced composite laminates from the literature are
simulated by the present OSB PD composite model. The specimen schematic is shown in Figure 13,
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 Figure 7. Comparison of the deformation of a composite laminated plate [45/0/45]
under tensile loading. Left: along x-axis for midply (y = 0, z = 0). Right: along y-axis
for midply (x = 0, z = 0). Bottom: along z-axis (x = 0, y = 0).
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 Figure 8. Composite laminated plate [45/0/45] with open-hole under tensile loading.
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Figure 9. Comparison of the deformation of composite laminated plate [45/0/45] with
open-hole (mm). Left: PD. Right: FEM.

bottom. These experiments are renamed in the present paper as specimen A1, A2, and A3. The specimen
configurations are shown in Table 1. The material properties of IM7/977-3 and IM7/8552 are shown in
Table 2 and Table 3, respectively.
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Figure 10. Comparison of the deformation of a composite laminated plate [45/0/45]
with an open-hole. Left: along x-axis for midply (y = 0, z = 0). Right: along y-axis for
midply (x = 0, z = 0). Bottom: along z-direction at the hole edge in the 45◦ direction
(x =
√

2R/2, y =
√

2R/2).

specimen material system L W D thickness layup h/ply

A1 IM7/977-3 138.43 38.1 6.35 2 [0/45/90/− 45]2S 0.125
A2 IM7/8552 64 16 3.175 1 [90/45/0/− 45]S 0.125
A3 IM7/8552 64 16 3.175 2 [902/452/02/− 452]S 0.125

Table 1. Specimen configuration of composite laminates with an open-hole: data for
A1 are from [Hu and Madenci 2016], whereas data for A2 and A3 are from [Hallett et al.
2007]. All dimensions are in units of mm.

E1 (GPa) E2 (GPa) G12 (GPa) ν12 X T (MPa) XC (MPa) Y T (MPa) Y C (MPa)

164.3 8.977 5.02 0.32 2905 1680 100 247

Table 2. Material properties of IM7/977-3 [Hu and Madenci 2016] (ρ = 1603 kg/m3).
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Figure 11. Comparison of the deformation of a composite laminated plate [90/45/0/−45]S
with an open-hole. Left: PD. Right: FEM.

E1 (GPa) E2 (GPa) G12 (GPa) ν12 X T (MPa) XC (MPa) Y T (MPa) Y C (MPa)

161 11.38 5.17 0.32 2905 1680 100 247

Table 3. Material properties of IM7/8552 [Camanho and Lambert 2006; Hallett et al. 2007].
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Figure 12. Comparison of the deformation of a composite laminated plate [90/45/0/−45]S
with an open-hole. Left: along x-axis for midply (y = 0, z = 0). Right: along y-axis for
midply (x = 0, z = 0). Bottom: along z direction at the hole edge in the 90◦ direction (x = 0,
y = R).
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 Figure 13. Schematic of open-hole tensile test specimen.

To further the verification of the deformation, the displacement field of specimen A1, with layup
[0/45/90/− 45]2S, is compared with FEM results. Tensile loading of 0.5 mm at the right end of the
specimen is applied. The deformation contour is shown in Figure 14, and the variation of the in-plane
and out-of-plane displacement in three directions are presented in Figure 16. The vertical and transverse
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Figure 14. Comparison of the deformation of [0/45/90/− 45]2S open-hole composite
laminate under tensile loading in x-direction. Left: PD. Right: FEM.

deformation results in Figure 16, right, and Figure 16, bottom, are not as good as the results in Figure 12,
right, and Figure 12, bottom. This is mainly due to the usage of an uneven mesh for in-plane and out-
of-plane material points. For this specimen A1, dx ≈ 5h. As using the uneven mesh largely increases
the computational efficiency, this slight mismatch between the PD results and FEM results is acceptable.
The transverse deformation contour around the hole is also presented in Figure 15. It is interesting to
find that for the top surface of the laminate [0/45/90/− 45]2S, the transverse displacement uz in the 0◦

direction along the hole edge is positive, while the transverse Poisson’s ratio tends to induce a negative
displacement for the top surface. It is not possible to capture this phenomenon if the transverse Poisson’s
ratios ν13 and ν23 are not introduced into the PD model.

Open-hole tensile strength prediction results and mesh conditions are shown in Table 4. “Uneven
spherical horizon” is adopted as dx > h, and the horizon δ = 3dx . It can be seen from the table that the
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Figure 15. Comparison of the deformation of [0/45/90/− 45]2S open-hole composite
laminate under tensile loading in x-direction, transverse displacement field around the
hole. Left: PD. Right: FEM.
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Figure 16. Comparison of the deformation of [0/45/90/− 45]2S open-hole composite
laminate under tensile loading in x-direction. Left: along x-axis for midply (y = 0,
z = 0). Right: along y-axis for midply (x = 0, z = 0). Bottom: along z-direction at the
hole edge in the 90◦ direction (x = 0, y = R).



72 XIAO-WEI JIANG AND HAI WANG

Figure 17. Damage patterns at final failure in each ply of [0/45/90/− 45]2S open-hole
composite laminate under tensile loading in x-direction.
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Figure 18. Displacement field in x-direction u (mm) at final failure of [0/45/90/−45]2S

open-hole composite laminate under tensile loading in x-direction.

strength prediction results simulated by the preset OSB PD composite model fit the experimental results
well. Damage patterns and failure modes of these specimens are presented in Figures 17–22. Three
typical damage modes, fiber breakage, matrix cracking, and delamination, are calculated according to
(40). These damage patterns illustrated in Figures 17, 19, and 21 represent a square area around the
open-hole of each ply, and the dimension of the square equals the width of the specimen. Final failure
modes of the specimens are characterized by the final displacement filed in x-direction, as shown in
Figures 18, 20, and 22.
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Figure 19. Damage patterns at final failure in each ply of [90/45/0/− 45]S open-hole
composite laminate under tensile loading in x-direction.
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Figure 20. Displacement field in x-direction u (mm) at final failure of [90/45/0/−45]S
open-hole composite laminate under tensile loading in x-direction.

For the open-hole composite laminate specimen A1, with layup [0/45/90/−45]2S, it can be seen from
Figure 17 that fiber breakage mainly happens in 0◦ plies, and for the 45◦ and −45◦ plies, the damage
direction is consistent with their fiber direction. Matrix cracking and delamination damage form a cross
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Figure 21. Damage patterns at final failure in each ply of [902/452/02/− 452]S open-
hole composite laminate under tensile loading in x-direction.
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Figure 22. Displacement field in x-direction u (mm) at final failure of [902/452/02/−452]S

open-hole composite laminate under tensile loading in x-direction.

±45◦ area around the open-hole, and matrix cracking in 90◦ plies are obvious. Figure 18 presents the
final failure mode of A1. The specimen fails around the open-hole with cross ±45◦ fracture surface.

For an open-hole composite laminate specimen A2, with layup [90/45/0/− 45]S, it can be seen from
Figure 19 that similarly to A1, fiber breakage mainly happens in 0◦ plies, and the damage direction is
consistent with their fiber direction for 45◦ plies. It is interesting that in ply #4 of A2, with fiber direction
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specimen mesh dx (mm) h (mm) experiment (MPa) PD (MPa) relative error

A1 218× 60× 16 0.635 0.125 554 590.55 6.6%
A2 256× 64× 8 0.25 0.125 481 462.7 −3.8%
A3 256× 64× 16 0.25 0.125 474 431.25 −9.02%

Table 4. Open-hole tensile strength prediction of fiber-reinforced composite laminates

−45◦, fiber breakage does not happen. This damage pattern is also detected in A3, as shown in Figure 21;
the −45◦ plies #7 and #8 do not exhibit fiber breakage. Matrix cracking in A2 is severe, and the effect of
fiber direction on matrix cracking can be obviously observed by comparing plies #2 and #4 in Figure 19.
Delamination between adjacent plies of A2 changes from surface to midplane in the specimen. From
Figure 20, we can also observe an obvious 45◦ fracture surface as the final failure mode of A2.

Specimen A3, with layup [902/452/02/ − 452]S, is directly double the layup of A2. Comparing
Figure 19 and Figure 21, we can see that although they both have the same layup proportion, the damage
patterns change with an increase in thickness. Comparing the three damage modes of A2 and A3 re-
spectively, we find that the most significant change between A2 and A3 is delamination damage, which
indicates that delamination is the most sensitive damage mode to thickness change, and in order to
precisely capture the delamination damage, the transverse Poisson’s effect should be considered. The
final fracture surface of A3 is similar to A2, as shown in Figure 22. From the simulation results of A2
and A3, we can see that the present OSB PD model for composite laminates can capture the effect of
thickness on damage patterns, especially for delamination damage.

From the results above, we can conclude that the present OSB PD composite model is validated
in open-hole tensile strength prediction of fiber-reinforced composite laminates, and is able to precisely
capture the typical damage patterns and failure modes of composite laminates, especially when capturing
the effect of thickness on damage patterns.

5. Conclusion

Open-hole strength prediction of fiber-reinforced composite laminates is a fundamental problem in the
analysis of composite structures. An ordinary state-based peridynamic (OSB PD) model for open-hole
tensile strength prediction is proposed. The transverse Poisson’s effect of composites is considered in
the present OSB PD composite model, ensuring a precise capture of typical damage patterns and failure
modes of composite laminates, especially when capturing the effect of thickness on damage patterns. The
out-of-plane bond considers not only the adjacent plies, but also all the plies within the spherical horizon.
Although each ply has to be meshed, the in-plane mesh could be much larger than the out-of-plane mesh,
forming an “uneven spherical horizon”. The validation of the present model is demonstrated by several
numerical results. The deformation of a composite laminated plate without and with an open-hole is
simulated by both PD and FEM, and the deformation results of the present OSB PD composite model fit
the FEM results well. Three different experiments for the open-hole tensile strength of fiber-reinforced
composite laminates from the literature are simulated by the present model. By comparing the simulation
results with experimental results and discussing the predicted damage patterns and final failure modes,
we can conclude that the present OSB PD composite model is validated in open-hole tensile strength
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prediction of fiber-reinforced composite laminates, and is able to precisely capture the typical damage
patterns and failure modes of composite laminates, especially when capturing the effect of thickness on
damage patterns.
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Appendix

The PD material parameters a, d , b, bF , and bT can be derived by comparing the PD strain energy density
and the strain energy density of continuum mechanics under simple loading conditions. In the present
OSB PD composite model, we derive these parameters by assuming a unidirectional composite laminate
under four simple loading conditions:

(1) Transverse pure shear loading on xz-plane (γ13):

γ13 = ζ, θC M
(k) = 0, W C M

(k) =
1
2C55ζ

2, s(k)( j) = ζ sinϕ cosϕ cos θ.

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

= b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j) = b

∞∑
j=1

δξ(ζ sinϕ cosϕ cos θ)2V( j)

= ζ 2bδ
∫ 2π

0

∫ π

0

∫ δ

0
ξ sin2ϕ cos2ϕ cos2θ ξ 2 sinϕ dr dϕ dθ

= ζ 2bδ
∫ 2π

0
cos2θ dθ

∫ π

0
sin3 ϕ cos2 ϕ dϕ

∫ δ

0
ξ 3 dr.

∫ 2π

0
cos2θ dθ = π,

∫ π

0
sin3ϕ cos2ϕ dϕ = 4

15 ,

∫ δ

0
ξ 3 dr = 1

4δ
4.

W (n)
(k) = ζ

2bδπ × 4
15 ×

1
4δ

4
= ζ 2bπ

2

15
δ5.

b =
1/2 C55ζ

2∑
∞

j=1 δ|x( j)− x(k)|s2
(k)( j)V( j)

=
1/2 C55ζ

2

ζ 2π/15 δ5 =
15C55

2πδ5 . (A.1)

(2) Transverse tensile loading (ε33):

ε33 = ζ, θC M
(k) = ζ, W C M

(k) =
1
2C33ζ

2, s(k)( j) = ζ cos2ϕ.
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θ(k) = d
∞∑
j=1

δs(k)( j)3(k)( j)V( j) = d
∞∑
j=1

δζ cos2 ϕV( j) = ζdδ
∫ 2π

0

∫ π

0

∫ δ

0
cos2ϕ ξ2 sinϕ dr dϕ dθ

= ζ dδ
∫ 2π

0
dθ
∫ π

0
cos2ϕ sinϕ dϕ

∫ δ

0
ξ 2 dr.

∫ π

0
cos2ϕ sinϕ dϕ = 2

3 , θ(k) = ζdδ2π × 2
3 ×

1
3δ

3
= ζd 4

9πδ
4.

d =
ζ∑

∞

j=1 δs(k)( j)3(k)( j)V( j)
=

ζ

ζ 4
9πδ

4
=

9
4πδ4 . (A.2)

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

= aθ2
(k)+ b

∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j) = aζ 2

+ b
∞∑
j=1

δξ(ζ cos2ϕ)2V( j)

= aζ 2
+ ζ 2bδ

∫ 2π

0

∫ π

0

∫ δ

0
ξ cos4ϕ ξ2 sinϕ dr dϕ dθ

= aζ 2
+ ζ 2bδ

∫ 2π

0
dθ
∫ π

0
cos4ϕ sinϕ dϕ

∫ δ

0
ξ 3 dr.∫ π

0
cos4ϕ sinϕ dϕ = 2

5 .

W (n)
(k) = aζ 2

+ ζ 2bδ2π × 2
5 ×

1
4δ

4
= aζ 2

+ ζ 2b 1
5πδ

5
= aζ 2

+ ζ 2 15C55

2πδ5
1
5πδ

5
= aζ 2

+ ζ 2 3
2C55.

a = 1
2(C33− 3C55). (A.3)

(3) In-plane uniaxial tension in x direction (ε11),

ε11 = ζ, θC M
(k) = ζ, W C M

(k) =
1
2C11ζ

2,

s(k)( j) = ζ sin2ϕ cos2θ.

θ(k) = d
∞∑
j=1

δs(k)( j)3(k)( j)V( j) = d
∞∑
j=1

δζ sin2 ϕ cos2 θV( j)

= ζdδ
∫ 2π

0

∫ π

0

∫ δ

0
sin2ϕ cos2 θ ξ 2 sinϕ dr dϕ dθ

= ζ dδ
∫ 2π

0
cos2θdθ

∫ π

0
sin3ϕ dϕ

∫ δ

0
ξ 2 dr.
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0
cos2θ dθ = π,

∫ π

0
sin3ϕ dϕ = 4

3 .

θ(k) = ζ dδ
∫ 2π

0
cos2θ dθ

∫ π

0
sin3ϕ dϕ

∫ δ

0
ξ 2 dr = ζdδπ × 4

3 ×
1
3δ

3
= ζd 4

9πδ
4.

d =
ζ∑

∞

j=1 δs(k)( j)3(k)( j)V( j)
=

ζ

ζ 4/9πδ4 =
9

4πδ4 ,

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

= aζ 2
+ b

∞∑
j=1

δξ(ζ sin2ϕ cos2θ)2V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |(ζ cos2θ)2V (n)
( j)

= aζ 2
+ ζ 2bδ

∫ 2π

0

∫ π

0

∫ δ

0
ξ sin4ϕ cos4θ ξ 2 sinϕ dr dϕ dθ + ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

= aζ 2
+ ζ 2bδ

∫ 2π

0
cos4θ dθ

∫ π

0
sin5ϕ dϕ

∫ δ

0
ξ 3 dr + ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) .∫ 2π

0
cos4 θ dθ = 3

4π,

∫ π

0
sin5 ϕ dϕ = 16

15 .

W (n)
(k) = aζ 2

+ ζ 2bδ
∫ 2π

0
cos4θ dθ

∫ π

0
sin5ϕ dϕ

∫ δ

0
ξ 3 dr + ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

= aζ 2
+ ζ 2bδ× 3

4π ×
16
15 ×

1
4δ

4
+ ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

= aζ 2
+ ζ 2bπ

5
δ5
+ ζ 2bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

a+ bπ
5
δ5
+ bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C11. (A.4)

Substituting a and b from (A.3) and (A.1), (A.4) becomes

1
2(C33− 3C55)+

15C55

2πδ5 ×
π

5
δ5
+ bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C11,

1
2(C11− 3C55)+

3
2C55+ bFδ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C11,
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bF =
1/2 (C11−C33)

δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

. (A.5)

(4) In-plane uniaxial tension in y direction (ε22):

ε22 = ζ, θC M
(k) = ζ, W C M

(k) =
1
2C22ζ

2,

s(k)( j) = ζ sin2ϕ sin2θ.

θ(k) = d
∞∑
j=1

δs(k)( j)3(k)( j)V( j) = d
∞∑
j=1

δζ sin2ϕ sin2θV( j)

= ζ dδ
∫ 2π

0

∫ π

0

∫ δ

0
sin2ϕ sin2θ ξ 2 sinϕ dr dϕ dθ

= ζ dδ
∫ 2π

0
sin2θ dθ

∫ π

0
sin3ϕ dϕ

∫ δ

0
ξ 2 dr.

∫ 2π

0
sin2θ dθ = π,

∫ π

0
sin3ϕ dϕ = 4

3 .

θ(k) = ζdδ
∫ 2π

0
sin2θ dθ

∫ π

0
sin3ϕ dϕ

∫ δ

0
ξ 2 dr = ζdδπ × 4

3 ×
1
3δ

3
= ζd 4

3πδ
4.

d =
ζ∑

∞

j=1 δs(k)( j)3(k)( j)V( j)
=

ζ

ζ 4
9πδ

4
=

9
4πδ4 .

W (n)
(k) = aθ2

(k)+ b
∞∑
j=1

δ|x( j)− x(k)|s2
(k)( j)V( j)+ bF

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |s
(n)(n)2
(k)( j) V (n)

( j)

= aζ 2
+ b

∞∑
j=1

δξ(ζ sin2ϕ sin2θ)2V( j)+ bT

J∑
j=1

δ|x(n)( j) − x(n)(k) |(ζ sin2θ)2V (n)
( j)

= aζ 2
+ ζ 2bδ

∫ 2π

0

∫ π

0

∫ δ

0
ξ sin4ϕ sin4θ ξ 2 sinϕ dr dϕ dθ + ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

= aζ 2
+ ζ 2bδ

∫ 2π

0
sin4θ dθ

∫ π

0
sin5ϕ dϕ

∫ δ

0
ξ 5 dr + ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) .∫ 2π

0
sin4θ dθ = 3

4π,

∫ π

0
sin5ϕ dϕ = 16

15 .

W (n)
(k) = aζ 2

+ ζ 2bδ
∫ 2π

0
sin4θ dθ

∫ π

0
sin5ϕ dϕ

∫ δ

0
ξ 3 dr + ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)
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= aζ 2
+ ζ 2bδ× 3

4π ×
16
15 ×

1
4δ

4
+ ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j)

= aζ 2
+ ζ 2bπ

5
δ5
+ ζ 2bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) .

a+ bπ
5
δ5
+ bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C22. (A.6)

Substituting a and b from (A.3) and (A.1), (A.6) becomes

1
2(C33− 3C55)+

15C55

2πδ5 ×
π

5
δ5
+ bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C22,

1
2(C33− 3C55)+

3
2C55+ bT δ

J∑
j=1

|x(n)( j) − x(n)(k) |V
(n)
( j) =

1
2C22,

bT =
1/2 (C22−C33)

δ
∑J

j=1|x
(n)
( j) − x(n)(k) |V

(n)
( j)

. (A.7)
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