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GROWTH-INDUCED INSTABILITIES OF AN ELASTIC FILM ON A
VISCOELASTIC SUBSTRATE: ANALYTICAL SOLUTION AND
COMPUTATIONAL APPROACH VIA EIGENVALUE ANALYSIS

IMAN VALIZADEH, PAUL STEINMANN AND ALI JAVILI

The objective of this contribution is to study for the first time the growth-induced instabilities of an
elastic film on a viscoelastic substrate using an analytical approach as well as computational simulations
via eigenvalue analysis. The growth-induced instabilities of a thin film on a substrate is of particular
interest in modeling living tissues such as skin, brain, and airways. The analytical solution is based on
Airy’s stress function adopted to viscoelastic constitutive behavior. The computational simulations, on
the other hand, are carried out using the finite deformation continuum theory accounting for growth via
the multiplicative decomposition of the deformation gradient into elastic and growth parts. To capture
the critical growth of elastic films and the associated folding pattern, eigenvalue analysis is utilized, in
contrast to the commonly used perturbation strategy. The eigenvalue analysis provides accurate, reliable,
and reproducible solutions as contrasted to the perturbation approach. The numerical results obtained
from the finite element method show an excellent agreement between the computational simulations and
the proposed analytical solution.

1. Introduction

Instabilities of bilayered structures consisting of a thin stiff film adhered to an infinite substrate are
increasingly important due to their applications in biological tissues. Such structural instabilities in
the form of wrinkles [Cao and Hutchinson 2012b; Budday et al. 2014], folds [Sun et al. 2012; Sultan
and Boudaoud 2008], or creases [Cao and Hutchinson 2012a; Hong et al. 2009; Jin et al. 2015] have
been studied recently. In many living systems, the formation of structural instabilities is critical to
appropriate biological function of the system [Wyczalkowski et al. 2012]. Typical examples are wrinkling
of skin [Tepole et al. 2011], villi formation in the intestine [Balbi and Ciarletta 2013], and folding of
the developing brain [Xu et al. 2010; Budday et al. 2014; Budday and Steinmann 2018]. However, in
some biological systems, the formation of structural instabilities can be an indication of a disease, e.g.,
the folding of the mucous membrane in asthmatic airways [Wiggs et al. 1997].

It is thus not surprising that the mathematical modeling of folding in tubular organs [Ciarletta and
Ben Amar 2012], in particular the modeling of the folding mucous membrane [Moulton and Goriely
2011; Li et al. 2011; Xie et al. 2014], has attracted increasing scientific attention in the past decade. This
problem (and variants thereof) has been widely studied lately [Budday et al. 2015; Cao and Hutchinson
2012b; Huang et al. 2005; Hutchinson 2013; Jin et al. 2011; Sun et al. 2012; Xu et al. 2014].

The concept of growth commonly has been modeled by continuum approaches via the multiplicative
decomposition of the deformation gradient into an elastic and a growth part [Rodriguez et al. 1994] which

Keywords: growth-induced instabilities, viscoelasticity, wrinkling, finite element method.

571

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2018.13-4
http://dx.doi.org/10.2140/jomms.2018.13.571
http://msp.org


572 IMAN VALIZADEH, PAUL STEINMANN AND ALI JAVILI

pairs the growth to the kinematic level [Taber 1995]. This concept requires the introduction of an artificial
intermediate configuration [Garikipati et al. 2004]. Additional details on the continuum theory of growth
and its implications are discussed in [Ciarletta and Maugin 2011; Ciarletta et al. 2013; Dervaux and
Ben Amar 2011; Dunlop et al. 2010; Epstein and Maugin 2000; Garikipati et al. 2004; Goriely et al. 2008;
Kuhl et al. 2003; Li et al. 2011; Yavari 2010; Ben Amar and Goriely 2005; Javili et al. 2014], amongst
others. Growth is commonly formulated within the framework of open-system thermodynamics [Kuhl
and Steinmann 2003; Kuhl 2014] where the body is allowed to constantly exchange mass, momentum,
and entropy with its environment through corresponding fluxes across its boundary; see also [Cowin and
Hegedus 1976; Epstein and Maugin 2000; Javili et al. 2013].

Most of the contributions on the subject assume the compliant substrate to be elastic. This contribution
for the first time studies the growth-induced instabilities of an elastic film on a viscoelastic substrate from
both analytical and computational perspectives using eigenvalue analysis and, in particular, elaborates
on the role of the relaxation time on the instability pattern as well as the critical growth; see also [Huang
and Suo 2002; Huang 2005; Budday et al. 2014]. Key features of this contribution are:

(1) to study the growth-induced instabilities of an elastic film on a viscoelastic substrate from both
analytical and numerical perspectives,

(2) to employ the eigenvalue analysis proposed in [Javili et al. 2015] for the numerical solution and not
the common perturbation strategy, and

(3) to illustrate an excellent agreement between the numerical and analytical solutions.

This manuscript is organized as follows. Section 2 deals with the computational approach to study
growth-induced instabilities of a thin film on a compliant viscoelastic substrate. Next, the analytical
solution of the problem is derived in Section 3 and its simplification to various classes of viscoelastic
models are discussed. The results from the computational approach using the finite element method are
compared against the analytical solution through a series of numerical examples in Section 4 and it is
found that the two strategies are in excellent agreement. Finally, Section 5 concludes this work and
provides further outlook.

2. Computational approach

The numerical solution of the problem is achieved by using the finite deformation theory in continuum
mechanics to account for growth, whereby the deformation gradient is decomposed multiplicatively into
an elastic and a growth part.

Let the continuum body B0 occupy the material configuration at time t = 0, as shown in Figure 1. The
motion ϕ maps the body B0 to the spatial configuration Bt at time t . The deformation gradient F maps
the line element dx from B0 to dx in Bt and is defined as F := Gradϕ. The governing balance equations
of finite deformation continuum mechanics consist of the balance of linear and angular momentum. The
balance of linear momentum in material configuration, for body B0 at time t = 0 and a quasistatic process,
reads

Div P + b0 = 0 in B0 subject to t = t0 on ∂B0 with t = P · N, (1)
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Figure 1: kinematics

Figure 1. The material and spatial configurations of a continuum body with associated
nonlinear deformation map ϕ and the linear tangent map F := Gradϕ.

where P is Piola stress1 and b0 is the body force density in the material configuration. The balance of
angular momentum leads to the symmetry of the Cauchy stress tensor σ = σ t related to the Piola stress
via P = σ ·Cof F.

2.1. Growing elastic film. To model volumetric growth one can use the multiplicative decomposition of
the deformation gradient F into a growth part Fg and an elastic part Fe as

F = Fe · Fg⇒ Fe = F · F−1
g and J = Je Jg, Je = det Fe, Jg = det Fg, (2)

where J is the Jacobian determinant of F and indicates the volume change due to the deformation as J =
dv/dV . In modeling growth, the growth part Fg maps the body B0 from the material configuration to an
intermediate stress-free “configuration”, which may be incompatible. The elastic part of the deformation
gradient Fe maps the intermediate “configuration” to the compatible spatial configuration as shown in
Figure 2. Here, growth is assumed to be morphogenetic and thus independent of the deformation itself.
We consider anisotropic growth along the film such that it prevents growth in the lateral directions.
Hence, the growth tensor can be described as Fg = I + g Iani, where Iani = I − N ⊗ N with N being
the unit normal vector to the film. Note that in the absence of growth, the growth tensor Fg = I and the
deformation gradient F is equal to the elastic part. The growth parameter g represents growth if g > 0
and shrinkage or atrophy if g < 0.

The constitutive behavior of the film is identified via its free energy ψ depending on the growth part
of the deformation gradient Fg and F, respectively. Therefore, the free energy ψ(F, Fg) renders the
same value as the elastic free energy ψe(Fe) as

ψ = ψ(F, Fg)= ψe(Fe). (3)

1The term Piola stress is adopted instead of the more commonly used first Piola–Kirchhoff stress. Nonetheless, it seems
that the term Piola stress is more appropriate for this stress measure. Recall, P is essentially the Piola transform of the Cauchy
stress and ties perfectly to the Piola identity. Also historically, Kirchhoff (1824–1877) employed this stress measure after Piola
(1794–1850); see also the discussion in [Podio-Guidugli 2000].
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Figure 1: kinematics

Figure 2. Kinematics of growth with multiplicative decomposition of the deformation
gradient into elastic Fe and growth Fg parts. The intermediate configuration Bg is, in
general, incompatible.
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Figure 3. Geometry of elastic growing film on a viscoelastic substrate.

Due to the second law of thermodynamics and using the Coleman–Noll procedure, the Piola stress for a
hyperelastic material reads

P :=
∂ψ

∂F
=
∂ψe

∂Fe
:
∂Fe

∂F
=
∂ψe

∂Fe
: [I ⊗ F−t

g ] = Pe · F−t
g with Pe :=

∂ψe

∂Fe
, (4)

where the operator⊗ denotes a nonstandard dyadic product with the index notation property [A⊗ B]i jkl =

[A]ik[B] jl for two second-order tensors A and B.

2.2. Viscoelastic substrate. As the film grows, the stress in the film increases until the growth parameter
reaches a critical value gc at which point geometrical instabilities may occur in the form of wrinkles.
Obviously, the corresponding deformed state is strongly dependent on the substrate beneath the film and
thus the material behavior of the substrate plays an important role. In the problem of interest here, we
consider an elastic growing film on a viscoelastic substrate as illustrated in Figure 3. The two sides
are constrained in the horizontal direction and the bottom of the substrate is constrained in the vertical
direction. The interface between the film and substrate is perfect and no debonding nor separation occurs
throughout the process. This generalization shall be investigated in a future contribution.

The viscoelastic behavior of the substrate can be captured by introducing internal variables. For
simplification, we consider the process to be isothermal and therefore neglect any temperature effects.
Hence, the thermodynamic state of the body can be expressed merely by the deformation gradient and
the internal variables. The free energy representing the viscoelastic material behavior of the substrate is
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based on an additive decomposition of the energy into its volumetric and isochoric parts together with a
dissipative contribution ψdis incorporating internal variables α as

ψ(J,C)= ψvol(J )+ψ iso(C)+ψdis(α,C) with C = J−2/3C, C = Ft
· F . (5)

The Piola–Kirchhoff stress S can be determined as

S= Svol
+ Siso

+ Q with Svol
= 2

∂ψvol

∂C
, Siso

= 2
∂ψ iso

∂C
, and Q = 2

∂ψdis(α,C)
∂C

, (6)

from which the Piola stress is readily obtained by P = F · S. The evolution equation for Q is assumed
as

Q̇+ 1
τ

Q = 1
τ

Ṡiso, (7)

where τ denotes the relaxation time with the definition

τ =
η

E
, (8)

in which η and E are the viscosity and the elastic modulus of the material, respectively. For Q the
convolution representation, as proposed in [Holzapfel 2000; Simo and Hughes 1998], reads

Q = exp
(
−

T
τ

)
Q+

∫ t=T

t=0

1
τ

exp
(
−

T−t
τ

)
Ṡiso dt. (9)

3. Analytical approach

Since we are only interested in the onset of instabilities, unlike the computational approach to this
problem, the analytical solution is derived based on small strains instead of finite deformations. In the
computational approach, it would be impossible to capture instabilities if geometrical nonlinearities were
precluded. Nonetheless, the geometrical instabilities in the analytical approach are implicitly accounted
for via a buckling analysis of the film. To study the viscoelastic behavior of the substrate at small strains,
we choose a rheological model demonstrated in Figure 4 representing the (general) standard solid model
to recover a wide range of material behaviors; see [Holzapfel 2000; Simo and Hughes 1998] for further
details. As it will be clarified, the (general) standard solid model captures both the Maxwell model and
the Kelvin model. The rheological model in Figure 4 consists of two spring elements with constants E
and E∞, which represent the elastic response of the solid. The spring with constant E is connected in
series with a dashpot with viscosity η. From a physical point of view, the constants E∞, E , and η must
be positive. The strains in both elements A and B are identical due to their parallel arrangement. The
total stress σ prescribed in Figure 4 can be recovered as addition of the stress in A and B as

σ = σ∞+ σ ν with σ∞ = E∞ε, (10)

where σ∞ is applied to the element B representing the stress of the rheological model as t →∞ in a
relaxation test and σ ν represents the viscous stress acting on the dashpot. From a mechanical point of
view, the strain in the viscous element B is the addition of the elastic strain in the spring with constant
E and the inelastic strain-like internal variable α in the dashpot and thus

σ ν = E[ε−α] = ηα̇. (11)
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Figure 4. Illustration of the kinematics of the viscoelastic material with (general) stan-
dard solid element model. The rheological model is composed of two elements A and B.
The subscript∞ denotes the elastic response of the solid for t→∞ corresponding to
the behavior of solid in a relaxation test after infinite time.

By considering the initial modulus E0 at t = 0 with no strain in the dashpot, the rheological model in
Figure 4 resembles a solid with two spring elements with constants E and E∞ as instantaneous modulus
E0 = E∞+ E and hence, (10) leads to

σ = E0ε− Eα, (12)

where the inelastic strain α satisfies the evolution equation

α̇+
1
τ
α =

1
τ
ε with the condition lim

t→−∞
α(t)= 0. (13)

Additionally, there exists an alternative formulation by introducing a stress-like variable q = E[ε−α]
acting on the dashpot, so that (12) transforms to σ = E∞ε+ q and thus the evolution equation (13) can
be rewritten as

q̇+ 1
τ

q = 1
τ

Eε with the condition lim
t→−∞

q(t)= 0. (14)

To determine the critical growth of an elastic film on a viscoelastic substrate, we compute the critical
growth by analyzing the buckling of the film on the substrate, Figure 5. In doing so, first we assume the
substrate to be elastic and then we replace the elastic behavior of the substrate by its equivalent viscoelas-
tic one. The whole analysis here is two-dimensional and corresponding to a plane-strain scenario. Let
w denote the deflection of the film. The governing differential equation of a film adhered to an infinite
half-space reads

1
12 E f h3 d4w

dx4 + hσ
d2w

dx2 = fs, (15)

where σ is the stress in the film, E f is the film elastic modulus and h is the film thickness. The transverse
force on the film from the substrate fs reads [Allen 1969]

fs =−
2Es

[3− νs][1+ νs]
nw, (16)
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Figure 5. Analytical model of growing elastic film on a viscoelastic substrate. The film
thickness is denoted h and λ is the wavelength. The amplitude of the sinusoidal wave
on the substrate is denoted w0. The lateral force P relates to the stress in the film via
P = σhb with b being the width of the domain in the direction normal to the plane.

where νs is the Poisson’s ratio of the substrate, with sinusoid w with the wavenumber n on its surface.
By substituting fs in (15) and solving for σ , we have

σ = 1
12 E f h2n2

+
2Es

[3− νs][1+ νs]hn
, (17)

from which the critical wavenumber can be computed by minimizing with respect to σ as

nc =
3

√
12Es

E f [3− νs][1+ νs]h3 , (18)

from which the critical wavelength can be readily calculated. Inserting the critical wavenumber nc into
the stress equation (17) results in the critical stress σc and eventually the critical growth gc is obtained
as gc ≈ εc = σc/E f for sufficiently small values of εc. A more accurate approximation for the critical
growth reads gc = εc/[1− εc]. Nonetheless, the validity of this linear approach is questionable for larger
εc corresponding to film-to-substrate stiffness ratios less than 10; see [Cao and Hutchinson 2012b].

Now, we generalize the elastic model to a viscoelastic one to study the effect of the viscoelastic
material properties of the substrate on the critical growth of the film. To do so, by regarding Es and νs

as the material constants of the substrate, the viscoelastic substrate model can be expressed solely by
modifying the material constants of an elastic substrate model. First, by solving the internal variable in
(14) in the linear viscoelastic regime, we have for the elastic modulus of the viscoelastic substrate

Es = E∞+ E exp
(
−
1t
τ

)
. (19)

It can be observed that for a large relaxation time τ compared to the growth time 1t , the substrate elastic
modulus results in Es = E∞+ E , where the substrate can be viewed as an elastic substrate. On the other
hand, for relatively slowly growing film or alternatively small relaxation time, the exponential term tends
to 0 resulting in the effective elastic modulus in substrate Es = E∞. To formulate this in the governing
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Kelvin model elastic model Maxwell model general model

Figure 6. Illustration of four models for the substrate behavior. The standard solid
model can recover Maxwell, Kelvin, and elastic models as three special cases.

equations of a growing film on a viscoelastic substrate, we introduce the effective substrate stiffness

Eeff
s = E∞+ [Es − E∞] exp

(
−
1t
τ

)
, (20)

and then by substituting (20) in (16) we obtain the viscoelastic substrate transverse force as

fs =−
2

[3−νs][1+νs]

[
E∞+ [Es − E∞] exp

(
−
1t
τ

)]
nw(x), (21)

and after substituting in (15) and solving for σ we have

σ = 1
12 E f h2n2

+
2

[3−νs][1+νs]hn

[
E∞+ [Es − E∞] exp

(
−
1t
τ

)]
, (22)

and consequently, the minimization with respect to σ yields the critical wavenumber

nc =
3

√
12[E∞+ [Es − E∞] exp(−1t/τ)]

E f h3[3− νs][1+ νs]
, (23)

from which the critical stress σc and eventually the critical growth gc can be calculated, as before.
Obviously, the standard solid model in viscoelastic material modeling can simplify to the Maxwell,

Kelvin, and elastic models, as schematically illustrated in Figure 6. For instance, from Figure 6 it is
obvious that a standard solid model reduces to the Maxwell model if E∞→ 0, and thus the effective
stiffness of the substrate in this case reads

Es = E exp
(
−
1t
τ

)
, (24)

and consequently

fs =−
2

[3−νs][1+νs]
[Es exp

(
−
1t
τ

)
]nw(x). (25)

4. Numerical examples

The purpose of this section is to illustrate the growth-induced instabilities in a bilayer system composed
of a thin growing film on top of a viscoelastic substrate as shown in Figure 7. In particular, we study the
influence of a viscoelastic substrate on the critical wavelength due to growth-induced buckling patterns
as well as the critical growth. More importantly, the numerical results obtained from the computational
simulations using the finite element method are compared against the proposed analytical solution.

For all examples, to omit further complexities in interpreting the results, it is assumed that the critical
growth is reached at the same 1t independent of the stiffness ratio. Therefore, the relaxation time τ
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Figure 7. Geometry and dimensions of an elastic growing film on a viscoelastic substrate.

remains as the only independent parameter to study its effect instead of the ratio 1t/τ . In order to
extend the observations to a more general case with varying 1t , the dimensionless parameter κ =1t/τ
is defined, thereby κ is essentially the ratio of the time for the film to reach the critical growth over the
substrate relaxation time. For the problem of interest here, the neo-Hookean potential

ψe =
1
2µ[Fe : Fe− 2− 2 ln Je] +

1
2λ
[1

2 [J
2
e − 1] − ln Je

]
with Je = det Fe (26)

is used for the elastic response of the film and the substrate where µ and λ are Lamé parameters. Fur-
thermore, it is assumed that the film grows only along its length but not in the vertical direction. The
film over substrate stiffness ratio is defined as µ f /µs and the Poisson’s ratio for both media is assumed
as ν f = νs = 0.45. Thus the larger the stiffness ratio, the more compliant is the substrate compared to
the film. For the numerical simulations, the domain is discretized using biquadratic finite elements to
achieve a better accuracy [Javili et al. 2015]. To compute critical growth of the film and folding pattern,
the numerical approach based on the large deformation must be calculated. To this aim, first we weigh
the strong form of the balance equations (1) with the test function δϕ ∈H1

0(B0) with the definition δϕ = 0
on δB0

ϕ and integrate over B0, yielding the following global weak form:

rϕ(ϕ(x, t))=
∫
B0

Grad Xδϕ : P dV −
∫
B0

δϕ · b0 dV −
∫
∂B0

δϕ · t0 dA = 0. (27)

In the frame of finite element analysis, the goal is to solve (27) by vanishing the residual rϕ(ϕ(x, t)). To
obtain this, and find ϕ such that the residuum vanishes, the Newton–Raphson scheme can be used:

r(ϕm+1)= r(ϕm)+
∂r
∂ϕ
·1ϕ, (28)

where index m denotes the iteration number. The derivative of the residual with respect to ϕ can be
described as the stiffness matrix K = ∂ r∂ϕ: the eigenvalue representation for diagonalizable matrices
[Javili et al. 2015] of a stiffness matrix for a system with n degrees of freedom is

Kn×n = K1λ1⊗λ1+ K2λ2⊗λ2+ · · ·+ Kiλi ⊗λi + · · ·+ Knλn ⊗λn =

n∑
i=1

Kiλi ⊗λi , (29)
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(a) (b) (c)

(d) relaxation
time κ exp(−1t/t)

Figure 8. Instability study of growing elastic film with thickness 1 on a viscoelastic
substrate by using various relaxation times to examine the viscous substrate effects on
the critical growth of the elastic film. The standard solid model is chosen to capture
viscoelastic effects. The relation of growth time to relaxation time is κ = 1t/τ . The
stiffness ratio is µ f /µs and the Poisson’s ratio for both the film and substrate is ν f =

νs = 0.45. The variation of relaxation times occurs by changing the viscosity η of
the material. This effect could have identical results by holding viscosity constant and
changing growth time. The right growing time line shows this parallel impact.

in which Ki represents the eigenvalue and λi the associated unit eigenvector for i = 1, . . . , n. In the
sense of studying growth instability, the negative eigenvalue of stiffness matrices represents the growth
instability and the associated unit eigenvector represents the folding pattern. To obtain the critical value
of growth, the growth is increased until one of the eigenvalues becomes negative. Then, the associated
growth is the critical growth of the system. More computational details are explained in the Appendix.

Figure 8 gathers the analytical results and numerical simulations using eigenvalue analysis. The critical
growth gc in Figure 8, b and c, and corresponding folding pattern in Figure 8a are illustrated for different



GROWTH-INDUCED INSTABILITIES OF AN ELASTIC FILM ON A VISCOELASTIC SUBSTRATE 581

λc = 17.1 λc = 15.0 λc = 13.3

κ = 1.38× 101

exp(−1t/t)= 0.000001
κ = 1.61× 100

exp(−1t/t)= 0.2
κ = 1.11× 10−16

exp(−1t/t)= 1.0

Figure 9. Folding of growing film with thickness 1 on a viscoelastic substrate for some
κ = 1t/τ with stiffness ratio µ f /µs = 40. The Poisson’s ratio for both the film and
substrate is ν f = νs = 0.45. The critical wavelength is denoted λc = 2π/nc, where the
critical wavenumber nc can be calculated from (23).

stiffness ratios µ f /µs for various κ in Figure 8d to study the effect of relaxation time on the critical
growth gc and wavelength. First, we see that for a given τ in Figure 8b, the critical growth decreases by
increasing the stiffness ratio. Second, it is observed that the critical growth gc increases by decreasing
κ or alternatively increasing the relaxation time τ . This can be justified by the first observation. That
is, for a given µ f /µs , a larger relaxation time τ leads to an increased effective stiffness of the substrate
and hence resembles an overall smaller film-to-substrate stiffness ratio which in turn results in a larger
critical growth. Third, there is excellent agreement between the numerical results in Figure 8c using
the finite element method via eigenvalue analysis and the proposed analytical solution. So much so that
the points corresponding to the numerical results are shown on separate graphs for a better visualization.
The numerical results from the finite element method consistently overestimate the analytical solution
only and provide an overall stiffer response, as expected. Furthermore, for a given relaxation time, e.g.,
τ = 0.0724, the deformation is illustrated for various stiffness ratios on the left. Increasing the stiffness
ratio results in a larger wavelength and thus less waves for a given length of the domain according to (23).
Finally, the folding patterns for a given stiffness ratio of µ f /µs = 40 but for varying relaxation time τ
are illustrated in Figure 9 and it is obvious that increasing the relaxation time decreases the wavelength.
This can again be justified by the fact that increasing the relaxation time is effectively decreasing the
stiffness ratio and hence the wavelength.

5. Conclusion

Biological growth in living systems can lead to geometric instabilities in the form of folding and wrin-
kling, thus understanding these phenomenon is of crucial importance. Growth-induced instabilities are
often studied in bilayer systems where both the thin film and the underlying compliant substrate behave
elastically. Nonetheless, due to its relevance for living tissues, the substrate in this contribution is con-
sidered to be viscoelastic. This problem is carefully analyzed using both an analytical approach as well
as computational simulations using the finite element method whereby eigenvalue analysis is utilized
to capture the instabilities. The results obtained from both methods are compared for a wide range of
parameters and show an excellent agreement between the computational simulations and the proposed
analytical solution. It is observed that the viscoelastic influence of the substrate can be interpreted and
eventually replaced by an “effective” elastic model. Our next immediate extension of this contribution
is to replace the perfect bonding between the substrate and the film by a general interface model [Javili
et al. 2017; Javili 2018] and study its implications.
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read data: geometrical data, material parameters, and boundary conditions
initialization: set degrees of freedom, quadrature points, and shape functions
while eigenvalues> 0 do

calculate Neumann, Dirichlet, and loads for this time step
while Newton loop do

initialize global tangent stiffness matrix, residuum, volume, surface, and internal forces
for element loop do

determine DOFs, displacement, and coordinates belonging to the current element
for integration loop do

evaluate shape function and its gradient at the current quadrature point
calculate deformation gradient F
if film element then

elasticity material box(F, state variables)
else

viscoelasticity material box(F, state variables)
end
for node loop do

assemble element stiffness matrix K
end

end
assemble global stiffness matrix, volume, surface, and internal forces

end
calculate residual rϕ(ϕ(X, t))

end
eigenvalue analysis
if eigenvalue < 0 then

g = gcr

calculate eigenvector
break while loop

else
growth increment gnew = gold+1g

end
end

Algorithm 1. The incremental nonlinear finite element method with eigenvalue analysis
to capture geometrical instabilities.

Appendix: Computational aspects

The geometry in Figure 7 consists of a rectangular domain which is meshed with 560 quadratic quadrilat-
eral elements with 3578 DOFs. Computations are carried out using our in-house nonlinear finite element
code; to have a proper numerical solution we use the finite element method algorithm 1, which explains
the finite element structure using eigenvalue analysis. Algorithm 2 is an elastic material box used to model
growth of elastic film and Algorithm 3 is a viscoelastic material box to model the substrate behavior.
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Input: deformation gradient (F), state variables
Update configurations Jn+1 := det[Fn+1], Cn+1 = Ft

n+1 Fn+1

Decompose F to Fe and Fg

Calculate growth part Fg

Compute P , C

Output: Piola stress and algorithmic tangent moduli

Algorithm 2. Elastic material box to calculate growth in living materials.

Input: deformation gradient (F), state variables
Update configurations Jn+1 := det[Fn+1], Cn+1 = Ft

n+1 Fn+1, Fn+1 = J−1/3
n+1 Fn+1, Cn+1 = J−2/3

n+1 Cn+1

calculate the second Piola–Kirchhoff stress Sn+1 and internal variable Qn+1

Compute P , C

Output: Piola stress, algorithmic tangent moduli

Algorithm 3. Viscoelasticity material box to calculate viscoelastic effects of substrate.
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