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EdgeIdeals: a package for (hyper)graphs

CHRISTOPHER A. FRANCISCO, ANDREW HOEFEL, AND ADAM VAN TUYL

ABSTRACT. We introduce a Macaulay 2 package, entitled EdgeIdeals, that allows one to experiment
with graphs and hypergraphs via the edge ideal correspondence. At the core of our package are new
classes for defining graphs and hypergraphs.

INTRODUCTION. The edge ideal of a (hyper)graph enables one to study (hyper)graphs using the tools
of commutative algebra. The work of [1, 3, 6, 7, 9, 11, 12, 13, 14, 15], among others, has focused on
building a dictionary between commutative algebra and graph theory. In this note we introduce a new
package, entitled EdgeIdeals, written for Macaulay 2 [5], which exploits this dictionary. The goal of
this package is to provide a family of functions that will enable the user to experiment with simple
graphs and hypergraphs within software specifically designed for commutative algebra and algebraic
geometry, thus facilitating future research.

The underlying algorithms in this package use the notion of an edge ideal, a monomial ideal
whose minimal generators correspond to the edges of the hypergraph. This algebraic construction
necessitates that we work with clutters, hypergraphs in which no edge is a subset of another, since
otherwise the edge of larger cardinality would not be a minimal generator of the edge ideal, and we
would lose information.

We believe that some of the most useful parts of the package are methods to compute common
invariants in (hyper)graph theory, such as chromaticNumber and cliqueNumber, methods to extract
certain structures or test for particular features of graphs, such as allOddHoles and isChordal, and
methods for computing random graphs and hypergraphs, such as randomGraph and randomHyperGraph,
which allow the user to test conjectures efficiently. We also take advantage of the SimplicialComplexes
package by Popescu, Smith, and Stillman to allow users to access the various simplicial complexes
associated to a hypergraph. (See [10] for more on monomial ideals and Macaulay 2.)

As research on correspondences between (hyper)graphs and square-free monomial ideals continues,
we envision including more algebraic methods for computing combinatorial invariants.

MATHEMATICAL BACKGROUND. For the purposes of this note and package, we define a hyper-
graph to be a pair H = (X ,E ), where X = {x1, . . . ,xn} is the set of vertices, and E = {E1, . . . ,Et},
a collection of subsets of X , is the set of edges with the additional property that if Ei ⊆ E j, then
i = j. The standard usage of the term of hypergraph does not require the condition on the containment
of edges. What we will call a hypergraph is sometimes called a clutter or Sperner system. If a
hypergraph H has |Ei|= 2 for each Ei ∈ E , then we usually call H a simple graph.

The package EdgeIdeals is based upon the correspondence between hypergraphs and square-free
monomial ideals. The correspondence is defined as follows. Let H = (X ,E ) be a hypergraph with
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vertex set X = {x1, . . . ,xn}. Fix a field k, and consider the polynomial ring R = k[x1, . . . ,xn]. We
identify each vertex of H with the corresponding variable in R. The edges of H are used to define
an ideal, called the edge ideal of H , in the ring R: I(H ) = 〈{∏x∈E x | E ∈ E }〉. Conversely, any
square-free monomial ideal I minimally generated by {m1, . . . ,ms} corresponds to a hypergraph, and
the edge Ei corresponds to the variables in the support of the monomial mi. Edge ideals are essentially
equivalent to the notion of a facet ideal as first defined by Faridi [2] (see the discussion in [8]).

There is a delicate point in the above correspondence that revolves around isolated vertices. An
isolated vertex is not considered an edge in a graph, and thus we omit it from the minimal generators
in an edge ideal of a graph (though in our package, we do allow hypergraphs to have edges of
cardinality one). One problem in handling graphs and hypergraphs is not knowing whether the user
intended to have isolated vertices or whether he or she simply created a polynomial ring with extra
variables, unsure in advance how many he or she would use. To address this, we created several
alternate methods. For example, if the user forms the ring R=ZZ/101[a,b,c] and the graph G with
edge set consisting of the single edge connecting a and b, isConnectedGraph G would return false,
treating the vertex corresponding to c as an isolated vertex and its own connected component. In
contrast, isConnected G would return true, assuming the user simply created a polynomial ring that
was too large. See the documentation for more information about this and hypergraphs that have
edges of cardinality one.

EXAMPLE. At the heart of the EdgeIdeals package are two new classes that are entitled HyperGraph

and Graph. The HyperGraph class can only be used to represent hypergraphs. The class Graph extends
from HyperGraph and inherits all of the methods of HyperGraph. Functions have been made that accept
objects of either type as input.

In our example below, we will illustrate a theorem [15, Theorem 6.4.7] that says the independence
complex of a Cohen-Macaulay bipartite graph has a simplicial shelling. We begin by inputting a
graph and verifying the Cohen-Macaulay and bipartite properties.

i1 : loadPackage "EdgeIdeals";

i2 : R = QQ[x_1..x_3,y_1..y_3];

i3 : G = graph(R,{x_1*y_1,x_2*y_2,x_3*y_3, x_1*y_2,x_1*y_3,x_2*y_3})

o3 = Graph{edges => {{x , y }, {x , y }, {x , y }, {x , y }, {x , y }, {x , y }}}
1 1 2 2 3 3 1 2 1 3 2 3

ring => R
vertices => {x , x , x , y , y , y }

1 2 3 1 2 3

o3 : Graph

i4 : isCM G and isBipartite G

o4 = true

When defining a (hyper)graph, the user specifies the vertex set by defining a polynomial ring, while
the edges are written as a list of square-free monomials (there are alternative ways of listing the
edges). A (hyper)graph is stored as a hash table which contains the list of edges, the polynomial ring,
and the list of vertices.

i5 : L = getGoodLeaf(G)

o5 = {x , y }
1 1
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o5 : List

i6 : degreeVertex(G,y_1)

o6 = 1

i7 : H = inducedHyperGraph(G, vertices(G) - set(L))

o7 = HyperGraph{edges => {{x , y }, {x , y }, {x , y }}}
2 2 3 3 2 3

ring => QQ [x , x , y , y ]
2 3 2 3

vertices => {x , x , y , y }
2 3 2 3

o7 : HyperGraph

A Cohen-Macaulay bipartite graph must contain a leaf, which we retrieve above. We remove the leaf,
to form the induced graph, and at the same time, we identify the vertex of degree one in the leaf.

i8 : K = simplicialComplexToHyperGraph independenceComplex H;

i9 : edges K

o9 = {{x , x }, {x , y }, {y , y }}
2 3 3 2 2 3

o9 : List

Above, we formed the independence complex of H, that is, the simplicial complex whose facets
correspond to the maximal independent sets of H. We then change the type from a simplicial complex
to a hypergraph, which we call K. Notice that these edges give a shelling.

i10 : use ring K;

i11 : A = apply(edges(K), e -> append(e, y_1));

i12 : B = apply(edges inducedHyperGraph(K, {x_2,x_3}), e-> append(e, x_1));

i13 : shelling = join(A,B)

o13 = {{x , x , y }, {x , y , y }, {y , y , y }, {x , x , x }}
2 3 1 3 2 1 2 3 1 2 3 1

o13 : List

i14 : independenceComplex(G)

o14 = | y_1y_2y_3 x_3y_1y_2 x_2x_3y_1 x_1x_2x_3 |

o14 : SimplicialComplex

Using the method found in the proof of [15, Theorem 6.4.7], we now can form a shelling of the original
independence complex. Notice that our shelling is a permutation of the facets of the independence
complex defined from G.
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