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Polyhedra: a package for computations with
convex polyhedral objects

RENÉ BIRKNER

ABSTRACT. Convex polyhedral objects play an important role in numerous areas of algebraic geometry.
The package Polyhedra enables one to work with such convex polyhedral objects in Macaulay 2. In
particular, Polyhedra implements objects representing polyhedra, cones, and fans. Many standard
operations, such as intersections, duality, convex hulls, and calculation of Hilbert bases are included.
The package also provides functions to create convex polyhedral objects from some algebraic objects.

THE PACKAGE AND ITS APPLICATIONS. Many objects in algebraic geometry can be described
by convex polyhedral objects. For example, the Gröbner degenerations of a homogeneous ideal are
in one-to-one correspondence with the faces of its state polytope; see [St, Chapter 2]. Geometric
invariant theory (GIT) quotients coming from linearizations of the trivial bundle provide a second
class of examples. For an effective action of the torus (C∗)k on affine space An

C, there is an associated
exact sequence of lattices 0→ K→ Zn→ Zk→ 0. The GIT-quotients of this action are given by
the normal fans of certain polyhedra in the associated Q-vector space KQ; for more information
see [B, §III.2]. The package Polyhedra provides methods within Macaulay 2 [M2] for creating and
manipulating convex polyhedral objects such as polyhedra and cones. Some objects from algebraic
geometry can also be translated into their corresponding convex polyhedral objects.

Polyhedra implements three new data types in Macaulay 2: Polyhedron, Cone, and Fan. The
first two types of objects can be created from scratch by entering a set of vertices, a set of rays,
and a lineality space. Dually, polyhedra and cones can be created by intersecting half-spaces and
hyperplanes. New objects also arise from the convex hull, positive hull, or intersection of other
polyhedra. Fans are constructed by specifying a collection of cones or by using functions that
transform other objects into fans, such as normalFan.

This package contains most of the standard operations on convex polyhedral objects; for details
see [Z]. For a Cone, Polyhedra allows the user to check smoothness, create the dual cone, compute all
its faces, or determine its Hilbert basis. For a Polyhedron, functions are included to compute the polar
polyhedron, create the normal fan, check for compactness, and find the lattice points of a compact
polyhedron. The package provides methods for computing direct sums and calculating affine images
or preimages for all three types of convex polyhedral objects. The user can also conveniently access
some of the most common polyhedral objects such as the positive orthant, the hypercube, or the cross
polytope.

In Polyhedra, every convex polyhedral object is represented using the double description method.
This means that for a polyhedron, the vertices and rays as well as the defining affine half-spaces and
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hyperplanes are part of the representation. For a cone, the representation is given by the linear half-
spaces and hyperplanes in addition to the rays and the lineality space. If only one of the descriptions
is given, then the dual description is automatically computed using the Fourier-Motzkin algorithm
which is available within Macaulay 2 via the FourierMotzkin package [Sm]. A fan is stored as the list
of generating cones, i.e. all cones in the fan that are not a face of any other cone in the fan.

Through the basic functionality for convex geometry it provides, the package Polyhedra promises
to form the basis for a number of further applications. Relying heavily on Polyhedra, the ToricVB
package [BIP] computes the cohomology of equivariant vector bundles following the combinatorial
approach given in [K]. Polyhedral divisors, which describe toric varieties with action by some
subtorus and are defined in [AH], can also be calculated by using Polyhedra. Finally, the toricCodes
package [I] utilizes Polyhedra to generate toric codes and T -codes.

EXAMPLES. Consider a regular function f on the 3-dimensional torus (C∗)3. This function f can be
expressed as a Laurent polynomial in 3 variables. One important invariant of such a polynomial is its
Newton polytope P; see [Z, Exercise 9.4]. Polyhedra can compute this invariant as follows.

In the polynomial ring
i1 : loadPackage "Polyhedra";

i2 : printWidth = 82;

i3 : R = QQ[x,y,z];

consider the polynomial
i4 : f = x*z^3 - x^2*z^2 + y*z^3 - x^3*y + x*y^2*z - x^2*y^2;

If we compute the Newton polytope of f, we see that it is a hexagon in Q3:
i5 : P = newtonPolytope f

o5 = {ambient dimension => 3 }
dimension of lineality space => 0
dimension of polyhedron => 2
number of facets => 6
number of rays => 0
number of vertices => 6

o5 : Polyhedron

The hypersurface Z = V( f )⊂ (C∗)3 can be compactified by considering its closure in the embedding
of (C∗)3 into the projective toric variety X corresponding to the polytope P. The affine invariant charts
of X correspond to cones in the normal fan of P. Since I = 〈 f 〉 is a principal ideal in R, P is in fact a
state polytope of I; see [St, Chapter 2]. Hence, the normal fan of P is the Gröbner fan of I.

i6 : F = normalFan P

o5 = {ambient dimension => 3 }
number of generating cones => 6
number of rays => 6
top dimension of the cones => 3

o6 : Fan

We can check whether the toric variety X is smooth by checking the smoothness of the fan F.
i7 : isSmooth F

o7 = false

Two of the six generating cones are not smooth.
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i8 : C = select(genCones F, c -> not isSmooth c)

o8 = {{ambient dimension => 3 }, {ambient dimension => 3 }}
dimension of lineality space => 1 dimension of lineality space => 1
dimension of the cone => 3 dimension of the cone => 3
number of facets => 2 number of facets => 2
number of rays => 2 number of rays => 2

o8 : List

These cones have the following rays and common lineality space:
i9 : (apply(C, rays),linSpace F)

o9 = ({| 0 0 |, | 0 0 |}, | 1 |)
| 0 -2 | | 0 2 | | 1 |
| -1 -1 | | 1 1 | | 1 |

o9 : Sequence

Thus, by computing the Hilbert bases
i10 : HB = apply(C, hilbertBasis)

o10 = {{| 1 |, | 0 |, | 1 |}, {| -2 |, | 0 |, | -2 |}}
| 0 | | 0 | | -1 | | -1 | | 0 | | 0 |
| 0 | | -1 | | 0 | | -1 | | 1 | | -1 |

o10 : List

we get interior rays for each cone, which we can use to construct a smooth refinement of F. For this,
we need the codimension 1 faces of the cone:

i11 : L = apply(C, x -> faces(1,x))

o11 = {{{ambient dimension => 3 }, {ambient dimension => 3 }},
dimension of lineality space => 1 dimension of lineality space => 1
dimension of the cone => 2 dimension of the cone => 2
number of facets => 1 number of facets => 1
number of rays => 1 number of rays => 1

----------------------------------------------------------------------------
{{ambient dimension => 3 }, {ambient dimension => 3 }}}
dimension of lineality space => 1 dimension of lineality space => 1
dimension of the cone => 2 dimension of the cone => 2
number of facets => 1 number of facets => 1
number of rays => 1 number of rays => 1

o11 : List

For each face, we take the corresponding Hilbert basis element that is not a ray of the original cone
and compute the convex hull of this element and the face:

i12 : L = apply(2, i -> apply(L#i, C -> posHull{C,HB#i#0}))

o12 = {{{ambient dimension => 3 }, {ambient dimension => 3 }},
dimension of lineality space => 1 dimension of lineality space => 1
dimension of the cone => 3 dimension of the cone => 3
number of facets => 2 number of facets => 2
number of rays => 2 number of rays => 2

----------------------------------------------------------------------------
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{{ambient dimension => 3 }, {ambient dimension => 3 }}}
dimension of lineality space => 1 dimension of lineality space => 1
dimension of the cone => 3 dimension of the cone => 3
number of facets => 2 number of facets => 2
number of rays => 2 number of rays => 2

o11 : List

We now add these cones to the smooth cones of F to construct a new fan F1.
i13 : F1 = makeFan flatten(select(genCones F, c -> isSmooth c)|L)

o13 = {ambient dimension => 3 }
number of generating cones => 8
number of rays => 8
top dimension of the cones => 3

o13 : Fan

This fan is a refinement of F; the corresponding toric variety X ′ is an equivariant blowup of X in two
torus fixed points. We can check that X ′ is in fact smooth by checking the smoothness of F1.

i14 : isSmooth F1

o14 = true

REFERENCES.
[AH] K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3,

557 – 607.
[B] R. Birkner, Quotients of closed subvarieties in toric varieties, Diploma thesis, Freie Universität Berlin, 2007.
[BIP] R. Birkner, N. Ilten, and L. Petersen, ToricVB, a Macaulay 2 package for computing Čech cohomology of vector
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