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ABSTRACT. We introduce the packad#odgelntegralswhich calculates top intersection numbers
among tautological classes ofyn. As an application, we show that the tautological ring of the

moduli space///% of genus three curves whose dual graph has at most one loop@onenstein.

Let.#4n denote the moduli space of stable curves of ggrwigh n marked points. The tautological
ringsR* (.#Zyn) are defined to be the smallest systenfe$ubalgebras of the Chow rings (.Zgn)
that is closed under the natural forgetful morphisms:: #gni1 — -#yn and the gluing mor-
phismsliy: Mg 1012 = Mgn, lgys: Mg 511X Mgy 111 — gy +g,0; hereSdenotes a subset
of {1,...,n} and § its complement. Tautological rings contain fundamentassks of boundary
strata, Mumford-Morita classes, cotangernt classes, and the Chern classes of the Hodge bundle
Ai :=ci(E). For definitions and properties of these tautological @asseel{l, AC].

Around 1997, FaberH2] implemented the programdaLa5in Maple, which calculates top inter-
section numbers among, A and ¢ classes. Thdlacaulay2packageHodgelntegralds modeled
after Faber’'s program, though the algorithm presented ised#fferent. The main advantage of
HodgelntegralooverKalLa5is that it is entirely recursive. By contrastalLa5uses look-up tables,
which limits the calculations to dim?g» < 20. What limitsHodgelntegralss, as with all recursions,
the need for memory. In practice, integrals involvimn@nd ( classes are computed quickly up to
dim.Zyn < 40. Integrals involving\ classes are considerably slower. Here are some examples:

il : loadPackage "HodgeIntegrals";
i2 : R = hodgeRing(15,0);

i3 : time integral(1l5,0,kappa_42)
-- used 37.9246 seconds

03 e e
660188928419744764258399813632000

03 : R

i4 : time integral(4,0,lambda_179)
-- used 15.4209 seconds

04 = ------
113400

o4 : R

i5 : time integral(5,0,lambda_1"712)
-- used 79.4923 seconds
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680400

o5 : R

The Gorenstein conjectures describe the structure of titeltgical rings of.#yn, and the re-
lated moduli spaces of curves with compact Jacobigzmg%t and curves with rational talls%/gn,
where the tautological rings (yfflgtn and,///é}n are defined by restriction. For definitions and precise
statements, se& 1, P]. According to these conjectures, multiplication folladviey integration over
a homology class of@— 3+ n, respectively 8 — 3+ nandg— 2+ n, gives a perfect pairing on the
ring R* (.7 ), respectiveR* (.Zgy,) andR* (.Zg,).

Let ,///3556 denote the moduli space of genus three curves whose dudl bespat most one loop;
equivalently, this is the locus of curves W&o where the sum of the geometric genera of the
components is at least 2. We use the packdgégelntegraldo show that the tautological ring of
,//130, which is defined by restriction, does not have perfect pgiri

1. INTEGRALS AMONG {/, K, AND A CLASSES Top intersection numbers amoggclasses are
determined with the Theorem 1.1 afX]:
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This reduces an integral igy classes to a sum of four terms involving integrals on strikiver
genera. Our base cases come from the well-known formula

LI] ) dn_< n-—3 )
%On dl,...,dn

which follows directly from the equationZ 1704 1, along with the string and dilaton equations.
Integrals involving bothp and k classes can be reduced to the case above using the pullback
formulasrz;, 1K, = kp— Y, ; andrgt ;Y = ¢ — Dj ny1. The termD; 41 is the class of the boundary
divisor that is the closure of the locus of curves consistihg rational component with two marked
pointsp; andpn, 1 attached to a genwgscurve carrying the remaining marked points. It isimmediate
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from this definition that the produdty 1D; n41 vanishes for all. These allow us to compute

m

n m n
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i= =

///g7n+1

= [, ST T R
Mgnt1
The last expression can be expanded to a sum of integraliwbittain one fewek class in their
integrands at the cost of introducing a marked point. Rekigtration of this equation allows us to
eliminatek classes entirely.

Integrals involvingA classes are more complicated. The first step is to ex@retasses in terms
of the Chern character @ using the formula 3 Ast + - -+ Agt9 = exp(3{_; (2 — 2)!chy_1t?~1).
Applying the Grothendieck-Riemann-Roch formula to thevarsal familym: .#g41 — .#40 and
pulling this back ta#yn gives us an expressioM] eq. 5.2] for the Chern character Bfin terms
of kK, i, and boundary classes:

che = ffll ( Zﬁ”‘ ;Z: ) Wyt )

HereB; denotes thé-th Bernoulli number, ands ranges over all possible gluing morphisms.

R*(//é%) IS NOT GORENSTEIN The tautological ring?*(,///ég) is one-dimensional in degree 4
and vanishes in higher degre@Y, Proposition 1], thus we have an intersection pairing

(1) R (.32) x R (a33) — R“(M/‘Z) ~ Q.

The Chern clasi, does not vanish on the generatoR¥{.#;3) and serves as an evaluation class
for the pairing. We usélodgelntegraldo show that this palrlng is degenerate.

The dual grapH ¢ of a curveC is a graph which encodes the topological typeCof Vertices
of I are labelled with a genug and correspond to irreducible components of gesuand edges
between labelled vertices correspond to nodes betweerothesponding components. Let and
I"» denote the two graphs:

r: @06 0680
Define X; and X, to be the associated boundary strata, that is, the closuteedbcus of curves
whose dual graphs afg andr . It is straightforward to check th&k; — X2)A2 = 0. We now show
thatX; andX, are not linearly equivalent ip%ég. SinceRY (30 \ ///Qg) =AY (A 30\ ,///3}56), the
tautological restriction sequence

) R (M0 M35) — R(M30) — R(M35) — O,
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is exact, where the first map is inclusion and the second isa&sn. The shift in degrees is due to
the fact that any curve i%&o\//zég necessarily has at least two nodes. Note that in most cases,
the sequencef is not known exact in the middle.

The exactness oR] implies that, to show thaX; andX, are not linearly equivalent, we need to

check if their extensions ta73 o satisfy
3) X1 — X € R (a0 M33).

The generators &®(. 30\ ///3}56) are the boundary stra¥q associated to the the graphs:

el re@@ =@ e M0

The intersection pairing oy, ..., X7 against the five tautological classes K1k, Kf, K2A2, and
K2A1 is computed.

i6 : R = hodgeRing(3,0);

i7 : List * List := (A, B) -> apply(A, B, (X, y) -> X * y);

i8 : tempFactors = (FactorList, n) -> (

if #FactorList === 0 then return {splice{n : 1}} else (
tempList := tempFactors(drop(FactorList, 1), n);
a := first FactorList;
newList := new List;

for i from 1 to n do (

alList = splice{i - 1 :1, a, n - 1i : 1};

newList = append(newList, apply(tempList, x -> alList *x x)));
return flatten newlList));

The functiontempFactors returns a list of how the factors of a monomiaky, - - - kK5, can be dis-
tributed among components of a boundary stratum.

i9 : gnList = {{(1,1), (1,2), (0,3)}, {(1,1), (1,1), (0,4)}, {(0,6)}, {(1,3), (0,3)},

{(1,3), (0,3)}, {(1,2), (0,4)}, {(1,1), (0,5)}};
110 : klpList = {{kappa_3}, {kappa_-1l, kappa_2}, {kappa_1l, kappa_-1l, kappa_1},
{kappa_2, lambda_1}, {kappa_1l, kappa_-l, lambda_1}};
ill : M = matrix table(klpList, gnList, (x,y) -> (sum(tempFactors(x,#y),
z-> product(#y, i -> integral(y#i#0, y#i#l, z#i)))));
5 7

0ll : Matrix R <--- R

i12 : kernel M

0l2 = image | 0 -2304 |
| @ -1152 |
| 0 -1 |
| -1 24 |
| 1 0 I
| © 96 |
| @ 72 |

7

012 : R-module, submodule of R

The kernel ofM is incompatible with 8), since the first two coordinates of the two vectors above
correspond toX; and X, and there is no vector in the kernel of the form whose first awbisd
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coordinates are respectively 1 and -1. Ths- X, is nonzero irR3(‘///3f%), and the pairingX) is
not perfect.
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